
Programming with Actuate Basic

Information in this document is subject to change without notice. Examples provided are fictitious. No
part of this document may be reproduced or transmitted in any form, or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of Actuate
Corporation.

© 1995 - 2011 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 2207 Bridgepointe Parkway, San Mateo, CA 94404

www.actuate.com
www.birt-exchange.com

The software described in this manual is provided by Actuate Corporation under an Actuate License
agreement. The software may be used only in accordance with the terms of the agreement. Actuate
software products are protected by U.S. and International patents and patents pending. For a current list
of patents, please see http://www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:
Actuate, ActuateOne, the Actuate logo, Archived Data Analytics, BIRT, Collaborative Reporting
Architecture, e.Analysis, e.Report, e.Reporting, e.Spreadsheet, Encyclopedia, Interactive Viewing,
OnPerformance, Performancesoft, Performancesoft Track, Performancesoft Views, Report Encyclopedia,
Reportlet, The people behind BIRT, X2BIRT, and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered
trademarks of their respective owners, companies, or organizations include:

Adobe Systems Incorporated: Flash Player. Apache Software Foundation (www.apache.org): Axis, Axis2,
Batik, Batik SVG library, Commons Command Line Interface (CLI), Commons Codec, Derby, Shindig,
Struts, Tomcat, Xerces, Xerces2 Java Parser, and Xerces-C++ XML Parser. Bits Per Second, Ltd. and
Graphics Server Technologies, L.P.: Graphics Server. Bruno Lowagie and Paulo Soares: iText, licensed
under the Mozilla Public License (MPL). Castor (www.castor.org), ExoLab Project (www.exolab.org), and
Intalio, Inc. (www.intalio.org): Castor. Codejock Software: Xtreme Toolkit Pro. DataDirect Technologies
Corporation: DataDirect JDBC, DataDirect ODBC. Eclipse Foundation, Inc. (www.eclipse.org): Babel,
Data Tools Platform (DTP) ODA, Eclipse SDK, Graphics Editor Framework (GEF), Eclipse Modeling
Framework (EMF), and Eclipse Web Tools Platform (WTP), licensed under the Eclipse Public License
(EPL). Jason Hsueth and Kenton Varda (code.google.com): Protocole Buffer. ImageMagick Studio LLC.:
ImageMagick. InfoSoft Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts. Mark
Adler and Jean-loup Gailly (www.zlib.net): zLib. Matt Ingenthron, Eric D. Lambert, and Dustin Sallings
(code.google.com): Spymemcached, licensed under the MIT OSI License. International Components for
Unicode (ICU): ICU library. KL Group, Inc.: XRT Graph, licensed under XRT for Motif Binary License
Agreement. LEAD Technologies, Inc.: LEADTOOLS. Microsoft Corporation (Microsoft Developer
Network): CompoundDocument Library. Mozilla: Mozilla XML Parser, licensed under the Mozilla
Public License (MPL). MySQL Americas, Inc.: MySQL Connector. Netscape Communications
Corporation, Inc.: Rhino, licensed under the Netscape Public License (NPL). Oracle Corporation:
Berkeley DB. PostgreSQL Global Development Group: pgAdmin, PostgreSQL, PostgreSQL JDBC driver.
Rogue Wave Software, Inc.: Rogue Wave Library SourcePro Core, tools.h++. Sam Stephenson
(prototype.conio.net): prototype.js, licensed under the MIT license. Sencha Inc.: Ext JS. Sun Microsystems,
Inc.: JAXB, JDK, Jstl. ThimbleWare, Inc.: JMemcached, licensed under the Apache Public License (APL).
World Wide Web Consortium (W3C)(MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86
Project, Inc.: (www.xfree86.org): xvfb. Yuri Kanivets (code.google.com): Android Wheel gadget, licensed
under the Apache Public License (APL). ZXing authors (code.google.com): ZXing, licensed under the
Apache Public License (APL).

All other brand or product names are trademarks or registered trademarks of their respective owners,
companies, or organizations.

Document No. 110812-2-130331 July 13, 2011

i

Contents
About Programming with Actuate Basic. .xi

Part 1
Working with Actuate Basic

Chapter 1
Introducing Actuate Basic . 3
About Actuate Basic . 4
Programming with Actuate Basic . 5
Understanding code elements . 5

About statements . 5
About expressions . 6
About operators . 7

Using an arithmetic operator . 7
Using a comparison operator . 8
Using logical operators . 9
Using the concatenation operator . 10

Adhering to coding conventions . 10
Commenting code .11
Breaking up a long statement .11
Adhering to naming rules .11

Using the code examples . 12

Chapter 2
Understanding variables and data types . 13
About variables . 14

Declaring a variable . 14
Using a global variable . 15
Using a local variable . 16
About class variables . 16

Declaring an array . 16
About multidimensional arrays . 17
About dynamic arrays . 17
About functions used with an array . 18

About data types . 18
Using a standard data type . 18
Using an Actuate Foundation Class data type . 20
Assigning a data type . 20

Using the As keyword . 21

ii

Using a type-declaration character .21
About enums .22
About constants .23

Working with Variant data .23
About numeric Variant data .24
About functions used for a Variant variable .24

Working with String data .25
Declaring a String .25
Using binary string data .25
Manipulating a string .26
Formatting a string using Str or Str$.27
Formatting a string using Format or Format$.27
Comparing strings .28
Changing the capitalization of a string .28
Removing spaces from a string .29
Embedding special characters in a string .29

Embedding quotation marks in strings .29
Embedding tabs and new-line characters in strings .30

Working with numeric data .30
About numerical data types .30
About the Currency data type .31
Converting a string to a number .31

Working with date and time data .31
Using date and time display formats .32
Formatting date and time values .32

Working with a user-defined data type .33
Using an alias .33
Using a structure .33
Using a class .34

Converting a data type .34

Chapter 3
Writing and using a procedure . 37
About procedures .38

About scope in procedures .38
About methods .38
About global procedures .39
Declaring a Sub procedure .39
Declaring a Function procedure .40
Creating a global procedure .40

Declaring an argument .41
About argument data types .41
Passing an argument by reference .41

iii

Passing an argument by value . 42
Calling a procedure . 42

Calling a Sub procedure . 42
Calling a Function procedure . 42

Overloading a procedure . 42
Using a control structure . 43

Using a nested control structure . 44
Exiting a control structure . 44
Exiting a Sub or Function procedure . 44

Chapter 4
Calling an external function . 45
Understanding external C functions . 46

Using a C function with Actuate Basic . 46
Unloading an external library . 46

Declaring a C function . 47
Declaring the C function as a Sub procedure . 47
Declaring the C function as a Function procedure . 47
Understanding C function declaration issues . 48

Specifying the library of a C function . 48
Passing an argument by value or reference . 48
About flexible argument types . 49
Aliasing a non-standard C function name . 49

Determining an Actuate Basic argument type . 49
Calling a C function . 51

Calling a C function with a specific data type . 51
Passing a string to a C function . 51
Passing an array to a C function . 51
Passing a null pointer to a C function . 52
Passing a user-defined data type to a C function . 52
Passing an object reference variable to a C function . 52

About return values from C functions . 52
Working with a Java object . 53

About Java requirements . 53
Creating a Java object . 53
Invoking a method and accessing a field on a Java object . 53
Invoking a static method and accessing a static field . 54

Converting a Java data type . 54
Converting a Java String . 55
Converting a Java null . 55
Converting an array . 55

About Java exception and error handling . 56
Debugging a Java object . 57

iv

Part 2
Actuate Basic Language Reference

Chapter 5
Language summary . 61
Arrays .62
Classes and instances .62
Program flow .62
Conversion .63
Date and time .63
Environment .64
Error trapping .65
File input and output .66
Finances .67
Graphics and printing .67
Math .68
Operators .68
Procedures .68
Strings .69
Variables and constants .70

Chapter 6
Statements and functions . 71
Using the code examples .72
Abs function .74
Acos function .75
AddBurstReportPrivileges function .76
AddValueIndex function .76
Asc function .79
AscW function .80
Asin function .81
Assert statement .81
Atn function .82
Beep statement .83
Call statement .84
CCur function .85
CDate function .87
CDbl function .90
ChDir statement .92
ChDrive statement .93
Chr, Chr$ functions .95
ChrW, ChrW$ functions .97

v

CInt function . 98
Class statement . 100
ClearClipboard function . 102
CLng function . 103
Close statement . 105
Command, Command$ functions . 107
Const statement . 108
ConvertBFileToString function .110
ConvertStringToBFile function .110
ConvertToXML function .111
CopyInstance statement .112
Cos function .113
CreateJavaClassHandle function .114
CreateJavaObject function .115
CSng function .116
CStr function .118
CurDir, CurDir$ functions .119
CVar function . 121
CVDate function . 122
Date, Date$ functions . 125
DateAdd function . 126
DateDiff function . 128
DatePart function . 132
DateSerial function . 135
DateValue function . 138
Day function . 140
DDB function . 142
Declare statement . 143
Declare…End Declare statement . 146
Dim statement . 148
Do…Loop statement . 150
End statement . 154
Enum…End Enum statement . 155
Environ, Environ$ functions . 157
EOF function . 158
Erase statement . 160
Erl function . 162
Err function . 163
Err statement . 164
Error, Error$ functions . 166
Error statement . 167
Exit statement . 168
Exp function . 170

vi

ExtendSearchPath function .171
FileAttr function .172
FileCopy statement .174
FileDateTime function .175
FileExists function .177
FileLen function .178
FileTimeStamp function .179
FindFile function .181
Fix function .182
Format, Format$ functions .184
For…Next statement .197
FreeFile function .199
Function…End Function statement .200
FV function .205
Get statement .208
GetAFCROXVersion function . 211
GetAppContext function .212
GetAttr function .213
GetClassID function .216
GetClassName function .217
GetClipboardText function .219
GetDisplayHeight function .220
GetFactoryVersion function .222
GetFontAverageCharWidth function .223
GetFontDisplayHeight function .224
GetHeadline function .224
GetJavaException function .225
GetLocaleAttribute function .226
GetLocaleName function .227
GetObjectIdString function .227
GetOSUserName function .228
GetPId function .228
GetReportContext function .229
GetReportScalingFactor function .230
GetROXVersion function .230
GetSearchFormats function .231
GetServerName function .232
GetServerUserName function .233
GetTextWidth function .233
GetUserAgentString function .234
GetValue function .234
GetValueType function .236
GetVariableCount function .238

vii

GetVariableName function . 240
GetViewPageFormats function . 241
GetVolumeName function . 242
Global statement . 243
GoTo statement . 246
Hex, Hex$ functions . 248
Hour function . 250
If…Then…Else statement . 253
IIf function . 255
Input statement . 256
Input, Input$ functions . 259
InputB, InputB$ functions . 261
InStr function . 261
InStrB function . 263
Int function . 264
IPmt function . 266
IRR function . 268
IsDate function . 270
IsEmpty function . 272
IsKindOf function . 273
IsNull function . 274
IsNumeric function . 275
IsPersistent function . 276
IsSearchFormatSupported function . 277
IsViewPageFormatSupported function . 278
Kill statement . 279
LBound function . 280
LCase, LCase$ functions . 282
Left, Left$ functions . 283
LeftB, LeftB$ functions . 284
Len function . 285
LenB function . 286
Let statement . 287
Line Input statement . 289
ListToArray function . 290
Loc function . 291
Lock…Unlock statement . 293
LOF function . 298
Log function . 299
LSet statement . 300
LTrim, LTrim$ functions . 301
Mid, Mid$ functions . 302
Mid, Mid$ statements . 304

viii

MidB, MidB$ functions .305
MidB, MidB$ statements .307
Minute function .308
MIRR function . 311
MkDir statement .313
Month function .315
MsgBox function .318
MsgBox statement .321
Name statement .323
NewInstance function .325
NewPersistentInstance function .326
Now function .327
NPer function .328
NPV function .330
Oct, Oct$ functions .332
On Error statement .333
Open statement .335
Option Base statement .340
Option Compare statement .342
Option Strict statement .343
ParseDate function .344
ParseNumeric function .348
Pmt function .349
PPmt function .351
PreciseTimer function .354
Print statement .354
Put statement .357
PV function .361
QBColor function .363
Randomize statement .364
Rate function .366
ReDim statement .368
Rem statement .371
Reset statement .372
Resume statement .373
RevInStr function .374
RGB function .376
Right, Right$ functions .379
RightB, RightB$ functions .380
RmDir statement .381
Rnd function .383
RSet statement .384
RTrim, RTrim$ functions .385

ix

SafeDivide function . 387
Second function . 387
Seek statement . 390
Seek2 function . 392
Select Case statement . 394
Set statement . 397
SetAttr statement . 398
SetBinding function . 400
SetClipboardText function . 401
SetDefaultPOSMFile function . 402
SetHeadline statement . 402
SetStructuredFileExpiration function . 403
SetValue function . 405
Sgn function . 406
Shell function . 407
ShowFactoryStatus statement . 409
Sin function . 409
Sleep statement . 410
SLN function .411
Space, Space$ functions . 412
Sqr function . 413
Static statement . 414
Stop statement . 416
Str, Str$ functions . 417
StrComp function . 418
String, String$ functions . 420
StringW, StringW$ functions . 421
StrSubst function . 422
Sub…End Sub statement . 423
SVGAttr function . 427
SVGColorAttr function . 428
SVGDbl function . 429
SVGFontStyle function . 430
SVGStr function . 432
SVGStyle function . 434
SYD function . 436
Tab function . 438
Tan function . 440
Time, Time$ functions . 441
Timer function . 442
TimeSerial function . 442
TimeValue function . 445
Trim, Trim$ functions . 447

x

Type…End Type statement .448
Type…As statement .451
UBound function .452
UCase, UCase$ functions .453
Val function .454
VarType function .456
Weekday function .457
While…Wend statement .459
Width statement .461
Write statement .463
Year function .465

Appendix A
Operators . 469
* operator .470
+ operator .471
- operator .473
/ operator .474
\ operator .475
^ operator .475
& operator .476
And operator .477
BAnd operator .478
BNot operator .479
BOr operator .480
Comparison operators .481
Eqv operator .483
Imp operator .484
Is operator .485
Like operator .486
Mod operator .488
Not operator .489
Or operator .490
XOr operator .492

Appendix B
Keywords. 495

Appendix C
Trigonometric identities. 501

Index . 503

A b o u t P r o g r a m m i n g w i t h A c t u a t e B a s i c xi

A b o u t P r o g r a m m i n g
w i t h A c t u a t e B a s i c

Programming with Actuate Basic provides information for using the functions and
statements in the Actuate Basic programming language.

Programming with Actuate Basic includes the following chapters:

■ About Programming with Actuate Basic. This chapter provides an overview of
this guide.

■ Part 1. Working with Actuate Basic. This part describes and provides
information about the elements of Actuate Basic, working with variables,
procedures, and external functions in Actuate Basic.

■ Chapter 1. Introducing Actuate Basic. This chapter describes the elements of
Actuate Basic and its syntax and coding conventions.

■ Chapter 2. Understanding variables and data types. This chapter provides
information about working with variables in Actuate Basic.

■ Chapter 3. Writing and using a procedure. This chapter provides information
about working with procedures in Actuate Basic.

■ Chapter 4. Calling an external function. This chapter describes how to call a
C function in an Actuate Basic report.

■ Part 2. Actuate Basic Language Reference. This part provides lists of functions
and statements and information about keywords, operators, and
trigonometric identities.

■ Chapter 5. Language summary. This chapter provides grouped lists of functions
and statements that are frequently used together to perform specific
programming tasks.

■ Chapter 6. Statements and functions. This chapter contains an alphabetical
reference for all functions and statements.

xii P r o g r a m m i n g w i t h A c t u a t e B a s i c

■ Appendix A. Operators. This appendix contains information about Actuate
Basic operators.

■ Appendix B. Keywords. This appendix contains information about Actuate Basic
reserved words.

■ Appendix C. Trigonometric identities. This appendix contains information about
trigonometric identities.

Part 1Working with Actuate Basic

PartOne1

C h a p t e r 1 , I n t r o d u c i n g A c t u a t e B a s i c 3

C h a p t e r

Chapter 1Introducing Actuate Basic
This chapter contains the following topics:

■ About Actuate Basic

■ Programming with Actuate Basic

■ Understanding code elements

■ Adhering to coding conventions

■ Using the code examples

For an alphabetical list of all Actuate Basic functions and statements, including a
general description, syntax, and parameters and return values, see Chapter 6,
“Statements and functions.”

4 P r o g r a m m i n g w i t h A c t u a t e B a s i c

About Actuate Basic
Actuate Basic is an object-oriented programming language you can use for
creating sophisticated e.reports and distributing them over the web. Actuate
Basic consists of standard Actuate Basic functions and statements and uses object-
oriented language extensions. Developers use Actuate Basic to augment and
extend the functionality of e.Report Designer Professional.

Actuate Basic is similar to other structured programming languages. It provides
built-in functions and control structures, such as If…Then…Else constructs and
For and While loops. It also supports using variables and creating your own
methods and procedures. Actuate Basic is modeled after Microsoft Visual Basic,
Version 3. It is designed for programming reports and has none of Visual Basic’s
form-related syntax.

This chapter describes the elements of Actuate Basic and its syntax and coding
conventions. Table 1-1 lists key features of Actuate Basic.

Table 1-1 Actuate Basic features

Feature Functionality For information, see

Strong data typing Detecting mismatched
type errors when the
report compiles instead
of when it runs.

Chapter 2,
“Understanding
variables and data
types”

User-defined data types Combining variables of
different types into a
single type.

Chapter 2,
“Understanding
variables and data
types”

Calls to external
functions

Using a function stored
in an external library. For
example, you can create
and access a Java object,
call a C function, and
convert an Actuate Basic
string to a Java String.

Chapter 4, “Calling an
external function”

Portability Running a report on a
Windows or UNIX
server.

Chapter 6, “Statements
and functions”

C h a p t e r 1 , I n t r o d u c i n g A c t u a t e B a s i c 5

Programming with Actuate Basic
Actuate e.Report Designer Professional provides design tools that support
dynamic content delivery. Using e.Report Designer Professional, you create a
report by placing components in a report design and setting properties to
customize their appearance. e.Report Designer Professional translates the report
design into corresponding Actuate Basic code.

You can also write code in Actuate Basic to control the report generation process,
add application-specific logic, or design a report that responds to user-triggered
events. To accomplish these tasks, you typically override predefined methods in
the Actuate Foundation Classes (AFCs) or create new methods. For information
about AFC classes and methods, see Programming with Actuate Foundation Classes.

Programming in Actuate Basic involves writing procedures. The procedures you
write can be methods or general procedures available to the entire report. You
declare a method in a class. You store a general procedure in an Actuate Basic
source (.bas) file. When you include a BAS in your report design, you can use the
general procedures in it the same way you use Actuate Basic’s built-in statements
and functions. For more information about procedures, see Chapter 3, “Writing
and using a procedure.”

Understanding code elements
To program in Actuate Basic, you must familiarize yourself with its syntax,
naming conventions, control structures, and so on. This section provides an
overview of the following standard Actuate Basic code elements:

■ About statements

■ About expressions

■ About operators

About statements
A statement is a complete set of instructions directing Actuate Basic to execute a
specific task within a procedure. A procedure typically contains a series of
Actuate Basic statements that perform an operation or calculate a value.
Figure 1-1 shows an example of statements within a procedure.

The simplest and most common statement in a procedure is the assignment
statement. It consists of a variable name followed by the equal sign and an
expression:

<variable> = <expression>

6 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Figure 1-1 Procedure

The expression can be as simple or complex as necessary but it must evaluate to a
valid data type. For more information about data types, see Chapter 2,
“Understanding variables and data types.”

For example, the following assignment statements are valid:

Area = PI * Radius ^ 2
StartTime = StopTime - Now
Net_Worth = Assets - Liabilities
Label.Text = "Page " + Str$(curPageNum) + " of " & NumPages

In these examples, the assignment statement stores information. The examples
compute the value of an expression, which appears to the right of the assignment
operator (=). They store the result in the variable, which appears to the left of the
operator. The data type of the variable must be the same as the data type the
computed expression returns. For example, assigning a double value to an integer
variable rounds the double to the nearest integer.

If necessary, you can use a function to convert elements of different data types to
one common type. The last statement in the previous example uses the Str$
function to convert a numeric expression to a string.

Actuate Basic statements can be recursive, meaning that they can call themselves
repeatedly to perform a task. Actuate Basic sets a run-time stack limit of 200. A
report that exceeds this limit causes a fatal error in e.Report Designer Professional
and e.Report Designer. A report using recursion with a large number of iterations
can exceed this limit.

About expressions
An expression consists of values and operators combined in such a way that the
expression evaluates to one of the Actuate Basic data types. The type of the
operands in an expression determines the expression type.

In an expression that contains an operation, Actuate Basic considers the types of
all operands to determine the type of the result. For example, if you add two
integers, the result of the expression is an integer. If you mix data types in an
expression, the result is the type of the widest range. For example, the expression
3 * 4.55 produces a double.

Statements

Sub SetLabelBackgroundColor(anyControl As
AcLabelControl)
Dim Label As MyLabel
If GetClassName(anyControl) = "MyLabel" Then

Set Label = anyControl
Label.BackgroundColor = Red

End If
End Sub

C h a p t e r 1 , I n t r o d u c i n g A c t u a t e B a s i c 7

To avoid mixing types in an expression, use type-declaration characters with
numeric constants. These characters force a constant to take on a specific type. For
example, 10 is an integer, but 10@ is a currency value. Thus, 10@ + 20@ yields a
currency value of thirty dollars on the U.S. English locale. For more information
about type-declaration characters, see “Using a type-declaration character” in
Chapter 2, “Understanding variables and data types.”

In an expression that contains a variable that evaluates to Null, the result of the
expression is Null. For example, if the value of the variable NextOrderQuantity is
Null, the expression 2 * NextOrderQuantity produces a value of Null. Only the
concatenation operator treats Null values differently, as described in “Using the
concatenation operator.” Actuate Basic functions also return Null when you
provide an argument that evaluates to Null. For example, if the value of
VacationStartDate is Null, the function call, DateAdd("d", 5, VacationStartDate)
returns Null.

About operators
An operator is a symbol or keyword that performs an operation, such as adding
or comparing, on an expression. Actuate Basic provides the following types of
operators:

■ Arithmetic

■ Comparison

■ Logical

■ Concatenation

For more information about operators Actuate Basic supports, see Appendix A,
“Operators.”

Using an arithmetic operator
Use an arithmetic operator with a numeric expression. You can also use an
arithmetic operator with a date expression to subtract one date from another and
to add or subtract a number from a date.

Table 1-2 lists the arithmetic operators that Actuate Basic supports.

Table 1-2 Supported arithmetic operators

Operator Description Syntax

^ Exponentiation. Supports
computing powers and roots.
Actuate Basic computes the

number ^ exponent

(continues)

8 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using a comparison operator
Use a comparison operator to compare two expressions of the same type and
return True or False. Table 1-3 lists the comparison operators that Actuate Basic
supports.

^
(continued)

power using a positive exponent
and computes a root using a
negative exponent. For example,
10 ^ 3 evaluates to 1000.

* Multiplication expression1 * expression2

/ Floating point division. Performs
standard division and returns a
floating point number. For
example, 3/2 returns 1.5 as a
floating point, even though both
operands are integers.

expression1 / expression2

\ Integer division. Returns only the
integer portion of the division.
For example, 10\2 evaluates to 5
and 3\2 evaluates to 1.

expression1 \ expression2

Mod Modulus (remainder) expression1 Mod expression2

BAnd Bitwise And expression1 BAnd expression2

BOr Bitwise Or expression1 BOr expression2

+ Addition expression1 + expression2

- Subtraction expression1 - expression2

Table 1-3 Supported comparison operators

Operator Description Syntax

> Greater than expression1 > expression2

< Less than expression1 < expression2

>= Greater than or equal to expression1>= expression2

<= Less than or equal to expression1<= expression2

= Equal to
Although the equal to operator is
the same as the assignment

expression1 = expression2

Table 1-2 Supported arithmetic operators (continued)

Operator Description Syntax

C h a p t e r 1 , I n t r o d u c i n g A c t u a t e B a s i c 9

Using logical operators
Use logical operators to compare two logical expressions and return True or False.
Table 1-4 lists the logical operators Actuate Basic supports.

=
(continued)

operator, the context of the
operator determines which one
Actuate Basic uses. The
assignment operator is valid only
when it immediately follows a
variable in an assignment
statement. For all other contexts,
the = operator is a comparison
operator.
The expressions are
case-sensitive.

expression1 = expression2

<> Not equal to expression1 <> expression2

Like String comparison
Expression and pattern are
case-sensitive.

expression Like pattern

Is Object reference variable
comparison

objectref1 Is objectRef2

Table 1-4 Supported logical operators

Operator Description Syntax

Not Performs a logical negation on an
expression. Returns False if the
expression is True.

Not expression

And Performs a logical conjunction on
two expressions. Returns True if
both expressions are True. Returns
False if either expression is False.

expression1 And expression2

Or Performs a logical disjunction on
two expressions. Returns True if
one or both expressions is True.

expression1 Or expression2

Xor Performs a logical exclusion on
two expressions. Returns True if
only one expression is True.

expression1 Xor expression2

(continues)

Table 1-3 Supported comparison operators

Operator Description Syntax

10 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using the concatenation operator
The concatenation operator (&) combines two values to produce a string that
contains both original values. The original values do not change. Actuate Basic
casts each value to a string, then concatenates the strings. If one of the values is
Null, the concatenation operator produces a string that is the same as the other
value. If both values are Null, the concatenation operator produces Null.

The following examples produce the same result. The difference between the
examples is that using a value other than a string produces a variant value, which
Actuate Basic casts to a string.

6 & 7
"6" & "7"
"6" & Str$(7)
6 & 7 & Null

Adhering to coding conventions
Adhering to coding conventions makes your code easy to read and understand.
For example, you can comment your code to explain its purpose, use a consistent
style to name language elements, and break up long statements at logical places.
This section describes the following common coding conventions:

■ Commenting code

■ Breaking up a long statement

■ Adhering to naming rules

Eqv Performs a logical equivalence on
two expressions. Returns a value
of True if both expressions
evaluate to the same logical value.

expression1 Eqv expression2

Imp Performs a logical implication on
two expressions. Returns a value
of True if both expressions are
False or the second condition is
True.

expression1 Imp expression2

Table 1-4 Supported logical operators (continued)

Operator Description Syntax

C h a p t e r 1 , I n t r o d u c i n g A c t u a t e B a s i c 11

Commenting code
Code comments make a procedure easy to understand and maintain, especially if
other programmers work with your code. Actuate Basic recognizes two comment
markers:

■ The apostrophe (')

■ Rem

Actuate Basic treats characters to the right of a ' character or Rem as comments
and does not execute those lines. A comment can follow a statement or occupy an
entire line. A comment cannot follow a line continuation character (+). The
following example shows the different types of comment:

Rem This is a comment that takes up an entire line.
'This is a comment that takes up an entire line.
Text1.BackGroundColor = Red ' Print negative numbers in red.

Breaking up a long statement
Typically, you write code with one Actuate Basic statement to a line and no
terminator at the end of the line. Sometimes, however, you must break a long
statement over several lines. To do so, use a continuation character (+) at the
beginning of any lines after the first one, as shown in the following example:

Data1.RecordSource = "SELECT * FROM Titles, Publishers "
+ & "WHERE Publishers.PubId = Titles.PubID AND
+ Publishers.State = 'CA'"

The continuation character must be the continued line’s first character.

Adhering to naming rules
When naming an element such as a variable, constant, or procedure, adhere to the
following rules:

■ The name can contain up to 40 characters.

■ The first character of the variable name must be a letter. A letter is any upper-
or lowercase character in the US ASCII (A-Z and a-z) character set and does
not include non-English characters such as å or ô.

■ The name cannot start with a number, including double-byte numeric
characters.

■ Subsequent characters in a name can be letters, digits, or the underscore
character (_).

■ The name cannot duplicate an existing variable name in the same scope.

12 P r o g r a m m i n g w i t h A c t u a t e B a s i c

■ The name cannot contain reserved words, such as Function, Type, Sub, If, and
End. For a list of reserved words, see Appendix B, “Keywords.”

■ The name cannot contain an operator such as *, ^, or %.

■ The name cannot contain spaces.

Using the code examples
Actuate products include example code to help you program specific
functionality into a report. For more information about using example code, see
“Using the code examples” in Chapter 6, “Statements and functions.”

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 13

C h a p t e r

Chapter 2Understanding variables
and data types

This chapter contains the following topics:

■ About variables

■ Declaring an array

■ About data types

■ Working with Variant data

■ Working with String data

■ Working with numeric data

■ Working with date and time data

■ Working with a user-defined data type

■ Converting a data type

14 P r o g r a m m i n g w i t h A c t u a t e B a s i c

About variables
A variable is a named location in memory used for temporary data storage. When
you write Actuate Basic code, you often store values. For example, you can
compare values, perform a calculation and store the result, or store values such as
global configuration settings. Actuate Basic uses variables to store these values.

Declaring a variable
You declare a variable using the Dim, Global, or Static statements, as shown in the
following examples:

Dim Total As Integer
Global FileName As String
Static Counter As Integer

Actuate Basic does not support implicit declaration of variables. When you
implicitly declare a variable, you can use the variable name in your code without
declaring it first. Because good programming practice discourages implicit
variable declarations, Actuate Basic requires that you explicitly declare a variable
before you use it.

The scope of a variable determines which procedures can access it. Depending on
how and where you declare it, a variable has one of three scopes described in
Table 2-1.

When you add a variable to a class, Actuate Basic generates an appropriate Dim
or Static declaration. For more information about the Global, Dim, and Static
statements, see Chapter 6, “Statements and functions.” For information about
class variables, see Programming with Actuate Foundation Classes.

Table 2-1 Scopes of variables

Scope Accessed by Declared using Declared in

Global Entire application Global Declarations section of an
Actuate Basic source (.bas)
file included in a report
design

Local The procedure or
method in which
you declare it

Dim or Static A procedure or method

Class The class in which
you declare it

Dim or Static A class

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 15

Using a global variable
A global variable is accessible to the entire application. Use a global variable for
storing values that apply to an entire application. For example, to store file names
and default paths for accessing data.

The following example shows an example of an Actuate Basic source (.bas) file
that has global variables defined in a declaration section:

Declare
Global XVar As Integer
Global YVar As String

End Declare

Although global variables are useful in certain situations, minimize their use.
Global variables can add complexity to the logic of a report and can contribute to
the creation of complex state machines. For this reason, use a local variable when
possible.

How to create a global variable using a new source file

To create a global variable using a new source file:

1 In e.Report Designer Professional, create the Actuate Basic source (.bas) file:

1 Choose Tools➛Library Organizer➛New.

2 In New Library, name the file and select Source File (*.bas). Choose Save.

3 In Library Organizer, choose OK.

A page for creating the source file appears.

2 In the source file, create a declarations section using Declare…End Declare.

3 In the body of the declarations section, declare the global variable.

4 Save the source file.

The report includes the source file as a library.

How to initialize a global variable

To initialize a global variable after you declare it:

1 Write a Sub procedure in your source file that assigns an initial value to the
global variable.

2 Override the Start method of the report so that it calls the Sub procedure.

When report generation begins, Actuate initializes the global variable.

16 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using a local variable
A local variable is accessible only within the procedure or method in which you
declare it. A local variable is useful for a temporary calculation, such as counting
in a For or Do loop. Limiting the scope of a variable supports reusing variable
names. For example, if you declare a variable called Total in a procedure and you
later write another procedure for a similar task, you can use the variable name
Total in the new procedure.

Declare a local variable using Dim or Static, as shown in the following example:

Dim intTemp As Integer
Static intPermanent As Integer

A variable you declare using Dim exists only as long as the procedure or method
is executing. When a procedure finishes executing, Actuate discards the values of
local variables and reclaims the memory. The next time the procedure executes,
the local variables reinitialize.

A variable you declare using Static retains the same data throughout the report
generation process. Use Static to retain the value of a local variable to perform
tasks such as calculating a cumulative total. In the following example, a function
calculates a cumulative total by adding a new value to the total of previous values
stored in the static variable Accumulate:

Function CumulativeTotal(ByVal Num As Double) As Double
Static Accumulate As Double
Accumulate = Accumulate + Num
CumulativeTotal = Accumulate

End Function

If you declare Accumulate using Dim instead of Static, the function does not
retain previously accumulated values. The function returns the same value with
which you call it.

About class variables
A class variable typically stores values that define the state and attributes of an
object of the class. You can declare a class variable using Dim or Static.

Declaring an array
An array is a list of objects of the same size and data type. Each object in an array
is called an array element. Array elements are contiguous. You use an index
number to differentiate elements. For example, you can declare an array of
integers or an array of doubles, as shown in the following example:

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 17

Dim Counters(14) As Integer ' Integers, indexed 0-14 or 1-14,
' depending on the Option Base statement

Dim Sums(50) As Double ' Doubles, indexed 0-50 or 1-50
Dim Sums(10 To 20) As Double ' Doubles, indexed 10-20

You can also create a Variant array and populate it with elements of different data
types, such as integers and strings. For more information about working with
data types, see “About data types,” later in this chapter.

Using an array, you can set up loops that efficiently manage a number of cases by
using the index number. An array has an upper and lower bounds, such as 1-50 or
10-100. Because Actuate Basic allocates space for each index number, avoid
declaring an array larger than necessary.

About multidimensional arrays
You can declare an array with multiple dimensions. For example, a two-
dimensional array has rows and columns. The following statement declares an
array called Matrix. Matrix is a fixed-size, two-dimensional, 10 x 20 array with
bounds.

Dim Matrix(1 To 10, 1 To 20) As Double

Be aware when adding dimensions to an array that the total storage the array
requires increases dramatically, especially for a Variant array.

About dynamic arrays
Sometimes, you do not know in advance how large to make an array. Actuate
Basic supports changing the size of an array as the report runs. Such an array is
called a dynamic array. A dynamic array helps you efficiently manage memory.
For example, you can use a large array for a short time and reallocate memory to
the system when the report completes. As an alternative, you can declare a fixed-
size array of the largest possible size, which can cause your process to run low on
memory.

To declare a dynamic array, use a statement similar to the following declaration:

Dim AccordionArray() As Double

Place nothing between the parentheses, then size the array later using the ReDim
statement. To change the size of an array without losing the data in it, use ReDim
with the Preserve keyword. For example, you can enlarge an array by five
elements without losing the values of the existing elements.

ReDim Preserve MyArray(UBound(MyArray) + 5)

You can also use ReDim to decrease the size of an array.

18 P r o g r a m m i n g w i t h A c t u a t e B a s i c

About functions used with an array
Table 2-2 lists the Actuate Basic functions you can use for working with arrays.
For more information about these functions, see Chapter 6, “Statements and
functions.”

About data types
Actuate products use two categories of data types, those provided by Actuate
Basic and those that are defined specifically for use with Actuate Foundation
Classes (AFC). This chapter discusses the Visual Basic data types. For information
about AFC-specific data types, see Programming with Actuate Foundation Classes.

The data type determines the type of data the variable can store. A data type
provides a way to classify data stored in a variable by defining rules that govern
how you work with data and what the variable can contain. The Actuate Basic
data types include the standard Visual Basic data types and data types defined for
the Actuate Foundation Classes.

Using a standard data type
Table 2-3 describes the standard Visual Basic data types that Actuate Basic uses.

Table 2-2 Functions for arrays

Programming task Function/Statement

Change default lower limit Option Base

Declare and initialize Dim, Global, ReDim, Static

Test the limits LBound, UBound

Reinitialize Erase, ReDim

Table 2-3 Standard Visual Basic data types that Actuate Basic uses

Data type Storage size Range/Description

Any N/A Used only to suppress type checking of arguments
passed to dynamic-link library (DLL) procedures.

CPointer 4 bytes
32 bits

0 to 4,294,966,295.
A CPointer data type variable holds a pointer to data
allocated in a C function you create.

Currency 12 bytes
96 bits

-39,614,081,257,132,168,796.771975168 to
39,614,081,257,132,168,796.771975167

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 19

Date 8 bytes
64 bits

Dates 1 January 100 to 31 December 9999
Times 0:00:00 to 23:59:59

Double 8 bytes
64 bits

-1.797693134862315E308 to -2.23E-308 for negative
values. 2.23E-308 to 1.797693134862315E308 for
positive values.
Double-precision floating point numbers are stored
in memory using IEEE 64-bit floating point format.
Each floating point value consists of three parts: the
sign, the exponent, and the mantissa. In a double-
precision number, the sign takes 1 bit, the exponent
takes 11 bits, and the mantissa uses the remaining 52
bits plus an additional implied bit.

Integer 4 bytes
32 bits

-2,147,483,648 to 2,147,483,647
Can represent Boolean values. For Boolean values, 1
represents True and 0 represents False. You can also
use the Actuate Basic reserved words True and False,
which return 1 and 0, respectively.
Can represent enumerated values. An enumerated
value can contain a finite set of unique whole
numbers, each of which has special meaning in the
context in which it is used. Enumerated values
provide a convenient way to select among a known
number of choices.

Long 4 bytes
32 bits

-2,147,483,648 to 2,147,483,647

Single 8 bytes
64 bits

±2.2250738585072014E-308 to
±1.7976931348623158E+308

String 1 byte per
character

0 to approximately 2,147,483,647 characters or
memory limit. Because some storage overhead is
required, a string cannot actually be 2,147,283,647
characters long.
For more information about the String data type, see
“Working with String data,” later in this chapter.

User-defined
(defined with Type)

Defined by
elements

Range of each element depends on its fundamental
type.

(continues)

Table 2-3 Standard Visual Basic data types that Actuate Basic uses (continued)

Data type Storage size Range/Description

20 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using an Actuate Foundation Class data type
An Actuate Foundation Class (AFC) data type is either a typedef or a structure.

A typedef is an alias for a Basic data type, typically an Integer. Actuate
Foundation Classes use a typedef to create a type that adds rules to those a simple
data type provides. These rules govern limitations on range, direct special display
formatting, and specify related constants. For example, typedef rules about the
numbers that represent colors restrict them to the range of 0 to hexadecimal
FFFFFF.

Some data types are enumerations, or enums. An enum is a data type in which
the value can be only one of its associated constants. For example, a Boolean can
be only True or False. Other data types also can have constants. In such cases, the
constant provides convenient shorthand for a value.

A structure is a group of variables that describe a single item. The structure
member can be an Actuate Basic data type, such as an Integer, Boolean, or other
AFC-defined structure. In some cases, structures are nested, as in the following
example:

AcFont
AcColor

For a complete list of the AFC data types, see Programming with Actuate Foundation
Classes.

Assigning a data type
A variable has an associated data type. When declaring a variable, you can
explicitly assign a data type to it. If you do not assign a data type, Actuate Basic
assigns the Variant data type. Use the Option Strict statement to require that all
variable declarations have an assigned data type. For more information about
Option Strict, see Chapter 6, “Statements and functions.”

Variant As needed Depends on value stored, up to the range of a
Double.
The default data type for Actuate Basic.
For more information about the Variant data type,
see “Working with Variant data,” later in this
chapter.

Table 2-3 Standard Visual Basic data types that Actuate Basic uses (continued)

Data type Storage size Range/Description

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 21

You can assign a data type to a variable in one of two ways:

■ Using the As keyword

■ Using a type-declaration character

Using the As keyword
To declare a variable and assign it a data type using the As keyword, use the
following syntax:

Dim <variable> [As <type>]

The following examples show valid variable declarations:

Dim MyAccount As Currency
Dim YourAccount

These examples declare both variables and initialize them to the default value of
the data type. For these examples, MyAccount is a Currency variable initialized to
0.00. YourAccount is a Variant initialized to Empty.

Using a type-declaration character
You can assign a data type to a variable by appending a type-declaration
character to the end of the variable name.

Table 2-4 lists the type-declaration characters Actuate Basic supports.

The following examples show valid variable declarations:

Dim OurAccount@ ' declare Currency variable
Dim CustomerName$ ' declare String variable
Dim QuantitySold% ' declare Integer variable

Table 2-4 Supported type-declaration characters

Data type Type declaration character

Integer % (ANSI character 37)

Long & (ANSI character 38)

Single (real) ! (ANSI character 33)

Double (real) # (ANSI character 35)

Currency @ (ANSI character 64)

String $ (ANSI character 36)

Variant None

22 P r o g r a m m i n g w i t h A c t u a t e B a s i c

About enums
An enum is a data type whose value is one of a set of named values. For example,
the value of a TrafficLightColor enum might be RedLight, YellowLight, or
GreenLight.

You define an enum using the Enum statement. To declare an enum use the
following syntax:

Enum <user-efined enumeration type>
<name 1> [= value 1]
<name 2> [= value 2]
...
<name N> [= value N]

End Enum

The following example declares an enum. You place this statement within a
Declare...End Declare block.

Enum CarMotion
Forward
Reverse
Stopped

End Enum

To use the enum type, declare a local variable as that type. You can then assign
that variable the values specified in the enum declaration.

Dim myCarState As CarMotion
myCarState = Stopped

An enum is very similar to an Integer and a set of global constants. In the above
example, myCarState behaves like an Integer, and Forward, Reverse, and
Stopped behave like global constants.

The Enum statement syntax also allows an enum value to be assigned an explicit
numeric equivalent, as shown in this example:

Enum CarMotion
Reverse = -1
Stopped = 0
Forward = 1

End Enum

If the constant assignment is missing from an enum value, that value is assigned
the previous constant value plus one. If the first enum value assignment is
missing, it is set to zero.

In practice, you should never need to know the numeric equivalents of enum
values. Instead, you should always use the enum value names.

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 23

About constants
A constant is a reserved location in memory for storing a value that does not
change during the life of a report.

The following examples set constant values:

Const Pi = 3.14159265358979
Const FirstName = "James"
Const MyAccount = 25.43

These examples do not contain type declarations. In such cases, Actuate Basic
assigns the most appropriate data type. In the example, Pi is a Double, FirstName
is a String, and MyAccount can be a Single, a Double, or a Currency. In such a
case, Actuate Basic assigns the data type that uses the least amount of space, in
this case a Single. To specify that MyAccount is Currency, use the following
syntax:

Const MyAccount@ = 25.43@

Working with Variant data
A Variant variable can change its type depending on the program logic. The
Variant is the default data type for Actuate Basic. This means that it is the data
type that all variables become if you do not explicitly declare them to be of
another type.

A Variant can contain numeric, string, or date data, as well as the special values
empty and Null. The Variant maintains an internal representation of the data type
it stores. This internal representation determines how Actuate Basic manages the
value when you perform an operation on the variable. When you work with a
Variant, Actuate Basic typically performs any necessary conversions. Actuate
Basic uses the most compact representation possible to represent the variable.
Later operations on the variable can result in data type changes. You can
determine how Actuate stores the data in a Variant using the VarType function.
VarType returns a value that indicates which data type a Variant contains. For
more information about VarType, see Chapter 6, “Statements and functions.”

A Variant variable contains the value Empty until you assign another value to it.
A Variant containing Empty is 0 if it is used in a numeric context and a zero-
length string if it is used in a string context. Empty is not the same as a Null value.
Null indicates that the Variant variable intentionally contains no valid data.

The Variant is a convenient way to declare a variable for a small report or
frequently used variable. However, a Variant reduces the performance of the
program and can cause unintended data type conversions. For example, the
result of the + operator can be ambiguous when you use it with two Variants. If
both Variants are numbers, Actuate Basic adds them. If both Variants are strings,
Actuate Basic concatenates them. If one Variant is a string and the other is a

24 P r o g r a m m i n g w i t h A c t u a t e B a s i c

number, Actuate Basic first attempts to convert the string to a number. If the
conversion fails, a Type mismatch error occurs. To avoid such issues, use fewer
Variants and more explicitly typed variables in your code.

Always use a Variant when the data could contain date information, Empty, or a
Null. You can also use a Variant in place of any fundamental data type to work
with data in a more flexible way. If the contents of a Variant variable are digits,
they might either be the string representation of the digits or the actual value,
depending on the context. For example:

Dim MyVar As Variant
MyVar = 98052

In the preceding example, MyVar contains a numeric representation of the actual
value 98052. Arithmetic operators work as expected on Variant variables that
contain numeric values or string data that can be interpreted as numbers. If you
use the + operator to add MyVar to another Variant containing a number or to a
variable of a numeric data type, the result is an arithmetic sum.

About numeric Variant data
Generally, Actuate Basic maintains numeric Variant data in its original
fundamental data type within the Variant. For example, if you assign an Integer
to a Variant, subsequent operations treat the Variant as if it were an Integer.
However, if an arithmetic operation is performed on a Variant containing an
Integer, a Long, or a Single, and the result exceeds the normal range for the
original data type, the result is promoted within the Variant to the next larger data
type. An overflow error occurs when Variant variables containing Currency and
Double values exceed their respective ranges.

About functions used for a Variant variable
Table 2-5 lists the Actuate Basic functions you can use for working with Variant
variables. For more information about these functions, see Chapter 6, “Statements
and functions.”

Table 2-5 Functions for working with Variant variables

Programming task Function/Statement

Determine whether an argument can be converted to a
date

IsDate

Test whether a Variant variable contains a value IsEmpty

Determine whether the Variant contains the Null value IsNull

Test if the type of a variable is or can be converted to
Integer, Long, Single, Double, or Currency

IsNumeric

Determine the data type of a Variant VarType

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 25

Working with String data
A String variable contains text. Although a string can contain digits, you cannot
perform mathematical operations on the digits in a string. Within a string,
Actuate Basic interprets digits as characters. For example, you can store zip codes
and telephone numbers as string data in tables because you do not perform
calculations with them.

String characters that all Windows applications use consist of one- or two-byte
codes. These codes for String characters depend on the character encoding used
by a locale or the encoding explicitly set for a report design. The first 128
characters (0-127) correspond to the letters and symbols on a standard U.S.
keyboard. These first 128 characters are the same as defined by the ASCII
character set. The second 128 characters (128-255) represent other characters, such
as letters in international alphabets, accents, currency symbols, and fractions, and
differ depending on the locale. Internally, Actuate products use the two-byte
Unicode UCS-2 encoding, which ensures a consistent interpretation of literal
strings. Nonetheless, depiction of a character in a report depends on the
availability of the code point in the chosen font and the current encoding.

Declaring a String
Declare a variable as a String data type if it always contains text and you never
expect to treat it as a number in a calculation.

Dim myString As String

You can assign a String to this variable and modify the variable using String
functions. Use quotation marks to delimit a literal string in an expression.

myString = "Actuate Basic"
newString = Left$(myString,7)

A String variable or argument is a variable-length string. The string grows or
shrinks as you assign new data to it.

Using binary string data
A Visual Basic program typically stores binary data in a String variable. This
technique works because American National Standards Institute (ANSI) strings
are typically single-byte arrays of characters. Actuate Basic code can read and
write binary data on a byte-by-byte basis, using strings and manipulating the
standard String functions, regardless of whether the data has a meaningful ANSI
equivalent.

26 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Manipulating a string
You can manipulate a string, including a string containing binary data, using
Actuate Basic String functions. There are three types of String functions, two for
character strings and another for binary strings. You can use the character
versions without any preparatory steps. You use the AscW and ChrW character
String functions for two-byte Unicode characters. The other character String
functions interpret character values as one or two bytes according to the current
encoding.

Table 2-6 lists the functions you can use for manipulating character strings. For
more information about these functions, see Chapter 6, “Statements and
functions.”

How to use a binary String function

To use a binary String function:

1 Place the binary data in a byte array using Get or another function.

2 Assign the byte array to a string.

This assignment copies the data into a string variable. It does not translate the
binary data.

3 Use one of the functions listed in Table 2-7 to manipulate the binary data in the
string.

4 Assign the contents of the manipulated binary string back to a byte array.

Table 2-6 Functions for manipulating character strings

Functions Description

Asc, AscW Returns the character code for the first character.

Chr, ChrW Returns a string containing the specified character.

InStr Returns the first occurrence of one string within another.

Left, Right Returns a specified number of characters from the right or
left sides of a string.

Mid Returns a specified number of characters from a string.

Table 2-7 Functions for manipulating binary data in a string

Function Description

InStrB Returns the first occurrence of a byte in a binary string.

MidB Returns a specified number of bytes from a binary string.

LeftB, RightB Returns a specified number of bytes from the left or right
side of a binary string.

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 27

For more information about the functions you use for manipulating binary data,
see Chapter 6, “Statements and functions.”

For information about working with a multibyte character string, see Working in
Multiple Locales using Actuate Basic Technology.

Formatting a string using Str or Str$
The simplest way to format a string is to use the Str or Str$ functions. The syntax
is:

Str(<expression>)
Str$(<expression>)

Str returns a Variant data type. Str$ returns a String data type. Str and Str$ do not
perform a conversion if you pass them a String value.

When you convert a number using Str or Str$, the function places either a leading
space or a minus sign in front of the string. If the number is positive, the leading
space implies the plus sign. If the number is negative, the minus sign is placed in
front of the string.

The converted string follows the formatting rules of the user’s locale. The
following statement, which passes a numeric value, returns 123,456 with a
leading space in a French locale, and 123.456 with a leading space in an English
locale:

Str$(123.456) ' Passing a numeric value

The following statement, which passes a String value, returns 123,456 with a
leading space in both French and English locales:

Str("123,456") ' Passing a String value

Formatting a string using Format or Format$
The Format and Format$ functions format a numeric expression, date Variant, or
String according to the specified pattern and locale.

Format returns a Variant data type. Format$ returns a String. The syntax is:

Format(<expression to format>)
Format(<expression to format>, <format pattern>)
Format$(<expression to format>, <format pattern>, <locale>)

where

■ <expression to format> is the expression to display according to the specified
format pattern.

■ <format pattern> is a predefined Actuate Basic keyword or a string of format
characters that specifies how the expression appears.

28 P r o g r a m m i n g w i t h A c t u a t e B a s i c

■ <locale> is a String expression that specifies the locale to use for determining
<format pattern> and the output format.

For more information about the Format and Format$ functions, see Chapter 6,
“Statements and functions.”

Comparing strings
The StrComp function returns a Variant value indicating the result of a string
comparison. The syntax for StrComp is:

StrComp(<string expression 1>, <string expression 2>[,<compare
method>])

where

■ <string expression 1> and <string expression 2> are any valid string
expressions. Actuate Basic converts these strings to the Variant data type
before comparing them.

■ <compare method> specifies the type of string comparison. You can omit this
argument or use a value of 0 or 1. Use 0, the default value, to perform a binary,
or case-sensitive, comparison. Use 1 to perform a textual, or case-insensitive,
comparison. If compare method is Null, an error occurs. If you omit this
argument, the Option Compare setting determines the type of comparison.

Table 2-8 shows the return values of a string comparison.

For an example of using StrComp, see Chapter 6, “Statements and functions.”

Changing the capitalization of a string
Table 2-9 lists the functions you can use to change the capitalization of a string.
For more information about these functions, see Chapter 6, “Statements and
functions.”

Table 2-8 Return values of a string comparison

If StrComp returns

string1 is less than string2 -1

string1 is equal to string2 0

string1 is greater than string2 1

string1 or string2 is Null Null

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 29

Removing spaces from a string
Table 2-10 lists the functions you can use to remove leading or trailing spaces
from a string. For more information about these functions, see Chapter 6,
“Statements and functions.”

Embedding special characters in a string
Actuate Basic supports embedding quotation marks, tabs and new-line characters
in a string.

Embedding quotation marks in strings
Actuate Basic supports two techniques of embedding a literal quotation within a
string, as shown in the following example:

The CEO said, "Sales are fantastic!"

To make this sentence into a valid string expression using the first technique,
insert an additional set of quotation marks to display each set in the string.
Actuate Basic interprets two quotation marks in a row as an embedded quotation
mark. To assign the previous string to a variable, use the following code:

Text.Aside = "The CEO said, ""Sales are fantastic!"""

Table 2-9 Functions for changing the capitalization of a string

Function Description

LCase Returns a Variant in which all letters are
lowercase

LCase$ Returns a String in which all letters are
lowercase

UCase Returns a Variant in which all letters are
uppercase

UCase$ Returns a String in which all letters are
uppercase

Table 2-10 Functions for removing spaces from a string

Function Description

LTrim Returns a copy of a String without
leading spaces

RTrim Returns a copy of a String without
trailing spaces

Trim Returns a copy of a String with neither
leading nor trailing spaces

30 P r o g r a m m i n g w i t h A c t u a t e B a s i c

In the second technique, Actuate Basic supports back quotes (‘) to delimit string
constants. The following code creates a string with the same value as the previous
example:

Text.Aside = ‘The CEO said, "Sales are fantastic!"‘

Embedding tabs and new-line characters in strings
Tab and new-line characters in string constants can also be embedded into strings.
Enclose string constants that contain these characters in braces ({ and }). This
syntax supports pasting large blocks of text such as HTML, XML, or SQL directly
from an external application into method code.

The following example creates a string with both tabs and new-line characters:

ObtainSelectStatement = {"
SELECT

Customers.custID,
Customers.name

FROM
customers

"}

Working with numeric data
Actuate Basic offers several data types that can contain numeric data. The type
you choose depends on how you use the numbers. The following sections
describe the different types of numeric data and when to use each.

About numerical data types
The Integer and Long data types represent numbers that have no fractional
component.

The Single and Double data types can express floating point numbers.

You can express a floating point value as:

mmmmEeee

where

■ mmmm is the mantissa

■ eee is the exponent, a power of 10

You can assign all numeric variables to each other and to variables of the Variant
type. Actuate Basic rounds the fractional part of a floating point number before
assigning the floating point number to an Integer.

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 31

About the Currency data type
The Currency data type represents a monetary value with a precision of four
decimal places. Use the Currency data type for calculations involving money and
for fixed point calculations in which accuracy is important. A floating point
number has a larger range than a Currency data type. A floating point number is
subject to small rounding errors. Because Currency is a scalar data type, it is not
subject to rounding errors within its range.

A Currency variable is stored as 96-bit (12-byte) number in an Integer format,
scaled by 1,000,000,000 (109). This scale produces a fixed point number with 20
digits to the left of the decimal point and 9 digits to the right.

To ensure that a Currency value maintains its precision, append the currency type
declaration symbol, @, to the value after you define it, as shown in the following
example:

Dim DollarAmt As Currency
DollarAmt = 922337203685476.5807@

The preceding example ensures that DollarAmt is not subject to rounding errors.
In this example, if you do not specify the Currency type declaration symbol,
DollarAmt evaluates to 922337203685477.

Converting a string to a number
Use the Val function to convert a String to a numeric value. Val returns a Double
data type. The syntax for Val is:

Val("<string expression>")

For information about how Val converts strings, see Chapter 6, “Statements and
functions.”

Working with date and time data
Actuate Basic stores a Date variable as an IEEE 64-bit floating point number. This
number represents dates ranging from 1 January 100 to 31 December 9999 and
times from 0:00:00 to 23:59:59. You can assign any recognizable literal date value
to a Date variable. You must enclose a literal date within number sign characters
(#) in the following format:

#1/1/2002# or #11/12/2003#

The user’s locale determines the interpretation of a literal Date value. If you plan
to distribute a report to multiple locales, DateSerial is a better choice.

32 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using date and time display formats
A Date variable uses the short date format your computer recognizes. The time
appears in either 12- or 24-hour format, according to your computer’s time
format.

When you convert other numeric data types to Date, values to the left of the
decimal represent date information and values to the right of the decimal
represent time. Midnight is 0 and midday is .5. A negative number represents a
date before December 30, 1899.

Formatting date and time values
You can perform mathematical operations on a date or time value. Adding or
subtracting an integer operates on the date. Adding or subtracting a fraction
operates on the time. Table 2-11 lists the Actuate Basic date functions. For more
information about these functions, see Chapter 6, “Statements and functions.”

You can use date and time literals by enclosing them within number signs (#). For
example:

If Today > #2/25/2003# Then …

You can also include a time.

If Now > #2/25/2003 10:00pm# Then …

Table 2-11 Actuate Basic date functions

Function Description

DateSerial Returns a date or date serial number from the
year, month, and day numbers entered. Always
specify a four-digit year. The supported date
range for report scheduling is January 1, 1980
through December 31, 2036. The supported date
range for all other data processing and display,
including database access, is January 1, 100
through December 31, 9999.

Day Extracts the day component from a date and
returns a number.

Weekday Determines the day of the week for this date and
returns it as a number (1 to 7), where Sunday is 1.

Month Extracts the month component of a date and
converts it to a number.

Date Returns the current date.

Year Extracts the year component from a date and
returns a number.

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 33

If you do not include a time, Actuate Basic uses midnight as the start of the day. If
you do not include a date, Actuate Basic uses December 30, 1899 as the start of the
calendar.

To determine whether a Variant or other value can convert to a Date data type,
use the IsDate function. You can then use the CDate() function to convert the
value to a Date data type.

For information about working with numeric data in different locales, see
Working in Multiple Locales using Actuate Basic Technology.

Working with a user-defined data type
You can use Actuate Basic’s data types for most data in a report that uses strings,
numeric data, and dates. Many reports require logically structuring related data.
These reports are less prone to error when you create custom, or user-defined,
data types. Actuate Basic supports three user-defined data types:

■ Alias

■ Structure

■ Class

Using an alias
An alias is the simplest type of user-defined data. When you use an alias, you
declare a data type that has the properties of an existing data type. The syntax is:

Typedef <new data type> As <existing data type>

Typically, the new data type is one of the Actuate Basic data types. The following
example shows an AFC type:

Typedef AcColor As Integer

You can also declare an alias to a structure, as shown in the following example:

Typedef MyPoint As AcPoint

Using a structure
A user-defined data type is a structure in which the elements contain previously
defined data types. These data types can be either Actuate Basic data types or
user-defined data types.

34 P r o g r a m m i n g w i t h A c t u a t e B a s i c

For example, if you write a program to catalog computers, you can define a
structure that represents related information about the computer systems, as
shown in the following example:

Type SysInfo
ComputerName As String
CPU As String
Memory As Long
DiskDriveType As String
DiskDriveSize As Single
Price As Currency
PurchaseDate As Date

End Type

After you declare a structure, you can declare a variable of this data type in the
same way that you declare a variable of a fundamental type.

Dim SystemOne As SysInfo, SystemTwo As SysInfo

When you declare a variable, you can assign and retrieve values from the
elements of the variable using the dot notation, as shown in the following
example:

SystemOne.Price = 1999.95
SystemOne.PurchaseDate = #2/25/03#

If both variables are of the same user-defined type, you can also assign one user-
defined variable to another. The following example assigns all elements of the
first variable to the same elements of the second variable:

SystemTwo = SystemOne

You can nest user-defined types. After you define a data type, you can include it
in another user-defined type. Nesting can be as complex as your application
requires. To keep your code readable and easy to debug, however, keep all nested
user-defined types in one module.

Using a class
A class is a user-defined data type that defines the attributes of an object in a
report. To create an object, you declare a variable that contains a reference to the
object and assign a class as its type. For more information about classes and
objects, see Programming with Actuate Foundation Classes.

Converting a data type
Actuate Basic provides functions to convert a value into a specific data type. For
example, to convert a value to Currency, use the CCur function:

WeeklyPay = CCur(hours * rate)

C h a p t e r 2 , U n d e r s t a n d i n g v a r i a b l e s a n d d a t a t y p e s 35

Table 2-12 lists the functions you can use for converting a data type. For more
information about these functions, see Chapter 6, “Statements and functions.”

For each locale, these functions convert separators in a numeric expression
according to the locale’s rules. The Decimal, Grouping, CurrencyDecimal and
CurrencyGrouping parameters of localemap.xml define locale-specific rules.

For more information about locale-specific data, see Working in Multiple Locales
using Actuate Basic Technology.

Table 2-12 Functions for converting a data type

Function Converts an expression to

CCur Currency

CDate Date

CDbl Double

CInt Integer

CLng Long

CSng Single

CStr String

CVar Variant

CVDate Variant of VarType 7 (Date)

36 P r o g r a m m i n g w i t h A c t u a t e B a s i c

C h a p t e r 3 , W r i t i n g a n d u s i n g a p r o c e d u r e 37

C h a p t e r

Chapter 3Writing and using a
procedure

This chapter contains the following topics:

■ About procedures

■ Declaring an argument

■ Calling a procedure

■ Overloading a procedure

■ Using a control structure

38 P r o g r a m m i n g w i t h A c t u a t e B a s i c

About procedures
A procedure is a set of commands that perform a specific set of operations.
Actuate Basic supports two types of procedures, Sub and Function. A Sub
procedure does not return a value. A Function procedure returns a value.

A procedure can simplify programming by breaking a program into smaller
logical components. You use these components as building blocks that enhance
and extend Actuate Basic.

A procedure is useful for condensing a repeated or shared task, such as a
calculation, text and control formatting, and database operations.

Using procedures has two major benefits:

■ When you break a program into discrete logical units, you can debug these
units more easily than an entire program without procedures.

■ You can reuse a procedure in multiple reports, typically without modification.

About scope in procedures
The procedures you create can have either class or global scope. The scope of the
procedure determines which parts of a program can access that procedure. A
procedure you declare in a class has class scope. This means that it is accessible
only to objects of that class. A procedure with class scope is a method of the class.

A procedure you declare in an Actuate Basic source (.bas) file has global scope.
This means that it is accessible from any part of the report. The following sections
describe methods and global procedures in more detail.

About methods
A method is a procedure you declare within a class declaration. A report typically
includes multiple objects of a class. A method performs an action on an object in a
class. The following example shows a method that checks the values of a
parameter:

Sub Start()
If IsNull(StartDate)

+ Or (DateDiff("d", StartDate, DateSerial(2006,1,1) > 0)) Then
StartDate = DateSerial(2006, 1, 1)

End If
Super::Start()

End Sub

For more information about methods, see Programming with Actuate Foundation
Classes.

C h a p t e r 3 , W r i t i n g a n d u s i n g a p r o c e d u r e 39

Usually, your code does not need to specify which object is currently executing.
Sometimes, however, a method or property refers explicitly to a particular object.
The Me keyword supports referring to the object in which the code is running.
Use Me as if it were the Name property of the object, as shown in the following
example:

Sub PrintTotal()
Me.Print

End Sub

About global procedures
You can create a global procedure by creating a new Actuate Basic source (.bas)
file or by using an existing BAS.

The following example shows an outline of a BAS that uses global procedure
declarations:

Sub ProcA()
…

End Sub
Function FuncAr() As Integer

…
FuncA = <expression>

End Function

After you include a module containing procedure declarations, you call your
procedures the same way as you call Actuate’s predefined functions.

Declaring a Sub procedure
The syntax for a Sub procedure is:

Sub <procedure name>([<arguments>])
<statements>

End Sub

where

■ <arguments> is an optional list of argument names separated by commas.
Each argument looks like a variable declaration and acts like a variable in the
procedure. For more information about arguments, see “Declaring an
argument,” later in this chapter.

■ <statements> are executed each time the procedure is called. You can place a
Sub procedure in a global module, where it is accessible throughout the report,
or in a class, where it becomes a method that operates on or is accessible only
to an instance of that class.

40 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Declaring a Function procedure
Actuate Basic includes built-in functions that return a value with an appropriate
data type. For example, Now returns a date value containing the current date and
time.

You can write your own procedures using the Function statement. The following
example shows the syntax:

Function <procedure name>(<arguments>) [As <type>]
<statements>
<procedure name> = <expression>

End Function

A Function procedure is similar to a Sub procedure in that it can take arguments,
execute a series of statements, and change the value of its arguments. The
arguments for a Function procedure work the same way as arguments for a Sub
procedure, with the following differences:

■ Typically, you call a function by including the Function procedure name and
arguments on the right side of a larger statement or expression. The variable
on the left of the equal sign stores the value the Function returns.

■ A Function procedure has a data type, just as a variable does, that determines
the type of the return value. If you omit the As clause, the function type is
Variant.

■ You return a value by assigning it to the procedure name within the
procedure. When the function returns, this value can become part of the larger
expression from which you called the function.

The following example shows how to write a function that calculates and returns
the area of a rectangle, given the length and width:

Function RectArea (Width As Single, Length As Single) As Single
RectArea = Width * Length

End Function

Creating a global procedure
To create a global procedure using a new source file, perform the following steps.

1 Create an Actuate Basic source (.bas) file.

1 Choose Tools➛Library Organizer➛New.

2 In New Library, type a name for the file. In Save as type, choose Source File
(*.bas).

3 Navigate to the directory in which to save the file. Choose Save.

4 In Library Organizer, choose OK.

C h a p t e r 3 , W r i t i n g a n d u s i n g a p r o c e d u r e 41

A window for creating the source file appears.

2 In the source file, write the procedure using the Sub or Function statement.
Include parentheses after the procedure name, even if the parentheses are
empty.

3 Save the source file.

The report includes the source file.

Declaring an argument
An argument passes a value to the procedure. You declare an argument as a
variable in a procedure declaration. For example, a procedure that performs a
calculation usually requires a value for processing, as shown in the following
examples. You pass this value to the procedure when you call it. The arguments
are the names the procedure uses for the values you supply. The first value you
supply gets the first parameter name in the list, the second value gets the second
parameter name, and so on.

Function Sum2 (Num1 As Integer, Num2 As Integer) As Integer
Sum = Num1 + Num2

End Function

Function ExtendedCost (Cost As Currency, Quantity As Integer)
+ As Currency

ExtendedCost = Cost * Quantity
End Function

About argument data types
The default data type of a procedure argument is Variant. You can declare another
data type for a procedure argument variable. For example, the following function
accepts a string and an integer:

Function ExtractLeftString(S As String, N As Integer)
<statements>

End Function

Passing an argument by reference
Actuate Basic passes a variable to a procedure by reference. Passing a variable by
reference gives the procedure access to the variable’s location in memory. Using
this information, the procedure can change the value of the variable.

If you declare a data type for an argument passed by reference, you must pass a
value of that data type when you call the procedure. You can convert the data
type if necessary.

42 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Passing an argument by value
The ByVal keyword passes a variable by value. When calling an internal
procedure, Actuate Basic passes a copy of the value to the procedure. In this case,
if the procedure changes the value, only the copy changes, not the original. When
the procedure finishes, the copy of the variable goes out of scope.

When calling an external procedure, Actuate Basic passes the address of the
string data. In this case, if the procedure changes the value, the original value also
changes.

Calling a procedure
The techniques for calling a procedure depend on the type of procedure, its scope,
and the way your report uses it. The following sections describe how to call Sub
and Function procedures.

Calling a Sub procedure
A call to a Sub procedure is a stand-alone statement. Because a Sub procedure
does not return a value, you cannot call it by using its name within an expression.
A Sub procedure can modify values of any variables it receives as arguments.

You call a Sub procedure in one of two ways, as shown in the following examples:

Call MyProc(Argument1, Argument2)
MyProc (Argument1, Argument2)

Calling a Function procedure
Because a Function procedure returns a value, you typically call it by using its
name as part of a larger expression. You call a custom function the same way you
call a built-in function. All the following examples call a function named
UpdateTotal:

Print UpdateTotal
NewTotal = UpdateTotal()
If UpdateTotal < 0 Then

ShowFactoryStatus("Error: Total is negative.")
End If

Overloading a procedure
To overload a procedure is to define multiple versions of it. The versions use the
same procedure name but different argument lists. The lists can differ in the

C h a p t e r 3 , W r i t i n g a n d u s i n g a p r o c e d u r e 43

number of arguments, the order of arguments, or the data types of the arguments.
Overloading produces a group of closely-related procedures that can call one
another as necessary.

For example, you can write a square root function that operates on integers and
another square root function for doubles. In Actuate Basic, you can give both
procedures the same name, square_root. By overloading square_root, you give it
more than one possible meaning.

Actuate Basic distinguishes between versions of the function by the type and
number of arguments. The following examples show an overloaded procedure:

Function square_root(intInput As Integer) As Integer
Function square_root(doubleInput As Double) As Double

Using a control structure
Use a control structure to control the flow of report generation. Most reports
contain decision points that support using structures and loops to change
statement order. Table 3-1 describes the control structures that Actuate Basic
supports.

Table 3-1 Supported control structures

Statement Description Syntax

 Do…Loop Executes a block of statements
while a specified condition is
True or until it becomes True.
You can use several variations
of the Do…Loop statement but
each evaluates a numeric
conditional as a Boolean to
determine whether to continue
executing.
The first syntax in this table
tests the condition statement. If
False, the loop code is skipped.
If true, the statements execute
and the loop repeats until the
condition evaluates to False.

The second syntax guarantees
that the loop will execute at
least once.

Do While <condition>
 <statements>
Loop

Do
 <statements>
Loop While <condition>

(continues)

44 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using a nested control structure
You can place a control structure inside another control structure, such as a
For…Next loop within an If…Then block. A control structure inside another
control structure is called a nested structure.

Actuate Basic supports nesting a control structure to as many levels as you need.

Exiting a control structure
To exit a loop without performing any further iterations or statements within the
loop, use the Exit For and Exit Do statements.

Exiting a Sub or Function procedure
To exit a procedure without processing any remaining statements in it, use the
Exit Sub and Exit Function statements. These statements terminate the Sub or
Function procedure and transfer control to the line following the procedure’s End
statement.

If…Then…
Else

Executes one block of specified
statements based on a
conditional expression.
You can include only a single
Else clause regardless of
whether you have ElseIf
clauses.

If <condition1> Then
 [<statement block 1>]
ElseIf <condition2> Then
 [<statement block 2>]
Else
 [<statement block 3>]
End If

 For…Next Repeats a block of instructions
a specified number of times.

For <counter> = <start> To
<end> [Step <step size>]
 <statements>
Next <counter>

Table 3-1 Supported control structures (continued)

Statement Description Syntax

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 45

C h a p t e r

Chapter 4Calling an external
function

This chapter contains the following topics:

■ Understanding external C functions

■ Declaring a C function

■ Calling a C function

■ Working with a Java object

■ Converting a Java data type

■ About Java exception and error handling

■ Debugging a Java object

46 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Understanding external C functions
This chapter describes how to call a C function in an Actuate Basic report. It does
not describe how to program a C function or publish it in a library. Refer to C
documentation for that information.

Actuate Basic provides a rich set of statements and functions you can use in your
report. Sometimes, however, your program can accomplish more or execute more
efficiently using C functions. Many companies and third-party developers supply
libraries of C functions. By taking advantage of these C libraries, you can extend
the functionality of Actuate Basic.

Actuate Basic supports calling an external C function if the function is accessible
to a report. In the Windows environment, an Actuate Basic report can call a
C function stored in a dynamic link library (DLL). On a UNIX system, a report
can call a C function stored in a shared library.

Using a C function with Actuate Basic
Because C functions reside in external files, you must provide information to
Actuate Basic so that it can find and execute the appropriate C function. Using a
C function involves two basic steps:

■ Declare the C function in Actuate Basic using the Declare statement. This step
supplies the information Actuate Basic requires to convert and execute the
C function.

■ Call the C function the same way you call an Actuate statement or function.
Actuate software loads the library then executes the C function.

You declare the C function only once but you can call it any number of times.

To make a C function accessible to all parts of your Actuate application, write the
Declare statements in an Actuate Basic source (.bas) file, using a text or code
editor. Then, include the BAS in your report by choosing Tools➛Library
Organizer.

Unloading an external library
As part of a library‘s memory management, the library must de-allocate memory
used by a variable that an external call returns. For a variable you use with
Actuate, you can create a memory cleanup function, AcCleanup(char *aPointer).
If you implement an AcCleanup function in your external library, Actuate calls
AcCleanup after it finishes using the variable. If you do not implement
AcCleanup, Actuate does not call AcCleanup.

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 47

Declaring a C function
The first step in using an external C function is to declare it. You must provide the
following information in the Declare statement:

■ The name of the C function

■ The name of the DLL or shared library that contains the C function

■ Arguments that the C function takes

■ A return data type value, if any

You can also provide a name with which to call the C function by using the Alias
keyword. For more information about using Alias, see “Aliasing a non-standard
C function name,” later in this chapter.

For more information about the Declare statement, see Chapter 6, “Statements
and functions.”

Declaring the C function as a Sub procedure
If the C function does not return a value, declare it as a Sub procedure, using the
following syntax:

Declare Sub <function name> Lib <"library name">
[Alias <"alias name">][(<argument list>)]

The following example declares a Sub procedure:

Declare Sub LogError Lib "Kernel32"(ByVal uErr As Integer,
+ lpvInfo As Any)

Declaring the C function as a Function procedure
If the C function returns a value, declare it as a Function procedure, using the
following syntax:

Declare Function < function name> Lib <"library name">
[Alias <"alias name">][(<argument list>)][As <type>]

The following example declares a Function procedure:

Declare Function GetSystemMetrics Lib "USER32" (i As Integer)
+ As Integer

48 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Understanding C function declaration issues
To declare and call a C function, ensure you have documentation for those
procedures. A C function declaration can become complex for the following
reasons:

■ C often passes arguments by value, whereas Actuate Basic’s default behavior
is to pass arguments by reference.

■ C type declarations differ from Actuate Basic type declarations.

■ A C function can have a name that is not a valid identifier in Actuate Basic.

The following sections explain the syntax of the Declare statement in more detail
so that you can create the correct declaration for the C function.

Specifying the library of a C function
On a Windows system, you specify the name of a DLL in the Lib<"library name">
clause. On a UNIX system, you specify the name of a shared library.

<"library name"> can be a file specification that includes a path. For example:

Declare Function GetSystemMetrics
+ Lib "C:\WINNT\SYSTEM32\USER32" (i As Integer) As Integer

If you omit the path, Actuate searches for the library in the following order:

■ The directory in which Actuate is installed

■ The current directory

■ The Windows system directory

■ The Windows directory

■ On a Windows system, the directories listed in the PATH environment
variable

■ On a UNIX system, the directories listed in the LD_LIBRARY_PATH,
LIBPATH, or SHLIB_PATH environment variables

If you omit the file extension, Actuate assumes a .dll extension.

Passing an argument by value or reference
By default, Actuate Basic passes all arguments by reference. However, many
C functions expect you to pass arguments by value. If you pass an argument by
reference to a procedure that expects a value, the procedure cannot interpret the
data.

To pass an argument by value, use the ByVal keyword before the argument
declaration in the Declare statement. Each time you call the procedure, Actuate
Basic passes the argument by value, as shown in the following example:

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 49

Declare Function GetFreeSystemResources Lib "User32"
+ (ByVal fuSysResource As Integer) As Integer

The arguments you pass by reference to C functions are strings and arrays.

About flexible argument types
Some C functions can accept more than one type of data for the same argument.
To pass more than one type of data, declare the argument using the As Any
keyword to remove type restrictions, as shown in the following example:

Declare Function SendMessage Lib "User32"
+ (ByVal hWnd As Integer, ByVal msg As Integer,
+ ByVal wp As Integer, ByVal lp As Any) As Long

When you call the function, you can pass either a string or a long integer as its last
argument.

FindItem = SendMessage(aList.hWnd, LB_FINDSTRING, -1, target)

Aliasing a non-standard C function name
Occasionally, a C function has a name that is an invalid Actuate Basic identifier. A
C function name is invalid if it starts with an underscore, contains a hyphen, or
has the same name as an Actuate Basic reserved word. When the C function name
is an invalid Basic identifier, use the Alias keyword, as shown in the following
example:

Declare Function LOpen Lib "Kernel32" Alias "_lopen"
+ (ByVal fn As String, ByVal f As Integer) As Integer

The preceding example calls LOpen in the Basic code. _lopen is the name of the
C function in the DLL or shared library.

You can also use Alias when you want to use a name different than the actual
C function name. For example, to substitute a shorter name for a long C function
name.

Determining an Actuate Basic argument type
To call a C function from Actuate Basic, you must translate it into a valid Declare
statement. Table 4-1 lists the Actuate Basic argument types to declare in the
Declare statement, based on the C argument types of the functions you call.

Table 4-1 Relationships of C argument types to Actuate Basic
types

C type Actuate Basic type

int *x, int &x x As Integer

(continues)

50 P r o g r a m m i n g w i t h A c t u a t e B a s i c

int x ByVal x As Integer

long *x, long &x x As Long

long x ByVal x As Long

double *x, double &x x As Double, x As Single, x As Date

double x ByVal As Single, ByVal As Double,
ByVal As Date

AcCurrency *x 1 x As Currency

AcCurrency x ByVal x As Currency

char *x, LPCSTR x (null terminated
string)

ByVal x As String

wchar_t *x, LPCTSTR x (null
terminated Unicode string)

ByVal x() As String

union { int, long, double,
AcCurrency, RWCString } *x

x As Variant, x As Any

actual data (int, long, double,
AcCurrency, char*)

ByVal x As Variant, ByVal x As Any

void **x (pointer to any C/C++
pointer)

x As CPointer

void *x ByVal x As CPointer

int *x, int x[] x() As Integer, ByVal x() As Integer

long *x, long x[] x() As Long, ByVal x() As Long

double *x, double x[] x() As Single, ByVal x() As Single, x() As
Double, ByVal x() As Double, x() As
Date, ByVal x() As Date

AcCurrency *x, AcCurrency x[] x() As Currency, ByVal x() As Currency

RWCString **x, RWCString &x[] x() As String

char **x, char *x[] ByVal x() As String

void **x, void *x[] x() As CPointer, ByVal x() As CPointer

wchar_t **x, wchar_t *x[] ByVal x() As String

Table 4-1 Relationships of C argument types to Actuate Basic
types (continued)

C type Actuate Basic type

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 51

Calling a C function
Call a C function as you do an Actuate Basic statement or function, ensuring that
you pass the correct arguments. Actuate Basic cannot verify the arguments you
pass.

Calling a C function with a specific data type
Actuate Basic provides a range of data types, including some that C functions do
not support, such as variable-length strings, AnyClass, and Object. The following
sections discuss data-type issues to consider when passing an argument in a
function call.

Passing a string to a C function
Procedures in most DLLs expect standard C strings, which end in a null character
(binary zero). If a C function expects a null-terminated string as an argument,
declare the argument as a string with the ByVal keyword. In a string declaration,
the ByVal keyword is misleading. ByVal tells Actuate Basic to convert the string to
a null-terminated string, not that the string is passed by value. In fact, strings are
always passed to C functions by reference.

Passing an array to a C function
You pass individual elements of an array in the same way you pass any variable
of the same type as the base type of the array. You can also pass an entire array of
any type except user-defined types. Actuate copies data in the Actuate Basic array
into a C array before passing it to the C function.

If you pass a multidimensional array, the C function reverses the dimensions. For
example, if you declare an Actuate Basic array using the following declaration:

1. AcCurrency is a C structure with a size of 12 bytes.

struct AcCurrency
{

unsigned long low;
unsigned long mid;
long high;

};

The currency value is stored in fixed point format.

<96-bit integer value in AcCurrency structure> = <currency
value> * 109

52 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Dim x (3, 4, 5) As Integer

C converts it to:

Int x [5][4][3]

Passing an array by value is faster than passing it by reference. Use the ByVal
keyword to pass an array by value when possible.

Passing a null pointer to a C function
In Actuate Basic, any of the fundamental data types can be null. Therefore, to pass
a null pointer to a C function, use the Null keyword, as shown in the following
examples:

Declare Sub Func1 Lib "LIBABC" (ByVal p As CPointer)
Dim ptr As CPointer
Func1(ptr) ' pass CPointer ptr to the C function
Func1(Null) ' pass null pointer to the C function

Declare Sub Func2 Lib "LIBXYZ" (ByVal s As String)
Dim s As String
s = "text"
Func2(s) ' pass null-termintated string to the C function
Func2(Null) ' pass null pointer to the C function

Passing a user-defined data type to a C function
You cannot pass a user-defined data type to a C function.

Passing an object reference variable to a C function
You cannot pass an object reference variable to a C function. An object reference
variable is a complex data structure that a C function cannot interpret.

About return values from C functions
Table 4-2 shows how C return values convert to Actuate Basic data types.

Table 4-2 Relationships of C return values to Actuate Basic data types

C type Actuate Basic type

int Integer

long Long

double Single, Double, Date

char* (null terminated) String

(char*) NULL String (empty)

any pointer (void*, etc.) CPointer

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 53

Working with a Java object
Actuate supports access to Java objects using the Java Native Interface (JNI). To
perform the following tasks, access a Java object using Actuate Basic:

■ Create a Java object.

■ Invoke an instance method on the instances.

■ Invoke a static method on the class of the object.

■ Access an instance variable on the instances.

■ Access a static variable on the class of the object.

About Java requirements
To access a Java object using Actuate Basic, you must use Java Runtime
Environment (JRE) or Java Development Kit (JDK) Version 1.2 or higher. You
must verify the installation of the JRE or JDK. If a required DLL is missing, JRE
can close an Actuate report when creating a Java Virtual Machine.

Add the class definitions of the Java classes to the CLASSPATH variable.

Creating a Java object
Before creating a Java object, you must declare a variable to refer to the object. For
example:

Dim theObject As Object

You then use the CreateJavaObject function to create the Java object using the
following syntax:

Set theObject = CreateJavaObject("<class identifier>")

Invoking a method and accessing a field on a Java
object
To perform actions on the object, you invoke the methods of a Java object using
the object.method syntax. If the method does not exist for the object, Actuate
displays a user error message.

To access a field on the object, name the field following the handle to the object.
For example:

someint = theObject.internalValue

To set a field to a specific value, use the following syntax:

theObject.internalValue = 10

54 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Use the same syntax to access static fields and methods.

Actuate makes no distinction between code that accesses a field and code that
invokes a method without parameters. For example, the following lines of code
are considered the same:

someint = theObject.InternalValue()
someint = theObject.InternalValue

Similarly, if an instance method and a static method have the same name and the
same or similar signatures, Actuate makes no distinction between them.
Specifically, Actuate makes no distinction between integral data types such as
long, short, and int, and float data types such as single and double. For example,
there is no distinction between the following methods:

Myfunction(short, short, long)
Myfunction(int, int, int)

Invoking a static method and accessing a static field
You can invoke a static method and access a static field without instantiating an
object of the class. In the following example, TheStaticMethod is the name of the
method to call and theStaticField is the name of the field to access:

Dim theClassObject As Object
Set theClassObject = CreateJavaClassHandle(<classname>)
theClassObject.TheStaticMethod(<parameters>)
theClassName.theStaticField = 10

Converting a Java data type
Table 4-3 shows how Java data types convert to Actuate Basic data types.

Table 4-3 Relationships of Java to Actuate Basic data types

Java data type Actuate Basic type

boolean Boolean

byte Integer

char Integer

double Double

float Single

int Integer

long Integer

Object Object

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 55

Converting a Java String
Actuate e.Report Designer Professional supports conversions between a Java
String and an Actuate Basic string. Actuate converts only the entire string. Other
Actuate string operations do not work on a Java String. e.Report Designer
Professional supports the following operations:

■ Converting an Actuate Basic string to a Java String object.

■ Passing an Actuate Basic string to a method that expects a Java String object.

■ Converting a Java String object to an Actuate Basic string. A Java String object
does not convert automatically. Use methods on the Java object to copy a
string from a Java String object.

Converting a Java null
You cannot assign a Java null to an Actuate data type. In C and C++, Null is a
constant with a value similar to 0, 0L, or ((void*)0), depending on the compiler
and memory model options.

In Java, null is a keyword denoting a special value for a reference. Null does not
necessarily have a value of 0. You cannot convert it to a primitive data type such
as Integer or Boolean.

As a workaround to this issue, return an appropriate value instead of null from a
method in the Java class file.

Converting an array
Actuate supports automatic conversion of single-dimension arrays of primitive
types to and from Actuate Basic. The assignment operator (=) copies a Java array
where each element is a primitive type, such as an int, into an Actuate Basic array.
In an assignment operation, you can copy an entire Actuate Basic array of
primitive types into a Java array. The operation copies each element in the source
array to the destination array until the end of either the source or the destination
array. The following example shows how to copy an array of 10 elements:

Dim basicIntArr(10) As Integer
Dim javaIntArr As Object
Set javaIntArr = <something returning a Java array>
' Convert a Java integer array to a Basic array
basicIntArr = javaIntArr

short Integer

void No type

Table 4-3 Relationships of Java to Actuate Basic data types

Java data type Actuate Basic type

56 P r o g r a m m i n g w i t h A c t u a t e B a s i c

You access elements in an array using the methods on the array object.

About Java exception and error handling
The Actuate Basic Err function returns an integer value corresponding to each
user error. You can use either the number or the constant for error handling.
Table 4-4 lists the error names and their meanings.

Actuate captures and keeps the last exception object. You can test for the
E_JAVAEXCEPTIONOCCURRED user error and access the exception object
using the GetJavaException function. For example:

Dim javaObj As Object
On Error Goto HandleError
Set javaObj = CreateJavaObject("JavaClassName")
javaObj.TryToDoSomething() ' This call can cause Java Exception
' Write code to handle normal behavior without exception
' then exit the method

HandleError:

Dim errorCode As Integer
errorCode = Err

If errorCode = E_JAVAEXCEPTIONOCCURRED Then
Dim exceptionObj As Object
Set exceptionObj = GetJavaException()

Table 4-4 Errors

Error name Meaning

E_JVMCLASSPATHNOTFOUND Could not get environment variable
CLASSPATH

E_JVMCREATEJVMFAILED Failed to create Java Virtual Machine

E_JVMCLASSNOTFOUND Could not find the Java class

E_JVMCREATEOBJECTFAILED Failed to create Java object

E_JVMINVALIDJAVAHANDLE Invalid Java object or class handle

E_JVMMETHODFIELDACCESS
FAILED

Failed to access a method or a field

E_JVMTYPECONVERSIONFAILED Type conversion failed

E_JAVAEXCEPTIONOCCURRED Java exception occurred

C h a p t e r 4 , C a l l i n g a n e x t e r n a l f u n c t i o n 57

If exceptionObj.toString() = "SomeJavaExceptionType" Then
' Do something or resume execution

End If
End If

Debugging a Java object
The Actuate debugger recognizes all external objects. When you declare the
object, the debugger indicates that the object type is unknown. When you create
the object, the debugger shows the object type. A numeric identifier indicates the
object. Handles to the same object show the same identifier.

For a Java String, the debugger indicates that the object is a Java Object and shows
the beginning of the string value.

For a Java array, the debugger indicates that the object is a Java array object and
shows the object type.

58 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Part 2Actuate Basic Language Reference

Part Two2

C h a p t e r 5 , L a n g u a g e s u m m a r y 61

C h a p t e r

Chapter 5Language summary
This chapter provides grouped lists of functions and statements that are
frequently used together to perform specific programming tasks:

■ Arrays

■ Classes and instances

■ Program flow

■ Conversion

■ Date and time

■ Environment

■ Error trapping

■ File input and output

■ Finances

■ Graphics and printing

■ Math

■ Operators

■ Procedures

■ Strings

■ Variables and constants

62 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Arrays

Classes and instances

Program flow

Table 5-1 Working with arrays

Programming task Function/Statement

Change default lower limit Option Base

Declare and initialize Dim, Global, ReDim, Static

Test the limits LBound, UBound

Reinitialize Erase, ReDim

Table 5-2 Working with classes and instances

Programming task Function/Statement

Declare a class Class

Create an instance of a class NewInstance, NewPersistentInstance, IsPersistent,
CreateJavaObject, CreateJavaClassHandle

Access class variables GetClassID, GetClassName, GetValue, GetValueType,
GetVariableCount, GetVariableName, IsKindOf, SetBinding

Copy class variable values CopyInstance

Table 5-3 Controlling program flow

Programming task Function/Statement

Branch FollowHyperlink, GoTo, On Error

Exit or pause the program End, Stop

Loop Do…Loop, For…Next, While…Wend

Make decisions If…Then…Else, IIf, Select Case

C h a p t e r 5 , L a n g u a g e s u m m a r y 63

Conversion

Date and time

Table 5-4 Performing conversions

Programming task Function/Statement

ANSI value to string Chr[$]

Binary image file to string ConvertBFileToString

Color to SVG attribute SVGColorAttr

Date to serial number DateSerial, DateValue

Decimal number to others Hex[$], Oct[$]

Font to SVG style SVGFontStyle

Lists of values into an array ListToArray

Number to string Format[$], Str[$]

Number to SVG attribute SVGAttr

Number to SVG string SVGDbl

One data type to another data
type

CCur, CDate, CDbl, CInt, CLng, CSng, CStr, CVar, CVDate,
Fix, Int

Serial number to date Day, Month, Weekday, Year

Serial number to time Hour, Minute, Second

String to ANSI value Asc

String to binary image file ConvertStringToBFile

String to number Val

String to SVG attribute SVGAttr

String to SVG string SVGStr

String to SVG style SVGStyle

Time to serial number TimeSerial, TimeValue

Table 5-5 Working with dates and times

Programming task Function/Statement

Control how dates are
converted

ParseDate

(continues)

64 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Environment

Convert date to serial number DateSerial, DateValue

Convert serial number to date CVDate, Day, Month, Weekday, Year

Convert serial number to
time

Hour, Minute, Second

Convert time to serial
number

TimeSerial, TimeValue

Convert to date data type CDate, CVDate

Determine whether an
argument can be converted to
a date

IsDate

Get current date or time Date[$], Now, Time[$], IsDate

Manipulate date or time DateAdd, DateDiff, DatePart

Process time Timer

Table 5-6 Manipulating the environment

Programming task Function/Statement

Clear Clipboard ClearClipboard

Display comments in the
status line of the factory
dialog

ShowFactoryStatus

Find environment variables Environ[$]

Get Clipboard text GetClipboardText

Get command-line arguments Command[$]

Get user’s login name GetServerUserName

Get user’s machine name GetServerName

Get name of Actuate
application which is currently
running

GetAppContext

Get user’s operating system
login name

GetOSUserName

Get scaling factor GetReportScalingFactor

Table 5-5 Working with dates and times (continued)

Programming task Function/Statement

C h a p t e r 5 , L a n g u a g e s u m m a r y 65

Error trapping

Get stage of a report’s
lifecycle

GetReportContext

Get the name of the
Encyclopedia volume on
which the file is stored

GetVolumeName

Get user agent string GetUserAgentString

Get version number of the
AFC library

GetAFCROXVersion

Get version number of the
factory that the report object
executable (.rox) file is using

GetFactoryVersion

Get version number of ROX
file

GetROXVersion

OLE CreateObject

Run other programs Shell

Temporarily suspend report
execution

Sleep

Set Clipboard text SetClipboardText

Sound beep Beep

Table 5-7 Trapping errors

Programming task Function/Statement

Get error messages Error, Error$, GetJavaException

Get error status Err, Erl

Insert explanatory remarks Rem

Prevent division-by-zero
error

SafeDivide

Prevent logic error by
predetermining whether a
condition is true

Assert

(continues)

Table 5-6 Manipulating the environment

Programming task Function/Statement

66 P r o g r a m m i n g w i t h A c t u a t e B a s i c

File input and output

Set Err function to a given
value

Err

Simulate run-time errors Error

Trap errors while program is
running

Assert, On Error, Resume

Table 5-8 Working with files

Programming task Function/Statement

Access or create a file Open

Add directories to search for
included images

ExtendSearchPath

Close a file Close, Reset

Control output appearance Space, Tab, Width

Copy one file to another FileCopy

Determine which open report
object instance (.roi) file is the
default used when New
Persistent() is called to
instantiate an object

SetDefaultPOSMFile

Determine which formats are
supported in a DHTML
environment for displaying
report pages and results of a
search operation

GetSearchPageFormats, GetViewPageFormats,
IsSearchFormatSupported, IsViewPageFormatSupported

Get information about a file EOF, FileAttr, FileDateTime, FileExists, FileLen,
FileTimeStamp, FreeFile, Loc, LOF, Seek, Seek2

Manage disk drives and
directories

ChDir, ChDrive, CurDir[$], MkDir, RmDir

Manage files Kill, Lock…Unlock, Name

Read from a file Get, Input, Input[$], InputB[$], Line Input

Retrieve strings from
resource files

StrLoad[$]

Table 5-7 Trapping errors (continued)

Programming task Function/Statement

C h a p t e r 5 , L a n g u a g e s u m m a r y 67

Finances

Graphics and printing

Search for a file through the
existing search path

FindFile

Set object aging rules on a
report object web (.row) file

SetStructuredFileExpiration

Set or get file attributes GetAttr, SetAttr

Set read-write position in a
file

Seek

Write to a file Print, Put, Write

Table 5-9 Working with finances

Programming task Function/Statement

Depreciation of assets DDB, SLN, SYD

Get annuity information FV, IPmt, NPer, Pmt, PPmt, PV, Rate

Get net present value and rate
of return

IRR, NPV, MIRR

Table 5-10 Working with graphics and printing

Programming task Function/Statement

Decode string into binary
image file

ConvertStringToBFile

Encode binary image file into
string

ConvertBFileToString

Dynamically adjust the
height of a container to
accommodate a large amount
of text

GetDisplayHeight (Windows only)

Print text Print, Write

Work with colors QBColor, RGB

Table 5-8 Working with files

Programming task Function/Statement

68 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Math

Operators

Procedures

Table 5-11 Working with mathematical expressions

Programming task Function/Statement

General calculation Exp, Log, Sqr

Generate random numbers Randomize, Rnd

Get absolute value Abs

Get the sign of expressions Sgn

Numeric conversions Fix, Int

Trigonometry Atn, Cos, Sin, Tan

Table 5-12 Working with mathematical operators

Programming task Function/Statement

Arithmetic *, +, -, \, /, ^, Mod

Comparison <, =<, >, >=, =, <>, &, Is

Concatenation &

Logical expressions And, BAnd, Eqv, Imp, Not, BNot, Or, BOr, Xor

Pattern matching Like

Table 5-13 Working with procedures

Programming task Function/Statement

Call Sub procedure Call

Declare a reference to an
external procedures

Declare

Define a procedure Function…End Function, Sub…End Sub

Exit from a procedure Exit, Function…End Function, Sub…End Sub

C h a p t e r 5 , L a n g u a g e s u m m a r y 69

Strings
Table 5-14 Working with strings

Programming task Function/Statement

Assign value Let

Compare two strings StrComp

Convert to lowercase or
uppercase letters

LCase[$], UCase[$]

Copy to and from Clipboard SetClipboardText, GetClipboardText

Create strings of repeating
characters

Space[$], String[$], StringW[$]

Find the length of an
expression in bytes

LenB

Find the length of a string Len

Format strings Format[$]

Justify strings LSet, RSet

Manipulate strings InStr, Left[$], LTrim[$], Mid[$], RevInStr, Right[$], RTrim[$],
Trim[$]

Manipulate bytes InStrB, LeftB[$], RightB[$], MidB[$]

Replace part of a string with
a different substring

StrSubst

Set string comparison rules Option Compare

Translate from one
language to another

Open[$]

Work with UCS-2 encoding
values

AscW, ChrW[$]

Work with ASCII and ANSI
values

Asc, Chr[$]

70 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Variables and constants
Table 5-15 Working with variables and constants

Programming task Function/Statement

Add search indexes on
variables of components

AddValueIndex

Assign object references to
variables

Set

Declare aliases for existing
object types

Type…As

Declare user-defined
variables or record
structures

Type…End Type

Declare variables and
constants

Const, Dim, Global, Static

Get information about
Variant variables

IsDate, IsEmpty, IsNull, IsNumeric, VarType

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 71

C h a p t e r

Chapter 6Statements and functions
This chapter provides an alphabetical list of all Actuate Basic functions and
statements. Each entry includes a general description of the function or statement,
its syntax, and a description of its parameters and return values.

