One User Experience

Using BIRT Spreadsheet
Engine and API

Information in this document is subject to change without notice. Examples provided are fictitious. No
part of this document may be reproduced or transmitted in any form, or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of Actuate
Corporation.

© 1995 - 2011 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 2207 Bridgepointe Parkway, San Mateo, CA 94404

www.actuate.com
www.birt-exchange.com

The software described in this manual is provided by Actuate Corporation under an Actuate License
agreement. The software may be used only in accordance with the terms of the agreement. Actuate
software products are protected by U.S. and International patents and patents pending. For a current list
of patents, please see http://www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:

Actuate, ActuateOne, the Actuate logo, Archived Data Analytics, BIRT, Collaborative Reporting
Architecture, e.Analysis, e.Report, e.Reporting, e.Spreadsheet, Encyclopedia, Interactive Viewing,
OnPerformance, Performancesoft, Performancesoft Track, Performancesoft Views, Report Encyc%opedia,
Reportlet, The people behind BIRT, X2BIRT, and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered
trademarks of their respective owners, companies, or organizations include:

Adobe Systems Incorporated: Flash Player. Apache Software Foundation (www.apache.or%)): Axis, Axis2,
Batik, Batik SVG library, Commons Command Line Interface (CLI), Commons Codec, Derby, Shindig,
Struts, Tomcat, Xerces, Xerces2 Java Parser, and Xerces-C++ XML Parser. Bits Per Second, Ltd. and
Graphics Server Technologies, L.P.: Graphics Server. Bruno Lowagie and Paulo Soares: iText, licensed
under the Mozilla Public License (MPL). Castor (www.castor.org), ExoLab Project (www.exolab.org), and
Intalio, Inc. (www.intalio.org): Castor. Codejock Software: Xtreme Toolkit Pro. DataDirect Technologies
Corporation: DataDirect JDBC, DataDirect ODBC. Eclipse Foundation, Inc. (www.eclipse.org): Babel,
Data Tools Platform (DTP) ODA, Eclipse SDK, Graphics Editor Framework (GEF), Eclipse Modeling
Framework (EMF), and Eclipse Web Tools Platform (WTP), licensed under