For conceptual information about working with Actuate Basic, see Part 1,
“Working with Actuate Basic.”

72 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Using the code examples
The examples in this chapter illustrate how to use individual statements and
functions. They are not necessarily real-world examples of how to create a report.
The easiest way to use the Actuate Basic code examples is to copy the code from
the code example window in online help and paste it in Method Editor in
e.Report Designer Professional.

Not all examples have a Declaration section. If the example you are using does
not include a Declare…End Declare statement, you do not have to paste anything
into a Basic source (.bas) file.

To examine the effect the sample programs have, it is best to step through them
using the e.Report Designer Professional debugger. For information about the
debugger, see Accessing Data using e.Report Designer Professional.

How to open an example in online help

1 Choose Help➛Contents.

2 In the Table of Contents, navigate to Programming with Actuate
Basic➛Statements and functions➛Using the code examples.

3 Under the topic title, choose Example. The code example displays.

How to use a code example in a report design

1 Create a new report or open an existing report. This procedure opens
Forecast.rod in eRDPro\Examples\DesignAndLayout\Forecast as an
example.

2 If the code example has a Declaration section, perform the following steps:

1 Create a Basic source (.bas) file by choosing Tools➛Library Organizer.
Library Organizer appears.

2 Choose New. New Library appears.

3 In File name, type the name for the new file. In Save as type, choose Source
file (.bas). Choose Save. The source file appears under Libraries included in
your report.

4 Perform the following steps in Library Organizer:

1 Choose OK.

2 In the code example window of the online help, select the code.

3 Copy and paste the Declare section into your BAS.

4 Save the .bas file.

3 In the e.Report Designer Professional application:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 73

1 In Report Structure, double-click the ForecastApp report section object. The
Properties page appears within the Properties window.

2 Choose Methods. Methods page appears.

3 Choose Most Commonly Used Methods and double-click Sub Start(). The
ForecastApp::Start editing pane appears.

4 In the editor, paste in the remaining code from the example under:

Super::Start()

4 Compile and run your report:

1 Choose Report➛Build and Run. The function runs and displays any
prompts.

2 Respond to the prompts that appear. The function displays the final result
and your report appears.

Example The following example demonstrates the FV function. The example shows where
to paste the different parts of a code example. To use this example, perform the
following steps in this order:

■ Paste the following code into your Actuate Basic source code (.bas) file:

Declare
Global Const ENDPERIOD = 0
Global Const BEGINPERIOD = 1

End Declare

■ Paste the following code into the Start subroutine of your AcReport object
under Super::Start():

Dim EachPmt As Double, APR As Double
Dim TotalPmts As Double, PayWhen As Integer
Dim PresentVal As Double, FutureVal As Double
Dim Msg as String, Fmt As String

' Specify money format
Fmt = "$#,##0.00"
EachPmt = 2000 ' Amount to save each month
APR = 0.0325 ' The annual percentage rate for the interest
TotalPmts = 60 ' The number of months to save

' Assume payment at month end
PayWhen = ENDPERIOD
PresentVal = 12000 ' Amount in the savings account now
' Now do the real work
FutureVal = FV(APR / 12, TotalPmts, -EachPmt, -PresentVal,
+ PayWhen)
' Format the resulting information for the user

74 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Abs funct ion

Msg = "Starting with " & Format(PresentVal, Fmt)
+ & " and saving " & Format(EachPmt, Fmt)
+ & " every month at an interest rate of "
+ & Format(APR, "##.00%") & " for a period of "
+ & TotalPmts & " months will give you "
+ & Format(FutureVal, Fmt) & "."
ShowFactoryStatus(Msg)

■ Build and run the report.

■ Respond to the prompt.

■ The result appears, followed by the report.

Abs function
Returns the absolute value for a number or expression.

Syntax Abs(<number expression>)

Parameters <number expression>
Number, numeric expression, or Variant of VarType 8 (String) that specifies the
number for which you want to find the absolute value. If <number expression> is
a String, it is parsed according to the formatting rules of the current run-time
locale. For example, the following statement returns 123.456 on a French run-time
locale and 123456.00 on an English run-time locale:

Abs("123,456")

Returns Number, numeric expression, or Variant of VarType 8 (String). If <number>
evaluates to Null, Abs returns Null.

Example The following example demonstrates the return value of Abs:

Sub Start()
Dim Msg as String
Super::Start()
' Returns 25
Msg = "The result of Abs(25) is " & Abs(25)
ShowFactoryStatus(Msg)
' Also returns 25
Msg = "The result of Abs(-25) is " & Abs(-25)
ShowFactoryStatus(Msg)
' Returns 0
Msg = "The result of Abs(ABC) is " & Abs("ABC")
ShowFactoryStatus(Msg)
' Returns 123
Msg = "The result of Abs(123four) is " & Abs("123four")
ShowFactoryStatus(Msg)

End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 75

Acos funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Sgn function

Acos function
Returns the arc cosine of an angle.

Syntax Acos(<cosval>)

Parameters <cosval>
A number, numeric expression, or Variant of VarType 8 (String) that specifies the
value for which you want to find the arc cosine. The value of <cosval> should be
in the range of -1 to 1. If <cosval> is a String, it is parsed according to the
formatting rules of the current run-time locale.

To convert between radians and degrees, use: radians = degrees * Pi/180.

Returns Double, in the range of 0 to Pi radians.

If <cosval> evaluates to Null, Acos returns Null.

Example The following example generates the cosine of an angle expressed in radians,
then returns the arc cosine of the cosine:

Sub Start()
Dim Pi As Double
Dim CosVal as Double
Dim Msg As String
Super::Start()
Pi = 3.14159265358979
' Use Pi/4, or 45 degree, angle
CosVal = Cos(Pi / 4)
Msg = "The arccosine of " & CosVal & " is: " & Acos(CosVal)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Asin function
Atn function
Cos function
Sin function
Tan function

76 P r o g r a m m i n g w i t h A c t u a t e B a s i c

AddBurstReportPr iv i leges funct ion

AddBurstReportPrivileges function
Adds one privilege setting to a role or user.

Syntax AddBurstReportPrivileges(<id>, <userOrRole>, <privileges>)

Description This function sets privileges on a burst report for a single user or role. You can call
this method several times to set privileges of multiple roles or users. The setting
affects the current burst report only. You call this method from
SetBurstReportPrivileges() in the AcReport class. If AddBurstReportPrivileges()
is not called during a burst report generation, the burst report will have the same
privileges as its primary report.

Parameters <id>
String expression specifying the role or user id like role name, for example,
"Admin", or a user name, such as "Jon".

<userOrRole>
String expression specifying either "Role" or "User".

<privileges>
String expression containing list of privileges separated by commas. For example,
"READ, WRITE."

All parameters are case insensitive.

Example The following example overrides the subreport’s SetBurstReportPrivileges()
method to add read and write rights for the user bob, and secure read rights to the
role sales:

Sub SetBurstReportPrivileges(row As AcDataRow)
AddBurstReportPrivileges("bob", "User", "READ,WRITE")
AddBurstReportPrivileges("Sales", "Role", "SECURE READ")

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

AddValueIndex function
Adds a search index on a variable of a component.

Syntax AddValueIndex(<intFileID>, <strClassName>, <strAttrName>)

Description Use AddValueIndex to add a search index to an ROI. A search index speeds the
retrieval of information when searching a report, although at the cost of a
somewhat larger ROI and somewhat longer Factory run. AddValueIndex() must
be called in the Factory during report generation. You cannot add an index to an
ROI once it is created.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 77

AddValueIndex funct ion

Each index speeds access to one variable in one class. The easiest way to create an
index is to set the Searchable property of a class to True. This adds an index on the
DataValue variable of that class. Use AddValueIndex() to search on any other
variable and add an index on that variable. You must create a separate index for
each variable you want indexed. For each, you must specify the ROI in which to
create the index, the class name, and the variable name within the class.

A typical circumstance in which you specify a different variable is when a
hyperlink specifies a value that is related to the data stored in the DataValue
variable. For example, a data control displays a customer’s name, while an
associated hyperlink uses the customer’s ID. When indexing this hyperlink,
specify an additional variable, perhaps called LinkTag, that contains the
customer’s ID.

Parameters <intFileID>
Integer expression. The file ID of the report object instance (.roi) (POSM file) to
which you want to add the new index. The value returned from creating or
opening an ROI.

This is in most cases the ROI opened in the Factory. An easy way to get this ID is
from any persistent object in your ROI. To do so, use code like the following:

Dim roiFile As Integer
roiFile = GetPosmFile(thePersistentObject)
AddValueIndex(roiFile, "yourClass", "yourVar")

You must designate a valid ROI that is open in the Factory.

<strClassName>
String expression. The fully qualified name of the class of the component with the
variable you want to index.

You must specify an existing class by its fully qualified name, and the class must
have persistent instances.

To determine the fully qualified class name, use one of the following techniques:

■ Consult the Class tab of the Property Sheet for the component to find its name
and scope. Specify <strClassName> according to the form:
"scope1::scope2::name".

■ If you have an instance of the class, call GetClassName on the object.

<strAttrName>
String expression. The name of a variable in the class to be indexed. The attribute
name:

■ Must be a variable in the class specified by <strClassName>.

■ Must be a variable, not a property. The variable can have the same name as a
property.

78 P r o g r a m m i n g w i t h A c t u a t e B a s i c

AddValueIndex funct ion

■ Cannot be a structure such as Size or Rectangle.

■ Must be of a simple scalar data type such as Integer, Date, Currency, String, or
Double. Can also be a type alias for a scalar type such as Boolean or Twips.

Returns Boolean

■ True if all arguments are correct.

■ False if any of the arguments are invalid.

Tips ■ A convenient place to insert calls to AddValue is in the Finish() method for
your subclass of AcReport, the top component in the Structure View.

■ Hyperlinks use the search engine. Therefore, to improve your report’s
performance when executing hyperlinks, use AddValueIndex to index
hyperlinks.

■ Do not confuse properties and variables of an object. They often have the same
names, especially when a property specifies the default value for a variable. To
avoid confusion, use the Component Editor’s Variables page to see what
variables are available.

■ To facilitate debugging, use Verify to ensure that, if any argument to
AddValueIndex is invalid, the Factory will halt. For example, use code like the
following:

Verify(AddValueIndex(0, "AFrame::ItemCode", "DataValue"))

Example The following example assumes you have a report that displays a list of
customers by name. Each customer is identified by a customer number variable,
but you do not want to display this number, so you created a CustomerNumber
variable on the CustomerName control in the CustomerFrame. The root AcReport
component is CustomerListing.

Add an index on the CustomerNumber variable using the following code in the
Finish method of CustomerListing:

Sub Finish()
Dim theROIFile As Integer
Super::Finish()
' Get the ROI file handle for the ROI that contains this
' component
theROIFile = GetPOSMFile(me)
' Add a custom index for the CustomerNumber variable in the
' CustomerListing::CustomerFrame::CustomerName control.
' Quit the Factory if something goes wrong
Verify(AddValueIndex(theROIFile,

+ "CustomerListing::CustomerFrame::CustomerNumber",
+ "CustomerNumber"))
End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 79

Asc funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Asc function
Returns the ANSI code that corresponds to the given character.

Syntax Asc(<string expression>)

Parameters <string expression>
String expression that represents a character to translate to a corresponding code
in the ANSI character set.

Returns Integer between 0 and 65535.

The return value is the character code value produced by converting <string
expression> from Unicode to Multibyte character set (MBCS) using the current
run-time encoding. The following rules apply to the conversion:

■ If <string expression> is longer than one character, Asc translates only the first
character.

■ If <string expression> evaluates to Null, Asc returns Null.

■ If the string in <string expression> does not match the run-time encoding, Asc
might return an incorrect value. For example, if the report runs on a system
that uses English (ASCII) encoding, passing a Japanese string produces
incorrect results because Japanese characters cannot be converted to ASCII.

Tips ■ To translate an ANSI code number to its corresponding character, use Chr$.

■ If the run-time encoding is UCS-2, Asc behaves in the same way as AscW.

Examples The following Asc() statements are equivalent. Each returns the numeric value
90.

Sub Start()
Super::Start()
ShowFactoryStatus(Str(Asc("Z")))
ShowFactoryStatus(Str(Asc(Mid$("XYZ",3,1))))
ShowFactoryStatus(Str(Asc(UCase$("zebra"))))

End Sub

The following example creates a name and displays the ANSI value of each letter
in that name:

Sub Start()
Dim I As Integer
Dim Msg As String, AName As String
Super::Start()
AName = "Pallavi Sharma"

80 P r o g r a m m i n g w i t h A c t u a t e B a s i c

AscW funct ion

For I = 1 To Len(AName)
Msg = Msg & Mid$(AName, I, 1) & " ---> "

+ & Asc(Mid$(AName, I, 1))
Next I
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also AscW function
Chr, Chr$ functions
ChrW, ChrW$ functions

AscW function
Returns the code point of the given character in UCS-2 encoding.

Syntax AscW(<string expression>)

Parameters <string expression>
String expression that represents a character to translate to a corresponding code
point in UCS-2 encoding. If <string expression> is longer than one character,
AscW translates only the first character.

Returns Integer between 0 and 65535. If <string expression> evaluates to Null, AscW
returns Null.

Example The following example creates a name and displays the ANSI value of each letter
in that name:

Sub Start()
Dim I As Integer
Dim Msg As String, AName As String
Super::Start()
AName = "Vishál Tayal"
For I = 1 To Len(AName)

Msg = Msg & Mid$(AName, I, 1) & " ---> "
+ & AscW(Mid$(AName, I, 1))

Next I
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also ChrW, ChrW$ functions

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 81

Asin funct ion

Asin function
Gives the arc sine of an angle.

Syntax Asin(<sinval>)

Parameters <sinval>
A number, numeric expression, or Variant of type 8 (String) that specifies, in the
value for which you want to find the arc sine. The value of <sinval> should be in
the range of -1 to 1. If <sinval> is a String, it is parsed according to the formatting
rules of the current run-time locale.

To convert between radians and degrees, use: radians = degrees * Pi/180.

Returns Double, in the range of -Pi/2 to Pi/2 radians.

If <sinval> evaluates to Null, Asin returns Null.

Example The following example generates the sine of an angle expressed in radians and
returns the arcsine of the sine:

Sub Start()
Dim Pi As Double
Dim SinVal as Double
Dim Msg As String
Super::Start()
Pi = 3.14159265358979
' Use Pi/4, or 45 degree, angle
SinVal = Sin(Pi / 4)
Msg = "The arcsine of " & SinVal & " is: " & Asin(SinVal)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Acos function
Atn function
Cos function
Sin function
Tan function

Assert statement
Halts the program and displays an error message when a given condition is False.

Syntax Assert(<condition>)

82 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Atn funct ion

Description When <condition> is True, Assert does nothing. When False, Assert halts the
program and displays an error message. Use Assert to trap errors.

Parameters <condition>
Any numeric or string expression that can be evaluated. When <condition>
evaluates to zero or Null, the condition is False, otherwise <condition> is True.

Example The following example uses Assert to halt a program before a function attempts
to divide a number by zero. This prevents the program from attempting to
perform an illegal operation.

Function PercentOf(num As Integer, denom As Integer) As Integer
Assert(denom <> 0)
PercentOf = num * 100 / denom

End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Err function
Error statement
Error, Error$ functions
On Error statement

Atn function
Gives the arctangent of a number.

Syntax Atn(<tanval>)

Parameters <tanval >
Number, numeric expression, or Variant of VarType 8 (String) that specifies the
tangent value for which you want to find the arctangent. If <number> is a String,
it is parsed according to the formatting rules of the current run-time locale.

For example, the following statement returns 0.89 on a French run-time locale and
1.57 on an English run-time locale:

Atn("1,234")

To convert to radians from degrees, use radians = degrees * Pi/180.

Returns The arctangent, in radians, as a double.

If <number> evaluates to Null, Atn returns Null.

Example The following example generates the tangent of an angle in radians and returns
the value of the arctangent given that tangent value:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 83

Beep statement

Sub Start()
Dim tanVal As Double, dblDegree As Double, Pi As Double
Dim Msg As String
Super::Start()
Pi = 3.14159265358979
' Use Pi / 4, or 45 degree, angle
tanVal = tan(pi / 4)
Msg = "The arctangent of " & tanVal & " is " & Atn(tanVal)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Acos function
Asin function
Cos function
Sin function
Tan function

Beep statement
Sounds a short tone through the computer’s speaker.

Syntax Beep

Description To use Beep, sound must be turned on in the sounds section of the Windows
Control Panel. You cannot control the tone or the duration of the sound using
Beep. Beep is not supported when a report runs on iServer.

Example The following example prompts the user for a number. If the number falls outside
a certain range recognized as valid, the computer beeps and displays a message.

Sub Start()
Dim Number As Integer, Msg As String
Super::Start()
Number = Rnd * 10
' Validate range
If Number >= 1 And Number <= 5 Then

Msg = "The number " & Number & " is between 1 and 5."
Else

' Beep if not in range
Beep

Msg = "The number " & Number & " is not between 1 and 5."
End If
ShowFactoryStatus(Msg)

End Sub

84 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Cal l statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Call statement
Transfers program control to an Actuate Basic Sub procedure or to a Windows
dynamic-link library (DLL) procedure.

Syntax [Call] <procedure name> [(<argument list>)]

Description You are never required to use the Call keyword when you call a procedure. If you
use the Call keyword to call a procedure that requires arguments, <argument list>
must be enclosed in parentheses.

You pass variable arguments to <procedure name> in two ways, by reference or
by value. When you pass variables by reference, Actuate Basic assigns their
contents (values) actual addresses. The called procedure can alter the variables.
When you pass variables by value, Actuate Basic assigns their contents (values)
temporary addresses. The called procedure cannot alter the contents of the
variables.

Parameters Call
Optional keyword that indicates that Actuate Basic is to transfer program control
to another procedure.

<procedure name>
Specifies the name of the procedure to which the program is to transfer control.

<argument list>
List of variables, arrays, or expressions to pass to the procedure as arguments.

By default, arguments in list are passed by reference. To pass an entire array, use
its name followed by empty parentheses.

For example, the following statement transfers control to a Sub procedure called
ManyBeeps and passes the value 15 to it as an argument:

Call ManyBeeps(15)

The following statement transfers control to a Sub procedure called ManyBeeps
and passes the value 15 to it as an argument, but without using the Call keyword:

ManyBeeps(15)

The following statement transfers control to a Sub procedure called MySortArray,
and passes the integer array NewColors% to it:

Call MySortArray(NewColors%())

Tip If you are having trouble passing arguments to DLL procedures, use the ByVal
keyword to pass them by value. In many cases, external DLL routines might not

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 85

CCur funct ion

support all Actuate Basic data types, and using ByVal to call such a DLL routine
allows the routine to convert the arguments so that it can accept them.

Example The following example shows two ways of calling the MessageBeep procedure in
User.exe, a Microsoft Windows DLL. First, you must declare the procedure
MessageBeep from the Windows dynamic link library at or near the beginning of
your Actuate Basic source code (.bas) file.

Declare Sub MessageBeep Lib "User32" (ByVal N As Integer)

Then, paste the following example in the method editor:

Sub Start()
Dim I As Integer
Super::Start()
' Call Windows procedure
Call MessageBeep(0)
' Insert delay between calls
Sleep(2)
' Call again without Call keyword
MessageBeep(0)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Declare statement

CCur function
Converts a numeric expression to the Currency data type.

Syntax CCur(<numeric expression>)

Description CCur is one of nine Actuate Basic data type conversion functions. If <numeric
expression> lies outside the acceptable range for Currency, an overflow error
occurs.

Parameters <numeric expression>
Numeric expression to convert from the Date, Integer, Long, Single, Double,
String, or Variant data type to the Currency data type. The following conditions
apply to <numeric expression>:

■ If <numeric expression> is Null, CCur returns Null.

■ If <numeric expression> is a String or Variant, it must be interpretable as a
number.

■ If <numeric expression> is a String, it is parsed according to the formatting
rules of the current run-time locale.

86 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CCur funct ion

For example, each of the following statements returns 123. In the second
statement, the string 123 enclosed in quotation marks is considered a numeric
expression because it can be interpreted as a number.

In the third statement, four cannot be interpreted as a number.

CCur(123)
CCur("123")
CCur("123four")

The following statement first converts the string 123four using Val to convert the
number 123. Val ignores the string component (four).

CCur(Val("123four"))

The following statement returns 123.456 on a French run-time locale and
123456.00 on an English run-time locale:

CCur("123,456")

Returns Currency. If <numeric expression> cannot be interpreted as a number, zero is
returned.

Tips ■ To convert an expression to currency without explicitly using CCur, assign the
expression to a variable that is the Currency data type.

■ To declare the data type of a variable, use Dim with the As clause.

■ To round a number to precisely the number of decimal places you want and
discard anything residual, use Format$.

■ To ensure that you pass the correct data type to a Sub procedure or a Windows
Dynamic Link Library (.dll), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String
Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)
ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)
Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 87

CDate funct ion

Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CDate function
CDbl function
CInt function
CLng function
CSng function
CStr function
CVar function
CVDate function
Dim statement
Format, Format$ functions

CDate function
Converts an expression to a Date.

Syntax CDate(<date expression>)

Description CDate is one of nine Actuate Basic data type conversion functions. Do not use
CDate to convert a long date format that also contains a day-of-the-week string,
like Friday, Nov. 12, 1982. The function does not recognize such strings as dates.

Avoid supplying CDate with a date in a format other than the format the locale
map specifies.

Parameters <date expression>
Date expression, or any numeric or string expression that can be interpreted as a
date, a time, or both a date and a time:

■ Can be a string such as November 12, 1982 8:30 P.M., 12 Nov., 1982 08:30 PM,
11/12/82, 08:30pm, or any other string that can be interpreted as a date, a
time, or both a date and a time in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date, time, or both a date and a time in the valid range.

88 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CDate funct ion

■ For date serial numbers, the integer component represents the date itself while
the decimal component represents the time of day on that date, where January
1, 1900 at precisely noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899 (0).

Default date if none specified: 0 (Dec. 30, 1899)
Default time if none specified: 00:00:00 (midnight)

The following conditions apply to <date expression>:

■ <date expression> must not be empty or zero-length.

■ <date expression> cannot contain a day of week.

■ <date expression> must specify a date within the range January 1, 100 through
December 31, 9999, inclusive.

■ <date expression> is parsed according to the formatting rules of the current
run-time locale.

■ If <date expression> includes a time of day, it must be a valid time, even if
CDate is not being used to return anything having to do with a time of day. A
valid time is one that is in the range 0:00:00 (12:00:00 A.M.) through 23:59:59
(11:59:59 P.M.). Either the 12- or 24-hour clock can be used. The time must be in
one of the following formats:

hh:mm:ss

hh:mm

hh

■ <date expression> cannot include a day of week.

■ If <date expression> is a numeric expression, it must be in the range -657434 to
+2958465, inclusive.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 89

CDate funct ion

Examples The following statements are equivalent. Each assigns 11/12/82 8:30:00 P.M., with
its underlying serial number to the variable BDate.

BDate = CDate("11/12/82 8:30 pm")
BDate = CDate("12 Nov 1982 20:30")
BDate = CDate("November 12, 1982 8:30PM")
BDate = CDate(30267.854167)

Returns Date

■ If <date expression> is Null, CDate returns Null.

■ If <date expression> contains a day of week, CDate returns Null.

■ If <date string> contains only numbers separated by valid date separators,
CDate recognizes the order for month, day, and year according to the settings
of the current run-time locale.

■ If <date expression> cannot be evaluated to a date, CDate returns Null.

■ If <date expression> fails to include all date components, such as day, month,
and year, CDate returns Null.

■ If <date expression> contains only the time and the time is valid, CDate
returns December 30, 1899 with the time.

Tips ■ To determine if either a numeric or string expression that looks like a date can
be converted to a date, use IsDate. However, IsDate cannot determine whether
or not a string that looks like a number can be converted to a date, even if the
number is in the correct range for date serial numbers.

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all dates.

Example The following example generates a number. For any valid value, the example
displays both a date and a date serial number.

Sub Start()
Dim Msg As String, DateMeme As String, ConvDateMeme As Date
Super::Start()
DateMeme = CStr(Rnd * 125 * 365)
ConvDateMeme = CDate(DateMeme)
Msg = "The date is: " & ConvDateMeme
ShowFactoryStatus(Msg)
Msg = "The serial number for that date is: "

+ & CDbl(ConvDateMeme)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

90 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CDbl funct ion

See also CCur function
CDbl function
CInt function
CLng function
CSng function
CStr function
CVar function
CVDate function
Dim statement
Format, Format$ functions
IsDate function

CDbl function
Converts a numeric expression to the Double data type.

Syntax CDbl(<numeric expression>)

Description CDbl is one of nine Actuate Basic data type conversion functions. If <numeric
expression> lies outside the acceptable range for a Double data type, an overflow
error occurs. If <numeric expression> is Null, CDbl returns Null.

Parameters <numeric expression>
Numeric expression to be converted from the Currency, Date, Integer, Long,
Single, String or Variant data type to the Double data type. The following
conditions apply to <numeric expression>:

■ If <numeric expression> is a String or Variant, it must be interpretable as a
number.

■ If <numeric expression> is a String, it is parsed according to the formatting
rules of the current run-time locale.

For example, each of the following statements returns the value 123. In the second
statement, the string 123 enclosed in double quotation marks is considered a
numeric expression because it can be interpreted as a number. In the third
statement, four cannot be interpreted as a number.

CDbl(123)
CDbl("123")
CDbl("123four")

The following statement uses Val to convert the string 123four to the number 123.
Val ignores the string component (four).

CDbl(Val("123four"))

The following statement returns 123.456 on a French run-time locale and
123456.00 on an English run-time locale:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 91

CDbl funct ion

CDbl("123,456") returns

Returns Double. If <numeric expression> cannot be interpreted as a number, zero is
returned.

Tips ■ To convert an expression to double without explicitly using CDbl, assign the
expression to a variable that is the Double data type.

■ To declare the data type of a variable, use Dim with the As clause.

■ To round a number to precisely the number of decimal places you want and
discard anything residual, use Format$.

■ To be sure you pass the correct data type to a subprocedure or to a Windows
Dynamic Link Library (DLL), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String
Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)
ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)
Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)
Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function
CInt function

92 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ChDir statement

CLng function
CSng function
CStr function
CVar function
CVDate function
Dim statement
Format, Format$ functions
Int function

ChDir statement
Changes the current working directory on the specified or current drive.

Syntax ChDir <path name>

Parameters <path name>
String expression that specifies the name of the target directory.

<path name> has the following syntax:

[<drive:>] [\] [<directory>\<directory>]… (Windows)

[/] [<directory>/<directory>]… (UNIX)

<path name> must contain fewer than 259 characters and must be a valid
directory.

<drive:>
(Windows only.) Character, followed by a colon, that specifies the drive. If you do
not specify <drive:>, ChDir uses the current drive. If you specify a drive other the
than current one, Actuate Basic only changes the current directory on that drive; it
does not change the current drive to <drive:>.

<directory>
String expression of the name of the directory or subdirectory to make the current
directory.

For example, the following statement changes the current working directory on
drive D: to Mydocs, even if the current drive is C:, but does not change the current
drive to D:

ChDir "D:\Mydocs"

Together, the following two statements change the current directory on the
current drive to \Myfiles\Mailbox:

DirName$ = "\Myfiles\Mailbox"
ChDir DirName$

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 93

ChDrive statement

Tips ■ To make sure you have set the correct working directory before you issue
commands that do not specify full path names, use ChDir.

■ To change the current drive, use ChDrive.

■ ChDir affects the operation of file-related commands like Open and Kill,
which use the current working, or default, drive and directory unless you
specify a full path name.

Example The following example changes the current directory as the root, then resets the
current directory to the original one:

Sub Start()
Dim Msg As String, UsersPath As String
Super::Start()
' Save the current pathUsersPath = CurDir
' Reset to a new path
ChDir "\"
Msg = "The current directory has been changed to "

+ & CurDir
ShowFactoryStatus(Msg)
Msg = "Changing back to the previous current "

+ & "directory in five seconds."
ShowFactoryStatus(Msg)
Sleep(5)
' Change back to user default directory
Msg = "Now changing back."
ChDir UsersPath
Msg = "The current directory has been reset to "

+ & UsersPath & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also ChDrive statement
CurDir, CurDir$ functions
MkDir statement
RmDir statement

ChDrive statement
Changes the current default drive.

Syntax ChDrive <drive letter>

94 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ChDrive statement

Parameters <drive letter>
String expression, consisting of a single letter that specifies the drive that is to
become the default drive (Windows only). <drive letter> must correspond to the
letter of a valid drive, and <drive letter> must be in the range A to <lastdrive>,
where <lastdrive> is the maximum drive letter in your computer.

For example, the following statement changes the current working (default) drive
to A:

ChDrive "A"

Together, the following two statements change the current drive to C:

DriveSpec$ = "C"
ChDrive DriveSpec$

Tips ■ To ensure that you have set the correct working directory before you issue
commands that do not specify full path names, use ChDir.

■ To change the current directory, use ChDir.

■ To determine the current drive and directory, use CurDir.

■ ChDir and ChDrive affect the operation of file-related commands like Open
and Kill, which use the current working, or default, drive and directory unless
you specify a full path name.

■ ChDrive is ignored when the Actuate Basic program is running on UNIX.

Example The following example changes the default directory to a second drive. If it
cannot change the directory, it responds with an error message.

Sub Start()
On Error Resume Next
Dim CurrPath As String, Drive As String
Dim HasColon As Integer, Msg As String
Dim NewDrive As String
Super::Start()
' Get current path
CurrPath = CurDir
' If current drive is invalid Reset error to 0
If Err = 68 Then

Drive = "Invalid"
Err = 0

Else
' Get drive letter
Drive = Left(CurrPath, 2)

End If
Msg = "Your current drive is "& Drive & ". "
ShowFactoryStatus(Msg)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 95

Chr, Chr$ funct ions

' Set drive to D:
NewDrive= "D:"
' Change drive
ChDrive NewDrive
Select Case Err

' Device unavailable error
Case 44

Msg = "That drive is not available. "
+ & "No drive change was made."

' Disk not ready error
Case 71

Msg = "Close the door on your drive and try again"
' Illegal function call
Case 10

Msg = "Error changing to " & NewDrive
Case Else

Msg = "Drive changed to " & UCase$(NewDrive)
End Select

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also ChDir statement
CurDir, CurDir$ functions
MkDir statement
RmDir statement

Chr, Chr$ functions
Returns the character that corresponds to the specified character code in the
current run-time encoding.

Syntax Chr(<character code>)

Chr$(<character code>)

Parameters <character code>
A numeric expression that represents the character code you want Chr[$] to
translate to a character. The following conditions apply to <character code>:

■ If <character code> is not an Integer, Chr[$] rounds it to the nearest Integer
before returning the character. In the United States, <character code> usually
refers to ANSI codes.

■ <character code> must be between 0 and 65535 or a run-time error occurs.

■ <character code> is interpreted according to the current run-time encoding.

96 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Chr, Chr$ funct ions

For example:

Chr$(65) returns A
Chr$(228) returns g on a Greek locale
Chr$(228) returns ä on an English locale
Chr$(Sqr(4) * 45) returns Z
Chr$(90.11) returns Z

The following statement prints or displays the copyright symbol (©):

Chr$(169)

Returns Chr: Variant
Chr$: String

■ Chr[$] returns nonprintable and printable characters.

■ Character codes from 0 to 31, inclusive, are the same as the standard
nonprintable ASCII codes.

■ Character codes 8, 9, 10, and 13 convert, respectively, to backspace, tab,
linefeed, and carriage return characters. You cannot see them graphically.
Depending on the application, they can affect the visual display of text.

Tips ■ To force a message either to start or to continue to print on a new line, use
Chr$(10), which inserts the linefeed character.

■ To insert quotation marks (") inside a message, use Chr$(34).

■ To send special control codes to your printer or to another device, use Chr$
with a print statement directed to that device.

■ To translate from a character to its character code number, use Asc.

■ If the run-time encoding is UCS-2, Chr behaves in the same way as ChrW.

Example The following example returns the character corresponding to a generated
number. The example displays the character, if it can be displayed, as well.

Sub Start()
Dim AnsiNum As Integer, Msg As String
Super::Start()
AnsiNum = Rnd * 255
Msg = "The character that corresponds to " & AnsiNum & " is:"

+ & " " & Chr$(AnsiNum)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Asc function
AscW function
ChrW, ChrW$ functions

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 97

ChrW, ChrW$ funct ions

ChrW, ChrW$ functions
Translates a UCS-2 code value into a character.

Syntax ChrW(<character code>)

Chrw$(<character code>)

Parameters <character code>
A numeric expression that represents the character code in UCS-2 you want
ChrW[$] to translate to a character. The following conditions apply to <character
code>:

■ <character code> must be a valid UCS-2 code.

■ If <character code> is not an Integer, ChrW[$] rounds it to the nearest Integer
before returning the character. In the United States, <character code> usually
refers to ANSI codes.

■ <character code> must be between 0 and 65535 or a run-time error occurs.

For example, the following statement returns A:

ChrW$(65)

The following statement returns :

ChrW(947)

Returns ChrW: Variant
ChrW$: String

Example The following example returns the character corresponding to a number that is
randomly generated. The example also displays the user-selected character, if it
can be displayed.

Sub Start()
Dim AnsiNum As Integer, Msg As String
Super::Start()
AnsiNum = Rnd * 65535
Msg = "The character that corresponds to " & AnsiNum & " is:"

+ & " " & ChrW$(AnsiNum)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also AscW function

98 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CInt funct ion

CInt function
Converts a numeric expression to the Integer data type.

Syntax CInt(<numeric expression>)

Description CInt is one of nine Actuate Basic data type conversion functions. CInt rounds the
fractional part of <numeric expression>, while Fix and Int truncate it. If <numeric
expression> lies outside the acceptable range for an Integer, an overflow error
occurs. If <numeric expression> is negative, CInt rounds to the next lowest
negative number. For example:

CInt(1.5) = 2
CInt(1.4) = 1
CInt(-1.4) = -1
CInt(-1.5) = -2

Parameters <numeric expression>
Numeric expression to convert from the Currency, Date, Double, Long, Single,
String, or Variant data type to the Integer data type. The following conditions
apply to <numeric expression>:

■ If <numeric expression> is Null, CInt returns Null.

■ If <numeric expression> is a String or Variant, it must be interpretable as a
number.

■ If <numeric expression> is a String, it is parsed according to the formatting
rules of the current run-time locale.

For example, each of the following statements returns 123. In the second
statement, the string 123 enclosed in double quotation marks is considered a
numeric expression because it can be interpreted as a number. In the third
statement, four cannot be interpreted as a number.

CInt(123)
CInt("123")
CInt("123four")

The following statement first converts the string 123four using Val to convert the
number 123. Val ignores the string component (four).

CInt(Val("123four"))

The following statement returns 123.456 on a French run-time locale and
123456.00 on an English run-time locale:

CInt("123,456")

Returns Integer. If <numeric expression> cannot be interpreted as a number, zero is
returned.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 99

CInt funct ion

Tips ■ To convert an expression to an Integer without using CInt, assign the
expression to a variable that is the Integer data type.

■ To declare the data type of a variable, use Dim with the As clause.

■ To round a number to precisely the number of decimal places you want and
discard anything residual, use Format$.

■ To be sure you pass the correct data type to a sub procedure or to a Windows
Dynamic Link Library (.dll), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String
Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)
ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)
Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)
Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function
CDbl function
CLng function
CSng function
CStr function
CVar function

100 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Class statement

CVDate function
Dim statement
Format, Format$ functions
Int function

Class statement
Declares and defines a class in Actuate Basic.

Syntax Class <name of class> [Subclass Of <name of superclass>]…[,<name of
superclass>…]]

[{Dim|Static}] <variable> [([<subscripts>])] [As <data type>]

[, [{Dim|Static}] <variable> [([<subscripts>])] [As <data type>]]

<nested class(es)>

<method(s)>

End Class

Parameters <name of class>
The name you assign to the class. You must supply a class name.

<Subclass Of <name of superclass>>
Specifies a superclass from which this class can be derived. Multiple inheritance is
supported by specifying more than one superclass.

[{Dim|Static]}
These optional keywords define the scope of the variable.

Dim—Defines an instance variable. Each instance of the class has a copy of each
instance variable.

Static—Defines a static variable. All instances of this class and all instances of
derived classes share a single copy of the variable.

<variable>
Name of the variable belonging to the class. A class can contain any number of
variables.

<subscripts>
Describes array dimensions according to the following syntax:

[<lower> To] <upper>[,[<lower> To]<upper>]…

If you do not supply subscript values between parentheses, Actuate Basic
declares a dynamic array. Range from <lower> to <upper> can be from
-2147483648 to 2147483647, inclusive.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 101

Class statement

As <data type>
Clause that declares the data type of <variable>. <data type> can specify any
valid Actuate Basic data type, user-defined data type, or class name, for example:

Dim SalesTax Customer As String, Amount As Currency

<nested class(es)>
Any number of other class definitions. Actuate automatically creates nested
classes for controls within frames, and for sections and frames within the report
object.

<method(s)>
Procedure that performs actions on the objects of the class. Your class can contain
any number of methods. Each method is defined using the Sub or Function
statements.

Tip Class statements can be recursive. Actuate Basic sets a run-time stack limit of 200.
A report using recursion with a large number of iterations might exceed this limit.

Example The following example creates the class PerDay that stores a counter and date in
each class instance. PerDay also has an overall counter that sums the counts of all
instances of the class. As the counts are updated, the local, or instance, counters
are independent, while the global, or static, counter increases every time an
instance counter is incremented.

To use this example, paste the class definition at or near the beginning of your
Actuate Basic source code (.bas) file.

Class PerDay
' PerDay stores a count for a corresponding date
Dim DateOfDay As Date, CountOfDay As Integer
' CountTotal sums CountOfDay for all instances of PerDay
Static CountTotal As Integer

' Initialize sets the starting date and count for the class
' instance and updates the total count.
Sub Initialize(NewDate As Date, NewCount As Integer)

DateOfDay = NewDate
CountOfDay = NewCount
CountTotal = CountTotal + NewCount

End Sub

' IncrCount increments the local and global counts by one.
Sub IncrCount()

CountOfDay = CountOfDay + 1
CountTotal = CountTotal + 1

End Sub

' Display shows the values of this instance of PerDay plus
' the global total

102 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ClearCl ipboard funct ion

Sub Display()
Dim Msg As String
Msg = "The count is " & CountOfDay
ShowFactoryStatus(Msg)
Msg = "The date is " & DateOfDay
ShowFactoryStatus(Msg)
Msg = "The total for all instances of this class "

+ & "is " & CountTotal
ShowFactoryStatus(Msg)

End Sub
End Class

Then, paste the following example code in the method editor:

Sub Start()
Dim FirstPerDay As PerDay, SecondPerDay As PerDay
Dim NewDate As Date
Super::Start()
' Instantiate two instances of class PerDay.
Set FirstPerDay = New PerDay
Set SecondPerDay = New PerDay
' Get today's date for the first PerDay instance.
NewDate = Date
FirstPerDay.Initialize(NewDate, 1)
' Both the instance and global counts are 1.
FirstPerDay.Display()
' Use last week's date for the second PerDay instance.
NewDate = NewDate - 7
SecondPerDay.Initialize(NewDate, 1)
SecondPerDay.IncrCount()
' The second instance count is 2. The global count is 3.
SecondPerDay.Display()
' The first instance count is still 1. The global count is 3.
FirstPerDay.Display()

End Sub

See also Dim statement
Function…End Function statement
Option Base statement
Static statement
Sub…End Sub statement

ClearClipboard function
Clears the contents of the operating environment Clipboard.

Syntax ClearClipboard

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 103

CLng funct ion

Returns Integer

■ Returns 1 (True) if the Clipboard was successfully cleared.

■ Returns 0 (False) if the Clipboard could not be cleared.

Example The following example places the current date on the Clipboard, then displays
the contents of the Clipboard:

Sub Start()
Dim Msg As String
Super::Start()
On Error Resume Next
Msg = "The Clipboard contains: " & GetClipboardText
ShowFactoryStatus(Msg)
Msg = "Placing today’s date on the clipboard."
ShowFactoryStatus(Msg)
ClearClipboard
SetClipboardText(Format$(Date, "dddd, mm/dd/yyyy"))
Msg = GetClipboardText
ShowFactoryStatus("The Clipboard now contains: " & Msg)

End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetClipboardText function
SetClipboardText function

CLng function
Converts a numeric expression to the Long data type.

Syntax CLng(<numeric expression>)

Description CLng is one of nine Actuate Basic data type conversion functions. If <numeric
expression> lies outside the acceptable range for a Long data type, an overflow
error occurs. If <numeric expression> is Null, CLng returns Null.

Parameters <numeric expression>
Numeric expression to convert from the Currency, Date, Double, Integer, Single,
String, or Variant data type to the Long (Long integer) data type. The following
conditions apply to <numeric expression>:

■ If String or Variant, <numeric expression> must be interpretable as a number.

■ If <number expression> is a String, it is parsed according to the formatting
rules of the current run-time locale.

104 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CLng funct ion

For example, each of the following statements returns the value 123. In the second
statement, the string 123 enclosed in double quotation marks is considered a
numeric expression because it can be interpreted as a number.

CLng(123)
CLng("123")

The following statement generates an error. The string 123four is not considered a
numeric expression because four cannot be interpreted as a number.

CLng("123four")

The following statement first converts the string 123four using Val to convert the
number 123. Val ignores the string component (four).

CLng(Val("123four"))

The following statement returns 123.456 on a French run-time locale and
123456.00 on an English run-time locale:

CLng("123,456")

Returns Long. If <numeric expression> cannot be interpreted as a number, zero is
returned.

Tips ■ To convert an expression to long without using CLng, assign the expression to
a variable that is the Long data type.

■ To declare the data type of a variable, use Dim with the As clause.

■ To round a number to precisely the number of decimal places you want and
discard anything residual, use Format$.

■ To be sure you pass the correct data type to a sub procedure or to a Windows
Dynamic Link Library (.dll), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String
Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)
ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 105

Close statement

Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)
Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function
CDbl function
CInt function
CSng function
CStr function
CVar function
CVDate function
Dim statement
Format, Format$ functions

Close statement
Concludes input/output to a file.

Syntax Close [[#] <open file number>] … [, [#] <open file number>] …

Description ■ If you use Close for a file that was opened for Output or Append, Actuate
Basic flushes the buffers associated with the file and writes any remaining data
in them to disk.

■ The association of a file with <open file number> ends when Close is
executed. You can then reopen the file using the same or a different file
number, or you can reuse the file number to open a different file.

■ Once a file has been closed, the file number cannot be referenced by any other
file-related statements (such as Get or Put) until you issue another Open with
that file number.

■ If <open file number> does not refer to a currently open file, Actuate Basic
ignores the Close statement and continues with the next command.

106 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Close statement

■ Close with no arguments closes all open files.

■ Actuate Basic automatically closes all open files at program termination,
whether or not you use Close.

Parameters <open file number>
Numeric expression for the number you used in a previously issued Open
statement that opened the target file to be closed.

Default: All open files are closed.

For example, the following statement closes the file previously opened as #1:

Close #1

The following statement closes the files opened as 1, 5, and 7:

Close 1, 5, 7

The following statement closes all open files:

Close

Tip You should close each open file before ending your program.

Example The following example generates three test files by opening the test files, writing
to the test files, and closing the test files. The example overrides Start to call a
subroutine that generates the three test files. It then deletes the files. To use this
example, paste the procedure Make3Files after the End Sub of the Start procedure
or save it in your Actuate Basic source code (.bas) file.

Sub Start()
Dim Msg As String
Super::Start()
' Create test files
Make3Files
Msg = "Three test files have been created on your disk at "

+ & CurDir$ & ". They will now be deleted."
ShowFactoryStatus(Msg)
' Remove files from disk.
Kill "TESTFIL?"

End Function

' The following procedure creates the sample data files.
Sub Make3Files()

Dim I As Integer, FreeNum As Integer, TestFileName As String
ShowFactoryStatus("We are now in the Make3Files sub.")
For I = 1 to 3

' Get next free file handle
FreeNum = FreeFile
TestFileName = "TESTFIL" & FreeNum
' Opening the file automatically creates it
Open TestFileName For Output As FreeNum

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 107

Command, Command$ funct ions

' Print one line of text in the file
Print #FreeNum, "This is a test file."

Next I
' Close all files
Close

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Open statement
Reset statement
Stop statement

Command, Command$ functions
Returns the argument component of the command line of erdpro.exe.

Syntax Command

Command$

Description In the following example, commandargs represents what Command returns if
you launched Actuate Basic with the following command:

erdpro.exe /CMD commandargs

The function returns commandargs Secondcomm 32, the launch argument—
assuming you launched the application with the following command:

erdpro commandargs Secondcomm 32

Actuate Basic Compiler does not generate an EXE. Instead, it generates a report
object executable (.rox) file, which runs either in the ROX compiler, which is built
into e.Report Designer Professional, or through iServer.

Returns Command: Variant
Command$: String

Example The following example displays the command-line arguments of erdpro.exe that
you are currently using:

Sub Start()
Dim Msg As String
Super::Start()
If Command = "" Then

Msg = "Sorry, no command-line arguments were "
+ & "used to launch this program."

Else

108 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Const statement

Msg = "The command-line string you passed to this "
+ & "program when you launched it is " & Command

End If
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Const statement
Declares symbolic constants to be used in place of literal values.

Syntax [Global] Const<const name>=<expression> [,<const name>=<expression>]…

Description The following conditions apply when using symbolic constants:

■ Const must be in a Declare section.

■ Any <const name> you use must be defined by Const before you can refer to
it.

■ A constant cannot be a Variant, and its data type cannot change.

■ Unlike a variable, a constant cannot be changed while your program is
running.

■ You can use a constant anywhere you might use an expression.

■ The data type of <const name> is based on <expression> if there is no type
declaration postfix specified. A string <expression> always yields a String
<const name>, but a numeric <expression> yields the simplest data type that
can represent it once it has been evaluated.

■ A constant declared in a sub or function procedure is local to that procedure.

Parameters [Global]
Keyword indicating that the <const name>s can be accessed by all procedures in
the program.

<const name>
Name of the constant to which the value of <expression> is assigned. The name
must follow standard variable naming conventions.

<expression>
Expression assigned to <const name>. <expression> can consist of literals, other
constants, or any arithmetic or logical operators. The expression cannot contain or
use any of the following:

■ Variables

■ User-defined functions

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 109

Const statement

■ Intrinsic Actuate Basic functions such as Chr[$]

Tips ■ To simplify maintenance and debugging, put Global Const definitions in a
single module.

■ To make constants easier to recognize when debugging, use all uppercase
letters for your constant names.

■ To declare the data type of a constant, use a type declaration postfix character
like %, &, !, #, @, or $.

Example The following example defines the constant PI, generates the value of a radius,
then uses PI to compute the circumference and area of a circle. To use this
example, paste the following code at or near the beginning of your Actuate Basic
source code (.bas) file:

Declare
' Define constantGlobal Const PI = 3.141592654

End Declare

Then, paste the following function into the method editor:

Sub Start()
Dim Area As Double, Circum As Double
Dim Msg As String, Radius As Integer
Super::Start()
' The radius of a circle in centimeters
Radius = Rnd * 10
' Compute circumference
Circum = 2 * PI * Radius
' Compute area
Area = PI * (Radius ^ 2)
Msg = "If the radius of a circle is " & Radius & " cm"
ShowFactoryStatus(Msg)
Msg = "the circumference of the circle is " & Circum & " cm."
ShowFactoryStatus(Msg)
Msg = "Its area is " & Area & " sq cm."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
Global statement
Let statement
Static statement

110 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ConvertBFi leToStr ing funct ion

ConvertBFileToString function
Encodes a binary data file into a string.

Syntax ConvertBFileToString(<filename>)

Description Use ConvertStringToBFile to conditionally embed different images in your report
instances—based upon different data or run-time parameters.

Use ConvertBFileToString, and the complementary function
ConvertStringToBFile, to send the same report design to two different customers,
A and B, and include binary data A in the report to A, and binary data B in the
report to B. Instead of embedding either set of binary data in a given report, or
creating two slightly different reports, you write conditional code in a single
report. The instances of your report display different data at run time as required.

ConvertBFileToString should be used only in conjunction with its complementary
function, ConvertStringToBFile.

Parameters <filename>
String expression that specifies the binary file to convert. Can include optional
drive and path information. The default path is the current default drive and
directory. <filename> cannot include wildcard characters and must refer to an
existing file.

Returns String. If <filename> is not found or the file cannot be read, a run-time error
occurs.

See also ConvertStringToBFile function

ConvertStringToBFile function
Decodes a string from Actuate’s internal representation back into a binary file.

Syntax ConvertStringToBFile(<stringval>)

Description Use ConvertStringToBFile to conditionally embed different sets of binary data in
your report instances—based upon different data or run-time parameters.

Use ConvertStringToBFile, and the complementary function
ConvertBFileToString, to send the same report design to two different customers,
A and B, and include binary data A in the report to A, and binary data B in the
report to B. Instead of embedding either set of binary data in a given report, or
creating two slightly different reports, you write conditional code in a single
report. The instances of your report display different sets of binary data at run
time as required.

■ ConvertStringToBFile should be used only in conjunction with its
complementary function, ConvertBFileToString.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 111

ConvertToXML funct ion

■ The parameter you pass in (<stringval>) must be the return from the
complementary function ConvertBFileToString.

■ The returned file name is the name of the temporary file. Remove the
temporary file when it is no longer needed.

Parameters <stringval>
String expression that specifies the string to convert into a binary file.

Returns String

Tip ConvertStringToBFile creates a temporary file. Be sure to include code that will
clean up the temporary file after it is no longer needed.

See also ConvertBFileToString function

ConvertToXML function
Returns a string with escaped characters for those characters that have special
meaning to XML.

Syntax ConvertToXML(<convert>, <XMLcharset>)

Parameters <convert>
String expression. Contains the string you wish to modify. Certain characters
have special meaning to XML. ConvertToXML puts escape characters in the
string in place of the special character so that the string itself is properly
formatted for use in XML. For example, the & character has special meaning to
XML syntax, and including it in a string to be used in XML can cause
unpredictable results. Calling ConvertToXML replaces the ampersand (&)
character with the string &. The string that contained A & B is now returned
as A & B.

<XMLcharset>
String expression. Contains the encoding value to use in conversion. If set to "",
no encoding is used.

Returns String

Example The following example demonstrates the return value of ConvertToXML:

Sub Start()
Dim data as String
Dim Msg as String
Super::Start()
data = "A & B"
Msg = "The result of ConvertToXML(data) is " &
ConvertToXML(data)
ShowFactoryStatus(Msg)

End Sub

112 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CopyInstance statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

CopyInstance statement
Copies the values of the variables from one instance to another instance, even
when the classes of the two instances are unrelated.

Syntax CopyInstance(<source>, <destination>, <excludeProperty>)

Both the names and data types of the variables in <source> must match the names
and data types of the corresponding variables in <destination>.

Parameters <source>
Any instance (object). The instance that contains the variables from which you
want to copy values.

<destination>
Any instance (object). The instance that contains the variables to which you want
to copy the values from <source>.

The classes of the two instances do not need to be related.

CopyInstance matches variables on name and data type.

For example, in the case of a variable in <source> named Amount with type
Currency, CopyInstance copies the variable’s value from <source> to
<destination> only if <destination> has a variable with the same name and type.

CopyInstance ignores or skips variables that do not match on both name and data
type.

<excludeProperty>
String that specifies the properties to be excluded when copying an instance.

Tip CopyInstance is useful when you work with multi-input filters. CopyInstance
simplifies writing complex data streams, for example, when creating a union.

Example The following example creates the classes Size and Quantity. Both classes contain
a variable named Title of type String, but no other similar variables.

To use this example, paste the class definitions at or near the beginning of your
Actuate Basic source code (.bas) file.

Class Size
Dim Height As Single, Title As String
Dim Msg As String
Sub Initialize(NewHeight As Single, NewTitle As String)

Height = NewHeight
Title = NewTitle

End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 113

Cos funct ion

Sub Display()
Msg = "Title is " & Title & " and Height is " & Height
ShowFactoryStatus(Msg)

End Sub
End Class
Class Quantity

Dim Quantity As Integer, Title As String
Dim Msg As String
Sub Initialize(NewQuantity As Integer, NewTitle As String)

Quantity = NewQuantity
Title = NewTitle

End Sub

Sub Display()
Msg = "Title is " & Title & ". Quantity is " & Quantity
ShowFactoryStatus(Msg)

End Sub
End Class

Then, paste the following example code into the method editor:

Sub Start()
Dim SizeObj As Size, QuanObj As Quantity
Super::Start()
Set SizeObj = New Size
Set QuanObj = New Quantity
SizeObj.Initialize(5.67, "A size")
SizeObj.Display
QuanObj.Display
CopyInstance(SizeObj, QuanObj, "")
QuanObj.Display

End Sub

Only SizeObj is initialized. After CopyInstance is called, only the Title variable in
QuanObj has a value. The remaining QuanObj variable, Quantity, is not set
because it has no match in SizeObj.

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SetBinding function

Cos function
Returns the cosine of an angle.

Syntax Cos(<angle>)

114 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CreateJavaClassHandle funct ion

Parameters <angle>
Number, numeric expression, or Variant of VarType 8 (String) that specifies, in
radians, the angle for which you want to find the cosine.

If <angle> is a String, it is parsed according to the formatting rules of the current
run-time locale. If <angle> evaluates to Null, Cos returns Null.

Returns Double

Tip To convert between radians and degrees, use: radians = degrees * Pi/180.

Example The following example prompts the user for an angle expressed in radians, then
returns the cosine of the angle:

Sub Start()
Dim Angle As Double, Pi As Double
Dim Msg As String
Super::Start()
Pi = 3.14159265358979
' A random angle in radians
Angle = Pi * Rnd
Msg = "The cosine of " & Angle & " is: " & Cos(Angle)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapterUsing the code examples.

See also Acos function
Asin function
Atn function
Sin function
Tan function

CreateJavaClassHandle function
Creates a handle to a Java class.

Syntax CreateJavaClassHandle("<class identifier>")

Description Use CreateJavaClassHandle to access static class fields and static class methods.
You can also use CreateJavaClassHandle to create an instance of the class by
invoking a class constructor method via the class handle.

CreateJavaClassHandle throws a user error for the following problems:

■ CLASSPATH environment variable not found

■ Java Virtual Machine not found or cannot be created

■ Class not found

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 115

CreateJavaObject funct ion

■ Method or field not found

Parameters <class identifier>
java.lang.String expression that specifies the name of the Java class. The Java class
must be located in a path defined in the CLASSPATH environment variable. If the
class identifier contains a package name and a class name, only the class name is
used in invoking the class constructor.

Returns A Basic object which is a handle to the Java class object if the method succeeded,
and an undefined handle if the call failed.

Example On the first line of the following example, the variable theClassHandle is declared
as a type Object. On the second line, CreateJavaClassHandle is used to create the
handle to the Java class java.lang.String and assign it to theClassHandle.

Dim theClassHandle As Object
Set theClassHandle = CreateJavaClassHandle("java.lang.String")

The following example shows how to create a Java class handle and how to use
that handle to invoke a constructor to create an instance of the class:

Dim theClassHandle As Object
Set theClassHandle = CreateJavaClassHandle("java.lang.String")
Dim theInstanceHandle As Object
Set theInstanceHandle = theClassHandle.String("Hello")

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

CreateJavaObject function
Creates an instance of a class without invoking a constructor.

Syntax CreateJavaObject("<class identifier>")

Description CreateJavaObject allocates an object of the given ClassIdentifier. The call does not
invoke any constructor, including default constructor, of the class. Instance fields
of the class are not initialized in the allocated object. To initialize the instance,
either call an initialization method on the instance or invoke the constructor
through a handle to the class.

CreateJavaObject throws a user error for the following problems:

■ CLASSPATH environment variable not found

■ Java Virtual Machine not found or cannot be created

■ Class not found

■ Object creation failed

CreateJavaObject cannot receive a Null instance.

116 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CSng funct ion

Parameters <class identifier>
String expression that specifies the name of the Java class. The Java class must be
located in a path defined in the CLASSPATH environment variable. The class
identifier must be either the class name or the class name and package name. The
class identifier cannot contain a partial path.

Returns A Basic object which is a handle to the instance if the method succeeded, and an
undefined handle if the call failed.

Example On the first line of the following example, the variable theObject is dimensioned
as a type Object. On the second line, CreateJavaObject is used to create the Java
object, readfile, and assign it to theObject.

Dim theObject As Object
Set theObject = CreateJavaObject("readfile")

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

CSng function
Converts a numeric expression to the Single data type.

Syntax CSng(<numeric expression>)

Description CSng is one of nine Actuate Basic data type conversion functions. If <numeric
expression> lies outside the acceptable range for a Single data type, an overflow
error occurs. If <numeric expression> is Null, CSng returns Null.

Parameters <numeric expression>
Numeric expression to convert from the Currency, Date, Double, Integer, Long,
String, or Variant data type to the Single (or single precision floating point) data
type. The following conditions apply to <numeric expression>:

■ If <numeric expression> is a String or Variant, it must be interpretable as a
number.

■ If <numeric expression> is a String, it is parsed according to the formatting
rules of the current run-time locale.

For example, each of the following statements returns 123. In the second
statement, the string 123 enclosed in double quotation marks is considered a
numeric expression because it can be interpreted as a number.

CSng(123)
CSng("123")

The following statement generates an error. The string 123four is not considered a
numeric expression because four cannot be interpreted as a number.

CSng("123four")

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 117

CSng funct ion

The following statement first converts the string 123four using Val to convert the
number 123. Val ignores the string component, four.

CSng(Val("123four"))

The following statement returns 123.456 on a French run-time locale and
123456.00 on an English run-time locale:

CSng("123,456")

Returns Single. If <numeric expression> cannot be interpreted as a number, zero is
returned.

Tips ■ To convert an expression to single without using CSng, assign the expression
to a variable that is the Single data type.

■ To declare the data type of a variable, use Dim with the As clause.

■ To round a number to precisely the number of decimal places you want and
discard anything residual, use Format[$].

■ To be sure you pass the correct data type to a sub procedure or to a Windows
Dynamic Link Library (.dll), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String
Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)
ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)
Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)
Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

118 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CStr funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function
CDbl function
CInt function
CLng function
CStr function
CVar function
CVDate function
Dim statement
Format, Format$ functions

CStr function
Converts an expression to the String data type.

Syntax CStr(<valid expression>)

Description CStr is one of nine Actuate Basic data type conversion functions.

Parameters <valid expression>
Expression to convert from the Currency, Date, Double, Integer, Long, Single, or
Variant data type to the String data type. <valid expression> is parsed according
to the formatting rules of the current run-time locale.

For example, the following statement returns the string 123four:

CStr(123) & "four"

The following statement generates an error, because it mixes string and numeric
data types:

CStr(123) + 5

Returns String

If <valid expression> is Null, CStr returns Null.

Tips ■ To declare the data type of a variable, use Dim with the As clause.

■ To ensure that you pass the correct data type to a sub procedure or a Windows
Dynamic Link Library (.dll), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 119

CurDir, CurDir$ funct ions

Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)
ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)
Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)
Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function
CDbl function
CInt function
CLng function
CSng function
CVar function
CVDate function
Dim statement
Format, Format$ functions

CurDir, CurDir$ functions
Returns the current default directory for the specified drive, or for the current
drive.

Syntax CurDir[(<drive:>)]

CurDir$[(<drive:>)]

120 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CurDir, CurDir$ funct ions

Description While DOS always maintains a distinct current directory for each drive in the
system, UNIX keeps only the current directory under the current drive. The
current directory is the one the system searches first for a file name whenever you
start such a search without specifying a path name.

Parameters <drive:>
String expression, consisting of a single character followed by a colon that
specifies the drive for which you want to determine the current directory. The
default is the current drive. The following conditions apply to <drive:>:

■ First character of <drive:> must correspond to the letter of a valid DOS drive.

■ First character of <drive:> must be in the range A to <lastdrive>, where
<lastdrive> is the maximum drive letter you set in your Config.sys file.

For example, the following statement assigns to the variable DefaultVar a string
containing the current directory path on the default drive:

DefaultVar = CurDir

The following statement assigns to the variable B$ a string containing the current
directory path on drive A:

B$ = CurDir("A")

The following statement assigns to the variable PlaceMark a string containing the
current directory path on drive C:

PlaceMark = CurDir$("C:")

Returns CurDir: Variant
CurDir$: String

Tips ■ Since the path CurDir[$] returns includes the drive letter, it also determines
which drive is currently the current drive.

■ To be sure you have set the correct working directory before you issue
commands that do not specify full path names, use CurDir[$], ChDrive, and
ChDir.

■ <drive> is ignored when the Basic program is running on a UNIX server.

Example The following example displays a message box indicating the current directory
on the current drive:

Sub Start()
Dim Msg As String
Super::Start()
Msg = "The current directory is: "
' Get current directory
Msg = Msg & CurDir
ShowFactoryStatus(Msg)

End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 121

CVar funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also ChDir statement
ChDrive statement
MkDir statement
RmDir statement

CVar function
Converts a numeric expression to the Variant data type.

Syntax CVar(<valid expression>)

Description CVar is one of nine data type conversion functions. If <any valid expression> lies
outside the acceptable range for a Variant data type, an overflow error occurs.

Parameters <valid expression>
Expression to convert to the Variant data type from the Currency, Date, Double,
Integer, Long, Single, or String data type.

For example, the following statements return True, nonzero:

CVar(123) & "four" = "123four"
CVar(123) + 5 = 128
CVar(123) + 5 & "append" = "128append"

Returns Variant

If <valid expression> is Null, CVar returns Null.

Tips ■ To convert an expression to variant without explicitly using CVar, assign the
expression to a variable that is the Variant data type.

■ To declare the data type of a variable, use Dim with the As clause.

■ To be sure you pass the correct data type to a Sub procedure or to a Windows
Dynamic Link Library (.dll), use data type conversion functions.

Example The following example generates a random number, converts that number using
each of the conversion functions in turn, then displays the result:

Sub Start()
Dim Orig As String, Msg As String
Super::Start()
' Get a random number between 1 and 256
Orig = 255 * Rnd + 1
' Convert to various formats
Msg = "Your number is: " & Orig
ShowFactoryStatus (Msg)
Msg = "CCur(Orig) yields ----> " & CCur(Orig)

122 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CVDate funct ion

ShowFactoryStatus (Msg)
Msg = "CDate(Orig) yields ----> " & CDate(Orig)
ShowFactoryStatus (Msg)
Msg = "CDbl(Orig) yields ----> " & CDbl(Orig)
ShowFactoryStatus (Msg)
Msg = "CInt(Orig) yields ----> " & CInt(Orig)
ShowFactoryStatus (Msg)
Msg = "CLng(Orig) yields ----> " & CLng(Orig)
ShowFactoryStatus (Msg)
Msg = "CSng(Orig) yields ----> " & CSng(Orig)
ShowFactoryStatus (Msg)
Msg = "CStr(Orig) yields ----> " & CStr(Orig)
ShowFactoryStatus (Msg)
Msg = "CVar(Orig) yields ----> " & CVar(Orig)
ShowFactoryStatus (Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function
CDbl function
CInt function
CLng function
CSng function
CStr function
CVDate function
Dim statement
Format, Format$ functions

CVDate function
Converts an expression to a Variant of VarType 7 (Date).

Syntax CVDate(<date expression>)

Parameters <date expression>
Date expression, or any numeric or string expression that can be interpreted as a
date, a time, or both a date and a time. The default date if none is specified is 0
(Dec. 30, 1899) and the default time if none is specified is 00:00:00 (midnight).

The following conditions apply to <date expression>:

■ Can be a String such as November 12, 1982 8:30 P.M., 12 Nov., 1982 08:30 P.M.,
11/12/82, 08:30 P.M., or any other String that can be interpreted as a date, a
time, or both a date and a time in the valid range.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 123

CVDate funct ion

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date, a time, or both a date and a time in the valid range.

■ For date serial numbers, the Integer component represents the date itself while
the decimal component represents the time of day on that date, where January
1, 1900 at precisely noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899 (0).

■ If <date expression> includes a time of day, it must be a valid time, even if
CVDate is not being used to return anything having to do with a time of day.
A valid time is one that is in the range 0:00:00 (12:00:00 A.M.) through 23:59:59
(11:59:59 P.M.). Either the 12- or 24-hour clock can be used.

■ If <date expression> is a numeric expression, the numeric expression must be
in the range -657434 to +2958465, inclusive.

■ <date expression> cannot contain a day of week.

■ <date expression> must not be empty or zero-length.

■ <date expression> must specify a date within the range January 1, 100 through
December 31, 9999, inclusive.

■ <date expression> is parsed according to the formatting rules of the current
run-time locale.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

For example, the following statements are equivalent. Each assigns 11/12/82
8:30:00 P.M., with its underlying serial number, to the variable BDate:

BDate = CVDate("11/12/82 8:30 pm")
BDate = CVDate("12 Nov 1982 20:30")
BDate = CVDate("November 12, 1982 8:30PM")
BDate = CVDate(30267.854167)

124 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CVDate funct ion

Returns Date

■ If <date expression> is Null, CVDate returns Null.

■ If <date expression> cannot be evaluated to a date, CVDate returns Null.

■ If <date expression> contains a day of week, CVDate returns Null.

■ If <date expression> fails to include all date components, such as day, month,
and year, CVDate returns Null.

■ If <date string> contains only numbers separated by valid date separators,
CVDate recognizes the order for month, day, and year according to the
settings of the current run-time locale.

Tips ■ Do not use CVDate to convert a long date format that also contains the day-of-
the-week string, like Friday, Nov. 12, 1982. The function does not recognize
such strings as dates.

■ Avoid supplying CVDate with a date in a format other than formats specified
in the locale map.

■ To determine if either a numeric or string expression that looks like a date can
be converted to a date, use IsDate. However, IsDate cannot determine whether
a string that looks like a number can be converted to a date, even if the number
is in the correct range for date serial numbers.

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all your dates.

Example The following example generates a date. For any valid entry, it displays both a
date and a date serial number.

Sub Start()
Dim DateMeme As String, ConvDateMeme As Date
Dim Msg As String
Super::Start()
DateMeme = CStr(Rnd * 125 * 365)
ConvDateMeme = CVDate(DateMeme)
Msg = "The date is: " & ConvDateMeme
ShowFactoryStatus(Msg)
Msg = "The serial number for that date is: "

+ & CDbl(ConvDateMeme)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CCur function
CDate function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 125

Date, Date$ funct ions

CDbl function
CInt function
CLng function
CSng function
CStr function
CVar function
Dim statement
Format, Format$ functions
IsDate function
ParseDate function

Date, Date$ functions
Returns the current system date.

Syntax Date

Date$

For example, the following statement assigns the current system date to a
variable:

CurrDate = Date

Returns Date: Variant
Date$: String

■ Date returns a Variant of VarType 7 (Date) that contains a date stored
internally as a Double.

■ Date$ returns a date within the range January 1, 1980 through December 31,
2036, inclusive.

■ Date$ returns a 10-character string in the form mm-dd-yyyy, where mm
represents the current month (01-12), dd the day (01-31), and yyyy the year
(1980-2036). The locale for the report determines the order in which year,
month, and day appear. The separator is always a hyphen, '-'. For example, for
the Japanese locale, Date$ returns a string like 2005-10-24, even though the
separator character for a Japanese date is '/'.

Example The following example examines the system date and determines how many
business days remain in the current week, not counting today:

Sub Start()
Dim CurrentDay As Integer, BusDaysLeft As Integer
Dim Verb As String, DayNoun As String, Msg As String
Super::Start()
' Weekday returns an Integer
CurrentDay = Weekday(Date)

126 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DateAdd funct ion

BusDaysLeft = 6 - CurrentDay
If BusDaysLeft < 0 or BusDaysLeft > 5 Then BusDaysLeft = 0
If BusDaysLeft = 1 Then

Verb = "is "
DayNoun = "day "

Else
Verb = "are "
DayNoun = "days "

End If
Msg = "Today is " & Format$(Date, "dddd") & "."
ShowFactoryStatus(Msg)
Msg = "There " & Verb & BusDaysLeft & " business " & DayNoun
ShowFactoryStatus(Msg)
Msg = "left in the current week, not counting today."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CVDate function
Format, Format$ functions
Now function
Time, Time$ functions

DateAdd function
Returns a date to which a specified time interval has been added.

Syntax DateAdd(<interval code>, <number of intervals>, <date expression>)

Parameters <interval code>
String expression that specifies the interval of time, such as quarter, month, or
second to add. You can use only one <interval code> at a time.

Table 6-1 lists each valid time period and the <interval code> that corresponds
to it.

Table 6-1 Time periods and the corresponding interval codes

<interval code> Time period Description

yyyy Year Adds a year.

qq Half a year Adds half a year.

q Quarter Adds a quarter of a year.

m Month Adds a month.

y Day of the year Adds the day of the year.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 127

DateAdd funct ion

<number of intervals>
Numeric expression that specifies the number of intervals to add. Use a positive
number to get future dates and a negative number to get past dates.

<date expression>
String expression that specifies the date to add to, or a variant expression that
contains a valid date. The following conditions apply to <date expression>:

■ <date expression> must specify a date within the range January 1, 100 through
December 31, 9999, inclusive.

■ <date expression> cannot contain a day of week.

■ <date expression> is parsed according to the formatting rules of the current
run-time locale.

Returns Variant

■ If you subtract more years than are in <date expression>, an error occurs.

■ If <date expression> cannot be evaluated to a date, DateAdd returns Null.

■ If <date expression> fails to include all date components, such as day, month,
and year, DateAdd returns Null.

■ If <date expression> contains a day of week, DateAdd returns Null.

■ If <number of intervals> is not a Long value, DateAdd follows the rules for Fix
function and rounds <number of intervals> to the nearest whole number.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.

d Day of the month Adds the day of the month.

w Day of the week Adds the day of the week.

ww Week of the year Adds the week of the year. The week
begins on a Sunday.

www Custom week of
the year.

Adds the week of the year. The date you
specify determines the day on which the
week begins.

h Hour Adds the hour.

n Minute Adds a minute.

s Second Adds a second.

Table 6-1 Time periods and the corresponding interval codes

<interval code> Time period Description

128 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DateDi f f funct ion

For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Tips ■ Use DateAdd to add a specified time interval to a date. For example, you can
use DateAdd to calculate a date 30 days from a transaction date to display a
Send Late Payment Notice field.

■ To calculate the difference between two dates, use DateDiff.

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all your dates.

Example The following example generates a date, adds 30 days to that date, then displays
the result:

Sub Start()
Dim TransactionDate, Msg
Super::Start()
TransactionDate = CDate(CInt(Rnd * 125 * 365))
Msg = DateAdd("d", 30, TransactionDate)

+ & " is 30 days after the date " & TransactionDate
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DateDiff function

DateDiff function
Calculates and returns the time difference between two specified dates.

Syntax DateDiff(<interval >, <date to subtract>, <date to subtract from>)

Parameters <interval>
String expression that specifies the interval of time, such as quarter, month, or
second, to use in calculating the difference between two specified dates. You can
use only one <interval> at a time.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 129

DateDi f f funct ion

Table 6-2 lists valid values for <interval> and describes how DateDiff uses each in
calculations.

<date to subtract>
String expression that specifies the date to subtract, or the name of a variant
expression containing the valid date. The following conditions apply to <date to
subtract>:

■ <date to subtract> must specify a date within the range January 1, 100 through
December 31, 9999, inclusive.

■ <date to subtract> cannot contain a day of week.

■ <date to subtract> is parsed according to the formatting rules of the current
run-time locale.

Table 6-2 Time periods and the corresponding interval expressions

<interval> Time period Description

yyyy Year DateDiff uses the year portion in calculation.

qq Half of the year DateDiff calculates the difference by
determining the half of the year into which
each date falls, then subtracting the halves.

q Quarter DateDiff uses the following quarters: January -
March, April - June, July - September, and
October - December. DateDiff calculates the
difference by determining the quarter into
which each date falls, then subtracting the
quarters.

m Month DateDiff uses the month portion of dates in
calculation.

y Day of the year DateDiff counts the number of days in the
specified years.

d Day of the month DateDiff counts the number of days in the
specified months.

w Day of the week DateDiff counts the number of Mondays.

ww Week of the year DateDiff counts the number of Sundays.

www Custom week of
the year

DateDiff counts the number of weeks. The
date you specify determines the day on which
the week begins.

h Hour DateDiff counts the number of hours.

n Minute DateDiff counts the number of minutes.

s Second DateDiff counts the number of seconds.

130 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DateDi f f funct ion

<date to subtract from>
String expression that specifies the date to subtract from, or the name of a variant
expression containing the valid date. The following conditions apply to <date to
subtract from>:

■ <date to subtract from> must specify a date within the range January 1, 100
through December 31, 9999, inclusive.

■ <date to subtract from> cannot contain a day of week.

■ <date to subtract from> is parsed according to the formatting rules of the
current run-time locale.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Returns Variant

■ If <date to subtract> refers to a later point in time than <date to subtract
from>, DateDiff returns a negative number.

■ If <date to subtract> cannot be evaluated to a date, DateDiff returns Null.

■ If <date to subtract from> cannot be evaluated to a date, DateDiff returns Null.

■ If <date to subtract> fails to include all date components (day, month, and
year), DateDiff returns Null.

■ If <date to subtract from> fails to include all date components (day, month,
and year), DateDiff returns Null.

■ If <date to subtract> contains a day of week, DateDiff returns Null.

■ If <date to subtract from> contains a day of week, DateDiff returns Null.

■ If <interval> is w (weekday), DateDiff returns the number of weeks by
counting the number of Mondays between the two dates. If <date to subtract
from> falls on a Monday, DateDiff does not include that Monday in the

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 131

DateDi f f funct ion

calculation. In the following example, both specified dates fall on a Monday.
The result DateDiff returns is 2.

DateDiff("w", "6/26/95", "7/10/95")

■ If <interval> is ww (week), DateDiff returns the number of weeks by counting
the number of Sundays between the two dates. If <date to subtract from> falls
on a Sunday, DateDiff does not include that Sunday in the calculation. In the
following example, both specified dates fall on a Sunday. The result DateDiff
returns is 2.

DateDiff("ww", "6/25/95", "7/9/95")

■ DateDiff uses the year portion of dates in calculation. For this reason, the
following example returns 1, although the dates are one day apart:

DateDiff ("yyyy", "12/31/95", "1/1/96")

■ DateDiff uses the month portion of dates in calculation. For this reason, the
following example returns 1, although the dates are one day apart:

DateDiff ("m", "12/31/95", "1/1/96")

■ DateDiff calculates the difference by checking which quarters the specified
dates fall in. For this reason, the following example returns 1, although the
dates are one day apart:

DateDiff ("q", "12/31/95", "1/1/96")

■ The actual display format of date and time is set using the Windows Control
Panel.

Tips ■ Use DateDiff to calculate the difference between two dates to display in a
calculated field. For example, you can use DateDiff to calculate the number of
days between a pre-sales date and a transaction date to display in a Sales
Response field.

■ If you are calculating the number of weeks between two dates, you can use
either weekday (w) or week (ww) as the interval. Because each starts the
calculations from a different day, the results can be different.

■ To add a specified time interval to a date, use DateAdd.

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all your dates.

Example The following example uses two valid date expressions, PreSalesDate and
TransactionDate. DateDiff finds the difference, in days, between PreSalesDate
and TransactionDate, then displays the result.

Sub Start()
Dim PreSalesDate As Date, TransDate As Date
Dim DDiff As Integer, Msg As String

132 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DatePart funct ion

Super::Start()
PreSalesDate = CDate(CInt(Rnd * 125 * 365))
TransDate = DateAdd("d", CInt(Rnd * 90), PreSalesDate)
DDiff = DateDiff("d", PreSalesDate, TransDate)
Msg = "The pre-sales date, " & PreSalesDate & ", is "
ShowFactoryStatus(Msg)
Msg = DDiff & " days before the transaction date, "
ShowFactoryStatus(Msg)
Msg = TransDate & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DateAdd function
DateSerial function

DatePart function
Returns a specified component of a given date.

Syntax DatePart(<interval code>, <date exprs>)

Parameters <interval code>
String expression that specifies the interval of time such as quarter, month, or
second you want to determine. You can use only one <interval code> at a time.

Table 6-3 lists valid time periods for <interval code>.

Table 6-3 Time periods for dates and the corresponding interval codes

<interval code> Time period Range of return values

yyyy Year 100 - 9999

qq Half of the year 1 - 2

q Quarter 1 - 4

m Month 1 - 12

y Day of the year 1 - 366

d Day of the month 1 - 31

w Day of the week 1 - 7

ww Week of the year 1 - 53

www Custom week of the year. The
date you specify determines the
day on which the week begins.

1 - 53

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 133

DatePart funct ion

<date exprs>
Date expression, or any numeric or string expression that can be interpreted as a
date, a time, or both a date and a time:

■ Can be a string expression such as November 12, 1982 8:30 P.M., Nov. 12, 1982
08:30 PM, 11/12/82 8:30pm, 20:30, or any other string that can be interpreted
as a date, a time, or both a date and a time in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date, a time, or both a date and a time in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the decimal component represents the time of day on that date, where January
1, 1900 at precisely noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899 (0).

Default time of day if none specified: 00:00:00 (midnight)
Default date if none specified: December 30, 1899

The following conditions apply to <date exprs>:

■ <date exprs> must be in the range January 1, 100 through December 31, 9999,
inclusive.

■ If <date exprs> is a numeric expression, it must be in the range -657434 to
+2958465, inclusive.

■ If <date exprs> is a variable containing a date serial number, the variable must
be explicitly declared as one of the numeric types.

■ If <date exprs> includes a time of day, it must be a valid time, even when you
are not using DatePart to return anything having to do with time of day. A
valid time is one that is in the range 00:00:00 (12:00:00 A.M.) through 23:59:59
(11:59:59 P.M.). Either the 12- or 24-hour clock format may be used.

■ <date exprs> cannot contain a day of week.

■ <date exprs> is parsed according to the formatting rules of the current
run-time locale.

h Hour 0 - 23

n Minute 0 - 59

s Second 0 - 59

Table 6-3 Time periods for dates and the corresponding interval codes

<interval code> Time period Range of return values

134 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DatePart funct ion

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Each of the following examples returns True:

Print 11 = DatePart("m", "11/12/82 8:30:01 pm")
Print 12 = DatePart("d", "11/12/82 8:30:01 pm")
Print 316 = DatePart("y", "11/12/82 8:30:01 pm")

Returns Integer

■ If <date exprs> is Null, DatePart returns Null.

■ If <date exprs> cannot be evaluated to a date, DatePart returns Null.

■ If <date exprs> fails to include all date components, such as day, month, and
year, DatePart returns Null.

■ If <date exprs> contains a day of week, DatePart returns Null.

■ If DatePart ("w", <date exprs>) returns 1, the day of the week for <date exprs>
is Sunday. If DatePart returns 2, the day of the week is Monday, and so on.

Tips ■ To return more than one interval at a time and to exercise more control over
output, use Format instead of DatePart.

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all your dates.

Example The following example generates a date and time, then displays all ten values
DatePart can return:

Sub Start()
Dim UserDate As String, Msg As String
Dim Ans As Integer
Super::Start()
' Get a date

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 135

DateSer ia l funct ion

UserDate = CDate(Rnd * 125 * 365)
Msg = "The date is: " & UserDate
ShowFactoryStatus(Msg)
Msg = "The year is: " & DatePart("yyyy", UserDate)
ShowFactoryStatus(Msg)
Msg = "The quarter is: " & DatePart("q", UserDate)
ShowFactoryStatus(Msg)
Msg = "The month is: " & DatePart("m", UserDate)
ShowFactoryStatus(Msg)
Msg = "The day of the year is: " & DatePart("y", UserDate)
ShowFactoryStatus(Msg)
Msg = "The day of the month is: " & DatePart("d", UserDate)
ShowFactoryStatus(Msg)
Msg = "The day of the week is: " & DatePart("w", UserDate)
ShowFactoryStatus(Msg)
Msg = "The week of the year is: " & DatePart("ww", UserDate)
ShowFactoryStatus(Msg)
Msg = "The hour is: " & DatePart("h", UserDate)
ShowFactoryStatus(Msg)
Msg = "The minute is: " & DatePart("n", UserDate)
ShowFactoryStatus(Msg)
Msg = "The second is: " & DatePart("s", UserDate)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DateAdd function
DateDiff function
Day function
Format, Format$ functions
Now function
Weekday function
Year function

DateSerial function
Returns a date variant based on the specified year, month, day, hour, minute, and
second.

Syntax DateSerial(<year>, <month>, <day>)

DateSerial(<year>, <month>, <day>, <hour>, <minute>, <second>)

136 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DateSeria l funct ion

Parameters <year>
Numeric expression that specifies the year of a date. Must be an integer greater
than zero.

<month>
Numeric expression that specifies the month of a date. Must be in the range 1
through 12, inclusive.

<day>
Numeric expression that specifies the day of a date. Must be in the range 1
through 31, inclusive.

<hour>
Numeric expression that specifies the hour of a day. Must be in the range 0
through 23, inclusive.

<minute>
Numeric expression that specifies the minute of a hour. Must be in the range 0
through 59, inclusive.

<second>
Numeric expression that specifies the second of a minute. Must be in the range 0
through 59, inclusive.

Returns Date

■ The value DateSerial returns usually looks like a date but is stored internally
as a double-precision number known as a date serial number, which is a
number that represents a date and/or time from midnight January 1, 1
through December 31, 9999, inclusive.

■ The integer component of any date serial number represents the date, such as
day, month, and year itself while the decimal or fractional component
represents the time of day on that date as a proportion of a whole
day—where January 1, 1900 at precisely noon has the date serial number 2.5,
and where negative numbers represent dates prior to December 30, 1899.

■ The actual display format of date and time is set using the Windows Control
Panel.

Tips ■ DateSerial can return a new date based on calculations done on a given date.
In the following example, DateSerial returns a date that is thirty days before
November 12, 1982—that is, 10/13/1982—and assigns it to the variable
DateNew:

DateNew = DateSerial(1982, 11, 12)-30

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all your dates.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 137

DateSer ia l funct ion

Examples Each of the following statements stores the underlying date serial number for
November 12, 1982 (which is 30267) into the double-precision variable DateVar#:

DateVar# = CDbl(DateSerial(82, 11, 12))
DateVar# = DateSerial(1982, 11, 12) * 1

The following example generates a date and displays the day of the week for that
date:

Sub Start()
Dim Msg As String, UserDate As Date, Verb As String
Dim ValidFlag As Boolean
Dim DD As Integer, MM As Integer, YY As Integer
Dim DayOfWeek As String
Super::Start()

Do
' Generate day, month, and year values
DD = Rnd * 31
MM = Rnd * 12
YY = Rnd * 125 + 1899
' Assume the worst
ValidFlag = False
If MM >= 1 And MM <= 12 Then

If DD >= 1 And DD <= 31 Then
If YY >= 1753 And YY <= 2078 Then

ValidFlag = True
End If

End If
End If

' Repeat until input is valid
Loop While ValidFlag = False

' Determine date serial
UserDate = DateSerial(YY, MM, DD)
' Find correct verb
Select Case UserDate

' Now is the date serial for the current moment. We need
' only its integer component to compare with what the
' generated date to determine if the date was before
' today, today, or in the future
Case Is < Int(Now): Verb = " was a "
Case Is > Int(Now): Verb = " will be a "
Case Else: Verb = " is a "

End Select

' Returns a day of week
DayOfWeek = Format(UserDate, "dddd")

138 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DateValue funct ion

Msg = UserDate & Verb & DayOfWeek & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DateValue function
Day function
Month function
Now function
TimeSerial function
TimeValue function
Weekday function
Year function

DateValue function
Returns a date variant that represents the date of the specified string.

Syntax DateValue(<date string>)

Parameters <date string>
String expression that specifies a date. Can be any string that can be interpreted as
a date. The following conditions apply to <date string>:

■ <date string> must be in the range January 1, 100 through December 31, 9999,
inclusive.

■ If a time is appended to the date it must be a valid time, even though
DateValue does not return a time.

■ <date string> is parsed according to the formatting rules of the current
run-time locale.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 139

DateValue funct ion

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Returns Date

■ If <date string> contains only numbers separated by valid date separators,
DateValue recognizes the order for month, day, and year according to the
Short Date setting of the current run-time locale.

■ If <date string> cannot be evaluated to a date, DateValue returns Null.

■ If <date string> fails to include all date components, such as day, month, and
year, DateValue returns Null.

■ If a day of week is specified, DateValue returns Null.

■ The value DateValue returns usually looks like a date but is stored internally
as a double-precision number known as a date serial
number—that is, a number that represents a date and/or time from midnight
January 1, 100 through December 31, 9999, inclusive.

■ The integer component of any date serial number represents the date (day,
month, and year) itself while the decimal or fractional component represents
the time of day on that date as a proportion of a whole day, where January 1,
1900, at precisely noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899.

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Examples The following statements are equivalent. If the default Short Date format for the
current run-time locale is mm/dd/yy, each stores 11/12/10 into the variable
DateVar.

DateVar = DateValue("November 12, 10")
DateVar = DateValue("November 12, 2010")
DateVar = DateValue("Nov 12, 2010")
DateVar = DateValue("Nov 7, 2010") + 5
DateVar = DateValue("11/12/10")
DateVar = DateValue("11-12-2010")

Each of the following statements stores the underlying date serial number for
November 12, 1982 (which is 30267) into the double-precision variable DateVar#:

DateVar# = DateValue("Nov 12, 1982")
DateVar# = DateValue("Nov 12, 1982") * 1

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DateSerial function

140 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Day funct ion

Day function
Month function
Now function
TimeSerial function
TimeValue function
Weekday function
Year function

Day function
Returns an integer between 1 and 31, inclusive, that represents the day of the
month for a specified date argument.

Syntax Day(<date exprs>)

Parameters <date exprs>
Date expression, or any numeric or string expression that can evaluate to a date.
Specifies a date and/or time:

■ Can be a string such as November 12, 1982, Nov. 12, 1982, 11/12/82, 11-12-82,
or any other string that can be interpreted as a date in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the decimal component represents the time of day on that date, where
January 1, 1900 at precisely noon has the date serial number 2.5, and negative
numbers represent dates prior to December 30, 1899 (0).

The following conditions apply to <date exprs>:

■ If <date exprs> is a string expression, it must specify a date in the range
January 1, 100 through December 31, 9999, inclusive.

■ <date exprs> is parsed according to the formatting rules of the current
run-time locale.

■ If <date exprs> is a numeric expression, it must be in the range -657434 to
+2958465, inclusive.

■ If <date exprs> is a variable containing a date serial number, the variable must
be explicitly declared as one of the numeric types.

Returns Integer

■ If <date exprs> cannot be evaluated to a date, Day returns Null. For example:

Day ("This is not a date.") returns Null.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 141

Day funct ion

■ If <date exprs> fails to include all date components, such as day, month, and
year, Day returns Null, as shown by the following examples:

Day ("Nov 12, 1982") returns 12, but
Day ("Nov 1982") returns Null

■ If <date exprs> is Null, Day returns Null.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Examples The following statements are equivalent. Each assigns 7 to the variable UserDay.

UserDay = Day("6/7/64")
UserDay = Day("June 7, 1964 2:35 PM")
UserDay = Day("Jun 7, 1964")
UserDay = Day(23535)
UserDay = Day(4707*5)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Date, Date$ functions
Hour function
Minute function
Month function
Now function
Second function
Weekday function
Year function

142 P r o g r a m m i n g w i t h A c t u a t e B a s i c

DDB funct ion

DDB function
Returns the depreciation of an asset for a given, single period using the double-
declining balance method.

Syntax DDB(<initial cost>, <salvage value>, <asset lifespan>, <single period>)

Parameters All parameters must be positive numbers.

<initial cost>
Numeric expression that specifies the initial cost of the asset.

<salvage value>
Numeric expression that specifies the value of the asset at the end of its useful
life.

<asset lifespan>
Numeric expression that specifies the length of the useful life of the asset.

Rule for <asset lifespan>: Must be given in the same units of measure as <single
period>. For example, if <single period> represents a month, then <asset
lifespan> must be expressed in months.

<single period>
Numeric expression that specifies the period for which you want DDB to
calculate the depreciation.

Rule for <single period>: Must be given in the same units of measure as <asset
lifespan>. For example, if <asset lifespan> is expressed in months, then <single
period> must represent a period of one month.

The following example calculates the depreciation for the first year under the
double-declining balance method for a new machine purchased at $1400, with a
salvage value of $200, and a useful life estimated at 10 years. The result ($280) is
assigned to the variable Year1Deprec.

Year1Deprec = DDB(1400, 200, 10, 1)

Returns Double

Double-declining balance depreciation is an accelerated method of depreciation
that results in higher depreciation charges and greater tax savings in the earlier
years of the useful life of a fixed asset than are given by the straight-line
depreciation method (SLN), where charges are uniform throughout.

The method uses the following formula:

Depreciation over <single period> = ((<initial cost> - total depreciation from prior
periods) * 2) / <asset lifespan>.

Example The following example initializes various particulars about an asset, then returns
the asset’s double-declining balance depreciation for a single period:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 143

Declare statement

Sub Start()
Dim Fmt As String, InitCost As Double, SalvageVal As Double
Dim MonthLife As Double, LifeSpan As Double
Dim DepYear As Double
Dim PeriodDepr As Double, Msg As String, YearMonths
Super::Start()
YearMonths = 12
' Define money format
Fmt = "#,##0.00"
' Set Initial cost to $100,000
InitCost = 100000
' Set salvage value to $10,000
SalvageVal = 10000
' Set useful life to 10 years
LifeSpan = 10
' Set year for depreciation to 5
DepYear = 5

PeriodDepr = DDB(InitCost, SalvageVal, LifeSpan, DepYear)
Msg = "InitCost: " & InitCost

+ & " SalvageVal: " & SalvageVal
+ & " LifeSpan: " & LifeSpan
+ & " The depreciation for year " & DepYear & " is "
+ & Format(PeriodDepr, Fmt) & "."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also SLN function
SYD function

Declare statement
Informs Actuate Basic that you are using, and how you are using, an external
procedure in a dynamic link library (.dll). A procedure that returns a value is
declared as a Function. A procedure that does not return a value is declared as a
Sub.

Syntax Declare Sub <proc> Lib <lib name> [Alias <alias name>] [([<arg list>])]

Declare Function <proc> Lib <lib name> [Alias <alias name>] [([<arg list>])] [As
<function data type>]

Description Use Declare to declare external procedures—procedures contained in a DLL.
Declare needs to appear at or near the beginning of your Actuate Basic source

144 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Declare statement

code (.bas) file. DLL procedures declared in any module are available to all
procedures in all modules.

Empty parentheses indicate that the sub or function procedure has no arguments
and that arguments should be checked to ensure that none are passed. In the
following example, the sub First takes no arguments:

Declare Sub First Lib "MyLIB"()

If you use arguments in a call to First, an error occurs. The following example
code would return an error for a sub First that takes no arguments:

Declare Sub First Lib "MyLIB" (arg%)

When an argument list appears, the number and type of arguments are checked
each time the procedure is called. In the following example, the sub procedure
Second takes one Long argument:

Declare Sub Second Lib "MyLIB" (X&)

If the name of the procedure in the DLL does not conform to Actuate Basic
naming conventions, you must use an Alias clause to specify it as it appears in the
DLL. From that point on, Actuate Basic uses <alias name>.

Parameters Sub
Keyword indicating that the procedure does not return a value.

Function
Keyword indicating that the procedure returns a value and therefore can be used
in an expression.

<proc>
The name of the sub or function you are declaring. Must be the same as its name
in the DLL where it is defined. For function procedures, the data type of the
procedure determines the data type it returns. Unless you use an As clause,
<proc> can include a type-declaration character indicating the data type returned
by the procedure.

The following conditions apply to <proc>:

■ Must follow standard variable naming conventions.

■ Cannot be the name of any other procedure.

■ Cannot include a type-declaration character if you use the As clause.

Lib
Keyword before the name of the DLL, <lib name>, that contains the procedure
being declared.

<lib name>
String literal of the DOS filename of the DLL that contains <proc> or <alias
name>. If not in the current directory on the current drive, <lib name> must
specify the full path name.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 145

Declare statement

Alias
Keyword indicating the sub or function as it is named in the DLL. The following
conditions apply to Alias:

■ Must be used when the DLL procedure name is the same as an Actuate Basic
reserved word.

■ Must be used when a DLL procedure has the same name as a global variable,
constant, or any other procedure in the same scope.

■ Must be used if any characters in the DLL procedure name are not allowed in
Actuate Basic names.

<alias name>
String literal for the alternative name of <proc> as it appears within <lib name>.

<arg list>
List of variables representing arguments that are passed to the sub or function
procedure when it is called. <arg list> has the following syntax:

[ByVal] <arg variable> [As <arg data type>] [,[ByVal] <arg variable>
[As <arg data type>]] . . .

Arguments may be passed by value (using the keyword ByVal) or by reference.

ByVal
Keyword indicating that the argument is passed by value rather than by
reference. Table 6-4 summarizes the behavior of ByVal.

Default: String descriptor is sent to the called DLL procedure.

ByVal cannot be used with an array, user-defined type, or class variable.

<arg variable>
Any valid Actuate Basic variable name. <arg variable> must conform to standard
variable naming conventions. If <arg variable> includes a type-declaration
character, you cannot use the As <arg data type> clause.

Table 6-4 ByVal behavior

<arg variable> Behavior of ByVal

Numeric expression Converts <arg variable> to the data type indicated
by its type-declaration character, if any, or else by its
associated As clause.
Passes the converted value to the DLL procedure.

Null-terminated string Passes the address of the string data to the DLL
procedure.

146 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Declare…End Declare statement

As <arg data type>
Clause that declares the data type of <arg variable> as Any, CPointer, Currency,
Date, Double, Integer, Long, Single, String, Variant, a user-defined type, or any
class. The following conditions apply to As <arg data type>:

■ If you use this clause, do not use a type-declaration character as part of <arg
variable>.

■ Use the Any data type in an As clause only to override type checking for that
argument.

The default type isVariant.

As <function data type>
Clause that declares the data type of the value returned by a function procedure,
and not valid with declarations of sub procedures. The argument <function data
type> can be Integer, Long, Single, Double, Currency, String (variable-length
only), or Variant.

Example The following example shows a Declare statement that substitutes a shorter
name, WinDir, for the full name of a Windows function that retrieves the
Windows directory, GetWindowsDirectory. The function takes two arguments
that are declared here by value and returns an integer.

Declare Function WinDir Lib "Kernel"
+ Alias "GetWindowsDirectory" (
+ ByVal lpBuffer As String, ByVal nSize As Integer) As Integer

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Call statement

Declare…End Declare statement
Declares global constants, global variables, and user-defined variable types.

Syntax Declare

<declaration statements>

End Declare

Parameters <declaration statements>
Any number of valid Actuate Basic global variable, global constant, or user-
defined data type declaration statements.

Tips ■ To declare global constants, global variables, and user-defined variable types
in Actuate Basic, you must bookend your declarations with Declare and End
Declare, as shown in the example.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 147

Declare…End Declare statement

■ Do not confuse this multi-line Declare… End Declare statement with the
single-line Declare statement that supports accessing functions in external
dynamic link library files (DLLs).

■ You can use as few or as many Declare… End Declare blocks as you need. It is
good programming practice, however, to position all such statements in one
group at or near the beginning of your code.

Example The following code in a user Basic file contains several different types of
declarations within a single Declare… End Declare block:

Declare
' Global dynamic array:
Global CarModelsCount()

' Global fixed array with 366 elements:
Global Birthdays(366)

' Global Integer variable:
Global PrintFlag as Integer
' Global constant:
Global Const PI = 3.14159265359

' User-defined (non-intrinsic) variable type:
Type FullName

FirstName As String
MiddleName As String
Lastname As String
ExactAge As Double

End Type

' A declaration based on the new non-instrinsic type above.
' Like an alias:
Type PenName As FullName

' Two similar user-defined variable types, but based on
' intrinsic types this time:
Type CustomerCount As Integer
Type LiquidMeasure As Double

' An enum declaration
Enum DatabaseType

ODBC
Oracle
DB2

End Enum
End Declare

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Const statement

148 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Dim statement

Declare statement
Enum…End Enum statement
Global statement
Type…As statement
Type…End Type statement

Dim statement
Declares variables and allocates memory. Dim is an abbreviation for the Basic
term dimension.

Syntax Dim <varname> [([<subscripts>])] [As [{Volatile|Transient|Persistent}] <type>] [,
<varname> [([<subscripts>])] [As [{Volatile|Transient|Persistent}] <type>]]…

Description When you dimension variables with Dim, they are initialized as shown in
Table 6-5.

To declare variables that are available to all procedures within the module, use
Global. To declare variables that are available only in the procedure, use Dim at
the procedure level. You cannot redimension an array variable with ReDim if you
explicitly specified its size using Dim.

Parameters <varname>
A name you create for the new variable.

<subscripts>
Describes array dimensions according to the following syntax:

[<lower> To] <upper>[,[<lower> To]<upper>]…

Range from <lower> to <upper> can be from -2147483648 to 2147483647,
inclusive. If you do not supply subscript values between parentheses, Actuate
Basic declares a dynamic array.

The following statements are equivalent if you do not use Option Base:

Table 6-5 Initialization of variables with Dim

Type Initialized as...

Numeric 0

Variant Empty

Variable-length strings Zero-length strings

CPointer Null

User-defined Separate variables

Object reference Nothing (before Set)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 149

Dim statement

Dim P(7,5)
Dim P(0 TO 7, 0 TO 5)
Dim P(7, 0 TO 5)

The following example declares a dynamic array:

Dim TestArray()

[{Volatile|Transient|Persistent}]
These keywords are optional. When omitted, the variable is Persistent by default.

You probably do not want to use these keywords in your own code, and Actuate
does not support their use in the Variables dialog box. They are documented here
to help you understand AFC source code more thoroughly.

Persistent—The variable is to be written to the report object instance (.roi) file
subject to standard ROI compression.

Transient—The variable is used only in the Factory and is not written to the ROI.
When the object is read from the ROI, Transient variables are set to their default
values. Marking variables as Transient results in a smaller ROI and improves
object locality.

Volatile—Like a Persistent variable, the variable is written to the ROI. However,
unlike Persistent, Volatile variables are not subject to ROI compression. Marking
variables as Volatile improves object locality for objects with variables that change
frequently during a report run, at the cost of taking additional space in the ROI.

As <type>
Specifies a data type or class for the variable. If you specify a class, <varname>
can hold a reference to an instance of that class or descendant classes. Otherwise,
if you do not specify As <type>, <varname> is of type Variant.

Tips ■ To avoid assigning incorrect variable types, use the As clause to declare
variable types.

■ Use the Option Strict statement to enforce variable typing.

■ To declare dynamic arrays, use Dim with empty parentheses after the variable
name. Later, to define the number of dimensions and elements in the array,
use ReDim.

Dim TestArray()

■ To declare the data type of a variable without using As <type>, append the
data type declaration character to the variable’s name. For example, if you
want the variable Income to contain only Currency data, declare it as:

Dim Income@

If you want the variable to contain only Double data, declare it as:

Dim Income#

150 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Do…Loop statement

For more information about data type declaration characters, see “Using a
type-declaration character” in Chapter 2, “Understanding variables and data
types.”

■ To set the value of an instance handle to an instance of a class, use Set.

Example The following code manipulates objects created using various Dim statements:

Sub Start()
Dim i As Integer
Dim myControl As AcControl
Dim Obj1 As AcLabelControl
Dim Obj2 As AcLabelControl, Msg As String

Super::Start()
' Assignment

Set myControl = me
i = 103

' Standard instantiation
Set Obj1 = New AcLabelControl
' Dynamic instantiation
Set Obj2 = NewInstance ("AcLabelControl")

Obj2.BackgroundColor = Red
Msg = "The numeric value for the background color "

+ & "of Obj2 is: " & Obj2.BackgroundColor
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Option Strict statement
ReDim statement
Set statement

Do…Loop statement
Repeats a block of instructions while a specified condition is True or until a
specified condition becomes True.

Syntax Syntax 1

Do [{ While | Until } <expression to reevaluate>]

<statements>

[Exit Do]

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 151

Do…Loop statement

<statements>

Loop

Syntax 2

Do

<statements>

[Exit Do]

<statements>

Loop [{ While | Until } <expression to reevaluate>]

Description If the condition to evaluate is placed at the bottom of the loop (after Loop), the
loop executes at least once. If the condition to evaluate is placed after Do, the loop
does not execute at all if the condition is initially False.

Parameters While
Keyword indicating that every time Actuate Basic begins or repeats the
instructions between Do and Loop, Actuate Basic must determine whether
<expression to reevaluate> is True or False. The following conditions apply to
<expression to reevaluate>:

■ If <expression to reevaluate> is True, the program executes the loop.

■ If <expression to reevaluate> is False, or has become False during the last trip
through the loop, Actuate Basic skips the intervening statements and passes
control to the statement following Loop.

Until
Keyword indicating that every time Actuate Basic begins or repeats the
instructions between Do and Loop, Actuate Basic must determine whether
<expression to reevaluate> is True or False. The following conditions apply to
<expression to reevaluate>:

■ If <expression to reevaluate> is False, the program executes the loop.

■ If <expression to reevaluate> is True, or has become True during the last trip
through the loop, Actuate Basic skips the intervening statements and passes
control to the statement following Loop.

The following example assumes Counter starts at 1 and increments by 1 each time
through the loop, the following statement fragments are equivalent. In either
case, the associated loop is executed nine times.

Do While Counter < 10
Loop Until Counter = 10

If Counter is instead incremented by 2 each time, the first associated loop is
executed five (1, 3, 5, 7, 9) times. The second loop, however, never stops executing
because Counter increments from 9 to 11 and so never exactly equals 10. A minor

152 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Do…Loop statement

correction can address this issue. In the following example, Counter is
incremented by 2 each time and the loop executes only five times:

Do Until Counter >= 10

Exit Do
A keyword indicating that the program must immediately interrupt the loop at
the point at which the keyword occurs, and pass control to the statement
following Loop.

<expression to reevaluate>
Any valid numeric or string expression that evaluates to True or False.

<statements>
Zero or more valid Actuate Basic statements.

Tips ■ To stop a loop from continuing based upon whether a given expression is True
or False, use Exit Do within a conditional structure like If Then.

■ Exit Do does not automatically exit all nested loops. When Do…Loop
statements are nested, an Exit Do in a loop transfers control to the loop that is
logically nested one level above the current one. For example, if you want to
provide users with a way to back out of a complicated structure, map out a
logical backtracking path in the form of several Exit Do statements, one at each
level to which they are backtracking.

■ Evaluate Boolean variables using the keywords True or False.

Example The following example asks the user whether to display Demo 1 or Demo 2 first.
In Demo 1, the program prompts the user for a number within a certain range. If
that number falls outside the range, the Demo repeats the prompt. In Demo 2, the
program prints the numbers from 1 to 11.

Sub Start()
Dim DemoNum As Integer, Counter As Integer
Dim FirstShown As Integer
Dim SecondShown As Integer, BothShown As Integer
Dim Msg As String
Super::Start()
' Initialize flags and counters before the top of the loop
' Initially set Counter to 1
Counter = 1
' Assume Demo 1 has not been shown
FirstShown = False
' Assume Demo 2 has not been shown
SecondShown = False
' Assume neither have been shown
BothShown = False
' Start with Demo 1
DemoNum = 1

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 153

Do…Loop statement

' The outer loop will execute until the exit condition
' BothShown is true
Do Until BothShown

' First inner loop is executed if the user typed 1
Do While DemoNum = 1

' This is the first demo
Msg = "Random number is " + CStr(Int(10 * Rnd + 1))
ShowFactoryStatus(Msg)
' Remember Demo 1 has been shown
DemoNum = 2
' User is ready for Demo 2
FirstShown = True
' Exit first inner loop
Exit Do

Loop
' The second inner loop is executed when the user types 2
' but only if user hasn’t seen the second demo. In other
' words, SecondShown is false.
Do While DemoNum = 2 And Not SecondShown

' This nested loop will execute 11 times and return to
' 2nd inner loop
Do Until Counter = 12

ShowFactoryStatus(CStr(Counter))
Counter = Counter + 1

Loop
DemoNum = 1
' Exit condition for second inner loop
SecondShown = True

Loop
' Set up final exit condition from outer loop
If FirstShown and SecondShown then BothShown = True

Loop
ShowFactoryStatus("Both demos have been shown. Goodbye!")

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Exit statement
If…Then…Else statement
While…Wend statement

154 P r o g r a m m i n g w i t h A c t u a t e B a s i c

End statement

End statement
Signals the completion of a multiline If…Then…Else statement, a Select Case
statement, a block of Function or Sub statements, a Declare section, a Type or
Class definition, or terminates the entire program.

Syntax End [{ Class | Declare | Function | If | Select | Sub | Type }]

Parameters End
Keyword that terminates the entire program.

End Class
Keyword that signifies the completion of a Class statement. End Class must
terminate every Class statement.

End Declare
Keyword that completes a multiple-line Declare statement. End Declare must
terminate a Declare statement that is in a multiline or block format.

End Function
Keyword that completes a Function definition. End Function must terminate
every Function statement. Actuate Basic automatically supplies End Function
when you type a Function statement.

End If
Keyword that completes a multiple-line If…Then…Else statement. End If must
terminate every If…Then…Else statement that is in multiline or block format.

End Select
Keyword that completes a Select Case statement. End Select must terminate every
Select Case statement.

End Sub
Keyword that completes a Sub procedure. End Sub must terminate every Sub
statement. Actuate Basic automatically supplies End Sub when you type a Sub
statement.

End Type
Keyword that completes a Type statement. End Type must terminate every Type
statement.

Example The following example uses a Select Case block to return the name of the day of
the week for the current day. To use this example, remove the End statement and
run the example. The example generates an error message, Select Case without
End Select.

Sub Start()
Dim DayNumber As Integer, DayName As String

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 155

Enum…End Enum statement

Super::Start()
DayNumber = Weekday(Date)
Select Case DayNumber

Case 1
DayName = "Sunday"

Case 2
DayName = "Monday"

Case 3
DayName = "Tuesday"

Case 4
DayName = "Wednesday"

Case 5
DayName = "Thursday"

Case 6
DayName = "Friday"

Case 7
DayName = "Saturday"

End Select
ShowFactoryStatus(DayName)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Class statement
Declare statement
Function…End Function statement
If…Then…Else statement
Select Case statement
Stop statement
Sub…End Sub statement
Type…End Type statement

Enum…End Enum statement
Declares an enumerated type. The Enum...End Enum statement must be placed
within a Declare...End Declare block.

Syntax Enum <user-defined enumeration type>

<name 1> [= value 1]

<name 2> [= value 2]

...

<name N> [= value N]

156 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Enum…End Enum statement

End Enum

Parameters <user-defined enumeration type>
The name of the type. This name is used to declare enum variables.

<name 1>...<name N>
The names of the values an enum variable of the declared type can take.

<value 1>...<value N>
Optional explicit values for the names. If not set, the first value of the name list is
set to zero, and the value of each following name is increased by one.

Example The following code creates and uses an enumerated data type to determine
branches in a section of code.

To create an enum, you place the enum statement in a Declare statement block,
and save it as an Actuate Basic source (.bas) library file.

Declare
Enum DatabaseType

ODBC
Oracle
DB2

End Enum
End Declare

The enum is then used as any other global type, as shown in the following code:

Sub Start()
Dim DataSource as DatabaseType
' Place code to determine database type here
' Assign value to enumeration variable, for example:
DataSource = DB2
' Use the enum variable to branch
Select Case DataSource

Case ODBC
' Code specific to ODBC database

Case Oracle
' Code specific to Oracle database

Case DB2
' Code specific to DB2 database

End Select
Super::Start()

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Declare…End Declare statement

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 157

Environ, Environ$ funct ions

Environ, Environ$ functions
Returns the setting of a specified environment variable.

Syntax Environ$(<environment variable name>)

Environ[$](<environment variable name>)

or

Environ$(<table entry number>)

Environ[$](<table entry number>)

Parameters <environment variable name>
String expression that specifies the name of an environment variable about which
you want to know the settings. An environment variable is an internal variable an
operating system uses to hold information about the computer system in which
your program is running. These variables contain information about the current
drive and path, and special information needed by various programs. Although
each computer system has a different set of environment variables with different
values, few common ones exist, such as PATH.

<environment variable name> must not contain a space.

<table entry number>
Numeric expression that specifies the variable’s entry number. This number
corresponds to its position in the environment table, where the first line in the
table is line 1. The number must be greater than zero. The following example
returns the contents of the CLASSPATH environment variable:

PathToJavaClasses = Environ("CLASSPATH")

Returns Environ: Variant
Environ$: String

■ If <table entry number> is greater than the number of lines in the table,
Environ[$] returns a Empty string.

■ If you call Environ[$] using <environment variable name>, the function
returns only the content of the variable, not its name.

■ If you call Environ[$] using <table entry number>, the function returns both
the content of the variable in that position and its name.

Example The following Windows-based code looks for the PATH environment variable in
the user’s system. If it finds the variable, it displays its entry number and the
length of the string it contains.

Sub Start()
Dim EnvString As String, LineNumber As Integer
Dim Msg As String, Pathlen As Integer

158 P r o g r a m m i n g w i t h A c t u a t e B a s i c

EOF funct ion

Super::Start()
' Initialize line index to 1
LineNumber = 1
Do

' Get environment variable
EnvString = Environ(LineNumber)
' Is it the PATH entry?
If UCase$(Left(EnvString, 5)) = "PATH=" Then

' If so, get its length
Pathlen = Len(Environ("PATH"))
Msg = "The PATH entry occurs at position " & LineNumber

+ & ". Its length is " & Pathlen & "."
Exit Do

Else
' Not the PATH entry, so increment line counter
LineNumber = LineNumber + 1

End If
Loop Until EnvString = ""
If Pathlen > 0 Then

ShowFactoryStatus(Msg)
Else

ShowFactoryStatus("No PATH environment variable.")
End If

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Command, Command$ functions

EOF function
Returns a value that indicates whether the end of a file being input has been
reached.

Syntax EOF(<open file number>)

Parameters <open file number>
Numeric expression that is the file descriptor used in the previously issued Open
statement to open the target file. <open file number> must be the number of a
currently open file, and must also refer to a disk file.

For example, the following code opens an existing disk file and then uses EOF
repeatedly to test whether or not the end of the file has yet been reached:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 159

EOF funct ion

Open "c:\Vb\Tests\test.fil" For Input As #1
Do While Not EOF(1)'Test for end of file.

Input #1, FileData 'Read line of data.
Loop

Returns Integer (0 for False or 1 for True)

EOF behaves differently depending upon the mode of access you use for the file:

■ For sequential files, EOF returns True if the end of the file has been reached.
Otherwise, EOF returns False.

■ For random or binary files, EOF returns True if the last executed Get statement
was unable to read an entire record. Otherwise, EOF returns False.

Tip Use EOF when you handle sequential files to avoid an error generated when you
try to access a file’s contents past the end of a file.

Example The following example creates a test file on disk that contains random numbers.
The procedure opens the test file, reports the last value in the test file, then deletes
the sample file from the disk. This example overrides Start to generate the test file,
report the value, and prompt the user to delete the test file. To use this example,
paste the procedure, MakeDataFile, after the End Function of the Start()
procedure or save it in an Actuate code module (.bas) file.

Sub Start()
Dim TempVar As Integer, Msg As String
Super::Start()
' Generate sample file
MakeDataFile
' Open sample for input
Open "Test.fil" For Input As #1
' Check for end of file
Do While Not EOF(1)

' Read data
Input #1, TempVar

Loop
' Close test file
Close #1
Msg = "The last value in the test file was "

+ & TempVar & "."
ShowFactoryStatus (Msg)
Msg = "Now deleting test file."
ShowFactoryStatus(Msg)
' Delete test file
Kill "Test.fil"

End Sub
'Here is the procedure that generates the test file
Sub MakeDataFile()

Dim I As Integer

160 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Erase statement

' Open file for output
Open "Test.fil" For Output As #1
' Generate random values
For I = 0 To 250

Print #1, Int(711 * Rnd)
Next I
' Close test file
Close #1

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Loc function
LOF function
Open statement

Erase statement
De-allocates memory reserved for dynamic arrays, or reinitializes the elements in
a fixed array.

Syntax Erase <array name>… [, <array name>]

Description Erase behaves differently depending upon whether <array name> refers to a
fixed or to a dynamic array:

■ When Erase refers to a fixed array, Erase reinitializes the contents of the array
but does not free up memory.

■ When Erase refers to a dynamic array, Erase recovers the memory previously
allocated to the array.

Erase reinitializes fixed arrays as shown in Table 6-6.

Table 6-6 How Erase initializes arrays

Type of fixed array Array element set to...

Numeric 0 (Zero)

String (variable-length) Empty

Variant Empty

User-Defined The value as shown here for each component type,
taken separately

Object Nothing

CPointer Null

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 161

Erase statement

Parameters <array name>
Any valid array name. Can be a variable name or expression. An expression
cannot contain parentheses. For example, the following statements are valid:

Erase BigArray
Erase my.Array

The following statement is invalid:

Erase my.Array(1)

Tips ■ If you erase a dynamic array, you can use Dim or ReDim to create a new
dynamic array with the same name as the old one.

■ You do not need to erase a dynamic array before you redimension it with
ReDim.

Example The following example creates an array, fills it with values, then erases it:

Sub Start()
' Declare variables
Dim I As Integer, J As Integer, Total As Long, Msg
' Create 2-D integer array
Dim Matrix(50, 50) As Integer
Super::Start()

For I = 1 To 50
For J = 1 To 50

' Put some values into array
Matrix(I, J) = J

Next J
Next I
' Erase array
Erase Matrix
' Initialize total counter
Total = 0
For I = 1 To 50

For J = 1 To 50
' Sum elements after Erase to make sure all are zero
Total = Total + Matrix(I, J)

Next J
Next I
Msg = "An array has been created, filled, and erased. When "

+ & "the Erase statement was executed, zeros "
+ & "replaced the previous contents of each element."
+ & " The total of all elements is now " & Total
+ & ", showing that all elements have been cleared."

' Display message
ShowFactoryStatus(Msg)

End Sub

162 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Er l funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
ReDim statement

Erl function
Returns the line number for the most recent run-time error.

Syntax Erl

Returns Integer

■ When it runs an application, Actuate Basic uses Erl to report the number of the
line at which the most recent error occurred, or of the line most closely
preceding it.

■ When Erl is 0, it means one of three things:

■ No run-time error has occurred.

■ An error could have occurred, but there was no line number just before the
point at which the error occurred, or your program contains no line
numbers.

■ Actuate Basic has reset Erl to 0 because it executed Resume or On Error, or
because it executed Exit Sub or Exit Function from within an error
handling routine.

■ Erl returns only a line number, not a line label.

Tips ■ To preserve the value of Erl before it gets reset to 0, immediately assign it to a
variable.

■ To set the value of Erl indirectly, simulate an error condition using an Error
statement.

Example In the following example, the program generates an error because it attempts to
divide a number by zero. It then displays a message indicating the line number of
the error.

Sub Start()
Dim XVar, YVar, ZVar
Super::Start()
' Set up error handler
On Error GoTo ErrorHandler
YVar = 1
' Now cause division by zero error:
XVar = YVar / ZVar
Exit Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 163

Err funct ion

' Error handler starts here
ErrorHandler:

ShowFactoryStatus("Error occurred at program line " & Erl)
Resume Next

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Err statement
Error statement
On Error statement
Resume statement

Err function
Returns the code number for the most recent run-time error.

Syntax Err

Returns Integer

■ Returns an Integer between 0 and 2,147,483,647.

■ When Actuate Basic runs an application, it uses Err to report the occurrence of
a run-time error and its error code.

■ When Err is 0, it means no run-time error has occurred.

■ Actuate Basic sets or resets Err to 0 each time it executes Resume or On Error
or when it executes Exit Sub or Exit Function from within an error handling
routine.

Tips ■ To preserve the value of Err before it is reset to 0, immediately assign it to a
variable.

■ To set the value of Err directly, use an Err statement. To set it indirectly,
simulate an error condition using an Error statement.

Example In the following example, the program generates an error because it attempts to
divide a number by zero. It then displays the code number of the error.

Sub Start()
Dim XVar, YVar, ZVar
Super::Start()
' Set up error handler
On Error GoTo ErrorHandler
YVar = 1
' Now cause division by zero error:
XVar = YVar / ZVar
Exit Sub

164 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Err statement

' Error handler starts here
ErrorHandler:

ShowFactoryStatus("Error number " & Err & " occurred")
Resume Next

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Err statement
Error statement
On Error statement
Resume statement
Error, Error$ functions
Error statement

Err statement
Sets Err to a given value.

Syntax Err = <error code>

Parameters <error code>
Numeric expression between 0 and 2,147,483,647 indicating the code of the most
recent run-time error.

Description ■ When it runs an application, Actuate Basic uses Err to record the occurrence of
a run-time error and its error code.

■ When Err is 0, it means no run-time error has occurred.

■ Actuate Basic sets or resets Err to 0 whenever it executes Resume or On Error,
or whenever it executes Exit Sub or Exit Function from within an error
handling routine.

Tips ■ To define and use your own error code, use a value for <error code> that is
greater than any of the standard Actuate Basic error codes. You can work
down from error code 2,147,483,647 to find an available user-defined error
number. Write a routine that assigns that number to Err whenever certain
error conditions that you define are true. Also write an error handling routine
that translates the error number into an understandable message for the user.

■ There are many user-defined codes among the standard ones.

■ The Error statement can set Err to any value, because it simulates any run-time
error.

■ To preserve the value of Err before it gets reset to 0, immediately assign it to a
variable.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 165

Err statement

Example The following example prompts the user for a filename, attempts to open the file
to verify its existence, then handles a range of errors that might result:

Sub Start()
Dim FileName As String
Super::Start()
' Set up error handler
On Error Resume Next
FileName = "ThisFileShouldNotExist.txt"
Do

' Clear any error
Err = 0
' Attempt to open file
Open FileName For Input As #1
' Handle error, if any
Select Case Err

' No error = success!
Case 0

ShowFactoryStatus(UCase$(FileName) & " found.")
' I/O errors
Case 14

ShowFactoryStatus("File not found.")
' Don't try again = failed!
Exit Do

' Handle all other cases
Case Else

ShowFactoryStatus("Error: Sorry! Cannot continue!")
' Don't try again = failed!
Exit Do

End Select
Loop Until Err = 0
' Clean up
Close #1

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Err function
Error, Error$ functions
Error statement

166 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Error, Error$ funct ions

Error, Error$ functions
Returns the error message for the most recent run-time error, or for a specified
error number.

Syntax Error[(<error code>)]

Error$[(<error code>)]

Parameters <error code>
Numeric expression between 1 and 2,147,483,647 inclusive that is the error
number to be displayed as a message string by Error[$]. If <error code> is not
defined by Actuate Basic, Error[$] returns the message string: User-defined error.

Returns Error: Variant
Error$: String

■ With <error code>, the Error[$] function returns the message for the specified
error number. In cases where context-sensitive information is inserted in the
message at run time, the context-sensitive string is replaced with a space
character. For example, in the following message, a space is inserted where the
array element index number would normally appear:

Control array element ' ' doesn’t exist.

■ Without <error code>, the Error[$] function returns the message for the most
recent run-time error. If no error has occurred, the Error[$] function returns an
empty string.

Example The following example shows error messages for user input number errors:

Sub Start()
' Demo of Error$ function and Error statement
Dim Msg As String
Dim UserError As Integer
Super::Start()
' Set up error handler
On Error GoTo ErrorHandler
' Get a random number in the range 1 to 256
UserError = 255 * Rnd + 1
' Simulate given error
Error UserError
Exit Sub
' Error handler starts here

ErrorHandler:
Msg = "The message for error number "

+ & Err & " is:" & Error(Err)
ShowFactoryStatus(Msg)
Resume Next

End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 167

Error statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Err function
Error statement

Error statement
Simulates the occurrence of an error. Also, generates a user-defined error.

Syntax Error <error code>[,<message> [,<message>…]]

Description By setting the value of Err to <error code>, this statement simulates the
occurrence of a specified error. It then passes control to whatever error-handling
routine you have enabled, if any, so that in a debugging session you can verify
whether or not that error-handler works.

If you have not enabled an error-handler when your program executes this
statement, Actuate Basic stops your program and displays its own internal error
message if it has one corresponding to <error code>, or User-defined error if it
does not.

Parameters <error code>
Integer between 1 and 2,147,483,647 that is the error you wish to artificially
generate.

For example, the following statement causes Actuate Basic to stop your program
and display the message Division by zero, whether or not your program has
actually attempted to divide anything by zero:

Error 8

<message>
You can pass any number of arguments in order to replace standard error
messages. All extra messages are converted to strings and concatenated together.
Then, the concatenated message is displayed instead of the standard error
message.

Tips ■ To define your own error code, use a value for <error code> that is greater
than any of the standard Actuate Basic error codes. You can work down from
error code 2,147,483,647 to find an available user-defined error number.

■ You will find many user-defined codes among the standard error codes
Actuate Basic uses.

Example The following example prompts the user for an error number, simulates the
appropriate error, the passes control to an error handler. The error handler then
retrieves the corresponding message.

168 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Exi t statement

Sub Start()
' Demo of Error$ function and Error statement
Dim Msg As String, NL As String
Dim UserError As Integer
Super::Start()
' Set up error handler
On Error GoTo ErrorHandler
' Get a random number in the range 1 to 256
UserError = 255 * Rnd + 1
' Simulate given error
Error UserError
Exit Sub
' Error handler starts here

ErrorHandler:
Msg = "The message for error number "

+ & Err & " is:" & Error(Err)
ShowFactoryStatus(Msg)
Resume Next

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Err function
Err statement
On Error statement
Resume statement

Exit statement
Terminates execution of the instructions specified in a Do Loop or For Next
structure, or in a Function or Sub procedure.

Syntax Exit { Do | For | Function | Sub }

Parameters Exit Do
Keyword used to terminate a Do…Loop statement.

■ When it encounters Exit Do, Actuate Basic transfers control to the statement
following the Loop keyword.

■ If it encounters Exit Do within a nested loop, the program transfers control to
the loop that is nested one level above the one in which it occurs.

■ Use Exit Do only within a Do Loop statement.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 169

Exit statement

Exit For
Keyword used to terminate a For…Next statement.

■ When it encounters Exit For, Actuate Basic transfers control to the statement
following the Next keyword.

■ If it encounters Exit For within a nested loop, the program transfers control to
the loop that is nested one level above the one in which it occurs.

■ Use Exit For only within a For Next statement.

Exit Function
Keyword used to terminate a Function statement. When it encounters Exit
Function, Actuate Basic transfers control to the statement following the one that
called the current Function statement.

Exit Sub
Keyword used to terminate a Sub statement. When it encounters Exit Sub,
Actuate Basic transfers control to the statement following the one that called the
current Sub statement.

Tips ■ To stop a loop from continuing or repeating based upon whether or not a
given expression is true, use Exit Do within a conditional structure like an
If…Then…Else statement.

■ Do not confuse Exit with End. Use End to define the completion of a structure.

Example The following example shows how to use nested statements with Exit. When the
generated random number matches one of those specified in the first Case clause,
Actuate Basic exits the For…Next statement and the Do…Loop statement in two
separate steps via both Exit For and Exit Do. When the random number matches
one of those in the second Case clause, Actuate Basic exits both statements in one
step, using Exit Do alone. A message reports in which Case clause the loops were
terminated.

Sub Start()
Dim I As Integer, Num As Integer, Msg As String
Dim BumpOut As Integer
Super::Start()
' Set a flag for ultimate exit
BumpOut = False
' Generate random numbers
Randomize Timer
' Set up an infinite loop
Do
' If we exited FOR, let's also exit DO
If BumpOut Then Exit Do

170 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Exp funct ion

For I = 1 To 1000
' Generate random number
Num = Int(Rnd * 100)
Select Case Num

Case 7, 11, 13, 25
' This case causes an immediate exit from the For
' loop and will cause an exit from the Do loop on the
' next iteration
' Set flag for exit from Do next time
BumpOut = True
Exit For

Case 29, 35, 87
' This case causes an immediate exit from both loops
' but leaves BumpOut set to false so we can tell
' where the exit occurred
' Directly exit in one step
Exit Do

 End Select
Next I

Loop
Msg = "Exited because of " & Num
' We exited in the first Case clause
If BumpOut Then

Msg = Msg & " (1st case: Two-step exit)."
Else

Msg = Msg & " (2nd case: One-step exit)."
End If
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Do…Loop statement
End statement
For…Next statement
Function…End Function statement
Sub…End Sub statement

Exp function
Raises e to the specified power.

Syntax Exp(<power>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 171

ExtendSearchPath funct ion

Parameters <power>
Number, numeric expression, or Variant of VarType 8 (String) that specifies the
exponent. The following rules apply to <power>:

■ <power> cannot be greater than 709.782712893.

■ If <power > is a String, it is parsed according to the formatting rules of the
current run-time locale.

Returns Double

If <power> evaluates to Null, Exp returns Null.

Tip Exp is the inverse of Log.

Example The following example generates a trigonometric angle expressed in radians, then
uses the Exp function to calculate the hyperbolic sin of that angle:

Sub Start()
Dim Angle As Double, HyperSin As Double, Pi As Double
Dim Msg As String
Super::Start()
Pi = 3.14159265358979
' The angle in radians
Angle = Rnd * Pi

'Calculate hyperbolic sine
HyperSin = (Exp(Angle) - Exp(-1 * Angle)) / 2
Msg = "The hyperbolic sine of " & Angle & " is " & HyperSin
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Log function

ExtendSearchPath function
Adds directories to search for included images and files specified in the FindFile
function.

Syntax ExtendSearchPath(<directory>)

Description Call ExtendSearchPath to specify additional directories to search when locating
images and files specified in the FindFile function. Call this function once for each
directory to be added to the search path.

You can call ExtendSearchPath at factory time, view time, or both. If you call
ExtendSearchPath at factory time, the directory is added to the search path only
when locating files included at factory time. If you call ExtendSearchPath at view

172 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Fi leAttr funct ion

time, the directory is added to the search path only when locating files included
at view time.

Parameters <directory>
A directory to add to the search path.

Example The following example adds C:\Documents and M:\Documents to the complete
search path at factory time:

Sub Start()
Super::Start()
ExtendSearchPath("C:\Documents\")
ExtendSearchPath("M:\Documents\")

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FindFile function

FileAttr function
Returns the mode of an open file or its DOS file handle.

Syntax FileAttr(<file number>, <info type>)

Parameters <file number>
Numeric expression that is the number you used as a file descriptor when you
opened the target file. <file number> must evaluate to the number of a currently
open file.

<info type>
Numeric expression that specifies whether to return the open mode of the file (1),
or the DOS file handle (2). <info type> must evaluate or round to 1 or 2.

In the following code example, Actuate Basic opens a file, then stores values
returned by FileAttr in corresponding variables:

Open "TEST" For Input As #1
OpenMode = FileAttr(1,1)
DOSHandle = FileAttr(1,2)

Returns Integer

■ When <info type> is 1, FileAttr returns a number that defines the mode under
which the file was opened. Table 6-7 lists possible values for FileAttr when
<info type> is 1, and the corresponding modes.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 173

Fi leAtt r funct ion

■ When <info type> is 2, FileAttr returns the file handle that DOS has assigned
to the open file.

Example In the following example, Actuate Basic creates a test file by opening it for
Append. Then it displays a message indicating the DOS handle and open mode
of the file.

Sub Start()
Dim FileNum As Integer, DOSHandle As Long
Dim OpenMode As String, Msg As String
Super::Start()
' Get next available file number
FileNum = FreeFile
' Create sample file
Open "TESTFILE" For Append As FileNum
' Get file DOS handle
DOSHandle = FileAttr(FileNum, 2)
' Determine OpenMode
Select Case FileAttr(FileNum, 1)

Case 1: OpenMode = "Input"
Case 2: OpenMode = "Output"
Case 4: OpenMode = "Random"
Case 8: OpenMode = "Append"
Case 32:OpenMode = "Binary"

End Select
' Close test file
Close FileNum
Msg = "The file assigned DOS file handle " & DOSHandle

+ & " was opened for " & OpenMode & "."
ShowFactoryStatus(Msg)
' Delete test file
Kill "TESTFILE"

End Sub

Table 6-7 Values for FileAttr and the corresponding modes

Return value Mode for which file was opened

1 Input

2 Output

4 Random

8 Append

32 Binary

174 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Fi leCopy statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAttr function
Open statement
SetAttr statement

FileCopy statement
Copies a file. Similar to the DOS command Copy.

Syntax FileCopy <source>, <destination>

Parameters <source>
String expression that specifies the file to copy. Can include optional drive and
path information. <source> cannot include wildcard characters and must refer to
an existing file.

Default path: Current default drive and directory.

<destination>
String expression that specifies where <source> is to be copied. Can include
optional drive and path information. <destination> must conform to platform’s
file naming conventions and cannot include wildcard characters. The default path
is the current default drive and directory.

<source> or <destination> can optionally specify full path information, in which
case either has the following syntax:

[<drive:>] [\]<directory>[\<directory>]…(Windows)

[/]<directory>[/<directory>]…(UNIX)

<drive:>
Character, followed by a colon. Specifies the drive (Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory.

The following example assumes a file named Temp.fil exists on a Windows
system, and that it is located on the current drive and in the current directory.
The following code copies it, places the new copy on drive D in the subdirectory
\Files\Archives, and names that copy Temp.arc, while leaving Temp.fil alone
where it is:

NewName = "D:\Files\Archives\Temp.arc"
FileCopy "Temp.fil", NewName

Example The following example copies a file from the Actuate install directory:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 175

Fi leDateTime funct ion

Sub Start()
Dim SourceFile As String, DestFile As String, Msg As String
Super::Start()
On Error GoTo ErrHandler
SourceFile = "C:\Program Files\Actuate11\readme.rtf"
DestFile = "C:\actuate_readme.rtf"
' Copy file to destination
FileCopy SourceFile, DestFile
Msg = "File readme.rtf copied to C:\actuate_readme.rtf"
ShowFactoryStatus(Msg)
Exit Function
ErrHandler:
Select Case Err
' Path not found
Case 48

ShowFactoryStatus(SourceFile & " not found.")
Case 40

ShowFactoryStatus("Permission denied, or drive not
available.")
case Else

Msg = "An error occurred. Try specifying the full path "
+ & "name of the source or destination files, "
+ & "or of both."

End Select
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Kill statement
Name statement

FileDateTime function
Returns a string that indicates the date and time a specified file was created or last
modified. The date is formatted according to the formatting rules of the current
run-time locale.

Syntax FileDateTime(<file spec>)

Parameters <file spec>
String expression that specifies the name of a valid file. Can include optional
drive and path information. The file and any path must exist. Wildcard characters
are not allowed in <file spec>. The default path is the current default drive and
directory.

176 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Fi leDateTime funct ion

<file spec> can optionally specify full path information, in which case it has the
following syntax:

[<drive:>] [\]<directory>[\<directory>]… (Windows)

[/]<directory>[/<directory>]… (UNIX)

<drive:>
Character, followed by a colon, that specifies the drive on which the file is located
(Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory that
constitutes a branch in the full path specification of <file spec>.

The following example statement determines when the file Mydata.mdb on a
Windows system in the subdirectory C:\Access was last modified, and converts
the returned string to a date variant:

LastSaved = CVDate(FileDateTime("C:\Access\Mydata.mdb"))

Returns String

Example The following example displays the date and time a file was created or last
modified and its size in bytes:

Sub Start()
Dim Msg As String, TimeStamp As String, UserFile As String
Super::Start()
On Error Goto ErrHandler
' Get file name
UserFile = "C:\Program Files\Actuate11\readme.rtf"
' Get file date/time
TimeStamp = FileDateTime(UserFile)
Msg = UCase$(UserFile) & " created or last modified on "

+ & Format(TimeStamp, "dddd, mmmm dd, yyyy")
+ & " at " & Format(TimeStamp, "h:nn AM/PM")
+ & ". Its size is " & FileLen(UserFile)
+ & " bytes."

ShowFactoryStatus(Msg)
Exit Sub

ErrHandler:
Msg = "Sorry! An error occurred. "

+ & "Please change this method code "
+ & "to use a different file name."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also FileLen function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 177

Fi leExists funct ion

FileTimeStamp function
GetAttr function
LOF function

FileExists function
Determines whether or not a given file or directory exists.

Syntax FileExists(<filename or dirname> [As String]) [As Boolean]

Parameters <filename or dirname>
String expression enclosed in double quotation marks that is the name of the file,
directory, or subdirectory the existence of which you wish to determine. The
default path is the current drive and directory.

<filename or dirname> can optionally specify a full path, in which case it has the
following syntax:

[<drive:>][\]<directory>[\<directory>]…(Windows)

[/]<directory>[/<directory>]…(UNIX)

<drive:>
Character, followed by a colon, that specifies the drive (Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory.

Returns Boolean

True if the file or directory exists, False otherwise.

Tip It is good programming practice to evaluate Boolean variables by using the
keywords True or False, instead of by inspecting their content for a nonzero
(True) or zero (False) numeric value.

Example Assuming a file called Readme.txt exists in the current directory, the following
statement assigns the value True to the variable FileAlreadyInstalled:

FileAlreadyInstalled = FileExists("Readme.txt")

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FileDateTime function
GetAttr function
Kill statement
Name statement
Open statement

178 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Fi leLen funct ion

FileLen function
Returns the length of a given file in bytes.

Syntax FileLen(<file spec>)

Parameters <file spec>
String expression that specifies the name of a valid file. Can include optional
drive and path information. The default path is the current default drive and
directory. The following conditions apply to <file spec>:

■ Must be an unambiguous specification. Wildcard characters are not allowed.

■ Indicated file or files must exist.

■ Path, if specified, must exist.

<file spec> can optionally specify full path information, in which case it has the
following syntax:

[<drive:>] [\]<directory>[\<directory>]… (Windows)

[/]<directory>[/<directory>]… (UNIX)

<drive:>
Character, followed by a colon that specifies the drive on which the file is located
(Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory that
constitutes a branch in the full path specification of <file spec>.

For example, the following statement determines the length of the file
Mydata.mdb on a Windows system in the subdirectory C:\Access, and assigns
the value to a variable:

SizeOfFile = FileLen("C:\Access\Mydata.mdb")

Returns Integer

If the file specified in <file spec> is open when you call FileLen, the value FileLen
returns represents the length of the file before it was opened.

Example The following example displays the date and time a file was created or last
modified and its size in bytes:

Sub Start()
Dim Msg As String, TimeStamp As String, UserFile As String
Super::Start()
On Error Goto ErrHandler
' Get file name
UserFile = "C:\Program Files\Actuate11\readme.rtf"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 179

Fi leTimeStamp funct ion

' Get file date/time
TimeStamp = FileDateTime(UserFile)
Msg = UCase$(UserFile) & " created or last modified on "

+ & Format(TimeStamp, "dddd, mmmm dd, yyyy")
+ & " at " & Format(TimeStamp, "h:nn AM/PM")
+ & ". Its size is " & FileLen(UserFile)
+ & " bytes."

ShowFactoryStatus(Msg)
Exit Sub

ErrHandler:
Msg = "Sorry! An error occurred. "

+ & "Please change this method code "
+ & "to use a different file name."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also FileDateTime function
GetAttr function
LOF function

FileTimeStamp function
 Returns the date and time the specified file was created or last modified.

Syntax FileTimeStamp(<file spec>)

Parameters <file spec>
String expression that specifies the name of a valid file. Can include optional
drive and path information. The default path is the current default drive and
directory. The following conditions apply to <file spec>:

■ <file spec> must be an unambiguous specification. Wildcard characters are not
allowed.

■ Indicated file or files must exist.

■ Path, if specified, must exist.

<file spec> can optionally specify full path information, in which case it has the
following syntax:

[<drive:>] [\]<directory>[\<directory>]… (Windows)

[/]<directory>[/<directory>]… (UNIX)

180 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Fi leTimeStamp funct ion

<drive:>
Character, followed by a colon, that specifies the drive on which the file is located
(Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory that
constitutes a branch in the full path specification of <file spec>.

For example, the following statement determines when the file Mydata.mdb on a
Windows system in the subdirectory C:\Access was last modified, and converts
the returned string to a date variant:

LastSaved = CVDate(FileTimeStamp("C:\Access\Mydata.mdb"))

Returns Date

Example The following example displays the date and time a file was created or last
modified and its size in bytes:

Sub Start()
Dim Msg As String, TimeStamp As String, UserFile As String
Super::Start()
On Error Goto ErrHandler
' Get file name and date/time
UserFile = "C:\Program Files\Actuate11\readme.rtf"
TimeStamp = FileTimeStamp(UserFile)
Msg = UCase$(UserFile) & " created or last modified on "

+ & Format(TimeStamp, "dddd, mmmm dd, yyyy")
+ & " at " & Format(TimeStamp, "h:nn AM/PM")
+ & ". Its size is " & FileLen(UserFile)
+ & " bytes."

ShowFactoryStatus(Msg)
Exit Sub

ErrHandler:
Msg = "Sorry! An error occurred. "

+ & "Please change this method code "
+ & "to use a different file name."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also FileDateTime function
FileLen function
GetAttr function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 181

FindFi le funct ion

FindFile function
Resolves a relative file name by searching for the file through the existing search
path.

Syntax FindFile(<filename>)

Description Call FindFile to resolve a relative file name by searching for the file through the
existing search path.

You can call FindFile at factory time, view time, or both. If you call FindFile at
factory time, Actuate searches for the specified file only at run time. In this case,
Actuate searches the following:

1 If the referring report object design (.rod) file is open, the design search path.

For information about the design search path, see Accessing Data using e.Report
Designer Professional.

2 The search path specified in the ExtendSearchPath function when
ExtendSearchPath is called at factory time.

3 Global search path.

For information about the global search path, see Accessing Data using e.Report
Designer Professional.

4 Configuration file search path.

For information about the configuration file search path, see Accessing Data
using e.Report Designer Professional.

If you call FindFile at view time, Actuate searches for the specified file only at
view time. In this case, Actuate searches the following:

1 The search path specified in the ExtendSearchPath function when
ExtendSearchPath is called at view time.

2 Global search path.

For information about the global search path, see Accessing Data using e.Report
Designer Professional.

3 Configuration file search path.

For information about the configuration file search path, see Accessing Data
using e.Report Designer Professional.

Parameters <filename>
The relative file path.

Returns ■ If the file is found, the absolute path to the file.

■ If the file is not found, an empty string.

182 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Fix funct ion

Example The following example sets a file name in a relative path to search for, and calls
ExtendSearchPath to add C:\Program Files\Actuate11\ and M:\Documents\ to
the search path:

Sub Start()
Dim RelativeFile as String, FullFileName as String
Dim Msg As String
Super::Start()
' Add search paths
ExtendSearchPath("C:\Program Files\Actuate11\")
' Add search paths
ExtendSearchPath("M:\Documents\")
' Set file name
RelativeFile = "readme.rtf"
' Find full name
FullFileName = FindFile(RelativeFile)
' Verify full file name
If FullFileName = "" Then

Msg = "File not found!"
Else

Msg = "Full file name is " & FullFileName
End If
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also ExtendSearchPath function

Fix function
Removes the fractional part of a numeric expression and returns the integer that
remains.

Syntax Fix(<number to truncate>)

Parameters <number to truncate>
A numeric expression from which the fractional part is removed so that only the
integer component is returned.

The returned data type depends on the data type of <number to truncate> as
shown in Table 6-8.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 183

Fix funct ion

Returns Integer

Int and Fix are functionally similar but not identical. For negative values, Int
returns the first negative integer less than or equal to <number to round>. Fix
returns the first negative integer greater than or equal to <number to round>.
CInt is also similar, but not identical, to both Int and Fix.

Using some sample values as arguments, Table 6-9 shows the differences between
Int, Fix, and CInt.

Tip Fix is equivalent to Sgn (<number to round>) * Int (Abs (<number to round>)).

Example The following example prompts the user for a number and displays the return
values from Int, Fix, and CInt:

Sub Start()
Dim Num As Double, Msg As String
Super::Start()

Table 6-8 Relationship of data type of <number to truncate> to the data type
returned

Data type of <number to truncate> Data type returned

Variant of VarType 8 (String) that can
convert to a number

Variant of VarType 5 (Double). If a
String, it is parsed according to the
formatting rules of the current run-time
locale. For example:
Fix("123,456") returns 123.456 on a
French locale
Fix ("123,456") returns 123456.00 on an
English locale

Any other data type Same data type as <number to
truncate>

Null Null

Table 6-9 Differences of values between Int, Fix, and CInt

Value Int (Value) Fix (Value) CInt (Value)

3.7 3 3 4

3.2 3 3 3

3 3 3 3

-3 -3 -3 -3

-3.2 -4 -3 -3

-3.7 -4 -3 -4

184 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

' Get a random number between 1 and 256
Num = 255 * Rnd + 1
ShowFactoryStatus("Int(" & Num & ") = " & Int(Num))
ShowFactoryStatus("Fix(" & Num & ") = " & Fix(Num))
ShowFactoryStatus("CInt(" & Num & ") = " & CInt(Num))

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CInt function
Int function

Format, Format$ functions
Formats a numeric expression, date variant, or string according to the specified
pattern and locale.

Syntax Format(<exprs to format>)

Format(<exprs to format>, <format pattern>)

Format$(<exprs to format>, <format pattern>, <locale>)

Parameters <exprs to format>
Expression to display according to the specified <format pattern>.

Format[$] works differently depending on whether <exprs to format> is numeric,
date, or string data.Format[$] parses numeric values specified as a String
according to the current run-time locale before applying <format pattern>. For
example, in the French run-time locale, the following string:

Format("1234,56", "Currency", "pt_PT")

results in the following output:

€ 1.234

This is because Format [$] parses the string according to the French locale, which
uses the comma (,) as a decimal separator then uses the specified locale, Portugal,
for formatting and output.

<format pattern>
A keyword that has been predefined in Actuate Basic or a string of format
characters that specifies how the expression displays. The <locale> argument, if
specified, determines <format pattern>. The following conditions apply to
<format pattern>:

■ If <format pattern> is omitted or is zero-length, and <exprs to format> is a
numeric expression, Format[$] does the same thing as Str$. Positive numbers

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 185

Format, Format$ funct ions

converted to strings using Format[$] lack a leading space, whereas those
converted using Str$ retain a leading space.

■ Do not mix different types format expressions, such as numeric, date/time or
string in a single <format pattern> argument.

■ Numeric values specified as an Integer or Double must use a period (.) as a
decimal separator and cannot include a thousands separator. For example,
32434.28 is valid, but 3,2434.28 and 3434,28 are invalid.

■ Numeric values specified as a String must use the user-specified locale format
for decimal and thousands separator.

■ Enclose <format pattern> within quotes.

<locale>
String expression that specifies the locale to use for determining <format pattern>
and the output format. If the locale is not specified, Null, or invalid, Format[$]
uses the current run-time locale.

Returns Format: Variant
Format$: String

If any parameter evaluates to Null, Format[$] returns Null.

Using Format[$] with numeric data
Format numeric data using one of the following methods:

■ Use the format keywords that have been predefined in Actuate Basic.

■ Create your own user-defined formats using standard characters or symbols
that have special functional meanings when used in a Format[$] expression.

Table 6-10 lists the predefined numeric format keywords that you can use with
Format[$] examples and their results.

Table 6-10 Predefined numeric format keywords

Keyword Description Example/Result

General
number

Returns as is, without
rounding or applying any
formats.

Format(3434.2899,

"General number")

Returns 3434.2899

(continues)

186 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

Currency Returns as a string with
thousands separators and
rounded to the nearest
hundredth if needed. Two
digits to the right of the
decimal separator. Encloses
negative numbers in
parentheses.
If <locale> is specified, the
currency format depends on
the specified locale. If <locale>
is not specified, the currency
format of the current run-time
locale is used.

Format(3434.2899,
"Currency")

Returns $3,434.29 on en_US
run-time locale

Fixed Returns at least one digit to the
left and two digits to the right
of the decimal separator.
Rounds to the nearest
hundredth.

Format(3434.2899, "Fixed")
Returns 3434.29

Format(.3122, "Fixed")
Returns 0.31

Standard Returns with thousands
separators and rounded to the
nearest hundredth, if needed.
At least two digits to the right
of the decimal separator.

Format(3434.2899,
"Standard")
Returns 3,434.29

Percent Returns * 100 with a percent
sign to the right. Two digits to
the right of the decimal
separator. Rounds to the
nearest hundredth.
The return type is a string. Do
not use in a method for
formatting AcDoubleControl
and AcIntegerControl controls.

Format(0.2899, "Percent")
Returns 28.99%

Format(0.28999, "Percent")
Returns 29.00%

Scientific Returns in standard scientific
notation, appropriately
rounded. The return type is a
string. Do not use in a method
for formatting
AcDoubleControl and
AcIntegerControl controls.

Format(3434.2899,
"Scientific")

Returns 3.43E+03

Table 6-10 Predefined numeric format keywords (continued)

Keyword Description Example/Result

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 187

Format, Format$ funct ions

User-defined numeric formats

A format expression for numbers can have up to four sections, separated by
semicolons. You can use double quotation marks (") for adding literal strings and
backslashes (\) to add literal characters.

Table 6-11 shows the symbols or characters you can use to create your own
user-defined formats, and the effect of each symbol on the resulting format string.

Yes/No Returns No if zero, Yes
otherwise.

Format(3434.2899, "Yes
/No")
Returns Yes

True/False Returns False if zero, True
otherwise.

Format(3434.2899, "True
/False")

Returns True

On/Off Returns Off if zero, On
otherwise.

Format(3434.2899, "On
/Off")
Returns On

Table 6-11 Symbols and characters for creating custom numeric
formats

Symbol Description Examples/Results

0 Zero-digit placeholder. If <exprs to
format> has fewer digits than
<format pattern>, the empty digits
are filled with zeros. If <exprs to
format> has more digits to the right
of the decimal than <format
pattern>, the result is rounded to
the number of places in <format
pattern>; if it has more digits to the
left of the decimal, the extra digits
are displayed without modification.

Format(3434.2899,
"000.000")

Returns 3434.290

Format(129.557,
"0000.00")

Returns 0129.56

Null digit placeholder. If <exprs to
format> has fewer digits than the
format pattern, empty digits
become Null, not filled with blanks.
Therefore, the resulting string can
be shorter than the original format
pattern.

Format(434.2899,
"#,##0.0")

Returns 434.3

Format(434.2899,
"000###0.00")

Returns 000434.29

(continues)

Table 6-10 Predefined numeric format keywords (continued)

Keyword Description Example/Result

188 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

% Percentage placeholder. Multiplies
<exprs to format> by 100 and
appends a % character.

Format(.75, "##%")

Returns 75%

Format(.75, "0##.000%")

Returns 075.000%

. Decimal placeholder. Indicates
where to place the decimal point. If
<locale> is specified, the decimal
separator character of the specified
locale is used. Otherwise, the
current run-time locale is used.

Format(3434.28, "0.0")

Returns 3434.3

Format(3434.28, "0.00")

Returns 3434.28

, Thousands separator. If <locale> is
specified, the thousands separator
character of the specified locale is
used. Otherwise, the current run-
time locale is used.

Format(3434.2899,
"#,##0.00")

Returns 3,434.29

E- or e- Returns <exprs to format> in
scientific notation. You must place a
digit placeholder (0 or #) to the
immediate left of the symbol. Place
an appropriate number of digit
placeholders to the right of the
symbol to display the exponent. A
minus sign is displayed if the result
has a negative exponent.

Format(1500000,
"0.0E-")

Returns 1.5E6

Format(1500000,
"#0.0E-")

Returns 15.0E5

E+ or e+ Same as E-. The plus sign causes the
polarity of the exponent to display
whether positive (+) or negative (-).

Format(1500000,
"0.0E+")

Returns 1.5E+6

Format(15000, "#0.0e+")

Returns 15.e+3

Table 6-11 Symbols and characters for creating custom numeric
formats (continued)

Symbol Description Examples/Results

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 189

Format, Format$ funct ions

Format[$] with Format sections

Unless <format pattern> specifies one of the predefined format keywords, a
format expression for numbers can have up to four sections, separated by
semicolons. If you use semicolons with nothing between them, the missing
section is printed using the format of the positive value.

The examples in Table 6-12 assume settings in the user’s Control Panel are for the
United States.

$ Currency symbol. Displays the
currency symbol based on the
specified locale.

Format(total,
"($)#,##0.00","de_DE"

or
Format(total,

"€#,##0.00","de_DE")

Returns € 8.790,00

Format(total,
"($)#,##0.00",
"en_US")

Returns $ 8,790.00

-, (,),
[space], +

Literal characters that do not affect
the format of the expression. [space]
is Chr$(32).

Format$(5551212,
"##0-0000")

Returns 555-1212

Format$(1111111111,
"(###) ##0-0000")

Returns (111) 111-1111

Format$(150,"+##0")

Returns +150

Table 6-12 Working with format sections in numeric formats

Use Description Example/Result

1 section <format pattern> applies to
all values.

Format$(4.15, "$#,##0.00")

Returns $4.15

Format$(-4.15, "$#,##0.00")

Returns -$4.15

(continues)

Table 6-11 Symbols and characters for creating custom numeric
formats (continued)

Symbol Description Examples/Results

190 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

Using Format[$] for date data
Numbers can be used to represent date and time information. You can format
date and time serial numbers using either date-and-time formats or numeric
formats because date/time serial numbers are stored as floating point values.

To format date and time, use one of the following methods:

■ Use the format keywords that have been predefined in Actuate Basic.

■ Create your own user-defined formats using standard characters or symbols
that have special functional meanings when used in a format expression.

If <locale> is specified, symbols are formatted according to formatting rules of the
specified locale. Otherwise, symbols are formatted according to the formatting
rules of the current run-time locale.

2 sections (1) Applies to positive values
and zero.
(2) Applies to negative values.

Format$(-7,
"$#,##0.00;$(#,##0.00)")

Returns $(7.00)

Format$(-7, "$#,##0.00;
\L\o\s\s:#,##0.00")

Returns Loss: 7.00

3 sections (1) Applies to positive values.
(2) Applies to negative values.
(3) Applies to zero.

Format$(0, "#,###;(#,###);
\Z\e\r\o!")

Returns Zero!

4 sections (1) Applies to positive values.
(2) Applies to negative values.
(3) Applies to zero.
(4) Applies to Null.

Format$(-25, "#;(#);\Z\e\r\
o;\N\i\l")

Returns (25)

Format$(25-25, "#;(#);
\Z\e\r\o;\N\i\l")

Returns Zero

Format$(Null, "#;(#);
\Z\e\r\o;\N\i\l")

Returns Null

Table 6-12 Working with format sections in numeric formats (continued)

Use Description Example/Result

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 191

Format, Format$ funct ions

Table 6-13 shows the predefined date-and-time format keywords you can use and
the effects of each on the resulting format pattern.

User-defined date formats

You can use double quotation marks (") for adding literal strings and backslashes
(\) to add literal characters. Table 6-14 shows the symbols or characters that you
can use to create your own user-defined date formats, and the effect of each
symbol on the resulting format string.

In all cases, assume DateVar = CVDate("11/12/82") or DateVar =
CVDate("9/9/82") to demonstrate use of leading zeros, unless otherwise noted.

Table 6-13 Predefined data-and-time format keywords

Keyword Description Example/Result

"General date" Returns a date and
time.

Format$(30267.83681, "General
date")

Returns 11/12/82 8:05:00 PM

"Long date" Returns a Long Date
as defined in the user’s
Control Panel.

Format$(30267.83681, "Long
date")

Returns Friday, November 12,
1982

"Medium date" Returns a date with
the month name
abbreviated to 3
letters.

Format$(30267.83681, "Medium
date")

Returns 12-Nov-82

"Short date" Returns a Short Date
as defined in the user’s
Control Panel.

Format$(30267.83681, "Short
date")

Returns 11-12-82

"Long time" Returns a Long Time
as defined in the user’s
Control Panel.
Includes hours,
minutes, and seconds.

Format$(0.83681, "Long time")

Returns 8:05:00 PM

"Medium time" Returns hours and
minutes in 12-hour
format, including the
A.M./P.M. designation.

Format$(0.83681, "Medium
time")

Returns 8:05 PM

"Short time" Returns hours and
minutes in 24-hour
format.

Format$(0.83681, "Short time")

Returns 20:05

192 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

If <locale> is specified, the results are formatted according to the format of the
specified locale. Otherwise, the results are formatted according to the formatting
rules of the current run-time locale.

Note that the symbol for minute is n, not m, which is the symbol for month.

Table 6-14 Symbols to use to create custom date-and-time formats

Symbol Description Example/Result

/, - Date separator Format$(DateVar,
"mm/dd/yy")

Returns 11/12/82

Format$(DateVar,
"mm-dd-yy")

Returns 09-09-82

d Day of the month without
leading zero (1-31)

Format$(DateVar, "/d/")

Returns /12/

Format$(DateVar, "/d/")

Returns /9/

dd Day of the month with leading
zero if needed (01-31)

Format$(DateVar, "/dd/")

Returns /12/

Format$(DateVar, "/dd/")

Returns /09/

ddd Three-letter abbreviation for day
of the week

Format$(DateVar, "ddd")

Returns Fri

dddd Full name of day of the week Format$(DateVar,
"dddd, mm/dd")

Returns Friday, 11/12

ddddd Short Date string, as defined in
the user’s Control Panel

Format$(DateVar, "ddddd")

Returns 11/12/82

dddddd Long Date string, as defined in
the user’s Control Panel

Format$(DateVar, "dddddd")

Returns November 12, 1982

w Day of the week as a number
(Sunday = 1, Saturday = 7)

Format$(DateVar, "w")

Returns 6

ww Week of the year as a number (1-
53). The week begins on a
Sunday.

Format$(DateVar, "ww")

Returns 46

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 193

Format, Format$ funct ions

www Custom week of the year as a
number. The date you specify
determines the day on which the
week begins.

Format$(DateVar, "www")

Returns 46

m Number of the month without
leading zero (1-12)

Format$(DateVar, "m")

Returns 11

mm Number of the month with
leading zero (01-12)

Format$(DateVar, "mm")

Returns 11

Format$(DateVar, "mm")

Returns 09

mmm Three-letter abbreviation for
month name

Format$(DateVar, "mmm")

Returns Nov

mmmm Full name of the month Format$(DateVar, "mmmm")

Returns November

q Number of the quarter (1-4) Format$(DateVar, "q")

Returns 4

"Quarter" &
Format$(DateVar, "q")

Returns Quarter 4

qq Number of the year half (1-2) Format$(DateVar, "qq")

Returns 2

y Number of the day of the year
(1-366)

Format$(DateVar, "y")

Returns 316

Val(Format$(DateVar, "y")
+ 19)

Returns 335

yy Last two digits of the year
(00-99)

Format$(DateVar, "yy")

Returns 82

yyyy All four digits of the year
(100-9999)

Format$(DateVar, "yyyy")

Returns 1982

c Date variant as ddddd ttttt Format$(DateVar, "c")

Returns 11/12/82

Table 6-14 Symbols to use to create custom date-and-time formats

Symbol Description Example/Result

194 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

Using Format[$] with time data
The fractional part of a number that represents a date represents a time of day on
that date.

For example, the CVDate function converts numbers to date variants.
CVDate(30632) is 11/12/83. No time of day is returned, because 30632 has no
fractional part. By contrast, CVDate(30632.83) returns 11/12/83 7:55:12 P.M.,
because 30632.83 does have a fractional part, and the fractional part, .83,
corresponds to about 7:55 P.M. (0.83 hours * 24 = 19.92 hours from midnight, or
7:55:12P.M.).

Table 6-15 assumes DateVar = "11/12/82 20:05:07". Format[$] returns times
returned by Format[$] in 24-hour format unless you use one of the A.M./P.M.
format symbols.

Note that the symbol for minute is n, not m, which is the symbol for month.

Table 6-15 Symbols for using time data with Format[$]

Symbol Description Example/Result

: Time separator Format$(DateVar, "hh:nn:ss")

Returns 20:05:00

h Hour without leading zero (0-23) Format$(DateVar,
"h:nn AM/PM")

Returns 8:05 PM

hh Hour with leading zero (00-23) Format$(DateVar,
"hh:nn AM/PM")

Returns 08:05 PM

n Minute without leading zero
(0-59)

Format$(DateVar,
"h:n AM/PM")

Returns 8:5 PM

nn Minute with leading zero (00-59) Format$(DateVar,
"hh:nn AM/PM")

Returns 08:05 PM

s Second without leading zero
(0-59)

Format$(DateVar,
"h:n:s AM/PM")

Returns 8:5:7 PM

ss Second with leading zero (00-59) Format$(DateVar,
"h:nn:ss AM/PM")

Returns 8:05:07 PM

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 195

Format, Format$ funct ions

Using Format[$] with string data
You can format strings with Format[$].

Table 6-16 shows the symbols or characters you can use to create your own user-
defined formats, and the effect of each symbol on the resulting format string.

AM/
PM or
am/pm

Designation AM/am for any
hour before noon and PM/pm
for any hour after. Case-
sensitive.

Format$(DateVar,
"hh:nn:ss am/pm")

Returns 08:05:07 pm

A/P or
a/p

Designation A/a for any hour
before noon and P/p for any
hour after. Case-sensitive.

Format$(DateVar,
"hh:nn:ss A/P")

Returns 08:05:07 P

AMPM Uses formats set by 11:59 and
23:59 as defined in the user’s
Control Panel. Default is
AM/PM.

Format$(DateVar,
"hh:nn AMPM")

Returns 08:05 PM

ttttt Uses format set by Time as
defined in the user’s Control
Panel. Default is h:nn:ss.

Format$(DateVar,
"h:nn ttttt")

Returns 8:05 PM

Table 6-16 Symbols for using string data with Format[$]

Symbol Description Example/Result

@ Character placeholder. Returns a
character, or a space if there is no
character in the corresponding
position. Placeholders fill from
right to left unless the format
pattern uses a ! character.

Format$("5101212111",
"(@@@)@@@-@@@@")

Returns (510) 121-2111

Format$("1212111",
"(@@@)@@@-@@@@")

Returns () 121-2111

& Character placeholder that does
not return a space if the format
pattern contains more placeholders
than there are characters in the data
source value. Placeholders fill from
right to left unless the format
pattern uses a ! character.

Format$("6176789999",
"(&&&)&&&-&&&&")

Returns (617) 789-9999

Format$("6789999","(&&&)
&&&-&&&&")

Returns () 678-9999

(continues)

Table 6-15 Symbols for using time data with Format[$]

Symbol Description Example/Result

196 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Format, Format$ funct ions

Example The following example displays a random number in various formats:

Sub Start()
Dim FormatData As Integer, Msg as String
Super::Start()
' Generate random number to format
FormatData = Int(100000 * rnd)
' Display number formatted in various ways
Msg = "Format result for format value #0: "

+ & Format(FormatData, "#0")
ShowFactoryStatus(Msg)
Msg = "Format result for format value 000000: "

+ & Format(FormatData, "000000")
ShowFactoryStatus(Msg)
Msg = "Format result for format value #,##0: "

+ & Format(FormatData, "#,##0")
ShowFactoryStatus(Msg)
Msg = "Format result for format value #,##0.00: "

+ & Format(FormatData, "#,##0.00")
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CVDate function
DateValue function

< Lowercase conversion. Converts an
expression to lowercase.

Format$
("Smith, John","<")

Returns smith, john

> Uppercase conversion. Converts an
expression to uppercase.

Format$
("Smith, John",">")

Returns SMITH, JOHN

! Specifies that placeholders fill from
left to right.

Format$("5551212",
"!(&&&)&&&-&&&& + ext")

Returns (555) 121-2 + ext

Format$("5551212",
"!(@@@)@@@-@@@@ + ext")

Returns
(555)121-2 + ext

Table 6-16 Symbols for using string data with Format[$] (continued)

Symbol Description Example/Result

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 197

For…Next statement

ParseDate function
Str, Str$ functions

For…Next statement
Repeats a block of instructions a specified number of times.

Syntax For <counter variable> = <start> To <end> [Step <step size>]

[<statement block>]

[Exit For]

[<statement block>]

Next [<counter variable >]

Parameters <counter variable>
Numeric variable that keeps track of the number of times the set of statements
between For and Next has been executed.

<start>
Numeric expression indicating the first number at which <counter variable> is to
begin counting. The initial value of <counter variable>.

<end>
Numeric expression indicating the number at which <counter variable> is to stop
counting; the final value of <counter variable>. As soon as <counter variable>
stops execution, Actuate Basic skips everything between the For and Next
keywords, and transfers control to the statement following Next.

Step
Keyword that specifies what number to add to <counter variable> every time
after the loop finishes executing. The sum of <counter variable> and <step size>
returns the next, new value for <counter variable>.

<step size>
The number the program adds to <counter variable>, at the end of every trip
through the loop, in order to determine the next value of <counter variable>.

Default: 1

<statement block>
Any valid Actuate Basic statements.

Exit For
Keyword that causes Actuate Basic to terminate the loop immediately, and to
transfer control to the statement following Next. Exit For statement can be placed
anywhere in the loop any number of times, although only one will be executed.

198 P r o g r a m m i n g w i t h A c t u a t e B a s i c

For…Next statement

Next
Keyword that defines the completion of a For…Next statement, and causes the
program to add <step size> to <counter variable>.

Default: If you omit <counter variable> on the Next line, Actuate Basic adds the
value of <step size> to the <counter variable> associated with the most recent For
statement.

Description ■ First, Actuate Basic sets <counter variable> to <start>.

■ Table 6-17 summarizes what Actuate Basic does next, which depends upon the
sign of <step size>.

■ If Actuate Basic executes the loop, it adds <step size> to <counter variable> at
the line starting with Next.

■ Then Actuate Basic compares this new value of <counter variable> to <end>.

■ If the conditions described in the table are satisfied, Actuate Basic executes the
loop again.

■ Otherwise, Actuate Basic skips everything between the For and Next
keywords and transfers control to the statement immediately following Next.

Rule If a For…Next loop is opened by its For clause and closed by its corresponding
Next clause, nested loops must be closed in the reverse order as shown in the
following example:

For I = 1 To 10
For J = 1 To 10

For K = 1 To 10
L = I + J + K

Next K
Next J

Next I

When you nest For…Next statements, you must use a different counter variable
for each block. Traditionally, the letters I, J, K, and so forth, declared as Integers,
are used as counter variables.

Tips ■ To avoid confusion when debugging, do not change the value of <counter
variable> from inside the loop.

Table 6-17 Execution of For...Next statements with <step size>

<step size> Loop executes when… Stops execution when…

Positive <counter variable> <=
<end>

<counter variable> >
<end>

Negative <counter variable> >=
<end>

<counter variable> <
<end>

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 199

FreeFi le funct ion

■ To make your program more efficient, dimension <counter variable> as an
Integer.

■ To evaluate a certain condition and then determine whether or not a loop
continues, use Exit For within a conditional structure like If…Then…Else.

■ To ascertain or set the contents of a multidimensional array, use nested
For…Next loops.

Example The following example uses two nested loops to put seven lines of the uppercase
alphabet into a message:

Sub Start()
Dim I As Integer, Rep As Integer
Super::Start()
' Perform seven repetitions
For Rep = 7 To 1 Step -1

' Convert alpha to numeric values
For I = Asc("A") To Asc("Z")

' Convert back, append letters to string
ShowFactoryStatus(Chr$(I))

Next I
' Add newline after each repetition

Next Rep
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Do…Loop statement
Exit statement
While…Wend statement

FreeFile function
Returns the next unused system file number.

Syntax FreeFile

Returns Integer

When you open a file, you must supply a number by which to reference it
throughout the program. This number must not already be in use by another
currently open file. FreeFile eliminates the need for you to keep track of which file
numbers are currently in use by finding the next available number.

Tip The number that FreeFile returns does not change until you actually open a file
with it. So to be sure FreeFile is always current, immediately open a file with the
number it gives you, instead of waiting until later to do so.

200 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Funct ion…End Funct ion statement

Example The following example assigns the return value of FreeFile to the variable
FileNum%, then uses FileNum to open the file, Test.dat:

FileNum% = FreeFile
Open "Test.dat" for Output As FileNum%

The following example creates a test file and opens it to determine an unused file
number:

Sub Start()
Dim FileNumber As Integer, Msg As String
Super::Start()
' Open a file
Open "Test1.fil" For Output As #1
' Get unused file number
FileNumber = FreeFile
' Create a test file
Open "Test2.fil" For Output As FileNumber
' Close all files
Close
Msg = "The file number FreeFile returned was: " & FileNumber
ShowFactoryStatus(Msg)
Msg = "The files will now be deleted."
ShowFactoryStatus(Msg)
' Delete files from disk
Kill "Test1.fil"
Kill "Test2.fil"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Open statement

Function…End Function statement
Declares and defines the name, code, and arguments that constitute an Actuate
Basic function, and returns a value to the calling expression or statement.

Syntax [Static] Function <name of function> [(<list of arguments>)] [As <data type>]

[<statements>]

[Exit Function]

[<statements>]

<name of function> = <return value>

End Function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 201

Funct ion…End Funct ion statement

Parameters Static
Keyword that instructs Actuate Basic to preserve the values of the procedure’s
local variables between calls.

Rules:

■ You cannot use Static to affect variables declared outside the procedure.

■ You should avoid using Static in recursive procedures.

<name of function>
The name you assign to the procedure.

Rules for <name of function>:

■ Subject to the same constraints as variable names, as well as to the following
additional constraints:

■ Can include a type declaration character.

■ Cannot be the same as any other name recognized at the global or module
level, such as that of:

❏ A procedure in a declared dynamic-link library (DLL)

❏ A variable

❏ A constant

■ Can be overloaded. That is, you can define another function or procedure that
has the same name, as long as the respective arguments are unique. For
example, the following are both permissible in the same program:

Sub Potato(intTomato As Integer)
…
End Sub

Sub Potato(dblTomato As Double, strEggplant As String)
…
End Sub

<list of arguments>
The variable name or names that the function uses internally to store and
manipulate the values (arguments) that you pass to it from the calling statement.

Each of the <variable name> components of the <list of arguments> corresponds
to a value or variable that is in the same relative position in the calling statement.
It does not matter what you call the variable that is passed to the function; the
function will process the value it receives as an argument. The <statements> in
the procedure process arguments it receives to produce the single value that is
returned to the calling procedure.

In the following example, the function Square expects to be supplied with a single
argument, a numeric expression, which it squares:

202 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Funct ion…End Funct ion statement

Function Square(X)
Square = X ^ 2

End Function

The following statements will pass the value 4 to the function Square and receive
back the value 16 after Square has completed. The statement will then continue; it
will multiply the value it received from the function Square times 2 and print the
resulting value.

MyNumber = 4
Print #1, Square(MyNumber) * 2

Here are the steps in the process:

1 First, the value 4 is assigned to the variable MyNumber.

2 The value of MyNumber is passed to the function Square. Square assigns the
value it receives from the calling statement to the variable X.

3 Square processes X and assigns the resulting value to the name of the function
itself—Square—and returns control to the statement that called it.

4 The calling statement continues processing the new value of MyNumber (16);
it multiplies it by 2, and prints the result (32).

<statements>
One or more valid Actuate Basic statements. These statements constitute the body
of the function procedure.

<return value>
The value the function returns to the calling statement after the function has
completed. Usually, <return value> is a variable that contains the final result of all
the changes the argument or arguments underwent in the course of the execution
of the <statements>.

Exit Function
Keyword that signals Actuate Basic to terminate the function procedure and
transfer control to the statement following the one that called the procedure. You
can use multiple Exit Function statements, anywhere in a function procedure, but
only one is executed.

<list of arguments> has the following syntax:

[ByVal] <variable name> [As <data type>] [,[ByVal] <variable name>
[As <data type>]…

ByVal
Keyword that instructs Actuate Basic to pass the argument to the procedure by
value rather than by reference, so that whatever change the function makes to the
argument variable has no affect on its original value in the calling procedure.

Rule for ByVal: Cannot be used with a variable of user-defined type, object type,
or with an array variable.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 203

Funct ion…End Funct ion statement

<variable name>
Name of the variable to pass as an argument. If the function changes the value of
<variable name> internally, then it also changes its value externally.

Rules for <variable name>:

■ You must use ByVal if you do not want the function’s changes to an argument
variable to affect the variable’s value in the calling statement.
Example:

Function SquareRoot (ByVal UserNum)

■ For array variables, use the parentheses but omit the number of dimensions.
Example:

Function SalesTax (MyArray())

■ If <variable name> is undeclared within the function but has the same name
as another procedure, a Global or module-level constant or variable, or an
object, Actuate Basic assumes your function refers to that external name. This
can cause name conflicts. To avoid such conflicts, explicitly declare each
<variable name> within the function.

As <data type>
Clause that declares the data type of <variable name>. You can also specify the
data type of <returned value> by appending this clause after the <list of
arguments>.

Rule for As <data type>: <data type> can specify any valid Actuate Basic or user-
defined data type except fixed-length String.

Examples Function SalesTax(Customer As String, Amount As Currency)
Function SalesTax(ByVal Customer As String, Amount)

Description Like a Sub statement, a Function can take arguments, execute a series of
statements, and change the values of its arguments. However, unlike a Sub
statement, a Function can also return a value directly and can be used in an
expression.

You can use the same name for two or more different procedures, as long as you
make sure the procedures take a different number of arguments, or that the
arguments are of different data types. For example, you can write two different
square root functions—one that operates on integers, and another that operates
on doubles. Their respective first lines might look like the following:

Function SquareRoot(intParam As Integer) As Integer
Function SquareRoot(dblParam As Double) As Double

Actuate Basic will know which procedure you mean by the type of value you
pass when you call the procedure. For instance, if you write a call to
SquareRoot(5), the compiler will choose the first SquareRoot function. But if you
call SquareRoot(5.1234567), or SquareRoot(5.000), it will execute the second one.

204 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Funct ion…End Funct ion statement

Rules:

■ You cannot define a Function statement from within another Function
statement.

■ You cannot use GoTo to enter or exit a Function statement.

Tips ■ Functions can be recursive. Actuate Basic sets a run-time stack limit of 200. A
report using recursion with a large number of iterations might exceed this
limit.

■ To avoid possible name conflicts between <variable name> and the names of
other variables, constants, procedures, or objects, explicitly declare all
variables within the function with Dim, ReDim, or Static. That way, you can
use a common variable name like SaleDate within a function procedure, even
if there is a global variable named SaleDate. Name conflicts can arise only
when you use a variable in a procedure that you did not explicitly declare
within the procedure.

■ To distinguish between a variable and a function with the same name in your
code, use the function’s name with parentheses and the variable’s name
without parentheses. Where the function takes no parameters, append an
empty pair of parentheses. For example:

' Assign global variable Homonym to CopyVar1
CopyVar1 = Homonym
' Assign return value of function Homonym to CalculatedVar2
CalculatedVar2 = Homonym()

■ To evaluate a condition and then determine whether or not the function
procedure should continue, use Exit Function within a conditional structure
like If…Then…Else.

■ To guard against the wrong data type being passed to or returned from a
function, use As <data type> clauses.

Example The following example generates a number, then calls a user-defined function
that returns the number’s square root.

To use this example, paste the function SquareRoot after the End Sub of the
procedure or save it in your Actuate code module (.bas) file.

Sub Start()
Dim Msg As String, NumRoot
Dim UserNum As Double
Super::Start()
UserNum = 255 * Rnd + 1
' Call the SquareRoot function here to process UserNum
NumRoot = SquareRoot(UserNum)
' NumRoot has now been set to the square root of UserNum
Msg = "The square root of " & UserNum

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 205

FV funct ion

Select Case NumRoot
Case 0: Msg = Msg & " is zero."
Case -1: Msg = Msg & " is an imaginary number."
Case Else: Msg = Msg & " is " & NumRoot

End Select
ShowFactoryStatus(Msg)

End Sub
'
' This function finds the square root of a number. It takes one
' input argument X (data type Double) and returns a value that
' is also data type Double.
'
Function SquareRoot (X As Double) As Double

' Sgn returns 1 if a number is positive, -1 if it's negative,
' and 0 if it's zero. This fact is important here since we
' only want to operate on a number greater than zero
' Evaluate sign of argument
Select Case Sgn(X)

Case 1
SquareRoot = Sqr(X)
' OK if positive, so exit
Exit Function

Case 0
SquareRoot = 0

Case -1
SquareRoot = -1

End Select
End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
Static statement
Sub…End Sub statement

FV function
Returns the future value of an annuity based on periodic, constant payments, and
on an unvarying interest rate.

Syntax FV(<rate per period>,<number pay periods>,<each pmt>,<present value>, <when
due>)

Parameters <rate per period>
Numeric expression that specifies the interest rate that accrues per period.

206 P r o g r a m m i n g w i t h A c t u a t e B a s i c

FV funct ion

Rule for <rate per period>: Must be given in the same units of measure as
<number pay periods>. For instance, if <number pay periods> is expressed in
months, then <rate per period> must be expressed as a monthly rate.

<number pay periods>
Numeric expression that specifies the total number of payment periods in the
annuity.

Rule for <number pay periods>: Must be given in the same units of measure as
<rate per period>. For instance, if <rate per period> is expressed as a monthly
rate, then <number pay periods> must be expressed in months.

<each pmt>
Numeric expression that specifies the amount of each payment.

Rule for <each pmt>: Must be given in the same units of measure as <rate per
period>. For instance, if <rate per period> is expressed in months, then <each
pmt> must be expressed as a monthly payment.

<present value>
Numeric expression that specifies the value today of a future payment, or stream
of payments.

Example for <present value>: If you put $23.94 in the bank today and leave it
there for 15 years at an interest rate of 10% compounded annually, you end up
with about $100. The present value of $100 is approximately $23.94.

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1), or at the end (0) of each period.

Default 0

Rule for <when due>: Must be 0 or 1.

Examples The following example assumes you deposit $10,000 in a savings account for your
daughter when she is born. If the account pays 5.7% compounded daily, how
much will she have for college in 18 years? The answer, $27,896.60, is assigned to
the variable TotalValue.

TotalValue = FV(0.057/365, 18*365, 0, -10000, 1)

The following example is almost the same as the previous one. In this one,
however, assume that the interest is compounded monthly instead of daily, and
that you have decided to make an additional monthly deposit of $55 into the
account. The future value assigned to TotalValue in this case is $48,575.82.

TotalValue = FV(0.057/12, 18*12, -55, -10000, 1)

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 207

FV funct ion

such as a home mortgage. The future value of an annuity is the cash balance you
want after you have made your final payment.

Examples ■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

Rules ■ <rate per period>, <number pay periods>, and <each pmt> must all be
expressed in terms of the same units, weekly/weeks, monthly/months,
yearly/years, and so on.

■ You must express cash paid out, such as deposits to savings, using negative
numbers, and cash received, such as dividend checks, using positive numbers.

Example The following example defines an amount to save or invest each month, the
annual percentage rate (APR) of the interest, the total number of payments, and
prompts for when during the month payments will be made. Then it tells the user
what the future value of such a savings plan or investment will be.

To use the following example, paste the Declare section into a source code (.bas)
library file:

Declare
Global Const ENDPERIOD = 0
Global Const BEGINPERIOD = 1

End Declare
Sub Start()

Dim EachPmt As Double, APR As Double
Dim TotalPmts As Double, PayWhen As Integer
Dim PresentVal As Double, FutureVal As Double
Dim Msg as String, Fmt As String
Super::Start()
' Specify money format
Fmt = "$###,###,##0.00"
' Amount to save each month
EachPmt = 2000
' The annual percentage rate for the interest
APR = 0.0325
' The number of months to save
TotalPmts = 60
' Assume payment at month's end. Change to BEGINPERIOD
' for payment at month beginning
PayWhen = ENDPERIOD
' Amount in the savings account now
PresentVal = 12000
' Now do the real work
FutureVal =

+ FV(APR / 12, TotalPmts, -EachPmt, -PresentVal, PayWhen)

208 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Get statement

' Format the resulting information for the user
Msg = "Starting with " & Format(PresentVal, Fmt)

+ & " and saving " & Format(EachPmt, Fmt)
+ & " every month at an interest rate of "
+ & Format(APR, "##.00%") & " for a period of "
+ & TotalPmts & " months will give you "
+ & Format(FutureVal, Fmt) & "."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IPmt function
NPer function
Pmt function
PPmt function
PV function
Rate function

Get statement
Reads data from a disk file into a variable.

Syntax Get [#] <open file number>, [<record number>], <receiving variable>

Parameters <open file number>
Numeric expression that is the number you assigned as a descriptor for the target
file when you opened it.

<record number>
Numeric expression between 1 and 2,147,483,647:

■ For files opened in Random mode, <record number> is the number of the
record to be read.

■ For files opened in Binary mode, it is the byte position at which reading starts,
where the first byte in a file is at position 1, the second byte at position 2, and
so on.

Default: The next record or byte—that is, the one following the last Get or Put
statement, or the one pointed to by the last Seek function.

Rule for <record number>: If you omit <record number> you must still include
the delimiting commas that would have been on either side of it had you
included it.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 209

Get statement

<receiving variable>
String expression that specifies the variable that is to receive input from the open
file.

Rules for <receiving variable>:

■ Cannot be an object variable, user-defined data type structure, handle to a
class, CPointer, or Java object.

■ Cannot be an array variable that refers to an entire array, although you can use
a variable that denotes a single element of an array.

Description You can use the Get statement to read from files opened only in random or binary
mode. You cannot use the Get statement to read from files opened in input mode.
The behavior of Get varies depending upon the mode in which the file was
opened.

For files opened in random mode
If the length of the data you read is less than the length specified in the Len clause
of the Open statement, the next Get skips the data you did not read and reads
subsequent records starting at the record-length boundary, specified by Len.

Example The first Get stores bytes 1-4 of the disk file Myfile.txt into the variable
HoldingVar1. The second Get skips to the record-length boundary (20) and starts
counting from there, which means it stores bytes 21-25 into HoldingVar2. The
intervening bytes (5-20) are ignored.

Dim HoldingVar1 As String
Dim HoldingVar2 As String
HoldingVar1 = "1234"
HoldingVar2 = "1234"
Open "Myfile.txt" for Random As #1 Len = 20
Get #1, , HoldingVar1
Get #1, , HoldingVar2

Table 6-18 summarizes how Get behaves depending on the data type of
<receiving variable>. Open here refers to the particular statement that opened the
file in question.

Table 6-18 Execution of Get statements with <receiving variable> data
types

<receiving
variable> Get reads, in order Rules

Variable-length
string

1 2-byte descriptor
containing string length

2 Data that goes into
<receiving variable>

Record length specified in the
Len clause of Open must be at
least 2 bytes greater than the
actual length of the string.

(continues)

210 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Get statement

For files opened in binary mode
All the Random descriptions and rules above apply except that the Len clause in
the Open statement has no effect.

Example The first statement stores the first 4 bytes of the disk file Myfile.txt into the
variable HoldingVar1. The second stores the next 5 bytes into HoldingVar2. No
data is ignored.

Dim HoldingVar1 As String
Dim HoldingVar2 As String
Open "Myfile.txt" for Binary As #1
Get #1, , HoldingVar1
Get #1, , HoldingVar2

For variable-length strings that are not elements of user-defined types, Get does
not expect a 2-byte descriptor to tell it how many bytes to read; it reads the
number of bytes equal to the number of characters already in the string.

Example The following statements reads 12 bytes from file #1:

VariLen$ = String$(12, "*")
Get #1, , VariLen$

Tip To avoid corrupting or misreading data, be sure your record lengths and variable
lengths match the lengths of the data you want to read or write.

Example The following example prompts the user for three customer names. It writes each
name to a test file and then reads the names back.

Numeric Variant
(Variant Types
0-7)

3 2-byte descriptor
identifying VarType of
the Variant

4 the data that goes into
<receiving variable>

Len clause length must be at
least 2 bytes greater than the
actual number of bytes
required to store the variable.

String Variant
(Variant Type 8)

5 2-byte VarType
descriptor

6 2 bytes indicating the
string length

7 Data that goes into
<receiving variable>

Len clause length must be at
least 4 bytes greater than the
actual length of the string.

Any other type
of variable

8 Data that goes into
<receiving variable>

Len clause length must be
greater than or equal to the
length of the data.

Table 6-18 Execution of Get statements with <receiving variable> data
types (continued)

<receiving
variable> Get reads, in order Rules

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 211

GetAFCROXVersion funct ion

Sub Start()
Dim CustName As String
Dim I As Integer, Max As Integer, Msg As String
Super::Start()
' Create a sample data file
Open "Testfile.dat" For Random As #1 Len = 50
' Put records into file on disk
Put #1, 1, "Customer 1"
Put #1, 2, "Customer Two"
Put #1, 3, "Third Customer"
Close #1
' Close the file we’ve written and open again for reading
Open "Testfile.dat" For Random As #1 Len = 50
' Calc total # of records
Max = LOF(1) \ 50 + 1
' Read file backwards
For I = Max To 1 Step -1

' Seek statement used
Seek #1, I
' Get record at that position
Get #1, , CustName
Msg = "Record #" & (Seek2(1) - 1) & " contains: "

+ & CustName
ShowFactoryStatus(Msg)

Next I
' Close test file
Close #1
Msg = "Now removing file from disk."
ShowFactoryStatus(Msg)
' Delete file from disk
Kill "Testfile.dat"

End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Open statement
Put statement
Seek statement
Type…End Type statement

GetAFCROXVersion function
Returns either the integer or the decimal component of the version number of the
AFC library (Afcnnnn.rox).

212 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetAppContext funct ion

Syntax GetAFCROXVersion(<numpart>)

Parameters <numpart>
Number or numeric expression that tells GetAFCROXVersion whether you want
to know the integer part of the version number, or the decimal part.

Rule: Must be either 0 or 1.

Returns Integer

If <numpart> is 0, GetAFCROXVersion returns the integer (major) component of
the version number.

If <numpart> is 1, GetAFCROXVersion returns the decimal (minor) component of
the version number.

Example The following example determines both parts of the version number of the AFC
library and puts the parts together, interpolating the decimal point where it
belongs:

Dim AFCMajor As Integer, AFCMinor As Integer
Dim AFCTotal as String
AFCMajor = GetAFCROXVersion(0)
AFCMinor = GetAFCROXVersion(1)
' Put the two parts together and prefix some identifying text:
AFCTotal = "AFC Version: " & (AFCMajor) & "." & (AFCMinor)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAppContext function
GetFactoryVersion function
GetOSUserName function
GetROXVersion function
GetServerName function
GetServerUserName function

GetAppContext function
Indicates which Actuate application is currently running.

Syntax GetAppContext

Returns AppContext

You interpret the value that GetAppContext returns depending on whether
GetAppContext is called from a client or a server machine at run time.

On a client, GetAppContext returns the context of the Actuate application being
used—for example, e.Report Designer Professional.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 213

GetAttr funct ion

On a server, GetAppContext returns the context of server, not the context of
Management Console or e.Report Designer Professional.

Table 6-19 shows how Actuate maps the return value from GetAppContext to the
corresponding Actuate application. Other values refer to unsupported products.

Example The following example determines which Actuate application is running at the
time you call GetAppContext:

Dim ApplicationContext As AppContext, MyValue As String

MyValue = "Application Context = "
ApplicationContext = GetAppContext

Select Case ApplicationContext
Case ServerContext

MyValue = MyValue & "Server"
Case DWBContext

MyValue = MyValue & "e.Report Designer Professional"
Case Else

MyValue = MyValue & "unknown context"
End Select

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAFCROXVersion function
GetFactoryVersion function
GetOSUserName function
GetROXVersion function
GetServerName function
GetServerUserName function

GetAttr function
Determines the attributes of a file, directory, or volume.

Syntax GetAttr(<file dir or vol name>)

Table 6-19 Relationships of return values from GetAppContext to Actuate
applications

GetAppContext value Application

DWBContext e.Report Designer Professional (ERDPro)

ServerContext Server

UnknownContext An unknown context

214 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetAttr funct ion

Parameters <file dir or vol name>
String expression that specifies the file, directory, or volume for which you wish
to determine what attributes are set.

Default path: Current drive and directory.

Rules:

■ Must refer to a valid file, directory, or volume.

■ Reference must be unambiguous.

<file dir or vol name> can optionally specify a full path, in which case it has the
following syntax:

[<drive:>][\]<directory>[\<directory>]…(Windows)

[/]<directory>[/<directory>]…(UNIX)

<drive:>
Character, followed by a colon, that specifies the drive (Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory.

Example Assuming Testfile.dat has both the system and read-only attributes set, the
following statement assigns the value 5 (4 + 1) to the variable ATTRIBS:

ATTRIBS = GetAttr("Testfile.dat")

Returns Integer

■ The operating system assigns one or more attributes to each file, directory, and
volume. These attributes indicate whether the item is a normal, read-only,
hidden, or system file; a volume label; a directory; whether it has been
modified since the last backup; or some combination of these.

■ If the file has multiple attributes, the return value will be the bitwise AND of
all the values that apply. For example, a return value of 3 indicates a file is both
read-only and hidden (1 + 2).

■ Table 6-20 shows certain constant names that are defined in Header.bas and
their corresponding return values and attributes. The return value of GetAttr
is the sum of one or more return values. The return values not supported
under UNIX are 0.

Table 6-20 Header.bas constants with their return values and attributes

Return value Constant name File attribute Operating system

0 ATTR_NORMAL Normal Windows, UNIX

1 ATTR_READONLY Read-only Windows, UNIX

2 or 0 ATTR_HIDDEN Hidden Windows

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 215

GetAttr funct ion

Tip To determine—without having to do any arithmetic—whether a file has a
particular, single attribute, use the BAnd operator to perform a bitwise test. If this
statement evaluates to nonzero you know that, whatever other attributes it has,
the file is read-only.

GetAttr("TESTFILE.DAT") BAnd ATTR_READONLY

Example The following Windows example displays a message indicating the attributes of a
given file:

Sub Start()
Dim Attr As Integer, FName As String, Msg As String
Super::Start()
On Error Goto ErrorHandler
' Set file name to check
FName = "C:\Program Files\Actuate11\readme.rtf"
' Determine the file's attributes
Attr = GetAttr(FName)
Msg = "The value returned by GetAttr is: " & Attr
ShowFactoryStatus(Msg)
' Disregard the Archive attribute
If Attr > 7 And Attr <> 16 Then

If Attr BAnd ATTR_ARCHIVE Then
Attr = Attr BAnd BNot ATTR_ARCHIVE

Else
Attr = Attr BOr ATTR_ARCHIVE

End If
End If
' Correlate some attribute codes and code sums to messages
Select Case Attr

Case ATTR_NORMAL
Msg = "Normal"

Case ATTR_READONLY
Msg = "Read-only"

Case ATTR_HIDDEN
Msg = "Hidden"

Case ATTR_HIDDEN + ATTR_READONLY
Msg = "Hidden and Read-only"

4 or 0 ATTR_SYSTEM System file Windows

8 or 0 ATTR_VOLUME Volume label Windows

16 ATTR_DIRECTORY Directory label Windows, UNIX

32 or 0 ATTR_ARCHIVE Changed since
last backup

Windows

Table 6-20 Header.bas constants with their return values and attributes

Return value Constant name File attribute Operating system

216 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetClassID funct ion

Case ATTR_SYSTEM
Msg = "System"

Case ATTR_READONLY + ATTR_SYSTEM
Msg = "Read-only and System"

Case ATTR_HIDDEN + ATTR_SYSTEM
Msg = "Hidden and System"

Case ATTR_READONLY + ATTR_HIDDEN + ATTR_SYSTEM
Msg = "Read-only, Hidden, and System"

Case ATTR_DIRECTORY
Msg = "Directory"

End Select
ShowFactoryStatus(UCase$(FName) & " is a " & Msg & " file.")
Exit Function

ErrorHandler:
Msg = "Sorry, an error occurred. Please change the name or

path "
Msg = Msg & "of the file in this method code and try again."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also FileDateTime function
FileLen function
SetAttr statement

GetClassID function
Returns the ID number that Actuate assigns automatically to all classes. Objects
of the same class have the same ID number.

Syntax GetClassID(<object reference>, <offset>)

Parameters <object reference>
The name of the variable that refers to the object for which you want the ID.

<offset>
An integer that indicates the level of the class hierarchy for which you want the
ID. Must be 0 or a negative number. Specify 0 to return only the class ID, -1 to
return the ID of the classes’ superclass, and so on.

Returns Integer that is the class ID.

Null if <offset> is a positive number or a negative number higher than the class
hierarchy.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 217

GetClassName funct ion

Tips ■ Use GetClassID when you want to check if an object is of a given type without
the overhead of a string compare.

■ To find out an object’s class, use GetClassName.

■ To find out if an object is an instance of a specified class or is an instance of a
subclass of a specified class, use IsKindOf.

Example The following example displays the Class Name and Class ID of the current
component, creates two new label components, then displays the Class Name and
Class ID of each of the new components:

Sub Start()
Dim ClassIDVar, ClassNameVar
Dim MyLabel1 As AcLabelControl, MyLabel2 As AcLabelControl
Dim Msg As String
Super::Start()
ClassIDVar = GetClassID(Me, 0)
ClassNameVar = GetClassName(Me, 0)
Msg = "My Class ID is: " & ClassIDVar
ShowFactoryStatus(Msg)
Msg = "My Class Name is: " & ClassNameVar
ShowFactoryStatus(Msg)

Set MyLabel1 = New AcLabelControl
Set MyLabel2 = New AcLabelControl

Msg = "The Class Name for MyLabel1 is: "
+ & GetClassName(MyLabel1)

ShowFactoryStatus(Msg)
Msg = "Its Class ID is: "

+ & GetClassID(MyLabel1)
ShowFactoryStatus(Msg)
Msg = "The Class Name for MyLabel2 is: "

+ & GetClassName(MyLabel2)
ShowFactoryStatus(Msg)
Msg = "Its Class ID is: " & GetClassID(MyLabel2)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetClassName function
IsKindOf function

GetClassName function
Returns the name of the object’s class.

218 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetClassName funct ion

Syntax GetClassName(<object reference>, <offset>)

Parameters <object reference>
The name of the variable that refers to the object for which you want the class
name.

<offset>
An integer that indicates the level of the class hierarchy for which you want the
class name. Must be 0 or a negative number. Specify 0 to return only the class
name, -1 to return the name of the classes’ superclass, and so on.

Returns String

The name of the class. If the class is nested, the name is the fully qualified name,
for example, MyReport::MyFrame::MyControl.

Null if <offset> is a positive number or a negative number higher than the class
hierarchy.

Tips ■ Use GetClassName to test for a specific class before performing an action.

■ To find out if an object is an instance of a specified class or is an instance of a
subclass of a specified class, use IsKindOf.

Example The following example displays the Class Name and Class ID of the current
component, creates two new label components, then displays the Class Name and
Class ID of each of the new components:

Sub Start()
Dim ClassIDVar, ClassNameVar
Dim MyLabel1 As AcLabelControl, MyLabel2 As AcLabelControl
Dim Msg As String
Super::Start()
ClassIDVar = GetClassID(Me, 0)
ClassNameVar = GetClassName(Me, 0)
Msg = "My Class ID is: " & ClassIDVar
ShowFactoryStatus(Msg)
Msg = "My Class Name is: " & ClassNameVar
ShowFactoryStatus(Msg)

Set MyLabel1 = New AcLabelControl
Set MyLabel2 = New AcLabelControl

Msg = "The Class Name for MyLabel1 is: "
+ & GetClassName(MyLabel1)

ShowFactoryStatus(Msg)
Msg = "Its Class ID is: "

+ & GetClassID(MyLabel1)
ShowFactoryStatus(Msg)
Msg = "The Class Name for MyLabel2 is: "

+ & GetClassName(MyLabel2)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 219

GetCl ipboardText funct ion

ShowFactoryStatus(Msg)
Msg = "Its Class ID is: " & GetClassID(MyLabel2)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetClassID function
IsKindOf function

GetClipboardText function
Returns a text string from the operating environment Clipboard.

Syntax GetClipboardText(<format>)

Parameters <format>
One of the Clipboard formats Actuate Basic recognizes as shown in Table 6-21.

If <format> is omitted, CF_TEXT is assumed.

Returns String

If there is no text string on the Clipboard that matches the expected format, a
zero-length string (““) is returned.

Example The following example places the current date on the Clipboard, then displays
the contents of the Clipboard:

Sub Start()
Dim Msg As String
Super::Start()
On Error Resume Next
Msg = "The Clipboard contains: " & GetClipboardText
ShowFactoryStatus(Msg)
Msg = "Placing today’s date on the clipboard."
ShowFactoryStatus(Msg)
ClearClipboard

Table 6-21 Clipboard formats

Symbolic constant Value Clipboard format

CF_LINK &HBF00 DDE conversation information

CF_TEXT 1 Text

220 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetDisplayHeight funct ion

SetClipboardText(Format$(Date, "dddd, mm/dd/yyyy"))
Msg = GetClipboardText
ShowFactoryStatus("The Clipboard now contains: " & Msg)

End Function

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also ClearClipboard function
SetClipboardText function

GetDisplayHeight function
Returns the height required to display a given text string without truncating it, in
twips.

Can be used to dynamically adjust the height of a container when you have a
large amount of text that might otherwise overflow.

Syntax GetDisplayHeight (<context>, <width>, <theText>, <theFont>, <format>)

Description Different devices display or print fonts slightly differently. This means, for
example, that a visual box filled with text may look correct on the screen, but
incorrect in a printed report because the target device truncates some of the text.

GetDisplayHeight supports calculating exactly how tall the formatted text will be
when a given display or printer device renders it.

Parameters <context>
String expression. Specifies whether to return the height for display, or for the
default printer. Valid values are display and default_printer.

<width>
Integer expression. Specifies the width of the control displaying the text, in twip.
<width> is used to determine the height of the control to display all the text for
this control. GetDisplayHeight assumes that at least one character fits on each
line. Width must be a positive Integer.

<theText>
String expression. The text whose height you want to determine. The string must
not be empty.

<theFont>
AcFont data type.

<format>
AcTextPlacement data type.

Returns Integer

■ The height of the formatted text for the specified device, in twips.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 221

GetDisplayHeight funct ion

■ When negative, an error has occurred. Table 6-22 shows the meaning of the
error codes.

Example The following example determines display height based on given text
parameters:

Sub Start()
Dim myFont As AcFont
Dim myTextPlacement As AcTextPlacement
Dim theText as String
Dim Msg As String
Super::Start()
' Specify font characteristics and text to measure
myFont.FaceName = "Arial"
myFont.Size = 14
myFont.Script = " "
theText = "Text that the display height is being queried for."

Msg = "The required height for the text: " & theText
ShowFactoryStatus(Msg)

Table 6-22 Error codes for GetDisplayHeight

Error code Description

-2 Wrong number of parameters passed

-3 <context> is not a string, or represents a nonsupported context

-4 <width> is not a positive integer

-5 <theText> is not a string, or it is an empty string

-6 <AcFont.FaceName> is an empty string

-7 <AcFont.Size> is not a positive integer

-8 <AcFont.Bold> internal error

-9 <AcFont.Italic> internal error

-10 <AcFont.Underline> internal error

-11 <AcFont.StrikeThrough> internal error

-12 <AcTextPlacement.MultiLine> internal error

-13 <AcTextPlacement.WordWrap> is not 0, 2, or 3

-14 Default printer is selected, but no default printer has been set

-15 Implementation failed to get information on the device

-16 Operation caused an exception

-17 <Font.Script> is not a string or empty

222 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetFactoryVersion funct ion

Msg = "in a control of width 1 inch is "
+ & GetDisplayHeight(
+ "display",OneInch,theText,myFont,myTextPlacement)

ShowFactoryStatus(Msg)
Msg = "in a control of width 2 inches is "

+ & GetDisplayHeight(
+ "display", OneInch*2,theText,myFont,
+ myTextPlacement)

ShowFactoryStatus(Msg)
Msg = "in a control of width 3 inches is "

+ & GetDisplayHeight(
+ "display", OneInch*3, theText, myFont,
+ myTextPlacement)

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

GetFactoryVersion function
Returns either the integer or the decimal component of the version number of the
Factory that the report object executable (.rox) file is using.

Syntax GetFactoryVersion(<numpart>)

Parameters <numpart>
Number or numeric expression that tells GetFactoryVersion whether you want to
know the integer part of the Factory’s version number, or the decimal part.

Rule: Must be either 0 or 1.

Returns Integer

■ If <numpart> is 0, GetFactoryVersion returns the integer (major) component of
the Factory’s version number.

■ If <numpart> is 1, GetFactoryVersion returns the decimal (minor) component
of the Factory’s version number.

Example The following example determines both parts of the version number of the
Factory that the ROX is using and puts the parts together, interpolating the
decimal point where it belongs:

Dim FactVerMajor As Integer, FactVerMinor As Integer
Dim FactVerTotal As String
FactVerMajor = GetFactoryVersion(0)
FactVerMinor = GetFactoryVersion(1)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 223

GetFontAverageCharWidth funct ion

' Put the two parts together and prefix some identifying text:
FactVerTotal = "Factory Version: " & (FactVerMajor) & "." &
+ (FactVerMinor)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAppContext function
GetAFCROXVersion function
GetOSUserName function
GetROXVersion function
GetServerName function
GetServerUserName function

GetFontAverageCharWidth function
Returns the average width (in twips) of a character in the specified font.

Syntax GetFontAverageCharWidth()

Parameters
AcFont data type.

Returns Integer specifying the average width of characters in twips of the font (generally
defined as the width of the letter x). This value does not include the overhang
required for bold or italic characters.

Example The following example overrides the Start method of a dynamic text control. It
uses the average character width to compute the initial size of the control.

Sub Start()
Dim width As Double
Dim fontHeight As Double
' Get the label size
width = GetFontAverageCharWidth(Font) * 20
fontHeight = GetFontDisplayHeight(Font)
Size.width = width
Size.height = fontHeight
Super::Start()

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetFontDisplayHeight function
GetTextWidth function

224 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetFontDisplayHeight funct ion

GetFontDisplayHeight function
Returns the height (in twips) needed to display a character in the specified font.

Syntax GetFontDisplayHeight()

Parameters
AcFont data type.

Returns Integer representing the height (in twips) needed to display a character in the
specified font. A font’s height is the sum of its ascent, descent, and leading area.

Example The following example overrides the Start method of a dynamic text control. It
uses the font display height to compute the initial size of the control.

Sub Start()
Dim width As Double
Dim fontHeight As Double
' Get the label size
width = GetFontAverageCharWidth(Font) * 20
fontHeight = GetFontDisplayHeight(Font)
Size.width = width
Size.height = fontHeight
Super::Start()

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetDisplayHeight function
GetFontAverageCharWidth function

GetHeadline function
Returns the headline associated with the completed request for a report.

Syntax GetHeadline

Returns String

The current text of the headline.

Description Headlines are associated with the completed request for a report.

By default, the headline is set to the value of the Headline parameter that appears
in the Output Options section of the Requester. Use GetHeadline to
programmatically determine the headline text.

To change the headline use SetHeadline, do not change the Headline parameter
itself.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 225

GetJavaExcept ion funct ion

Example The following example overrides Start() on the report root. This code displays the
current headline, sets a new headline, then displays the new headline.

Sub Start()
Super::Start()
' Getting the current headline.
ShowFactoryStatus("Original headline is: " & GetHeadline)
' Setting and displaying the new headline
SetHeadline("New Headline")
ShowFactoryStatus("New headline is: " & GetHeadline)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SetHeadline statement

GetJavaException function
Accesses the last Java exception thrown by the application.

Syntax GetJavaException

Returns A Basic object which is a handle to the Java Exception object if the method
succeeded.

An undefined handle if the call failed.

Example The following example triggers a Java exception and then displays the error:

Sub Start()
Dim javaObj As Object
Dim Msg As String
Super::Start()
On Error Goto HandleError
' Trigger a java exception
Set javaObj = CreateJavaObject("JavaClassName")
javaObj.TryToDoSomething()

HandleError:
' Retrieve error code
Dim errorCode As Integer
errorCode = Err
' If it is a java error, display error string
if errorCode = E_JAVAEXCEPTIONOCCURRED Then

Dim exceptionObj As Object
Set exceptionObj =GetJavaException

226 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetLocaleAttr ibute funct ion

Msg = "Java exception: " & exceptionObj.toString()
ShowFactoryStatus(Msg)

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

GetLocaleAttribute function
Retrieves locale attributes. You can use this information, for example, in
formatting functions and functions that parse strings.

Syntax GetLocaleAttribute (<locale>, <attrib>)

Parameters <locale>
The name of the locale for which to retrieve attributes.

<attrib>
The enum value of the attribute to retrieve:

■ AC_LOCALE_CURRENCY
■ AC_LOCALE_CURRENCY_FORMAT
■ AC_LOCALE_CURRENCY_RADIX
■ AC_LOCALE_CURRENCY_THOUSAND_SEPARATOR
■ AC_LOCALE_DATE_LONG
■ AC_LOCALE_DATE_SEPARATOR
■ AC_LOCALE_DATE_SHORT
■ AC_LOCALE_MONTHS_LONG
■ AC_LOCALE_MONTHS_SHORT
■ AC_LOCALE_NUM_RADIX
■ AC_LOCALE_NUM_THOUSAND_SEPARATOR
■ AC_LOCALE_TIME_AM_STRING
■ AC_LOCALE_TIME_FORMAT
■ AC_LOCALE_TIME_PM_STRING
■ AC_LOCALE_TIME_SEPARATOR
■ AC_LOCALE_WEEKDAYS_LONG
■ AC_LOCALE_WEEKDAYS_SHORT

Returns String

Example The following example returns the names of valid days of the week:

'Parse the numeric string "1.001,99" specified in French
locale

sep1000 = GetLocaleAttribute("fr",
+ AC_LOCALE_NUM_THOUSAND_SEPARATOR)
radix = GetLocaleAttribute("fr", AC_LOCALE_NUM_RADIX)
ParseNumeric("1.001,99", sep1000, radix)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 227

GetLocaleName funct ion

' Get the names of valid days of week in short format
' for the current run-time locale
weekNames = GetLocaleAttributes(GetLocaleName(),
+ AC_LOCALE_ WEEKDAYS_SHORT)
' In the English locale, the following string is returned
' " Mon,Tue,Wed,Thu,Fri,Sat,Sun"

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

GetLocaleName function
Retrieves the name of the current run-time locale.

Syntax GetLocaleName

Description This function retrieves the name of the current run-time locale.

Returns String

Example The following example displays the locale name:

Sub Start()
Super::Start()
' Display message containing locale name
ShowFactoryStatus("The current locale name is: " &

+ GetLocaleName)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

GetObjectIdString function
Returns a unique identifying string for an object within an ROI.

Syntax GetObjectIdString(<object>)

Parameters <object>
The handle or reference that refers to the object of which you want information. It
can be an array reference, expression, or variable.

Returns String representing a unique identifier for the object.

228 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetOSUserName funct ion

GetOSUserName function
Returns the operating system (login) name of the user. For server, returns the
login name of the account running the server.

Syntax GetOSUserName

Returns String

The login name of the user, or the login name of the account running the server.

Example The following example retrieves the user’s login name and puts it in a variable
along with some identifying text:

Dim OSUserName As String
OSUserName = "OS User Name is: " & (GetOSUserName)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAppContext function
GetAFCROXVersion function
GetFactoryVersion function
GetROXVersion function
GetServerName function
GetServerUserName function

GetPId function
Returns the process ID of the Factory.

Syntax GetPId

Returns Integer identifying the process ID of the Factory.

Example The following example uses the process ID to generate a unique temporary file
name. Basic factories are not multithreaded, allowing for unique file names per
process.

Sub Finish()
Dim fileName As String
Dim pId As Integer
Static fileSequence As Integer
' Determine process id
pId = GetPId
' Generate file name. Use a static variable to sequence
' through filenames.
fileSequence = fileSequence + 1

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 229

GetReportContext funct ion

FileName = "TEST" & pId & fileSequence & ".DAT"
ShowFactoryStatus(

+ "File name " & fileName & " has been generated.")
End Sub

GetReportContext function
Returns the value of the global ReportContext variable, which specifies whether
the report is in the factory, viewing, or printing stage of the life cycle.

Syntax GetReportContext

Returns ReportContext

One of the following values defined in Header.bas:

UnknownReportContext
FactoryReportContext
ViewerReportContext
PrintReportContext

Description Use GetReportContext in conjunction with GetAppContext.

Table 6-23 gives some examples of how the GetReportContext and
GetAppContext functions work together to determine which Actuate application
is being used and what the report context is at the time.

Example The following example determines whether the report is running in the View
process:

InViewServer = ((GetReportContext = ViewerReportContext)
+ And (GetAppContext = ServerContext))

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAppContext function

Table 6-23 Examples of how GetReportContent and GetAppContext determine
the Actuate application in use and the report context

If GetAppContext
returns this...

And GetReportContext
returns this... You are in the...

ServerContext ViewerReportContext View process

ServerContext FactoryReportContext Factory server

ServerContext PrintReportContext Factory server

230 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetReportScal ingFactor funct ion

GetReportScalingFactor function
Returns the scaling factor.

Syntax GetReportScalingFactor

Description Use GetReportScalingFactor to retrieve the scaling factor and adjust the size of
the browser scripting control’s rectangle based on the current scaling factor.

When the scaling factor changes, the DHTML converter scales controls on the
report page, but does not scale or change the output of custom browser code.
Make sure that the output of custom browser code can be viewed with different
scaling factors, especially 75% and 100%.

Returns Double

1.0 corresponds to a 100% zoom.

Example The following example shows how to use GetReportScalingFactor to change the
width and height of the HTML element produced by the custom browser code:

Dim dhtmlCode As String
Dim zoom As Double
zoom = GetReportScalingFactor
dhtmlCode = "<SPACER TYPE=""block"" HEIGHT=" + Str$(150 * zoom)
dhtmlCode = dhtmlCode + " WIDTH=" + Str$(250 * zoom) + ">"
BrowserCode = dhtmlCode

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

GetROXVersion function
Returns either the integer or the decimal component of the version number of the
report object executable (.rox) file.

Syntax GetROXVersion(<numpart>)

Parameters <numpart>
Number or numeric expression that tells GetROXVersion whether you want to
know the integer part of the version number, or the decimal part.

Rule: Must be either 0 or 1.

Returns Integer

■ If <numpart> is 0, GetROXVersion returns the integer (major) component of
the version number.

■ If <numpart> is 1, GetROXVersion returns the decimal (minor) component of
the version number.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 231

GetSearchFormats funct ion

Example The following example determines both parts of the version number of the ROX
and puts the parts together, interpolating the decimal point where it belongs:

Dim ROXMajor As Integer, ROXMinor As Integer
Dim ROXTotal As Srting
ROXMajor = GetROXVersion(0)
ROXMinor = GetROXVersion(1)
' Put the two parts together and prefix some identifying text:
ROXTotal = "ROX Version: " & (ROXMajor) & "." & (ROXMinor)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAFCROXVersion function
GetAppContext function
GetFactoryVersion function
GetOSUserName function
GetServerName function
GetServerUserName function

GetSearchFormats function
Retrieves a list of supported DHTML search formats, places the supported
formats into a string array, and returns the number of elements in the string array.

Syntax GetSearchFormats(<formatArray>()) As Integer

Parameters <formatArray>
String array to contain the list of supported search formats. The search formats
determine how the DHTML viewing environment presents search results.

Returns The number of elements in the array.

The supported formats that GetSearchFormats returns depend upon the formats
available in a particular viewing environment. For example, the following
formats might be supported:

■ XMLDisplay (DISPLAY)

■ Download formats:

■ CSV

■ TSV

■ ANALYSIS

Example The following example retrieves a list of supported formats:

232 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetServerName funct ion

Function BrowserCode() As String
Dim fmtArray() As String
Dim count As Integer
Dim i As Integer
Dim DhtmlStr As String

DhtmlStr = "<SELECT NAME='search_format'>"
count = GetSearchPageFormats(fmtArray)
For i = 1 To count

DhtmlStr = DhtmlStr + "<OPTION VALUE=" + fmtArray(i) + ">"
DhtmlStr = DhtmlStr + fmtArray(i) + "</OPTION>"

Next i
DhtmlStr = DhtmlStr + "</SELECT>"
BrowserCode = dhtmlStr

End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsSearchFormatSupported function

GetServerName function
Returns the name of the machine on which iServer is running.

Syntax GetServerName

Returns String

Example The following example displays in a control the name of the machine on which
iServer is running:

Dim ServerName as String
ServerName = "Server Name: " & (GetServerName)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAFCROXVersion function
GetAppContext function
GetFactoryVersion function
GetOSUserName function
GetROXVersion function
GetServerUserName function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 233

GetServerUserName funct ion

GetServerUserName function
Returns the login name of the user logged into iServer.

Syntax GetServerUserName

Returns String

Example The following example displays the login name of the user logged into iServer:

Sub Start()
Dim ServerUserName as String
ServerUserName = "Server User Name: " & GetServerUserName
ShowFactoryStatus ServerUserName

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetAFCROXVersion function
GetAppContext function
GetFactoryVersion function
GetOSUserName function
GetROXVersion function
GetServerName function

GetTextWidth function
Returns the width of a text string in twips.

Syntax GetTextWidth(<text>,)

Parameters <text>
The text string whose length is to be calculated.

AcFont data type.

Returns The integer width of the text in twips.

Example The following example overrides the Start method of a dynamic text control. It
uses the text width to compute the initial size of the control.

Sub Start()
Dim width As Double
Dim fontHeight As Double
Dim text As String

234 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetUserAgentStr ing funct ion

' Get the label size
text = "Testing text"
width = GetTextWidth(text, Font)
fontHeight = GetFontDisplayHeight(Font)
Size.width = width
Size.height = fontHeight
Super::Start()

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetDisplayHeight function
GetFontAverageCharWidth function

GetUserAgentString function
Returns the unparsed user agent string a web browser sends with every HTTP
request.

Syntax GetUserAgentString

Returns String

Example The following example generates different output for Microsoft Internet Explorer
and Mozilla Firefox:

Function GetText() As String
Dim str As String
str = GetUserAgentString
If Len(str) = 0 Then
GetText = "…Not in a web browser."

Else
If InStr(str, "MSIE") = 0 Then

'Not MSIE.
GetText = str + "…In Firefox"

Else
GetText = str + "…In MSIE"

End If
End If

End Function

GetValue function
Finds the value of a variable in an object dynamically at run time.

Syntax GetValue(<object reference>, <variable name>|<index>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 235

GetValue funct ion

Parameters <object reference>
AnyClass expression that specifies an object which has a variable whose value
you want to find.

<variable name>
String expression that specifies the name of the variable whose value you want to
find.

<index>
Integer expression that specifies the index of the variable whose value you want
to find.

Indexing starts at 1. The index order puts all superclass variables before those
defined in a subclass.

Within a given class, the index order of variables is the order in which the
variables are defined in the Actuate Basic source. If e.Report Designer
Professional generates the Basic source for a class, it lists the variables in
alphabetical order.

Description You typically use GetValue in conjunction with GetVariableCount,
GetVariableName, GetValueType, and SetValue to work with variables in objects
whose types you do not know in advance.

Returns Variant

The value of the specified variable if it exists. If the specified variable does not
exist, GetValue returns Null. It is not an error if the variable does not exist.

Tip You cannot use the value GetValue returns to determine whether or not the
specified variable exists by checking whether the returned value is Null. This is
because GetValue will also return Null if the variable exists but has a value of
Null. Instead, use GetValueType to check whether the variable exists.

If you know the class of the object, you should use the following technique to
provide improved performance and compile-time error checking. You can access
the variables in a class by declaring an object variable reference that points to an
instance of that class, then access the variables through that object reference
variable. For example, sometimes you are given an object reference variable that
points to a base class, such as AcDataRow, but you are interested in a derived
class, such as CustomerRow. You declare a temporary object reference variable of
the derived class and set it equal to the reference to the base class as shown in the
following example:

Sub OnRow(row as AcDataRow)
Dim custRow As CustomerRow
Set custRow = row
MyVariable = custRow.CustomerName

End Sub

Example The following example shows how to use GetVariableCount, GetVariableName,
GetValueType, GetValue, and SetValue together:

236 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetValueType funct ion

' Simulate the behavior of the CopyInstance statement,
' but only copy integers > 0 whose names begin "Z_"
Dim vCount As Integer
Dim vName As String
Dim vType As Integer
Dim vValue As Variant
Dim i As Integer
vCount = GetVariableCount(fromObject)
For i = 1 To vCount

vName = GetVariableName(fromObject, i)
vType = GetValueType(fromObject, vName)
If (Left(vName, 2) = "Z_") And (vType = V_INTEGER) Then

vValue = GetValue(fromObject, vName)
If (vValue > 0) Then

SetValue(toObject, vName, vValue)
End If

End If
Next i

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetValueType function
GetVariableCount function
GetVariableName function
SetValue function

GetValueType function
Finds the data type of a variable in an object dynamically at run time.

Syntax GetValueType(<object reference>, <variable name>|<index>)

Parameters <object reference>
AnyClass expression that specifies an object which has a variable whose data type
you want to find.

<variable name>
String expression that specifies the name of the variable whose data type you
want to find.

<index>
Integer expression that specifies the index of the variable whose data type you
want to find.

Indexing starts at 1. The index order puts all superclass variables before those
defined in a subclass. Within a given class, the index order of variables is the
order in which the variables are defined in the Actuate Basic source. If e.Report

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 237

GetValueType funct ion

Designer Professional generates the Basic source for a class, it lists the variables in
alphabetical order.

Description You typically use GetValueType in conjunction with GetVariableCount,
GetVariableName, GetValue, and SetValue to work with variables in objects
whose types you do not know in advance.

Returns Integer indicating the data type of the specified variable, if it exists. If the
specified variable does not exist, GetValueType returns Null. It is not an error if
the variable does not exist.

Table 6-24 shows the values VarType returns, the Variant data types they indicate,
and the names of the corresponding symbolic constants stored in Header.bas.

Tip Test the value GetValueType returns with the IsNull function to determine
whether or not the specified variable exists. For example:

Dim valueType As Integer
valueType = GetValueType(anObject, "SomeVariable")
Assert(Not IsNull(valueType), "SomeVariable not found!")

Example The following example shows how to use GetVariableCount, GetVariableName,
GetValueType, GetValue, and SetValue together:

' Simulate the behavior of the CopyInstance statement,
' but only copy integers > 0 whose names begin "Z_"
Dim vCount As Integer
Dim vName As String
Dim vType As Integer
Dim vValue As Variant
Dim i As Integer

Table 6-24 VarType values with their Variant data types and symbolic
constants

GetValueType returns Data type of variable Symbolic constant

0 Empty V_EMPTY

1 Null V_NULL

2 Integer V_INTEGER

3 Long V_LONG

4 Single V_SINGLE

5 Double V_DOUBLE

6 Currency V_CURRENCY

7 Date V_DATE

8 String V_STRING

238 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetVariableCount funct ion

vCount = GetVariableCount(fromObject)
For i = 1 To vCount

vName = GetVariableName(fromObject, i)
vType = GetValueType(fromObject, vName)
If (Left(vName, 2) = "Z_") And (vType = V_INTEGER) Then

vValue = GetValue(fromObject, vName)
If (vValue > 0) Then

SetValue(toObject, vName, vValue)
End If

End If
Next i

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetValue function
GetVariableCount function
GetVariableName function
SetValue function

GetVariableCount function
Returns the number of variables in an instance. Used in conjunction with
GetVariableName.

Syntax GetVariableCount(<object reference>)

Parameters <object reference>
Any class expression. An object variable that refers to the object that has the
variables you want to count.

Indexing of variables starts at 1. The index order puts all superclass variables
before those defined in a subclass.

Within a given class, the index order of variables is the order in which the
variables are defined in the Actuate Basic source. If Actuate generates the Basic
source, as is standard for a data row, then Actuate lists the variables in
alphabetical order.

Returns Integer

Tip Use GetVariableName and GetVariableCount to loop over all the variables in an
instance, and get both the variables’ names and values. You can write highly
customized reports, or general purpose libraries using these functions.

Example 1 The following example shows how to use GetVariableCount, GetVariableName,
GetValueType, GetValue, and SetValue together:

' Simulate the behavior of the CopyInstance statement,
' but only copy integers > 0 whose names begin "Z_"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 239

GetVariableCount funct ion

Dim vCount As Integer
Dim vName As String
Dim vType As Integer
Dim vValue As Variant
Dim i As Integer
vCount = GetVariableCount(fromObject)
For i = 1 To vCount

vName = GetVariableName(fromObject, i)
vType = GetValueType(fromObject, vName)
If (Left(vName, 2) = "Z_") And (vType = V_INTEGER) Then

vValue = GetValue(fromObject, vName)
If (vValue > 0) Then

SetValue(toObject, vName, vValue)
End If

End If
Next i

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Example 2 The following example retrieves the count of members in a local class. In it, the
New() method of a data row component has been overridden. The method
instantiates the parent class and then subtracts the member count of the parent
class from the member count of the current class.

Sub New()
Super::New()
' Count local members of a class by instantiating
' a parent class and then subtracting the count of
' those members from the count of the local members.
Static localCount As Variant
If IsEmpty(localCount) Then

localCount = 0
Dim r As AcDataRow
Set r = New AcDataRow
Dim parentCount As Integer
parentCount = GetVariableCount(r)
Set r = New MyDataRow
localCount = GetVariableCount(r) - parentCount
Set r = Nothing

End If
End Sub

Example 3 The following example retrieves the index of the first local variable in a data row
class:

Sub New()
Super::New()

240 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetVariableName funct ion

' Compute the index of the first local variable in a
' data row subclassed from AcDataRow.
Static firstRowVariableIndex As Integer
if (firstRowVariableIndex = 0) Then

Dim r As AcDataRow
Set r = New AcDataRow
firstRowVariableIndex = GetVariableCount(r) + 1
Set r = Nothing

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetValue function
GetValueType function
GetVariableName function
SetValue function

GetVariableName function
Returns the name of the variable at a given index.

Syntax GetVariableName(<object reference>, <index>)

Parameters <object reference>
Any class expression. An object variable that refers to the object that has the
variable whose name you want to find.

<index>
Integer that specifies the index of a variable.

Indexing starts at 1. The index order puts all superclass variables before those
defined in a subclass.

Within a given class, the index order of variables is the order in which the
variables are defined in the Actuate Basic source. If Actuate generates the Basic
source, as is standard for a data row, then Actuate lists the variables in
alphabetical order.

Returns String

Tip Use GetVariableName and GetVariableCount to loop over all the variables in an
instance, and get both the variables’ names and values. You can write highly
customized reports or general purpose libraries using these functions.

Example The following example shows how to use GetVariableCount, GetVariableName,
GetValueType, GetValue, and SetValue together:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 241

GetViewPageFormats funct ion

' Simulate the behavior of the CopyInstance statement,
' but only copy integers > 0 whose names begin "Z_"
Dim vCount As Integer
Dim vName As String
Dim vType As Integer
Dim vValue As Variant
Dim i As Integer
vCount = GetVariableCount(fromObject)
For i = 1 To vCount

vName = GetVariableName(fromObject, i)
vType = GetValueType(fromObject, vName)
If (Left(vName, 2) = "Z_") And (vType = V_INTEGER) Then

vValue = GetValue(fromObject, vName)
If (vValue > 0) Then

SetValue(toObject, vName, vValue)
End If

End If
Next i

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetValue function
GetValueType function
GetVariableCount function
SetValue function

GetViewPageFormats function
Retrieves a list of supported DHTML viewing formats, places the supported
viewing formats into a string array, and returns the number of elements in the
string array.

Syntax GetViewPageFormats(<formatArray>)

Parameters <formatArray>
String array to contain the list of supported DHTML viewing formats. The
viewing formats determine how the DHTML viewing environment presents a
report.

Returns The number of elements in the array.

The supported viewing formats that GetViewPageFormats returns depend upon
the viewing formats available in a particular viewing environment. For example,

242 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetVolumeName funct ion

your DHTML viewing environment might support the following viewing
formats:

■ XMLDisplay

■ XMLCompressedDisplay

■ DHTML

■ DHTMLLong

■ DHTMLRaw

■ PDF

The viewing formats are display formats. Formats such as CSS and XMLStyle
might be supported, but are not display formats. The GetViewPageFormats
function returns only display formats.

You can use GetViewPageFormats to dynamically build a view page URL such as
?ViewPage&format=PDF.

Example The following example retrieves a list of supported viewing formats:

Function BrowserCode() As String
Dim formatArray() As String
Dim count As Integer
Dim i As Integer
Dim DhtmlStr As String

DhtmlStr = "<SELECT NAME='view_format'>"
count = GetViewPageFormats(formatArray)
For i = 1 To count

DhtmlStr = DhtmlStr + "<OPTION VALUE=" + formatArray(i) +
+ ">"

DhtmlStr = DhtmlStr + formatArray(i) + "</OPTION>"
Next i
DhtmlStr = DhtmlStr + "</SELECT>"
BrowserCode = dhtmlStr

End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsViewPageFormatSupported function

GetVolumeName function
Retrieves the name of the Encyclopedia volume on which the file is stored.

Syntax GetVolumeName

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 243

Global statement

Description This function retrieves the name of the Encyclopedia volume on which the file is
stored.

Returns If the file is stored in the Encyclopedia, the name of the Encyclopedia volume.

If the file is not stored in the Encyclopedia, an empty string.

Example The following example shows how to use GetVolumeName. To use this example,
create an empty report named ShowVolumeName. Override the report’s Start()
method and paste the following code into the method editor:

Sub Start()
Super::Start()
ShowFactoryStatus("Volume is: " & GetVolumeName)

End Sub

Run this report from e.Report Designer Professional to produce the following
output in the Output window:

Running…
Starting…
Generating ShowVolumeName.roi …
Volume is:
Finishing…
Idle.

Publish the report to iServer. In this example, the Encyclopedia volume is named
seamore. Run the report from Actuate Management Console or Actuate
Information Console to produce the following output in Job Status messages:

Starting…
Generating rotp:/ShowVolumeName.roi;0 …
Volume is: seamore
Finishing…
Headline:
Job completed.

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also ShowFactoryStatus statement

Global statement
Declares and allocates memory for variables, and declares the variables to be
available to all procedures in all modules.

Syntax Global <variable name> [([<subscripts>])] [As <type>] [, <variable name>
[([<subscripts>])] [As <type>]]…

244 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Global statement

Parameters <variable name>
A name you create for the new variable.

<subscripts>
Each <subscripts> argument specifies the number of elements in a dimension.
The number of <subscripts> arguments specifies the number of dimensions in the
array.

Array dimensions using the following syntax:

[<lower>] To <upper>],[<lower>] To <upper>]…

Rules for <subscripts>:

■ If you do not specify <subscripts> between parentheses, Actuate Basic
declares a dynamic array.

■ <lower> and <upper> can range from -32,768 to 32,767 inclusive.

■ <lower> must always be less than <upper>.

■ Use no more than 60 dimensions in a Global statement.

■ Do not later use ReDim to declare more than 8 dimensions for a dynamic array
you declared with Global.

Examples The statements within the following Declare…End Declare block are equivalent if
you do not use Option Base:

Declare
Global P(7,5)
Global P(0 to 7, 0 to 5)
Global P(7, 0 to 5)

End Declare

The following example declares a dynamic array:

Global TestArray()

As <type>
Specifies a data type or class for the variable. If you specify a class, the variable
can hold a reference to an instance of that class or descendant classes.

Rule for As <type>: If you do not specify As <type>, Actuate Basic uses the data
type you declared with Dim or defaults to a Variant.

Rule Use Global within a Declare…End Declare block in your .bas source file.

Tips ■ To avoid assigning incorrect variable types, use the As clause to declare
variables.

■ To create a dynamic array with more than eight dimensions, declare it with
ReDim, not Global or Dim.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 245

Global statement

■ Use global variables sparingly; declare variables in local scope if at all
possible. Global variables are most useful when values must be shared or
accessed by several tasks. Adding a lot of global variables makes debugging
more complicated; in addition, variables with global scope must be kept in
memory while the application is running.

■ To avoid debugging problems, note that variables declared with Global are
automatically initialized as shown in Table 6-25.

To initialize one or more of your global variables to some default value (other
than zero), write a procedure that initializes the variables, then call that procedure
from the OnStartViewer() method of the report.

Example The following Declare statement uses Global to declare two variables, TestArray
and PrintFlag. TestArray is a global dynamic array variable. PrintFlag is a global
integer variable. Several parts of the application check PrintFlag to determine
whether a print action has been completed.

To use the following example, paste the Declare block and Sub block at or near
the beginning of your Actuate Basic code module (.bas) file:

Declare
' Global dynamic array
Global TestArray()
' Global integer variable
Global PrintFlag as Integer

End Declare

Sub LoadGlobalArray()
Dim I As Integer, Size As Integer, Msg As String

' First check if the global array has already been printed.
If PrintFlag Then

Msg = "That information has already been printed."
ShowFactoryStatus(Msg)

Table 6-25 Initialization of variables that are declared with Global

Type Initialized as

Numeric 0

Variant Empty

Variable-length strings Zero-length String

CPointer Null

User-defined Separate variables

Object or Class Nothing (before Set)

246 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GoTo statement

Else
' Otherwise, set up TestArray for printing
Size = Int(10 * Rnd + 1)
ReDim TestArray(Size)
For I = 1 to Size

TestArray(I) = Int(10 * Rnd + 1)
Msg = TestArray(I)
ShowFactoryStatus(Msg)

Next I
' Set print flag to True to notify the whole application
PrintFlag = True

End If
End Sub

Paste the following line into the Start() method of a label or other component in
the method editor:

LoadGlobalArray

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Const statement
Dim statement
GetAFCROXVersion function
GetAppContext function
GetFactoryVersion function
GetOSUserName function
GetROXVersion function
GetServerUserName function
Option Base statement
ReDim statement
Static statement
Type…End Type statement

GoTo statement
Branches to a specified line within a procedure unconditionally and without
returning to the calling statement.

Syntax GoTo { <line label> | <line number> }

Parameters <line label>
The name of any existing program label that marks the statement to execute next.

Rules for setting up <line label>:

■ Must begin with an alphabetic character and end with a colon.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 247

GoTo statement

■ Must not be an Actuate Basic keyword.

■ Must be unique to the module in which it appears.

■ Must be the first non-blank characters on the line.

■ Is not case-sensitive.

Example Sub Start()
Super::Start()
' Using Goto with a line label
On Error Goto MyErrorHandler
…
Exit Sub
' The line label

MyErrorHandler:
…

End Sub

<line number>
The number of any program line that marks the statement to execute next.

Rules for setting up <line number>:

■ Must consist entirely of decimal digits (0 through 9).

■ Must not end with a colon.

■ Must be unique to the module in which it appears.

■ Must not be greater than 2,147,483,647 if you intend to use the Erl function.

■ Can begin in any column, but must be the first non-blank character on the line.

Example Sub Start()
500 Dim X, Y, Z
505 Super::Start()
' Set up error handler
510 On Error GoTo 550
520 Y = 1
'Now cause division by zero error:
530 X = Y / Z
540 Exit Sub
' Error handler
550 ShowFactoryStatus("Error occurred at line " & Erl)
560 Resume Next

End Sub

Rule GoTo can branch only to lines that exist within the procedure in which it appears.

Tips ■ Using GoTo in your code makes it difficult to understand and debug. To avoid
confusion, use GoTo rarely. Instead, use more structured control statements,

248 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Hex, Hex$ funct ions

such as Do…Loop, For…Next, If…Then…Else, and Select Case, or define
Function and Sub procedures.

■ Evaluate Boolean variables by using the keywords True or False.

Example The following example uses GoTo to branch around a subroutine:

Sub Start()
Dim UserNum as Integer, HalfNum As Double
Super::Start()
HalfNum = 0
UserNum = Int(255 * Rnd + 1)
' Branch around subroutine
GoTo ThisPlusColon
ShowFactoryStatus("This message never appears.")

Routine:
' GoTo detours around this subroutine
HalfNum = UserNum / 2

ThisPlusColon:
ShowFactoryStatus("UserNum is: " & UserNum

+ & ". HalfNum is still: " & HalfNum)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Do…Loop statement
For…Next statement
Function…End Function statement
If…Then…Else statement
Select Case statement
Sub…End Sub statement

Hex, Hex$ functions
Converts a numeric expression from decimal to hexadecimal notation, and from
numeric to string.

Syntax Hex(<numeric expression>)

Hex$(<numeric expression>)

Parameters <numeric expression>
Numeric expression to be converted from decimal to hexadecimal notation.

Examples The following statements are equivalent. Each returns &H010, which is the full
form of the hexadecimal equivalent of decimal number 16.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 249

Hex, Hex$ funct ions

"&H" & Hex$(16)
"&H" & Hex$(2*8)

In the following example, the first statement returns decimal value 32, and the
second statement returns decimal value 37:

("&H" & Hex$(16)) * 2
Hex$(16) * 2 + 17

Returns Hex: Variant
Hex$: String

■ Hex[$] rounds <numeric expression> to the nearest whole number before
evaluating it.

■ If <numeric expression> evaluates to Null, Hex[$] returns Null.

■ If the data type of <numeric expression> is Integer, Variant of VarType 2
(Integer), or Variant of VarType 0 (Empty), Hex[$] returns up to four
hexadecimal characters.

■ If <numeric expression> is of any other numeric or Variant data type, Hex[$]
returns up to eight hexadecimal characters.

Tips ■ To represent a hexadecimal number directly, precede a number in the correct
range with the radical prefix &H. The valid range for hex numbers is &H0 to
&HFFFFFFFF. For example, use &H010 * 2 to generate the decimal value 32,
&H010 is hexadecimal notation for decimal value 16.

■ To generate the full hexadecimal representation of <numeric expression>,
supply the radical prefix &H, because Hex[$] does not return that component.

■ To ensure correct results when you assign the output of Hex to a variable, be
sure the variable is of type Variant.

Example The following example generates a decimal number, then uses Hex[$] to convert
that number to hexadecimal notation:

Sub Start()
Dim Msg, Num
Super::Start()
' Generate a number
Num = 255 * Rnd + 1
Msg = Num & " in decimal notation is &H"

+ & Hex$(Num) & " in hexadecimal notation."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Oct, Oct$ functions
Val function

250 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Hour funct ion

Hour function
Returns the hour of the day as an integer from 0 (midnight) to 23 (11:00 P.M.),
inclusive, based on a specified date expression.

Syntax Hour(<date expression>)

Parameters <date expression>
Date expression, or any numeric or string expression that can be interpreted as a
date, a time, or both a date and a time:

■ Can be a string expression such as November 12, 1982 8:30 P.M., Nov. 12, 1982
08:30 PM, 11/12/82 8:30PM, 08:30pm, or any other string that can be
interpreted as a date or both a date and a time in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date or both a date and a time in the valid range.

■ For date serial numbers, the integer component to the left of the decimal
represents the date itself while the fractional component to the right of the
decimal represents the time of day on that date, where January 1, 1900, at
precisely noon has the date serial number 2.5, and negative numbers represent
dates prior to December 30, 1899 (0).

Default if no time specified: 0

Rules:

■ If <date expression> includes a date, it must be a valid date, even though
Hour does not return a date. A valid date is any date in the range January 1,
100 through December 31, 9999, inclusive, expressed in one of the standard
date formats.

■ If <date expression> includes a time, it must be in the range 00:00:00 (12:00:00
A.M.) through 23:59:59 (11:59:59 P.M.), in either 12- or 24-hour notation.

■ If <date expression> is a numeric expression, it must be in the range
-657,434 to +2,958,465, inclusive.

■ If <date expression> is a variable containing a date serial number, the variable
be explicitly declared as one of the numeric types.

■ <date expression> is parsed according to the formatting rules of the current
run-time locale.

Examples The following statements are equivalent. Each assigns 14 to the variable
UserHour.

UserHour = Hour("6/7/64 2:35pm")
UserHour = Hour("14:35")

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 251

Hour funct ion

UserHour = Hour("June 7, 1964 2:35 PM")
UserHour = Hour("Jun 7, 1964") + 14
UserHour = Hour(23535.6076)
UserHour = Hour(0.6076)

Returns Integer

■ If <date expression> cannot be evaluated to a date, Hour returns Null.
Example:

Hour("This is not a date.") returns Null

■ If <date expression> fails to include all date components, such as day, month,
and year, Hour returns Null.
Examples:

Hour("Nov 12, 1982 7:11 AM") returns 7, but
Hour("Nov 1982 7:11 AM") returns Null

■ If <date expression> is Null, Hour returns Null.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, see
Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Example The following example displays the number of hours, minutes, and seconds
remaining until midnight:

Sub Start()
Dim HrDiff As Integer, MinDiff As Integer, SecDiff As Integer
Dim RightNow As Double, Midnight As Double
Dim TotalDiff As Double, TotalMinDiff As Double
Dim TotalSecDiff As Double, Msg As String

252 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Hour funct ion

Super::Start()
Midnight = TimeValue("23:59:59")
' Get current time
RightNow = Now
' Get diffs from midnight
HrDiff = Hour(Midnight) - Hour(RightNow)
MinDiff = Minute(Midnight) - Minute(RightNow)
SecDiff = Second(Midnight) - Second(RightNow) + 1

' Restate seconds and minutes if necessary
If SecDiff = 60 Then

' Add 1 to minute
MinDiff = MinDiff + 1
' And set 0 seconds
SecDiff = 0

End If

If MinDiff = 60 Then
' Add 1 to hour
HrDiff = HrDiff + 1
' And set 0 minutes
MinDiff = 0

End If
' Now get totals
TotalMinDiff = (HrDiff * 60) + MinDiff
TotalSecDiff = (TotalMinDiff * 60) + SecDiff
TotalDiff = TimeSerial(HrDiff, MinDiff, SecDiff)

' Prepare msg for display
Msg = "There are a total of "

+ & Format(TotalSecDiff, "#,##0")
+ & " seconds until midnight. That translates to "
+ & HrDiff & " hours, "
+ & MinDiff & " minutes, and "
+ & SecDiff & " seconds. "
+ & "In standard time notation, it becomes "

' Remember not to use "mm" for minutes! m is for month.
Msg = Msg & Format(TotalDiff, "hh:nn:ss") & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Day function
Minute function
Month function
Now function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 253

I f…Then…Else statement

Second function
Time, Time$ functions
Weekday function
Year function

If…Then…Else statement
Executes an instruction or block of instructions based on a condition or series of
conditions.

Syntax Single-line If…Then…Else statement

If <condition> Then <then-statement> Else <else-statement>

Block, multiple-line If…Then…Else statement

If <condition> Then

<then-statement>

[[ElseIf <condition> Then

<then-statement>]]

[Else

[<else-statement>]]]

End If

Parameters <condition>
A numeric or string expression that can be evaluated and that determines
whether to execute the associated <statements>. When <condition> evaluates to
zero or Null, the condition is False. Otherwise, <condition> is True.

<then-statement>, <else-statement>
One or more Actuate Basic expressions which can include nested If…Then…Else
statements. The <then-statement> executes if the preceding <condition> is true.
The <else-statement> executes if all previous <conditions> are False. Only one
block of <statements> is executed in an If…Then…Else statement: the block of
statements following the first <condition> found to be true, or, if no <condition>
is found to be true, the <else-statement> block.

If
Keyword that begins every If…Then…Else statement and precedes the first
<condition> to be tested.

Then
Keyword that separates <condition> from <then-statement> in an If…Then…Else
statement. When <condition> evaluates to True, the <then-statement> is

254 P r o g r a m m i n g w i t h A c t u a t e B a s i c

I f…Then…Else statement

executed. When <condition> evaluates to False, the <then-statement> is ignored,
and the program execution tests the next <condition> that it finds.

Else
A keyword that tells the program what to do when all previous conditions are
False.

ElseIf
Keyword that begins an alternative <condition> to be evaluated when the
previous <condition> is false. You can use multiple ElseIf clauses. (Tip: if you
have several ElseIf clauses, consider using a Select Case statement instead.)
Actuate Basic evaluates each ElseIf <condition> in turn, but only until the first
true one is encountered. When an ElseIf <condition> evaluates to true, its <then-
statements> are executed and control resumes after End If.

End If
Keyword that signals the end of an If…Then…Else statement. A multi-line block
If…Then…Else statement must be closed with End If. It is not required for a
single-line If…Then…Else statement.

Rule: If, Else, ElseIf, and End If must be the first statement on a line. Else, ElseIf,
and End If can be preceded by a line number or a line label.

Tip It is good programming practice to evaluate Boolean variables by using the
keywords True or False instead of by inspecting their content for a nonzero (True)
or zero (False) numeric value.

Example The following example generates a number between 1 and 10000. Then it returns
the number of digits in the number.

Sub Start()
Dim UserNum As Integer, NumDigits As Integer
Dim Msg As String, Unit As String
Super::Start()
UserNum = Int(10000 * Rnd + 1)
If UserNum < 10 Then
' 1 digit

NumDigits = 1
ElseIf UserNum < 100 Then

' 2 digits
NumDigits = 2

ElseIf UserNum < 1000 Then
' 3 digits
NumDigits = 3

ElseIf UserNum < 10000 Then
' 4 digits
NumDigits = 4

Else

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 255

I I f funct ion

' Prepare msg if none of our conditions was met
Msg = "Sorry, the number " & userNum & " is too high."

End If
' Prepare a msg for display if at least one condition was met
If UserNum < 10000 Then

If NumDigits > 1 Then
Unit = " digits."

Else
Unit = " digit."

End If
Msg = "The number " & userNum & " has " & NumDigits & Unit

End If
' Display message
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also End statement
Exit statement
Select Case statement

IIf function
Evaluates an expression and returns one of two supplied values; if the expression
that is the first argument is true, IIf returns the second argument, if false, IIf
returns the third.

All three arguments must be valid. That is, none can generate an error since all
three are always evaluated whether <condition> is True or False.

Syntax IIf(<condition>, <value if true>, <value if false>)

Parameters <condition>
Numeric or string expression to be evaluated.

<value if true>
Numeric or string expression that specifies the value or expression to return if
<condition> is true.

<value if false>
Numeric or string expression that specifies the value or expression to return if
<condition> is false.

Example The following statement assigns the double-precision value 112.335577 to the
variable, ValidMsg, if the variable contains a value less than 5. It assigns the string

256 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Input statement

expression: Sorry, invalid response, if the value of UserAns is greater than or
equal to 5.

ValidMsg = IIf(UserAns < 5, 112.335577,
+ "Sorry, invalid response")

Returns Same type as that of <value if true> or <value if false>, depending on which is
returned.

Example The following example finds the day of the week and displays an appropriate
message:

Sub Start()
Dim TodaysDay As Integer, ValidMsg As String
Super::Start()
TodaysDay = Weekday(Now)
ValidMsg =

+ IIf(TodaysDay = 1 Or TodaysDay = 7, "Weekend!", "Work day")
ShowFactoryStatus(ValidMsg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also If…Then…Else statement
Select Case statement

Input statement
Reads data from a sequential file and assigns the data to variables.

Syntax Input #<open file number>, <variable list>

Description The Input statement places each data item in the file into one or more of the
variables in <variable list>. Data items in the file must appear in the same order
as the variables in <variable list> and each variable in <variable list> must be of
the same data type as the target data item.

The Input statement reads each data item and assigns it to a corresponding
variable according to its data type. Table 6-26 summarizes the behavior of Input.

Table 6-26 Behavior of Input

Variable in
<variable list> Behavior of Input

Numeric Assumes first nonspace character it encounters to be the
start of a number. Assumes the first space, comma, or end-
of-line it encounters to be the end of a number. Inputs blank
lines and data of an invalid data type as zero.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 257

Input statement

Table 6-27 summarizes how Input determines what Variant type to assign to
Variants in <variable list>.

The following rules apply to Input:

■ Input generates an error if it reaches the end of file while it is inputting a data
item.

■ Data items in a file should appear in the same order as the variables in
<variable list> to which they correspond.

Parameters <open file number>
Numeric expression that is the file number assigned by Open statement when the
target file was opened.

Rules for <open file number>:

■ The number sign (#) preceding the file number is required.

String Assumes the first nonspace character it encounters to be the
start of a character string. If that character is a double quote
("), it ignores the mark itself and inputs all the succeeding
characters until it encounters the next double quote,
including spaces and commas. If string data are not
delimited by double quotes, it assumes the first line, space,
or end-of-line character to be the end of the string. Inputs
blank lines as zero-length strings.

Table 6-27 Types of input data and the corresponding Variant types

Input data Variant type assigned

No data, but only
a delimiting
comma, or a
blank line.

VarType 0 (Empty)

The literal Null. VarType 1 (Null)

Valid number. An appropriate numeric Variant (types 2 through 6)

Date literal. A
date of the form
yyyy-mm-dd
hh:nn:ss).

VarType 7 (Date)
Tip: When either the date or time portion is present, the
other portion is optional.

None of the
above.

VarType 8 (String)

Table 6-26 Behavior of Input

Variable in
<variable list> Behavior of Input

258 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Input statement

■ The file must be open.

<variable list>
Comma-delimited list of the variables that act as containers for values read from
the file.

Rules for <variable list>:

■ Cannot contain array variables, but can contain variables that reference an
element of an array. For instance, MyArray() refers to an entire array and is
therefore not allowed, but MyArray(23) refers to a specific element in the array
and is therefore a valid variable.

■ Cannot be an object variable, user-defined data type structure, handle to a
class, CPointer, or OLE object.

Example The following code fragment opens an existing file named Test.fil, assigns data
from it to a variable called FileData, and constructs a message:

Open "Test.fil" For Input As #1
Do While Not EOF(1)

Input #1, FileData
ShowFactoryStatus(FileData)

Loop
Close #1
Kill "Test.fil"

Tips ■ To prevent Input from encountering the end-of-file before it is finished
processing data, use it within a loop that tests for the end-of-file condition. For
more information, see EOF function.

■ Match data in the file with variables of the proper data type, that is:

■ Assign string data to string or Variant variables.

■ Assign numeric data to numeric or Variant variables.

■ Assign date data to date or Variant variables.

■ Assign uniquely Variant data—like Empty and Null values—only to
Variant variables.

Example The following example creates a test file and reads nonnumeric values from the
test file into a variable. The example overrides Start() to generate the test file. To
use this example, paste the procedure MakeSomeData after the End Function of
the Start() procedure or save it in an Actuate code module (.bas) file.

Sub Start()
Dim FileData As String
Super::Start()
' Create test file
MakeSomeData

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 259

Input, Input$ funct ions

' Open to read test file
Open "Test.fil" For Input As #1
Do While Not EOF(1)

' Read a line of data
Input #1, FileData
' Construct message
ShowFactoryStatus(FileData)

Loop

' Close file
Close #1
' Delete test file
Kill "Test.fil"

End Sub

Sub MakeSomeData()
' Create the test file used in Start
' Open to write test file
Open "Test.fil" For Output As #1
' Write sample data
Write #1, "This is the first line of the file."
Write #1, "This is the second line."
' Close test file
Close #1

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Input, Input$ functions
Write statement

Input, Input$ functions
Returns a specified number of characters from a sequential file. The Input
function can be used only with files opened in Input or Binary mode.

Syntax Input(<number of chars>,<file number>)

Input$(<number of chars>, <file number>)

Parameters <number of chars>
Numeric expression for the number of characters to read from the file. <number
of chars> must be between 1 and 2,147,483,647.

For example, the following code fragment opens a file in the current directory
named Myfile.txt, reads 51 characters from that file into a variable called
ReadChunk, then closes the file:

260 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Input, Input$ funct ions

Open "Myfile.txt" For Input As #1
ReadChunk = Input$(51, #1)
Close #1

<file number>
Integer that is the file number assigned by Open statement when the target file
was opened. File <file number> must be open.

Returns Input: Variant
Input$: String

Returns all the characters it reads, including commas, carriage returns, linefeeds,
quotation marks, and leading spaces.

Example The following example reads one character at a time from a file. When it
encounters an ANSI character code 10 (linefeed), it displays the entire line of text
in a message box for up to five lines.

Sub Start()
Dim Collector, UsersFile, DisplayMe
Dim LineCount As Integer
Super::Start()
' Set file name
UsersFile = "C:\Program Files\Actuate11\eRDPro\AcUninst.txt"
If Len(UsersFile) Then

' Open specified file
Open UsersFile For Input As #1
LineCount = 0
' read in to the end of file, or max of 5 lines
' whichever comes first.
Do While Not EOF(1) And LineCount < 5

' Obtain 1 character
Collector = Input$(1, 1)
' If not a linefeed, then collect it
If Collector <> Chr(10) Then

DisplayMe = DisplayMe & Collector
' If it is a linefeed, then display it
Else

ShowFactoryStatus(DisplayMe)
' Clear the line
DisplayMe = ""
LineCount = LineCount + 1

End If
' Loop if not EOF
Loop
' Close the file
Close #1

End If
End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 261

InputB, InputB$ funct ions

For information about using the code examples, see “Using the code examples”
earlier in this chapter.

See also Input statement
InputB, InputB$ functions

InputB, InputB$ functions
Returns a specified number of bytes from a sequential file. This function can be
used only with files opened in Input or Binary mode.

These functions are provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the Input and Input$
functions instead of the InputB and InputB$ functions.

Syntax InputB(<number of bytes>,<file number>)

InputB$(<number of bytes>, <file number>)

Parameters <number of bytes>
Numeric expression for the number of bytes to read from the file. <number of
bytes> must be between 1 and 2,147,483,647.

The following example opens a file in the current directory, Myfile.txt, reads 51
bytes from that file into a variable, ReadChunk, then closes the file:

Open "Myfile.txt" For Input As #1
ReadChunk = InputB$(51, #1)
Close #1

<file number>
Integer that is the file number assigned by Open statement when the target file
was opened. File <file number> must be open.

Returns InputB: Variant
InputB$: String

Returns all the bytes read, including commas, carriage returns, linefeeds,
quotation marks, and leading spaces.

See also Input statement
Input, Input$ functions

InStr function
Returns the starting position of the occurrence of one string within another.

262 P r o g r a m m i n g w i t h A c t u a t e B a s i c

InStr funct ion

Syntax Syntax 1

InStr(<string being searched>, <string to find>)

Syntax 2

InStr(<start>, <string being searched>, <string to find>)

Parameters <start>
Position (number of characters) within <string being searched> at which to begin
searching. The following rules apply for <start>:

■ If you do not supply a <start> position, Actuate Basic begins searching at 1,
the first character.

■ Must be a number or numeric expression.

■ Must be between 1 and 2,147,483,647, inclusive.

<string being searched>
String you are inspecting to locate <string to find>. <string being searched> must
be a variable string, a literal string, a string constant, the return value of any
function that returns a string, or a variant that can evaluate to a string.

<string to find>
String you are seeking within <string being searched>. <string to find> must be a
variable string, a literal string, a string constant, the return value of any function
that returns a string, or a variant that can evaluate to a string.

Returns Integer

■ If <string to find> is found within <string being searched>, InStr returns the
position of the first character at which the match was found.

■ If <string to find> is not found within <string being searched>, InStr returns 0.

■ If <string to find> is zero-length, InStr returns the value of <start>.

■ If <string being searched> is zero-length, InStr returns 0.

■ If <start> is greater than <string being searched>, InStr returns 0.

■ If any parameter evaluates to Null, InStr returns Null.

Example The following example returns the position of a randomly generated character
from within the alphabet:

Sub Start()
Dim Alphabet As String, Position As Integer
Dim Msg As String, Letter As String
Super::Start()

Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 263

InStrB funct ion

' Randomly generate a letter to find in the alphabet
Letter = Chr$(Int(26 * Rnd + 65))

' Determine where in the alphabet the letter is positioned
Position = InStr(Alphabet, Letter)
Msg = "The letter " & Letter & " is in position " & Position

+ & " in the alphabet."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Left, Left$ functions
Len function
Mid, Mid$ functions
Right, Right$ functions

InStrB function
Returns the starting byte of the occurrence of one string within another.

This function is provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the InStr function instead of
the InStrB function.

Syntax Syntax 1

InStrB(<string being searched>, <string to find>)

Syntax 2

InStrB(<start>, <string being searched>, <string to find>)

Parameters <start>
Position (byte count) within <string being searched> at which to begin searching.

The following conditions apply to <start>:

■ If you do not supply a <start> position, Actuate Basic begins searching at 1,
the first byte.

■ <start> must be a number or numeric expression.

■ <start> must be between 1 and 2,147,483,647, inclusive.

264 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Int funct ion

<string being searched>
String you are inspecting to locate <string to find>. <string being searched> must
be a variable string, a literal string, a string constant, the return value of any
function that returns a string, or a variant that can evaluate to a string.

<string to find>
String you are seeking within <string being searched>. <string being searched>
must be a variable string, a literal string, a string constant, the return value of any
function that returns a string, or a variant that can evaluate to a string.

Returns Integer

■ If <string to find> is found within <string being searched>, InStrB returns the
position of the first byte at which the match was found.

■ If <string to find> is not found within <string being searched>, InStrB returns
0.

■ If <string to find> is zero-length, InStrB returns the value of <start>.

■ If <string being searched> is zero-length, InStrB returns 0.

■ If <start> is greater than <string being searched>, InStrB returns 0.

See also Format, Format$ functions
LeftB, LeftB$ functions
LenB function
MidB, MidB$ functions

Int function
Returns the largest integer that is less than or equal to a given numeric
expression.

Syntax Int(<number to round>)

Parameters <number to round>
Numeric expression from which the fractional part is removed so that an integer
value is returned.

Returns ■ If <number to round> is a Variant of type 8 (String) that can convert to a
number, Int returns Variant of type 5 (Double). If <number to round> is a
String, it is parsed according to the formatting rules of the current run-time
locale. For example:

Fix("123,456") returns 123.456 on a French locale
Fix ("123,456") returns 123456.00 on an English locale

■ If <number to round> is not a Variant of type 8 (String) that can convert to a
number, Int returns the same data type as <number to round>.

■ If <number to round> is Null, Int returns Null.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 265

Int funct ion

■ Int and Fix are similar but not identical. For negative values, Int returns the
first negative integer less than or equal to <number to round> while Fix
returns the first negative integer greater than or equal to <number to round>.
CInt is also similar to Int and Fix. Table 6-28 shows the differences between
Int, Fix, and CInt using sample values as arguments.

Tip Fix is equivalent to Sgn(<number to round>) * Int(Abs(<number to round>)).

Example The following example prompts the user for a number and displays the values
that Int, Fix, and CInt return:

Sub Start()
Dim Num As Double, Msg As String

Super::Start()
' Get a random number between 1 and 256
Num = 255 * Rnd + 1
Msg = "Int(" & Num & ") = " & Int(Num)
ShowFactoryStatus(Msg)
Msg = "Fix(" & Num & ") = " & Fix(Num)
ShowFactoryStatus(Msg)
Msg = "CInt(" & Num & ") = " & CInt(Num)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CInt function
Format, Format$ functions
RightB, RightB$ functions

Table 6-28 Examples of differences between Int, Fix, and CInt

Value Int(Value) Fix(Value) CInt(Value)

3.7 3 3 4

3.2 3 3 3

3 3 3 3

-3 -3 -3 -3

-3.2 -4 -3 -3

-3.7 -4 -3 -4

266 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IPmt funct ion

IPmt function
Returns the interest payment for a given period of an annuity, based on periodic,
constant payments, and on an unvarying interest rate.

Syntax IPmt(<rate per period>,<single period>, <number pay periods>, <present value>,
<future value>, <when due>)

The following conditions apply to IPmt parameters:

■ <rate per period> and <number pay periods> must be expressed in terms of
the same units (weekly/weeks, monthly/months, yearly/years).

■ You must express cash paid out, such as deposits to savings, using negative
numbers, and cash received, such as dividend checks, using positive numbers.

Parameters <rate per period>
Numeric expression that specifies the interest rate that accrues per period. <rate
per period> must be given in the same units of measure as <number pay
periods>. For instance, if <number pay periods> is expressed in months, then
<rate per period> must be expressed as a monthly rate.

<single period>
Numeric expression that specifies the particular period for which you want to
determine how much of the payment for that period represents interest. <single
period> must be in the range 1 through <number pay periods>.

<number pay periods>
Numeric expression that specifies the total number of payment periods in the
annuity. <number pay periods> must be given in the same units of measure as
<rate per period>. For instance, if <rate per period> is expressed as a monthly
rate, then <number pay periods> must be expressed in months.

<present value>
Numeric expression that specifies the value today of a future payment or stream
of payments.

For example, if you put $23.94 in the bank today and leave it there for 15 years at
an interest rate of 10% compounded annually, you end up with about $100. In this
case, the present value of $100 is approximately $23.94.

<future value>
Numeric expression that specifies the cash balance you want after you have made
your final payment.

Examples ■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 267

IPmt funct ion

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1) or at the end (0) of each period. The default is 0, end of period.
<when due> must be 0 or 1.

The following example assumes you are making monthly payments the first of
each month on a loan of $20,000, over 36 months, at an APR of 11.5%. How much
of your 5th payment represents interest? The answer, $171.83, is assigned to
Interest5.

Interest5 = IPmt(.115/12, 5, 36, -20000, 0, 1)

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,
such as a home mortgage. Each payment consists of two components, principal
and interest. IPmt returns the interest component of the payment.

Example The following example prompts the user for various particulars about a loan. It
then returns the total amount of interest that will be paid on the loan.

To use this example, paste the first portion at or near the beginning of your
Actuate Basic source code (.bas) file.

Declare
Global Const ENDPERIOD = 0
Global Const BEGINPERIOD = 1

End Declare

Sub Start()
Dim FutVal As Double, PresVal As Double
Dim APR As Double, TotPmts As Integer
Dim PayWhen As Integer, Period As Integer, IntPmt As Double
Dim SumInt As Double, Fmt As String, Payment As Double
Dim Msg as String
Super::Start()

' Specify money format
Fmt = "$###,###,##0.00"
' Normally 0 for a loan
FutVal = 0
' Amount to borrow
PresVal = 300000
' The annual percentage rate (APR) for your loan
APR = 0.0625
' The number of monthly payments to make
TotPmts = 240
' Assume payment at month end

PayWhen = ENDPERIOD

268 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IRR funct ion

' Do the computational work
For Period = 1 To TotPmts

IntPmt = IPmt(APR / 12, Period, TotPmts, -PresVal,
+ FutVal, PayWhen)

SumInt = SumInt + IntPmt
Next Period

' Set up display for the user
Msg = "You will pay a cumulative total of "

+ & Format(SumInt, Fmt) & " in interest for this "
+ & "loan, which represents about "
+ & Format(SumInt / PresVal, "##.0%") & " of the "
+ & Format(PresVal, Fmt) & " you are borrowing."

ShowFactoryStatus(Msg)

Payment = Pmt(APR / 12, TotPmts, -PresVal, FutVal, PayWhen)
Msg = "Your payments will be " & Format(Payment, Fmt)

+ & " per month."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
NPer function
Pmt function
PPmt function
PV function
Rate function

IRR function
Returns the internal rate of return for a series of periodic cash flows, payments
and receipts, in an existing array.

Syntax IRR(<casharray>(),<starting guess>)

The following conditions apply to IRR parameters:

■ You must express cash paid out, such as deposits to savings, using negative
numbers, and cash received, such as dividend checks, using positive numbers.

■ <casharray>() must contain at least one negative and one positive number.

■ In cases where you have both a positive cash flow (income) and a negative one
(payment) for the same period, use the net flow for that period.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 269

IRR funct ion

■ If no cash flow or net cash flow occurs for a particular period, you must type 0
(zero) as the value for that period.

Parameters <casharray>()
Specifies the name of an existing array of Doubles representing cash flow values.
The <casharray> array must contain at least one positive value (receipt) and one
negative value (payment).

<starting guess>
Numeric expression. Specifies the value you estimate IRR will return. In most
cases, this is 0.1 (10 percent).

The following example assumes you have filled the array MyArray() with a series
of cash flow values. The internal rate of return is assigned to the variable
IRRValue.

IRRValue = IRR(MyArray(), .1)

Returns Double

■ The internal rate of return is the interest rate for an investment consisting of
payments and receipts that occur at regular intervals. The cash flow for each
period does not need to be constant, as it does for an annuity.

■ IRR is closely related to the net present value function, NPV, because the rate
of return calculated by IRR is the interest rate corresponding to a net present
value of zero. IRR calculates by iteration. Starting with the value of <starting
guess>, it repeats the calculation until the result is accurate to within 0.00001
percent. If it cannot determine a result after 20 iterations, the function fails.

Tips ■ Because IRR uses the order of values within the array to interpret the order of
payments and receipts, be sure to type your payment and receipt values in the
correct sequence.

■ If IRR fails, try a different value for <starting guess>.

Example The following example returns the internal rate of return for a series of five cash
flows contained in the array, CashValues(). The first array element is a negative
cash flow that represents business start-up costs. The remaining four cash flows
represent positive cash flows for the subsequent four years. The variable, Guess,
holds the estimated internal rate of return. Option Base is assumed to be set to
zero.

Sub Start()
' Set up the array
Static CashValues(5) As Double
Dim Guess As Double, Fmt As String
Dim ReturnRate As Double, Msg As String
Super::Start()
' Start guess at 10%
Guess = .1

270 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IsDate funct ion

' Define % format
Fmt = "#0.00"
' Business start-up costs
CashValues(0) = -80000
' Now type positive cash flows reflecting
' income for four successive years:
CashValues(1) = 23000: CashValues(2) = 27000
CashValues(3) = 31000: CashValues(4) = 35000
' Calculate internal rate
ReturnRate = IRR(CashValues, Guess) * 100
Msg = "The internal rate of return for the cash flows is: "

+ & Format(ReturnRate, Fmt) & " percent."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also MIRR function
NPV function
Option Base statement
Rate function

IsDate function
Determines whether the given argument can be converted to a date.

Syntax IsDate(<exprs>)

Parameters <exprs>
Variant expression to test to determine whether it is a date, can be evaluated as a
date, or can be converted into a date.

The following conditions apply to <exprs>:

■ The range of valid dates is January 1, 100, through December 31, 9999,
inclusive.

■ Numbers can be converted to a date.

■ <exprs> is parsed according to the formatting rules of the current run-time
locale.

Returns Integer

■ Returns 1 (True) if <exprs> can be converted to a date. Otherwise, returns 0
(False).

■ If <exprs> fails to include all date components, such as day, month, and year,
IsDate returns False.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 271

IsDate funct ion

Tips ■ To convert any number between -657,434 and 2,958,465 into a date, use
CVDate. For example, use CVDate(34040.34) to return 3/12/93 7:55:12 A.M.

■ If you use a date expression in one locale, it might be misinterpreted in
another locale. For instance, in the United States, 1/2/2005 means January
2nd, 2005, but in France, it means February 1st, 2005. To avoid such
ambiguities, use DateSerial to specify all your dates.

Examples The following statements are equivalent. They all return True.

IsDate("11/12/82")
IsDate("November 12, 1982")
IsDate("Nov 12, 1982")
IsDate("N" & "ov " & "12, " & (1980 + 2))
IsDate(5)
IsDate(5.3)

The following example tests today’s date and a number and, if possible, converts
the number to a date:

Sub Start()
Dim DateStr As String, Msg As String
Dim Number As String
Super::Start()
Number = CStr(4000000 * Rnd)
DateStr = CStr(Now)
' Test the string
If IsDate(DateStr) Then

Msg = "Today’s date is: "
Msg = Msg & Format(CVDate(DateStr), "dddddd")
ShowFactoryStatus(Msg)

End If
' Test the number
If IsDate(Number) Then

Msg = "The number " & Number & " as a date is: " &
+ Format(CVDate(Number), "dddddd")

ShowFactoryStatus(Msg)
Else

If IsNumeric(Number) Then
If Val(Number) >= -657434

+ And Val(Number) <= 2958465 Then
Msg = "The number " & Number & " is not in "

+ & "date format. However, it will be "
+ & "interpreted as the date:"
+ & Format(CVDate(Number), "dddddd")

ShowFactoryStatus(Msg)

272 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IsEmpty funct ion

Else
Msg = "Sorry, the number " & Number &

+ " cannot be converted to a date."
ShowFactoryStatus(Msg)

End If
End if

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CVDate function
IsEmpty function
IsNull function
IsNumeric function
VarType function

IsEmpty function
Reports whether the given variable has been initialized.

Syntax IsEmpty(<exprs>)

Parameters <exprs>
Variant expression to test whether it has ever been assigned a value.

Returns Integer

■ Returns 1 (True) if <exprs> contains the Empty value. Otherwise, returns 0
(False).

■ Returns 0 (False) if <exprs> contains more than one Variant.

Tip Empty and Null are different. A variable can contain the Null value only if you
explicitly assign Null to the variable.

Example The following example tests a variable to determine whether it has ever held a
value. If not, it reports that the variable has not been initialized and asks the user
whether to initialize it.

Sub Start()
Dim MyVar, Msg As String
Super::Start()
'Test MyVar
If IsEmpty(MyVar) Then

ShowFactoryStatus("MyVar is uninitialized.")

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 273

IsKindOf funct ion

' Initialize MyVar
MyVar = 32.5
ShowFactoryStatus("MyVar set to " & MyVar)
ShowFactoryStatus("The value of IsEmpty(MyVar) is now:"

+ & IsEmpty(MyVar))
Else

ShowFactoryStatus("MyVar initialized to " & MyVar)
End If

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsDate function
IsNull function
IsNumeric function
VarType function

IsKindOf function
Determines if a specified object is an instance of a specified class.

Syntax IsKindOf(<object>, <class>)

Parameters <object>
The variable name that refers to the object about which you want information.

<class>
The class to test for the membership of an instance of <object>.

Returns Integer

■ Returns 1 (True) if <object> is a member of <class>.

■ Returns 0 (False) if <object> is not a member of <class>.

Tips ■ Use IsKindOf to test if an object is an instance, or an instance of a subclass, of a
specified class.

■ To find out an object’s class, use GetClassName.

Example The following example tests if an object is either an instance of MyLabel or an
instance of a subclass of MyLabel. If True, the example sets the object’s
background color to red.

Sub Start()
Dim MyLabel As AcLabelControl, Msg As String
Super::Start()
Set MyLabel = New AcLabelControl

274 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IsNul l funct ion

If IsKindOf(MyLabel, "AcLabelControl") Then
Msg = "Yes, MyLabel is an AcLabelControl. "

+ & "We will now set its background color to red."
ShowFactoryStatus(Msg)
MyLabel.BackgroundColor = Red

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetClassID function
GetClassName function

IsNull function
Determines whether the given Variant or Variant expression contains the Null
value.

Syntax IsNull(<exprs>)

Parameters <exprs>
Variant expression to test. Any expression that contains a Null is itself Null and
therefore False. That is why both the following expressions evaluate to False, no
matter what value MyVar contains:

If MyVar = Null
If MyVar <> Null

For example, assuming you have assigned the Null value to MyVar, the following
statements are equivalent. Each returns 1 (True).

IsNull(MyVar)
IsNull(MyVar = Null)
IsNull(MyVar <> Null)
IsNull(MyVar + 5000)

Returns Integer

■ Returns 1 (True) if <exprs> contains the Null value. Otherwise, returns 0
(False).

■ The only way to determine whether a variable contains Null is to use IsNull.

Tip Empty and Null are different. If a variable contains the Empty value, it means it
has never yet been assigned any value. A variable can contain the Null value only
if you have explicitly assigned Null to it.

Example The following example tests MyVar to determine whether it contains the Null
value. The variable MyVar is first initialized to Null but the first time though the

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 275

IsNumeric funct ion

loop it is changed to a zero-length string. The second time through the loop,
MyVar is again set to Null and the loop exits.

Sub Start()
Dim MyVar
Super::Start()
' Initialize variable as Null
MyVar = Null
Do
' Evaluate variable

If IsNull(MyVar) Then
' Report if Null
ShowFactoryStatus("MyVar is Null.")
' Assign zero-length string
MyVar = ""

Else
' Report if not Null
ShowFactoryStatus("MyVar is not Null.")
' Assign Null to variable
MyVar = Null

End If
' Loop until MyVar is Null
Loop Until IsNull(MyVar)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsDate function
IsEmpty function
IsNumeric function
VarType function

IsNumeric function
Tests if the type of a variable is or can be converted to Integer, Long, Single,
Double, or Currency.

Syntax IsNumeric(<exprs>)

Parameters <exprs>
Variant expression to test to determine if it is, can be evaluated as, or can be
converted to a numeric data type. For example, the following are equivalent. Each
returns True.

IsNumeric("34040")
IsNumeric(34040)
IsNumeric(Val("343Haydn"))

276 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IsPersistent funct ion

If <exprs> is a String, it is parsed according to the formatting rules of the current
run-time locale.

Returns Integer

■ Returns 1 (True) if <exprs> can be converted to a number. Otherwise, returns 0
(False).

■ Returns 1 (True) if <exprs> is Empty.

Tip To extract a numeric value from a string that starts with numbers but also
contains non-numeric characters, use Val.

Example The following example inspects each of four elements in an array of mixed types
and reports whether or not the content of the variable is numeric:

Sub Start()
Dim UserVar(4), Msg, Slot As Integer
Super::Start()
UserVar(1) = 12
UserVar(2) = "twelve"
UserVar(3) = "123four"
UserVar(4) = Val("123four")
For Slot = 1 to 4

If IsNumeric(UserVar(Slot)) Then
Msg = UserVar(Slot) & " is Numeric."

Else
Msg = UserVar(Slot) & " is not Numeric."

End If
ShowFactoryStatus(Msg)

Next Slot
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsDate function
IsEmpty function
IsNull function
Val function
VarType function

IsPersistent function
Reports if an instance of an object is persistent or transient.

Syntax IsPersistent(<object>)

Parameters <object>
The variable name that refers to the object about which you want information.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 277

IsSearchFormatSupported funct ion

Returns Integer

■ Returns 1 (True) if <object> is persistent.

■ Returns 0 (False) if <object> is transient.

Example The following example determines if specific objects are either transient or
persistent:

Sub Start()
Dim myObj As AcLabelControl, Msg As String
Super::Start()
' Instance instantiation
Set myObj = NewInstance("AcLabelControl")
' Determine persistent or transient nature of objects
If (IsPersistent(me)) Then

Msg = "The current object is persistent. "
Else

Msg = "The current object is transient. "
End If
if (IsPersistent(myObj)) Then

Msg = Msg & "myObj is persistent."
Else

Msg = Msg & "myObj is transient."
End If
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also NewInstance function
NewPersistentInstance function

IsSearchFormatSupported function
Determines whether the specified search format is supported or not.

Syntax IsSearchFormatSupported(<format> As String) As Boolean

Parameters <format>
The format for which to determine support. The supported formats depend on
the formats available in a particular environment. For example, the following
search formats might be supported:

■ XMLDisplay (DISPLAY)

■ Download formats:

■ CSV

278 P r o g r a m m i n g w i t h A c t u a t e B a s i c

IsViewPageFormatSupported funct ion

■ TSV

■ ANALYSIS

Returns True if the format is supported.

False if the format is not supported.

Example The following example determines whether the ANALYSIS format is supported:

Function CreateSearchURL(format As String) As String
Dim URL As String
Dim format As String
Dim searchCriteria As String

SearchCriteria = "…"
format = "ANALYSIS"
If Not IsSearchFormatSupported(format) Then

format = "CSV"
End If
URL = "http://" format=" + format + searchCriteria
CreateSearchURL = URL

End Function

See also GetSearchFormats function

IsViewPageFormatSupported function
Determines whether the specified view format is supported.

Syntax IsViewPageFormatSupported(<format> As String) As Boolean

Parameters <format>
The DHTML viewing format for which to determine support. The supported
formats depend on the formats available in a particular environment. For
example, the following viewing formats might be supported:

■ XMLDisplay (DISPLAY)

■ DHTML

■ PDF

Returns True if the format is supported.

False if the format is not supported.

Example The following example determines whether the PDF format is supported:

Function CreateSearchURL(format As String) As String
Dim URL As String
Dim format As String

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 279

Kil l statement

Dim searchCriteria As String

SearchCriteria = "…"
format = "PDF"
If Not IsViewPageFormatSupported(format) Then

format = "DHTML"
End If
URL = "http://" format=" + format + searchCriteria
CreateSearchURL = URL

End Function

See also GetViewPageFormats function

Kill statement
Deletes a specified file or files from a disk.

Syntax Kill <file spec>

Description Kill is similar to the operating system commands ERASE and DEL.

Parameters <file spec>
String expression that specifies the name or names of the file or files to be deleted.
Wildcard characters can be used. Can include optional drive and path
information. The default path is the current default drive and directory.

The following rules apply to <file spec>:

■ Indicated file or files must exist.

■ Path, if specified, must exist.

■ Indicated file must not currently be open by Actuate Basic.

<file spec> may optionally specify full path information, in which case it has the
following syntax:

[<drive:>] [\]<directory>[\<directory>]…<file spec> (Windows)

[/]<directory>[/<directory>]…<file spec> (UNIX)

<drive:>
Character, followed by a colon, that specifies the drive where <file spec> is
located (Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory where
<file spec> is located.

For example, the following statement deletes all files in the Windows directory
C:\Discard that have an extension of .doc:

280 P r o g r a m m i n g w i t h A c t u a t e B a s i c

LBound funct ion

Kill "C:\Discard*.doc"

Tips ■ Be careful in how you use Kill, especially if you include wildcard characters in
<file spec>. It is easy to delete files unintentionally, and Kill is irreversible.

■ To delete directories, use RmDir.

Example The following example copies a file from the Actuate install directory to the root
directory on the C: drive, and then deletes it. If the example cannot perform the
operation, it issues an error message.

Sub Start()
Dim SourceFile As String, DestFile As String, Msg As String
Super::Start()
' Set up error handler
On Error GoTo Errhandler55
' Copy file from installation to be deleted
SourceFile = "C:\Program Files\Actuate11\readme.rtf"
DestFile = "C:\actuatekill_readme.rtf"
FileCopy SourceFile, DestFile
Msg = "File C:\actuatekill_readme.rtf is now on your system."
ShowFactoryStatus(Msg)
' Delete the file
Kill DestFile
Msg = "File C:\actuatekill_readme.rtf has been deleted."
ShowFactoryStatus(Msg)
Exit Sub

Errhandler55:
Msg = "Error number " & Err & " occurred. " & Error$(Err)
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Name statement

LBound function
Returns the smallest available subscript for the given dimension of an array.

Syntax LBound(<array name>[,<dimension>])

Parameters <array name>
Name of an array variable.

<dimension>
Numeric expression that specifies the array dimension for which you want to
determine the lower bound.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 281

LBound funct ion

The following rules apply to <dimension>:

■ If you do not supply a <dimension>, Actuate Basic defaults to 1.

■ Use 1 for the first dimension, 2 for the second, and so on.

■ Must not be larger than the total number of dimensions in <array name>.

■ Must not be zero, negative, or Null.

Table 6-29 shows the values LBound returns for an array with the following
dimensions:

Dim MyArray(1 To 55, 0 To 27, -3 To 42)

Returns Integer

If <dimension> is not an Integer, LBound rounds <dimension> to the nearest
Integer before evaluating it.

Tips ■ To determine the upper bound of an array, use UBound.

■ To determine the total number of elements in a given dynamic array
dimension, take the value returned from UBound, subtract the value returned
from LBound, and then add 1.

Example The following example determines the lower bounds of an array of 3 dimensions.
The use of Rnd simulates changes in lower bounds that the user can make at run
time.

Sub Start()
Dim First As Integer, Sec As Integer, Third As Integer
Dim Msg As String
' Declare array
Dim MyArray()
Super::Start()
' Generate random dimensions between 3 and 16 for array size.
' First, second, and third dimension
First = Int(14 * Rnd + 3)
Sec = Int(14 * Rnd + 3)
Third = Int(14 * Rnd + 3)

Table 6-29 Examples of LBound return values for an array

Statement Returned value

LBound(MyArray, 1) 1

LBound(MyArray, 2) 0

LBound(MyArray, 3) -3

282 P r o g r a m m i n g w i t h A c t u a t e B a s i c

LCase, LCase$ funct ions

' Set dimensions
ReDim MyArray(First To 30, Sec To 30 , Third To 30)
Msg = "MyArray has the following lower bounds: "

+ & Tab & "Dimension 1 -> " & LBound(MyArray, 1)
+ & Tab & "Dimension 2 -> " & LBound(MyArray, 2)
+ & Tab & "Dimension 3 -> " & LBound(MyArray, 3)

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
UBound function

LCase, LCase$ functions
Converts all uppercase alphabetic characters in a string to lowercase.

Syntax LCase(<string exprs>)

LCase$(<string exprs>)

Parameters <string exprs>
String expression to convert to lowercase characters.

For example, the following statements are equivalent. Each returns
6 jane street, 2nd fl.

LCase$("6 JANE STREET, 2ND FL")
LCase$("6 Jane Street, 2nd Fl")
LCase$("6 jAn" & "E sTreeT, 2nD fL")

Returns LCase: Variant
LCase$: String

■ If <string exprs> contains no uppercase alphabetic characters, LCase[$]
returns <string exprs> unchanged.

■ LCase[$] has no effect on non-alphabetic characters in <string exprs>.

■ If <string exprs> evaluates to Null, LCase[$] returns Null.

Tips ■ To ensure uniformity in the data you get from the user so that, for example,
name strings like MacManus, Macmanus, or macMaNus are always treated in
the same way, first convert strings using LCase[$] or UCase[$].

■ To convert alphabetic characters in <string exprs> to uppercase, use UCase[$].

Example The following example renders the alphabet in lowercase:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 283

Left , Left$ funct ions

Sub Start()
Dim LowerCase As String, UpperCase As String, Msg As String
Super::Start()
UpperCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
' Convert to lowercase
LowerCase = LCase$(UpperCase)
Msg = "LCase$ converts """ & UpperCase & """ to """

+ & LowerCase & """."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also UCase, UCase$ functions

Left, Left$ functions
Returns a segment of a Variant or String, starting at the first character.

Syntax Left(<string exprs>, <length>)

Left$(<string exprs>, <length>)

Parameters <string exprs>
Source string from which you are copying the first portion. Can be a variable
string, a literal string, a string constant, the return value of any function that
returns a String, or a Variant that can evaluate to a String.

<length>
Numeric expression that specifies how many characters to copy from the left of
<string exprs>. <length> must be an Integer or expression of type Long, and must
be between 0 and 2,147,483,647.

The following statements are equivalent. Both return Widget:

Left$("Widget",6)
Left$("Widget",99)

Returns Left: Variant
Left$: String

■ If <length> = 0, returns a zero-length string.

■ If <length> is greater than or equal to the length of <string exprs>, returns an
exact copy of <string exprs>.

■ If any parameter evaluates to Null, Left[$] returns Null.

Tips ■ Use Len to find the number of characters in <string exprs>.

■ Use InStr to find the position of a specified character in <string exprs>.

284 P r o g r a m m i n g w i t h A c t u a t e B a s i c

LeftB, LeftB$ funct ions

Example The following example parses a string for a customer’s first and last names:

Sub Start()
Dim FName As String, Msg As String, LName As String
Dim SpacePos As Integer, Customer As String
Super::Start()
Customer = "Manuel Barajas"

' Find the space
SpacePos = InStr(1, Customer, " ")
If SpacePos Then

' Get first and last name
FName = Left$(Customer, SpacePos - 1)
LName = Right$(Customer, Len(Customer) - SpacePos)
Msg = "The first name is """ & FName & "." & """"

+ & " The last name is """
+ & LName & "." & """"

Else
Msg = Customer & " does not have a first and last name!"

End If
' Display the message

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Len function
Mid, Mid$ functions
Right, Right$ functions

LeftB, LeftB$ functions
Returns a segment of a Variant or String, starting at the first byte.

These functions are provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the Left and Left$ functions
instead of the LeftB and LeftB$ functions.

Syntax Left(<string exprs>, <length>)

Left$(<string exprs>, <length>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 285

Len funct ion

Parameters <string exprs>
Source string. Can be a variable string, a literal string, a string constant, the return
value of any function that returns a String, or a Variant that can evaluate to a
String.

<length>
Numeric expression that specifies how many bytes to copy from the left of <string
exprs>. <length> must be an Integer or expression of type Long, and must be
between 0 and 2,147,483,647.

Example:
The following statements are equivalent. Both return Widget.

LeftB$("Widget",6)
LeftB$("Widget",99)

Returns LeftB: Variant
LeftB$: String

■ If <length> = 0, the function returns zero-length string.

■ If <length> is greater than or equal to the length of <string exprs>, the
function returns an exact copy of <string exprs>.

■ If any parameter evaluates to Null, LeftB[$] returns Null.

Tips ■ Use LenB to find the number of bytes in <string exprs>.

■ Use InStrB to find the position of a specified byte in <string exprs>.

See also InStrB function
Left, Left$ functions
LenB function
MidB, MidB$ functions
RightB, RightB$ functions

Len function
Returns the number of characters in a string expression.

Syntax Len(<string exprs>)

Len(<variable name>)

Parameters <string exprs>
String expression to test for character length.

<variable name>
Variable to test for character length.

The following example returns 11:

286 P r o g r a m m i n g w i t h A c t u a t e B a s i c

LenB funct ion

Len("Smith, John")

The following example, which tests MyVar, a 4-byte Integer, returns 4:

Len(MyVar)

Returns Integer

■ Regardless of its value, if <variable name> is of any numeric data type except
Variant, Len returns the number of characters required to store any variable of
that data type.

■ Regardless of its Variant type, if <variable name> is a Variant, Len returns the
number of characters required to store it as a String.

■ If <string exprs> or <variable name> is Null, Len returns Null.

Tip Use Len to determine record size when you perform file input/output with
random-access files using user-defined variable types. Actuate Basic does not
notice a type mismatch if you dimension a variable, such as UserInput, as a
String, and then later test it as an Integer, such as if UserInput = 0.

Example The following example returns the length of a name:

Sub Start()
Dim AName As String, Msg as String
Super::Start()
AName = "Wang Xiaokun"
Msg = "The name " & AName & " is " & Len(AName)

+ & " characters long, including the space(s)."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also LenB function
Type…End Type statement
VarType function

LenB function
Returns the number of bytes in a string expression.

This function is provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the Len function instead of
the LenB function.

Syntax LenB(<string exprs>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 287

Let statement

LenB(<variable name>)

Parameters <string exprs>
String expression to test for byte length.

<variable name>
Variable to test for byte length.

Returns Integer

■ Regardless of its value, if <variable name> is of any numeric data type except
Variant, LenB returns the number of bytes required to store any variable of any
value that is of the same data type.

■ Regardless of its Variant type, if <variable name> is Variant, LenB returns the
number of bytes required to store it as a String.

■ If <string exprs> or <variable name> is Null, LenB returns Null.

Tip To determine record size when performing file input/output with random-access
files using user-defined variable types, use LenB.

See also Len function
Type…End Type statement
VarType function

Let statement
Assigns a value to a variable.

Syntax [Let] <variable> = <exprs>

Description In some older versions of Basic, the Let keyword is required to begin a statement
that assigns a value to a variable. In Actuate Basic, the use of Let is optional. The
following conditions apply to the Let statement:

■ If <variable> is a user-defined type declared with Type, <exprs> must be of
the same user-defined type.

■ The data types of <variable> and <exprs> must be compatible.

■ In addition to the data type compatibilities listed in Table 6-30, you can assign
Null to numeric, String, Variant, or CPointer variables.

Table 6-30 Compatibility of data types for <variable> and
<exprs>

Data type of <variable> Valid data types for <exprs>

Numeric Numeric
Variant that converts to a numeric data type

(continues)

288 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Let statement

Parameters <variable>
The name of any variable to store <exprs>.

<exprs>
String or numeric expression to assign to <variable>.

The following rules apply to <exprs>:

■ If <exprs> is Variant, and <variable> is numeric, Actuate Basic converts
<exprs> to a number, if possible, before assigning it to <variable>.

■ If <exprs> is numeric, its value must fall into the range of the data type of
<variable>.

For example, the following statements are equivalent:

Let N = 50
N = 50

The following example generates an error, because 2,147,483,647 is the upper
limit of the range of the Integer data type variable to which it is being assigned:

N% = 2147483648

Tips ■ Use IsNumeric to determine if a Variant variable converts to numeric.

■ To make assignments between variables of different user-defined types that
have been defined by Type…End Type, use LSet or the = operator. Using the =
operator to assign an <exprs> of one data type to a <variable> of a different
type converts the value of <exprs> into the data type of <variable>.

Example The following example uses Let to assign a value to Pi:

Sub Start()
Dim Msg As String, Pi As Double
Super::Start()
' Assign a value to Pi with the Let statement
Let Pi = 4 * Atn(1)
' Assign a value to Msg without Let statement

String String
Non-Null Variant

Variant String
Numeric Variant

CPointer CPointer

Table 6-30 Compatibility of data types for <variable> and
<exprs> (continued)

Data type of <variable> Valid data types for <exprs>

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 289

Line Input statement

Msg = "The area of a circle of radius 3 inches is "
+ & (Pi * (3^2)) & " inches."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Const statement
IsNumeric function
LSet statement

Line Input statement
Reads from a sequential file until it reaches a carriage-return-linefeed (CRLF) pair
or the end of the file (EOF), and assigns the information to a variable.

Syntax Line Input #<file number>, <receiving variable>

Description Line Input reads data from a sequential file one line at a time.

Unlike Input, Line Input treats commas, spaces, and quotes no differently than it
does any other characters. It is useful for reading plain ASCII files. Line Input
stops reading into <receiving variable> when it encounters a carriage-return-
linefeed character-pair (CRLF). It skips the carriage-return-linefeed character-pair
itself and—assuming it is called again—continues reading from the first character
after the CRLF until it reaches another CRLF or the end of the file (EOF).

Parameters <file number>
Numeric expression that is the file number assigned to the target file when it was
opened in the Input mode.

<receiving variable>
String or variant expression to which Line Input assigns the data it reads from the
target file.

The following example reads one line of data from Notes.txt into the variable A$:

Open "Notes.txt" For Input As #2
Line Input #2, A$

The following example reads the first line of Poem.txt into the variable A$, the
second line into B$, and the third into C$:

Open "Poem.txt" For Input As #1
Line Input #1, A$
Line Input #1, B$
Line Input #1, C$

Rules ■ <file number> must match the number of a currently open file.

290 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ListToArray funct ion

■ The number sign (#) preceding <file number> is required.

■ The file corresponding to <file number> must be open under the Input mode.

■ You must have write access to the open file. That is, the file must not have been
opened using a Lock Read or Lock Read Write clause.

Example The following example creates a test file, reads three lines from it, then deletes the
test file:

Sub Start()
Dim strEachLine(3) as String
Dim I As Integer
Super::Start ()
Open "LineInputNum.txt" For Output As #1
For I = 1 to 3

Print #1, "This is line number " & I & " in the test file"
Next I
Reset
Open "LineInputNum.txt" For Input As #1
For I = 1 to 3

Line Input #1, strEachLine(I)
ShowFactoryStatus(strEachLine(I))

Next I
Reset
ShowFactoryStatus("Deleting test file.")
Kill "LineInputNum.txt"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Input statement
Open statement
Print statement

ListToArray function
Converts a list of values into an array.

Syntax ListToArray(<list>, <array>)

ListToArray(<list>, <array>, <separator>)

Description Use ListToArray to convert string lists with list elements delimited by separator
characters into arrays.

Parameters <list>
String expression specifying the list to convert to an array.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 291

Loc funct ion

<array>
Dynamic string array to populate with the elements of the list. This array is
resized to exactly the number of elements found in the list. The base of the array
is 1.

<separator>
Optional string expression specifying a single character used to delimit the
elements in the list. If omitted or the value is an empty string or Null, a comma is
used as the separator character. If the value is more than one character, only the
first character is used.

Returns ■ Integer. The number of elements in the list and hence the number of elements
in the array.

■ If the list is an empty string, ListToArray returns 1 and the array contains a
single empty element.

■ If the list is Null, ListToArray returns 0 and the array is reset to contain no
elements.

Tip String lists are frequently found in external data, such as parameters and database
columns. Use arrays as a more convenient format for calculations.

Example The following example declares a dynamic array and converts a list into an array:

Sub Start()
Dim list As String
Super::Start ()
List = "A|B|C"
' Declare a dynamic array.
Dim array() As String
Dim numberOfElements As Integer
numberOfElements = ListToArray(list, array, "|")
Dim i As Integer
For i = 1 To numberOfElements

ShowFactoryStatus("Element " & I & " = " & array(i))
Next i

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Loc function
Returns the current position in an open file.

Syntax Loc(<file number>)

292 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Loc funct ion

Parameters <file number>
Numeric expression that is the file number used to open the file with Open
statement.

Rule: File must be open.

Returns Integer

■ For Sequential files: Returns the current byte position in the file divided by
128.

■ For Random files: Returns the number of the last variable read from or written
to the file.

■ For Binary mode files: Returns the position of the last byte read or written.

Tip You can open sequential files with a buffer of a different size if you use the Len
parameter in Open. However, this does not change the result of Loc, which
always divides by 128 when applied to sequential files.

Example The following example opens a test file, asks the user how much of it to read, then
reports the current position in the file:

Sub Start()
Dim CountVar As Integer, Msg As String
Dim NowLoc As Integer, TempVar, MaxNum
Super::Start()
' Open file for output
Open "Testdata.fil" For Output As #1

' Generate rnd values
For CountVar = 1 To 300

' Put data in file
Print #1, CountVar

Next CountVar
' Close test file

Close #1
' Open file just created

Open "Testdata.fil" For Input As #1
MaxNum = CInt(299 * Rnd + 1)
For CountVar = 1 To MaxNum

' Read some data from it
Input #1, TempVar

Next CountVar

' Find location in file
NowLoc = Loc(1)

' Close file
Close #1
Msg = MaxNum & " data elements have been read from a file of"

+ & " 300. The current location in the Testdata.fil"
+ & " file is: " & NowLoc & ". "

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 293

Lock…Unlock statement

+ & "The sample file will now be deleted."

ShowFactoryStatus(Msg)
' Delete file from diskKill "Testdata.fil"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also EOF function
LOF function
Open statement

Lock…Unlock statement
Prohibits access by other users or processes to all or part of an open file.

Syntax Lock [#]<open file number> [,{<record> | [<start>] To <end>}]

[<data process statements>]

Unlock [#]<open file number> [,{<record> | [<start>] To <end>}]

Description Lock restricts multiuser access to a specified area of a file. When you lock part of
the file or the whole file, no other user on a network can access it until you Unlock
the file or file segment.

Lock and Unlock apply only to files opened with Open by Actuate Basic. They do
not apply to Access databases.

The following conditions apply to Lock…Unlock:

■ The parameters for Lock and Unlock in a Lock…Unlock statement must match
exactly.

■ If you use Lock to restrict access to a file, you must Unlock the file before you
close that file or terminate your program.

■ You cannot use Lock…Unlock with versions of MS-DOS earlier than 3.1.

■ If you do use MS-DOS, and Share.exe is not already loaded, you must exit
Actuate Basic and run Share.exe under DOS to enable locking operations
before you can use Lock…Unlock.

Parameters <open file number>
Numeric expression that is the file number you used to open the target file. The
following conditions apply to <open file number>:

■ Must be the number of a currently open file.

■ The number sign (#) before <open file number> is required.

294 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Lock…Unlock statement

<record>
Numeric expression that specifies the number of the record or byte to lock. The
following conditions apply to <record>:

■ Must be between 1 and 2,147,483,647.

■ Record length cannot exceed 65,535 bytes.

<start>
Numeric expression that specifies the number of the first record or byte to lock.
The default is 1.

To
Keyword that separates <start> from <end> in the clause that specifies a range of
records or bytes to lock.

<end>
Numeric expression that specifies the number of the last record or byte to lock.

The terms <record>, or <start> and <end> specify different things according to
the mode under which the target file was opened. Table 6-31 summarizes these
differences.

<data process statements>
One or more valid Actuate Basic statements that direct the operations your
program performs on the open file while others are temporarily locked out. In the
following example, Lock restricts other users or processes from accessing any part
at all of the file previously opened as #1. When processing of the file is done,
Unlock lifts those restrictions.

Lock #1
[<data process statements>]

Unlock #1

The following Lock…Unlock statement block prohibits and then permits others’
access to a single record, the 112th in the random access file Maillist.dat:

Table 6-31 Differences between using <record> and using <start> and <end>

File mode <record>, or <start> and <end> refer to

Binary The number of a byte relative to the beginning of the
open file. The first byte in a file is byte 1.

Random The number of a record relative to the beginning of the
open file. The first record is record 1.

Sequential Input or
Output

The entire file, no matter what range you specify with
<start> To <end>.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 295

Lock…Unlock statement

Open "Maillist.dat" for Random As #1 Len = 32
Lock #1, 112
[<data process statements>]
Unlock #1, 112

The following Lock…Unlock statement block locks and then unlocks others’
access to byte positions 11 through 25, inclusive, of the binary file Testfile.dat:

Open "Testfile.dat" For Binary As #1
Lock #1, 11 TO 25

[<data process statements>]
Unlock #1, 11 TO 25

The following Lock…Unlock statement block locks and then unlocks byte
positions 1 through 229, inclusive, of the binary file Testfile.dat:

Open "Testfile.dat" For Binary As #1
Lock #1, TO 229

[<data process statements>]
Unlock #1, TO 229

Tips ■ Use Lock…Unlock in networked environments, in which several users or
processes might need access to the same file.

■ Use Lock…Unlock to ensure that two users simultaneously updating a
database record do not accidentally save old data on top of new.

Example The following example creates a sample data file and accesses a single record,
RecNum. RecNum is locked to other users while the record is being updated.
Access is permitted again when the update is complete. The example overrides
Start() and calls a sub procedure to create the sample data file. The data file is
deleted at the conclusion of the Start function. To use this example, paste the
Declare statement and the procedure MakeDataFile1216 into a Actuate Basic
source code (.bas) library file.

Declare
Type AcctRecord

Payer As String
Address As String
City As String
State As String
Owe As Currency

End Type
End Declare

Sub MakeDataFile1216()
Dim CustRecord As AcctRecord
Open "Testfile" For Random Shared As #1 Len = 150
' Put information in each field of the record
CustRecord.Payer = "Emilio Enbilliam"
CustRecord.Address = "6 Jane Street"

296 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Lock…Unlock statement

CustRecord.City = "New York"
CustRecord.State = "NY"
' Initialize amount owed
CustRecord.Owe = 12
'Put record in file
Put #1, 1, CustRecord.Payer & "," & CustRecord.Address & ","

+ & CustRecord.City & "," & CustRecord.State & "," &
CustRecord.Owe
' Close the file

Close #1
End Sub
Sub Start()

Dim CustRecord As AcctRecord, Change As String
Dim DataRecord As Variant
Dim Msg As String, RecNum As Integer
Dim commaPos1,commaPos2 as Integer
Super::Start()
' Set up error handler
On Error GoTo ErrorHandler
' Create sample data file
MakeDataFile1216
Open "Testfile" For Random Shared As #1 Len = 150
' There is only one record, lock the current record
RecNum = 1
Lock #1, RecNum
' Read a record
Get #1, RecNum, DataRecord
commaPos1 = InStr(DataRecord,",")
CustRecord.Payer = Mid(DataRecord,1,commaPos1-1)
commaPos2 = Instr(commaPos1+1, DataRecord, ",")

 CustRecord.Address = Mid(DataRecord,commaPos1+1,commaPos2-
commaPos1-1)
commaPos1 = commaPos2 + 1
commaPos2 = Instr(commaPos1, DataRecord, ",")
CustRecord.City = Mid(DataRecord,commaPos1,commaPos2-commaPos1)
commaPos1 = commaPos2 + 1
commaPos2 = Instr(commaPos1, DataRecord, ",")
CustRecord.State = Mid(DataRecord,commaPOs1,commaPos2-
commaPos1)
CustRecord.Owe = Mid(DataRecord,RevInStr(DataRecord,",")+1)
Msg = "Customer " & CustRecord.Payer

+ & " previously owed: "
+ & Format(CustRecord.Owe, "$#,##0.00")

' Show data and the change
Change = 1000 * Rnd - 500
If Len(Change) = 0 Then Change = 0
CustRecord.Owe = CustRecord.Owe + Change

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 297

Lock…Unlock statement

' Update record
Put #1, RecNum, CustRecord.Payer & "," & CustRecord.Address

+ & "," & CustRecord.City & "," & CustRecord.State & "," &
CustRecord.Owe
' Unlock the record
Unlock #1, RecNum
Msg = Msg & " The change to the amount is "

+ & Format(Change, "$#,##0.00")
+ & " The amount is now "
+ & Format(CustRecord.Owe, "$#,##0.00")

ShowFactoryStatus(Msg)
' Close the file
Close #1

Cleanup:
Msg = "Transaction complete. Now Deleting sample "

+ & "data file."
ShowFactoryStatus(Msg)
' Remove file from disk

' Kill "TESTFILE"
Exit Sub
ErrorHandler:
' Permission denied error

If Err = 70 Then
Msg = {"Sorry, you must run Share.exe before running

this example. Exit Actuate Basic, Exit Windows,run Share.exe,
and reenter Actuate Basic torun this example. Do not shell to
DOS and run Share.exe or you might not be able to run other
programs until you reboot."}
' Some other error occurred

Else
Msg = "Error " & Err & " occurred. " & Error$

End If
' Display error message
ShowFactoryStatus(Msg)
' Close files, flush buffers
Reset
' Do an orderly exit

Resume Cleanup
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Get statement
Open statement
Put statement

298 P r o g r a m m i n g w i t h A c t u a t e B a s i c

LOF funct ion

LOF function
Returns the size of an open file in bytes.

Syntax LOF(<open file number>)

Parameters <open file number>
Numeric expression that is the file number you used with Open to open the target
file.

Rules for <open file number>:

■ Must be the number of a currently open file.

■ Must refer to a disk file.

Example The following example opens an existing disk file named Test.fil and then uses
LOF to determine its size in bytes:

Open "Test.fil" For Input As #1
SizeOfFile = LOF(1)

Returns Integer

Tip To determine the length of a file that is not open, use FileLen.

Example The following example creates a test file on disk that contains some random
numbers. The procedure then reopens the test file and reports its length. This
example overrides Start() which calls a sub procedure to generate the test file. The
test file is deleted at the end of the Start function. To use this example, paste the
procedure MakeDataFile0314 after the End Function of the Start() procedure or
paste it into the Actuate Basic source code (.bas) file.

Sub Start()
Dim Msg As String
Dim FileLength As Integer
Super::Start()
' Create sample data file
MakeDataFile0327
' Open newly created file
Open "Test.fil" For Input As #1
' Get length of file
FileLength = LOF(1)
' Close test file
Close #1
Msg = "The length of the Test.fil file just created is "

+ & FileLength & " bytes. "
+ & "The sample data file will now be deleted."

ShowFactoryStatus(Msg)
' Delete test file

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 299

Log funct ion

Kill "Test.fil"
End Sub

Sub MakeDataFile0327()
Dim I As Integer
' Open file for output
Open "Test.fil" For Output As #1
' Generate values 0-250
For I = 0 To 250

Print #1, I
Next I
' Close test file
Close #1

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also EOF function
FileLen function
Loc function
Open statement

Log function
Gives the natural logarithm for a number.

Syntax Log(<number>)

Parameters <number>
Numeric expression or Variant of VarType 8 (String) for which you want to find
the logarithm. <number> must be greater than 0.

Returns Double

If <number> evaluates to Null, Log returns Null.

Tips ■ To calculate logarithms in a base other than e, use Log(<number> divided by
Log(<base>), where <base> is the number of the desired base other
than e.

■ Log is the inverse of Exp.

Example The following example generates a number, then returns the natural logarithm
for that number:

Sub Start()
Super::Start()
On Error Goto ErrorHandler

300 P r o g r a m m i n g w i t h A c t u a t e B a s i c

LSet statement

Dim UserNum, Msg As String
UserNum = 1000 * Rnd
Msg = "The log (base e), or Log(" & UserNum & ") is "

+ & Log(UserNum)
ShowFactoryStatus(Msg)
Exit Sub

ErrorHandler:
ShowFactoryStatus("Error: " & Err & " -- " & Error$(Err))
ShowFactoryStatus("Please try again.")
Resume Next

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Exp function

LSet statement
Left-aligns a string within the space of a string variable.

Syntax LSet <string variable> = <string exprs>

Description LSet left-aligns a string expression within a variable.

Parameters <string variable>
Name of a string variable in which LSet stores the left-aligned <string exprs>.

<string exprs>
String expression that you want LSet to left-align within <string variable>.

The behavior of LSet depends on whether <string exprs> is shorter or longer than
<string variable>, as shown in Table 6-32.

Example The following example left-aligns text within a 20-character string variable:

Table 6-32 LSet behavior

<string exprs> Behavior of LSet

Shorter than <string
variable>

Left-aligns <string exprs> within <string variable>.
Replaces any leftover characters in <string variable>
with spaces.

Longer than <string
variable>

Places only the first characters, up to the length of the
<string variable>, in <string variable>. Truncates
characters beyond the length of <string variable> from
the right.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 301

LTrim, LTr im$ funct ions

Sub Start()
Dim Msg, TmpStr As String
Super::Start()
' Create 20-character string
TmpStr = String(20, "*")
Msg = "The following two strings that have been right"

+ & "and left justified in a " & Len(TmpStr)
+ & "-character string."

ShowFactoryStatus(TmpStr)
' Right justify
RSet TmpStr = "Right->"
ShowFactoryStatus(TmpStr)
' Left justify
LSet TmpStr = "<-Left"
ShowFactoryStatus(TmpStr)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also RSet statement

LTrim, LTrim$ functions
Returns a copy of a string expression after removing leading spaces.

Syntax LTrim(<string exprs>)

LTrim$(<string exprs>)

Parameters <string exprs>
String from which LTrim[$] strips leading spaces. Leading spaces are any spaces
that occur before the first non-space character in a string. <string exprs> must be
a variable string, a literal string, a string constant, the return value of any function
that returns a string, or a Variant that can evaluate to a String.

Returns LTrim: Variant
LTrim$: String

A copy of <string exprs> with leading spaces removed.

■ If there are no leading spaces, LTrim[$] returns <string exprs>.

■ If <string exprs> evaluates to Null, LTrim[$] returns Null.

Tips ■ To simultaneously strip both leading and trailing spaces in a string, use Trim$.

■ To find spaces in the middle of a string, use InStr.

Example The following example uses LTrim$ to strip leading spaces from a string variable
and uses RTrim$ to strip trailing spaces:

302 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Mid, Mid$ funct ions

Sub Start()
Dim Msg As String
Dim CustName As String, CustName1 As String
Super::Start()
CustName = " Harold Painter "
' Strip spaces
CustName1 = LTrim$(RTrim$(CustName))
Msg = "The original customer name " & "'"

+ & CustName & "'" & " …was " & Len(CustName)
+ & " characters long. There were two leading "
+ & "spaces and two trailing spaces."

ShowFactoryStatus(Msg)
Msg = "The name returned after stripping the spaces "

+ & "is:" & "'" & CustName1
+ & "'" & "…and it contains only "
+ & Len(CustName1) & " characters."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
RTrim, RTrim$ functions

Mid, Mid$ functions
Returns the specified portion of a string expression.

Syntax Mid(<string exprs>, <start>[,<length>])

Mid$(<string exprs>, <start>[,<length>])

Parameters <string exprs>
Source string from which you are copying a portion. It can be a variable string, a
literal string, a string constant, the return value of any function that returns a
string, or a Variant that can evaluate to a String.

<start>
Integer that specifies the character position within a <string exprs> where copy
begins. <start> must be between 1 and 2,147,483,647, inclusive.

<length>
Integer indicating how many characters to copy.

The following conditions apply to <length>:

■ If <length> is omitted, Actuate Basic uses all characters from <start> to the
end of <string exprs>.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 303

Mid, Mid$ funct ions

■ Must be between 0 and 2,147,483,647.

The following examples are equivalent:

Mid$("Widget",4,3)
Mid$("Widget",4)

The following example returns Widget:

Mid$("Widget",1,99)

Returns Mid: Variant
Mid$: String

■ If <start> is greater than length of <string exprs>, returns zero-length string.

■ If <length> = 0, returns zero-length string.

■ If <length> is greater than length of <string exprs>, returns only the characters
up to the length of <string exprs>.

■ If any parameter evaluates to Null, Mid[$] returns Null.

Tip Use Len to find the number of characters in <string exprs>.

Example In the following example, Mid[$] returns the middle word from a variable
containing three words:

Sub Start()
Dim MiddleWord, Msg, TestStr
Dim SpacePos1, SpacePos2, WordLen
Super::Start()
' Create text string
TestStr = "Mid function Example"
' Find first space
SpacePos1 = InStr(1, TestStr, " ")
' Find next space
SpacePos2 = InStr(SpacePos1 + 1, TestStr, " ")
' Calc 2nd word length
WordLen = (SpacePos2 - SpacePos1) - 1
' Find the middle word
MiddleWord = Mid(TestStr, SpacePos1 + 1, WordLen)
Msg = "The word in the middle of ““" & TestStr & "““ is """

+ & MiddleWord & """"
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Left, Left$ functions
Len function
Right, Right$ functions

304 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Mid, Mid$ statements

Mid, Mid$ statements
Replaces a segment of a string with another string.

Syntax Mid(<string variable>,<start>[,<length>]) = <string exprs>

Mid$(<string variable>,<start>[,<length>]) = <string exprs>

Parameters <string variable>
String expression or Variant variable to modify. <string variable> cannot be a
literal, function, or other expression.

<start>
Position in <string variable> at which replacement text begins. The position of the
first character is 1. <start> must be between 1 and 2,147,483,647, inclusive.

<length>
Number of characters from <string exprs> to use. The default is the unchanged
<string exprs>.

The following conditions apply to <length>:

■ Must be between 1 and 2,147,483,647, inclusive.

■ No matter how large you specify <length> to be, the resulting string is never
longer than <string variable>.

<string exprs>
String expression that replaces segment of <string variable>. It can be a variable-
length string, a literal string, a string constant, the return value of any function
that returns a string, or a Variant that can evaluate to a String. <string exprs>
cannot entirely replace <string variable> with a shorter <string exprs>.

Example The following example replaces part of the string FREUDIAN with all or part of
Jung in the variable Hillman:

Sub Start()
Dim Hillman As String
Super::Start()
Hillman = "FREUDIAN"
' now Hillman = "JungDIAN"
Mid$(Hillman,1,5) = "Jung"
ShowFactoryStatus(Hillman)
Hillman = "FREUDIAN"
' same result, "JungDIAN"
Mid(Hillman,1,4) = "Jung"
ShowFactoryStatus(Hillman)
Hillman = "FREUDIAN"
' now Hillman = "JunUDIAN"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 305

MidB, MidB$ funct ions

Mid$(Hillman,1,3) = "Jung"
ShowFactoryStatus(Hillman)
Hillman = "FREUDIAN"
' now Hillman = "FREUJung"
Mid(Hillman,5) = "Jung"
ShowFactoryStatus(Hillman)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Left, Left$ functions
Mid, Mid$ functions
Right, Right$ functions

MidB, MidB$ functions
Returns the specified portion of a string expression.

These functions are provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the Mid and Mid$
functions instead of the MidB and MidB$ functions.

Syntax MidB(<string exprs>, <start>[,<length>])

MidB$(<string exprs>, <start>[,<length>])

Parameters <string exprs>
String expression from which you are copying a byte or a series of contiguous
bytes. Can be a variable string, a literal string, a string constant, the return value
of any function that returns a string, or a Variant that can evaluate to a String.

<start>
Integer that specifies the byte position within a <string exprs> where copy begins.
<start> must be between 1 and 2,147,483,647, inclusive.

<length>
Integer indicating how many bytes to copy.

The following conditions apply to <length>:

■ If <length> is omitted, Actuate Basic uses all characters from <start> to the
end of <string exprs>.

■ <length> must be between 0 and 2,147,483,647.

The following example statements are equivalent:

306 P r o g r a m m i n g w i t h A c t u a t e B a s i c

MidB, MidB$ funct ions

MidB$("Widget",4,3)
MidB$("Widget",4)

The following statement returns "Widget":

MidB$("Widget",1,99)

Returns MidB: Variant
MidB$: String

■ If <start> is greater than length of <string exprs>, the function returns zero-
length string.

■ If <length> = 0, the function returns zero-length string.

■ If <length> is greater than length of <string exprs>, the function returns only
the characters up to the length of <string exprs>.

■ If any parameter evaluates to Null, MidB[$] returns Null.

Tips ■ Use LenB[$] to find the number of bytes in <string exprs>.

■ Use InStrB[$] to find the position of a specified byte in <string exprs>.

Example In the following example, MidB returns the middle word from a variable
containing three words:

Sub Start()
Dim MiddleWord, Msg, TestStr
Dim SpacePos1, SpacePos2, WordLen
Super::Start()
' Create text string
TestStr = "MidB function Example"
' Find first space
SpacePos1 = InStr(1, TestStr, " ")
' Find next space
SpacePos2 = InStr(SpacePos1 + 1, TestStr, " ")
' Calc 2nd word length
WordLen = (SpacePos2 - SpacePos1) - 1
' Find the middle word
MiddleWord = MidB(TestStr, SpacePos1 + 1, WordLen)
Msg = "The word in the middle of ““" & TestStr & "““ is """

+ & MiddleWord & """"
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also InStrB function
LeftB, LeftB$ functions
LenB function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 307

MidB, MidB$ statements

Mid, Mid$ functions
RightB, RightB$ functions

MidB, MidB$ statements
Replaces a segment of a string with another string.

These statements are provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the Mid and Mid$
statements instead of the MidB and MidB$ statements.

Syntax MidB(<string variable>,<start>[,<length>]) = <string exprs>

MidB$(<string variable>,<start>[,<length>]) = <string exprs>

Parameters <string variable>
String expression or Variant to modify. <string variable> must be a variable, not a
literal, function, or other expression.

<start>
Position in <string variable> at which replacement text begins. The position of the
first byte is 1. <start> must be between 1 and 2,147,483,647, inclusive.

<length>
Number of bytes from <string exprs> to use. The default is the unchanged
<string exprs>.

The following conditions apply to <length>:

■ Must be between 1 and 2,147,483,647, inclusive.

■ No matter how large you specify <length> to be, the resulting string is never
longer than <string variable>.

<string exprs>
String expression that replaces segment of <string variable>. It can be a variable
string, a literal string, a string constant, the return value of any function that
returns a string, or a Variant that can evaluate to a String. <string exprs> cannot
entirely replace <string variable> with a shorter <string exprs>.

Example The following example replaces part of the string FREUDIAN with all or part of
Jung in the variable Hillman:

Sub Start()
Dim Hillman As String
Super::Start()
Hillman = "FREUDIAN"

308 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Minute funct ion

' now Hillman = "JungDIAN"
MidB(Hillman,1,5) = "Jung"
ShowFactoryStatus(Hillman)
Hillman = "FREUDIAN"
' same result, "JungDIAN"
MidB(Hillman,1,4) = "Jung"
ShowFactoryStatus(Hillman)
Hillman = "FREUDIAN"
' now Hillman = "JunUDIAN"
MidB$(Hillman,1,3) = "Jung"
ShowFactoryStatus(Hillman)
Hillman = "FREUDIAN"
' now Hillman = "FREUJung"
MidB$(Hillman,5) = "Jung"
ShowFactoryStatus(Hillman)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also LeftB, LeftB$ functions
MidB, MidB$ functions
RightB, RightB$ functions

Minute function
Returns an integer from 0 to 59, inclusive, that represents the minute of the hour
specified by a date expression.

Syntax Minute(<date exprs>)

Parameters <date exprs>
Date expression, or any numeric or string expression that can be interpreted as a
date, a time, or both a date and a time:

■ Can be a string such as November 12, 1982 8:30 PM, Nov. 12, 1982 08:30 PM,
11/12/82 8:30pm, 08:30pm, or any other string that can be interpreted as a
date, a time, or both a date and a time in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date, a time, or both a date and a time in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the fractional component represents the time of day on that date, where
January 1, 1900 at precisely noon has the date serial number 2.5, and negative
numbers represent dates prior to December 30, 1899 (0).

The default is 0.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 309

Minute funct ion

The following conditions apply to <date exprs>:

■ If <date exprs> includes a date, it must be a valid date, even though Minute
does not return a date. A valid date is any date in the range January 1, 100
through December 31, 9999, expressed in one of the standard date formats.

■ If <date exprs> includes a time, it must be in the range 00:00:00 (12:00:00 A.M.)
through 23:59:59 (11:59:59 P.M.), in either the 12- or 24-hour format.

■ If <date exprs> is a numeric expression, it must be in the range -657434.0 to
+2958465.9999, inclusive.

■ If <date exprs> is a variable containing a date serial number, the variable must
be explicitly declared as one of the numeric types.

■ <date exprs> is parsed according to the formatting rules of the current
run-time locale.

For example, the following statements are equivalent. Each assigns 35 to the
variable UserMinute.

UserMinute = Minute("6/7/64 2:35pm")
UserMinute = Minute("5:35 pm")
UserMinute = Minute("June 7, 1964 2:35 PM")
UserMinute = Minute("Jun 7, 1964") + 35
UserMinute = Minute(23535.6077)
UserMinute = Minute(0.6077)

Returns Integer

■ If <date exprs> cannot be evaluated to a date, Minute returns Null. For
example:

Minute("This is not a date.") returns Null

■ If <date exprs> fails to include all date components (day, month, and year),
Minute returns Null. For example:

Minute("Nov 12, 1982 7:11 AM")

returns 11, but:

Minute("Nov 1982 7:11 AM")

returns Null.

■ If <date exprs> is Null, Minute returns Null.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, please
see Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.

310 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Minute funct ion

For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Example The following example displays the number of hours, minutes, and seconds
remaining until midnight:

Sub Start()
Dim HrDiff As Integer, MinDiff As Integer, SecDiff As Integer
Dim RightNow As Double, Midnight As Double
Dim TotalDiff As Double, TotalMinDiff As Double
Dim TotalSecDiff As Double, Msg As String
Super::Start()
Midnight = TimeValue("23:59:59")
' Get current time
RightNow = Now
' Get diffs from midnight
HrDiff = Hour(Midnight) - Hour(RightNow)
MinDiff = Minute(Midnight) - Minute(RightNow)
SecDiff = Second(Midnight) - Second(RightNow) + 1
' Restate seconds and minutes if necessary
If SecDiff = 60 Then

' Add 1 to minute
MinDiff = MinDiff + 1
' And set 0 seconds
SecDiff = 0

End If
If MinDiff = 60 Then

' Add 1 to hour
HrDiff = HrDiff + 1
' And set 0 minutes
MinDiff = 0

End If
' Now get totals
TotalMinDiff = (HrDiff * 60) + MinDiff
TotalSecDiff = (TotalMinDiff * 60) + SecDiff
TotalDiff = TimeSerial(HrDiff, MinDiff, SecDiff)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 311

MIRR funct ion

' Prepare msg for display
Msg = "There are a total of " & Format(TotalSecDiff, "#,##0")

+ & " seconds until midnight. That translates to "
+ & HrDiff & " hours, "
+ & MinDiff & " minutes, and "
+ & SecDiff & " seconds. "
+ & "In standard time notation, it becomes "

' Remember not to use "mm" for minutes! m is for month.
Msg = Msg & Format(TotalDiff, "hh:nn:ss") & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Day function
Hour function
Month function
Now function
Second function
Time, Time$ functions
Weekday function
Year function

MIRR function
Returns the modified internal rate of return for a series of periodic cash flows
(payments and receipts) in an existing array.

Syntax MIRR(<casharray>(),<finance rate>, <reinvestment rate>)

Parameters <casharray>()
Array of Doubles that specifies the name of an existing array of cash flow values.
The <casharray> array must contain at least one positive value (receipt) and one
negative value (payment).

<finance rate>
Numeric expression that specifies the interest rate paid as the cost of financing.
<finance rate> must be a decimal value that represents a percentage.

<reinvestment rate>
Numeric expression that specifies the interest rate received on gains from cash
reinvestment. <reinvestment rate> must be a decimal value that represents a
percentage.

The following example assumes you have filled the array MyArray() with a series
of cash flow values. If the interest rate you pay for financing is 12%, and the rate

312 P r o g r a m m i n g w i t h A c t u a t e B a s i c

MIRR funct ion

your earn on income is 11.5%, what is the modified internal rate of return? The
answer is assigned to the variable MIRRValue.

MIRRValue = MIRR(MyArray(), 0.12, 0.115)

Returns Double

The modified internal rate of return is the internal rate of return (IRR) when
payments and receipts are financed at different rates. MIRR takes into account
both the cost of the investment (<finance rate>) and the interest rate received on
the reinvestment of cash (<reinvestment rate>).

Rules ■ You must express cash paid out (such as deposits to savings) using negative
numbers, and cash received (such as dividend checks) using positive
numbers.

■ <casharray>() must contain at least one negative and one positive number.

■ In cases where you have both a positive cash flow (income) and a negative one
(payment) for the same period, use the net flow for that period.

■ If no cash flow or net cash flow occurs for a particular period, you must type 0
(zero) as the value for that period.

Tip Because MIRR uses the order of values within the array to interpret the order of
payments and receipts, be sure to type payment and receipt values in the correct
sequence.

Example The following example returns the modified internal rate of return for a series of
cash flows contained in the array, CashValues(). LoanAPR represents the
financing interest, and InvAPR represents the interest rate received on reinvested
cash. Option Base is assumed to be set to zero.

Sub Start()
' Set up array
Static CashValues(5) As Double
Dim LoanAPR As Double, InvAPR As Double
Dim Fmt As String, ReturnRate As Double, Msg As String
Super::Start()
' Loan rate
LoanAPR = .1
' Reinvestment rate
InvAPR = .12
' Define money format
Fmt = "#0.00%"
' Business start-up costs
CashValues(0) = -80000
' Now set up positive cash flows for income for four years:
CashValues(1) = 23000: CashValues(2) = 27000
CashValues(3) = 31000: CashValues(4) = 35000
' Calculate internal rate

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 313

MkDir statement

ReturnRate = MIRR(CashValues, LoanAPR, InvAPR)
Msg = "The modified internal rate of return for these cash "

+ & "flows is: " & Format(Abs(ReturnRate), Fmt) & "."
ShowFactoryStatus(Msg)
ShowFactoryStatus(CStr(CashValues(1)))
ShowFactoryStatus(CStr(CashValues(2)))
ShowFactoryStatus(CStr(CashValues(3)))
ShowFactoryStatus(CStr(CashValues(4)))

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IRR function
Rate function

MkDir statement
Creates a new directory or subdirectory on the specified or current drive.

Syntax MkDir <path name>

Description If you do not specify the full path name, MkDir creates the new subdirectory on
the current drive under the current directory.

Parameters <path name>
String expression that is the name of the directory to be created.

<path name> has the following syntax:

[<drive:>] [\]<directory>[\<directory>]…(Windows)

[/]<directory>[/<directory>]…(UNIX)

The following conditions apply to <path name>:

■ Must contain fewer than 259 characters.

■ Cannot be the name of a directory that already exists.

<drive:>
Character, followed by a colon, that is the name of the drive (Windows only).

<directory>
String expression that is the name of the directory or subdirectory to create.

The following example creates the subdirectory Docs under the current directory
on the default drive:

MkDir "Docs"

314 P r o g r a m m i n g w i t h A c t u a t e B a s i c

MkDir statement

The following example creates the subdirectory Docs under the root directory of
the current drive:

DirName$ = "\Docs"
MkDir DirName$

On a Windows system, the following example creates the subdirectory Docs
under the root directory of drive D:

MkDir "D:\Docs"

Tips ■ MkDir is similar to the operating system MkDir. Unlike the DOS command,
however, it cannot be abbreviated.

■ If you use one or more embedded spaces in <path name> when you create a
directory, use Actuate Basic’s RmDir to remove the directory.

■ To determine the current directory, use CurDir.

Example The following example determines whether a \Tmp subdirectory exists on the
current drive. If it does not, the example creates the directory.

Sub Start()
Dim UserAns As Integer, ThisDrive As String
Dim Msg As String, TempDir As String
Super::Start()
' Set up error handler
On Error Resume Next
' Get current drive letter
ThisDrive = Left$(CurDir, 2)
' Construct full path spec
TempDir = UCase$(ThisDrive & "\Tmperase")
' Make the new directory
MkDir TempDir
' Does it exist?
If Err = 41 Then

Msg = "Sorry, " & TempDir & " directory already exists."
Else

Msg = TempDir & " directory was created. "
End If
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CurDir, CurDir$ functions
ChDir statement
RmDir statement

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 315

Month funct ion

Month function
Returns an integer between 1 and 12, inclusive, that represents the month of the
year for a specified date argument.

Syntax Month(<date exprs>)

Parameters <date exprs>
Date expression, or any numeric or string expression that can evaluate to a date or
a date and a time:

■ Can be a string such as November 12, 1982, Nov 12, 1982, 11/12/82, 11-12-82,
or any other string that can be interpreted as a date in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the fractional component represents the time of day on that date, where
January 1, 1900 at precisely noon has the date serial number 2.5, and negative
numbers represent dates prior to December 30, 1899 (0).

The following conditions apply to <date exprs>:

■ If <date exprs> a string expression, must specify a date in the range January 1,
100 through December 31, 9999, inclusive.

■ If <date exprs> is a numeric expression, must be in the range -657434 to
+2958465, inclusive.

■ If <date exprs> is a variable containing a date serial number, the variable must
be explicitly declared as one of the numeric types.

■ <date exprs> is parsed according to the formatting rules of the current
run-time locale.

For example, the following statements are equivalent. Each assigns 6 to the
variable UserMonth.

UserMonth = Month("6/7/64")
UserMonth = Month("June 7, 1964 2:35 PM")
UserMonth = Month("Jun 7, 1964")
UserMonth = Month(23535)
UserMonth = Month(4707*5)

Returns Integer

■ If <date exprs> cannot be evaluated to a date, Month returns Null. For
example, the following statement returns Null:

Month("This is not a date.")

316 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Month funct ion

■ If <date exprs> fails to include all date components (day, month, and year),
Month returns Null. For example:

Month("Nov 12, 1982")

returns 11, but:

Month("Nov 1982")

returns Null.

■ If <date exprs> is Null, Month returns Null.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, please
see Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Example The following example analyzes today’s date. It uses various date functions to
display the year, month, day, and weekday of the given date. Finally, it gives the
date’s serial number.

Sub Start()
Dim UserEntry, UserYear As Integer, UserMonth As Integer
Dim UserDay As Integer, UserDOW As Integer, DOWName As String
Dim Msg As String, LeapYear As String
Super::Start()
' Get date
UserEntry = Now
UserEntry = CDate(UserEntry)
' Calculate year
UserYear = Year(UserEntry)
' Calculate month
UserMonth = Month(UserEntry)
' Calculate day
UserDay = Day(UserEntry)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 317

Month funct ion

' Calculate day of week
UserDOW = Weekday(UserEntry)
' Convert to name of day
DOWName = Format$ (UserEntry, "dddd")
' Determine if the year is a leap year or a centesimal
If UserYear Mod 4 = 0 And UserYear Mod 100 = 0 Then
' Evenly divisible by 400?

If UserYear Mod 400 = 0 Then
LeapYear = "is a leap year."

' Not evenly divisible
Else

LeapYear = "is a centesimal but not a leap year."
End If

ElseIf UserYear Mod 4 = 0 Then
LeapYear = "is a leap year."

Else
LeapYear = "is not a leap year."

End If

' Display results for the user after the pattern:
' The given year 1982 is not a leap year. The weekday number
' for the 12th day of the 11th month in 1982 is 3, which
' means that day was a Tuesday.

' The date serial number for 11/12/82 is 30267.

Msg = "The given year, " & UserYear & ", " & LeapYear
ShowFactoryStatus(Msg)
Msg = "The weekday number for the " & UserDay

+ & Suffix(UserDay) & " day of the " & UserMonth
+ & Suffix(UserMonth) & " month in " & UserYear
+ & " is " & UserDOW & ", which means that day is a "
+ & DOWName & "." & "The date serial "
+ & "number for " & UserEntry & " is: "
+ & CDbl(DateSerial(UserYear, UserMonth, UserDay))

ShowFactoryStatus(Msg)
End Sub

' The previous procedure calls this function to tell us what
' suffix (1st, 2nd, 3rd) to use with a number.
Function Suffix (DateNum) As String

Select Case DateNum
Case 1, 21, 31

Suffix = "st"
Case 2, 22

Suffix = "nd"

318 P r o g r a m m i n g w i t h A c t u a t e B a s i c

MsgBox funct ion

Case 3, 23
Suffix = "rd"

Case Else
Suffix = "th"

End Select
End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Date, Date$ functions
Day function
Hour function
Minute function
Now function
Second function
Weekday function
Year function

MsgBox function
Displays a user-defined message in a window with a specified set of response
buttons, waits for the user to choose a button, and returns a value indicating
which button the user selected.

Syntax MsgBox(<message text> [, [<configuration>][, <window title>]])

Parameters <message text>
String expression that is the message to be displayed in the dialog box. Lines
break automatically at the right edge of the dialog box. If the <message text> for
an application modal message box is longer than 1024 characters, the message is
truncated.

<configuration>
Numeric expression that is the bitwise sum of up to four separate values:

■ Number and type of buttons

■ Icon style

■ Default button

■ Modality

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 319

MsgBox funct ion

Table 6-33 summarizes values for <configuration> and their corresponding
meanings.

Table 6-33 <configuration> values for the MsgBox function

Group Symbolic constant Value Meaning

Button
group

MB_OK 0 Display OK button.

MB_OKCANCEL 1 Display OK and Cancel
buttons.

MB_ABORTRETRYIGNORE 2 Display Abort, Retry,
and Ignore buttons.

MB_YESNOCANCEL 3 Display Yes, No, and
Cancel buttons.

MB_YESNO 4 Display Yes and No
buttons.

MB_RETRYCANCEL 5 Display Retry and
Cancel buttons.

Icon style
group

MB_ICONSTOP 16 Display Stop icon.

MB_ICONQUESTION 32 Display Question Mark
icon.

MB_ICONEXCLAMATION 48 Display Exclamation
Point icon.

MB_ICONINFORMATION 64 Display Information
icon.

Default
button
group

MB_DEFBUTTON1 0 First button is default.

MB_DEFBUTTON2 256 Second button is default.

MB_DEFBUTTON3 516 Third button is default.

Modality
group

MB_APPLMODAL 0 Application modal. User
must respond to message
box before continuing in
current application.

MB_SYSTEMMODAL 4096 System modal. User
must respond to message
box before continuing
with any application.

320 P r o g r a m m i n g w i t h A c t u a t e B a s i c

MsgBox funct ion

Add these numbers or constants together to specify the corresponding attributes
of the message box. The default is 0 and you can use only one number from each
group.

For example, each of the following statements displays a message box with the
Question Mark icon, the message “Are you sure you want to overwrite the file?”,
and the Yes, No, and Cancel buttons. In each case, the No button is the default.
The user’s response is assigned to the variable UserAns.

UserAns = MsgBox("Do you want to overwrite the file? ", 3+32+256)
UserAns = MsgBox("Do you want to overwrite the file? ", 291)
UserAns = MsgBox("Do you want to overwrite the file? ",

MB_YESNOCANCEL + MB_ICONQUESTION + MB_DEFBUTTON2)

<window title>
String expression that is the text displayed in the title bar of the dialog box. The
default is no title in the title bar.

Returns Integer

The value that MsgBox function returns tells you which button the user selected.

Table 6-34 summarizes possible user selections and their corresponding return
values.

Tip To set line breaks yourself, place a linefeed (ANSI character 10) before the first
character of the text that is to begin each new line.

Example The following example displays a different message box based on whether the
user selected the Yes or No button in a dialog box:

Sub Start()
Dim Title As String, MsgTxt As String
Dim DialogDef As Integer, UserResponse As Integer

Table 6-34 Symbolic constants and MsgBox return values for user selections at
run time

Selection at run time MsgBox returns Symbolic Constant is

OK button 1 IDOK

Cancel button 2 IDCANCEL

Abort button 3 IDABORT

Retry button 4 IDRETRY

Ignore button 5 IDIGNORE

Yes button 6 IDYES

No button 7 IDNO

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 321

MsgBox statement

Super::Start()
Title = "Demonstration of MsgBox Function"
MsgTxt = "Show the display of a critical-error message."
MsgTxt = MsgTxt & " Do you want to continue?"
DialogDef = MB_YESNO + MB_ICONSTOP + MB_DEFBUTTON2
UserResponse = MsgBox(MsgTxt, DialogDef, Title)
If UserResponse = IDYES Then

MsgTxt = "You selected Yes."
Else

MsgTxt = "You selected No or pressed Enter."
End If
MsgBox MsgTxt

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapterUsing the code examples.

See also InStr function
MsgBox statement

MsgBox statement
Displays a user-defined message in a window with a specified set of response
buttons, and waits for the user to choose a button. MsgBox statement does not
return a value indicating which button the user has clicked.

Syntax MsgBox <message text> [, [<configuration>][, <window title>]]

Parameters <message text>
String expression that is the message displayed in the dialog box. Lines break
automatically at the right edge of the dialog box. For application modal message
boxes, <message text> must not be longer than 1024 characters, or it is truncated.

<configuration>
Numeric expression that is the bitwise sum of up to four separate values:

■ Number and type of buttons

■ Icon style

■ Default button

■ Modality

322 P r o g r a m m i n g w i t h A c t u a t e B a s i c

MsgBox statement

Table 6-35 summarizes values for <configuration> and their corresponding
meanings.

Table 6-35 <configuration> values for MsgBox statements

Group Symbolic constant Value Meaning

Button
group

MB_OK 0 Display OK button.

MB_OKCANCEL 1 Display OK and Cancel
buttons.

MB_ABORTRETRYIGNORE 2 Display Abort, Retry, and
Ignore buttons.

MB_YESNOCANCEL 3 Display Yes, No, and
Cancel buttons.

MB_YESNO 4 Display Yes and No
buttons.

MB_RETRYCANCEL 5 Display Retry and Cancel
buttons.

Icon style
group

MB_ICONSTOP 16 Display Stop icon.

MB_ICONQUESTION 32 Display Question Mark
icon.

MB_ICONEXCLAMATION 48 Display Exclamation
Point icon.

MB_ICONINFORMATION 64 Display Information
icon.

Default
button
group

MB_DEFBUTTON1 0 First button is default.

MB_DEFBUTTON2 256 Second button is default.

MB_DEFBUTTON3 516 Third button is default.

Modality
group

MB_APPLMODAL 0 Application modal. User
must respond to message
box before continuing in
current application.

MB_SYSTEMMODAL 4096 System modal. User must
respond to message box
before continuing with
any application.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 323

Name statement

Add these numbers or constants together to specify the corresponding attributes
of the message box.

The default is 0 and you may use only one number from each group.

For example, each of the following displays a message box with the Exclamation
Point icon, the message: Sorry, insufficient disk space, and the OK button. In each
case, the No button is the default button.

MsgBox "Sorry, insufficient disk space", 0+48
MsgBox "Sorry, insufficient disk space", 48
MsgBox "Sorry, insufficient disk space",
+ (MB_OK + MB_ICONEXCLAMATION)

<window title>
String expression that specifies the words to appear in the title bar of the message
window. The default is no title in title bar.

Tip To set line breaks yourself, place a linefeed (ANSI character 10) before the first
character of the text that is to begin each new line. This does not apply to
Microsoft Windows 3.0.

Example The following example displays three message boxes consecutively:

Sub Start()
Super::Start()
' Define the dialog box
MsgBox "The dialog box shows a Yes and a No button.",

+ MB_YESNO
MsgBox "The dialog box shows only an OK button."
MsgBox "The dialog box shows an OK button, a Cancel button, "

+ & "and an info icon.", MB_OKCANCEL + 64.
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapterUsing the code examples.

See also InStr function
MsgBox function

Name statement
Renames a file or directory. Also, moves a file from one directory to another.

Syntax Name <old name> As <new name or path>

Description Name is similar to the operating system’s Rename command. Name, however,
can change the name of a directory as well as that of a file.

324 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Name statement

Parameters As
Keyword that separates the name of the original file or directory from the name of
the target file or directory.

<old name>
String expression that specifies an existing file or directory to rename. The default
path is the current default drive and directory.

The following conditions apply to <old name>:

■ Indicated file or directory must exist.

■ Drive letter, if specified, must be the same as that specified in <new name or
path>.

■ Indicated file must not currently be open by Actuate Basic.

<new name or path>
String expression that specifies the new file or directory name. The default path is
the current drive and directory.

The following conditions apply to <new name>:

■ Indicated file must not already exist if its path is the same as the path in <old
name>.

■ Indicated path must already exist if it is not the same as the path in <old
name>.

■ Drive letter, if specified, must be the same as that specified in <old name>.

■ Indicated file must not currently be open by Actuate Basic.

<old name> or <new name or path> can optionally specify a full path, in which
case use the following syntax:

[<drive:>] [\]<directory>[\<directory>][\<file name>] (Windows)

[/]<directory>[/<directory>][<file name>] (UNIX)

<drive:>
Character, followed by a colon, that specifies the drive on which the directory to
be renamed or the file to be renamed or moved is located (Windows only). Both
<old name> and <new name or path> must refer to the same drive.

<directory>
String expression that specifies the name of a directory or subdirectory in the full
path specification of <old name> or of <new name or path>. You can use Name to
change the name of a directory, but you cannot move directories.

The following example changes the name of the file Test1.fil in the current
directory to Test2.fil:

Name "Test1.fil " As "Test2.fil "

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 325

NewInstance funct ion

The following example moves the file Test1.fil from the C:\Temp subdirectory to
the root directory:

Name "C:\Temp\Test1.fil " As "C:\Test1.fil "

Example The following example moves a file from one directory to another and renames
the file:

Sub Start()
Dim FileName1 As String, FileName2 As String
Dim Msg As String, TestDir As String
Super::Start()
' Define filenames
FileName1 = "Nameaaaa.dat"
FileName2 = "Namebbbb.dat"
' Test directory name
TestDir = "\Test.dir"
' Create test file
Open FileName1 For Output As #1
' Put sample data in file
Print #1, "This is a test."
Close #1
' Make test directory.
MkDir TestDir
' Move and rename file
Name FileName1 As TestDir & "\" & FileName2
Msg = "A new file, " & FileName1 & " was created in "

+ & CurDir$ & ". After creation, it was moved to "
+ & TestDir & " and renamed to " & FileName2 & "."
+ & "The test data "
+ & "file and directory will now be deleted."

ShowFactoryStatus(Msg)
' Delete file from disk
Kill TestDir & "\" & FileName2
' Delete test directory
RmDir TestDir

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Kill statement

NewInstance function
Dynamically creates an instance of a class given the name of that class as a String.
Use NewInstance to choose at run time which class to instantiate.

326 P r o g r a m m i n g w i t h A c t u a t e B a s i c

NewPersistentInstance funct ion

Syntax NewInstance(<class name>)

Parameters <class name>
String expression that specifies the fully qualified name of the class to instantiate.

Rule: The class name must be valid or a run-time error is sent.

Returns The reference to the new object instance.

Example The following example shows two methods for instantiating an object:

Sub Start()
Dim Obj1 As AcLabelControl
Dim Obj2 As AcLabelControl, Msg As String
Super::Start()
' Standard instantiation
Set Obj1 = New AcLabelControl
' Dynamic instantiation
Set Obj2 = NewInstance ("AcLabelControl")
Obj2.BackgroundColor = Red
Msg = "The numeric value for the background color "

+ & "of Obj2 is: " & Obj2.BackgroundColor
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsPersistent function
NewPersistentInstance function
Set statement

NewPersistentInstance function
Dynamically creates a persistent instance of a class given the name of that class as
a String. Use NewPersistentInstance to choose at run time which class to
instantiate.

Syntax NewPersistentInstance(<class name>, <file number>)

Parameters <class name>
String expression that specifies the name of the class to instantiate. <class name>
must be valid or a run-time error is sent.

<file number>
Numeric expression that specifies the number of the open report object instance
(.roi) file.

The following conditions apply to <file number>:

■ If no file number is specified, the object is persistent in the current default ROI.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 327

Now funct ion

■ If two or more ROIs are open, you must specify the file number.

Returns String

The reference to the new object instance.

Example The following example dynamically creates a persistent instance of an
AcLabelControl object:

Sub Start()
Dim Obj As AcLabelControl, Msg As String
Super::Start()
Set Obj = NewPersistentInstance ("AcLabelControl", 1)
Obj.BackgroundColor = Red
Msg = "The numeric value for the background color "

+ & "of Obj is: " & Obj.BackgroundColor
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsPersistent function
NewInstance function
Set statement

Now function
Returns a date that represents the current date and time according to the user’s
operating system.

Syntax Now

The following example assigns the current year to the variable ThisYear:

ThisYear = Year(Now)

The following example assigns the current date and time to the variable
ThisInstant:

ThisInstant = Now

The following example assigns the full date serial number representing the
present moment to the double-precision variable FreezeFrame:

FreezeFrame# = Now

Returns Date

The value that Now returns usually looks like a date and/or time but is stored
internally as a Double-precision floating point number—a date serial number—
that represents a date between midnight January 1, 1980, and December 31, 2036,

328 P r o g r a m m i n g w i t h A c t u a t e B a s i c

NPer funct ion

inclusive, and/or a time between 00:00:00 and 23:59:59, or 12:00:00 A.M. and
11:59:59 P.M., inclusive.

Example In the following example, Now returns the current date and Format displays it as
a long date that includes the day and date:

Sub Start()
Dim Today As Double
Dim Msg As String
Super::Start()
Today = Now
Msg = "Today is " & Format(Today, "dddd, mmmm dd, yyyy")
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Date, Date$ functions
Day function
Hour function
Minute function
Month function
Second function
Time, Time$ functions
Weekday function
Year function

NPer function
Returns the number of periods for an annuity based on periodic, constant
payments, and on an unvarying interest rate.

Syntax NPer(<rate per period>, <each pmt>, <present value>, <future value>,
<when due>)

Parameters <rate per period>
Numeric expression that specifies the interest rate that accrues per period. <rate
per period> must be given in the same units of measure as <each pmt>. For
instance, if <each pmt> is expressed as a monthly payment, then <rate per
period> must be expressed as the monthly interest rate.

<each pmt>
Numeric expression that specifies the amount of each payment. <each pmt> must
be given in the same units of measure as <rate per period>. For instance, if <rate
per period> is expressed in months, then <each pmt> must be expressed as a
monthly payment.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 329

NPer funct ion

<present value>
Numeric expression that specifies the value today of a future payment or of a
stream of payments.

For example, if you put $23.94 in the bank today and leave it there for 15 years at
an interest rate of 10% compounded annually, you will end up with about $100. In
this case, the present value of $100 is approximately $23.94.

<future value>
Numeric expression that specifies the cash balance you want after you have made
your final payment.

Examples ■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1), or at the end (0) of each period. The default is 0 and <when due>
must be 0 or 1.

The following example assumes you are making monthly payments at the first of
each month on a loan of $20,000, at an APR of 11.5%. If each payment is $653.26,
how many payments will you have to make to finish paying off the loan? The
answer (36) is assigned to the variable NumPeriods.

NumPeriods = NPer(.115/12, -653.26, 20000, 0, 1)

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,
such as a home mortgage.

Rules:

■ <rate per period> and <each pmt> must be expressed in terms of the same
units (weekly/monthly/yearly, and so on).

■ You must express cash paid out (such as deposits to savings) using negative
numbers, and cash received (such as dividend checks) using positive
numbers.

Example The following example prompts the user for information about a loan. The
example then returns the number of payments the user must make to pay off the
loan.

Declare
Global Const ENDPERIOD = 0
' When payments are made

Global Const BEGINPERIOD = 1

330 P r o g r a m m i n g w i t h A c t u a t e B a s i c

NPV funct ion

End Declare

Sub Start()
Dim FutureVal As Double, PresVal As Double, APR As Double
Dim Payment As Double, PayWhen As Integer
Dim TotalPmts As Integer, Msg As String
Super::Start()

' Usually 0 for a loan
FutureVal = 0
' Amount to borrow
PresVal = 200000
' Interest rate
APR = 0.0625
' Amount to pay each month
Payment = 1500
' Assume pay at end of month
PayWhen = ENDPERIOD
' Do computation
TotalPmts =

+ NPer(APR / 12, -Payment, PresVal, FutureVal, PayWhen)
If Int(TotalPmts) <> TotalPmts Then

TotalPmts = Int(TotalPmts) + 1
End If
Msg = "It will take " & TotalPmts

+ & " months to pay off your loan of " & PresVal
+ & " by paying " & Payment & " each month."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
IPmt function
Pmt function
PPmt function
PV function
Rate function

NPV function
Returns the net present value of a varying series of periodic cash flows, both
positive and negative, at a given interest rate.

Syntax NPV(<rate>,<casharray>())

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 331

NPV funct ion

Parameters <rate>
Numeric expression that specifies the discount rate over the length of the period.

Rule for <rate>: Must be expressed as a decimal.

<casharray>()
Array of Doubles that specifies the name of an existing array of cash flow values.
The <casharray> array must contain at least one positive value (receipt) and one
negative value (payment).

The following example assumes you have filled the array MyArray with a series
of cash flow values, and that the interest rate is 11%. What is the net present
value? The answer is assigned to the variable NetPValue.

NetPValue = NPV(.11,MyArray())

Returns Double

While PV determines the present value of a series of constant payments, NPV
does the same for a series of varying payments. Net present value is the value in
today’s dollars of all future cash flows associated with an investment minus any
initial cost. In other words, it is that lump sum of money that would return the
same profit or loss as the series of cash flows in question, if the lump sum were
deposited in a bank today and left untouched to accrue interest at the rate given
by <rate> for the same period of time contemplated by the cash flow stream.

Rules ■ The NPV investment begins one period before the date of the first cash flow
value and ends with the last cash flow value in the array.

■ If your first cash flow occurs at the beginning of the first period, its value must
be added to the value returned by NPV and must not be included in the cash
flow values of <casharray>().

■ You must express cash paid out (such as deposits to savings) using negative
numbers, and cash received (such as dividend checks) using positive
numbers.

■ <casharray>() must contain at least one negative and one positive number.

■ In cases where you have both a positive cash flow (income) and a negative one
(payment) for the same period, use the net flow for that period.

■ If no cash flow or net cash flow occurs for a particular period, you must enter 0
(zero) as the value for that period.

Tip Because NPV uses the order of values within the array to interpret the order of
payments and receipts, be sure to enter your payment and receipt values in the
correct sequence.

Example The following example returns the net present value for a series of cash flows
contained in an array, CashFlows(). The variable, ReturnRate, represents the fixed
internal rate of return. The example assumes Option Base is set to zero.

332 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Oct, Oct$ funct ions

Sub Start()
' Set up the array
Static CashFlows(6) As Double
Dim Fmt As String, ReturnRate As Double
Dim Msg As String, NetPVal As Double
Super::Start()
' Money display format
Fmt = "$###,##0.00"
' Set fixed internal rate
ReturnRate = .12
' Business start-up expense
CashFlows(0) = -100000
' Positive cash flows for income for four successive years:
CashFlows(1) = 20000: CashFlows(2) = 40000
CashFlows(3) = 80000: CashFlows(4) = 0: CashFlows(5) = 10000
' Calc net present value
NetPVal = NPV(ReturnRate, CashFlows)
Msg = "The net present value of these cash flows is: "

+ & Format(NetPVal, Fmt) & ". "
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
IRR function
PV function

Oct, Oct$ functions
Converts a numeric expression from decimal to octal notation, and from numeric
to string.

Syntax Oct(<numeric exprs>)

Oct$(<numeric exprs>)

Parameter <numeric exprs>
Numeric expression to be converted from decimal to octal notation.

The following conditions apply to <numeric exprs>:

■ Oct[$] rounds <numeric exprs> to the nearest whole number before
evaluating it.

■ If <numeric exprs> is a String, it is parsed according to the formatting rules of
the current run-time locale.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 333

On Error statement

For example, the following statements are equivalent. Each returns &O010, which
is the full form of the octal notation equivalent of decimal number 8.

"&O" & Oct$(8)
"&O" & Oct$(2*4)

In the following example, the first statement returns the decimal value 16, but the
second statement generates an error because the return value of Oct[$] is not
preceded by the octal prefix, &O:

("&O" & Oct$(8)) * 2
Oct$(8) * 2

Returns Oct: Variant
Oct$: String

■ If <numeric exprs> evaluates to Null, Oct[$] returns Null.

■ If <numeric exprs> is an Integer, Variant of type 2 (Integer), Variant of type 0
(Empty) or any other numeric or Variant data type, Oct[$] returns up to 11
octal characters.

Tips ■ To represent an octal number directly, precede a number in the correct range
with &O. An octal number’s correct range is from 0 to O7777777777. For
example, you can use &O010 * 2 to return decimal value 16, because &O010 is
octal notation for 8.

■ To generate the full octal representation of <numeric exprs>, supply the
radical prefix &O, because Oct[$] does not return that component.

Example The following example generates a decimal number, then uses Oct[$] to convert
that number to octal notation:

Sub Start()
Dim Msg, Num
Super::Start()
Num = Int(100000 * Rnd)
Msg = Num & " in decimal notation is &O"

+ & Oct(Num) & " in octal notation."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Hex, Hex$ functions
Val function

On Error statement
Tells the program what to do if an error occurs at run time.

334 P r o g r a m m i n g w i t h A c t u a t e B a s i c

On Error statement

Syntax On Error { GoTo <line | line label> | Resume Next | GoTo 0 }

Description Unless you use On Error, any run-time error that occurs is fatal. Actuate Basic
generates an error message and stops executing the program.

If another error occurs while an error handler is active, Actuate Basic passes
control back through any previous calling procedure or procedures until it finds
an inactive error handler, which it then activates. If it cannot find such an inactive
error handler, the error is fatal.

Each time control passes back to a calling procedure, that procedure becomes the
current one. Once an error handler in any procedure succeeds in handling an
error, program execution resumes in the current procedure at the point
designated by its own error handler’s Resume statement—which may not be the
error handler or the Resume you perhaps intended to execute a few levels down
the calling hierarchy.

An error-handler is automatically disabled when you exit its procedure.

Rules ■ The error handler indicated by <line> or <line label> cannot be a sub or
function procedure. It must be a block of code marked by a line label or line
number.

■ To prevent error-handling code from becoming part of the normal program
flow even when there is no error—that is, from inadvertently executing when
it should not—place an Exit Sub or Exit Function immediately before the label
of the error handler.

Parameters GoTo
Clause that enables the error-handling routine that starts at <line >, or, more
commonly, <line label>. Enabling the routine means that if a run-time error
occurs, program control branches to <line>. The error-handler at <line> remains
active until a Resume, Exit Sub, or Exit Function is executed.

<line> or <line label>
The line number or line label to which the program branches when a run-time
error occurs. <line> must be in the same procedure as On Error.

For example, the following statement tells Actuate Basic to branch to the label
ErrorTrap when an error occurs:

On Error GoTo ErrorTrap

Resume Next
Clause specifying that when a run-time error occurs, control passes to the
statement immediately following that in which the error occurred. That is, directs
Actuate Basic to continue executing code even though an error has occurred.

GoTo 0
Clause that disables any enabled error handler in the current procedure.
<GoTo 0> cannot be used to specify line number 0 as the start of the error-
handling code.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 335

Open statement

Tips ■ An error-handling routine should be exited only by using some form of
Resume.

■ You can use Err to obtain the error number of a run-time error.

■ Your error-handling routine should test or save the value of Err before any
other error can occur, or before it calls any procedure that could cause an error.

■ You can use Error[$] function to return the error message associated with any
given run-time error returned by Err.

Example The following example generates an error, then displays the error’s number and
description:

Sub Start()
Dim Drive As String, Msg As String
Super::Start()
' Set up error handler
On Error GoTo ErrorHandler7
' Attempt to open file
Open Drive & ":\Test\X.dat" For Input As #1
Close #1
' Exit before entering the error handler
Exit Function
' Error handler line label

ErrorHandler7:
Msg = "Error " & Err & " occurred, which is: " & Error$(Err)
ShowFactoryStatus(Msg)
' Resume procedure

Resume Next
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Erl function
Err function
Error, Error$ functions
Resume statement

Open statement
Enables reading and writing—input and output (I/O)—to a file.

Syntax Open <file name> [For <mode>[encoding_name]] [Access <permissions>]
[<lock>] As [#]<file number> [Len = <record or buffer size>]

336 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Open statement

Description You must open a file before any I/O operation can be performed on it. Open
allocates a buffer to the file for I/O, and determines the mode of access used with
the buffer.

In Actuate Basic there are three types of file access, Random, Sequential and
Binary. The type you use in Open causes Actuate Basic to assume that <file
name> has certain characteristics. These assumptions are summarized in
Table 6-36.

The following conditions apply to the Open Statement:

■ In Binary, Input, and Random modes, you do not need to first close an open
file before opening it with a different <file number>.

■ In Append and Output modes, you must first close an open file before
opening it with a different <file number>.

Parameters <file name>
String expression, enclosed in double quotes, that is the name of the target file, as
shown in the following example:

Open "C:\Windows\Mynotes.file" As #1

If the file does not exist when it is opened for Append, Binary, Output, or
Random modes, it is created and then opened.

For <mode>
Clause that specifies the file mode. Indicates whether and how to read from or
write to the file. <mode> might be Append, Binary, Input, Output, or Random, as
shown in the following example:

Open "C:\Windows\Mynotes.fil" For Input As #1

<encoding_name>
String expression that specifies the encoding value.

The following conditions apply to <encoding_name>:

■ If <encoding_name> is not specified or is an invalid value, Open uses the
value of the current run-time encoding.

Table 6-36 Assumptions for <file name> based on access type

Access Mode Actuate Basic assumes <file name>

Random Random Consists of a series of records of identical
length, and all of the same data type.

Sequential Input
Output
Append

Is a text file, or consists of a series of text
characters and/or of text formatting characters
such as newline.

Binary Binary Can consist of data of any type, with records of
any length, or even of variable lengths.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 337

Open statement

■ If <encoding_name> is "text", Open assumes the file uses the same code page
as the current system.

Access <permissions>
Clause that specifies what operations this process is permitted to perform on <file
name>. Another process can be more or less restricted than this one is. The
<permissions> keyword can consist of any one of the following: Read, Write, or
Read Write. If another process already opened the file and made <permissions>
unavailable to others, the Open operation fails and a Permission denied error
occurs. For example:

Open "C:\Windows\Mynotes.fil" For Input Access Read As #1

<lock>
Keyword or set of keywords that specifies what operations other processes are
permitted to perform on <file name>. In a multiuser environment or
multiprocessing environment, <lock> restricts access by other processes or users.
The <lock> keyword can consist of any one of the following: Shared, Lock Read,
Lock Write, or Lock Read Write. For example:

Open "C:\Windows\Mynotes.fil" For Binary As #1 Shared

As <file number>
Clause that assigns a number to the open file.

<file number>
Integer that specifies the number that is associated with the file as long as it
remains open. Other I/O statements can then use <file number> to refer to the
file. <file number> must be between 1 and 255, inclusive.

Len = <record or buffer size>
Clause specifying how much information to take from the file into the buffer.

Table 6-37 summarizes the behavior of the Len = <record or buffer size> clause,
which depends on the setting of <mode>.

Table 6-37 Relationship of mode types and the behavior of Len = <record or
buffer size> clauses

Mode Len = <record or buffer size>

Random Specifies the record length, the number of bytes in a record.
Default for <record or buffer size> in bytes is 128.

Append
Input
Output

Specifies the number of bytes to be placed in the buffer.
Default for <record or buffer size> in bytes is 512.

Binary Ignored.

338 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Open statement

<record or buffer size>
Integer expression that indicates either the record length or buffer size depending
on <mode>. <record or buffer size> must be positive and less than or equal to
32,767 bytes. For example:

Open "C:\Windows\Mynotes.fil" For Input As #1 Len = 512

Options for
<mode>

Random
Keyword that specifies random-access file mode. Instructs Actuate Basic to make
three attempts to open the file with these permissions, in the following order:

■ Read and write

■ Write-only

■ Read-only

Binary
Keyword that specifies binary file mode so you can read and write information to
any byte position in the file. If you do not supply an Access clause, instructs
Actuate Basic to make three attempts to open the file, following the same order as
for Random files. If <file name> does not exist, it is created, then opened. Use Get
and Put to write to any byte position in a Binary file.

Input
Keyword that specifies sequential input mode. <file name> must exist.

Output
Keyword that specifies sequential output mode. If <file name> does not exist, it is
created, then opened.

Append
Keyword that specifies sequential output mode, and sets the file pointer to the
end of the file. If <file name> does not exist it is created, then opened. Use Print or
Write to append to the file. For example:

Open "C:\Windows\Mynotes.fil" For APPEND As #1

The default for <mode> is Random.

Options for
Access

Read
Keyword instructing Actuate Basic to open the file for a reading process only.

Write
Keyword that instructs Actuate Basic to open the file for a writing process only.

Read Write
Keyword that instructs Actuate Basic to open the file for both reading and writing
processes.

Access is valid only if <mode> is Random, Binary, or Append.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 339

Open statement

Options for
<lock>

Shared
Keyword indicating that any process on any machine has permission to read from
or write to <file name> while this Open is in effect.

Lock Read
Keyword indicating that no other process has permission to read <file name>
while this Open is in effect. Lock Read is applied only if no other process has a
previous read access to the file.

Lock Write
Keyword indicating that no other process has permission to write to <file name>
while this Open is in effect. Lock Write is applied only if no other process has a
previous write access to the file.

Lock Read Write
Keyword indicating that no other process has permission to read from or write to
<file name> while this Open is in effect.

Lock Read Write can only occur if:

■ No other process has already been granted read or write access.

■ A Lock Read or Lock Write is not already in effect.

The default for <lock> is Lock Read Write.

Tips ■ Use Random access files when you want easy access to individual records. Do
not use them when you want to conserve storage space.

■ Use Sequential access files when you want to process files consisting only of
text. Do not use them for other types of information.

■ Use Binary access files when you want to save storage space by varying your
record lengths, sizing them only as needed to fit the data they contain. Do not
use them if you do not want to keep track of the differently sized records.

Example The following example opens six files for sequential output, then puts test data
into them:

Sub Start()
Dim FileName As String, FileNum As Integer, I As Integer
Dim UserMsg As String, SampleTxt As String

Super::Start()
' Create test string

SampleTxt = "Here is some sample text."

For I = 1 To 6
' Determine file number

FileNum = FreeFile
FileName = "TEST" & FileNum & ".DAT"
' Open for sequential output
Open FileName For Output As #FileNum

340 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Option Base statement

' Write test data to file
Print #FileNum, SampleTxt

Next I

' Close all open files
Close

UserMsg = "Six test files have been created on your disk. "
+ & "The files will now be deleted."

ShowFactoryStatus(UserMsg)
' Delete the test files

Kill "TEST?.DAT"
End Sub

The following example opens eight files specifying the encoding for each file:

Sub Start() As Boolean

Super::Start()

Open "Korean.txt" For Input "windows-949" As #1
Open "KoreanOut.txt" For Output "windows-949" As #2

Open "Japanese.txt" For Input "windows-932" As #3
Open "JapaneseOut.txt" For Output "windows-932" As #4

Open "Chinese.txt" For Input "windows-936" As #5
Open "ChineseOut.txt" For Output "windows-936" As #6

Open "Unicode.txt" For Input " UCS-2" As #7
Open "UnicodeOut.txt" For Output "UCS-2" As #8

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Close statement
FreeFile function
Get statement
Print statement
Put statement
Write statement

Option Base statement
Declares the default lower bound for array subscripts.

Syntax Option Base {0 | 1}

Description ■ Affects only arrays in the same module.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 341

Option Base statement

■ Has no effect on arrays within user-defined types. The lower bound for all
such arrays is always 0.

■ Can appear only once in a module.

■ Can occur only in the Declare… End Declare section.

■ Must be used before you declare the dimensions of any array.

Parameters 0
Specifies that the lowest subscript for arrays in the current module is 0.

1
Specifies that the lowest subscript for arrays in the current module is 1.

Default: 0.

Rule: Must be 0 or 1.

Example The following statement declares that the lowest subscript for any arrays you
create is 1:

Option Base 1

Tips ■ The To clause in Dim, ReDim, and Static provides a more flexible way to
control the range of an array’s subscripts.

■ If you do not explicitly set the lower bound with a To clause, you can use
Option Base to change the default lower bound to 1.

Example The the following example uses Option Base to override the default base array
subscript value of 0:

Declare
' Module level statement

Option Base 1
End Declare

Sub Start()
Dim MyArray1(), Msg
Super::Start()
' Create an array
ReDim MyArray1(25)
Msg = "The lower bound of MyArray1 array is "

+ & LBound(MyArray1) & "."
+ & "The upper bound is " & UBound(MyArray1) & "."

ShowFactoryStatus(Msg)
End Sub

After you compile and run this example once, delete the Option Basic statement
lines from the BAS file and compile and test the example again. The lower bound
reverts to zero, the default.

342 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Opt ion Compare statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
LBound function
ReDim statement
Static statement

Option Compare statement
Declares default comparison mode used when comparing string data.

Syntax Option Compare { Binary | Text }

Parameters Binary
String comparisons in the module are case-sensitive by default. For example, if
you use Option Compare Binary, then by default McManus does not match
MCMANUS or mcmanus.

Text
String comparisons in the module are not case-sensitive by default. If you use
Option Compare Text, then by default McManus matches MCMANUS or
mcmanus.

Rules ■ Use Option Compare within a Declare… End Declare section.

■ If used, Option Compare must appear before any statements that declare
variables or define constants.

Example The following example shows the difference between using Option Compare Text
and Option Compare Binary:

Declare
Option Compare Text

End Declare

Sub Start()
Dim NameStr As String, UName As String, LName As String
Dim Msg As String
Super::Start()
NameStr = "Mary Ndebele"
UName = UCase(NameStr)
LName = LCase(NameStr)
If UName Like LName Then

Msg = UName & " matches " & LName
Else

Msg = UName & " does NOT match " & LName

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 343

Option Str ict statement

End If
ShowFactoryStatus(Msg)

End Sub

When you compile your report and try the example, note that the uppercase and
lowercase version of the customer’s name match. Now delete the Option
Compare Text statement from your Actuate Basic source code and compile the
example again. This time, the uppercase and lowercase versions of the customer’s
name will not match because without any Option Compare statement, Option
Compare Binary is in effect by default.

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
StrComp function

Option Strict statement
Specifies whether declarations must be typed.

Syntax Option Strict {On | Off}

Description Option Strict can occur only in the Declare… End Declare section, and must be
used before any other source code statements.

Parameters On
Checks that all variable, function, and sub procedure argument declarations are
typed. Declarations without an As <data type> clause are flagged during
compilation.

Off
Specifies that no data type checking is done, and untyped variables, functions,
and arguments are of type Variant.

The default is Off.

The following statement makes data typing required for all declarations, so that
no variable types are set to Variant by default:

Option Strict On

Example The following example uses Option Strict to enforce data typing in declarations.:

Declare
' Equivalent to Strict On

Option Strict
Global GlobalWithNoType

End Declare

344 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ParseDate funct ion

Class Strict
Dim v
Dim var As Variant' Explicit Variants are OK
Static s
Function ff(a)

Dim fv
Static fs

End Function

Sub ss(a)
End Sub

End Class 'Strict

Function fff(a)
End Function

Sub sss(a)
End Sub

When you compile this example several compiler errors are generated, all having
to do with missing data types. Change the Option Strict statement to Option Strict
Off and compile the example again. No errors are generated and all the untyped
declarations default to type Variant.

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
Function…End Function statement
Global statement
Static statement
Sub…End Sub statement

ParseDate function
Controls how dates are converted. Use when your program must be locale-
independent, or when the format of date strings in your database differs from the
format of the current locale. You can also specify the locale to use for date
conversion.

Syntax ParseDate(<strDateSource>, <strFormatSpec>)

ParseDate(<strDateSource>, <strFormatSpec>, <locale>)

Parameters <strDateSource>
String expression. The date string to convert from. The source date string.
<strDateSource> must be, or evaluate to, a valid date string. For example:

"2/1/2010"
"1 Feb, 2010"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 345

ParseDate funct ion

"February 1, 2010"
Format$((DateSerial(2010, 2, 1)), "mm/dd/yyyy")

<strFormatSpec>
String expression. The date string to convert from. The format in which the date
string currently appears. Range of valid dates is January 1, 100 through December
31, 9999, inclusive.

The following conditions apply to <strFormatSpec>:

■ Must be, or evaluate to, a valid format string.

■ You can use the format characters described in Table 6-38 to convert date
expressions.

■ To convert a date string from the French date format, use the following format
string for <strFormatSpec>:

"dmy"

■ To convert a date from the U.S. date format, use the following format string for
<strFormatSpec>:

"mdy"

Table 6-38 Format characters for converting date expressions

Format
character Description

? Indicates an optional field.

d Specifies that the next field is a day. Must appear only once in a
date expression. If you use the d format character, you must
also use the m and y format characters.

l Specifies that the date format specified in the current locale
should be used. If this character is used, it must be the only
format specified.

m Specifies that the next field is a month. Must appear only once
in a date expression. If you use the m format character, you
must also use the y and d format characters.

p The base year for the pivot.

t Specifies that the next field is the time. Must appear only once
in a date expression.

w Specifies that the next field is a (noise) word, such as the name
of the day of the week.

y Specifies that the next field is a year. Must appear only once in a
date expression. If you use the y format character, you must
also use the m and d format characters.

346 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ParseDate funct ion

■ To convert a date from the ISO date format, use the following format string for
<strFormatSpec>:

"ymd"

■ To convert date expressions that contain a day of the week or a word, use the
ParseDate() function with the w format character. You can also use the
optional field indicator format character '?'.
Table 6-39 shows the ParseDate() return values with a day of week specified.

The locale settings control default date parsing. The locale settings generally
do not include the w or w? field. Therefore, if a date expression contains a day
of week and the locale setting is not specified properly for the day of week,
Actuate date and time functions, such as DateAdd(), DateDiff(), DatePart(),
DateValue(), and IsDate() return a null date.

For more information about formatting data, see Format function.

<locale>
String expression specifying the locale to use for date conversion. Must be in the
<language>_<location> format, for example fr_FR for French locale.

Rule: If <locale> is Null or invalid, ParseDate uses the current run-time locale.

Returns Date

If the date string is invalid, ParseDate returns Null.

Description Actuate Basic implicitly converts strings to dates and dates to strings. This
conversion is patterned after Visual Basic. If you want your applications to be
Y2K-compliant, to run in multiple locales, or to work with string date data
imported from another application, be aware of the limitations of the implicit
date conversions.

Implicit string-to-date conversions occur when you:

■ Pass a string to a function that takes a date argument

■ Assign a string to a date variable

Table 6-39 Converting date expressions that specify
a day of the week

Format character Date expression Return value

w?mdy Friday, September 28, 2001 2001-9-28

w?mdy September 28, 2001 2001-9-28

wmdy Friday, September 28, 2001 2001-9-28

wmdy September 28, 2001 NULL

wmdy on September 28, 2001 2001-9-28

mdy September 28, 2001 2001-9-28

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 347

ParseDate funct ion

■ Use the CDate or CVDate functions

In all these cases, Actuate converts dates using the date format of the current
locale or the locale specified by the <locale> parameter and Actuate’s default
pivot year of 30. Actuate converts a date of 2/1/99 to a date of February 1, 1999 in
the U.S., and to January 2, 1999 in the UK.

Implicit date-to-string conversion occurs when you:

■ Pass a date to a function that takes a string argument

■ Assign a date to a string

■ Use the CStr function

■ Output the date using the Print statement

In all cases, Actuate performs implicit date-to-string conversion using the date
format of the current locale or the locale specified by the <locale> parameter and
Actuate’s default pivot year of 30. If you assign the date February 1, 1999 to a
string in the U.S., the result will be 2/1/1999. In the UK, however, the string will
be 1/2/1999.

Like Visual Basic, Actuate Basic attempts to parse a date using a number of
different formats in order, until one works or until there is nothing else to try. This
means that a date that is invalid for the given locale might still be parsed using a
different format. For example, in the U.S. locale, a date of 13/1/99 converts to
January 1, 1999 using the European format.

The format rules, in order of use, are:

■ Current locale

■ U.S. format (m/d/y)

■ European format (d/m/y)

■ ISO format (y/m/d)

When you write data streams, ParseDate allows you to precisely control how
dates are converted. Hence, if Basic’s default rules do not work, you can use
ParseDate to perform the conversion correctly.

Tips ■ Use ParseDate to convert type String date input to type DateTime as early in
the program run as possible.

■ Convert dates to strings as late as possible before you display or output the
dates to a file. To manage this conversion, use the Format function.

■ Always explicitly declare your date variables to be of type DateTime, do not
rely on using Variants.

■ To accurately convert dates of type Date or type DateTime to strings, use the
Format function.

348 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ParseNumeric funct ion

■ To accurately convert dates of type String to dates of type DateTime, use the
ParseDate function.

■ To convert date expressions containing a day of week and/or a word, use
ParseDate with the format character 'w'. You can also use the optional field
indicator format character '?'.

Example The following example converts a date in French format to a date in U.S. format:

Sub Start()
Dim dtSafeDate As Date
Dim strFr_Date As String, strUS_Date As String
Dim strMsg As String
Super::Start()

strFr_Date = "10/12/1959"
dtSafeDate = ParseDate(strFr_Date, "dmy")

strMsg = "In US format, strFr_Date is shown as: "
+ & CStr(dtSafeDate)

ShowFactoryStatus(strMsg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CVDate function
Format, Format$ functions
VarType function

ParseNumeric function
Parses the numeric expression using the specified radix and thousand separator
characters.

Syntax ParseNumeric(<numeric expression>, <radix character>, <thousand separator>)

ParseNumeric(<numeric expression>, <radix character>, <thousand separator>,
<currency symbol>)

Parameters <numeric expression>
Numeric expression of type String to be converted to a Double data type.

<radix character>
String expression that specifies the radix character used in the numeric
expression. If <radix character> is Null or an empty string, ParseNumeric uses
the currency symbol of the current run-time locale.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 349

Pmt funct ion

<thousand separator>
String expression that specifies the thousand separator character used in the
numeric expression.

The following conditions apply to <thousand separator>:

■ If <thousand separator> contains more that one character, ParseNumeric uses
only the first character.

■ If <thousand separator> is Null or an empty string, ParseNumeric uses the
thousands separator character of the current run-time locale.

<currency symbol>
String expression that specifies the currency symbol used in the numeric
expression.

The following conditions apply to <currency symbol>:

■ If <currency symbol> contains more that one character, ParseNumeric uses
only the first character.

■ If <currency symbol> is Null or an empty string, ParseNumeric uses the
currency symbol of the current run-time locale.

Returns Variant

■ If <numeric expression> is Null, ParseNumeric returns Null.

■ If the expression is not valid or cannot be parsed using the specified decimal
or thousand separator character, ParseNumeric returns Null.

Example Each of the following statements returns 123456.78:

ParseNumeric("123,456.78", ".", ",", NULL)
ParseNumeric("123.456,78", ",", ".", NULL)
ParseNumeric("123!456*78", "*", "!", NULL)

The following statement returns 1500.00:

ParseNumeric("$1,500.00”, ".", ",", "$")

Pmt function
Returns the payment for an annuity, based on periodic, constant payments, and
on an unvarying interest rate.

Syntax Pmt(<rate per period>, <number pay periods>, <present value>, <future value>,
<when due>)

Parameters <rate per period>
Numeric expression that specifies the interest rate that accrues per period. <rate
per period> must be given in the same units of measure as <number pay

350 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Pmt funct ion

periods>. For instance, if <number pay periods> is expressed in months, then
<rate per period> must be expressed as a monthly rate.

<number pay periods>
Numeric expression that specifies the total number of payment periods in the
annuity. <number pay periods> must be given in the same units of measure as
<rate per period>. For instance, if <rate per period> is expressed as a monthly
rate, then <number pay periods> must be expressed in months.

<present value>
Numeric expression that specifies the value in today’s dollars of a future
payment, or stream of payments.

For example, if you put $23.94 in the bank today and leave it there for 15 years at
an interest rate of 10% compounded annually, you end up with about $100. In this
case, the present value of $100 is approximately $23.94.

<future value>
Numeric expression that specifies the cash balance you want after you have made
your final payment.

■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1), or at the end (0) of each period. The default is the end of the period
(0). <when due> must be 0 or 1.

The following example assumes you are making monthly payments the first of
each month on a loan of $20,000, over 36 months, at an APR of 11.5%. How much
will each of your payments be? The answer ($653.26) is assigned to PaymentAmt.

PaymentAmt = Pmt(.115/12, 36, -20000, 0, 1)

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,
such as a home mortgage.

Rules ■ <rate per period> and <number pay periods> must be expressed in terms of
the same units (weekly/weeks, monthly/months, yearly/years).

■ You must express cash paid out (such as deposits to savings) using negative
numbers, and cash received (such as dividend checks) using positive
numbers.

Example The following example uses information about a loan to determine the amount of
payments:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 351

PPmt funct ion

Declare
Global Const ENDPERIOD = 0
' When payments are made
Global Const BEGINPERIOD = 1

End Declare

Sub Start()
Dim Fmt As String, FutureVal As Double, PresVal As Double
Dim APR As Double, TotPmts As Integer, PayWhen As Integer
Dim Period As Integer, InterestPmt As Double
Dim PrincipPmt As Double, Payment As Double, Msg As String
Super::Start()
' Specify money format
Fmt = "$###,###,##0.00"
' Normally 0 for a loan
FutureVal = 0
PresVal = 250000
APR = 0.07
TotPmts = 200
' Assume payment at beginning of period
PayWhen = BEGINPERIOD

Payment =
+ Pmt(APR / 12, TotPmts, -PresVal, FutureVal, PayWhen)

Msg = "Your payments are " & Format(Payment, Fmt) & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
IPmt function
NPer function
PPmt function
PV function
Rate function

PPmt function
Returns the principal payment for a given period of an annuity, based on
periodic, constant payments, and on an unvarying interest rate.

Syntax PPmt(<rate per period>,<single period>, <number pay periods>, <present value>,
<future value>, <when due>)

Parameters <rate per period>
Numeric expression that specifies the interest rate that accrues per period.

352 P r o g r a m m i n g w i t h A c t u a t e B a s i c

PPmt funct ion

Rule for <rate per period>: Must be given in the same units of measure as
<number pay periods>. For instance, if <number pay periods> is expressed in
months, then <rate per period> must be expressed as a monthly rate.

<single period>
Numeric expression that specifies the particular period for which you want to
determine how much of the payment for that period represents interest. <single
period> must be in the range 1 through <number pay periods>.

<number pay periods>
Numeric expression that specifies the total number of payment periods in the
annuity. <number pay periods> must be given in the same units of measure as
<rate per period>. For instance, if <rate per period> is expressed as a monthly
rate, then <number pay periods> must be expressed in months.

<present value>
Numeric expression that specifies the value today of a future payment, or stream
of payments.

For example, if you put $23.94 in the bank today and leave it there for 15 years at
an interest rate of 10% compounded annually, you end up with about $100. In this
case, the present value of $100 is approximately $23.94.

<future value>
Numeric expression that specifies the cash balance you want after you have made
your final payment.

■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1), or at the end (0) of each period. The default is 0 and <when due>
must be 0 or 1.

The following example assumes you are making monthly payments at the first of
each month on a loan of $20,000, over 36 months, at an APR of 11.5%. How much
of your 5th payment represents principal? The answer ($481.43) is assigned to
Principal5.

Principal5 = PPmt(.115/12, 5, 36, -20000, 0, 1)

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,
such as a home mortgage.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 353

PPmt funct ion

Each payment in an annuity consists of two components: principal and interest.
PPmt returns the principal component of the payment.

Rules ■ <rate per period> and <number pay periods> must be expressed in terms of
the same units such as weeks, months or years.

■ You must express cash paid out (such as deposits to savings) using negative
numbers, and cash received (such as dividend checks) using positive
numbers.

Example The following example uses various particulars about a loan. It then returns, for a
single payment period the user specifies, the portions of that payment that are
interest and principal.

Declare
Global Const ENDPERIOD = 0
' When payments are made
Global Const BEGINPERIOD = 1

End Declare

Sub Start()
Dim Fmt As String, FutureVal As Double, PresVal As Double
Dim APR As Double, TotPmts As Integer, PayWhen As Integer
Dim Period As Integer, IntPmt As Double, PrinPmt As Double
Dim Payment As Double, Msg As String
Super::Start()

' Specify money format
Fmt = "$###,###,##0.00"
' Normally 0 for a loan
FutureVal = 0
PresVal = 450000
APR = 0.0725
TotPmts = 180
' Assume end period payrment
PayWhen = ENDPERIOD

Period = Int(180 * Rnd + 1)
IntPmt = IPmt(APR / 12, Period, TotPmts, -PresVal,

+ FutureVal, PayWhen)
PrinPmt = PPmt(APR / 12, Period, TotPmts, -PresVal,

+ FutureVal, PayWhen)
Payment = Pmt(APR / 12, TotPmts, -PresVal, FutureVal,

+ PayWhen)
Msg = "At period " & Period & " you will pay a total "

+ & " of " & Format(Payment, Fmt) & ", representing "
+ & Format(PrinPmt, Fmt) & " principal and "
+ & Format(IntPmt, Fmt) & " interest. "

ShowFactoryStatus(Msg)
End Sub

354 P r o g r a m m i n g w i t h A c t u a t e B a s i c

PreciseTimer funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
IPmt function
NPer function
Pmt function
PV function
Rate function

PreciseTimer function
Example Returns a value in seconds. The absolute value returned is not defined, but

comparing values from two calls gives the time between those calls. This function
is supported on Windows systems only, and may not work on some Windows
systems due to hardware limitations. If the function is called on the wrong
operating system or is not supported by the hardware, it returns Null. This
function is intended only for use as a development and debugging aid in e.Report
Designer Professional, and is not supported for production use.

Syntax PreciseTimer

Returns Double value in seconds.

Example The following example retrieves time information twice, and computes the
amount of time required between the two calls. Create variables timeOne,
timeTwo, and timeUsed of type Double on the class.

Sub Start()
' Retrieve the first time
timeOne = PreciseTimer

End Sub
Sub Finish()

' Retrieve second time
timeTwo = PreciseTimer
' Compute time required
timeUsed = timeTwo - timeOne
ShowFactoryStatus("Time used between two calls: " & timeUsed)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Print statement
Writes unformatted data to a sequential file.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 355

Print statement

Syntax Print #<file number>, [[{ Spc(<number of blanks>) | Tab(<tab column>) }] [
<expression list>] [{ ; | , }]…]

Description Print usually writes Variant data to a file the same way it writes any other Actuate
Basic data type. Table 6-40 lists exceptions to this behavior.

The following conditions apply to the Print statement:

■ <file number> must match the number of a currently open file.

■ The file corresponding to <file number> must be open under either the
Output or Append mode.

■ You must have write access to the open file. That is, the file must not have been
opened using a Lock Write or Lock Read Write clause.

■ The data cannot be an object variable, user-defined data type structure, handle
to a class, CPointer, or OLE object.

Parameters <file number>
Numeric expression that is the file number used to Open a sequential file to
which Print writes data.

The following example writes Hello, world! to the file opened under file number
1, and appends a carriage-return-linefeed character-pair (CRLF) to the file, so that
whatever is next written to the file appears on the next line:

Print #1, "Hello, world!"

The following example shows three statements that work together, although they
can be separated from one another by any number of lines of code. The first
statement opens a file called Mynotes.fil, the second one writes to that file, and
the third, by closing it, turns the file over to the operating system to complete the
process of writing it to the disk.

Open "C:\Myfiles\Mynotes.fil" For Output As #2
Print #2, "This datum.", "This datum, too. "
Close #2

Table 6-40 Exceptions to how Print writes Variant data to a file

Data type Print writes this to the file

Variant of VarType 0 (Empty) Nothing at all

Variant of VarType 1 (Null) The literal value Null

Variant of VarType 7 (Date) The date, using whatever Short Date format
is defined in the Control Panel

Variant of VarType 7 (Date), but
with either the date or time
component missing or zero

Only the part of the date provided

356 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Pr int statement

Spc(<number of blanks>)
Clause that inserts spaces into the output. May be repeated; separated by commas
or semicolons.

<number of blanks>
Numeric expression that specifies the number of spaces Spc inserts. For example:

Print #2, "This datum.", Spc(10), "This datum, too.", Spc(5),
+ "And this."

Tab(<tab column>)
Clause that tabs to the specified column before the program prints <expression
list>. May be repeated; separated by commas or semicolons.

<tab column>
Numeric expression that specifies the column to which the program jumps before
it prints the <expression list>. For example:

Print #2, "This datum."; Tab(5); "This datum, too."; Tab(7);
+ "And this."

<expression list>
Numeric or string expressions that specify the data that Print writes to the file.
There can be any number of these. The default is a blank line, if comma is used.

; (semicolon)
Character (semicolon) that determines the position of the next character printed.
Instructs Actuate Basic to print the next character immediately after the last one.

, (comma)
Character (comma) that determines the position of the next character printed.
Instructs Actuate Basic to print the next character at the start of the next print
zone. Print zones begin every 14 columns.

The default position for the next character is the next line.

The following example writes the number 250, and the content of P$ to the file.
The comma after the number 250 causes P$ to be written at the next print zone.
The semicolon after P$ causes Actuate Basic to suppress the printing of the
carriage-return-linefeed character-pair, so that whatever is next written to the file
occurs immediately after the text in P$.

Print #1, 250, P$;

Tips ■ To ensure integrity of separate data fields, use Write instead of Print. Write
delimits data properly and ensures that the data can be read correctly in any
locale.

■ Use Print with ASCII text files.

■ Spacing of data displayed on a text screen with monospaced characters may
not work well when the data is redisplayed in a graphical environment using
proportionally spaced characters.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 357

Put statement

Example The following example creates a file, Testifle.txt, writes some data to it, then closes
it. Then, the example reopens the file to read the data just written. Finally, after
displaying a message, it closes the file and deletes it.

Sub Start()
Dim TestData As String, UserMsg As String
Super::Start()
' Open to write file
Open "Testifle.txt" For Output As #1
Print #1, "Test of the Print statement."
' Print extra blank line to file
Print #1,
' Print in two print zones
Print #1, "Zone 1", "Zone 2"
' Print two strings together
Print #1, "With no space between"; "these"
Close #1
' Open to read file
Open "Testifle.txt" For Input As #1
' Read entire file
Do While Not EOF(1)

' Read a line
Line Input #1, TestData
' Construct message
UserMsg = UserMsg & TestData
ShowFactoryStatus(UserMsg)

Loop
Close #1
' Delete file from disk
Kill "Testifle.txt"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Open statement
Write statement

Put statement
Writes data from a variable to a disk file.

Syntax Put [#] <open file number>, [<record number>], <variable to write>

Description For files opened in Random mode:

■ If the length of the data you write is less than the length specified in the Len
clause of the Open statement, Put still writes subsequent records on record-

358 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Put statement

length boundaries. The space between the end of one record and the
beginning of the next is padded with the existing contents of the file buffer.

In the following example, the first Put writes the 4 bytes of the variable
HoldingVar1 to the disk file Myfile.txt at byte positions 1-4. Any data that was
there is overwritten. The second Put, however, does not pick up where the last
one left off but instead skips to the record-length boundary (20) and starts
counting from there, which means it writes the 5 bytes of HoldingVar2 to byte
positions 21-25. The intervening bytes (5-20) remain what they were, but now
represent padding between records.

Dim HoldingVar1 As String * 4
Dim HoldingVar2 As String * 5
Open "Myfile.txt" For Random As #1 Len = 20
HoldingVar1 = "1234"
HoldingVar2 = "12345"
Put #1, , HoldingVar1
Put #1, , HoldingVar2

■ Table 6-41 summarizes how Put behaves, depending on the data type of
<variable to write>. Open refers to the particular statement that opened the
file in question.

Table 6-41 Relationships of <variable to write> data types to Put
behavior

<variable to write> Put writes, in this order Rules

Variable-length
string

1 2-byte descriptor
containing string
length

2 Data in the variable

Record length specified
in the Len clause of Open
must be at least 2 bytes
greater than the actual
length of the string.

Numeric Variant
(Variant Types 0-7)

1 2-byte descriptor that
identifies the type of
the Variant

2 Data in the variable

Len clause length must
be at least 2 bytes greater
than the actual number of
bytes required to store
the variable.

String Variant
(Variant Type 8)

1 2-byte Variant Type
descriptor

2 2 bytes indicating the
string length

3 Data in the variable

Len clause length must
be at least 4 bytes greater
than the actual length of
the string.

Any other type of
variable

1 Data in the variable Len clause length must
be greater than or equal
to the length of the data.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 359

Put statement

For files opened in Binary mode:
All the Random descriptions and rules above apply except that the Len clause in
Open has no effect. Put writes all variables to disk contiguously, that is, with no
padding between records.

In the following example, the first Put writes the 4 bytes of the variable
HoldingVar1 to the disk file Myfile.txt at byte positions 1-4. The second Put writes
the 5 bytes of HoldingVar2 to byte positions 5-10. No data shows between them
as padding.

Dim HoldingVar1 As String * 4
Dim HoldingVar2 As String * 5
Open "Myfile.txt" For Binary As #1 Len = 20
HoldingVar1 = "1234"
HoldingVar2 = "12345"
Put #1, , HoldingVar1
Put #1, , HoldingVar2

For variable-length strings, Put does not write a 2-byte descriptor; it writes the
number of bytes equal to the number of characters already in the string.

The following example writes 12 bytes to file number 1:

VariLen$ = String$(12, "*")
Put #1, , VariLen$

Parameters <open file number>
Numeric expression that specifies the number you used in the previously issued
Open that opened the file to which you now want to write using Put.

<record number>
Numeric expression:

■ For files opened in Random mode, <record number> is the number of the
record to be written.

■ For files opened in Binary mode, it is the byte position at which writing starts,
where the first byte in a file is at position 1, the second byte at position 2, and
so on.

The default is the next record or byte—that is, the one following the last Get or
Put statement, or the one pointed to by the last Seek2 function.

The following conditions apply to <record number>:

■ If you omit <record number> you must still include the delimiting commas
that would have been on either side of it had you included it. For example:

Put #1, , HoldingVar1

■ Must be between 1 and 2,147,483,647.

<variable to write>
String expression that specifies the variable to write to the open file.

360 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Put statement

The following conditions apply to <variable to write>:

■ Cannot be an object variable, user-defined data type structure, handle to a
class, CPointer, or OLE object.

■ Cannot be an array variable that refers to an entire array, although you can use
one that describes a single element of an array.

Tip To avoid corrupting or misreading data, be sure your record lengths and/or
variable lengths match the lengths of the data you want to read or write.

Example The following example prompts the user for three customer names, then writes
each name to a test file and reads the names:

Sub Start()
Dim CustName As String, Msg As String
Dim Indx As Integer, Max As Integer
Super::Start()
CustName = String(20, " ")
' Create a sample random-access file using PUT:
Open "testfil3.txt" For Random As #1 Len = 50
' Put records into file on disk
Put #1, 1, "Customer 1"
Put #1, 2, "Customer Two"
Put #1, 3, "Third Customer"
' Read the sample random-access file using GET:
Max = Loc(1)

' Check if records exist
If Max = 0 Then

Msg = "Sorry, your file contains no names."
Else

Msg = "Your file contains the following names:"
End If
ShowFactoryStatus(Msg)
For Indx = 1 To Max

' Read from test file
Get #1, Indx, CustName
ShowFactoryStatus(CustName)

Next Indx
' Close file
Close #1
Msg = "The test file will now be deleted."
ShowFactoryStatus(Msg)

' Delete test file
Kill "testfil3.txt"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 361

PV funct ion

See also Get statement
Open statement
Type…End Type statement

PV function
Returns the present value of an annuity based on periodic, constant payments to
be paid in the future, and on an unvarying interest rate.

Syntax PV(<rate per period>,<number pay periods>,<each pmt>, <future value>,
<when due>)

Parameters <rate per period>
Numeric expression that specifies the interest rate that accrues per period. <rate
per period> must be given in the same units of measure as <number pay
periods>. For instance, if <number pay periods> is expressed in months, then
<rate per period> must be expressed as a monthly rate.

<number pay periods>
Numeric expression that specifies the total number of payment periods in the
annuity. <number pay periods> must be given in the same units of measure as
<rate per period>. For instance, if <rate per period> is expressed as a monthly
rate, then <number pay periods> must be expressed in months.

<each pmt>
Numeric expression that specifies the amount of each payment. <each pmt> must
be given in the same units of measure as <rate per period>. For instance, if <rate
per period> is expressed in months, then <each pmt> must be expressed as a
monthly payment.

<future value>
Numeric expression. Specifies the cash balance you want after you have made
your final payment.

■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1), or at the end (0) of each period. The default is 0 and <when due>
must be 0 or 1.

The following example assumes you are considering the purchase of a corporate
bond with a $1000 face value. The bond pays an annual coupon of $100, matures
in 15 years, and the next coupon is paid at the end of one year. The yield to

362 P r o g r a m m i n g w i t h A c t u a t e B a s i c

PV funct ion

maturity on similar bonds is 12.5%. What is a fair price for this bond (its present
value)? The answer, $834.18, is assigned to the variable PresentValue.

PresentValue = PV(.125, 15, 100, 1000, 0)

The following examples assumes you have won the lottery. The jackpot is $10
million, which you receive in yearly installments of $500,000 per year for 20 years,
beginning one year from today. If the interest rate is 9.5% compounded annually,
how much is the lottery worth today? The answer, $4,406,191.06, is assigned to
PresentValue.

PresentValue = PV(.095, 20, 50000,10000000, 0)

The following example assumes you want to save $11,000 over the course of 3
years. If the APR is 10.5% and you plan to save $325 monthly, and if you make
your payments at the beginning of each month, how much would you need to
start off with in your account to achieve your goal? The answer, $2,048.06, is
assigned to StartValue. Note that <each pmt> is expressed as a negative number
because it represents cash paid out.

StartValue = PV(.105/12, 3*12, -325, 11000, 1)

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,
such as a home mortgage. The present value is the value today of a future
payment, or of a stream of payments structured as an annuity.

For example, if you put $23.94 in the bank today and leave it there for 15 years at
an interest rate of 10% compounded annually, you end up with about $100. So,
the present value of $100 is approximately $23.94.

Rules ■ <rate per period> and <number pay periods> must be expressed in terms of
the same units (if weekly/then weeks, monthly/months, yearly/years, and so
on).

■ You must express cash paid out (such as deposits to savings) using negative
numbers, and cash received (such as dividend checks) using positive
numbers.

Example The following example prompts the user for the amount to save or invest each
month, the annual percentage rate (APR) of the interest, the total number of
payments, a target amount, and when during the month payments are made.
Then, it interprets the present value as the amount the user would have to start
with to achieve the goal.

Declare
Global Const ENDPERIOD = 0
Global Const BEGINPERIOD = 1

End Declare

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 363

QBColor funct ion

Sub Start()
Dim EachPmt As Double, APR As Double, Fmt As String
Dim Msg As String, TotalPmts As Single, PayWhen As Integer
Dim PresentVal As Double, FutureVal As Double
Super::Start()
' Specify money format
Fmt = "$#,##0.00"
EachPmt = 500 ' Amount to save each month
APR = 0.0275 ' Annual percentage rate for theinterest
TotalPmts = 60 ' Number of months to save
' Assume end period payment
PayWhen = ENDPERIOD
FutureVal = 50000 ' The goal amount
PresentVal = PV(APR / 12, TotalPmts, -EachPmt, FutureVal,

+ PayWhen)
Msg = "Starting with " & Format(-PresentVal, Fmt)

+ & " and saving " & Format(EachPmt, Fmt)
+ & " every month at an interest rate of "
+ & Format(APR, "#0.00%") & " for a period of "
+ & TotalPmts & " months brings you to your goal of "
+ & Format(FutureVal, Fmt) & "."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
IPmt function
NPer function
Pmt function
PPmt function
Rate function

QBColor function
Translates the numeric representations for colors from older BASIC languages
such as Quick Basic to those used by Actuate Basic.

Syntax QBColor(<number to translate>)

Parameters <number to translate>
Integer that specifies the number of a color, specifically one of the 16 standard
Windows colors.

364 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Randomize statement

Rules:

■ Must be between 00 and 15, inclusive.

■ If <number to translate> evaluates to Null, QBColor returns Null.

Returns Long

Tips There are at least four ways to represent a color in Actuate Basic:

■ Specify the relative mix of red, green, and blue in a color by using RGB with
decimal numbers.

■ Directly specify, without using RGB or any function, the relative mix using
hexadecimal numbers in a certain format.

■ Use one of the 16 standard Windows colors by supplying the appropriate
integer to QBColor.

■ Use one of the appropriate color name constants from Header.bas.

Example The following example displays a variety of color shades on a component:

Sub Start()
Dim UserAns, Msg
Super::Start()
UserAns = CInt(Rnd * 15)
Msg = "The hexadecimal code for " & UserAns &

+ " is: " & Hex(QBColor(UserAns))
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also RGB function

Randomize statement
Initializes the random number generator so it can generate a new sequence of
apparently random numbers.

Syntax Randomize [<seed number>]

Description Actuate Basic supplies you with Randomize and Rnd as tools for generating
random numbers.

Randomize generates a sequence of pseudo-random numbers by starting with a
seed value. The randomizing function then takes that initial seed value and uses
it to generate the first number in the pseudo-random sequence. Then it uses that
number in turn to produce the second one, and so on. The result is a series of

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 365

Randomize statement

numbers that vary well enough to seem to have no pattern, or in other words, to
be random.

■ If you do not use Randomize, Rnd returns the same sequence of numbers
every time the program is run.

■ Use Randomize before Rnd, or it has no effect.

Parameters <seed number>
Numeric expression that specifies the number that initializes the random number
generator by supplying it with a new seed value. <seed number> must be
between -2,147,483,648 and 2,147,483,647.

For example:

Randomize
Randomize 34

Tips ■ To generate numbers that seem truly random, use Randomize—with no
argument—at the beginning of your program. In that case, Actuate Basic uses
a randomizing seed based on the current running system time, which is
almost certain to vary randomly whenever you run the program.

■ Although, you can use Randomize several times throughout a program, it
works best if you use it only once, at the beginning.

■ To help you debug certain programs, use Randomize with a specific <seed
number>. That way, the same random numbers repeat every time you run the
program.

Example The following example simulates rolling a die twice by generating random values
between 1 and 6 for each roll:

Sub Start()
Dim DieRoll1, DieRoll2, UserMsg
Super::Start()

' Seed random num generator
Randomize

' First roll
DieRoll1 = Int(6 * Rnd + 1)

' Second roll
DieRoll2 = Int(6 * Rnd + 1)
UserMsg = "You rolled a " & DieRoll1

+ & " and a " & DieRoll2
+ & " giving a total of "
+ & (DieRoll1 + DieRoll2) & "."

ShowFactoryStatus(UserMsg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Rnd function

366 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Rate funct ion

Rate function
Returns the interest rate per period for an annuity.

Syntax Rate(<number pay periods>,<each pmt>, <present value>, <future value>,
<when due>, <starting guess>)

Parameters <number pay periods>
Numeric expression that specifies the total number of payment periods in the
annuity. <number pay periods> must be given in the same units of measure as
<each pmt>. For instance, if <each pmt> is expressed as a monthly payment, then
<number pay periods> must be expressed in months.

<each pmt>
Numeric expression that specifies the amount of each payment. <each pmt> must
be given in the same units of measure as <number pay periods>. For instance, if
<number pay periods> is expressed in months, then <each pmt> must be
expressed as a monthly payment.

<present value>
Numeric expression that specifies the value today of a future payment, or of a
stream of payments.

For example, if you put $23.94 in the bank today and leave it there for 15 years at
an interest rate of 10% compounded annually, you will end up with about $100.
So in this case, the present value of $100 is approximately $23.94.

<future value>
Numeric expression that specifies the cash balance you want after you have made
your final payment.

■ You set up a savings plan with a goal of having $75,000 in 18 years to pay for
your child’s education. For this plan, the future value is $75,000.

■ You take out a loan for $11,000. The future value is $0.00, as it is for any typical
loan.

<when due>
Numeric expression that specifies whether each payment is made at the
beginning (1), or at the end (0) of each period. The default is 0 and <when due>
must be 0 or 1.

<starting guess>
Numeric expression that specifies the value you estimate Rate will return. In most
cases, this is 0.1 (10 percent).

The following example assumes you have taken out a loan for $20,000, that you
are paying off over the course of 3 years. If your payments are $653.26 per month,
and you make them at the beginning of each month, what interest rate (APR) are
you paying? The answer, .115 or 11.5%, is assigned to the variable InterestRate.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 367

Rate funct ion

Note that the return value of Rate must be multiplied by 12 to yield an annual
rate.

InterestRate = Rate(3*12, -653.26, 20000, 0, 1, .1) * 12

Returns Double

An annuity is a series of cash payments, constant in value, made over a period of
time. An annuity can be an investment, such as a monthly savings plan, or a loan,
such as a home mortgage.

Rate calculates the interest rate on an annuity iteratively. Starting with the value
of <starting guess>, it repeats the calculation until the result is accurate to within
0.00001 percent. If it cannot determine a result after 20 iterations, the function
fails.

Rules:

■ <number pay periods>, and <each pmt> must be expressed in terms of the
same units (weekly/weeks, monthly/months, yearly/years, and so on).

■ You must express cash paid out, such as deposits to savings, using negative
numbers and cash received, such as dividend checks, using positive numbers.

Tips ■ Because Rate uses the order of values within the array to interpret the order of
payments and receipts, be sure to enter your payment and receipt values in
the correct sequence.

■ If Rate fails, try a different value for <starting guess>.

Example The following example prompts the user for particulars about a loan, then returns
the interest rate. To use this example, paste the first portion at or near the
beginning of your Actuate Basic source code (.bas) file.

Declare
Global Const ENDPERIOD = 0
' When payments are made
Global Const BEGINPERIOD = 1

End Declare

Sub Start()
Dim Fmt As String, FutVal As Double, Guess As Double
Dim PresVal As Double, Pymt As Double, TotalPmts As Integer
Dim PayWhen As Integer, APR As Double
Dim Msg As String
Super::Start()
' Define percentage format
Fmt = "#0.00%"
' Usually 0 for a loan
FutVal = 0

368 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ReDim statement

' Guess of 10 percent
Guess = 0.1
PresVal = 20000 ' The loan amount
Pymt = 600 ' The monthly payment
TotalPmts = 36 ' The number of monthly payments
' Assume end period payment
PayWhen = ENDPERIOD

APR = (Rate(TotalPmts, -Pymt, PresVal, FutVal, PayWhen,
+ Guess) * 12)

Msg = "Your interest rate is " & Format(APR, Fmt) & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FV function
IPmt function
NPer function
Pmt function
PPmt function
PV function

ReDim statement
Changes the size of an existing dynamic array variable, and reallocates memory if
needed.

Syntax ReDim [Preserve] <array variable name>(<subscripts>) [As <type>], <array
variable name>(<subscripts>) [As <type>]. . .

Parameters Preserve
Retains the data in an array when you resize the last dimension. With Preserve, if
you decrease the size of any dimension, you will lose some of the data in that
dimension although the data in the others will be retained.

<array variable name>
Name of the array. Can be a variable name or expression, for example myArray or
my.Array. An expression cannot contain parentheses, for example my.Array(1).

<subscripts>
Each <subscripts> argument specifies the number of elements in a dimension.
The number of <subscripts> arguments specifies the number of dimensions in the
array.

Array dimensions using the following syntax:

[<lower> To]<upper>[,[<lower> To]<upper>]…

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 369

ReDim statement

The following conditions apply to <subscripts>:

■ <lower> and <upper> can range from -2,147,483,647 to 2,147,483,647 inclusive.

■ <lower> must always be less than <upper>.

■ Each ReDim can specify up to 60 dimensions.

■ You cannot add dimensions. That is, the number of <subscripts> arguments
must not exceed the number given when the array was originally declared.

■ You cannot add dimensions. The number of [<lower>To] <upper> pairs must
not exceed the number given when the array was originally declared.

In the following example, the statements are equivalent if you do not use Option
Base:

ReDim P(7,5)
ReDim P(0 TO 7, 0 TO 5)
ReDim P(7, 0 TO 5)

As <type>
Specifies a data type or class for the variable. If you specify a class, the variable
can hold a reference to an instance of that class or descendant classes. You must
use As <type> to declare the variable that you use to specify the dimensions of an
array. If you do not specify a data type in Actuate Basic, the data type for a
variable defaults to the Variant data type, which cannot be used as a parameter
for sizing an array with the ReDim statement.

Rules:

■ Declare an array with the Dim statement before using ReDim.

■ Use ReDim only at the procedure level.

■ Use ReDim to change the number of elements in an array, not the number of
dimensions.

■ You cannot use ReDim to resize a fixed-size array.

■ You cannot change the data type of an array.

■ The Erase statement recovers the memory previously allocated to a dynamic
array.

Tips ■ To work with large arrays, use ReDim, which dynamically allocates memory
as needed.

■ To clear the values in an array, use ReDim without Preserve.

370 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ReDim statement

■ To avoid debugging problems, note that variables declared with Dim are
automatically initialized as shown in Table 6-42.

Example The following example dynamically resizes an array while a procedure is
running:

Sub Start()
Dim Customer1 As Integer, Customer2 As Integer
Dim I As Integer, MyArray() As Integer

Super::Start()
Customer1 = 5
Customer2 = 10

ReDim MyArray(Customer1)
For I = 1 To Customer1

MyArray(I) = I ^ 2
ShowFactoryStatus(I & ": " & MyArray(I))

Next I

ReDim MyArray(Customer2)
For I = 1 To Customer2

MyArray(I) = I ^ 2

ShowFactoryStatus(I & ": " & MyArray(I))
Next I

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
Erase statement

Table 6-42 Initialization of the variables that are declared with Dim

Type Initialized As

Numeric 0

Variant Empty

Variable-length strings Empty string("")

User-defined type Separate variables

Object or class Nothing (before Set)

CPointer Null

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 371

Rem statement

Rem statement
Inserts comments or explanatory remarks in a program.

Syntax {Rem | :Rem | ‘ }<comment>

Parameters <comment>
Any characters or numbers, including spaces or punctuation. <comment> is a
remark that explains what is happening in the program.

Description ■ All text to the right of Rem is ignored by the compiler.

■ <comment> appears exactly as you entered it when the program is listed.

■ If you branch from a GoTo statement to a line that contains Rem, program
execution continues with the first executable statement that follows Rem.

To place a comment on the same line as a code instruction, precede the comment
either with the apostrophe identifier or with :Rem.

For A = 1 To 20 'This code steps through the 20 items
For A = 1 To 20 : REM This code steps through the 20 items

To place a comment on a line by itself, precede the comment with any one of the
three identifiers.

Rem The 3rd line after this steps through 20 items of an array.
: Rem The 2nd line after this steps through 20 items of array.
' The next line steps through the 20 items of the array.
For A = 1 To 20

Tips ■ Use comments liberally throughout your program to explain how the code
works.

■ To disable a line of code when debugging, precede it with one of the three Rem
identifiers. Temporarily commenting out the line, lets you see what happens
when that line is left out of the program.

Example The following example shows the various ways of using Rem:

Sub Start()
Dim Message1, Message2, Message3, AllMessages

Super::Start()
Rem The compiler will ignore this entire line.
' This line will also be ignored.
Message1 = "First message line." :Rem Colon before REM here
Message2 = " Second message line." ' This one needs no colon
: Rem This line has a colon, but really does not need it.
Message3 = " This example shows different ways to use REM."

372 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Reset statement

AllMessages = Message1 & Message2 & Message3
ShowFactoryStatus(AllMessages)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Str, Str$ functions

Reset statement
Writes all data in open file buffers to the appropriate disk files, then closes all
open disk files.

Syntax Reset

Description Performs the same task as Close with no parameters.

Example The following example creates and opens two test files, closes them using Reset,
then reopens them and reads back the data. Finally, it deletes the test files.

Sub Start()
Dim FirstVar, SecondVar
Super::Start()
Open "testalpha.fil" for Output As #1
Open "testbeta.fil" for Output As #2
Print #1, "This line is in the first test file."
Print #2, "This line is in the second test file."
Reset

Open "testalpha.fil" for Input As #1
Open "testbeta.fil" for Input As #2
Line Input #1, FirstVar
Line Input #2, SecondVar
Reset
ShowFactoryStatus(FirstVar & " " & SecondVar)
Reset
ShowFactoryStatus("The test files will now be deleted.")
Kill "testalpha.fil"
Kill "testbeta.fil"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Close statement
End statement

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 373

Resume statement

Resume statement
Releases control from an error-handling routine and resumes program execution
at a specified place.

Syntax Resume { [0] | Next | <line> | <line label> }

Parameters [0]
Keyword (an optional zero) indicating that Actuate Basic is to resume program
execution with the statement that caused the error, or with the statement that last
called out of the procedure containing the error handler.

For example, the following two statements are equivalent:

Resume
Resume 0

Next
Keyword indicating that Actuate Basic is to resume program execution with the
statement following the one that caused the error, or with the statement following
the one that last called out of the procedure containing the error handler. For
example:

Resume Next

<line> or <line label>
Keyword indicating the line number or line label at which Actuate Basic is to
resume execution. This must be in the same procedure as the error handler. For
example, the following example instructs Actuate Basic to continue execution at
the label Continuation:

Resume Continuation

Description Where Actuate Basic resumes execution depends on the location of the error
handler in the which the error is trapped, not necessarily on the location of the
error itself. Table 6-43 summarizes where a program resumes execution when
either the Resume [0] or Resume Next statement is used.

Table 6-43 Where a program resumes when using Resume [0] or Resume Next

Error occurred Resume [0] Resume Next

In the same procedure as
the error handler.

The statement that
caused the error.

The statement after the
one that caused the
error.

In a different procedure
from the error handler.

The statement that last
called out of the
procedure containing
the error handler.

The statement after the
one that last called out of
the procedure
containing the error
handler.

374 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RevInStr funct ion

Rules ■ You can only use Resume in an error-handling routine.

■ You can only exit an error-handling routine by using Resume, not by using
End Sub or End Function.

Example The following example generates two errors in succession. In the first case, the
error routine displays the error number and description, then uses Resume to
resume execution of the code at the line following the line that caused the error. In
the second case, the error routine displays a simple message and uses Resume to
branch to a specified routine. This branch causes the flow of program execution to
skip the line following the one that caused the error.

Sub Start()
Super::Start()
On Error GoTo ErrorHandler
Dim Zilch, Zero, DivisionByZero
Zilch = 0
Zero = 0
DivisionByZero = Zilch/Zero
ShowFactoryStatus("The line after the divide-by-zero error.")
Open "z:\zzzzzz.zzz" for Input As #1
ShowFactoryStatus("Theis line is after the error. Skipped.")

Badfile:
ShowFactoryStatus("This line is in the Badfile routine.")
Exit Sub

ErrorHandler:
If Err = 8 Then

ShowFactoryStatus("Error: " & Err & " occurred: " &
+ Error$(Err))

Resume Next
Else

ShowFactoryStatus("File error. Going to badfile label.")
Resume Badfile

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also On Error statement

RevInStr function
Returns the starting position of the last occurrence of one string within another.
RevInStr is used to extract a filename like Myhouse.txt from a long or fully
qualified string like C:/Country/State/City/Street/Myhouse.txt.

Syntax RevInStr(<string being searched>, <string to find>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 375

RevInStr funct ion

RevInStr(<end>, <string being searched>, <string to find>)

Description RevInStr is like InStr, except that where InStr returns the position of the first
character of the first occurrence of a string, RevInStr returns the position of the
first character of the last occurrence of a string.

In cases where <string to find> occurs only once within <string being searched>,
first and last occurrences coincide, and both InStr and RevInStr return the same
value.

In the following examples, InStr and RevInStr return different values:

RevInStr("C:/Country/State/City/Myfile.txt", "/") = 22
RevInStr(21, "C:/Country/State/City/Myfile.txt", "/") = 17
RevInStr("C:/Country/State/State2/City/Myfile.txt", "/State")

= 17

In the following examples, both InStr and RevInStr return the same value:

RevInStr("C:/Country/State/City/Myfile.txt", "/State") = 11
RevInStr("C:/Country/State/State2/City/Myfile.txt", "Etats/")

= 0

Parameters <string being searched>
String you are inspecting in order to locate the last occurrence of <string to find>.

<string being searched> must be a variable string, a literal string, a string
constant, the return value of any function that returns a string, or a variant that
can evaluate to a string.

<string to find>
String in which last occurrence you are seeking is within <string being searched>.

<string to find> must be a variable string, a literal string, a string constant, the
return value of any function that returns a string, or a variant that can evaluate to
a string.

<end> (optional)
The position within <string being searched> at which to end searching. The first
character occupies position 1.

■ If you supply <end>, Actuate Basic searches for the last occurrence of <string
to find> that appears before the character at position <end>.

■ If you do not supply <end>, Actuate Basic searches to the last character of
<string being searched>.

■ Must be a number or numeric expression.

■ Must be between 1 and 2,147,483,647, inclusive.

Returns Integer

■ If <string to find> is found within <string being searched>, RevInStr returns
the position of the first character at which the last match was found.

376 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RGB funct ion

■ If <string to find> is not found within <string being searched>, RevInStr
returns 0.

■ If <string being searched> is zero-length, RevInStr returns 0.

■ If <end> is greater than the length of <string being searched>, RevInStr
returns 0.

Example The following example shows how to use RevInStr to find the filename portion of
a fully qualified path that contains slashes.

Because RevInStr returns the position of the last occurrence of a slash, the
following code displays Johnsmith.fil regardless of the number of slashes in the
file’s full name or path:

Sub Start()
Dim baseName, fileName As String
Dim posn As Integer
Super::Start()
fileName =

+ "C:/USA/Massachusetts/Springfield/Zip01109/Johnsmith.fil"
posn = RevInStr(fileName, "/")
If posn = 0 Then

baseName = fileName
Else

baseName = Mid$(fileName, posn + 1)
End If
ShowFactoryStatus(baseName)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Left, Left$ functions
Len function
Mid, Mid$ functions
Right, Right$ functions

RGB function
Returns a number representing the RGB color value for a given mix of red, green
and blue values.

Syntax RGB(<red>, <green>, <blue>)

Parameters <red>
Integer indicating the red value of the color.

■ If <red> is greater than 255, <red> defaults to 255.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 377

RGB funct ion

■ If <red> is empty, <red> defaults to 0.

■ <red> must be greater than 0.

■ <red> must not be Null.

<green>
Integer indicating the green value of the color.

■ If <green> is greater than 255, <green> defaults to 255.

■ If <green> is empty, <green> defaults to 0.

■ <green> must be greater than 0.

■ <green> must not be Null.

<blue>
Integer indicating the blue value of the color.

■ If <blue> is greater than 255, <blue> defaults to 255.

■ If <blue> is empty, <blue> defaults to 0.

■ <blue> must be greater than 0.

■ <blue> must not be Null.

Returns Long

■ Returns a number between 0 and 16,777,215, inclusive. This single number
represents the relative intensities of red, green, and blue that make up a
particular color.

■ Table 6-44 shows some standard colors. For each color, you see the decimal
values returned by RGB, the hexadecimal equivalent, the corresponding
QBColor number, and the mix of red, green and blue decimal values that make
up the color.

Table 6-44 Colors and the corresponding RGB values

Color
RGB Value
(Dec)

RGB Value
(Hex) QBColor

Red
Value

Green
Value

Blue
Value

Black 0 &H00 0 0 0 0

Blue 16711680 &HFF0000 1 0 0 255

Green 65280 &HFF00 2 0 255 0

Cyan 16776960 &HFFFF00 3 0 255 255

Red 255 &HFF 4 255 0 0

Magenta 16711935 &HFF00FF 5 255 0 255

Yellow 65535 &HFFFF 6 255 255 0

(continues)

378 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RGB funct ion

Tips There are four ways in which you can precisely represent a color in Actuate Basic:

■ Specify the relative mix of red, green and blue in a color by using RGB with
decimal numbers, as described here.

■ Directly specify, without using RGB or any function, the relative mix using
hexadecimal numbers in a certain format.

■ Use one of the 16 standard Windows colors by supplying the appropriate
integer to QBColor.

■ Use one of the built-in color constant names, such as BLUE.

Example The following example returns the RGB value for a random mix of red, green, and
blue values:

Sub Start()
Dim RedPart As Integer, GreenPart As Integer
Dim BluePart As Integer
Dim HexVersion, Msg As String, RGBNumber

Super::Start()
RedPart = CInt(Rnd * 255)
GreenPart = CInt(Rnd * 255)
BluePart = CInt(Rnd * 255)
RGBNumber = RGB(RedPart, GreenPart, BluePart)
HexVersion = Hex(RGBNumber)
Msg = "Red component: " & RedPart

+ & " Green component: " & GreenPart
+ & " Blue component: " & BluePart
+ & " The decimal representation of that mix of "
+ & "red, green, and blue is: "
+ & RGBNumber & ". "
+ & "The hexadecimal representation of it is: "
+ & HexVersion

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also QBColor function

White 16777215 &HFFFFFF 15 255 255 255

Gray 8421504 &H808080 8 128 128 128

Table 6-44 Colors and the corresponding RGB values (continued)

Color
RGB Value
(Dec)

RGB Value
(Hex) QBColor

Red
Value

Green
Value

Blue
Value

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 379

Right, Right$ funct ions

Right, Right$ functions
Returns a segment of a Variant or String, starting at the last character and
working toward the beginning.

Syntax Right(<string exprs>, <length>)

Right$(<string exprs>, <length>)

Parameters <string exprs>
Source string from which you are copying the last portion. Can be a variable
string, a literal string, a string constant, the return value of any function that
returns a string, or a Variant that can evaluate to a String.

<length>
Long that specifies how many characters to copy from the right of <string exprs>.

■ <length> must be an Integer or expression between 0 and 2,147,483,647.

■ In the following example, the statements are equivalent. Both return Widget:

Right$("Widget",6)
Right$("Widget",99)

Returns Right: Variant
Right$: String

■ If <length> = 0, returns zero-length string.

■ If <length> is greater than or equal to the length of <string exprs>, returns an
exact copy of <string exprs>.

■ If any parameter evaluates to Null, Right[$] returns Null.

Tip ■ Use Len to find the number of characters in <string exprs>.

■ Use InStr to find the position of a specified character in <string exprs>.

Example The following example parses a string for a customer’s first and last names:

Sub Start()
Dim FName As String, Msg As String, LName As String
Dim SpacePos As Integer, Customer As String
Super::Start()
Customer = "Manuel Barajas"
' Find the space

380 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RightB, RightB$ funct ions

SpacePos = InStr(1, Customer, " ")
If SpacePos Then

' Get first and last name
FName = Left$(Customer, SpacePos - 1)
LName = Right$(Customer, Len(Customer) - SpacePos)
Msg = "The first name is """ & FName & "." & """"

+ & " The last name is """
+ & LName & "." & """"

Else
Msg = Customer & " does not have a first and last name!"

End If
' Display the message

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Left, Left$ functions
Len function
Mid, Mid$ functions

RightB, RightB$ functions
Returns a segment of a Variant or String, starting at the last byte and working
toward the beginning.

These functions are provided for backward compatibility with previous Actuate
releases. Actuate uses UCS-2 as internal encoding, therefore passing strings
consisting of characters from different code pages might produce unexpected
results. For this reason, Actuate recommends you use the Right and Right$
functions instead of the RightB and RightB$ functions.

Syntax RightB(<string exprs>, <length>)

RightB$(<string exprs>, <length>)

Parameters <string exprs>
Source string from which you are copying the last portion. It can be a variable
string, a literal string, a string constant, the return value of any function that
returns a string, or a Variant that can evaluate to a String.

<length>
Long that specifies how many bytes to copy from the right of <string exprs>.

Rule: Must be an Integer or expression between 0 and 2,147,483,647.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 381

RmDir statement

Example The following statements are equivalent. Both return Widget:

RightB$("Widget",6)
RightB$("Widget",99)

Returns RightB: Variant
RightB$: String

■ If <length> = 0, the function returns zero-length string.

■ If <length> is greater than or equal to the length of <string exprs>, the
function returns an exact copy of <string exprs>.

■ If any parameter evaluates to Null, RightB[$] returns Null.

Tips ■ Use LenB to find the number of bytes in <string exprs>.

■ Use InStrB to find the position of a specified bytes in <string exprs>.

See also InStrB function
LeftB, LeftB$ functions
LenB function
MidB, MidB$ functions
Right, Right$ functions

RmDir statement
Removes a subdirectory from a disk.

Syntax RmDir <directory name>

Parameters <directory name>
String expression that is the name of the directory or subdirectory to be deleted.
The default is the current drive and directory.

The following conditions apply to <directory name>:

■ Must specify a valid directory.

■ Target directory must contain no child subdirectories.

■ Target directory must be empty.

<directory name> has the following syntax.

[<drive:>] [\]<directory>[\<directory>]…(Windows)

[/]<directory>[/<directory>]…(UNIX)

<drive:>
Character, followed by a colon, that specifies the drive (Windows only).

382 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RmDir statement

<directory>
String expression that is the name of the directory or subdirectory to remove.

For example, the following statement removes the subdirectory Test under the
current directory on the current drive:

RmDir "Test"

The following removes the subdirectory Test under the root directory of the
current drive:

RmDir "\Test"

The following removes the subdirectory Test under the root directory of
drive D:

RmDir "D:\Test"

Description RmDir works like the DOS command of the same name. Unlike the DOS
command it cannot be abbreviated.

Tips ■ If a directory name contains embedded spaces, you cannot use the DOS
RmDir command to remove it. Instead, use RmDir.

■ To determine the current directory, use CurDir.

Example The following example determines whether a \Tmpzzz subdirectory exists on the
current drive. If the subdirectory does not exists, the example creates the
subdirectory, prompts the user to retain or remove the subdirectory, and responds
accordingly.

Sub Start()
Dim UserAns As Integer, ThisDrive As String
Dim Msg As String, TempDir As String
Super::Start()
' Set up error handler
On Error Resume Next
' Get current drive letter
ThisDrive = Left$(CurDir, 2)
' Construct full path spec
TempDir = UCase$(ThisDrive + "\Tmpzzz")
' Make the new directory
MkDir TempDir
' Does it exist?
If Err = 41 Then

Msg = "Sorry, " & TempDir & " directory already exists. "
Else

Msg = TempDir & " directory was just created. "
ShowFactoryStatus(Msg)
ShowFactoryStatus("The directory will now be deleted.")
RmDir TempDir

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 383

Rnd funct ion

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CurDir, CurDir$ functions
MkDir statement

Rnd function
Returns a random number.

Syntax Rnd[(<sequencing code>)]

Parameters <sequencing code>
Numeric expression for the code number that identifies the value to return from
the pseudo-random sequence.The pseudo-random sequence is the fixed sequence
of numbers you generate if you have not used Randomize and you call Rnd
repeatedly without any argument.

If <sequencing code> is omitted, Actuate Basic moves to the next number in the
pseudo-random sequence.

Table 6-45 shows the possible values of <sequencing code> and the
corresponding values Rnd returns from the pseudo-random sequence.

For example, the following expressions are all true, but only if you evaluate them
in the order shown and do not use a Randomize statement before them.

If you use a Randomize statement, the last of these expressions is always
different.

Rnd(-5) = 0.298564536496997
Rnd(0) = .298564536496997
Rnd(1) = .223996873013675
Rnd = .0928899832069874

Table 6-45 Possible values of <sequencing code> and the corresponding values
that Rnd returns

<sequencing code> Rnd returns

Less than 0 The same number every time. The specific value varies
as a function of <sequencing code>.

Greater than 0 The next random number in the pseudo-random
sequence.

Equal to 0 The number most recently generated.

384 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RSet statement

Returns Single

■ Rnd returns a value less than 1 but greater than or equal to 0.

■ Unless you use Randomize beforehand, Rnd generates the same random-
number sequence every time the program is run.

■ As long as <sequencing code> is omitted or is greater than zero, each
successive call to Rnd uses the previous random number as the seed for the
next one.

Tips ■ To generate a more apparently random sequence every time the program is
run, use Randomize without an argument before you use Rnd.

■ To produce random integers in a given range, use the following formula:

Int((<high number> - <low number> + 1) * Rnd + <low number>)

In this formula, <high number> represents the highest number in the range,
and <low number> the lowest.

Example The following example simulates rolling a die twice by generating random values
between 1 and 6 for each roll:

Sub Start()
Dim DieRoll1, DieRoll2, UserMsg
Super::Start()
' Seed random num generator
Randomize
' First roll
DieRoll1 = Int(6 * Rnd + 1)
' Second roll
DieRoll2 = Int(6 * Rnd + 1)
UserMsg = "You rolled a " & DieRoll1

+ & " and a " & DieRoll2
+ & " giving a total of "
+ & (DieRoll1 + DieRoll2) & "."

ShowFactoryStatus(UserMsg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Randomize statement
Time, Time$ functions

RSet statement
Right-aligns a string within the space of a string variable.

Syntax RSet <string variable> = <string exprs>

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 385

RTrim, RTrim$ funct ions

Parameters <string variable>
Name of a string variable in which RSet stores the right-aligned <string exprs>.

<string exprs>
String expression that you want RSet to right-align within <string variable>.

Table 6-46 shows the settings for <string exprs> and the corresponding RSet
behaviors.

Example The following example right-aligns text within a 20-character String variable:

Sub Start()
Dim Msg, TmpStr As String
Super::Start()
' Create 20-character string
TmpStr = String(20, "*")
Msg = "The following two strings that have been right"

+ & "and left justified in a " & Len(TmpStr)
+ & "-character string."

ShowFactoryStatus(TmpStr)
' Right justify
RSet TmpStr = "Right->"
ShowFactoryStatus(TmpStr)
' Left justify
LSet TmpStr = "<-Left"
ShowFactoryStatus(TmpStr)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also LSet statement

RTrim, RTrim$ functions
Returns a copy of a string after removing the trailing spaces.

Syntax RTrim(<string exprs>)

Table 6-46 Settings for string expressions and corresponding RSet behavior

<string exprs> Behavior of RSet

Shorter than
<string variable>

Right-aligns <string exprs> within <string variable>. Replaces any
leftover characters in <string variable> with spaces.

Longer than
<string variable>

Places only the right most characters, up to the length of the <string
variable>, in <string variable>. Truncates characters beyond the
length of <string variable> from the left.

386 P r o g r a m m i n g w i t h A c t u a t e B a s i c

RTrim, RTrim$ funct ions

RTrim$(<string exprs>)

Parameters <string exprs>
String expression from which RTrim$ strips trailing spaces. Trailing spaces are
any spaces that occur after the last non-space character in a string. The <string
exprs> must be a variable string, a literal string, a string constant, the return value
of any function that returns a string, or a Variant that can evaluate to a String.

Returns RTrim: Variant
RTrim$: String

■ If there are no trailing spaces, RTrim[$] returns the original <string exprs>.

■ If <string exprs> evaluates to Null, RTrim[$] returns Null.

Tips ■ To simultaneously strip both leading and trailing spaces in a string, use
Trim[$].

■ To find other spaces in the middle of a string, use InStr.

Example The following example strips trailing spaces from a string variable, while
LTrim[$] strips leading spaces:

Sub Start()
Dim Msg As String, NL As String
Dim CustName As String, CustName1 As String
Super::Start()
CustName = " Harold Pinter "
' Strip left and right spaces
CustName1 = LTRIM$(RTRIM$(CustName))
Msg = "The original client name " & "'" & CustName

+ & "' was " & Len(CustName) & " characters long. "
+ & "There were two leading spaces "
+ & "and two trailing spaces. "
+ & "The name returned after stripping the spaces "
+ & "is: " & "'" & CustName1 & "'"
+ & "…and it contains only "
+ & Len(CustName1) & " characters."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
LTrim, LTrim$ functions
Trim, Trim$ functions

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 387

SafeDivide funct ion

SafeDivide function
Divides two given numbers, but prevents division by zero. Returns a specified
value if division by zero might otherwise have occurred.

Syntax SafeDivide(<num> As Variant, <denom> As Variant, <ifZero> As Variant) As
Variant

Parameters <num>
Any number, or valid numeric expression. The numerator of a fraction or ratio.

<denom>
Any number, or valid numeric expression. The denominator of a fraction or ratio.

<ifZero>
Value to return when <denom> is zero.

Returns Variant

If <denom> = 0, SafeDivide returns <ifZero>. Otherwise, SafeDivide returns
<num>/<denom>.

Example The following example averages amounts in a number of records. If no records
exist, the example does not generate a division-by-zero error and returns zero.

AverageAmtVar = SafeDivide(Sum(Amount)), Count(), 0)

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Err function
Error, Error$ functions
On Error statement

Second function
Returns an Integer from 0 to 59, inclusive, that represents the second of the
minute specified by a date expression.

Syntax Second(<date expression>)

Parameters <date expression>
Date expression, or any numeric or string expression that can be interpreted as a
date, a time, or both a date and a time:

■ Can be a string such as November 12, 1982 8:30 PM, Nov 12, 1982 08:30 PM,
11/12/82 8:30pm, or 08:30pm, or any other string that can be interpreted as a
date, a time, or both a date and a time in the valid range.

388 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Second funct ion

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date, a time, or both a date and a time in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the decimal component represents the time of day on that date, where January
1, 1900, at noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899 (0).

The default if no time specified is 0.

The following conditions apply to <date expression>:

■ If <date expression> includes a date, it must be a valid date, even though
Second does not return a date. A valid date is any date in the range January 1,
100, through December 31, 9999, expressed in one of the standard date
formats.

■ If <date expression> includes a time, it must be in the range 00:00:00 (12:00:00
A.M.) through 23:59:59 (11:59:59 P.M.), in either 12- or 24-hour format.

■ If <date expression> is a numeric expression, it must be in the range -657434.0
to +2958465.9999, inclusive.

■ If <date expression> is a variable containing a date serial number, the variable
must have been explicitly declared as one of the numeric types.

■ <date expression> is parsed according to the formatting rules of the current
run-time locale.

For example, the following statements are equivalent. Each assigns 22 to the
variable UserSecond.

UserSecond = Second("6/7/64 2:35:22pm")
UserSecond = Second("5:35:22 pm")
UserSecond = Second("June 7, 1964 2:35:22 PM")
UserSecond = Second("Jun 7, 1964") + 22
UserSecond = Second(23535.60789)
UserSecond = Second(0.60789)

Returns Integer

■ If <date expression> cannot be evaluated to a date, Second returns Null. For
example:

Second("This is not a date.") returns Null

■ If <date expression> fails to include all date components (day, month, and
year), Second returns Null. For example:

Second("Nov 12, 1982 7:11:22 AM") returns 22, but
Second("Nov, 1982 7:11:22 AM") returns Null

■ If <date expression> is Null, Second returns Null.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 389

Second funct ion

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, please
see Accessing Data using e.Report Designer Professional:

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, “1/2/2005“ means January 2nd, 2005;
but in France, it means February 1st, 2005. To avoid such ambiguities, use
DateSerial to specify all your dates.

Example The following example displays the number of hours, minutes, and seconds
remaining until midnight:

Sub Start()
Dim HrDiff As Integer, MinDiff As Integer, SecDiff As Integer
Dim RightNow As Double, Midnight As Double
Dim TotalDiff As Double, TotalMinDiff As Double
Dim TotalSecDiff As Double, Msg As String
Super::Start()
Midnight = TimeValue("23:59:59")
' Get current time
RightNow = Now
' Get diffs from midnight
HrDiff = Hour(Midnight) - Hour(RightNow)
MinDiff = Minute(Midnight) - Minute(RightNow)
SecDiff = Second(Midnight) - Second(RightNow) + 1

' Restate seconds and minutes if necessary
If SecDiff = 60 Then

' Add 1 to minute
MinDiff = MinDiff + 1
' And set 0 seconds
SecDiff = 0

End If
If MinDiff = 60 Then

' Add 1 to hour
HrDiff = HrDiff + 1
' And set 0 minutes
MinDiff = 0

390 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Seek statement

End If
' Now get totals
TotalMinDiff = (HrDiff * 60) + MinDiff
TotalSecDiff = (TotalMinDiff * 60) + SecDiff
TotalDiff = TimeSerial(HrDiff, MinDiff, SecDiff)

' Prepare msg for display
Msg = "There are a total of "

+ & Format(TotalSecDiff, "#,##0")
+ & " seconds until midnight. That translates to "
+ & HrDiff & " hours, "
+ & MinDiff & " minutes, and "
+ & SecDiff & " seconds. "
+ & "In standard time notation, it becomes "

' Remember not to use "mm" for minutes! m is for month.
Msg = Msg & Format(TotalDiff, "hh:nn:ss") & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Day function
Hour function
Minute function
Month function
Now function
Time, Time$ functions
Weekday function
Year function

Seek statement
Sets the position in a file for the next read or write. The Seek statement should not
be confused with the Seek2 function.

Syntax Seek #<open file number>, <next position>

Parameters <open file number>
Numeric expression is the file number for a file that is Open.

■ Must be the number of a currently open file.

■ The pound sign (#) preceding the file number is required.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 391

Seek statement

<next position>
Numeric expression that specifies the number that indicates where in <open file
number> the next read or write should occur. <next position> must be in the
range 1 to 2,147,483,647, inclusive.

<next position> means, or refers to, different things, depending on the mode
under which the file corresponding to <open file number> is open. Table 6-47
summarizes these different meanings.

For example, in the following code fragment, we open a file called Test.dat for
random access and use Get to read record number 52 from it; this action positions
the pointer at record 53. Then we use the Seek2 function to save this new position
to the variable CurrentRec. Finally, we use the Seek statement to reposition the
file pointer to record number 100.

Open "Test.dat" For Random As #1 Len = 32
Get #1, 52, TestRecord
CurrentRec = Seek2(1)
Seek #1, 100

Rule ■ If <next position> is beyond the end of a file, Seek extends the file.

■ Record numbers in Get and Put override Seek file positioning.

Example The following example defines three customer names. It writes each name to a
test file and then reads the names back.

Sub Start()
Dim CustName As String
Dim I As Integer, Max As Integer, Msg As String
Super::Start()
' Create a sample data file
Open "Testfile.dat" For Random As #1 Len = 50
' Put records into file on disk
Put #1, 1, "Customer 1"
Put #1, 2, "Customer Two"
Put #1, 3, "Third Customer"
Close #1

Table 6-47 Interpretations of <next position> in different modes

Mode <next position> refers to...

Random The number of a record in the open file. The first record is
record 1.

Binary
Input
Output
Append

The byte position relative to the beginning of the file. The
first byte is byte 1.

392 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Seek2 funct ion

' Close the file and open again for reading
Open "Testfile.dat" For Random As #1 Len = 50
' Calc total # of records
Max = LOF(1) \ 50 + 1
' Read file backwards
For I = Max To 1 Step -1

' Seek statement used
Seek #1, I
' Get record at that position
Get #1, , CustName
Msg = "Record #" & (Seek2(1) - 1) & " contains: "
Msg = Msg & CustName
ShowFactoryStatus(Msg)

Next I
' Close test file
Close #1
Msg = "The test file will now be deleted."
ShowFactoryStatus(Msg)
' Delete file from disk
Kill "Testfile.dat"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Get statement
Open statement
Put statement
Seek2 function

Seek2 function
Returns the current position in an open file. This function should not be confused
with the Seek statement.

Syntax Seek2(<open file number>)

Parameters <open file number>
Numeric expression that represents the file number of a file that is Open. This
must be the number of a currently open file.

For example, in the following code fragments, we open a file called Test.dat for
random access and use Get to read record number 52 from it; this action positions
the pointer at record 53. Then we use the Seek2 function to save this new position
to the variable CurrentRec. Finally, we use the Seek statement to reposition the
file pointer to record number 100.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 393

Seek2 funct ion

Open "Test.dat" For Random As #1 Len = 32
Get #1, 52, TestRecord
CurrentRec = Seek2(1)
Seek #1, 100

Returns Integer

■ Returns a value between 1 and 2,147,483,647.

■ The value Seek2 returns means, or refers to, different things, depending on the
mode under which the file corresponding to <open file number> is open.
Table 6-48 summarizes these different meanings.

Example The following example prompts the user for three customer names.

After writing the names to a test file, the Seek statement repositions the pointer
three times successively, then displays the names in reverse order. The Seek2
function identifies the record numbers.

Sub Start()
Dim CustName As String
Dim I As Integer, Max As Integer, Msg As String
Super::Start()
' Create a sample data file
Open "Testfile.dat" For Random As #1 Len = 50
' Put records into file on disk
Put #1, 1, "Customer 1"
Put #1, 2, "Customer Two"
Put #1, 3, "Third Customer"
Close #1
' Close the file and open again for reading
Open "Testfile.dat" For Random As #1 Len = 50
' Calc total # of records
Max = LOF(1) \ 50 + 1
' Read file backwards
For I = Max To 1 Step -1

' Seek statement used
Seek #1, I
' Get record at that position
Get #1, , CustName

Table 6-48 Interpretations of Seek2 in different modes

Mode Seek2 refers to...

Random The number of the next record to be read or written to.

Binary
Input
Output
Append

The byte position at which the next operation is to take
place.

394 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Select Case statement

Msg = "Record #" & (Seek2(1) - 1) & " contains: "
Msg = Msg & CustName
ShowFactoryStatus(Msg)

Next I
' Close test file
Close #1
Msg = "The test file will now be deleted."
ShowFactoryStatus(Msg)
' Delete file from disk
Kill "Testfile.dat"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Get statement
Open statement
Put statement
Seek statement

Select Case statement
Executes the first of several blocks of instructions for which an associated
expression matches a given one.

Syntax Select Case <compare to this>

[Case <value to compare> [, <value to compare>]…

[<statement block 1>]]

[Case <value to compare> [, <value to compare>]…

[<statement block 2>]]

…

[Case Else

[<statement block n>]]

End Select

Description For the purposes of this discussion, one expression is said to match a second
expression when they are equivalent, or when the first falls within a range
specified by the second.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 395

Select Case statement

Actuate Basic compares <compare to this> against each <value to compare> until
it finds a match. For the first—and only the first—of these matches, if there is one,
Actuate Basic:

■ Executes the instructions in the <statement block> that immediately follows
the matching <value to compare>.

■ Skips any other intervening lines.

■ Passes control to the statement that follows End Select.

If no <value to compare> at all matches <compare to this>, Actuate Basic looks
for a Case Else clause. If it finds one, it:

■ Executes any statements that immediately follow it.

■ Passes control to the statement immediately following End Select.

If it does not find a Case Else clause, it passes control to the statement
immediately following End Select.

Parameters <compare to this>
A valid expression of any data type that can be evaluated. <compare to this> is
compared to <value to compare> and that determines whether to execute the
associated case.

Case
Keyword that begins a statement block of a Select Case statement. Case is always
followed by a value to compare, and a statement to execute if <value to compare>
is the same as <compare to this>. Case may be repeated.

<value to compare>
A valid expression of any data type. In addition to the form previously shown in
the Syntax section, <value to compare> can also take either of the following
forms, or it can take any combination of all three forms.

Range Form

<lower value > To <higher value >

For <value to compare>, specifies a range of values between <lower value> and
<higher value>, inclusively. If <compare to this> falls within the range, the case
evaluates as True.

To
Keyword used to specify a range of values.

<lower value>, <higher value>
Numeric or string expressions.

The lower value must always precede the higher one. For example:

396 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Select Case statement

Case 65, 19 To 25, 34 To 49
Case "ZACHARY", "ADAMS" To "JEFFERSON"

Comparison Operator Form

[Is] <comparison operator> <value to compare>

Is
An optional keyword preceding <comparison operator> <value to compare>.

<comparison operator>
Any valid comparison operator except Like. For example:

Case Is <= 25 , 34 To 49, Is = 65

Case Else
Keyword indicating the statement block Actuate Basic executes if it finds no
match between <compare to this> and any of the <value to compare>
expressions. If there is more than one Case Else clause, only the first is executed.

Tips ■ To handle any unforeseen <compare to this> values, always use a Case Else
clause in your Select Case statements.

■ The Is comparison operator is different from the Is keyword in this statement.

■ To be sure that string data the user supplies always matches <value to
compare> strings consistently, use UCase$ on the user data before you use
Select Case.

■ To specify whether string comparisons are or are not case-sensitive, use
Option Compare.

■ It is good programming practice to evaluate Boolean variables by using the
keywords True or False instead of by inspecting their content for a nonzero
(True) or zero (False) numeric value.

Example The following example uses logical operators with a Select Case statement:

Sub Start()
Dim IVal As Integer, Tester As Integer, Msg As String
Super::Start()
IVal = CInt (Rnd * 200)
'Set Tester to True, just to get started
Tester = 1
Select Case IVal

Case 100 To 199
Msg = IVal & " is between 100 and 199"

Case 10, 20, 30, 40, 50, 60, 70, 80, 90
Msg = IVal & " is divisible by 10."

Case Else
'The following nested Select Case structure helps sort out
'numeric input in cases where the user typed a number

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 397

Set statement

Select Case IVal
Case 1 To 9

Msg = IVal & " is a number from 1 to 9."
Case Is < 100

Msg = IVal & " is a number greater than 9."
Case Else

Msg = IVal & " is either 0 or 200"
End Select

End Select
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GoTo statement
If…Then…Else statement
Option Compare statement

Set statement
Assigns an object reference to a variable.

Syntax Set <object variable> = {<object reference> | New <class> | Nothing}

Description When you use Set to assign an object reference to a variable, Actuate Basic
generally creates not a copy of the object but a reference to it. More than one
object variable can refer to the same object. Because these variables are references
and not copies, as the object changes, so do they.

When you use the New reserved word with Set, you create a new instance of the
referenced type.

Parameters <object variable>
Expression that specifies the name of the variable to which you are assigning an
object reference.

■ Must be of a class consistent with that of <object reference>.

■ Must have been explicitly declared unless declared for you by Actuate Basic.

<object reference>
Expression that specifies the name of an object, of another declared variable of the
same class, or of a function or method that returns an object.

New
Reserved word used to create a new instance of a specific class. New cannot be
used to create new variables of any of the fundamental data types.

398 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SetAttr statement

<class>
The name of a specific class.

Nothing
Reserved word that discontinues association of <object variable> with any
specific object. Assigning Nothing to <object variable> releases all resources
associated with the previously referenced object, as long as no other variable
refers to it.

Example The following example uses the Set statement with New to create a new instance
of AcLabelControl:

Sub Start()
Dim MyLabel As AcLabelControl, Msg As String
Super::Start()
Set MyLabel = New AcLabelControl
If IsKindOf(MyLabel, "AcLabelControl") Then

Msg = "Yes, MyLabel is an AcLabelControl. "
+ & "We will now set its background color to red."

ShowFactoryStatus(Msg)
MyLabel.BackgroundColor = Red

End If
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
NewInstance function
NewPersistentInstance function
ReDim statement
Static statement

SetAttr statement
Sets attribute information for files.

Syntax SetAttr(<file name>, <attributes>)

Description The operating system assigns one or more attributes to each file. These attributes
indicate whether the file is a normal, read-only, hidden, or system file; whether it
has been modified since the last backup; or whether some combination of these is
the case. SetAttr lets you modify these attributes.

Parameters <file name>
String expression that specifies the file for which to set one or more attributes. The
default path is the current drive and current directory. <file name> cannot include
wildcard characters and must refer to a valid file.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 399

SetAttr statement

<file name> can be open for read-only access, but must not be opened for write
access.

<attributes>
Numeric expression that specifies the sum of one or more of the values in
Table 6-49, which shows what attribute each value indicates along with its
Header.bas constant name. The return values not supported under UNIX are 0.

<file name> can optionally specify a full path, in which case it has the following
syntax:

[[<drive:>] [\]<directory>[\<directory>]…<file name> (Windows)

[/]<directory>[/<directory>]…<file name> (UNIX)

<drive:>
Character, followed by a colon, that specifies the drive (Windows only).

<directory>
String expression that specifies the name of a directory or subdirectory. For
example, the following statement sets the System and Read-only (4 + 1) attributes
for a file in the current directory called Testfile.dat:

SetAttr("Testfile.dat", 5)

Tips ■ To determine whether, or in what mode, a file is open, use FileAttr.

■ To determine what attributes of a file, directory, or volume have already been
set, use GetAttr.

Example In the following example, if the Archive attribute for the specified file is set, the
example displays a message. Otherwise, it sets the Archive attribute:

Sub Start()
Dim FileName As String, Msg As String
Super::Start()
On Error GoTo ErrorHandler

Table 6-49 Return values for <attribute> with the corresponding constant names
and file types

Return value Constant name File type Operating system

0 ATTR_NORMAL Normal Windows, UNIX

1 ATTR_READONLY Read-only Windows, UNIX

2 or 0 ATTR_HIDDEN Hidden Windows

4 or 0 ATTR_SYSTEM System file Windows

32 or 0 ATTR_ARCHIVE Changed since last
backup

Windows

400 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SetBinding funct ion

FileName = "C:\Program Files\Actuate11\readme.rtf"
'Check for Archive attribute
If GetAttr(FileName) BAnd ATTR_ARCHIVE Then

Msg = FileName & " already has the Archive attribute."
ShowFactoryStatus(Msg)

Else
' Set Archive attribute
SetAttr FileName, ATTR_ARCHIVE
Msg = FileName & " now has the Archive attribute."
ShowFactoryStatus(Msg)

End If
Exit Function

ErrorHandler:
Msg = {"Sorry! An error occurred. Please

change the file name or path in this method code and
try again."}

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also FileAttr function
GetAttr function

SetBinding function
Establishes an alias for an instance variable of a class. SetBinding is used
primarily to set up a mapping from database column names to the names of
variables in a data row class.

Syntax SetBinding(<instance handle>, <column name>, <variable name>)

Parameters <instance handle>
The instance handle to one instance of the class for which to set up the binding.

<column name>
The name, usually a column name, to map to a variable.

<variable name>
The name of the variable or constant to associate with the column name.

Tip The column name mapped to the column name within a class lets you access
variables through their column aliases using GetValue.

SetBinding is called automatically for data rows created through the Actuate
Query Builder, and you can call SetBinding through custom code for data rows
you create manually. For any class for which you want to set up bindings, you
must call SetBinding at the beginning of your code.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 401

SetCl ipboardText funct ion

See also GetValue function

SetClipboardText function
Places a string expression in the operating environment Clipboard using the
specified Clipboard format.

Syntax SetClipboardText(<data>[, <format>])

Parameters <data>
String data to be placed on the Clipboard.

<format>
One of the Clipboard formats in Table 6-50. If <format> is omitted, CF_TEXT is
assumed.

The symbolic constants and their values should be declared in your Actuate Basic
code module (.bas file).

Returns Integer

■ Returns 1 (True) if Clipboard text is successfully set.

■ Returns 0 (False) if Clipboard text cannot be set.

Example The following example places the current date on the Clipboard, then displays
the contents of the Clipboard:

Sub Start()
Dim Msg As String
Super::Start()
On Error Resume Next
Msg = "The Clipboard contains: " & GetClipboardText
ShowFactoryStatus(Msg)
Msg = "Placing today’s date on the clipboard."
ShowFactoryStatus(Msg)
ClearClipboard
SetClipboardText(Format$(Date, "dddd, mm/dd/yyyy"))
Msg = GetClipboardText
ShowFactoryStatus("The Clipboard now contains: " & Msg)

End Function

Table 6-50 Clipboard formats

Symbolic constant Value Clipboard format

CF_LINK &HBF00 DDE conversation information

CF_TEXT 1 Text

402 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SetDefaul tPOSMFile funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also ClearClipboard function
GetClipboardText function

SetDefaultPOSMFile function
Determines which open report object instance (.roi) file is used as the default
when you call New Persistent to instantiate an object.

Syntax SetDefaultPOSMFile(<intFileID>)

Description Use SetDefaultPOSMFile in connection with advanced report bursting. For
example, you are creating two ROIs simultaneously. Your report scans a set of
rows and, depending on the values in a given row, adds the row to one or the
other ROI. Use SetDefaultPOSMFile to switch the default back and forth between
the two ROIs. This function must be called on open report files.

Parameters <intFileID>
Integer. Specifies an open ROI.

Returns Boolean

■ True, if all arguments are correct.

■ False, if any of the arguments are invalid.

Example The first line of the following example sets the default POSM file to the currently
open ROI with the file ID 1. The second line instantiates an object, abc, in ROI #1.

SetDefaultPOSMFile(1)
Set abc = New Persistent className

See also SetStructuredFileExpiration function

SetHeadline statement
Sets to a given value the headline associated with the completed request for a
report.

Syntax SetHeadline(<newHeadline>)

Description Headlines are associated with the completed request for a report. By default, the
headline is set to the value of the Headline parameter that appears in the Output
Options section of the Requester. Use SetHeadline to programmatically change
the headline to contain some other text. Note that:

To change the headline, do not change the Headline parameter itself. Instead, use
SetHeadline.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 403

SetStructuredFi leExpirat ion funct ion

Parameters <newHeadline>
String expression. The text you want the headline to display.

Tip To determine the current headline setting, use GetHeadline.

Example The following example displays the current headline, sets a new headline, then
displays the new headline:

Sub Start()
Super::Start()
' Getting the current headline.
ShowFactoryStatus("Original headline is: " & GetHeadline())
' Setting and displaying the new headline
SetHeadline("New Headline")
ShowFactoryStatus("New headline is: " & GetHeadline())

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetFontAverageCharWidth function

SetStructuredFileExpiration function
Sets the object aging rules on a report object web (.row) file.

Syntax SetStructuredFileExpiration(<intFileID>, <intAgingOptions>, <intMaxVers>,

| [{ [Null, <intExpAge>] | [<datExpDate>, Null] }])

Parameters <intFileID>
Integer. Specifies an open ROW file.

<intAgingOptions>
Integer. Specifies the aging policy. The aging policy is expressed by using the
constants shown in Table 6-51 together with a BOR operator.

Table 6-51 Global constant names and values for aging policies

Global constant name Value Meaning

Age_NoOptions &H00 No object aging options are to be used.

Age_ArchiveBeforeDelete &H01 Archives the file before deletion.
Combine this constant with either a
version, date, or age-based expiration.

(continues)

404 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SetStructuredFi leExpirat ion funct ion

For example, to create a policy that deletes dependencies and archives before
deletion, use code such as the following:

Dim policy As Integer
policy = Age_ DeleteDependencies BOR Age_ArchiveBeforeDelete

<intMaxVers>
Specifies the maximum number of versions to keep. Set this to Null or 0 if no
version limit is to be set.

<intExpAge>
Integer. Specifies the age, in minutes, after which to expire the object. Set this to
Null or 0 if no expiration age is to be set.

<datExpDate>
Date. Specifies the date after which to expire the object. Set this to Null if no
expiration date is to be set.

■ <datExpDate> and <intExpAge> are optional, but if <intExpAge> is
provided, <datExpDate> must also be provided, even though it is Null.

■ Only one of <datExpDate> or <intExpAge> should be non-Null. If both are
non-Null, only <intExpAge> is used.

■ It is legal for <intMaxVers>, <datExpDate>, and <intExpAge> to be Null. If all
three are Null, no aging policy is set for the file, as shown in the following
example:

SetStructuredFileExpiration(fileID, Age_NoOptions, Null,
+ Null, Null)

Returns Boolean

■ True, if all arguments are correct.

■ False, if any of the arguments are invalid.

Description You customize object aging settings for a file as follows:

■ Set the values of the object’s aging properties. For example, if you want a
report to never archive more than ten versions, set <intMaxVers> to 10.

■ To ensure that a report expires no later than a week after creation, set the age
variable, <intExpAge>, or the date expiration variable, <datExpDate>,
accordingly.

Age_DeleteDependencies &H02 Deletes dependents for the file. Note that
ROWs usually do not have dependents.
Combine this constant with either a
version, date, or age-based expiration.

Table 6-51 Global constant names and values for aging policies (continued)

Global constant name Value Meaning

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 405

SetValue funct ion

Rule: This function must be called on the open report file.

Example The following example specifies that an ROW is to be archived and deleted after
thirty minutes:

SetStructuredFileExpiration(fileID, Age_ArchiveBeforeDelete,
+ Null, Null, 30)

See also SetDefaultPOSMFile function

SetValue function
Sets the value of a variable in an object dynamically at run time.

Syntax SetValue(<object reference>, <variable name>|<index>, <value>)

Description You typically use SetValue in conjunction with GetVariableCount,
GetVariableName, GetValue, and GetValueType to work with variables in objects
whose types you do not know in advance.

Parameters <object reference>
AnyClass expression that specifies an object which has a variable whose value
you want to set.

<variable name>
String expression that specifies the name of the variable whose value you want to
set.

<index>
Integer expression that specifies the index of the variable whose value you want
to set.

Indexing starts at 1. The index order puts all superclass variables before those
defined in a subclass.

Within a given class, the index order of variables is the order in which the
variables are defined in the Actuate Basic source. If e.Report Designer
Professional generates the Basic source for a class, it lists the variables in
alphabetical order.

<value>
Variant. The value to assign.

Returns True if the specified variable exists.

False if the specified variable does not exist. It is not an error if the variable does
not exist.

Example The following example shows how to use GetVariableCount, GetVariableName,
GetValueType, GetValue, and SetValue together:

406 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Sgn funct ion

' Simulate the behavior of the CopyInstance statement,
' but only copy integers > 0 whose names begin "Z_"
Dim vCount As Integer
Dim vName As String
Dim vType As Integer
Dim vValue As Variant
Dim i As Integer
vCount = GetVariableCount(fromObject)
For i = 1 To vCount

vName = GetVariableName(fromObject, i)
vType = GetValueType(fromObject, vName)
If (Left(vName, 2) = "Z_") And (vType = V_INTEGER) Then

vValue = GetValue(fromObject, vName)
If (vValue > 0) Then

SetValue(toObject, vName, vValue)
End If

End If
Next i

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also GetValue function
GetValueType function
GetVariableCount function
GetVariableName function

Sgn function
Indicates whether a number is positive, negative, or zero.

Syntax Sgn(<number>)

Parameters <number>
Number, numeric expression, or Variant of VarType 8 (String) that specifies the
number for which you want to determine the sign.

Returns Same data type as <number>. If <number> is a Variant of type 8 (String), returns
Variant of type 5 (Double). Returns one of the numbers in Table 6-52, indicating
whether <number> is positive, negative, or zero.

Table 6-52 Return values for Sgn functions

Return Values Description

1 Positive number

-1 Negative number

0 Zero

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 407

Shel l funct ion

Example The following example generates a number, then shows whether that number is
positive, negative, or zero:

Sub Start()
Dim Number As Double, Msg As String
Super::Start()
Number = CInt(Rnd * 10) - 5
Select Case Sgn(Number)

Case 0
Msg = Number & " is zero."

Case 1
Msg = Number & " is a positive number."

Case -1
Msg = Number & " is a negative number."

End Select
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Abs function

Shell function
Runs a specified executable program.

Syntax Shell(<program name and parameters> [, <window style>])

Parameters <program name and parameters>
String expression containing a valid executable name. Name of the program to
execute, with its required arguments or command line switches, if there are any.

Default file extension under Windows: .exe.

■ Must have an extension of .exe, .com, .bat, or .pif (Windows).

■ Must have execute permission set (UNIX).

■ Must be enclosed within quotes.

■ If the executable is not located in the default directory:

■ Program name must include the full path.

■ Program must be located in a directory specified in the PATH environment
variable.

Each of the following examples runs the Windows calculator, then immediately
executes the next statement in the program, regardless of whether Calc.exe has
terminated:

408 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Shel l funct ion

DummyVar = Shell("Calc.exe")
X = Shell("C:\Windows\Calc.exe")

The following example opens Excel and the file Extract.csv at the same time:

Shell("D:\Program Files\Microsoft Office\Office\Excel.exe
+ C:\Temp\Extract.csv")

<window style>
Ignored on UNIX systems. Integer that specifies the number for the style of the
window to use for the new program, and whether or not to give it the focus.
Table 6-53 identifies each possible value for <window style> and the resulting
style and focus of the window.

If omitted, the default is 2.

The following example calls Word for Windows, maximizes its window, and
gives it focus:

Z = Shell("C:\Word\Winword.exe", 3)

Returns Integer

■ Shell loads an executable file into the Windows environment, and returns the
unique task ID number that Windows assigns to each running program as its
identifier (Windows).

■ Shell runs programs asynchronously. You cannot be certain whether or not a
program you start with Shell will finish executing before the code following
the Shell function in your Actuate Basic application is executed.

■ If Shell cannot start the named program, it generates an error.

Tips ■ To shell to DOS—in other words, to run the DOS command processor—
specify the program name Command.com with Shell (Windows).

■ To enjoy greater flexibility and exercise better control over the behavior of
external programs, use an OLE technique rather than Shell (Windows).

Example In the following Windows example, Shell runs the Windows Calculator. The next
statement in the program is then executed immediately, regardless of whether
Calc.exe has terminated.

Table 6-53 Values for <window style>

Value Window style Focus

1, 5, 9 Normal New program receives

2 Minimized New program receives

3 Maximized New program receives

4, 8 Normal Current program retains

6, 7 Minimized Current program retains

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 409

ShowFactoryStatus statement

Sub Start()
Dim DummyVar
Super::Start()
DummyVar = Shell("C:\Windows\System32\Calc.exe", 1)
ShowFactoryStatus("Calculator opened.")

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

ShowFactoryStatus statement
Displays a message in the Factory output and records the message in the job
status file when you generate a report. Recording these messages in the job status
file requires additional hard drive space.

Syntax ShowFactoryStatus(<StatusMsg>)

Parameters <StatusMsg>
String you want to display in the Factory output window or job status file, as
shown in the following example:

ShowFactoryStatus("Preparing the statement.")

Sin function
Gives the sine of an angle.

Syntax Sin(<angle>)

Parameters <angle>
Number, numeric expression, or Variant of type 8 (String) that specifies, in
radians, the angle for which you want to find the sine. If <angle> is a String, it is
parsed according to the formatting rules of the current run-time locale.

Returns Double

If <number> evaluates to Null, Sin returns Null.

Example The following example generates an angle expressed in radians and returns the
sine of the angle:

Sub Start()
Dim Angle As Double, Pi As Double
Super::Start()
Pi = 3.14159265358979
Angle = Pi * Rnd
ShowFactoryStatus("Sine of " & Angle & " is: " & Sin(Angle))

End Sub

410 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Sleep statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Acos function
Asin function
Atn function
Cos function
Tan function

Sleep statement
Temporarily suspends report execution.

Syntax Sleep(<seconds>)

Parameters <seconds>
Double expression that specifies the number of seconds to suspend report
execution. The value must be in the range 0–600. The value can be a fraction, for
example 0.5.

Description You can use Sleep to suspend execution while waiting for an external event, for
example a file being created. The timing accuracy of Sleep is dependent on the
underlying operating system.

Tip Shell commands run asynchronously. This means that a report continues to
execute as soon as a Shell command is started. To wait for the result of a Shell
command, make the Shell command create a file when it is done, then loop
around checking whether that file exists. Use Sleep inside the loop to avoid extra
processor cycles.

Example The following example shows how to use Sleep to temporarily suspend report
execution:

' Run a script and wait for it to create a file
' Remove previous file, if any
If FileExists("myfile.txt") Then

Kill "myfile.txt"
End If

' Run the script
Shell("myscript.bat")

' Wait for the file to appear
Dim startTime As Date
startTime = Now()

Do

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 411

SLN funct ion

' Check for file
If FileExists("myfile.txt") Then

Exit Do
End If

' Timeout after 60 seconds
If (DateDiff("s", startTime, Now()) > 60) Then

Error 9999, "Time out!"
End If
' Wait a while and try again
Sleep(2.5)

Loop

' Now we can use the file

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Shell function

SLN function
Returns the straight-line depreciation of an asset for a single period.

Syntax SLN(<initial cost>, <salvage value>, <asset lifespan>)

Parameters <initial cost>
Numeric expression that specifies the initial cost of the asset.

<salvage value>
Numeric expression that specifies the value of the asset at the end of its useful
life. You can type a salvage value to view the straight line depreciation offset by
the salvage value, or return straight line depreciation without salvage value by
entering 0 in salvage value.

<asset lifespan>
Numeric expression that specifies the length of the useful life of the asset. <asset
lifespan> must be given in the same units of measure you want the function to
return. For example, if you want SLN to determine the annual depreciation of the
asset, <asset lifespan> must be given in years.

The following example calculates the depreciation under the straight-line method
for a new machine purchased at $1400, with a salvage value of $200, and a useful
life estimated at 10 years. The result ($120 annually) is assigned to AnnualDeprec.

AnnualDeprec = SLN(1400, 200, 10)

Returns Double

Straight-line depreciation is the oldest and simplest method of depreciating a
fixed asset. It uses the book value of the asset less its estimated residual value,

412 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Space, Space$ funct ions

and allocates the difference equally to each period of the asset’s life. Such
procedures are used to arrive at a uniform annual depreciation expense that is
charged against income before calculating income taxes.

Rule: All arguments must be positive numbers.

Example The following example provides various particulars about an asset, then returns
the asset’s straight-line depreciation for any single period:

Declare
' Number of months in a year
Global Const YEARMONTHS = 12

End Declare

Sub Start()
Dim Fmt As String, InitCost As Double, SalvageVal As Double
Dim MonthLife As Double, LifeSpan As Double
Dim PerDepr As Double
Dim Msg As String
Super::Start()
' Define money format
Fmt = "$#,##0.00"
InitCost = 12500 ' The initial cost of the asset
SalvageVal = 1500 ' The asset's value at useful life end
MonthLife = 30 ' The asset's useful life in months
' Convert months to years
LifeSpan = MonthLife / YEARMONTHS
If LifeSpan <> Int(MonthLife / YEARMONTHS) Then

' Round up to nearest year
LifeSpan = Int(LifeSpan + 1)

End If
PerDepr = SLN(InitCost, SalvageVal, LifeSpan)
Msg = "The depreciation is " & Format(PerDepr, Fmt)

+ & " per year."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DDB function
SYD function

Space, Space$ functions
Returns a string consisting of the specified number of spaces.

Syntax Space(<number of spaces>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 413

Sqr funct ion

Space$(<number of spaces>)

Parameters <number of spaces>
Numeric expression indicating the length of the returned string of spaces.

■ Must be between 0 and 2,147,483,647 or memory limit.

■ The <number of spaces> is rounded to Long regardless of its numeric data
type.

Returns Space: Variant
Space$: String

If <number of spaces> evaluates to Null, Space[$] returns Null.

Tip To generate a string of characters other than spaces, use String[$].

Example The following example creates a variable containing 10 spaces:

Sub Start()
Dim Msg, Pad, UserFname, UserLname As String
Super::Start()

UserFname = "Alain"
UserLname = "Colline"
' Create 10-space pad
Pad = Space(10)
Msg = "Notice the 10-space pad between the first "

+ & "and last names. "
ShowFactoryStatus(Msg)
Msg = UserFname & Pad & UserLname
ShowFactoryStatus(Msg)

End sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also String, String$ functions

Sqr function
Gives the square root of a number.

Syntax Sqr(<number>)

Parameters <number>
Number, numeric expression, or Variant of type 8 (String) indicating the number
for which you want to determine the square root. If <number> is a String, it is
parsed according to the formatting rules of the current run-time locale.

Returns Double

414 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Stat ic statement

If <number> evaluates to Null, Sqr returns Null.

Example The following example generates a number and returns the square root of that
number:

Sub Start()
Super::Start()
On Error GoTo ErrorHandler
Dim UserTyped, Msg
UserTyped = CInt(Rnd * 100 - 25)
ShowFactoryStatus ("The square root of " & UserTyped &

+ " is: " & Sqr(UserTyped))
Exit Sub

ErrorHandler:
Msg = "Sorry! An error occurred. "

+ & UserTyped & " is negative. Please try again."
ShowFactoryStatus(Msg)
Resume Next

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

Static statement
Declares a static variable or static procedure.

Syntax Static <variable name> [([<subscripts>])] [As <type>] [, <variable name>
[([<subscripts>])] [As <type>]]…

Static <procedure name>

Description Static variables retain their values as long as the program is running, unlike local
variables, which are cleared when the procedure ends. This does not mean,
however, that you can access them from outside the procedure. Every time you
execute the procedure in which the static variables are declared, the procedure
can make use of and update the most recent values of those variables. Whatever
changes it makes are preserved until the next time you call the procedure.

■ To declare a fixed-size array in a nonstatic procedure, you must use Static.

■ Use Static at the procedure level.

Parameters <variable name>
Name you create for the new variable.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 415

Stat ic statement

<procedure name>
Name you create for the new procedure. When you use the syntax Static
<procedure name>, all the variables in <procedure name> are declared to be
static.

<subscripts>
The dimensions of an array variable.

Subscript syntax

[<lower> To] <upper>[,[<lower> To] <upper>]…

Rule: <lower> and <upper> can range from -2,147,483,648 to 2,147,483,647,
inclusive.

For example, the following two statements have the same effect. Both declare a
two-dimensional array that contains 11 elements in its first dimension, and 6
elements in its second.

Static MEM(10, 5)
Static MEM(0 TO 10, 0 TO 5)

As <type>
Clause in which you specify a data type for the new variable.

The default is Variant or the data type specified by the type declaration character
appended to <variable name>, if there is one.

Tips ■ To avoid assigning incorrect variable types, use the As clause to declare
variable types.

■ Use the Option Strict statement to enforce variable typing.

■ To retain the values of all the variables in a procedure, you do not have to
declare each one individually as Static, or list each one on a Static declaration
line. Instead, use Static <procedure name> to declare the procedure itself.
Example:

Static Sub MyProcedure

Example In the following example, the value of the variable Accumulate is preserved
between calls to the Sub procedure. Each time the procedure is called, the
example generates a number to add to the Accumulate variable, then displays
that value.

Sub Start()
Static Accumulate As Integer
Dim AddTo As Integer

416 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Stop statement

Super::Start()
AddTo = CInt(Rnd * 100 - 25)
Accumulate = Accumulate + AddTo
ShowFactoryStatus("The static variable has changed by "

+ & AddTo & ". It now has the following value: " &
+ Accumulate)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
Function…End Function statement
Option Strict statement
Sub…End Sub statement

Stop statement
Suspends execution of the running Actuate Basic code.

Syntax Stop

Description ■ Unlike End, Stop does not close files or clear variables.

■ To continue a program suspended by Stop, choose Debug➛Continue, or press
F5.

Tip You can place Stop anywhere in procedures to suspend program execution. It is
useful as a debugging aid.

Example In the following example, for each step through the For…Next loop, Stop
suspends execution. To resume program execution, choose Debug➛Continue.

Sub Start()
Dim I As Integer
Super::Start()

' Begin For...Next loop
For I = 1 To 10

' Show I
ShowFactoryStatus (CStr(I))

' Stop each time through loop
Stop

Next I
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also End statement

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 417

Str, Str$ funct ions

Str, Str$ functions
Converts a numeric expression to a String.

Syntax Str(<numeric expression>)

Str$(<numeric expression>)

Parameters <numeric expression>
Numeric expression to be converted to a String. <numeric expression> is parsed
according to the formatting rules of the current run-time locale. For example, the
following statements are equivalent. Each returns Customer 55.

"Customer" & Str$(55)
"Customer" & Str$(110/2)

Returns Str: Variant
Str$: String

■ If <numeric expression> is positive, Str[$] precedes the string representation of
the number with a leading space.

■ If < numeric expression> is negative, Str[$] precedes the string representation
of the number with a minus sign instead of a leading space.

Tips ■ To put the results of a calculation into a message for the user and avoid
generating a Data Type Mismatch error, use Str[$].

■ To convert numeric values you want rendered in currency, date, time, or user-
defined formats, use Format[$] instead of Str[$].

■ To convert a String to a number, use Val.

Example The following example returns a string representation of the values contained in
two variables. Because the numbers are positive, a space precedes the first string
character in each case.

Sub Start()
Dim Dice1, Dice2, Msg
Super::Start()

' Generate first value
Dice1 = Int(6 * Rnd + 1)

' Generate second value
Dice2 = Int(6 * Rnd + 1)
Msg = "You first rolled a " & Str$(Dice1)

+ & " and then a " & Str$(Dice2)
+ & " for a total of "
+ & Str$(Dice1 + Dice2) & "."

ShowFactoryStatus(Msg)
End Sub

418 P r o g r a m m i n g w i t h A c t u a t e B a s i c

StrComp funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Val function

StrComp function
Compares two strings and returns a Variant indicating the result.

Syntax StrComp(<string exprs 1>, <string exprs 2>[,<compare method>])

Parameters <string exprs 1>, <string exprs 2>
Any string expression. Whether the underlying data type is Variant or String,
each expression is first converted to a Variant before the arguments are compared.

<compare method>
Numeric expression that indicates whether <compare method> is case-sensitive
or -insensitive as shown in Table 6-54.

<compare method> must be 0 or 1. The default is 0, unless you used Option
Compare Text in the module.

■ When <compare method> is case-sensitive (0), McManus does not match
MCMANUS or McMANUS.

■ When <compare method> is case-insensitive (1) McManus matches
MCMANUS or McMANUS.

Returns Variant

StrComp returns a Variant that reports the relationship between the two string
expressions. Table 6-55 shows each return value and the relationship or condition
that value signifies.

Table 6-54 Case-sensitivity indicators for <compare method>

Value String comparison Similar to

0 Case-sensitive Option Compare Binary

1 Case-insensitive Option Compare Text

Table 6-55 StrComp return values and the corresponding relationships or
conditions

Return value Relationship or condition

-1 <string exprs 1> is less than <string exprs 2>

0 <string exprs 1> = <string exprs 2>

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 419

StrComp funct ion

Example The following example prompts the user for the comparison method to use when
comparing two strings. Then, it returns the result of the comparison along with a
short explanation.

Sub Start()
Dim Comp, CompMethod, Msg As String
Dim String1 As String, String2 As String, Desc As String
Super::Start()

String1 = "Starlight"
String2 = "STARLIGHT"
' Assume case sensitive. Set CompMethod to 1 for
' NOT case sensitive.
CompMethod = 0
Desc = "case sensitive."

Comp = StrComp(String1, String2, CompMethod)
Select Case Comp

Case -1
Msg = String1 & " is less than " & String2

+ & " for compare method " & CompMethod
+ & ", which is " & Desc

Case 0
Msg = String1 & " is equal to " & String2

+ & " for compare method " & CompMethod
+ & ", which is " & Desc

Case 1
Msg = String1 & " is greater than " & String2

+ & " for compare method " & CompMethod
+ & ", which is " & Desc

End Select
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Option Compare statement

1 <string exprs 1> is greater than <string exprs 2>

Null <string exprs 1> = Null or <string exprs 2> = Null

Table 6-55 StrComp return values and the corresponding relationships or
conditions

Return value Relationship or condition

420 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Str ing, Str ing$ funct ions

String, String$ functions
Returns a string consisting of a specified character repeated a specified number of
times.

Syntax String(<number of characters>,<char to repeat>)

String$(<number of characters>,<character code number>)

Parameters <number of characters>
Numeric expression that specifies the number of times the character is to be
repeated. The number of times must be between 0 and 65536.

<char to repeat>
String expression that specifies the character to repeat.

■ <char to repeat> must be at least one character long.

■ If <char to repeat> is longer than one character, only the first character is
repeated.

■ If <char to repeat> is a Variant of any numeric type, String[$] interprets the
numeric value as the ANSI code for the repeated character.

<character code number>
Numeric expression that specifies the ANSI code for the repeated character.

■ <character code number> must not be Null.

■ <character code number> must be between 0 and 65535.

■ <character code number> is interpreted as a value in the code page
corresponding to the current run-time encoding.

■ If < character code number> is a Variant of any numeric type, String[$]
interprets the numeric value as the ANSI code for the repeated character.

The following examples show the effect of <character code number>:

String$(5, 64)' Returns AAAAA
String$(5,227)' Returns on a Greek locale
String$(5, 227)' Returns äääää on an English locale

Returns String: Variant
String$: String

■ If any parameter evaluates to Null, String[$] returns Null.

Tips ■ To generate a string of spaces, use Space[$].

■ If the run-time encoding is UCS-2, String behaves in the same way as StringW.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 421

Str ingW, Str ingW$ funct ions

Example The following example returns a string consisting of 12 number signs (#) followed
by a sample check amount. The ANSI code of the number sign character is 35.

Sub Start()
Dim Msg As String
Super::Start()
Msg = "This generates two strings of 12 number signs, "

+ & "followed by a sample check amount. "
+ & "Both forms of String$ syntax are shown."
+ & "First Form: " & String$(12, "#")
+ & "$100.00"
+ & "Second Form: " & String$(12, 35) & "$100.00"

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Space, Space$ functions
StringW, StringW$ functions

StringW, StringW$ functions
Returns a string consisting of a specified character in UCS-2 character set
repeated a specified number of times.

Syntax StringW(<number of characters>,<char to repeat>)

StringW$(<number of characters>,<character code number>)

Parameters <number of characters>
Numeric expression that specifies the number of times the character is to be
repeated. <number of characters> must be between 0 and 65536.

<char to repeat>
String expression that specifies the character to repeat.

■ If <char to repeat> is longer than one character, only the first character is
repeated.

■ If <char to repeat> is a Variant of any numeric type, String[$] interprets the
numeric value as the ANSI code for the repeated character.

<character code number>
Numeric expression that specifies the UCS-2 code for the repeated character.

■ <character code number> must not be Null.

■ <character code number> must be between 0 and 65535.

422 P r o g r a m m i n g w i t h A c t u a t e B a s i c

StrSubst funct ion

■ If <character code number> is a Variant of any numeric type, String[$]
interprets the numeric value as the UCS-2 code for the repeated character.

The following example statement returns ##########:

StringW$(10,"#")

The following statement returns :

StringW$(10,947)

Returns String

If any parameter evaluates to Null, StringW[$] returns Null.

Example The following example returns a string consisting of 12 number signs (#) followed
by a sample check amount. The ANSI code of the number sign character is 35.

Sub Start()
Dim Msg As String
Super::Start()
Msg = "This generates two strings of 12 number signs, "

+ & "followed by a sample check amount."
+ & "Both forms of StringW$ syntax are shown."
+ & " First Form: " & StringW$(12, "#")
+ & "$100.00"
+ & " Second Form: " & StringW$(12, 35) & "$100.00"

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

StrSubst function
Replaces part of a string with a different substring and returns the result.

Syntax StrSubst(<strTarget>, <strToFind>, <strNew>)

Parameters <strTarget>
String expression. The string within which you want to locate <strToFind>.

<strToFind>
String expression. The string you want to locate within <strTarget> so you can
replace it with <strNew>.

<strNew>
String expression. The new substring within <strTarget> that you want in place of
<strToFind>.

Returns String

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 423

Sub…End Sub statement

<strTarget>, but with substring <strNew> in place of <strToFind>.

If <strToFind> does not exist within <strTarget>, Actuate returns <strTarget>
unchanged.

Example The following example substitutes a subsection of a string with another string:

Sub Start()
Dim strTarget As String, strToFind As String, strNew As String,
Msg As String
' Set string, value to find, and new value
strTarget = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
strToFind = "LMN"
strNew = "123"
' Display original string
Msg = "Original target string: " & strTarget
ShowFactoryStatus(Msg)
' Change the string, and display a message containing new
string

strTarget = StrSubst(strTarget, strToFind, strNew)
Msg = "The string " & strTarget &

+ " used to contain " & strToFind &
+ " and now contains " & strNew

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Mid, Mid$ statements

Sub…End Sub statement
Declares and defines the name, code, and any arguments that constitute an
Actuate Basic Sub procedure.

Syntax [Static] Sub <name of procedure> [(<list of arguments>)]

[<statements>]

[Exit Sub]

[<statements>]

End Sub

Description Like a Function procedure, a Sub procedure can take arguments, execute a series
of statements, and change the values of its arguments. However, unlike a

424 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Sub…End Sub statement

Function procedure, a Sub procedure does not return a value directly and cannot
be used in an expression.

You can use the same name for two or more different procedures, as long as you
make sure the procedures take a different number of arguments, or that the
arguments are of different data types. For example, you can write two different
square root functions—one that operates on integers, and another that operates
on doubles. Their respective first lines might look like the following:

Function SquareRoot(intParam As Integer) As Integer
Function SquareRoot(dblParam As Double) As Double

Actuate Basic knows which procedure you mean by the type of value you pass
when you call the procedure. For instance, if you write a call to SquareRoot(5), the
compiler chooses the first SquareRoot function. But if you call
SquareRoot(5.1234567), or SquareRoot(5.000), it executes the second one.

■ You cannot define a Sub procedure from within another Sub procedure.

■ You cannot use a Sub procedure in an expression, as you can a Function
procedure.

■ You cannot use GoTo to enter or exit a Sub procedure.

Parameters Static
Keyword that instructs Actuate Basic to preserve the values of the procedure’s
local variables between calls.

■ Cannot use Static to affect variables declared outside the procedure.

■ Avoid using Static in recursive Sub procedures.

<name of procedure>
The name you assign to the procedure.

The following conditions apply to <name of procedure>:

■ Subject to the same constraints as variable names, as well as to the following
additional constraints:

■ Cannot include a type declaration character.

■ Cannot be the same as any other globally recognized name like that of:

❏ Procedure in a declared dynamic-link library (DLL).

❏ Any Global variable.

❏ Any Global constant.

■ Can be overloaded. That is, you can define another function and/or procedure
that has the same name, as long as the respective arguments are unique. For
example, the following are both permissible in the same program:

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 425

Sub…End Sub statement

Sub Potato(intTomato As Integer)
…
End Sub
Sub Potato(dblTomato As Double, strEggplant As String)
…
End Sub

<list of arguments>
The list of variables that Actuate Basic passes as arguments from the calling
procedure to the Sub procedure.

<statements>
One or more valid Actuate Basic statements. These statements constitute the body
of the Sub procedure.

Exit Sub
Statement that signals Actuate Basic to terminate the Sub procedure and transfer
control to the statement following the one that called the procedure. You may use
as many Exit Sub statements as you wish, anywhere in a Sub procedure.

<list of arguments> has the following syntax:

[ByVal] <variable name>[()] [As <data type>] [,[ByVal] <variable name>[()] [As
<data type>]…

ByVal
Keyword that instructs Actuate Basic to pass the argument to the procedure by
value rather than by reference. This means that the changes the Sub makes to the
argument variable have no effect on its value in the calling procedure.

ByVal cannot be used with a variable of user-defined type, class, or with an array
variable.

<variable name>
Name of the variable to pass as an argument.

If the Sub procedure changes the value of <variable name> internally, then it also
changes its value externally—that is, in the procedure that called the Sub.

■ You must use the ByVal keyword if you do not want the Sub’s changes to an
argument variable to affect the variable’s value in the calling procedure.

■ For array variables, use the parentheses but omit the number of dimensions.

For example, the following statement calls a Sub procedure named SalesTax and
passes to it as its argument an array variable previously declared as
MyArray(50,72):

SalesTax MyArray()

426 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Sub…End Sub statement

As <data type>
Clause that declares the data type of <variable name>. <data type> can specify
any valid Actuate Basic or user-defined data type except a fixed-length string. For
example:

SalesTax Customer As String, Amount As Currency

Tips ■ Sub procedures can be recursive. Actuate Basic sets a run-time stack limit of
200. A report using recursion with a large number of iterations might exceed
this limit.

■ To evaluate a certain condition and then determine whether or not the Sub
procedure should continue, use Exit Sub within a conditional structure such as
If Then.

■ See Call for further information on how to call Sub procedures.

Example The following example declares a Sub procedure. This example overrides Start()
to generate the data, then calls the new procedure.

Sub Start()
Dim PassThisArg1 As Double, PassThisArg2 As Double
Super::Start()
' Amount of the sale
PassThisArg1 = Rnd * 1500 + 100
' Sales tax rate, expressed as a decimal
PassThisArg2 = Rnd * 0.1
SalesTax(PassThisArg1, PassThisArg2)

End Sub
Sub SalesTax (Arg1, Arg2)

Dim LocalVar As Double, Fmt As String, Msg As String
' Define money formatFmt = "$#,##0.00"
LocalVar = Arg1 * Arg2
Msg = "The sales tax on " & Format$(Arg1, Fmt)

+ & " at " & Format$(Arg2, "#.00%") &
+ " is: " & Format$(LocalVar, Fmt)

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Call statement
Dim statement
Function…End Function statement
Static statement

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 427

SVGAttr funct ion

SVGAttr function
Returns a string for setting attributes in SVG code. The string provides the non-
locale dependent format that SVG requires.

Syntax SVGAttr(<attribute name>, <attribute value>)

Parameters <attribute name>
String expression that specifies the name of the attribute.

<attribute value>
Numeric or string expression that specifies the value of the attribute.

Returns String

Example In the following example, a chart’s DrawOnChart() method has been overridden
to draw a filled rectangle with rounded corners behind the chart drawing plane:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint

Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"
' Draw the background rectangle
svg = svg

+ & "<rect"
+ & SVGColorAttr("fill", RGB(255, 255, 204))
+ & SVGColorAttr("stroke", Black)
+ & SVGAttr("stroke-width", 3.0)
+ & SVGAttr("x", 1.5)
+ & SVGAttr("y", 1.5)
+ & SVGAttr("width", w - 3.0)
+ & SVGAttr("height", h - 3.0)
+ & SVGAttr("rx", 9.0)
+ & "/>"

428 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SVGColorAttr funct ion

+ & "</svg>"
' Insert the background rectangle behind the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = InsertDrawingPlane(1, DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SVGColorAttr function
SVGDbl function
SVGFontStyle function
SVGStr function
SVGStyle function

SVGColorAttr function
Returns a string for setting color attributes in SVG code. The string provides the
non-locale dependent format that SVG requires.

Syntax SVGColorAttr(<color attribute>, <color value>)

Parameters <color attribute>
String expression that specifies the name of the color attribute.

<color value>
Numeric expression that specifies the value of the color.

Returns String

Example In the following example, a chart’s DrawOnChart() method has been overridden
to draw a filled rectangle with rounded corners behind the chart drawing plane:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 429

SVGDbl funct ion

+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"
' Draw the background rectangle
svg = svg

+ & "<rect"
+ & SVGColorAttr("fill", RGB(255, 255, 204))
+ & SVGColorAttr("stroke", Black)
+ & SVGAttr("stroke-width", 3.0)
+ & SVGAttr("x", 1.5)
+ & SVGAttr("y", 1.5)
+ & SVGAttr("width", w - 3.0)
+ & SVGAttr("height", h - 3.0)
+ & SVGAttr("rx", 9.0)
+ & "/>"
+ & "</svg>"
' Insert the background rectangle behind the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = InsertDrawingPlane(1, DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SVGAttr function
SVGDbl function
SVGFontStyle function
SVGStr function
SVGStyle function

SVGDbl function
Returns a string for setting a numeric value in SVG code. The string provides the
non-locale dependent format that SVG requires.

Syntax SVGDbl(<numeric value>)

Parameters <numeric value>
Numeric expression that specifies the value of the attribute.

Returns String

Example In the following example, a chart’s DrawOnChart() method has been overridden
to draw a filled rectangle with rounded corners behind the chart drawing plane:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

430 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SVGFontStyle funct ion

' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"
' Draw the background rectangle
svg = svg

+ & "<rect"
+ & SVGColorAttr("fill", RGB(255, 255, 204))
+ & SVGColorAttr("stroke", Black)
+ & SVGAttr("stroke-width", 3.0)
+ & SVGAttr("x", 1.5)
+ & SVGAttr("y", 1.5)
+ & SVGAttr("width", w - 3.0)
+ & SVGAttr("height", h - 3.0)
+ & SVGAttr("rx", 9.0)
+ & "/>"
+ & "</svg>"
' Insert the background rectangle behind the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = InsertDrawingPlane(1, DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SVGAttr function
SVGColorAttr function
SVGFontStyle function
SVGStr function
SVGStyle function

SVGFontStyle function
Returns a string for setting font values in SVG code. The string provides the
non-locale dependent format that SVG requires.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 431

SVGFontStyle funct ion

Syntax SVGColorAttr(, [,<style overrides>])

Parameters
String expression that specifies the name of the font style.

AcFont object that specifies font parameters.

<style overrides>
Optional string expression that specifies font style overrides.

Returns String

Example In the following example, a chart’s DrawOnChart() method has been overridden
to replace the chart with the words “No Data!” if the chart has no data points:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Check for empty chart
Dim hasData As Boolean
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
If Series.GetNumberOfPoints() > 0 Then

hasData = True
Exit For

End If
Next seriesIndex
If hasData Then

Exit Sub
End If

' Hide empty chart
GetChartDrawingPlane().SetHidden(True)

' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text

432 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SVGStr funct ion

+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"
' Define the font style
Dim messageFont As AcFont
messageFont.Bold = True
messageFont.Color = Red
messageFont.FaceName = "Arial"
' Font size is 25% of chart height
messageFont.Size = h * 0.25
svg = svg

+ & "<defs>"
+ & SVGFontStyle("Message", messageFont, "text-anchor:middle;")
+ & "</defs>"

' Draw the text
svg = svg

+ & "<text class='Message'"
+ ' Center text horizontally and vertically
+ & SVGAttr("x", w * 0.5)
+ & SVGAttr("y", (h * 0.5) + (messageFont.Size * 0.35))
+ & ">"
+ & SVGStr("No Data!")
+ & "</text>"
+ & "</svg>"

' Add the text in front of the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SVGAttr function
SVGColorAttr function
SVGDbl function
SVGStr function
SVGStyle function

SVGStr function
Returns a string with escaped characters for those characters that have special
meaning to SVG.

Syntax SVGStr(<string value>)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 433

SVGStr funct ion

Parameters <string value>
String expression that specifies the value of the string attribute.

Returns String

Example In the following example a chart’s DrawOnChart() method has been overridden
to add some translucent text in front of the chart:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint
' Create SVG to draw some translucent text
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"
' Define the font style
Dim sampleFont As AcFont
sampleFont.Bold = True
sampleFont.Color = Red
sampleFont.FaceName = "Arial"
sampleFont.Size = 80
svg = svg

+ & "<defs>"
+ & SVGFontStyle("Sample", sampleFont)
+ & "</defs>"
' Draw the text
svg = svg

+ & "<text class='Sample'"
+ & " transform='translate(60,250) rotate(-30)'"
+ & " fill-opacity='0.35'>"
+ & SVGStr("SAMPLE")
+ & "</text>"
+ & "</svg>"
' Add the text in front of the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

434 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SVGStyle funct ion

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SVGAttr function
SVGColorAttr function
SVGDbl function
SVGFontStyle function
SVGStyle function

SVGStyle function
Returns a string for setting a CSS style in SVG code. The string provides the
non-locale dependent format that SVG requires.

Syntax SVGStyle(<styleclass>, <attributes>)

Parameters <styleclass>
String expression that specifies the name of a CSS style class.

<attributes>
String expression that specifies the attributes for the CSS style.

Returns String

Example In the following example, a chart’s DrawOnChart() method has been overridden
to replace the chart with the words “No Data!” if the chart has no data points:

Sub DrawOnChart(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)
Super::DrawOnChart(baseLayer, overlayLayer, studyLayers)
' Check for empty chart
Dim hasData As Boolean
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)

If Series.GetNumberOfPoints() > 0 Then
hasData = True
Exit For

End If
Next seriesIndex
If hasData Then

Exit Sub
End If

' Hide empty chart
GetChartDrawingPlane().SetHidden(True)

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 435

SVGStyle funct ion

' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"

' Define the font style
Dim messageFont As AcFont
messageFont.Bold = True
messageFont.Color = Red
messageFont.FaceName = "Arial"
' Font size is 25% of chart height
messageFont.Size = h * 0.25
svg = svg

+ & "<defs>"
+ & SVGStyle("Message",
+ "font-family:" & messageFont.FaceName & ";"
+ & "font-size:" & SVGDbl(messageFont.Size) & "px;"
+ & "font-weight:" & IIf(messageFont.Bold, "bold", "normal") &

";"
+ & "font-style:" & IIf(messageFont.Italic, "italic", "normal")

& ";"
+ & "text-decoration:" & "none" & ";"
+ & "fill:" & SVGColor(messageFont.Color) & ";"
+ & "stroke:none;"
+ & "text-anchor:middle;")
+ & "</defs>"
' Draw the text

svg = svg
+ & "<text class='Message'"
+ ' Center text horizontally and vertically
+ & SVGAttr("x", w * 0.5)
+ & SVGAttr("y", (h * 0.5) + (messageFont.Size * 0.35))
+ & ">"
+ & SVGStr("No Data!")
+ & "</text>"
+ & "</svg>"

436 P r o g r a m m i n g w i t h A c t u a t e B a s i c

SYD funct ion

' Add the text in front of the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also SVGAttr function
SVGColorAttr function
SVGDbl function
SVGStr function
SVGFontStyle function

SYD function
Returns sum-of-years’-digits depreciation of an asset for a specified period.

Syntax SYD(<initial cost>, <salvage value>, <asset lifespan>, <single period>)

Parameters <initial cost>
Numeric expression that specifies the initial cost of the asset.

<salvage value>
Numeric expression that specifies the value of the asset at the end of its useful
life.

<asset lifespan>
Numeric expression that specifies the length of the useful life of the asset.

<asset lifespan> must be given in the same units of measure as <single period>.
For example, if <single period> represents a month, then <asset lifespan> must be
expressed in months.

<single period>
Numeric expression that specifies the period for which you want SYD to calculate
the depreciation.

<single period> must be given in the same units of measure as <asset lifespan>.
For example, if <asset lifespan> is expressed in months, then <single period>
must represent a period of one month.

The following example calculates the depreciation for the first year under the
sum-of-years’-digits method for a new machine purchased at $1400, with a
salvage value of $200, and a useful life estimated at 10 years. The result, $218.18,
is assigned to Year1Deprec. You may wish to note (a) that this result is equivalent
to 10/55 * $1,200; (b) that 55 = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1; and (c) that 10
is the 1st (Year 1) term in this series of digits.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 437

SYD funct ion

Year1Deprec = SYD(1400, 200, 10, 1)

The following example calculates the depreciation of the same asset for the
second year of its useful life. The result, $196.36, is assigned to Year2Deprec. You
may wish to note (a) that this result is equivalent to 9/55 * $1,200; (b) that 55 = 10
+ 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1; and (c) that 9 is the 2nd (Year 2) term in this
series of digits.

Year2Deprec = SYD(1400, 200, 10, 2)

Returns Double

Sum-of-years’-digits is an accelerated method of depreciation that results in
higher depreciation charges and greater tax savings in the earlier years of the
useful life of a fixed asset than are given by the straight-line depreciation method
(SLN), where charges are uniform throughout.

The method bases depreciation on an inverted scale of the total of digits for the
years of useful life. For instance, if the asset’s useful life is 4 years, the digits 4, 3,
2, and 1 are added together to produce 10. SYD for the first year then becomes
4/10ths of the depreciable cost of the asset (cost less salvage value). The rate for
the second year becomes 3/10ths, and so on.

Rules:

■ <asset lifespan> and <single period> must both be expressed in terms of the
same units of time.

■ All arguments must be positive numbers.

Example The following example prompts the user for various particulars about an asset,
then returns the asset’s sum-of-years’-digits depreciation for any single period:

Declare
' Number of months in a year

Global Const YEARMONTHS = 12
End Declare

Sub Start()
Dim Fmt As String, InitCost As Double, SalvageVal As Double
Dim MonthLife As Double, LifeSpan As Double
Dim PeriodDepr As Double, DepYear As Integer, Msg As String
Super::Start()
' Define money format
Fmt = "$#,##0.00"
' Initial cost of the asset
InitCost = Rnd * 5000 + 2000
' Asset's value at the end of its life
SalvageVal = InitCost * 0.2
' The asset's useful life in months
MonthLife = Rnd * 48 + 24

438 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Tab funct ion

' Convert months to years
LifeSpan = MonthLife / YEARMONTHS
If LifeSpan <> Int(MonthLife / YEARMONTHS) Then

' Round up to nearest year
LifeSpan = Int(LifeSpan + 1)

End If
' The year for which to show depreciation
DepYear = CInt(Rnd * LifeSpan + 1)
Do While DepYear > LifeSpan

DepYear = CInt(Rnd * LifeSpan + 1)
Loop
PeriodDepr = SYD(InitCost, SalvageVal, LifeSpan, DepYear)
Msg = "The depreciation on " & Format(InitCost, Fmt)

+ & " with an end of life value of "
+ & Format(SalvageVal, Fmt) & " for year " & DepYear
+ & " is " & Format(PeriodDepr, Fmt) & "."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DDB function
SLN function

Tab function
Specifies the columnar position at which the next character is to print.

Syntax Tab(<column>)

Description The first print position on an output line is always 1. When you use Print to print
to files, the last print position is the current width of the output file, which you
can set using Width. When you use Tabs without separators, the semicolon (;)
separator is assumed by default. There is no simple correlation between the
number of characters printed and the number of fixed-width columns they
occupy. For example, the uppercase letter W occupies more than one fixed-width
column.

Table 6-56 describes Tab behavior.

Table 6-56 Tab behavior

If... Tab...

The current print position on the
current line is greater than <column>.

Skips to <column> on the next output
line and continues printing there.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 439

Tab funct ion

You can use Tab only with the Print statement.

Parameters <column>
Integer expression. Specifies the column at which printing is to continue.

For example, the following statements open a file and use Tab to move the print
position to column 40 in an output data file:

Open "Test.fil" For Output As #1
Print #1, "Here is a test of the "; Tab(40); "Tab function."
Close #1

Tips ■ To accommodate wider letters, make sure your tabular columns are wide
enough.

■ To set the width of the output file, use Width.

Example The following example uses the Tab function to move the print position to
column 40 in an output data file:

Sub Start()
Dim Msg
Super::Start()
'Create sample file
Open "Test.fil" For Output As #1
Print #1, "This is a test of the "; Tab(40); "Tab function."
'Close file
Close #1
'Reopen test file for input
Open "Test.fil" For Input As #1
'Read test data
Input #1, Msg
'Close file
Close #1
ShowFactoryStatus(Msg)

<column> is greater than the output-
line width (set by Width).

Calculates <print position> =
<column> Mod <width>.

<column> is less than the current print
position.

Continues printing on the next line at
the calculated print position.

<column> is less than 1. Moves the print position to column 1.

The calculated print position is greater
than the current print position.

Continues printing at the calculated
print position on the same line, as
expected.

Table 6-56 Tab behavior

If... Tab...

440 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Tan funct ion

'Delete test file
Kill "Test.fil"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Print statement

Tan function
Returns the tangent of an angle.

Syntax Tan(<angle>)

Parameters <angle>
Number, numeric expression, or Variant of type 8 (String) that specifies, in
radians, the angle for which you want to find the tangent.

If <angle> is a String, it is parsed according to the formatting rules of the current
run-time locale.

Returns Double

Tips ■ If <angle> evaluates to Null, Tan returns Null.

■ To find the cotangent of an angle, use: Cotangent = 1/Tan.

■ To convert between radians and degrees, use: radians = degrees * Pi/180.

Example The following example prompts the user for an angle expressed in radians and
returns the tangent of the angle:

Sub Start()
Dim Angle As Double, Pi As Double
Super::Start()
Pi = 3.14159265358979
' The angle in radians
Angle = Pi * Rnd
ShowFactoryStatus("The tangent of " & Angle & " is: "

+ & Tan(Angle))
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Acos function
Asin function
Atn function
Cos function
Sin function

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 441

Time, Time$ funct ions

Time, Time$ functions
Returns the current system time.

Syntax Time

Time$

The following statement assigns the current system time to a variable:

CurrTime = Time

Returns Time: Variant
Time$: String

■ Time returns a Variant of type 7 (Date) that contains a time stored internally as
the fractional part of a double-precision number.

■ Time$ returns an 8-character string of the form hh:nn:ss, where hh represents
the hour (00-23), nn the minute (00-59), and ss the second (00-59). The function
uses a 24-hour clock, so 8:00 P.M. appears as 20:00:00.

■ The return value of Time$ is equivalent to that of the following statement:

Format$(Now, "hh:nn:ss")

Example The following example selects a lucky number for the user based on the exact
time the user calls the routine. This number ranges from 1 to 48.

Sub Start()
Dim CurrTime, Msg, UserUniv, PowerUp, Choice
Super::Start()
CurrTime = Time
UserUniv = 48
PowerUp = CurrTime * 10000000
Choice = (PowerUp Mod UserUniv) + 1
Msg = "Your lucky number, based on the "

+ & "exact time of day is: " & Choice
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also CVDate function
Date, Date$ functions
Format, Format$ functions
Now function

442 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Timer funct ion

Timer function
Returns the number of seconds that elapsed since midnight of the current day.

Syntax Timer

The following statements use the Timer function to determine how long the
procedure, TestRoutine takes to execute:

StartTime = Timer
Call TestRoutine
EndTime = Timer
TimeElapsed = EndTime - StartTime

Returns Double

Tips ■ Timer is automatically used with Randomize to generate a seed for the Rnd
(random-number) function.

■ You can also use Timer to time programs or parts of programs.

Example The following example generates a number. The computer then counts up to that
number using a simple For…Next loop. Actuate Basic times this counting process
and reports the total number of elapsed seconds.

Sub Start()
Dim UserNum, StartTime, I, EndTime, TimeElapsed, Msg
' The number to count up to
UserNum = CInt(Rnd * 50) * 100000 + 1000000
StartTime = Timer
For I = 1 To UserNum
Next I
EndTime = Timer
TimeElapsed = EndTime - StartTime
Msg = "The time it took your computer to count to "

+ & UserNum & " was: " & TimeElapsed
+ & " seconds."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Randomize statement

TimeSerial function
Returns a date variant based on supplied integer hour, minute, and second
arguments.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 443

TimeSerial funct ion

Syntax TimeSerial(<hour>, <minute>, <second>)

Parameters <hour>
Numeric expression that specifies a particular hour of the day. <hour> must be in
the range 0 (12:00 A.M.) through 23 (11:00 P.M.), inclusive.

<minute>
Numeric expression that specifies a particular minute after <hour>. <minute>
must be in the range 0 through 59, inclusive.

<second>
Numeric expression that specifies a particular second. <second> must be in the
range 0 through 59, inclusive.

For example, the following statements are equivalent. Each stores 05:03:46 to the
variable TimeVar.

TimeVar = TimeSerial(05, 03, 46)
TimeVar = TimeSerial(5, 3, 46)

Each of the following statements stores the underlying serial number for 05:03:46,
which is about .210949, to the double-precision variable TimeVar#:

TimeVar# = CDbl(TimeSerial(5, 3, 46))
TimeVar# = TimeSerial(5, 3, 46) * 1

Returns Date

The value TimeSerial returns usually looks like a time but is stored internally as a
double-precision fractional number between 0 and .99999. This number
represents a time between 00:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59 P.M.,
inclusive.

In other contexts, this fractional number becomes part of what is known as a date
serial number—a number that represents a date and/or time from midnight
January 1, 100, through December 31, 9999, inclusive.

The integer component of any date serial number represents the date (day,
month, and year) while the decimal or fractional component represents the time
of day on that date as a proportion of a whole day—where January 1, 1900, at
noon has the date serial number 2.5, and where negative numbers represent dates
prior to December 30, 1899 (0).

Tip TimeSerial can return a new time based on calculations done on a given time. In
the following example, TimeSerial returns a time that is thirty minutes before
11:45:00 A.M. and assigns it to the variable T:

T = TimeSerial(11, 45, 00) -((30/60)/24)

Example The following example displays the number of hours, minutes, and seconds
remaining until midnight:

444 P r o g r a m m i n g w i t h A c t u a t e B a s i c

TimeSerial funct ion

Sub Start()
Dim HrDiff As Integer, MinDiff As Integer, SecDiff As Integer
Dim RightNow As Double, Midnight As Double
Dim TotalDiff As Double, TotalMinDiff As Double
Dim TotalSecDiff As Double, Msg As String
Super::Start()
Midnight = TimeValue("23:59:59")

' Get current time
RightNow = Now
' Get diffs from midnight
HrDiff = Hour(Midnight) - Hour(RightNow)
MinDiff = Minute(Midnight) - Minute(RightNow)
SecDiff = Second(Midnight) - Second(RightNow) + 1

' Restate seconds and minutes if necessary
If SecDiff = 60 Then

' Add 1 to minute
MinDiff = MinDiff + 1
' And set 0 seconds
SecDiff = 0

End If

If MinDiff = 60 Then
' Add 1 to hour
HrDiff = HrDiff + 1
' And set 0 minutes
MinDiff = 0

End If
' Now get totals
TotalMinDiff = (HrDiff * 60) + MinDiff
TotalSecDiff = (TotalMinDiff * 60) + SecDiff
TotalDiff = TimeSerial(HrDiff, MinDiff, SecDiff)

' Prepare msg for display
Msg = "There are a total of " & Format(TotalSecDiff, "#,##0")

+ & " seconds until midnight. That translates to "
+ & HrDiff & " hours, "
+ & MinDiff & " minutes, and "
+ & SecDiff & " seconds. "
+ & "In standard time notation, it becomes "

' Remember not to use "mm" for minutes! m is for month.
Msg = Msg & Format(TotalDiff, "hh:nn:ss") & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 445

TimeValue funct ion

See also DateSerial function
DateValue function
Hour function
Now function
Second function
TimeValue function

TimeValue function
Returns a Date variant representing a time of day based on a specified string.

Syntax TimeValue(<time string>)

Parameters <time string>
String expression that specifies a time. Can be any string that can be interpreted
as a time of day. You can enter valid times using a 12- or 24-hour clock.

■ <time string> must be in the range 00:00:00 (12:00:00 A.M.) through 23:59:59
(11:59:59 P.M.).

■ If <time string> includes a date, it must be a valid one, even though TimeValue
does not return a date.

■ <time string> is parsed according to the formatting rules of the current run-
time locale.

For examples, the following statements are equivalent. Each stores 1:25:00 P.M. to
the variable TimeVar.

TimeVar = TimeValue("1:25PM")
TimeVar = TimeValue("1:25 PM")
TimeVar = TimeValue("01:25 pm")
TimeVar = TimeValue("13:25")

Each of the following statements stores the underlying serial number for 1:25:00
P.M., which is about .559028, to the double-precision variable TimeVar#:

TimeVar# = CDbl(TimeValue("1:25PM"))
TimeVar# = TimeValue("1:25PM") * 1

Returns Date

■ TimeValue return value looks like a time but is stored internally as a double-
precision fractional number between 0 and .99999. This number represents a
time between 00:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59 P.M.,
inclusive.

In other contexts, this fractional number becomes part of what is known as a
date serial number—a number that represents a date and/or time from
midnight January 1, 100, through December 31, 9999, inclusive.

446 P r o g r a m m i n g w i t h A c t u a t e B a s i c

TimeValue funct ion

■ The integer component of any date serial number represents the date (day,
month, and year) while the decimal or fractional component represents the
time of day on that date as a proportion of a whole day—where January 1,
1900, at noon has the date serial number 2.5, and where negative numbers
represent dates prior to December 30, 1899 (0).

Example The following example displays the number of hours, minutes, and seconds
remaining until midnight:

Sub Start()
Dim HrDiff As Integer, MinDiff As Integer, SecDiff As Integer
Dim RightNow As Double, Midnight As Double
Dim TotalDiff As Double, TotalMinDiff As Double
Dim TotalSecDiff As Double, Msg As String
Super::Start()

Midnight = TimeValue("23:59:59")
' Get current time

RightNow = Now
' Get diffs from midnight
HrDiff = Hour(Midnight) - Hour(RightNow)
MinDiff = Minute(Midnight) - Minute(RightNow)
SecDiff = Second(Midnight) - Second(RightNow) + 1

' Restate seconds and minutes if necessary
If SecDiff = 60 Then

' Add 1 to minute
MinDiff = MinDiff + 1
' And set 0 seconds
SecDiff = 0

End If

If MinDiff = 60 Then
' Add 1 to hour
HrDiff = HrDiff + 1
' And set 0 minutes
MinDiff = 0

End If
' Now get totals
TotalMinDiff = (HrDiff * 60) + MinDiff
TotalSecDiff = (TotalMinDiff * 60) + SecDiff
TotalDiff = TimeSerial(HrDiff, MinDiff, SecDiff)

' Prepare msg for display
Msg = "There are a total of " & Format(TotalSecDiff, "#,##0")

+ & " seconds until midnight. That translates to "
+ & HrDiff & " hours, "
+ & MinDiff & " minutes, and "
+ & SecDiff & " seconds. "
+ & "In standard time notation, it becomes "

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 447

Trim, Tr im$ funct ions

' Remember not to use "mm" for minutes! m is for month.
Msg = Msg & Format(TotalDiff, "hh:nn:ss") & "."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also DateSerial function
DateValue function
Hour function
Minute function
Now function
Second function
TimeSerial function

Trim, Trim$ functions
Returns a copy of a string after removing leading and trailing spaces.

Syntax Trim(<string expression>)

Trim$(<string expression>)

Parameters <string expression>
String expression from which Trim[$] strips leading and trailing spaces. Leading
spaces are any spaces that occur before the first non-space character in a string.
Trailing spaces are any spaces that occur after the last non-space character in a
string.

Returns Trim: Variant
Trim$: String

■ If there are no leading or trailing spaces, Trim[$] returns the original <string
expression>.

■ Trim[$] has no effect on spaces in the middle of a string.

■ If <string expression> evaluates to Null, Trim[$] returns Null.

Tips ■ To strip extraneous spaces a user added in response to a prompt, use Trim[$].

■ To find other spaces in the middle of a string, use InStr.

Example The following example strips leading and trailing spaces from a string variable. It
shows a typical situation in which you use Trim[$] to remove extraneous spaces
that occur in data or when a user enters a value in response to a prompt.

448 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Type…End Type statement

Sub Start()
Dim Msg, NL, CustName, CustName1, LeftSpcs, RightSpcs

Super::Start()
CustName = " Customer Name "
' Number of leading spaces
LeftSpcs = Len(CustName) - Len(LTrim$(CustName))
' Number of trailing spaces
RightSpcs = Len(CustName) - Len(RTrim$(CustName))
' Strip left and right spaces

CustName1 = Trim$(CustName)

Msg = "The original name " & "'" & CustName & "'"
+ & " was " & Len(CustName) & " characters long. "
+ & "There were " & LeftSpcs & " leading spaces and "
+ & RightSpcs & " trailing spaces. "
+ & "The name after stripping the spaces is: "
+ & "'" & CustName1 & "'" & " which is only "
+ & Len(CustName1) & " characters."

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
LTrim, LTrim$ functions
RTrim, RTrim$ functions

Type…End Type statement
Declares a user-defined variable or record structure.

Syntax Type <user-defined variable type>

<component variable> [(<subscripts>)] As <data type>

[<component variable> [(<subscripts>)] As <data type>]

. . .

End Type

Parameters <user-defined variable type>
The name of a user-defined data type. <user-defined variable type> must follow
standard variable-naming conventions.

<component variable>
The name of an element of the user-defined data type. <component variable>
must follow standard variable-naming conventions.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 449

Type…End Type statement

<subscripts>
The dimensions of an array element. Each <subscripts> argument specifies the
number of elements in a single dimension. The number of <subscripts>
arguments for an array variable specifies the number of dimensions in the array.

The syntax of <subscripts> is as follows:

 [<lower> To]<upper>[,[<lower> To]<upper>]…

The following conditions apply to <subscripts>:

■ <lower> and <upper> can range from -2,147,483,648 to +2,147,483,647
inclusive.

■ <lower> must always be less than <upper>.

■ <lower> and <upper> cannot be the names of variables. They must be literal
numeric constants.

■ Each <subscripts> clause can specify up to 60 dimensions.

You cannot use Type to declare dynamic arrays. However, you can declare the
dimensions for an existing dynamic array within Type.

<data type>
The name of a valid data type.

The following conditions apply to <data type>:

■ Can be any valid Actuate Basic data type except an object type, including
String, for variable-length strings.

■ Can be another user-defined type.

For example, the following three arrays are equivalent if you do not use Option
Base:

MyArray(7,5)
MyArray(0 TO 7, 0 TO 5)
MyArray(7, 0 TO 5)

The following shows the use of array variables in the context of Type:

Declare
Type CustomerData

CustName As String
CustAddress As String
ArrayPhones(5) As String
ArrayOther(5 To 10, 31) As Double

End Type
End Declare

Rules:

■ You cannot use line numbers or line labels in Type.

450 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Type…End Type statement

■ When declaring a static array within Type, you must use literal numeric
constants rather than variables to declare its dimensions.

Tip To more easily manipulate data records that consist of a number of related
elements of different data types, use Type to define your own custom data types.

Example The following example creates a user-defined type with three elements. Then, it
declares a new variable of the user-defined type and assigns data to each element.

Declare
Type AddressStruct

StreetAddr As String
City As String
State As String

End Type
End Declare

Function VerifyAddress(NewAddr As AddressStruct) As Integer
If IsNull(NewAddr.StreetAddr) Or (NewAddr.StreetAddr = "")

+ Or IsNull(NewAddr.City) Or (NewAddr.City = "")
+ Or IsNull(NewAddr.State) Or (NewAddr.State = "") Then

VerifyAddress = 0
Else

VerifyAddress = 1
End If

End Function

Sub Start()
Dim Msg As String, NL As String
Dim Address1 As AddressStruct, Address2 As AddressStruct
Dim TestResult1 As String, TestResult2 As String
Super::Start()

Address1.StreetAddr = "1024 Lexington Drive"
Address2.StreetAddr = "40000 New County Road"
Address2.City = "Redwood Hills"
Address2.State = "CA"
TestResult1 = IIf(VerifyAddress(Address1), "", "not ")
TestResult2 = IIf(VerifyAddress(Address2), "", "not ")
Msg = "Address 1: " & Address1.StreetAddr & ", "

+ & Address1.City & ", " & Address1.State & " is "
+ & TestResult1 & "a valid address. "

ShowFactoryStatus(Msg)
Msg = "Address 2: " & Address2.StreetAddr & ", "

+ & Address2.City & ", " & Address2.State & " is "
+ & TestResult2 & "a valid address."

ShowFactoryStatus(Msg)
End Sub

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 451

Type…As statement

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Class statement
Declare statement
Type…As statement

Type…As statement
Declares an alias for an existing data type.

Syntax Type <alias data type name> As <existing data type name>

Parameters <alias data type name>
The name you assign as an alias for an existing data type. <alias data type name>
must follow standard naming conventions.

<existing data type name>
The name of an existing, valid data type. <existing data type name> must follow
standard naming conventions.

Example The following example shows how to use Type As:

Declare
Type SampleRec

ClientNum As Long
ClientName As String
ClientPurchase As Currency

End Type
Type OtherName As SampleRec
Type LogicalVar As Boolean

End Declare

Sub Start()
Dim UserVar1 As OtherName, IsValid As LogicalVar
Dim Msg As String, UserAns
Super::Start()
UserVar1.ClientName = "Samita Jain"
Msg = "Client name is: " & UserVar1.ClientName
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Class statement
Declare statement
Type…End Type statement

452 P r o g r a m m i n g w i t h A c t u a t e B a s i c

UBound funct ion

UBound function
Returns the largest available subscript for the given dimension of an array.

Syntax UBound(<array name>[,<dimension>])

Parameters <array name>
Name of an array variable.

<dimension>
Numeric expression that specifies the array dimension for which you want to
determine the upper bound. The default is 1.

The following conditions apply to <dimension>:

■ Use 1 for the first dimension, 2 for the second, and so on.

■ Must not be larger than the total number of dimensions in <array name>.

■ Must not be zero, negative, or Null.

The following example shows the values UBound returns for an array with these
dimensions:

Dim MyArray(1 To 55, 0 To 27, -3 To 42)
UBound(MyArray, 1) = 55
UBound(MyArray, 2) = 27
UBound(MyArray, 3) = 42

Returns Integer

If <dimension> is not an Integer, UBound rounds it to the nearest Integer before
evaluating it.

Tips ■ To determine the lower bound of an array, use LBound.

■ To determine the total number of elements in a given dynamic array
dimension, take the value returned from UBound, subtract the value returned
from LBound, then add 1.

Example The following example uses UBound to determine the upper bounds of an array
of 3 dimensions. The use of Rnd simulates changes in upper bounds that the user
made at run time in response to the program.

Sub Start()
Dim First As Integer, Sec As Integer, Third As Integer
Dim Msg As String
' Declare array variable
Dim MyArray()
Super::Start()
' Seed rnd generator
Randomize

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 453

UCase, UCase$ funct ions

' First dimension
First = Int(14 * Rnd + 3)
' Second dimension
Sec = Int(14 * Rnd + 3)
' Third dimension
Third = Int(14 * Rnd + 3)
' Set dimensions
ReDim MyArray(First, Sec, Third)
Msg = "MyArray has the following upper bounds: "

+ & "Dimension 1 -> " & UBound(MyArray, 1)
+ & "Dimension 2 -> " & UBound(MyArray, 2)
+ & "Dimension 3 -> " & UBound(MyArray, 3)

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Dim statement
LBound function
Rnd function

UCase, UCase$ functions
Converts all lowercase alphabetic characters in a string to uppercase.

Syntax UCase(<string exprs>)

UCase$(<string exprs>)

Parameters <string exprs>
String expression that contains the characters to convert to uppercase.

For example, the following statements are equivalent. Each returns
6 JANE STREET, 2ND FL.

UCase$("6 jane street, 2nd fl")
UCase$("6 Jane Street, 2nd Fl")
UCase$("6 jAn" & "E sTreeT, 2nD fL")

Returns UCase: Variant
UCase$: String

■ If <string exprs> contains no lowercase alphabetic characters, UCase[$]
returns the original <string exprs>.

■ UCase[$] has no effect on non-alphabetic characters in <string exprs>.

■ If <string exprs> evaluates to Null, UCase[$] returns Null.

454 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Val funct ion

Tips ■ To ensure uniformity in the data you get from the user so that, for example,
strings like MacManus, Macmanus, and macMaNus are always sorted,
compared, or otherwise treated in the same way, use UCase[$] to convert the
data before using it.

■ To convert alphabetic characters in <string exprs> to all lowercase characters,
use LCase[$].

Example The following example uses UCase[$] to render a customer’s name in uppercase
letters:

Sub Start()
Dim AnyCase As String, Uppercase As String, Msg As String
Super::Start()
AnyCase = "CusTomer naME"
' Convert to uppercase
Uppercase = UCase$(AnyCase)
Msg = "UCase$ converts """ & AnyCase & """ to """

+ & Uppercase & """."
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also LCase, LCase$ functions

Val function
Returns the numeric value of a string expression.

Syntax Val(<string exprs>)

Parameters <string exprs>
String expression from which to extract a numeric value.

For example, the following are equivalent. They both return the value 118.

Val("118 36th Street")
Val("118 36th Street, #55")

The following returns the value 11836:

Val("&H2E3C")

Because the first character is non-numeric, the following returns 0:

Val("$1,275,332.52")

Rules:

■ Starts translating a string into a number by starting at the left of the string and
proceeding toward the right.

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 455

Val funct ion

■ Stops translating the string as soon as it encounters a non-numeric character or
the end of the string, whichever comes first.

■ Interprets the prefixes &O and &H as numeric characters representing octal
and hexadecimal numbers, respectively.

■ Interprets dollar sign as non-numeric.

■ Ignores spaces, tabs, thousands separators, and line feeds.

■ Stops translating at the appearance of the second decimal point.

■ Returns zero if it stopped before it encounters a numeric character.

■ Parses data according to the formatting rules of the run-time locale. Table 6-57
shows how Val parses strings in different locales.

■ Interprets the first decimal separator in a numerical string as a decimal
separator and stops conversion at the second decimal separator. Both "123.456"
and "123.456.789" convert to 123.456 in US English. In the French locale, Val
converts "123.456" to 123,456. Similarly, Val converts "123.456.789" in the
French locale.

■ In a locale that uses a dot as a thousands separator, Val ignores any dots it
encounters. In the Greek locale, for example, Val converts "123.456" to 123456
and converts 123.456.789 to 123456789.

■ In a locale that uses a comma as a thousands separator, Val ignores the comma.
For example, in the US English locale, Val converts "123,456" to 123456.

■ In a locale that does not use a dot as a thousands separator or decimal
separator, Val interprets a dot as a decimal separator.

Returns Double

If <string exprs> evaluates to Null, Val returns Null.

Tips ■ To convert a number to a String use Str$.

■ To avoid using Val, use the Variant data type for variables when it is necessary
to convert between strings and numbers.

Example The following example creates a string, then returns the numeric value of that
string:

Table 6-57 Comparison of how Val parses strings in different locales

String US English Greek French

123.456 123.456 123456 123,456

123,456 123456 123,456 123,456

123.456.789 123.456 123456789 123,456

123,456,789 123456789 123,456 123,456

456 P r o g r a m m i n g w i t h A c t u a t e B a s i c

VarType funct ion

Sub Start()
Dim Msg As String, Number As Double
Super::Start()
' A string containing some numbers
Number = Val("987,123.654")
Msg = "VAL extracted this value from the input: " & Number
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Format, Format$ functions
Str, Str$ functions

VarType function
Returns a value that indicates how Actuate Basic stores a Variant internally.

Syntax VarType(<variant variable>)

Parameters <variant variable>
String expression that specifies a variant of the Variant data type.

Returns Integer

Table 6-58 shows the values VarType returns, the Variant data types they indicate,
and the names of the corresponding symbolic constants that are stored in
Header.bas.

If <variant variable> evaluates to Null, VarType returns Null.

Table 6-58 VarType return values and the corresponding <variant variable> data
types and symbolic constants

VarType returns Data type of <variant variable> Symbolic constant

0 Empty V_EMPTY

1 Null V_NULL

2 Integer V_INTEGER

3 Long V_LONG

4 Single V_SINGLE

5 Double V_DOUBLE

6 Currency V_CURRENCY

7 Date V_DATE

8 String V_STRING

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 457

Weekday funct ion

Example The following example displays the Variant data type for a date, number, and
string:

Sub Start()
Dim TypeData
Super::Start()
TypeData = "This is data"
ShowFactoryStatus("The value """ & TypeData &

+ """ is of VarType: " & VarType(TypeData))
TypeData = 42
ShowFactoryStatus("The value """ & TypeData &

+ """ is of VarType: " & VarType(TypeData))
TypeData = CVDate("12/10/59")
ShowFactoryStatus("The value """ & TypeData &

+ """ is of VarType: " & VarType(TypeData))
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also IsDate function
IsEmpty function
IsNull function
IsNumeric function

Weekday function
Returns an integer between 1 (for Sunday) and 7 (for Saturday) that represents
the day of the week for a specified date argument.

Syntax Weekday(<date exprs>)

Parameters <date exprs>
Date expression, or any numeric or string expression that can be interpreted as a
date, or both a date and a time:

■ Can be a string such as November 12, 1982 8:30 PM, Nov. 12, 1982 08:30 PM,
11/12/82 8:30pm, or any other string that can be interpreted as a date or both
a date and a time in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date or both a date and a time in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the fractional component represents the time of day on that date, where
January 1, 1900, at noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899 (0).

458 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Weekday funct ion

The following conditions apply to <date exprs>:

■ If <date exprs> includes a time, it must be a valid time, even though Weekday
does not return a time. A valid time is one that is in the range 00:00:00 (12:00:00
A.M.) through 23:59:59 (11:59:59 P.M.), in either 12- or 24-hour format.

■ If <date exprs> is a numeric expression, it must be in the range -657434 to
+2958465, inclusive.

■ If <date exprs> is a variable containing a date serial number, the variable must
be explicitly declared as one of the numeric types.

■ <date exprs> is parsed according to the formatting rules of the current
run-time locale.

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For details on how to set AC_CENTURY_BREAK to some
other value, please see Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

For example, the following statements are equivalent. Each assigns 1 (which
maps to Sunday) to the variable DayOfWeek.

DayOfWeek = Weekday("6/7/64 2:35pm")
DayOfWeek = Weekday("June 7, 1964 2:35 PM")
DayOfWeek = Weekday("Jun " & 5+2 & ", 1964")
DayOfWeek = Weekday(23535.6076)
DayOfWeek = Weekday(0.6076) - 6

Returns Integer

■ If <date exprs> is Null, Weekday returns Null.

■ If Weekday returns 1, the day of the week is Sunday. If Weekday returns 2, the
day if the week is Monday, and so on.

■ If <date exprs> cannot be evaluated to a date, Weekday returns Null.
Example:

Weekday("This is not a date.") returns Null

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 459

While…Wend statement

■ If <date exprs> fails to include all date components (day, month, and year),
Weekday returns Null.
Examples:

Weekday("Nov 12, 1982") returns 6, but
Weekday("Nov 1982") returns Null

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Example The following example displays a message indicating whether today is a
weekend day or a weekday:

Sub Start()
Dim DayNum As Integer, Msg As String, FullDesc as String
Super::Start()
' Get current day of week
DayNum = Weekday(Now)
FullDesc = Format(Now, "dddd, mmmm dd, yyyy")
' Is it a weekend day?
If DayNum = 1 Or DayNum = 7 Then

Msg = "Today is " & FullDesc & ". It is a weekend day."
'... or is it a weekday?

Else
Msg = "Today is " & FullDesc & ". It is a weekday."

End If
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Day function
Hour function
Minute function
Month function
Now function
Second function
Year function

While…Wend statement
Repeats a block of instructions each time a specified condition is True.

Syntax While <expression to reevaluate>

460 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Whi le…Wend statement

<statements to repeat>

Wend

Description First, <expression to reevaluate> is tested. If it is True, the <statements to repeat>
in the body of the loop are executed. Then <expression to reevaluate> is tested
again. If it is still True, <statements to repeat> are executed again. This process
repeats until <expression to reevaluate> is False. In that case, Actuate Basic skips
all intervening <statements to repeat> and passes control to the statement
immediately following Wend.

Do not branch into the middle of a While…Wend statement. Execute the entire
statement instead, starting at the line with the While keyword.

Parameters <expression to reevaluate>
Any valid numeric or string expression that evaluates to True (1) or False (0 or
Null).

<statements to repeat>
One or more valid Actuate Basic statements; the statements that, collectively
taken, are referred to as the loop.

For example, assuming the variable Counter starts at 1 and is incremented by 1
each time through the loop, the following statement causes its associated loop to
be executed nine times:

While Counter < 10

Tips ■ To take advantage of its greater flexibility, use Do…Loop instead of While
Wend.

■ To be sure the loop executes at least once, explicitly set <expression to
reevaluate> to True in a statement that closely or immediately precedes the
While…Wend statement.

■ It is good programming practice to evaluate Boolean variables by using the
keywords True or False instead of by inspecting their content for a nonzero
(True) or zero (False) numeric value.

Example The following example sorts an array:

Sub Start()
Dim SwapThese, Position As Integer, TempVar
Static Cities(5)
Super::Start()
'Now assign array data out of alphabetical order
'so we can see sort illustrated.
Cities(1) = "New York"
Cities(2) = "San Francisco"
Cities(3) = "Paris"
Cities(4) = "Boston"
Cities(5) = "Seattle"

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 461

Width statement

' Make sure we loop at least once
SwapThese = True
' Sort while there still are elements we need to swap
While SwapThese
' Now compare array elements by pairs. When two are swapped,
' ensure another pass thru loop by setting SwapThese to TRUE:

SwapThese = False
For Position = 2 To 5

If Cities(Position - 1) > Cities(Position) Then
SwapThese = True
' Now do the swap:
TempVar = Cities(Position)
Cities(Position) = Cities(Position - 1)
Cities(Position - 1) = TempVar

End If
Next Position

Wend
ShowFactoryStatus("New, sorted order: ")
For Position = 1 To 5

ShowFactoryStatus(Cities(Position))
Next Position

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Do…Loop statement
If…Then…Else statement

Width statement
Defines the width of the output line of a sequential file.

Syntax Width #<open file number>, <new line width>

Description When you print to an ASCII text file, you might need to define a maximum
output length for each line. Use the Width statement for this operation.

Parameters <open file number>
Numeric expression that is the file number for a file opened with the Open
statement. The file number must refer to a file that is currently open.

<new line width>
Numeric expression that is the new width for the line. Width is measured as the
number of characters Actuate Basic prints on a line before it begins a new line. If
<new line width> is specified as 0, there is no limit to the length of the line. <new
line width> must be in the range of 0–255, inclusive. The default is 0.

462 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Width statement

For example, the following statement sets the output line width to 75 columns for
open file #1:

Width #1, 75

Example The following example creates a test file and writes some ASCII characters to it
using the default output width of unlimited. Then, it changes the width and
appends the same ASCII characters to the file. Finally, it reads the entire file back
and displays it with both sets of ASCII characters, then deletes the file.

Sub Start()
Dim I As Integer, Msg As String, TextLines As String

Super::Start()
' Create a sample text file
Open "Testfile.txt" For Output As #1
' Print ASCII characters . . . 0-9 all on same line
Width #1, 10
Print #1, "Width 10:"
For I = 0 To 9

Print #1, Chr$(48 + I)
Next I

' Start a new line
Print #1,
' Change the line width to 4
Width #1, 4
' Print ASCII characters . . . 4 characters to a line
For I = 0 To 9

Print #1, Chr$(48 + I)
Next I
Close #1
ShowFactoryStatus("The effect of WIDTH is as displayed: ")
' Reopen test file for input
Open "Testfile.txt" For Input As #1
Do While Not EOF(1)

' Get contents of each line
Input #1, TextLines
ShowFactoryStatus(TextLines)

Loop
Close #1

ShowFactoryStatus("Test file will now be deleted.")
Kill "Testfile.txt"

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Open statement
Print statement

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 463

Write statement

Space, Space$ functions
Tab function

Write statement
Formats and writes data to a sequential file.

Syntax Write #<file number> [, <exprs 1>] [, <exprs 2>] [, <exprs 3>]…

Description When Write writes to the file it inserts commas between items and places
quotation marks around strings. You do not need to put explicit delimiters in the
list. Write also inserts a newline character after it writes the final <exprs> to the
file.

Write usually writes Variant data to a file the same way it writes data of any other
Actuate Basic data type. Table 6-59, however, notes certain exceptions.

■ <file number> must match the number of a currently open file.

■ The file corresponding to <file number> must be open under either the
Output or Append mode.

■ You must have write access to the open file. That is, the file must not have been
opened using a Lock Write or Lock Read Write clause.

■ The data cannot be an object variable, user-defined data type structure, handle
to a class, CPointer, or OLE object.

Parameters <file number>
Numeric expression that is the file number of a sequential file that is Open for
Output or Append.

For example, the following statements work together, although they can be
separated from one another by lines of code. The first statement opens a file called
Mynotes.fil, the second one writes the contents of four variables to that file, and

Table 6-59 Exceptions to how Write writes Variant data to a file

Data Write writes this to the file...

One Variant of type V_EMPTY (Empty) Nothing at all

More than one Variant of type V_EMPTY Delimiting commas

Variant of type V_NULL (Null) Literal #NULL#

Variant of type V_DATE (Date) The date, using the fixed date
format: #yyyy-mm-dd hh:nn:ss#

Variant of type V_DATE, but with either
the date or time component missing or
zero

Only the part of the date provided

464 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Wri te statement

the third, by closing it, turns the file over to the operating system to complete the
process of writing it to the disk.

Open "C:\Myfiles\Mynotes.fil" FOR OUTPUT AS #2
Write #2, A$, B%, C!, D#
Close #2

The following statement writes the specified variables to the file opened by a
previous Open statement under number 1. Actuate Basic places double quotation
marks around the value in StringVar$, and it inserts commas between all the
variables to delimit them. Finally, after the value in DoubleVar#, it writes a
newline character.

Write #1, StringVar$, IntVar%, SingleVar!, DoubleVar#

<exprs n>
Numeric and/or string expression that specifies the data that Write places in the
file. There can be any number of these. The default is the newline character.

Tip Many database programs let you import data when the data is structured in the
way that Write structures it. Such programs interpret each newline character as
delimiting the end of a complete record, and treat each comma on a line as
delimiting the end of a field within that record. This means you can use Write to
export information from Actuate Basic to almost any database program.

Example The following example creates a name and age. It then writes this information to
a test file, reads the file back, places the data in a message, and displays the
message to the user. After the user responds, the example deletes the file.

Sub Start()
Dim Msg As String
Dim UsersAge As Integer, UsersName As String
Super::Start()

' Now create a sample data file:
' Open the file for output
Open "Test.fil" For Output As #1
UsersName = "Xudong Ho"
UsersAge = CInt(Rnd * 25) + 20
' Write data to test file
Write #1, UsersName, UsersAge
' Close file
Close #1

' Now read back the sample data file:
' Open test file for input
Open "Test.fil" For Input As #1

' Read the data in it
Input #1, UsersName, UsersAge

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 465

Year funct ion

' Close file
Close #1

Msg = "The name '" & UsersName & "' was read from the file. "
+ & "'" & UsersAge & "' is the age."
+ & "The test file will now be deleted."

ShowFactoryStatus(Msg)
' Delete file from disk
Kill "Test.fil"

End Function

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Open statement
Print statement

Year function
Returns an integer between 100 and 9999, inclusive, that represents the year of a
specified date argument.

Syntax Year(<date exprs>)

Parameters <date exprs>
Date expression, or any numeric or string expression that can evaluate to a date.
Specifies a date and/or time.

■ Can be a string such as November 12, 1982, Nov. 12, 1982, 11/12/82, 11-12-82,
or any other string that can be interpreted as a date in the valid range.

■ Can be a date serial number such as 30267.854, which corresponds to
November 12, 1982 at 8:30 P.M., or any other number that can be mapped to a
date in the valid range.

■ For date serial numbers, the integer component represents the date itself while
the fractional component represents the time of day on that date, where
January 1, 1900 at noon has the date serial number 2.5, and negative numbers
represent dates prior to December 30, 1899 (0).

■ If <date exprs> is a string expression, must specify a date in the range January
1, 100 through December 31, 9999, inclusive.

■ If <date exprs> is a numeric expression, must be in the range -657434 to
+2958465, inclusive.

■ If <date exprs> is a variable containing a date serial number, the variable must
be explicitly declared as one of the numeric types.

■ <date exprs> is parsed according to the run-time locale formatting rules.

466 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Year funct ion

The following assumes that the AC_CENTURY_BREAK property is set to the
default value of 30. For information about using AC_CENTURY_BREAK, please
see Accessing Data using e.Report Designer Professional.

■ For abridged date expressions ending in 00 through 29 that do not specify the
century, relevant date functions estimate the unabridged year by adding 2000.
For example, while Year(#4/30/1910#) returns 1910, the abridged expression
Year(#4/30/10#) returns 2010 (10 + 2000).

■ For abridged date expressions ending in 30 through 99 that do not specify the
century, relevant date functions estimate the unabridged year by adding 1900.
For example, while Year(#11/12/2082#) returns 2082, the abridged expression
Year(#11/12/82#) returns 1982 (82 + 1900).

Note that a date can contain an abridged month, such as Nov. 12, 1982 as opposed
to November 12, 1982.

For example, the following statements are equivalent. Each assigns 1964 to the
variable UserYear.

UserYear = Year("6/7/64")
UserYear = Year("June 7, 1964 2:35 PM")
UserYear = Year("Jun 7, 1964")
UserYear = Year(23535)
UserYear = Year(4707*5)

Returns Integer

■ If <date exprs> is Null, Year returns Null.

■ If <date exprs> cannot be evaluated to a date, Year returns Null. For example:

Year("This is not a date.") returns Null

■ If <date exprs> fails to include all date components (day, month, and year),
Year returns Null. For example:

Year("Nov 12, 1982") returns 1982, but
Year("Nov 1982") returns Null

Tip If you use a date expression in one locale, it might be misinterpreted in another
locale. For instance, in the United States, 1/2/2005 means January 2nd, 2005, but
in France, it means February 1st, 2005. To avoid such ambiguities, use DateSerial
to specify all your dates.

Example The following example generates a date. Then, it uses various date functions to
display the year, month, day, and weekday of the that date. Finally, it gives the
date’s serial number.

' This function tells us what suffix (1st, 2nd, 3rd) to use
' with a number
Function Suffix (DateNum) As String

C h a p t e r 6 , S t a t e m e n t s a n d f u n c t i o n s 467

Year funct ion

Select Case DateNum
Case 1, 21, 31

Suffix = "st"
Case 2, 22

Suffix = "nd"
Case 3, 23

Suffix = "rd"
Case Else

Suffix = "th"
End Select

End Function

Sub Start()
Dim Date1 As Date, UserYear As Integer, UserMonth As Integer
Dim UserDay As Integer, UserDOW As Integer, DOWName As String
Dim Msg As String, LeapYear As String
Super::Start()

' Get a date
Date1 = Dateserial(Rnd * 120 + 1899, 1, 1) + CInt(Rnd * 366)
' Calculate year
UserYear = Year(Date1)
' Calculate month
UserMonth = Month(Date1)
' Calculate day
UserDay = Day(Date1)
' Calculate day of week
UserDOW = Weekday(Date1)
' Convert to name of day
DOWName = Format$ (Date1, "dddd")
' Determine if the year is a leap year or a centesimal
If UserYear Mod 4 = 0 And UserYear Mod 100 = 0 Then

' Evenly divisible by 400?
If UserYear Mod 400 = 0 Then

LeapYear = "is a leap year."
' Not evenly divisible
Else

LeapYear = "is a centesimal but not a leap year."
End If

ElseIf UserYear Mod 4 = 0 Then
LeapYear = "is a leap year."

Else
LeapYear = "is not a leap year."

End If

468 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Year funct ion

' Display results for the user after the pattern:
' The given year 1982 is not a leap year. The weekday number
' for the 12th day of the 11th month in 1982 is 6, which
' means that day was a Friday.
' The date serial number for 11/12/82 is: 30267
Msg = "The given year, " & UserYear & ", " & LeapYear
ShowFactoryStatus(Msg)
Msg = "The weekday number for the "

+ & UserDay & Suffix(UserDay) & " day of the "
+ & UserMonth & Suffix(UserMonth) & " month in "
+ & UserYear & " is " & UserDOW & ", which means "
+ & "that day is a " & DOWName & ". "
+ & "The date serial number for " & Date1 & " is: "
+ & CDbl(DateSerial(UserYear, UserMonth, UserDay))

ShowFactoryStatus(Msg)
End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

See also Date, Date$ functions
Day function
Hour function
Minute function
Month function
Now function
Second function
Weekday function

A p p e n d i x A , O p e r a t o r s 469

A p p e n d i x

Appendix AOperators
This appendix contains information about operators Actuate Basic supports.

When several operations occur in an expression, each part is evaluated and
resolved in a predetermined order, known as operator precedence. You can use
parentheses to override the order of precedence and force parts of an expression
to be evaluated before others. Operations within parentheses are always
performed before those outside. Within parentheses, normal operator precedence
is maintained.

When expressions contain operators from more than one category, arithmetic
operators are evaluated first, comparison operators are evaluated next, and
logical operators are evaluated last. Within individual categories, operators are
evaluated in the order in which they appear in Table A-1.

Table A-1 Order of evaluation of arithmetic, comparison, logical, and bitwise
operators

Arithmetic Comparison Logical Bitwise

Exponentiation(^) Equality(=) Not BNot

Negation(-) Inequality(<>) And BAnd

Multiplication and
Division(* and /)

Less than(<) Or BOr

Integer division(\) Greater than(>) XOr

Modulo arithmetic
(Mod)

Less than or
Equal to(<=)

Eqv

(continues)

470 P r o g r a m m i n g w i t h A c t u a t e B a s i c

* operator

All comparison operators have equal precedence, that is, they are evaluated in the
left-to-right order in which they appear.

When multiplication and division or addition and subtraction occur together in
an expression, each operation is evaluated as it occurs from left to right.

In precedence, the string concatenation operator (&) falls after all arithmetic
operators and before all comparison operators. The Like operator, while equal in
precedence to all comparison operators, is actually a pattern-matching operator.

* operator
Multiplies two numbers.

Syntax <result> = <operand1> * <operand2>

Description The operands can be any numeric expression.

The data type of <result> is usually the same as that of the most precise operand.
The order of precision, from least to most precise, is Integer, Long, Single, Double,
Currency. The following are exceptions to this order:

■ When multiplication involves a Single and a Long, the data type of <result> is
converted to a Double.

■ When the data type of <result> is a Variant of type 3 (Long), type 4 (Single), or
type 7 (Date) that overflows its legal range, <result> is converted to a Variant
of type 5 (Double).

■ When the data type of <result> is a Variant of type 2 (Integer) that overflows
its legal range, <result> is converted to a Variant of type 3 (Long).

If one or both operands are Null expressions, <result> is a Null. Any operand that
is empty (VarType0) is treated as 0.

Example The following example determines tax on a value using the * operator to multiply
the user-supplied value by the tax rate of 15%:

Sub Start()
' Declare variables
Dim N As Double, Tax As Double, Msg As String

Addition and
Subtraction (+ and -)

Greater than or
Equal to(>=)

Imp

String concatenation(&) Like Is

Table A-1 Order of evaluation of arithmetic, comparison, logical, and bitwise
operators (continued)

Arithmetic Comparison Logical Bitwise

A p p e n d i x A , O p e r a t o r s 471

+ operator

Super::Start()
' Get value
N = CInt(Rnd * 125000 + 20000)
' Calculate tax
Tax = .15 * N
' Display results
Msg = "Tax on " & N & " is " & Tax
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

+ operator
Sums two numbers.

Syntax <result> = <operand1> + <operand 2>

Description Use the & operator for concatenation to eliminate ambiguity and provide
self-documenting code.

When you use the + operator, you may not be able to determine whether addition
or string concatenation is to occur. If at least one operand is not a Variant, the
rules in Table A-2 apply.

If either operand is a Null (Variant type 1), <result> is a Null.

Table A-2 Conditions and the corresponding results for the + operator

Condition Result

Both expressions are numeric data types
(Integer, Long, Single, Double, or Currency).

Add

Both expressions are strings. Concatenate

One expression is a numeric data type and
the other is a Variant (other than a Null).

Add

One expression is a String and the other is a
Variant (other than a Null).

Concatenate

One expression is a Variant containing
Empty.

Return the remaining operand
unchanged as <result>

One expression is a numeric data type and
the other is a String.

A Type Mismatch error occurs

472 P r o g r a m m i n g w i t h A c t u a t e B a s i c

+ operator

If both operands are Variant expressions, the VarType of the operands determines
the behavior of the + operator in the way that is shown in Table A-3.

For simple arithmetic addition involving only operands of numeric data types,
the data type of <result> is usually the same as the most precise operand.

The order of precision, from least to most precise, is Integer, Long, Single, Double,
Currency. The following exceptions are to this order:

■ When a Single and a Long are added together, the data type of <result> is
converted to a Double.

■ When the data type of <result> is a Variant of type 3 (Long), type 4 (Single), or
type 7 (Date) that overflows its legal range, <result> is converted to a Variant
of type 5 (Double).

If one or both of the expressions are Null expressions, <result> is a Null. If both
operands are Empty, <result> is an Integer. If only one operand is Empty, the
other operand is returned unchanged as <result>.

Example 1 The following example adds a number to itself and displays the result:

Sub Start()
Dim N As Double, Res As Double, Fmt As String, Msg As String
Super::Start()
Fmt = "#,##0.00"
' Get a number
N = CInt(Rnd * 10000000) / 100)
'Add numbers
Res = N + N
Msg = Format$(N, Fmt) & " plus " & Format$(N, Fmt) & " is "
Msg = Msg & Format$(Res, Fmt)
' Display result
ShowFactoryStatus(Msg)

End Sub

Table A-3 Conditions and results for the + operator when both operands are
Variant expressions

Condition Result

Both Variant expressions are of type 2-7
(numeric data types).

Add

Both Variant expressions are of type
8 (String).

Concatenate

One Variant expression is of type 2-7
(a numeric data type) and the other is of
type 8 (String).

Add

A p p e n d i x A , O p e r a t o r s 473

- operator

Example 2 The following example uses the + operator to concatenate strings:

Sub Start()
Dim Msg As String
Super::Start()
Msg = "Actuate " + "e.Report " + "Designer Professional"
' Display result
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

- operator
Finds the difference between two numbers or indicates the negative value of an
operand.

Syntax 1

<result> = <operand1> - <operand2>

Syntax 2

-number

Description In Syntax 1, the - operator is the arithmetic subtraction operator used to find the
difference between two numbers. The operands can be any numeric expression.

The data type of <result> is usually the same as the most precise operand. The
order of precision, from least to most precise, is Integer, Long, Single, Double,
Currency. The following exceptions are to this order:

■ When subtraction involves a String and a Long, the data type of <result> is
converted to a Double.

■ When the data type of <result> is a Variant of type 3 (Long), type 4 (Single), or
type 7 (Date) that overflows its legal range, <result> is converted to a Variant
of type 5 (Double).

If one or both operands are Null expressions, <result> is a Null. If an operand is
Empty (VarType 0), it is treated as if it were 0.

Example 1 The following example subtracts a number from 1000 and displays the result:

Sub Start()
Dim N As Double, Result As Double, Msg As String

474 P r o g r a m m i n g w i t h A c t u a t e B a s i c

/ operator

Super::Start()
' Get a number
N = CInt(Rnd * 200000) / 100
Result = 1000 - N
' Display result
Msg = "1000 minus " & N & " is " & Result
ShowFactoryStatus(Msg)

End Sub

Example 2 The following example uses the - operator to indicate a negative value of a
number:

Sub Start()
Dim N As Double, MinusN As Double, Msg As String
Super::Start()
' Get a number
N = CInt(Rnd * 200000) / 100
' Use negation operator
MinusN = -N
' Display result
Msg = "Negative " & N & " is " & MinusN
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

/ operator
Divides two numbers and returns a floating point result.

Syntax <result> = <operand1> / <operand2>

Description The operands can be any numeric expression.

The data type of <result> is always a Double or a Variant of type 5 (Double).

If one or both operands are Null expressions, <result> is a Null. If an operand is
Empty (Variant type 0), it is treated as if it were 0.

Example The following example divides 100,000 by 7 and returns 14,285.7142857143:

Sub Start()
' Declare variable
Dim Result As Double, Msg As String
Super::Start()
' Divide numbers
Result = 100000 / 7

A p p e n d i x A , O p e r a t o r s 475

\ operator

' Display results
Msg = "100000 divided by 7 is " & Result
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

\ operator
Divides two numbers and returns an integer result.

Syntax <result> = <operand1> \ <operand2>

Description The operands can be any numeric expression.

Before division is performed, the operands are rounded to Integer or Long
expressions.

The data type <result> is an Integer. Any fractional portion is truncated.
However, if any operand is a Null, <result> is also a Null. Any operand that is
Empty (Variant type 0) is treated as 0.

Example The following example divides 100,000 by 7 using integer division and returns
14,285:

Sub Start()
' Declare variables
Dim Result As Double, Msg As String
Super::Start()
' Divide numbers
Result = 100000 \ 7
' Display results
Msg = "100000 divided by 7 is " & Result
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

^ operator
Raises a number to the power of an exponent.

Syntax <result> = <number> ^ <exponent>

476 P r o g r a m m i n g w i t h A c t u a t e B a s i c

& operator

Description The <number> and <exponent> operands can be any numeric expression.
However, the <number> operand can be negative only if <exponent> is an
integer value. When more than one exponentiation is performed in a single
expression, the ^ operator is evaluated as it is encountered from left to right.

Usually, the data type of <result> is a Double or a Variant (type 5). However, if
either <number> or <exponent> is a Null expression, <result> is also a Null.

Example The following example squares (n^2) a number:

Sub Start()
Dim N As Double, Result As Double, Msg As String
Super::Start()
' Get number
N = CInt(Rnd * 200) - 100
' Square number
Result = N ^ 2
' Display result
Msg = N & " squared is " & Result
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

& operator
Forces string concatenation of two operands.

Syntax <result> = <operand1> & <operand2>

Description Whenever an operand is a number, it is converted to a Variant of type 8 (String).
The data type of <result> is String if both operands are String expressions;
otherwise, <result> is a Variant of type 8 (String). If both operand are Null
(type 1), <result> is also Null. However, if only one operand is Null, that operand
is treated as a zero-length string when concatenated with the other operand. Any
operand that is Empty (type 0) is also treated as a zero-length string.

Example The following example uses the & operator to concatenate a numeric variable
(Var1), a string literal containing a space, and a string variable (Var2) that contains
trombones:

Sub Start()
' Declare variables
Dim Var1 As Integer, Var2 As String, Msg As String
Super::Start()
Var1 = 76
Var2 = "trombones"

A p p e n d i x A , O p e r a t o r s 477

And operator

' Concatenate and display
Msg = Var1 & " " & Var2
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples,”
earlier in this chapter.

And operator
Performs logical conjunction on two expressions.

Syntax <result> = <expr1> And <expr2>

Description If, and only if, both expressions evaluate True, <result> is True. If either
expression evaluates False, <result> is False. Table A-4 illustrates how <result> is
determined.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C = 6, both
expressions evaluate True. Because both expressions are True, the And expression
is also True.

Sub Start()
' Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A = 10: B = 8: C = 6

Table A-4 Results of expressions that use the And operator

<expr1> And <expr2> <result>

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

Null False False

Null Null Null

478 P r o g r a m m i n g w i t h A c t u a t e B a s i c

BAnd operator

' Evaluate expressions
If A > B And B > C Then

Msg = "Both expressions are True."
Else

Msg = "One or both expressions are False."
End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

BAnd operator
Performs a bitwise comparison of identically positioned bits in two numeric
expressions.

Syntax <result> = <expr1> BAnd <expr2>

Description If, and only if, both expressions evaluate True, <result> is True. If either
expression evaluates False, <result> is False. The BAnd operator sets the
corresponding bit in <result> according to the truth table, Table A-5.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C = 6, both
expressions evaluate True. Because both expressions are True, the BAnd
expression is also True.

Sub Start()
' Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A = 10: B = 8: C = 6
' Evaluate expressions
If A > B BAnd B > C Then

Msg = "Both expressions are True."

Table A-5 Results for the BAnd operator

Bit in <expr1> Bit in <expr2> <result>

0 0 0

0 1 0

1 0 0

1 1 1

A p p e n d i x A , O p e r a t o r s 479

BNot operator

Else
Msg = "One or both expressions are False."

End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

BNot operator
Inverts the bit values of any variable.

Syntax <result> = BNot <expr>

Description The BNot operator sets the corresponding bit in <result> according to the truth
table, Table A-6.

If an integer variable has the value 0 (False), the variable becomes 1 (True); if it has
the value of 1, it becomes 0.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C= 6, the
BNot expression evaluates True because A is not equal to B.

Sub Start()
' Declare variables
Dim A, B, Msg
Super::Start()
' Assign values
A = 10: B = 8
' Evaluate expression
If BNot A = B Then

Msg = "A and B aren’t equal."
Else

Msg = "A and B are equal."
End If
' Display results
ShowFactoryStatus(Msg)

End Sub

Table A-6 Results for the BNot operator

Bit in <expr> Bit in <result>

0 1

1 0

480 P r o g r a m m i n g w i t h A c t u a t e B a s i c

BOr operator

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

BOr operator
Performs a bitwise comparison of identically positioned bits in two numeric
expressions.

Syntax <result> = <expr1> BOr <expr2>

Description The BOr operator sets the corresponding bit in <result> according to the truth
table, Table A-7.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C= 6, the left
expression is True and the right expression is False. Because at least one
comparison expression is True, the BOr expression evaluates to True.

Sub Start()
' Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A = 10: B = 8: C = 11
' Evaluate expression
If A > B BOr B > C Then

Msg = "One or both comparison expressions are True."
Else

Msg = "Both comparison expressions are False."
End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

Table A-7 Results for the BOr operator

Bit in <expr1> Bit in <expr2> <result>

0 0 0

0 1 1

1 0 1

1 1 1

A p p e n d i x A , O p e r a t o r s 481

Comparison operators

Comparison operators
Compares two expressions.

Syntax <result> = <expr1> <operator> <expr2>

Description Comparison operators, also known as relational operators, compare two
expressions. Table A-8 contains a list of the comparison operators and the
conditions that determine whether <result> is True, False, or Null.

When comparing two expressions, you may not be able to easily determine
whether the expressions are being compared as numbers or as strings. Table A-9
shows how the expressions are compared or what results when either expression
is not a Variant.

Table A-8 Comparison operators

Meaning True if False if Null if

< Less than expr1 < expr2 expr1 >= expr2 expr1 or expr2= Null

<= Less than or
equal to

expr1 <= expr2 expr1 > expr2 expr1 or expr2= Null

> Greater than expr1 > expr2 expr1 <= expr2 expr1 or expr2= Null

>= Greater than
or equal to

expr1 >= expr2 expr1 < expr 2 expr1 or expr2= Null

= Equal to expr1 = expr2 expr1 <> expr 2 expr1 or expr2= Null

<> Not equal to expr1 <> expr2 expr1 = expr2 expr1 or expr2= Null

Table A-9 Comparison results when either expression is not a
Variant

If Then

Both expressions are numeric data types
(Integer, Long, Single, Double, or
Currency).

Perform a numeric comparison.

Both expressions are String. Perform a string comparison.

One expression is a numeric data type
and the other is a Variant of type 2-7 (a
numeric data type) or type 8 (String)
that can be converted to a number.

Perform a numeric comparison.

(continues)

482 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Comparison operators

If <expr1> and <expr2> are both Variant expressions, their type determines how
they are compared. Table A-10 shows how the expressions are compared or what
results from the comparison, depending on the type of the Variant.

If a Currency is compared with a Single or Double, the Single or Double is
converted to a Currency. This causes any fractional part of the Single or Double
value less than 0.000000001 to be lost and might cause two values to compare as

One expression is a numeric data type
and the other is a Variant of type 8
(String) that cannot be converted to a
number.

A Type Mismatch error occurs.

One expression is a String and the other
is a Variant of any type except Null.

Perform a string comparison.

One expression is Empty and the other
is a numeric data type.

Perform a numeric comparison,
using 0 as the Empty expression.

One expression is Empty and the other
is a String.

Perform a string comparison, using a
zero-length string as the Empty
expression.

One expression is Empty and the other
is a Variant of type 8 (String).

A Type Mismatch error occurs.

Table A-10 Comparison results when either expression is not a Variant

If Then

Both Variant expressions are of type 2-7
(numeric data types).

Perform a numeric comparison.

Both Variant expressions are of type 8
(String).

Perform a string comparison.

One Variant expression is of type 2-7 (a
numeric data type) and the other is of
type 8 (String).

The numeric expression is less than
the String expression.

One Variant expression is Empty and
the other is of type 2-7 (a numeric data
type).

Perform a numeric comparison,
using 0 as the Empty expression.

One Variant expression is Empty and
the other is of type 8 (String).

Perform a string comparison, using a
zero-length string as the Empty
expression.

Both Variant expressions are Empty. The expressions are equal.

Table A-9 Comparison results when either expression is not a
Variant (continued)

If Then

A p p e n d i x A , O p e r a t o r s 483

Eqv operator

equal when they are not. Such a conversion can also cause an Overflow error if
the magnitude of the Single or Double is too large.

Example The following example shows the typical use of a comparison operator to
evaluate the relationship between variables A and B. The example displays an
appropriate message depending on whether A < B, A = B, or A > B. The other
comparison operators can be used in a similar way.

Sub Start()
Dim A As Integer, B As Integer, Msg As String
Super::Start()
' Get first variable
A = Rnd * 1000
' Get second variable
B = Rnd * 1000
' Evaluate relationship
If A < B Then

' Create correct message
Msg = " is less than "

ElseIf A = B Then
Msg = " is equal to "

Else
Msg = " is greater than "

End If
' Display results
ShowFactoryStatus(A & Msg & B)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

Eqv operator
Performs a logical equivalence on both expressions.

Syntax <result> = <expr2> Eqv <expr2>

Description If either expression is a Null, <result> is also Null. When neither expression is a
Null, result is determined according to Table A-11.

Table A-11 Results for the Eqv operator when neither expression is a Null

<expr1> <expr2> <result>

True True True

(continues)

484 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Imp operator

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C= 6, both
expressions evaluate True. As a result, the Eqv expression also evaluates to True.

Sub Start()
' Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A = 10: B = 8: C = 6
' Evaluate expressions
If A > B Eqv B > C Then

Msg = "Both expressions are True or both are False."
Else

Msg ="One expression is True and one is False."
End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

Imp operator
Performs a logical implication on two expressions.

Syntax <result> = <expr1> Imp <expr2>

Description Table A-12 illustrates how <result> is determined.

True False False

False True False

False False True

Table A-11 Results for the Eqv operator when neither expression is a Null

Table A-12 Results for the Imp operator

<expr1> <expr2> <result>

True True True

True False False

True Null Null

False True True

False False True

A p p e n d i x A , O p e r a t o r s 485

Is operator

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C= 6, both
expressions evaluate True. Because both are True, the Imp expression is also True.

Sub Start()
' Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A = 10: B = 8: C = 6
If A > B Imp B > C Then

Msg = "The left expression implies the right expression."
Else

Msg = "The left expression doesn’t imply the right
expression."

End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

Is operator
Compares two object reference variables.

Syntax <result> = <objref1> Is <objref2>

Description If <objref1> and <objref2> both refer to the same object, <result> is True; if they
do not, <result> is False. Two variables can be made to refer to the same object in
several ways.

In the following example, A has been set to refer to the same object as B:

Set A = B

False Null True

Null True True

Null False Null

Null Null Null

Table A-12 Results for the Imp operator

<expr1> <expr2> <result>

486 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Like operator

The following example makes A and B refer to the same object as C:

Set A = C
Set B = C

Example The following example uses the Is operator to evaluate whether two object
reference values refer to the same control:

Sub Start()

Dim MLabel1 As AcLabelControl
Dim MLabel2 As AcLabelControl
Dim Msg As String, LoopCount As Integer
Super::Start()

'Instantiate two new, separate objects
Set MLabel1 = New AcLabelControl
Set MLabel2 = New AcLabelControl

'Loop twice through the Is evaluation
For LoopCount = 1 to 2

If MLabel1 Is MLabel2 Then
Msg = "MLabel1, MLabel2 DO refer to the same object."
ShowFactoryStatus(Msg)

Else
Msg = "MLabel1, MLabel2 DON’T refer to the same object."
ShowFactoryStatus(Msg)
'Before the next Is evaluation loop, force identity.
Set MLabel1 = MLabel2

End If
Next LoopCount

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also Set statement

Like operator
Compares two string expressions.

Syntax <result> = <exprs> Like <pattern>

Description If <exprs> matches <pattern>, <result> is True; if there is no match, <result> is
False; and if either <exprs> or <pattern> is a Null, <result> is also a Null. The case
sensitivity and character sort order of the Like operator depend on the setting of
the Option Compare statement.

A p p e n d i x A , O p e r a t o r s 487

Like operator

Unless other wise specified, the default string-comparison method for each
module is Option Compare Binary; that is, string comparisons are case-sensitive.

Built-in pattern matching provides a versatile tool for string comparisons. The
pattern-matching feature allows you to use wildcard characters, such as those
recognized by the operating system, to match strings. The wildcard characters
and what they match are shown in Table A-13.

A group of one or more characters <character list> enclosed in brackets ([]) can
be used to match any single character in <exprs> and can include almost any
characters in the ANSI character set, including digits.The special characters left
bracket ([), question mark (?), number sign (#), and asterisk (*) can be used to
match themselves directly only by enclosing them in brackets. The right bracket
(]) cannot be used within a group to match itself, but it can be used outside a
group as an individual character.

In addition to a simple list of characters enclosed in brackets, <character list> can
specify a range of characters by using a hyphen (-) to separate the upper and
lower bounds of the range. For example, [A-Z] in <pattern> results in a match if
the corresponding character position in <exprs> contains any of the uppercase
letters in the range A through Z. Multiple ranges are included within the brackets
without any delimiting. For example, [a-zA-Z0-9] matches any alphanumeric
character.

Other important rules for pattern matching include the following:

■ The hyphen (-) can appear either at the beginning (after an exclamation mark
if one is used) or at the end of <character list> to match itself. In any other
location, the hyphen is used to identify a range of ANSI characters.

■ When a range of characters is specified, they must appear in ascending order
(low to high).

■ The character sequence [] is ignored; it is evaluated as a zero-length string.

■ The special character exclamation point (!) is ignored.

Example The following example shows the result of mixing and matching various
wildcard characters in conjunction with the Like operator:

Table A-13 Wildcard characters

Character(s) in <pattern> Matches in <exprs>

? Any single character

* Zero or more characters

Any single digit (0-9)

[character list] Any single character in <character list>

[^character list] Any single character not in <character list>

488 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Mod operator

Sub Start()
Super::Start()
'Returns True (1)
ShowFactoryStatus("PB123" Like "P[A-F]###")
'Returns False (0)
ShowFactoryStatus("PG123" Like "P[A-F]###")
'Returns False
ShowFactoryStatus("PG123" Like "P[^A-F]###")
'Returns False
ShowFactoryStatus("PB12x" Like "P[A-F]###")
'Returns True
ShowFactoryStatus("PB123" Like "?B???")
'Returns False
ShowFactoryStatus("PB123" Like "?B??")
'Returns True
ShowFactoryStatus("PB123" Like "P*")
'Returns False
ShowFactoryStatus("PB123" Like "*P")
'Returns True
ShowFactoryStatus("PB123" Like "*P*")
'Returns True
ShowFactoryStatus("F" Like "[^A-Z]*")
'Returns True
ShowFactoryStatus("F" Like "[A-Z]*")
'Returns True
ShowFactoryStatus("abracadabra12Z%$a" Like "a*a")
'Returns False
ShowFactoryStatus("CAT123khg" Like "B?T*")

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also Format, Format$ functions
StrComp function
Option Compare statement

Mod operator
Divides two numbers and returns only the remainder.

Syntax <result> = <operand1> Mod <operand2>

Description The modulus, or remainder, operator divides <operand1> by <operand2>
(rounding floating point numbers to integers) and returns only the remainder as
the <result>. For example, in the expression A = 19 Mod 6.7, A (which is <result>)
equals 5. The operands can be any numeric expression.

A p p e n d i x A , O p e r a t o r s 489

Not operator

Usually the data type of <result> is an Integer. However, <result> is a Null
(Variant type 1) if one or both operands are Null expressions. Any operand that is
Empty (Variant type 0) is treated as 0.

Example The following example uses the Mod operator to determine if a 4-digit year is a
leap year:

Sub Start()
Dim TestYr As Integer, LeapStatus As String
Super::Start()
TestYr = Rnd * 120 + 1899
' Divisible by 4?
If TestYr Mod 4 = 0 And TestYr Mod 100 = 0 Then

' Divisible by 400?
If TestYr Mod 400 = 0 Then

LeapStatus = " is a leap year."
Else

LeapStatus = " is centesimal, but not a leap year."
End If

ElseIf TestYr Mod 4 = 0 Then
LeapStatus = " is a leap year."

Else
LeapStatus = " is not a leap year."

End If
' Display results
ShowFactoryStatus(TestYr & LeapStatus)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

See also VarType function

Not operator
Performs logical negation on an expression.

Syntax <result> = Not <expr>

Description Table A-14 illustrates how <result> is determined.

Table A-14 Results for the Not operator

<expr> <result>

True False

(continues)

490 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Or operator

In addition, the Not operator inverts the bit values of any variable and sets the
corresponding bit in <result> according to the truth table, Table A-15.

If an integer variable has the value 0 (False), the variable becomes 1 (True); if it has
the value of 1 it becomes 0.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C= 6, the Not
expression evaluates True because A is not equal to B.

Sub Start()
' Declare variables
Dim A, B, Msg
Super::Start()
' Assign values
A = 10: B = 8
' Evaluate expression
If Not A = B Then

Msg = "A and B aren’t equal."
Else

Msg = "A and B are equal."
End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

Or operator
Performs a logical disjunction on two expressions.

Syntax <result> = <expr1> Or <expr2>

False True

Null Null

Table A-15 Bitwise results for the Not operator

Bit in <expr> Bit in <result>

0 1

1 0

Table A-14 Results for the Not operator (continued)

A p p e n d i x A , O p e r a t o r s 491

Or operator

Description If either or both expressions evaluate True, <result> is True. Table A-16 illustrates
how <result> is determined.

The Or operator performs a bitwise comparison of identically positioned bits in
two numeric expressions and sets the corresponding bit in <result> according to
the truth table, Table A-17.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 10, B = 8, and C= 6, the left
expression is True and the right expression is False. Because at least one
comparison expression is True, the Or expression evaluates to True.

Table A-16 Results for expressions that use the Or operator when either or both
expressions evaluate True

<expr1> <expr2> <result>

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

Table A-17 Results for expressions that use the Or operator to compare two
identically positioned bits in two numeric expressions

Bit in <expr1> Bit in <expr2> <result>

0 0 0

0 1 1

1 0 1

1 1 1

492 P r o g r a m m i n g w i t h A c t u a t e B a s i c

XOr operator

Sub Start()
 'Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A = 10: B = 8: C = 11
' Evaluate expression
If A > B Or B > C Then

Msg = "One or both comparison expressions are True."
Else

Msg = "Both comparison expressions are False."
End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

XOr operator
Performs a logical exclusion on two expressions.

Syntax <result> = <expr1> Xor <expr2>

Description If only one of the expressions evaluates True, <result> is True. If either expression
is a Null <result> is also a Null. When neither expression is a Null, <result> is
determined according to Table A-18.

Example The following example displays a message that depends on the value of variables
A, B, and C, assuming that no variable is a Null. If A = 6, B = 8, and C= 10, both
expressions evaluate False. Because both are False, the XOr expression is also
False.

Table A-18 Results for the XOr operator when neither expression is a Null

<expr1> <expr2> <result>

True True False

True False True

False True True

False False False

A p p e n d i x A , O p e r a t o r s 493

XOr operator

Sub Start()
' Declare variables
Dim A, B, C, Msg
Super::Start()
' Assign values
A= 6: B = 8: C = 10
' Evaluate expression
If A > B Xor B = C Then

Msg = "Only one comparison expression is True, not Both."
Else

Msg = "Both comparison expressions are True or both are
False."

End If
' Display results
ShowFactoryStatus(Msg)

End Sub

For information about using the code examples, see “Using the code examples” in
Chapter 6, “Statements and functions.”

494 P r o g r a m m i n g w i t h A c t u a t e B a s i c

XOr operator

A p p e n d i x B , K e y w o r d s 495

A p p e n d i x

Appendix BKeywords
Table B-1 lists words Actuate Basic uses as keywords. These words include data
types, operators, statements, and other words that the Actuate compiler
recognizes. Although Actuate Basic allows using names that are the same as
function names, avoid using these names.

Table B-1 Keywords and the corresponding references

Keyword Reference

Access Open statement

Alias Declare statement

And And operator

Any Any data type

AnyClass SetBinding function

AppActivate Reserved

Append Open statement

As Class statement, Declare statement, Dim statement, Open
statement, Type…As statement

Assert Assert statement

BAnd BAnd operator

Base Option Base statement

Beep Beep statement

Binary Option Compare statement

(continues)

496 P r o g r a m m i n g w i t h A c t u a t e B a s i c

BNot BNot operator

BOr BOr operator

ByVal Declare statement, Function…End Function statement,
Sub…End Sub statement

Call Call statement

Case Select Case statement

ChDir ChDir statement

ChDrive ChDrive statement

Class Class statement

Clipboard Reserved

Close Close statement

Compare Option Compare statement

Const Const statement

CPointer CPointer data type

Currency Currency data type

Date Date data type

Debug Reserved

Declare Declare statement

DefCur Reserved

DefDbl Reserved

DefInt Reserved

DefLng Reserved

DefSng Reserved

DefStr Reserved

Dim Dim statement

Do Do…Loop statement

Double Double data type

Else If…Then…Else statement, Select Case statement

ElseIf If…Then…Else statement

End End statement

Eqv Eqv operator

Erase Erase statement

Table B-1 Keywords and the corresponding references (continued)

Keyword Reference

A p p e n d i x B , K e y w o r d s 497

Err Err statement

Error Error statement

Exit Exit statement

Explicit Reserved

FileCopy FileCopy statement

For For…Next statement

FreeLocks Reserved

Function Function…End Function statement

Get Get statement

Global Global statement

GoSub Reserved

GoTo GoTo statement

Group Reserved

If If…Then…Else statement

Imp Imp operator

Input Input statement, Line Input statement

Integer Integer data type

Internal Reserved

Is Is operator, Select Case statement

Kill Kill statement

Let Let statement

Lib Declare statement

Like Like operator

Line Line Input statement

Load Reserved

Local Reserved

Lock Lock…Unlock statement, Open statement

Long Long data type

Loop Do…Loop statement

LSet LSet statement

(continues)

Table B-1 Keywords and the corresponding references (continued)

Keyword Reference

498 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Mid Mid, Mid$ statements

MidB MidB, MidB$ statements

MkDir MkDir statement

Mod Mod operator

MsgBox MsgBox statement

Name Name statement

New Set statement

Next For…Next statement, Resume statement

Not Not operator

Nothing Set statement

Null Working with Variant data

Object Dim statement

Of Class statement

Off Option Strict statement

On On Error statement, Option Strict statement

Open Open statement

Option Option Base statement, Option Compare statement,
Option Strict statement

Or Or operator

Output Open statement

Persistent Dim statement

Preserve ReDim statement

Print Print statement

Put Put statement

Random Open statement

Randomize Randomize statement

Read Open statement

ReDim ReDim statement

Rem Rem statement

Reset Reset statement

Resume Resume statement

Return Reserved

Table B-1 Keywords and the corresponding references (continued)

Keyword Reference

A p p e n d i x B , K e y w o r d s 499

RmDir RmDir statement

RSet RSet statement

SavePicture Reserved

Seek Seek statement

Select Select Case statement

Set Set statement

SetAttr SetAttr statement

Shared Open statement

Single Single data type

Static Class statement, Function…End Function statement,
Static statement, Sub…End Sub statement

Step For…Next statement

Stop Stop statement

Strict Option Strict statement

String String data type

Sub Sub…End Sub statement

Subclass Class statement

Text Option Compare statement

Then If…Then…Else statement

Time Reserved

To For…Next statement, Lock…Unlock statement,
Select Case statement

Transient Dim statement

Type Type…End Type statement, Type…As statement

Unload Reserved

Unlock Lock…Unlock statement

Until Do…Loop statement

Variant Variant data type

Verify Reserved

Volatile Dim statement

Wend While…Wend statement

(continues)

Table B-1 Keywords and the corresponding references (continued)

Keyword Reference

500 P r o g r a m m i n g w i t h A c t u a t e B a s i c

While While…Wend statement

Width Width statement

Write Write statement

XOr XOr operator

Table B-1 Keywords and the corresponding references (continued)

Keyword Reference

A p p e n d i x C , Tr i g o n o m e t r i c i d e n t i t i e s 501

A p p e n d i x

Appendix CTrigonometric identities
This appendix contains information about trigonometric formulas that Actuate
Basic supports. Actuate Basic supports only the Sin, Cos, Tan, Asin, Acos, and
Atn built-in trigonometric functions. To use other trigonometric functions, you
need to derive and write the functions yourself. To do this, use Table C-1, which
shows the most commonly used trigonometric identities.

Table C-1 Supported trigonometric formulas

Name of formula Formula

Secant Sec(X) = 1 / Cos(X)

Cosecant Cosec(X) = 1 / Sin(X)

Cotangent Cotan(X) = 1 / Tan(X)

Inverse Cotangent Arccotan(X) = -Atn(X) + 2 * Atn(1)

Hyperbolic Sine HSin(X) = (Exp(X) - Exp(-X)) / 2

Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2

Hyperbolic Tangent HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))

Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X))

Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) - Exp(-X))

Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))

Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic
Cosine

HArccos(X) = Log(X + Sqr(X * X - 1))

(continues)

502 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Inverse Hyperbolic
Tangent

HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse Hyperbolic
Secant

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse Hyperbolic
Cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

Inverse Hyperbolic
Cotangent

HArccotan(X) = Log((X + 1) / (X - 1)) / 2

Logarithm to base N LogN(X) = Log(X) / Log(N)

Table C-1 Supported trigonometric formulas (continued)

Name of formula Formula

I n d e x 503

Index
Symbols
` (back quotation mark) character 30
^ operator 7, 475
, (comma) character

as format symbol 188, 192
as printer code 356

; (semicolon) character
numeric formats and 189
printer codes and 356, 438

: format symbol 194
! format symbol 196
! icon 319, 322
! type declaration symbol 21
? (question mark) character

as format symbol 345
as wildcard 487

? icon 319, 322
. (dot) format symbol 188
. (dot) operator 34
' (apostrophe) character 11, 371
' (single quotation mark) character 11, 371
" (double quotation mark) character

date formats and 191
literal strings and 29
numeric formats and 187
print messages and 96

() parentheses characters
in expressions 469
in procedure declarations 41
numeric formats and 189

{ } (braces) characters 30
@ (at-sign) character

as format symbol 195
as type declaration symbol 21, 31

* operator 8, 470
* wildcard character 487
/ operator 8, 474
\ (backslash) characters 187, 191
\ operator 8, 475
& (ampersand) character 111
& format symbol 195
& operator 10, 476

& type declaration symbol 21
&H prefix characters 249
&O prefix characters 333
(number sign) character

as numeric format symbol 187
as type declaration symbol 21
as wildcard 487
in date and time values 31, 32

% format symbol 188
% type declaration symbol 21
+ (plus sign) character

as line continuation symbol 11
commenting code and 11
numeric formats and 189

+ operator 8, 471
< format symbol 196
< operator 8, 481
<= operator 8, 481
<> operator 9, 481
= operator

assignment 5, 9
comparisons 8, 481

> format symbol 196
> operator 8, 481
>= operator 8, 481
- (minus sign) character in strings 27
- (hyphen) character

as wildcard 487
numeric formats and 189

- operator 8, 473
$ format symbol 189
$ type declaration symbol 21

Numerics
0 format symbol 187
0 keyword 373

A
A/P format symbols 195
a/p format symbols 195
Abort buttons 319, 320, 322
abridged dates 316

504 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Abs function 74
absolute paths 181
absolute values 74
AC_CENTURY_BREAK property 88, 466
AC_LOCALE_ CURRENCY_RADIX

value 226
AC_LOCALE_ MONTHS_LONG value 226
AC_LOCALE_ MONTHS_SHORT value 226
AC_LOCALE_ WEEKDAYS_LONG

value 226
AC_LOCALE_ WEEKDAYS_SHORT

value 226
AC_LOCALE_CURRENCY value 226
AC_LOCALE_CURRENCY_FORMAT

value 226
AC_LOCALE_CURRENCY_THOUSAND_

SEPARATOR value 226
AC_LOCALE_DATE_LONG value 226
AC_LOCALE_DATE_SEPARATOR

value 226
AC_LOCALE_DATE_SHORT value 226
AC_LOCALE_NUM_RADIX value 226
AC_LOCALE_NUM_THOUSAND_

SEPARATOR value 226
AC_LOCALE_TIME_AM_STRING

value 226
AC_LOCALE_TIME_FORMAT value 226
AC_LOCALE_TIME_PM_STRING value 226
AC_LOCALE_TIME_SEPARATOR value 226
accelerated depreciation 437
accented characters 25
access permissions 76, 337, 338
access restrictions 293, 338
accessing

code examples 12, 72
external functions 4, 46, 48
files 336
Java classes 53, 114, 115
procedures 5, 38
subprocedures 39
variables 14, 400

AcCleanup function 46
accounts receivable 128
AcCurrency structure 50, 51
AcFont type 220
Acos function 75
AcTextPlacement type 220

Actuate Basic
accessing files and 336
accessing Java objects and 53
binary data and 25
building arrays and 17
coding conventions for 10–12
coding examples for 12, 72
compatibility with Visual Basic 4, 18
declaring arrays and 17
declaring variables and 14
developing with 4, 5
encoding scheme for 25
extending functionality of 38, 46
function and statement reference for 71
generating code for 5
naming rules for 11
programming tasks categorized 61
recursive statements and 6
supported data types for 18
unassigned data types and 20
verifying C function arguments 51

Actuate Basic reports. See reports
Actuate Foundation Class Library 211
Actuate Foundation Classes 5, 20
Actuate Viewer. See DHTML Viewer
AddBurstReportPrivileges function 76
adding

arguments to functions 40, 201
arguments to procedures 41–42, 84
arguments to subprocedures 39, 425
C functions 46, 47, 48, 49
class variables 14, 16, 100
comments to code 11, 371
formatting patterns and strings 184, 187,

195
Java classes 53, 114, 115
line breaks to statements 11
search indexes 76, 78
source code to designs 5, 40, 72
type-declaration characters 7, 21, 144, 149

addition operator (+) 8, 471
AddValueIndex function 76
AFC. See Actuate Foundation Classes
Age_ArchiveBeforeDelete constant 403
Age_DeleteDependencies constant 404
Age_NoOptions constant 403
aging policy 403

I n d e x 505

aging properties 404
aging rules 403

See also archives
alarms 83
alerts 83
Alias keyword 47, 49, 144, 145
aliases

assigning to data types 20, 33, 451
assigning to variables 400
calling C functions and 47, 49
defining for external procedures 145, 146

alignment 300, 384
allocating memory 148, 243
alphanumeric characters 487
alternate names. See aliases
AM/PM format symbols 195
am/pm format symbols 195
ampersand (&) character

as concatenation operator 10, 476
as format symbol 195
as type declaration symbol 21
XML data converter and 111

AMPM format symbols 195
ANALYSIS format 231, 278
And operator 9, 477
angles

calculating hyperbolic sin for 171
getting arc cosine 75
getting arc sine 81
getting arctangents 82
getting cosine 113
getting sine 409
getting tangent 440

annuities
defined 267
getting future value 205
getting interest payments 266
getting interest rates 366
getting number of periods 328
getting present value 361
getting principal 351
getting total payments 349
programming functions listed 67

ANSI character codes 79
ANSI characters

getting 95, 97
matching 487

programming functions for 69
storing binary data and 25

Any data type 18
any pointer type 52
AnyClass type 51
apostrophe (') character 11
apostrophe (’) character 371
Append mode 173, 338
applications

accessing C functions and 46
converting date values and 346
copying text from 30
defining variables global to 15
developing 5
getting currently running 212, 229
getting run-time errors for 162, 163, 164
running cross-platform 4
running from command prompt 107, 408

arc cosine 75
arc sine 81
archives 215, 399, 403
arctangents 82
area 109
argument lists

See also arguments
function calls and 201
procedure calls and 41, 42, 84
subprocedure calls and 425

arguments
See also command-line arguments;

parameters
adding to functions 40, 201
adding to procedures 41–42, 84
adding to subprocedures 39, 425
calling C functions and 48, 49, 51
checking for invalid 51, 78
converting for DLLs 85
disabling type checking for 18
overloading procedures and 201, 424
passing by reference 41, 48, 84
passing by value 42, 48, 84, 145
removing type restrictions for 49
returning null values 7

arithmetic functions and statements. See math
functions and statements

arithmetic operations. See mathematical
operations

506 P r o g r a m m i n g w i t h A c t u a t e B a s i c

arithmetic operators
See also specific
described 7
order of evaluation for 469, 470
variants and 23, 24

array elements (defined) 16
array functions and statements 18, 62, 63
array names 161, 368
array variables

Dim statements 148
Function...End Function statements 203
Global statements 245
ReDim statements 368
Sub...End Sub statements 425
Type...End Type statements 449

arrays
adding multiple dimensions 17
associating with classes 100
calculating values and 291
changing at runtime 281
converting Java 55
converting strings to 290
creating user-defined variables and 449
de-allocating memory for 160
debugging Java 57
declaring 16–18
defining dimensions 148, 244
defining dynamic 149, 244
defining fixed-size 414
defining global 243
defining static 450
determining contents 199
getting lower bounds 280, 281
getting number of elements in 281
getting upper bounds 452
initializing 18, 368
overriding 341
passing to C functions 49, 51
passing to procedures 84, 203, 414
passing to subprocedures 425
preserving data in 17
reinitializing fixed 160
resizing 17, 368, 370
returning literal values 450
setting contents of 199
setting lower bounds 340
sorting 460

storing binary data and 26
As Any keyword 49
As keyword

in Class statements 101
in Declare statements 144, 146
in Dim statements 21, 149
in Function statements 40, 203
in Global statements 244
in Name statements 324
in Open statements 337
in ReDim statements 369
in Static statements 415
in Sub statements 426
in type declarations 33

Asc function 79
ASCII characters

getting 96, 289
naming rules and 11
programming functions for 69

ASCII text files. See text files
AscW function 80
Asin function 81
Assert statement 81
assets

See also annuities
getting depreciation of 142, 411, 436
getting net present values 330
getting rate of return 268, 311
programming tasks for 67

assigning data types
to constants 108
to functions 146, 203, 204
to procedures 41, 43, 426
to variables 6, 20–21, 24, 146

assigning values
to data types 18, 30, 287
to Java objects 53
to variables 5, 15, 34, 249, 287, 414
to variants 23, 30, 288

assigning variables
to classes 14, 16, 100
to object references 397
to variant data 121, 455

assignment operator (=) 5, 9
assignment statements 5, 55
asterisk (*) character

as multiplier 8, 470

I n d e x 507

as wildcard 487
Atn function 82
at-sign (@) character

as format symbol 195
as type declaration symbol 21, 31

ATTR_ARCHIVE constant 215, 399
ATTR_DIRECTORY constant 215
ATTR_HIDDEN constant 214, 399
ATTR_NORMAL constant 214, 399
ATTR_READONLY constant 214, 399
ATTR_SYSTEM constant 215, 399
ATTR_VOLUME constant 215
attributes

See also properties
defining object 34
getting current 213
getting file type 172
getting locale-specific 226
getting system 214
setting file type 398

B
back quotation mark (`) character 30
backslashes (\) 187, 191
backspace characters 96
BAnd operator 8, 215, 478
.bas files. See source files
Basic. See Actuate Basic
Basic reports. See reports
Beep statement 83
beeps 83
binary data

assigning to strings 26
comparing 28
decoding 110
encoding 110
storing 25

binary files
accessing 336
converting strings to 110
converting to strings 110
getting bytes from 261
getting current position 292
getting current position in 393
locking 294
opening 338, 359

reading from 208, 210, 259
setting byte position for 391
testing input position in 159
writing to 110, 359

binary images 63
Binary keyword 342
Binary mode 173, 210, 338, 359
binary string functions 26
binding column names to data rows 400
bitwise And operator 8, 215, 478
bitwise comparisons 215, 478, 480, 491
bitwise Not operator 479
bitwise Or operator 8, 480
blank lines 256
blank space characters. See space characters
BNot operator 479
Boolean data type 54, 55
boolean type 54
Boolean values

assigning numeric values for 19, 43
comparing 9, 396
evaluating 43, 177
getting 187

Boolean variables 177
BOr operator 8, 480
braces ({ }) characters 30
brackets ([]) characters 487
branching

enum types and 156
program comments and 371
restrictions for 460
run-time errors and 334
to specified line 246

branching statements 62
browser code 230
browser scripting controls 230
browsers. See web browsers
buffers

allocating 336
flushing 105
reading 372
setting size 338
writing to 337

built-in functions 40
built-in methods 5
burst reports 76
bursting 402

508 P r o g r a m m i n g w i t h A c t u a t e B a s i c

button style constants 319, 322
buttons

adding to dialog boxes 318, 321
defining as default 319, 322
selecting at run time 320

byte copy operations 285, 305, 380
byte functions 69
byte locks 294
byte type 54
ByVal keyword

arrays and 52
C functions and 48, 51
in Declare statements 145
in Function statements 202
in Sub statements 425
procedures and 42, 84

C
C function names 48, 49
C functions

accessing 46
adding 46
aliasing 49
allocating data in 18
assigning data types to 48, 49, 51, 52
calling 46, 48, 49, 51
declaring 46, 47–51
passing arguments to 48, 49, 51
passing arrays to 51
passing null pointers to 52
passing object reference variables to 52
passing strings to 49, 51
removing type restrictions for 49
renaming 49
returning values 52, 55
unloading libraries for 46

calculations
arithmetic operators for 7
arrays and 291
currency values and 31
date and time values in 32
functions for 68
local variables and 16
procedures performing 5, 6, 38, 41
string variables and 25

calculator 407

calendar 33
Call keyword 84
Call statement 42, 84
Cancel buttons 319, 320, 322
capitalization 28, 196, 282, 453
carriage return characters 96, 260, 261
cascading style sheets 242, 434
case conversions 28, 196, 282, 453
Case Else keyword 396
Case keyword 395
case statements 62, 394
case-insensitive comparisons 28, 396, 418
case-sensitive comparisons 9, 28, 342, 396,

418
cash flow. See annuities; assets
CCur function 35, 85
CDate function 33, 35, 87
CDbl function 35, 90
CF_LINK constant 219, 401
CF_TEXT constant 219, 401
changing

capitalization 28, 196, 282, 453
current drive and directory 92, 93, 94
file names 323
headlines 402
strings 304, 307, 422
values 41, 42

char type
C functions and 50, 52
Java objects and 54

character arrays 25
character codes

entering in strings 25
getting 26, 79, 80
translating 95, 97

character conversion functions and
statements 63

character lists 487
character placeholders 195, 196
character sets 25
character strings 25, 26

See also strings
character strings. See strings
characters

See also space characters; special characters
adding type-declaration 21, 144
changing case 28, 196, 282, 453

I n d e x 509

comparing 28, 342, 418, 481, 486
converting to XML 111
converting UCS-2 codes to 97
copying files and 174
deleting files and 279
encoding 25, 80
entering in strings 25, 29
getting ANSI 95
getting escape 111, 432
getting number of 26
getting specified 26
getting width of 223
naming conventions and 11, 49
null-terminated strings and 51
repeating 420, 421

chart drawing functions
getting escaped characters for 433
setting CSS styles for 434
setting font values for 431
setting numeric values for 429
setting SVG attributes for 427, 428

ChDir statement 92
ChDrive statement 93
Chr function 95
Chr$ function 95
ChrW function 97
ChrW$ function 97
CInt function

compared with Fix and Int 183
described 35, 98

circumference 109
class arrays 100
class definitions 100, 154
class functions and statements 62
class IDs 216, 217, 218
class names

assigning to classes 100
determining fully qualified 77
getting 217, 218

class scope 14, 38
Class statement 100, 154
class variables

accessing 62
adding 14, 16, 100
declaring 149, 244
initializing 245

classes
See also Actuate Foundation Classes
accessing Java 53, 114, 115
aliasing 400
calling methods for 38, 101
creating objects for 34
creating persistent 326
declaring 100, 101, 154
defining procedures in 38
defining user-defined types as 34
developing with 5, 62
getting instances of 238
instantiating 62, 115, 325, 326, 397
nesting 101
testing for objects in 273
testing for specific 218

CLASSPATH variable 53, 157
cleanup functions 46
ClearClipboard function 102
client applications 212
Clipboard

clearing 102
copying to 401
getting contents 219

Clipboard formats 401
CLng function 35, 103
clock

See also time
formatting 32, 191, 194
getting current time 441
getting specific time for 443
setting 32, 88, 133
specifying start of day for 33

Close statement 105
closing disk files 105, 372
code

See also Actuate Basic
accessing Java objects and 54
adding comments to 11, 371
adding external functions to 46, 49
adding Java classes 53, 114, 115
controlling statement flow in 44
disabling while debugging 371
generating 5
implicit declarations and 14
naming conventions for 11
pasting text blocks to 30

510 P r o g r a m m i n g w i t h A c t u a t e B a s i c

code (continued)
referencing specific objects in 39
simplifying programming tasks in 38
unassigned data types and 20
writing 5, 10, 11

code editors 46
code example window 72
code examples 12, 72
code points 80
colon (:) character in format patterns 194
color constants 364
color values

getting 376
setting 20, 364, 378, 428
translating 363

column names 400
column names. See column headings
columns 400, 438
comma (,) character

as format symbol 188, 192
as printer code 356

comma separated values 231, 277
Command function 107
command prompt 407
Command$ function 107
command-line arguments 107
comments

adding to code 11, 371
displaying 64

comparison functions 69
comparison operators

described 8, 481
Is keyword and 396
order of evaluation for 469, 470

comparisons
among a range of values 395
bitwise 478, 480, 491
currency 482
expressions 8, 394, 481
logical values 9, 396
null values and 28
numeric values 264
object reference variables 9, 485
string values 28, 342, 418, 486
variants 482

compiling 73, 107, 235
completion requests 224, 402

components
adding to designs 5
getting class information for 77, 217, 218

computed values. See expressions
concatenation 470, 471
concatenation operator 10, 476
conditional expressions 44
conditions

creating loops and 43
evaluating 199, 204
returning specific values 255
setting for control structures 150, 253, 459
testing 65, 253
trapping errors and 82

conjunction operator 9, 477
Const statement 23, 108
constants

adding to arrays 450
assigning data types to 7, 20, 108
associating with database columns 400
declaring global 146
declaring symbolic 108, 401
defining enum types and 22
embedding special characters in 30
naming 11, 108
parsing string 283, 285, 379, 380
programming statements for 70
setting values for 23

container objects 220
context names 212, 229
context-sensitive strings 166
continuation character (+) 11
control codes 96
control structures

See also structures
branching 246, 460
creating 43
executing indefinitely 150
executing with conditions 253, 459
exiting 44, 168
nesting 44, 152, 253
repeating statement blocks 197, 459
stepping through 416

controlling program execution 416
controlling program flow 43, 62, 84
controlling report generation 5, 43

I n d e x 511

controls
adding to frames 101
getting size of 224
scaling 230
testing references to 486

conversion functions and statements 35, 63,
68, 69

conversions
binary images 110
C function types 49
case 28, 196, 282, 453
dates to strings 344
dates to variants 122
decimal to hexadecimal 248
decimal to octal 332
expressions to dates 87
expressions to strings 118
Java arrays 55
Java types 54–56
locale-specific values 35
numbers to currency 85
numbers to dates 271
numbers to doubles 90
numbers to integers 98
numbers to longs 103
numbers to singles 116
numbers to strings 27, 31, 184, 248, 332,

417
numbers to variants 121
numeric types to dates 32
radians to degrees 82
strings to arrays 290
strings to dates 344
strings to numbers 116, 183, 264, 348
testing status 270, 275
UCS-2 codes to characters 97
values to specific types 34
variant data types 23
XML characters 111

ConvertBFileToString function 110
ConvertStringToBFile function 110
ConvertToXML function 111
Copy command (DOS) 174
copying

binary data 26
bytes 285, 305, 380
class variables 62

code examples 72, 73
data 103, 219, 401
files 174
specific characters 283, 302, 379
strings 29, 301, 401, 447
variables 112

CopyInstance statement 112
copyright symbols 96
corrupted data 210
Cos function 113
cosecant 501
cosine 113
cotangent 501
counter variables 198
counters

incrementing 151, 197, 460
setting 197, 198

CPointer data type
assigning to variables 288
assigning values 18, 287
initialization values for 245
mapping to C functions 50
returning from C functions 52

CreateJavaClassHandle function 114
CreateJavaObject function 53, 115
creating

control structures 43
data structures 33
expressions 6
indexed searches 76, 78
instance variables 100
Java classes 114, 115
Java objects 53–54, 115
persistent files 326
procedures 5, 38, 40
report archives 403
report files 402
reports 5
source files 72
statements 5, 11, 61
static variables 100
temporary files 106, 159, 173
user-defined types 20, 33–34, 450

criteria. See conditions; parameters
criteria. See search conditions
cross-platform applications 4
CSng function 35, 116

512 P r o g r a m m i n g w i t h A c t u a t e B a s i c

CSS formats 242, 434
CStr function 35, 118
CSV formats 231, 277
cumulative totals 16
CurDir function 119
CurDir$ function 119
Currency data type

assigning 18, 31
C functions and 50
converting to 85

currency symbols 25, 189, 349
currency type-declaration symbol 21, 31
currency values

See also Currency data type
comparing 482
defining as constant 23
defining as variants 24
maintaining precision for 31

CurrencyDecimal parameter 35
CurrencyGrouping parameter 35
current date 32
current drive/directory 120
custom browser code 230
customizing

data types 33–34
reports 238

CVar function 35, 121
CVDate function 35, 122

D
d format character 345
data

See also values
assigning to variables 256, 450
copying 103, 219, 401
corrupting 210
displaying 356, 439
exporting/importing 346, 464
formatting 184, 463
misreading 210
printing unformatted 354
reading from disk 208, 256, 259, 289
returning from user input 454
searching for 77
storing 6, 14, 18
structuring 33

writing to disk files 354, 357, 372, 463
data filters 112
data rows 17, 400

See also records
data streams 112, 347
data structures 450

See also structures
data types

See also specific type
aliasing 451
assigning to variables 6, 20–21, 24, 146
assigning values to 18, 287
building arrays and 16, 17
building Java objects and 54, 54–56
calling C functions and 48, 49, 51, 52
converting values to specific 34
creating 20, 33–34, 450
declaring in procedures 41, 43, 426
defining constant values and 7, 23, 108
defining enums and 156
defining variant data and 23–24
determining 236
mismatched 286
overview 18–20
passing multiple 49
passing to procedures and DLLs 86
reading sequential files and 256
restrictions for 23
returning from expressions 6
returning from function calls 40, 146, 203,

204
returning null values and 52, 55
specifying 21
suppressing type checking for 18

data typing conventions 4
databases

automating frequent operations for 38
exporting data to 464
mapping data rows to columns in 400

Date data type 19, 31, 50, 52
See also dates

date expressions
creating 127, 133, 457
entering numbers in 32, 88
entering time values in 88, 129, 132
estimating year from 88
evaluating 270

I n d e x 513

getting number of weeks from 131
getting time values from 250, 308, 387
locale-specific format characters in 345
mathematical operations in 7, 32

Date function 32, 125
date functions 346
date functions and statements 32, 63
date separators 192
date serial numbers

assigning to variables 31, 327
converting dates to 32, 63, 135
converting to dates 88
formatting 190
returning 124
time values in 250, 308, 388, 443, 445

date stamps
file creation 175, 179
file modification 175, 179

date variables 32
Date$ function 125
DateAdd function 126
DateDiff function 128
DatePart function 132
dates

adding specified time intervals to 126
assigning to variables 125
assigning values 19, 31
calculating values 7, 32, 126, 128
checking conversion status 270
converting expressions to 87, 271, 344
converting to strings 344
converting to variants 122
converting values to 32, 33
defining variants as 24, 27, 347
displaying 131, 137
entering literal 31, 32
extracting days from 32
extracting month from 32, 315
extracting year from 32, 465
formatting 32–33, 125, 184, 190
getting current 32
getting day of month 140
getting difference between specified 128
getting for specified string 138
getting number of weeks 130
getting system 125, 327
getting weekday 32, 154, 226, 457

importing 346
parsing 132, 344, 347
redefining formats for 191
returning from serial numbers 136
specifying for report archiving 404
specifying locale specific 89, 125, 190, 344
valid ranges for 270

DateSerial function 31, 32, 135
DateValue function 138
day format characters 192
Day function 32, 140
DDB function 142
de-allocating memory 46, 160
debugger 57
debugging

branching and 198, 247
creating Java objects and 57
creating timers for 354
disabling source code while 371
initializing global variables and 245
invalid arguments and 78
nesting user-defined types and 34
repeating random numbers and 365
resuming program execution and 373
simulating errors and 167, 374
suspending program execution and 416

decimal numbers
converting to hexadecimal 248
converting to octal 332
defining colors with 364, 377
defining currency values and 31
formatting 186

Decimal parameter 35
decimal placeholder 188, 348
decimal values. See decimal numbers
declaration statements 146
declarations

arrays 16–18, 149, 243, 450
class 100, 101, 154
constants 23, 108
enum types 22, 155
functions 40, 144, 200
indefinite loops 150
procedures 414
restrictions for 14, 17, 24
subprocedures 39, 423
typing 343

514 P r o g r a m m i n g w i t h A c t u a t e B a s i c

declarations (continued)
user-defined types 33
variables 15, 16, 148, 243, 414, 448

caution for 149
Declare statement

See also declarations
C functions and 46, 47, 48, 49
described 143
exiting 154

Declare...End Declare statement 146
decoding binary data 110
decoding function 67
default data type 23
default date and time values 88
default directories

copy operations and 174
delete operations and 279, 381
rename operations and 324
returning current 119

default paths 15
default values 21
degrees 82
DEL command (DOS) 279
deleting

directories 381
disk files 279, 280, 404
leading spaces 29, 184, 301, 447
trailing spaces 29, 385, 447

delimiters 463
depreciation 142, 411, 436
derived classes 100
design tools 5
designers. See e.Report Designer; e.Report

Designer Professional
designs

adding source code to 5, 40, 72
declaring string data and 25
developing 5
embedding images in 110

developers 5
developing applications 5
developing reports 4, 5
development languages 4
development tasks 38, 53, 61
DHTML formats 242, 278
DHTML reports

formatting functions for 66

getting viewing formats for 241
scaling 230
searching 231, 277

DHTMLLong formats 242
DHTMLRaw formats 242
dialog boxes

adding buttons 318, 321
adding icons 319, 322
adding title bars 320, 323
displaying dynamically 320
displaying user-defined messages 318, 321

Dim keyword 100
Dim statements

arrays and 17
described 148
Java objects and 53
variables and 14, 16, 21, 25
variant data and 24

directories
accessing files in 15
adding to search paths 171, 182
changing 92, 93
creating 313
deleting 381
getting attributes 213
getting default 119
moving 324
moving files between 323
removing files from 279
renaming 323
testing existence of 177

directory labels 215
directory paths

See also search paths
calling C functions and 48
copying files and 174
creating Java classes and 115
default for copy operations 174
default for delete operations 279
deleting files and 279
getting absolute 181
setting system specific 176
specifying partial 93
storing default 15

disjunction operator 9, 490
disk drives

changing 92, 93, 94

I n d e x 515

entering in string expressions 120
getting default directory for 119
specifying default 94

display formats 241, 278
displaying

class names 217, 218
Clipboard content 401
code examples 72
custom browser output 230
data 356, 439
date and time values 32, 131, 137
error messages 81, 334
headlines 223, 224, 225, 403
messages 199, 260, 318, 321
reports 241
search results 231
string values 25, 28, 220

displays 220
divide by zero errors

displaying messages for 167
example of 162
preventing 387

division operations 387
division operators 8, 474, 475, 488
DLLs

accessing Java objects and 53
accessing procedures in 84, 143
calling C functions in 46, 48
calling subprocedures from 84
disabling type checking for 18
passing incorrect types to 86
specifying 48, 144

Do While keyword 43
Do...Loop statement 43, 150, 168
document files. See report object instance files
documentation xi
documents

See also reports
documents. See reports
dollar sign ($) character

as currency symbol 189
as type declaration symbol 21

DOS command processor 408
DOS command window 107
DOS file handles 173
DOS shell 407
dot notation 34

Double data type
See also double values
assigning values to 19, 30
converting to 90
mapping C functions to 50, 52
mapping to Java types 54
returning from C functions 52

double quotation mark (") character
date formats and 191
literal strings and 29
numeric formats and 187
print messages and 96

double type 54
double type-declaration symbol 21
double values

See also Double data type; floating point
numbers

assigning to integers 6
defining as constant 23
defining as variants 24
returning 90
valid ranges for 19

double-declining depreciation 142
double-precision numbers. See double values
download formats 231, 277
drawing functions

getting escaped characters for 433
setting CSS styles for 434
setting font values for 431
setting numeric values for 429
setting SVG attributes for 427, 428

DrawOnChart method 427, 433, 434
drives

changing 92, 93, 94
entering in string expressions 120
getting default directory for 119
specifying default 94

duplicate names 42, 54, 424
DWBContext value 213
dynamic arrays

clearing 160
declaring 17, 149, 244
defining list of values and 291
getting number of elements in 281
resizing 368, 370

dynamic text controls 224
dynamic-link libraries. See DLLs

516 P r o g r a m m i n g w i t h A c t u a t e B a s i c

E
E– or e– format symbols 188
E_JAVAEXCEPTIONOCCURRED error 56
E_JVMCLASSNOTFOUND error 56
E_JVMCLASSPATHNOTFOUND error 56
E_JVMCREATEJVMFAILED error 56
E_JVMCREATEOBJECTFAILED error 56
E_JVMINVALIDJAVAHANDLE error 56
E_JVMMETHODFIELDACCESSFAILED

error 56
E_JVMTYPECONVERSIONFAILED error 56
e.Analysis reports 231
e.Report Designer 6
e.Report Designer Professional

copying code examples to 72
creating source files with 72
developing designs and 5
extending functionality of 4
getting command-line arguments for 107
launching from command prompt 107
running recursive statements and 6

e.Reporting Server. See iServer
e.reports. See reports
E+ or e+ format symbols 188
editors 46
Else keyword 44, 254
ElseIf keyword 44, 254
embedding images 110
Empty keyword 23, 272, 274
empty strings 52
empty values 23, 274
encoding 25, 80, 110, 340
encoding function 110
Encyclopedia volumes 242
End If keyword 254
End keyword 154
End statement

described 154
Exit statements vs. 169

end-of-file indicator 158
Enum statement 22, 155
enum type 22, 155
enumerations (enums) 19, 20, 22
Environ function 157
Environ$ function 157
environment functions and statements 64

environment variables
getting specific settings 157
loading C libraries and 48

EOF function 158
equal sign (=) character

as assignment operator 5, 9
as comparison operator 8, 481

equivalence operator 10, 483
Eqv operator 10, 483
ERASE command (DOS) 279
Erase statement 160
Erl function 162
Err function 56, 163
Err statement 164
error codes

creating user-defined 164, 167
getting 163
returning messages for specific 166
setting 164

Error function 166
error messages

creating user-defined 164, 167
displaying 81, 334
getting 166

error numbers. See error codes
Error statement 167
error status functions 65
error trapping functions and statements 65
Error$ function 166
errors

accessing run-time 162, 163, 164
calling Java methods and 53
creating Java objects and 56, 225
creating routines for 167, 374
defining currency values and 31
defining variants and 24
disabling handlers for 334
displaying messages for 81, 334
generating user-defined 164, 167
getting for Java classes 114, 115
handling run-time 333
preventing divide by zero 387
recovering from 373
running recursive statements and 6
setting screen attributes and 221
simulating 167
structuring reports and 33

I n d e x 517

trapping 82
escape characters 111, 432
events 5, 410
example code segments 12, 72
exceptions 56, 225
exclamation point (!) character

as format symbol 196
as type declaration symbol 21

Exclamation Point icon 319, 322
exclusion operator 9, 492
executable files

generating 107
getting Factory version for 222
getting version number for 230
running from DOS 407

executing applications 4, 107, 408
executing programs 373, 408
Exit Do keyword 152
Exit Do statement 44
Exit For keyword 197
Exit For statement 44
Exit Function keyword 202
Exit Function statement 44
Exit statement 168
Exit Sub keyword 425
Exit Sub statement 44
Exp function 170
expiration age 404
exponentiation 30, 170, 188, 299, 476
exponentiation operator 7, 475
exporting data 464
expressions

adding functions to 40, 42
assigning to constants 108
assigning values to variables and 6
bitwise comparisons in 478, 480, 491
calculating time values in 129
calling procedures from 42
checking for null values in 274
comparing 8, 394, 481
computing values of 6, 7
controlling statement flow and 44
converting to dates 87, 270, 345
converting to numbers 91, 98, 103, 116
converting to strings 118
converting to variants 121, 122
creating 6

entering literal strings in 29
entering specific dates in 89
entering time values in 88, 136
estimating year from 88
evaluating 255
formatting date values and 190, 191
formatting numeric data and 187, 189
formatting string values and 27
formatting time values and 194
getting substrings in 302, 305
inserting blank spaces and 356
mixing data types in 6
mixing type formats in 185
operator precedence in 469
printing output and 356
returning absolute values 74
returning logical values 9
returning null values 7
returning time values from 132, 250, 308,

387
setting SVG values and 429, 433, 434
testing equality 483
translating character codes 79, 80, 95, 97
trigonometric functions in 501

ExtendSearchPath function 171
external functions 4, 46, 48

See also C functions
external libraries 4, 46
external objects 57
external procedures 42, 143
external programs 408

F
Factory service 222, 228, 409
FactoryReportContext value 229
False keyword 19, 187
false values 8, 481

See also Boolean values
fatal errors 6, 334
fields

creating Java objects and 53
importing data and 464
Java objects and 54
mapping to variables 400
writing to disk files 356

file access types 336

518 P r o g r a m m i n g w i t h A c t u a t e B a s i c

file buffers
allocating 336
flushing 105
reading 372
setting size 338
writing to 337

file descriptors 158
file handles 173
file I/O functions and statements 66
file I/O operations 286, 287, 335
file IDs 77
file information functions and statements 66
file management statements 66
file mode. See file type attributes
file modes 172, 336
file names

changing 323
getting 228, 374
resolving relative 181
specifying 336
storing 15

file numbers
getting unused 199
reusing 105
setting 257, 337

file pointers 391, 392
file type attributes

getting 172, 213
setting 398

FileAttr function 172
FileCopy statement 174
FileDateTime function 175
FileExists function 177
FileLen function 178
files

See also specific type
accessing 336
adding search index to 76
archiving report 403
assigning permissions 337, 338
checking input position in 158
closing 105, 372
copying 174
creating multiple report 402
creating persistent 326
creating temporary 106, 159, 173
deleting 279, 280, 404

determining if changed 176
encoding binary 110
error handling for 165
getting current position in 291, 392
getting date/time stamps for 175, 179
getting end-of-file indicator 158
getting number of bytes from 261
getting objects in 227
getting size 178, 298
locking/unlocking 293, 337, 339
moving 323
opening 165, 199, 292, 336
printing to disk 438, 461
reading 208, 256, 259, 289
renaming 323
running from DOS 407
searching for 171, 181
setting position in 390
testing existence of 177
writing to 354, 357, 372, 463

FileTimeStamp function 179
filters 112
financial functions and statements 67
FindFile function 181
fiscal quarters

defining formats for 193
getting difference between 129
getting specified 132

Fix function
compared to Int 265
described 182

Fixed format 186
Fixed keyword 186
fixed point numbers 31
fixed-size arrays 17, 160, 414
fixed-width fonts 356, 438
float data types 54
float type 54
floating point numbers

assigning values 30
defining currency values and 31
returning 8, 90, 474
storing date variables as 31
storing double values as 19
storing time as 443, 445

fontFace parameter 233
fonts 25, 220, 223, 356, 430

I n d e x 519

For...Next statement 44, 169, 197
format characters

creating user-defined formats with 187,
192, 194, 195

entering in expressions 184
locale-specific date conversions 345

format expressions
creating 184
date and time values in 190, 191, 194
numeric values in 187, 189
string values in 195

Format function 27, 184
format patterns 27, 184

See also format characters
format symbols 346
format symbols. See format characters
Format$ function 27, 184
formats 346

automating 38
creating user-defined 187, 191, 195
described 191
displaying string values and 28
getting DHTML viewing 241
getting search 231
placing restrictions on 20
specifying locale-specific 28, 226
testing search 277

formatting
dates 32–33, 125, 184, 190
numbers 184, 185
numeric values 27
output 463
strings 27–28, 184, 195
time values 88, 191, 194
variant data 27

fractions
as special characters 25
date and time values and 32
floating point numbers and 30
removing 98, 182

frames 101
FreeFile function 199
freeing resources 398
function categories 61
Function keyword 144
function names 48, 49, 201, 203

Function statement 40
See also functions; procedures

Function...End Function statement 200
functions

See also C functions; procedures
accessing external 4, 46, 48
adding arguments to 40, 201
alphabetical reference for 71
assigning data types to 146, 203, 204
building arrays and 18
calling 40, 42
comparing string values with 28
converting data types with 35
converting string values with 31
declaring 40, 144, 200
defining constants in 108
defining variant data and 24
exiting 44, 154, 169, 202
formatting date or time values with 32
formatting string values with 27
manipulating strings with 26
naming 201, 203
nesting 204
overloading 201
performing case conversions with 28
removing leading or trailing spaces 29
returning binary data 26
returning null dates 346
returning null values 7
running from reports 73
with no parameters 204

fundamental data types. See data types
future dates 127
future values 205, 266
FV function 205

G
General date format 191
General number format 185
general purpose libraries 238
generating

executable files 107
reports 5, 43, 409
source code 5

Get statement 208
GetAFCROXVersion function 211

520 P r o g r a m m i n g w i t h A c t u a t e B a s i c

GetAppContext function 212, 229
GetAttr function 213
GetClassID function 216
GetClassName function 217
GetClipboardText function 219
GetDisplayHeight function 220
GetFactoryVersion function 222
GetFontAverageCharWidth function 223
GetHeadline function 224
GetJavaException function 56, 225
GetLocaleAttribute function 226
GetLocaleName function 227
GetOSUserName function 228
GetPId function 228
GetReportContext function 229
GetReportScalingFactor function 230
GetROXVersion function 230
GetSearchFormats function 231
GetServerName function 232
GetServerUserName function 233
GetTextWidth function 233
GetUserAgentString function 234
GetValue function 234
GetValueType function 236
GetVariableCount function 238
GetVariableName function 240
GetViewPageFormats function 241
GetVolumeName function 242
GetWindowsDirectory procedure 146
global constants 146
Global keyword 108
global procedures 38, 39, 40
global scope 14, 38
Global statement 14, 15, 243
global variables

assigning values to 15
declaring 15, 146, 148, 243

caution for 245
initializing 15, 245

GoTo keyword 334
GoTo statement 246
graphics files

converting binary 110
searching 171

graphics functions and statements 67
greater than operator (>) 8, 481
greater than or equal to operator (>=) 8, 481

Grouping parameter 35

H
h or hh format symbols 194
Header.bas 214
Headline parameter 224
headlines 224, 402
Hex function 248
Hex$ function 248
hexadecimal notation 249
hexadecimal numbers

assigning to variables 249
converting decimal numbers to 248, 249
defining colors with 20, 364, 377
getting values 454

hidden files 214, 399
hour

counting 129
formatting 194
getting minutes in 308
getting seconds in 354, 387
returning 250

Hour function 250
HTML elements 230
HTTP requests 234
hyperbolic cosecant 501
hyperbolic cosine 501
hyperbolic cotangent 501
hyperbolic secant 501
hyperbolic sin 171
hyperbolic sine 501
hyperbolic tangent 501
hyperlinks

executing 78
searching for targets 77

hyphen (-) character
as numeric operator 8, 473
as wildcard 487
numeric formats and 189

I
I/O functions and statements 66
I/O operations 286, 287, 335
icon style constants 319, 322
icons 319, 322
IDABORT constant 320

I n d e x 521

IDCANCEL constant 320
identifiers 49, 57
IDIGNORE constant 320
IDNO constant 320
IDOK constant 320
IDRETRY constant 320
IDYES constant 320
If keyword 253
If...Then...Else statement 44, 154, 253
Ignore buttons 319, 320, 322
IIf function 255
images 67, 110, 171
Imp operator 10, 484
implication operator 10, 484
implicit date conversions 346
implicit declarations 14
importing data 346, 464
incorrect variable types 244
index numbers (arrays) 16
indexed searches 76, 78, 235
inequality 9, 481
Information icon 319, 322
initializing

arrays 18, 368
Java objects 115
variables 15, 21, 148, 245

input
assigning to variables 209, 289
closing files for 105
creating alerts for invalid 83
defining error messages for 166
getting record size for 286, 287
opening files for 335
reading from sequential files 289
testing end-of-file position 158

input filters 112
Input function 259
input functions and statements. See I/O

functions and statements
Input mode 173, 338
Input statement 256
Input$ function 259
InputB function 261
InputB$ function 261
instance methods 54
instance variables

aliasing 400

counting 238
creating 100
getting values 234

instantiating
classes 62, 115, 325, 326, 397
objects 16, 34, 326, 327

InStr function
described 261
RevInStr compared with 375

InStrB function 26, 263
Int function

described 264
Fix function vs. 183

int type
C functions and 49, 52
Java objects and 54, 55

Integer data type
See also integers
assigning 19, 30
converting to 98
mapping C functions to 49
mapping to Java types 54, 55
returning from C functions 52

integer type-declaration symbol 21
integers

See also numbers
assigning values 19, 30
calculating date or time values and 32,

136, 194
checking conversion status 275
comparing 481
converting to dates 88, 89, 122, 124
converting to doubles 90
converting to longs 103
converting to singles 116
converting to variants 121
defining as constant value 23
defining as variants 24
expressing as exponents 171, 475
getting largest 264
getting square root of 202, 204, 413
returning 8, 98, 182, 475
rounding 6
testing 406

interest rates 266, 366
internal rate of return 311
international alphabets 25

522 P r o g r a m m i n g w i t h A c t u a t e B a s i c

invalid arguments 51, 78
invalid data types 256
invalid identifiers 49
invalid names 49
inverse cotangent 501
inverse hyperbolic cosecant 502
inverse hyperbolic cosine 501
inverse hyperbolic cotangent 502
inverse hyperbolic secant 502
inverse hyperbolic sine 501
inverse hyperbolic tangent 502
investments

See also annuities
getting depreciation for 142, 411, 436
getting interest rates 366
getting net present values 330
getting principal payments 351
getting rate of return 268, 311

IPmt function 266
IRR function 268
Is keyword 396
Is operator 9, 485
IsDate function 33, 270
IsEmpty function 272
IsKindOf function 273
IsNull function 274
IsNumeric function 275
ISO date format 346
IsPersistent function 276
IsSearchFormatSupported function 277
IsViewPageFormatSupported function 278
iterations 6

J
Java classes 53, 114, 115
Java Development Kit 53
Java exceptions 225
Java objects

accessing 53
converting arrays for 55
converting data types for 54–56
creating 53–54, 115
debugging 57
error handling for 56
initializing 115

Java Runtime Environment 53

Java Virtual Machine 53
JDK software 53
job status files 409
jobs. See requests
JRE software 53
JVMs 53

K
keywords

Actuate compiler and 495
C functions and 49
formatting functions 191
numeric formats and 185
operators as 7
restrictions for 12

Kill statement 279

L
l format character 345
language support (programming) 4
launching report applications 107, 408
LBound function 280
LCase function 29, 282
LCase$ function 29, 282
LD_LIBRARY_PATH variable 48
leading spaces

adding to strings 27, 184
defined 301
reading 260, 261
removing 29, 301, 447

leap years 489
Left function 283
Left$ function 283
LeftB function 26, 284
LeftB$ function 284
Len function 285
Len keyword 337
LenB function 286
less than operator (<) 8, 481
less than or equal to operator (<=) 8, 481
Let keyword 287
Let statement 287
Lib keyword 48, 144
LIBPATH variable 48
libraries

accessing functions in 4, 46, 48

I n d e x 523

creating general purpose 238
unloading external 46

library name argument 48
Library Organizer 46, 72
Like operator 9, 470, 486
line breaks 96, 320
line continuation character 11
Line Input statement 289
line numbers

getting 162
setting 247

line widths 461
linefeed characters

character code for 96
reading 260, 261

ListToArray function 290
literal characters

date expressions and 191
numeric expressions and 187
numeric formats and 189

literal strings
adding to expressions 29, 187, 191
copying portions of 302
getting characters in 283, 285, 379, 380
replacing portions of 304, 307
returning 25
trimming 386

literal values
dates as 31, 32
null as 463
static arrays and 450
symbolic constants as 108
time as 32

Loc function 291
local scope 14
local variables

clearing 414
compared to static 414
declaring 16
getting number of 239
preserving 201, 424

locale maps 35
locale names 227
locales

formatting currency values for 189
formatting data for specific 185
formatting string values and 27

getting attributes for 226
getting current run-time 227
specifying dates for 31, 89, 125, 190, 344
specifying numeric values for 33, 35
specifying string data for 25, 27
supporting information for 35

Lock Read keyword 339
Lock Read Write keyword 339
Lock Write keyword 339
Lock...Unlock statement 293
locks 293, 337, 339
LOF function 298
Log function 299
logarithms 299, 502

See also exponentiation
logical expressions 9
logical operators

described 9
order of evaluation for 469
Select Case statements and 396

logical values
assigning numeric values for 19, 43
comparing 9, 396
evaluating 177
getting 187

login names 228, 233
Long data type

See also long values
assigning 19, 30
converting to 103
mapping C functions to 50
returning from C functions 52

long date formats
applying 191, 192
converting 87, 124

Long time format 191
long type

C functions and 50, 52
Java objects and 54

long type-declaration symbol 21
long values 19, 24, 30
Loop While keyword 43
loops

branching 246, 460
building arrays for 17
controlling program flow and 43
creating 43

524 P r o g r a m m i n g w i t h A c t u a t e B a s i c

loops (continued)
defined 460
defining indefinite 150
ending immediately 197
executing variables and 16, 238
executing with conditions 253, 459
exiting 44, 168
interrupting 152
nesting 44, 152, 198
programming constructs for 62
repeating specified number of times 197
repeating statement blocks 459
stepping through 416
temporarily suspending report execution

and 410
lower bounds (arrays) 17
lowercase characters 11, 29
lowercase conversions 196, 282, 453
LSet statement 300
LTrim function 29, 301
LTrim$ function 301

M
m format character 345
Make3Files procedure 106
MakeDataFile procedure 159
mantissa 30

See also scientific notation
mapping column names to data rows 400
math functions and statements 68
mathematical operations

arithmetic operators for 7, 469
concatenation and 471
date or time values and 32
operator precedence in 469, 470
preventing divide by zero errors 387
restrictions for 25
variants and 23, 24

MB_ABORTRETRYIGNORE constant 319,
322

MB_APPLMODAL constant 319, 322
MB_DEFBUTTON1 constant 319, 322
MB_DEFBUTTON2 constant 319, 322
MB_DEFBUTTON3 constant 319, 322
MB_ICONEXCLAMATION constant 319,

322

MB_ICONINFORMATION constant 319, 322
MB_ICONQUESTION constant 319, 322
MB_ICONSTOP constant 319, 322
MB_OK constant 319, 322
MB_OKCANCEL constant 319, 322
MB_RETRYCANCEL constant 319, 322
MB_SYSTEMMODAL constant 319, 322
MB_YESNO constant 319, 322
MB_YESNOCANCEL constant 319, 322
Me keyword 39
Medium date format 191
Medium time format 191
memory

allocating 148, 243
building arrays and 17
de-allocating 46, 160
storing values in 19

memory cleanup function 46
message boxes

adding title bars 320, 323
displaying dynamically 320
displaying text in 199, 260, 318, 321
showing current directory 120

MessageBeep procedure 85
messages

See also error messages
adding line breaks 320
displaying 199, 260, 318, 321
drawing charts and 431
entering invalid input and 83
generating reports and 409
inserting quotation marks in 96
printing 96

Method Editor 72
methods

See also functions; procedures
calling class-specific 38, 101
creating procedures and 5, 38
defining variables local to 16
invoking Java 53, 54
overriding 5
pasting text blocks to 30
referencing specific objects in 39

Mid function 302
Mid statement 304
Mid$ function 302
Mid$ statement 304

I n d e x 525

MidB function 26, 305
MidB statement 307
MidB$ function 305
MidB$ statement 307
military time

getting 191, 194, 441
specifying 88, 133

minus sign (-) character in strings 27
Minute function 308
minutes

counting 129
formatting 194
getting seconds in 354, 387
returning 308

MIRR function 311
mismatched type errors 4
mixing colors 364
MkDir command (DOS) 314
MkDir statement 313
Mod operator 8, 488
modal buttons 322
modal dialog boxes 319, 322

See also message boxes
modality constants 319, 322
modified rate of return 311
modifying. See changing
modules

accessing procedures in 39, 144
user-defined types and 34

modulus 8, 488
monetary values 18, 31

See also currency values
monospaced characters 356, 438
month

entering in expressions 136, 316
getting day of 140
getting difference in 129
getting specific 132, 315

month format characters 193
Month function 32, 315
moving files 323
MsgBox function 318
MsgBox statement 321
multibyte characters 27, 79
multidimensional arrays

associating with classes 100
calling C functions and 51

changing at runtime 281
creating user-defined variables and 449
declaring 17
defining dimensions 148, 244
determining contents 199
getting lower bounds 280, 281
getting upper bounds 452
setting contents of 199
setting lower bounds 340

multiline statements 11, 147, 154
multiplication operator 8, 470

N
n or nn format characters 194
name conflicts 204
Name property 39
Name statement 323
names

aliasing non-standard 49
arguments as 41
C function calls and 47, 48
calling procedures and 41, 42
determining fully qualified 77
getting Encyclopedia 242
getting parameter 41
implicit declarations and 14
Java methods and 54
reserved words as 495
reusing variable 16
special characters in 11

naming
constants 11, 108
functions 201, 203
Java fields 53
procedures 11, 43, 415
source files 72
subprocedures 424
temporary files 228
variables 11, 414

naming conventions 11, 49
negation operator 9, 473, 489
negative exponents 7
negative numbers

comparing 265
displaying 188
financial transactions and 266

526 P r o g r a m m i n g w i t h A c t u a t e B a s i c

negative numbers (continued)
formatting currency values and 186
formatting string values and 27
representing dates 32, 88, 127
rounding 183
specifying 473
testing for 406
valid ranges for 19

nested classes 101, 218
nesting

control structures 44, 152, 253
functions 204
loops 44, 152, 198
statements 169
structures 20
subprocedures 424
user-defined types 34

net present value 67, 330
New keyword 397
new line characters 30, 463
new lines

inserting 463
setting line breaks for 96, 320
setting line widths for 461

NewInstance function 325
NewPersistentInstance function 326
Next keyword 198, 373
No buttons 319, 320, 322
No keyword 187
nonprintable characters 96
non-standard names 49
not equal to operator (<>) 9, 481
Not operator 9, 489
Nothing keyword 398
Now function 327
NPer function 328
NPV function 330
null character 51
null digit placeholder 187
Null keyword 52, 272, 274
null pointers 52
null values

assigning 55, 287
comparing strings and 28
concatenating strings and 10
defining variants as 23, 463
empty values compared to 23

format specifier for 187
passing to C functions 52
returning 7, 272
testing for 274, 481
writing as literals 463

null-terminated strings 51
number sign (#) character

as type declaration symbol 21
as wildcard 487
date and time formats and 31, 32
numeric formats and 187

numbers
assigning to variables 255, 286, 287, 288
assigning values 30
calculating difference between 473
checking conversion status 275
comparing 264, 481
computing values 7
conversion functions for 63
converting for specific locales 33, 35
converting strings to 31, 116, 183, 264, 348
converting to currency 85
converting to dates 32, 88, 89, 122, 124, 271
converting to doubles 90
converting to integers 98
converting to longs 103
converting to singles 116
converting to strings 27, 184, 248, 332, 417
converting to variants 121
declaring enum types for 22
defining as constant value. See constants
defining date and time values as 32, 127,

136, 194
defining variants as 23, 24, 287, 358
dividing 8, 474, 475, 488
entering in strings 25
expressing as exponents 171, 475
extracting from strings 276, 454
financial transactions and 266
formatting 27, 184, 185, 187
generating random 104, 169, 364, 383
getting absolute values 74
getting hexadecimal 248, 249
getting number of digits in 254
getting octal 332
getting square root 202, 204, 413
getting values 454

I n d e x 527

inputting as error code 164, 166
parsing 348
reading from sequential files 256
removing fractional part 98, 182
removing leading spaces 184
representing date and time values 32
returning Boolean values 19, 43
rounding 6, 30, 31, 98, 99, 183
storing 19
testing 406
valid ranges for 19

numeric conditions 43
numeric constants. See constants
numeric data types 19, 30, 31, 32

See also specific type
numeric expressions

adding arithmetic operators 7
bitwise comparisons for 478, 480, 491
conditionally executing statements and 43
converting data types and 35
converting decimal/hexadecimal

values 248
entering time values in 136
evaluating 275
formatting data and 187, 189
inserting blank spaces and 356
printing output and 356
returning absolute values 74
returning character codes 95, 97
returning line widths 461
setting SVG values and 429

numeric variables 30, 31, 245

O
object handles 53, 57
object IDs 57, 227
Object Linking and Embedding. See OLE
object reference variables

comparing 9, 485
creating Java objects and 53
defining 397
getting 235
initialization values for 245
passing to C functions 52

Object type 51, 54
object types 57, 217, 276

object-oriented programming 4
objects

See also Java objects
accessing procedures for 38
building arrays of 16–18
calling class-specific methods for 38
checking for given type 217
copying variables between 112
creating 34
customizing aging settings for 404
defining attributes of 16, 34
determining if persistent or transient 276
discontinuing associations 398
freeing resources for 398
getting class information for 216, 217, 273
instantiating 16, 326, 327
referencing 34, 39, 397, 485

Oct function 332
Oct$ function 332
octal notation 332
octal numbers 332, 455
Off keyword 187
OK buttons 319, 320, 322
OLE applications 65
On Error statement 333
On keyword 187
On/Off format 187
online documentation xi
online help 72
Open statement 335
opening

code example window 72
code examples 72
disk files 165, 199, 292, 336
Library Organizer 72

operands 6, 473
operating environments

See also UNIX systems; Windows systems
getting login names for 228
getting system attributes for 214
getting system dates/time 125, 327, 441
getting variables for 157
locking files and 293
setting file type attributes for 398
storing information for 157
task-specific functions and statements 64

528 P r o g r a m m i n g w i t h A c t u a t e B a s i c

operating systems. See operating
environments

operators
assignment statements and 5
categorized 68
described 469
expressions and 6
naming conventions and 12
null values and 7
order of evaluation for 469
types described 7–10
variants and 23, 24

Option Base statement 340
Option Compare statement 28, 342, 487
Option Strict statement 20, 343
Or operator 9, 490
order of evaluation 469
output

adding spaces to 356
controlling date conversions for 347
defining line widths for 461
formatting 463
getting record size for 286, 287
printing 355, 356, 438
scaling 230
sending to disk files 105, 335, 354, 357

output formats 28
output functions and statements. See I/O

functions and statements
Output mode 173, 338
overflow errors

currency conversions 85
numeric conversions 90, 98, 103, 116
variant types 24, 121

overloading
functions 201
procedures 42, 424

overriding methods 5
overriding operator precedence 469

P
p format symbol 345
parameter lists. See argument lists
parameter names 41
parameters

See also arguments

checking values 38
defining locale-specific rules and 35

parentheses () characters
in expressions 469
in procedure declarations 41
numeric formats and 189

ParseDate function 344
ParseNumeric function 348
parsing

dates 132, 344, 347
numbers 348
strings 226, 374

passing arguments by reference 41, 48, 84
passing arguments by value 42, 48, 84, 145
pasting text blocks 30
path names 93
PATH variable 48, 157
paths

See also search paths
calling C functions and 48
copying files and 174
creating Java classes and 115
default for copy operations 174
default for delete operations 279
deleting files and 279
getting absolute 181
setting system specific 176
specifying partial 93
storing default 15

pattern matching 487
pattern-matching operator 9, 486
patterns

date or time formats 192, 194
string comparisons 9, 486
user-defined formats 187, 195

payment due 128
PDF formats 242, 278
percent (%) character

as type declaration symbol 21
numeric formats and 188

Percent format 186
Percent keyword 186
percentage placeholder 188
percentages 186, 188
periodic cash flows 268, 311, 330
permissions. See privileges
persistent classes 326

I n d e x 529

Persistent keyword 149
persistent objects 77, 276
persistent variables 149
phone numbers 25
plus sign (+) character

as line continuation symbol 11
as numeric operator 8, 471
commenting code and 11
numeric formats and 189

Pmt function 349
pointers

passing to C functions 18, 50, 52
repositioning file 391, 392

portability 4
positive exponents 7
positive numbers

See also integers; numbers
converting to strings 27, 184
displaying 188
financial transactions and 266
representing dates 127
testing for 406
valid ranges for 19

pound sign (#) character
as type declaration symbol 21
as wildcard 487
in date and time values 31, 32
in numeric formats 187

power. See exponentiation
PPmt function 351
precedence 469
PreciseTimer function 354
predefined functions 40
predefined methods 5
present value 206, 266, 361
Preserve keyword 17, 368
principal 351
print position 439
Print statement 354
print zones 356
printers

getting text height for 220
sending control codes to 96

printing functions and statements 67
printing output 355, 356, 438, 461
printing unformatted data 354
PrintReportContext value 229

privileges 76, 337, 338
procedural functions and statements 68
procedure names 11, 41, 42
procedures

See also subprocedures
accessing 5, 38
adding arguments 41–42, 84
adding C functions to 46, 47, 48, 49
adding comments 11, 371
assigning data types to 41, 43
calling 39, 42, 42, 143
creating 5, 38, 40
declaring as static 414
declaring functions as 40
declaring global 38, 39, 40
defining variables in 14, 16, 148
disabling type checking for 18
error handling in 334
executing specific tasks with 5
exiting 44, 169, 202, 425
naming 11, 43, 415
overloading 42, 424
passing values to 41, 42, 48, 84
preserving variables in 201, 415, 424
returning data types from 144
returning values from 38
scoping 38
suspending program execution from 416
unconditional branching in 246

process IDs 228
programmers 5
programming languages 4
programming tasks 38, 53, 61
programs

accessing procedures in 38
adding comments to 371
controlling flow of 62, 84
debugging. See debugging
developing 5, 34, 38
exiting 62, 106
getting available variables for 78
handling run-time errors in 333
incrementing counters for 199
pausing 62
running at specified place 373
running from DOS shell 408
running with conditions 81

530 P r o g r a m m i n g w i t h A c t u a t e B a s i c

programs (continued)
stopping execution 82, 154, 416
timing 442

prompts 447
properties

archiving reports and 404
creating data types and 33
creating reports and 5
naming variables and 78
referencing specific objects for 39

proportionally spaced characters 356
pseudo-random sequences 364, 383
Put statement 357
PV function

compared to NPV function 331
described 361

Q
q format character 193
QBColor function 363
qualified names 77
quarter

defining formats for 193
getting difference in 129
getting specified 132

Query Builder 400
question mark (?) character

as format symbol 345
as wildcard 487

Question Mark icon 319, 322
quotation mark characters

date formats and 191
in code 371
literal strings and 29
numeric formats and 187
print messages and 96
reading 260, 261

R
radians 82
radical prefixes 249, 333
radix characters 348
random files

accessing 336
getting current position 292
getting current position in 393

getting record size 286, 287
locking 294
opening 338, 357
reading from 208, 209
setting position in 391
testing input position 159
writing to 359

Random mode 173, 209, 338, 357
random number generator 364
random numbers

converting 104
creating text files for 159
defining seed values for 365, 442
generating 104, 169, 364, 383
specifying range for 384

random-access file mode 338
Randomize statement

described 364
Rnd statement and 384
Timer function and 442

range of values
array subscripts 369
character lists 487
color codes 377
comparing against 395
hexadecimal numbers 249
octal numbers 333
overflow errors and 24
random numbers 384
type definitions and 18, 20
variant declarations and 24

Rate function 366
rate of return 67, 268, 311
Read keyword 338
Read Write keyword 338
read-only files 214, 399
read-only permissions 338
real types. See Double data type; Single data

type
record numbers 208, 359
record structures 448, 449
records

determining size 286, 287
importing data and 464
locking 294
misreading 210
reading from disk 208

I n d e x 531

specifying length 338
writing to disk 357

rectangle controls 40
recursive statements 6, 101, 204, 426
ReDim statement

described 368
Dim statement and 148
Erase statement and 161

references
assigning to variables 397
closing files and 105
creating objects and 34, 39, 397
defining multiple 485
passing arguments by 41, 48, 84

relational operators 481
See also comparison operators;

comparisons
relative file names 181
Rem keyword 11
Rem statement 371
remainders 8, 488
removing type restrictions 49
Rename command (DOS) 323
renaming

C functions 49
directories 323
files 323

repeating blank spaces 356
repeating characters 420, 421
report aging constants 403
report bursting 76, 402
report components

adding to designs 5
getting class information for 77, 217, 218

report designers. See e.Report Designer;
e.Report Designer Professional

report designs
adding source code to 5, 40, 72
declaring string data and 25
developing 5
embedding images in 110

Report Encyclopedia. See Encyclopedia
volumes

report files
See also specific type
adding search index to 76
archiving 403

assigning permissions 337, 338
closing 105, 372
copying 174
creating multiple 402
creating persistent 326
deleting 279, 280, 404
error handling for 165
getting current position in 291, 392
getting date/time stamps for 175, 179
getting end-of-file indicator 158
getting objects in 227
getting size 178, 298
locking/unlocking 293, 337, 339
moving 323
opening 165, 199, 292, 336
renaming 323
searching for 171, 181
setting position in 390
specifying default 66
testing existence of 177
writing to 355, 357, 372, 463

report object design files 181
report object executable files

generating 107
getting Factory version for 222
getting version number for 230

report object instance files 76, 227, 326, 402
report object web files 403
report sections 101
report servers. See iServer; servers
ReportContext variable 229
reports

creating 5
customizing 238
designing. See report designs
developing 4, 5
displaying 241
embedding images in 110
generating 5, 43, 409
getting contexts 229
opening as read-only 338
restricting access to 293
retrieving data for 76, 208, 256, 289
retrieving specified number of characters

for 259
running functions from 73
specifying default 402

532 P r o g r a m m i n g w i t h A c t u a t e B a s i c

reports (continued)
structuring related data in 33
temporarily suspending 410

requests
creating headlines for 402
getting headlines for 224
getting user agent for 234

reserved characters
date formats 192
numeric formats 187
string formats 195
time formats 194

reserved words
Actuate compiler and 495
C functions and 49
formatting functions 191
numeric formats and 185
operators as 7
restrictions for 12

Reset statement 372
resizing arrays 17, 368, 370
resources 398
restricting access to reports 293, 338
Resume Next keyword 334
Resume Next statement 373
Resume statement 373
resuming program execution 373
Retry buttons 319, 320, 322
return (cash flow) 268, 311
return values

assigning to procedures 40
calling C functions and 47, 52, 55
creating subprocedures and 38
declaring functions for 40, 202
setting conditions for 255
typing 40

RevInStr function 374
RGB color values 364, 376
RGB function 376
Right function 379
Right$ function 379
RightB function 26, 380
RightB$ function 380
RmDir command (DOS) 382
RmDir statement 381
Rnd function 383
.rod files. See report object design files

.roi files. See report object instance files
roles 76
rounding

currency values and 31
numeric values and 6, 30, 98, 99, 183
variant data and 264

rounding errors 31
routines

converting arguments for 85
creating user-defined errors in 164
defining error handling 167, 374

.row files. See report object web files
rows

See also records
declaring multidimensional arrays and 17
mapping to database columns 400

.rox files. See report object executable files
RSet statement 384
RTrim function 29, 385
RTrim$ function 385
running applications 4, 107, 408
running programs

at specified place 373
from DOS shell 408
with conditions 81

run-time errors
disabling handlers for 334
getting error codes for 163
getting line numbers for 162
getting messages for 166
handling 333
setting error codes for 164

run-time stack limit 6
RWCString type 50

S
s or ss format characters 194
SafeDivide function 387
sample code segments 12, 72
saving source files 72
Scalable Vector Graphics. See SVG attributes
scaling controls 230
scaling factor 230
scheduling archiving operations 404
Scientific format 186
Scientific keyword 186

I n d e x 533

scientific notation 170, 171, 186, 188, 476
See also exponentiation

scope
procedure calls and 38, 42
variables and 14, 16, 245

screen attributes 220
scripting controls 230
search conditions

See also search expressions
search formats 231, 277
search indexes 76, 78, 235
search paths

adding directories to 182
calling C functions and 48
specifying 171
UNIX systems and 120

search results 231
Searchable property 77
searching

DHTML reports 231, 277
for data 77
for disk files 171, 181
for special characters 487
graphics files 171

secant 501
Second function 387
seconds

counting 129
formatting 194
returning 354, 387

sections 101
security roles 76
seed values 365, 442
Seek statement 390
Seek2 function 392
Select Case statement 154, 394
selection criteria. See search conditions
semicolon (;) character

numeric formats and 189
printer codes and 356, 438

separators
date values 192
locale-specific data and 35
numeric values 349
tab characters 438
time values 194

sequential files
accessing 336
getting current position 292
getting number of bytes from 261
getting specified characters in 259
locking 294
opening 338, 339
printing to 354, 438, 461
reading 256, 259, 289
testing input position 159
writing to 354, 463

sequential input mode 338
sequential output mode 338
serial numbers

assigning to variables 31, 327
converting dates to 32, 63, 135
converting time values to 64
converting to dates 88
converting to time values 64
formatting 190
getting 32, 135, 442
programming functions for 63, 64
storing 445

server context values 213, 229
server login names 228, 233
server names 232
ServerContext value 213, 229
Set statement 397
SetAttr statement 398
SetBinding function 400
SetBurstReportPrivileges function 76
SetClipboardText function 401
SetDefaultPOSMFile function 402
SetHeadline statement 402
SetStructuredFileExpiration function 403
SetValue function 405
Sgn function 406
share.exe 293
shared files 339
Shared keyword 339
shared libraries 46, 48
Shell function 407
shelling out to DOS 407
SHLIB_PATH variable 48
short date formats 32, 191, 192
Short time format 191
short type 55

534 P r o g r a m m i n g w i t h A c t u a t e B a s i c

ShowFactoryStatus statement 409
Sin function 409
sine 409
Single data type

See also single values
assigning 19, 30
converting to 116
mapping C functions to 50
mapping to Java types 54
returning from C functions 52

single quotation mark (') character 11, 371
single type-declaration symbol 21
single values 19, 23, 24, 30

See also numbers
single-byte characters 25
single-dimension arrays 55
Sleep statement 410
SLN function 411
sorting array elements 460
sounds 83
source code

See also Actuate Basic
accessing examples for 12, 72
accessing Java objects and 54
adding comments to 11, 371
adding external functions to 46, 49
adding Java classes 53, 114, 115
controlling statement flow in 44
disabling while debugging 371
generating 5
implicit declarations and 14
naming conventions for 11
pasting text blocks to 30
referencing specific objects in 39
simplifying programming tasks in 38
unassigned data types and 20
writing 5, 10, 11

source files
accessing C functions in 46
adding to designs 5
creating 72
declaring procedures in 38, 39, 40
pasting code examples to 73
saving 72

space characters
adding to output 356
formatting numeric values and 189

removing from strings 29
repeating 356
returning in strings 412
stripping extra 447

Space function 412
Space$ function 412
Spc keyword 356
special characters

embedding in strings 25, 29
naming conventions and 11
returning 96
searching for 487

spreadsheets
See also e.Spreadsheet reports; Excel

spreadsheets
Sqr function 413
square roots 43, 202, 204, 413
SquareRoot procedure 204
stack 6
standard data types 18

See also data types
Standard format 186
Standard keyword 186
start of day 33
statement block 197
statements

See also procedures
adding C functions 46, 47, 48, 49
adding comments to 11
adding line breaks to 11
alphabetical reference for 71
branching to 246
building arrays and 16, 17, 18
calling 6
changing order of 43
comparing string values and 28
controlling type definitions and 20, 21
creating 5, 11, 61
declaring enum types in 22, 155
declaring functions in 40, 144, 202
defining as recursive 101, 204, 426
entering multiline 11, 147, 154
executing 39
nesting 169
repeating indefinitely 43
repeating specified number of times 44

static arrays 450

I n d e x 535

static fields 54
Static keyword 100, 201, 424
static methods 54
static procedures 414
Static statement 14, 16, 414
static variables

creating 100
declaring 201, 414, 424

Step keyword 197
Stop icon 319, 322
Stop statement 416
stopping program execution 82, 154, 416
storing values 16
Str function 27, 417
Str$ function

described 27, 417
Format$ function vs. 184

straight-line depreciation
double-declining vs. 142
returning 411

StrComp function 28, 418
string comparison operator 9, 486
string constants

copying portions of 302
delimiting 30
embedding special characters in 30
getting first characters 283, 285
getting last characters 379, 380
replacing portions 304
setting values for 23
trimming 386

String data type
assigning 25, 288
character limits for 19
converting to 118
mapping to Java types 55
returning 27, 52

string expressions 25, 29
String function 420
string functions and statements 26, 28, 29, 63,

69
String objects 55
string type-declaration symbol 21
String$ function 420
strings

See also String data type
adding literal characters to 29

aligning characters in 300, 384
as format patterns 184, 192, 194, 195
assigning to variables 288
building 19, 25
changing 304, 307, 422
changing capitalization of 28, 196, 282, 453
comparing 28, 342, 418, 481, 486
concatenating 10, 471, 476
converting dates to 344
converting numbers to 27, 184, 248, 332,

417
converting to arrays 290
converting to currency 85
converting to dates 87, 89, 122, 124, 344
converting to doubles 90
converting to integers 98
converting to longs 103
converting to numbers 31, 116, 183, 264,

348
converting to XML 111
copying 29, 301, 401, 447
copying specific characters in 283, 302, 379
counting characters 285
creating user-defined formats and 187, 191
debugging Java 57
declaring C functions and 49, 51
defining variants as 23
determining height 220
displaying 25, 28, 220
encoding binary images as 110
extracting only numbers from 276
formatting 27–28, 184, 195
getting character codes for 26, 79, 80
getting dates for specified 138
getting first characters 283
getting last characters 374, 379
getting length 285
getting number of bytes in 26, 286
getting number of characters in 26
getting numeric values of 454
getting specific characters 259
getting specified portion of 302, 305
getting starting byte for 263
getting starting position for 261
getting substrings in 26
initializing variable-length 245
parsing 226, 374

536 P r o g r a m m i n g w i t h A c t u a t e B a s i c

strings (continued)
reading 210, 257
removing leading spaces 29, 184, 301, 447
removing trailing spaces 29, 385, 447
replacing portions of 304, 307, 422
representing dates 125
returning ANSI characters in 95
returning binary data in 284, 380
returning empty 52
returning from Clipboard 219
returning from external procedures 42
returning literal 25
returning repeating characters in 420, 421
returning with specified number of

spaces 412
space characters replacing content 166
storing binary data and 25, 26
trimming 301, 385, 447
truncating 300, 385
writing 358

StringW function 421
StringW$ function 421
StrSubst function 422
structure members 20
structures 20, 33, 43

See also control structures
style sheets 242, 434
Sub keyword 144
Sub statement 39, 47

See also subprocedures
Sub...End Sub statement 423
subclasses

declaring 100
testing for instances of 273

subdirectories
See also directories; directory paths
adding to search paths 182
creating 313
deleting 381
determining if exists 382
getting names 214
removing files from 279

subprocedures
accessing 39
adding arguments 425
assigning data types to 426
calling 42

declaring 39, 423
defining C functions in 47
defining constants in 108
exiting 44, 154, 169, 425
initializing variables and 15
naming 424
nesting 424
passing incorrect types to 86
returning values from 38
transferring control to 84

subroutines 248
subscripts. See arrays; multidimensional

arrays
substrings

combining 10, 476
getting first character 283
getting last character 379
getting starting byte for 263
getting starting position for 261, 374
replacing 304, 307, 422
returning binary data in 284, 380
returning first occurrence of 26
returning specified 302, 305
returning starting position of 374

subtraction operations 7
subtraction operator (–) 8, 473
summary values 471
sum-of-years’-digits depreciation 436
superclasses 100
SVG attributes 427, 428
SVGAttr function 427
SVGColorAttr function 428
SVGDbl function 429
SVGFontStyle function 430
SVGStr function 432
SVGStyle function 434
SYD function 436
symbolic constants 108, 401
symbols 7
syntax (programming). See declarations
system attributes 214
system clock

See also time
formatting 32, 191, 194
getting current time 441
getting specific time for 443
setting 32, 88, 133

I n d e x 537

specifying start of day for 33
system dates

displaying 32
getting current 125, 327

system files 215, 399
system variables 157

See also environment variables

T
t format character 345
tab characters

character code for 96
embedding in strings 30
setting position 356, 438

Tab function 438
Tab keyword 356
tab separated values 231, 278
Tan function 440
tangent 440
telephone numbers 25
temporary addresses 84
temporary calculations 16
temporary files

creating 106, 159, 173
determining size 298
getting current position in 292
getting unused file numbers from 200
locking 295
naming 228
reading from 210, 258, 290, 391
writing to 210, 357, 372, 391, 462

testing
conditional statements 43
programs. See debugging

TestRoutine procedure 442
text

adding to headlines 402
aligning 300, 384, 385
changing capitalization of 28, 196, 282, 453
copying 301, 401, 447
defining string variables for 25, 29
determining headline 224
displaying in dialog boxes 199, 260, 318,

321
displaying in title bars 320, 323
getting height 220

getting width 224, 233
pasting 30

text editors 46
text files

accessing 336
reading in random mode 209
reading one line at a time 289
reading sequentially 289
reading specified characters from 259, 261
writing to 356, 461

Text keyword 342
text strings. See strings
Then keyword 253
third-party libraries 46
thousands separator 188, 349
Time function 441
time functions 346
time functions and statements 63
time separators 194
time serial numbers

converting time values to 64
converting to time values 64
formatting 190
getting 442
storing 445

time stamps
file creation 175, 179
file modification 175, 179

time values
as date interval 88, 126, 129, 132
assigning 19
calculating 32
converting to variants 122
displaying 32
entering in date expressions 88, 133
entering literal values for 32
formatting 88, 191, 194
getting current 445
getting hour 250
getting minutes 308
getting seconds 354, 387
getting seconds past midnight 442
getting seconds to midnight 310, 389, 443,

446
getting specific 443
returning system 327, 441

Time$ function 441

538 P r o g r a m m i n g w i t h A c t u a t e B a s i c

Timer function 442
TimeSerial function 442
TimeValue function 445
title bars 320, 323
To keyword 294, 395
totals 16
trailing spaces

defined 447
removing 29, 385, 447

Transient keyword 149
transient objects 276
transient variables 149
trapping errors 82
trigonometric formulas 501
trigonometric functions 68, 501
Trim function 29, 447
Trim$ function 447
trimming strings 301, 385, 447
True keyword 19, 187
true values 8, 481

See also Boolean values
True/False format 187
truncating numbers 182
truncating strings 300, 385
TSV formats 231, 278
ttttt format characters 195
two-dimensional arrays 17
type checking 18
type definitions (typedefs) 20
Type keyword 19
type mismatch errors 24, 286, 482
Type statement 450
Type...As statement 451
Type...End Type statement 448
type-declaration characters

adding to expressions 7
adding to procedures 144
defining currency values and 31
defining variables and 21, 149
listed 21

Typedef keyword 33
types. See data types; specific type

U
UBound function 452
UCase function 29, 453

UCase$ function 29, 453
UCS-2 character sets 421
UCS-2 encoding 80, 97
unassigned data types 20
unformatted data 354
Unicode characters 79
uniform annual depreciation 412
uninitialized variables 272
union filters 112
union type 50
UNIX systems

calling C functions for 46, 48
checking for files on 177
copying files 174
creating directories 313
deleting directories 381
deleting files 279
getting current default directory for 120
getting date/time stamps for 176
getting file size 178
getting system attributes for 214
renaming files 324
setting file type attributes for 399

unknown object types 57
UnknownReportContext value 229
unloading external libraries 46
unlocking files 293
Until keyword 151
upper bounds (arrays) 17
uppercase characters 11, 29
uppercase conversions 196, 282, 453
URLs 242
user agent string 234
user names

getting login 228, 233
getting system information for 64
returning strings as 282

user-defined errors
creating messages for 167
defining error codes for 164, 167
generating 167

user-defined formats 187, 191, 195
user-defined functions 42
user-defined messages 318, 321
user-defined types

assigning to variables 101, 287, 288, 448
assigning values 19

I n d e x 539

creating 33–34, 450
declaring enums as 156
nesting 34
passing to C functions 52

user-defined variables
assigning data types to 449
assigning values to 450
avoiding type mismatch for 286
declaring 34, 146, 448
initializing 245

users
getting login information for 228, 233
placing access restrictions for 76, 293

user-supplied values. See input
user-triggered events 5

V
V_CURRENCY constant 456
V_DATE constant 456
V_DOUBLE constant 456
V_EMPTY constant 456
V_INTEGER constant 456
V_LONG constant 456
V_NULL constant 456
V_SINGLE constant 456
V_STRING constant 456
Val function 31, 454, 455
values

assigning null. See null values
assigning to data types 18
assigning to Java objects 53
assigning to variables 5, 15, 34, 249, 287,

414
assigning to variants 23
changing 41, 42
checking parameter 38
comparing 395
converting to specific type 34
defining constant 20, 23, 108
defining date or time 31
defining numeric data and 30
determining if assigned 272
getting absolute 74
getting numeric 454
passing to procedures 38, 41, 42, 48, 84
placing limitations on 20

retrieving from variables 34
returning from expressions 6, 7
returning from functions. See return values
returning from strings 417
selecting 19
setting conditions for 255
setting dynamically 405
specifying default 21
storing 16
supplying to random number

generator 365, 442
variable lists 258
variable-length arrays. See dynamic arrays
variable-length strings

C functions and 51
copying portions of 302
declaring 25
getting characters in 283, 285, 379, 380
getting length 285
initializing 245
reading 209, 210
replacing portions of 304, 307
trimming 386
writing 358

variables
accessing 62, 400
adding type-declaration characters to 21
aligning strings in 300, 384
assigning data types to 6, 20–21, 24, 146
assigning numbers to 255, 286, 287
assigning strings to 288
assigning to classes 14, 16, 34, 100
assigning to object references 397
assigning values to 5, 15, 34, 249, 287, 414
assigning variant types to 121, 455
avoiding incorrect assignments 149, 415
avoiding name conflicts 204
avoiding type mismatch for 286
calling from external functions 46
calling from structures 34
changing values 41, 42
checking for uninitialized 272
comparing 9, 483, 485
containing empty values 274
containing null values 7, 272
copying values 62, 112
creating global 15, 146, 148, 243

540 P r o g r a m m i n g w i t h A c t u a t e B a s i c

variables (continued)
creating Java objects and 53
creating local 16
creating static 201, 414, 424
creating user-defined 146, 448
declaring 14–16, 20, 148

caution for 149
defining dates as 31, 125
defining numbers as 30, 31
defining scope of 14, 16, 245
defining strings as 25, 29
defining variants as 23–24
describing single items 20
determining data type for 236
determining if exists 237
determining if initialized 272
evaluating boolean 177
getting available 78
getting names 240
getting number of 238
getting values in 34, 234, 417
initializing 15, 21, 148, 245
inverting bit values 479, 490
mapping column names to 400
naming 11, 414
passing by reference 41, 84
passing by value 42, 84, 145
passing to functions 201
passing to procedures 203, 425
preserving values 201, 415, 424
programming tasks for 70
providing aliases for 400
reading data into 208
retaining values of 16
reusing names for 16
setting dynamically 405
specifying indexed searches and 77
storing data in 6, 14, 18
storing return values in 40
testing for null values in 274
testing value assignments for 272
values frequently changing 149
writing to disk files 464

variant data
See also Variant data type
assigning to variables 23–24, 121, 455
building arrays and 17

checking for null 274
comparing 482
converting to currency 85
converting to doubles 90
converting to integers 98
converting to longs 103
converting to singles 116
formatting 27, 184
getting values 235
reading 210, 257, 358
returning first byte for 284
returning first segment of 283
returning from function calls 27, 28
returning from procedures 41
returning last byte for 380
returning last segment of 379
storing as strings 28, 286, 287
storing internally 456
writing to disk files 355, 463

Variant data type
assigning values 23, 30, 288
converting to 121, 122
copying as String 302
declaring 20, 24
initializing 245
limitations 23, 24, 108
mapping C functions to 50

Variant symbolic constants 456
variant type-declaration symbol 21
Variant variables 70
VarType function 23, 456
varying payments 331
vector graphic images 427, 428, 429, 431, 433,

434
Verify function 78
version numbers 211
versions, preserving 404
view formats 241, 278
ViewerReportContext value 229
viewing

class names 217, 218
Clipboard content 401
code examples 72
custom browser output 230
data 356, 439
date and time values 32, 131, 137
error messages 81, 334

I n d e x 541

headlines 223, 224, 225, 403
messages 199, 260, 318, 321
reports 241
search results 231
string values 25, 28, 220

Visual Basic 4, 18, 25
void type 50, 55
Volatile keyword 149
volatile variables 149
volume attributes 214
volume labels 215
volume names 242

See also Encyclopedia volumes
volumes (file system) 213
volumes. See Encyclopedia volumes

W
w format character 345
warning beeps 83
wchar_t type 50
web browsers

developing content for 4, 5, 230
displaying output for 241
getting user agent for 234
returning scaling factor for 230

weekday
counting 129
entering in expressions 131, 136
getting 32, 132, 154, 226, 457

weekday format characters 192
Weekday function 32, 457
While keyword 151
While...Wend statement 459
white space characters. See space characters
whole numbers

See also integers; numbers
as enumerated values 19
getting 98, 182
specifying 30

Width statement 461
wildcard characters 174, 487
window style constants 408
Windows predefined colors 364
Windows systems

calling C functions for 46, 48
changing directories for 92

checking for files on 177
copying files 174
creating directories 313
declaring string variables for 25
deleting files 279
enabling DOS shell for 407
getting date/time stamps for 176
getting default directory for 120, 146
getting file size 178
getting PATH variable for 157
getting system attributes for 214, 215
removing directories 381
renaming files 324
setting file type attributes for 399

working directories
changing 92, 93
setting 93, 120

Write keyword 338
Write statement 463
write-only permissions 338

X
XML character conversions 111
XMLCompressedDisplay formats 242
XMLDisplay formats 231, 242, 277, 278
XMLStyle formats 242
Xor operator 9, 492

Y
y format characters 193, 345
year

determining if leap 489
entering in expressions 136
estimating 88
formatting 193, 345
getting 32, 132, 465
getting difference in 129
getting month of 315

Year function 32, 465
Yes buttons 319, 320, 322
Yes keyword 187
Yes/No format 187

Z
zero values 406
zero-digit placeholder 187

542 P r o g r a m m i n g w i t h A c t u a t e B a s i c

zero-length strings 23, 257
zip codes 25
zooming 230

	Contents
	About Programming with Actuate Basic
	Working with Actuate Basic
	Introducing Actuate Basic
	About Actuate Basic
	Programming with Actuate Basic
	Understanding code elements
	About statements
	About expressions
	About operators
	Using an arithmetic operator
	Using a comparison operator
	Using logical operators
	Using the concatenation operator

	Adhering to coding conventions
	Commenting code
	Breaking up a long statement
	Adhering to naming rules

	Using the code examples

	Understanding variables and data types
	About variables
	Declaring a variable
	Using a global variable
	Using a local variable
	About class variables

	Declaring an array
	About multidimensional arrays
	About dynamic arrays
	About functions used with an array

	About data types
	Using a standard data type
	Using an Actuate Foundation Class data type
	Assigning a data type
	Using the As keyword
	Using a type-declaration character

	About enums
	About constants

	Working with Variant data
	About numeric Variant data
	About functions used for a Variant variable

	Working with String data
	Declaring a String
	Using binary string data
	Manipulating a string
	Formatting a string using Str or Str$
	Formatting a string using Format or Format$
	Comparing strings
	Changing the capitalization of a string
	Removing spaces from a string
	Embedding special characters in a string
	Embedding quotation marks in strings
	Embedding tabs and new-line characters in strings

	Working with numeric data
	About numerical data types
	About the Currency data type
	Converting a string to a number

	Working with date and time data
	Using date and time display formats
	Formatting date and time values

	Working with a user-defined data type
	Using an alias
	Using a structure
	Using a class

	Converting a data type

	Writing and using a procedure
	About procedures
	About scope in procedures
	About methods
	About global procedures
	Declaring a Sub procedure
	Declaring a Function procedure
	Creating a global procedure

	Declaring an argument
	About argument data types
	Passing an argument by reference
	Passing an argument by value

	Calling a procedure
	Calling a Sub procedure
	Calling a Function procedure

	Overloading a procedure
	Using a control structure
	Using a nested control structure
	Exiting a control structure
	Exiting a Sub or Function procedure

	Calling an external function
	Understanding external C functions
	Using a C function with Actuate Basic
	Unloading an external library

	Declaring a C function
	Declaring the C function as a Sub procedure
	Declaring the C function as a Function procedure
	Understanding C function declaration issues
	Specifying the library of a C function
	Passing an argument by value or reference
	About flexible argument types
	Aliasing a non-standard C function name

	Determining an Actuate Basic argument type

	Calling a C function
	Calling a C function with a specific data type
	Passing a string to a C function
	Passing an array to a C function
	Passing a null pointer to a C function
	Passing a user-defined data type to a C function
	Passing an object reference variable to a C function

	About return values from C functions

	Working with a Java object
	About Java requirements
	Creating a Java object
	Invoking a method and accessing a field on a Java object
	Invoking a static method and accessing a static field

	Converting a Java data type
	Converting a Java String
	Converting a Java null
	Converting an array

	About Java exception and error handling
	Debugging a Java object

	Actuate Basic Language Reference
	Language summary
	Arrays
	Classes and instances
	Program flow
	Conversion
	Date and time
	Environment
	Error trapping
	File input and output
	Finances
	Graphics and printing
	Math
	Operators
	Procedures
	Strings
	Variables and constants

	Statements and functions
	Using the code examples
	Abs function
	Acos function
	AddBurstReportPrivileges function
	AddValueIndex function
	Asc function
	AscW function
	Asin function
	Assert statement
	Atn function
	Beep statement
	Call statement
	CCur function
	CDate function
	CDbl function
	ChDir statement
	ChDrive statement
	Chr, Chr$ functions
	ChrW, ChrW$ functions
	CInt function
	Class statement
	ClearClipboard function
	CLng function
	Close statement
	Command, Command$ functions
	Const statement
	ConvertBFileToString function
	ConvertStringToBFile function
	ConvertToXML function
	CopyInstance statement
	Cos function
	CreateJavaClassHandle function
	CreateJavaObject function
	CSng function
	CStr function
	CurDir, CurDir$ functions
	CVar function
	CVDate function
	Date, Date$ functions
	DateAdd function
	DateDiff function
	DatePart function
	DateSerial function
	DateValue function
	Day function
	DDB function
	Declare statement
	Declare…End Declare statement
	Dim statement
	Do…Loop statement
	End statement
	Enum…End Enum statement
	Environ, Environ$ functions
	EOF function
	Erase statement
	Erl function
	Err function
	Err statement
	Error, Error$ functions
	Error statement
	Exit statement
	Exp function
	ExtendSearchPath function
	FileAttr function
	FileCopy statement
	FileDateTime function
	FileExists function
	FileLen function
	FileTimeStamp function
	FindFile function
	Fix function
	Format, Format$ functions
	For…Next statement
	FreeFile function
	Function…End Function statement
	FV function
	Get statement
	GetAFCROXVersion function
	GetAppContext function
	GetAttr function
	GetClassID function
	GetClassName function
	GetClipboardText function
	GetDisplayHeight function
	GetFactoryVersion function
	GetFontAverageCharWidth function
	GetFontDisplayHeight function
	GetHeadline function
	GetJavaException function
	GetLocaleAttribute function
	GetLocaleName function
	GetObjectIdString function
	GetOSUserName function
	GetPId function
	GetReportContext function
	GetReportScalingFactor function
	GetROXVersion function
	GetSearchFormats function
	GetServerName function
	GetServerUserName function
	GetTextWidth function
	GetUserAgentString function
	GetValue function
	GetValueType function
	GetVariableCount function
	GetVariableName function
	GetViewPageFormats function
	GetVolumeName function
	Global statement
	GoTo statement
	Hex, Hex$ functions
	Hour function
	If…Then…Else statement
	IIf function
	Input statement
	Input, Input$ functions
	InputB, InputB$ functions
	InStr function
	InStrB function
	Int function
	IPmt function
	IRR function
	IsDate function
	IsEmpty function
	IsKindOf function
	IsNull function
	IsNumeric function
	IsPersistent function
	IsSearchFormatSupported function
	IsViewPageFormatSupported function
	Kill statement
	LBound function
	LCase, LCase$ functions
	Left, Left$ functions
	LeftB, LeftB$ functions
	Len function
	LenB function
	Let statement
	Line Input statement
	ListToArray function
	Loc function
	Lock…Unlock statement
	LOF function
	Log function
	LSet statement
	LTrim, LTrim$ functions
	Mid, Mid$ functions
	Mid, Mid$ statements
	MidB, MidB$ functions
	MidB, MidB$ statements
	Minute function
	MIRR function
	MkDir statement
	Month function
	MsgBox function
	MsgBox statement
	Name statement
	NewInstance function
	NewPersistentInstance function
	Now function
	NPer function
	NPV function
	Oct, Oct$ functions
	On Error statement
	Open statement
	Option Base statement
	Option Compare statement
	Option Strict statement
	ParseDate function
	ParseNumeric function
	Pmt function
	PPmt function
	PreciseTimer function
	Print statement
	Put statement
	PV function
	QBColor function
	Randomize statement
	Rate function
	ReDim statement
	Rem statement
	Reset statement
	Resume statement
	RevInStr function
	RGB function
	Right, Right$ functions
	RightB, RightB$ functions
	RmDir statement
	Rnd function
	RSet statement
	RTrim, RTrim$ functions
	SafeDivide function
	Second function
	Seek statement
	Seek2 function
	Select Case statement
	Set statement
	SetAttr statement
	SetBinding function
	SetClipboardText function
	SetDefaultPOSMFile function
	SetHeadline statement
	SetStructuredFileExpiration function
	SetValue function
	Sgn function
	Shell function
	ShowFactoryStatus statement
	Sin function
	Sleep statement
	SLN function
	Space, Space$ functions
	Sqr function
	Static statement
	Stop statement
	Str, Str$ functions
	StrComp function
	String, String$ functions
	StringW, StringW$ functions
	StrSubst function
	Sub…End Sub statement
	SVGAttr function
	SVGColorAttr function
	SVGDbl function
	SVGFontStyle function
	SVGStr function
	SVGStyle function
	SYD function
	Tab function
	Tan function
	Time, Time$ functions
	Timer function
	TimeSerial function
	TimeValue function
	Trim, Trim$ functions
	Type…End Type statement
	Type…As statement
	UBound function
	UCase, UCase$ functions
	Val function
	VarType function
	Weekday function
	While…Wend statement
	Width statement
	Write statement
	Year function

	Operators
	* operator
	+ operator
	- operator
	/ operator
	\ operator
	^ operator
	& operator
	And operator
	BAnd operator
	BNot operator
	BOr operator
	Comparison operators
	Eqv operator
	Imp operator
	Is operator
	Like operator
	Mod operator
	Not operator
	Or operator
	XOr operator

	Keywords
	Trigonometric identities
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

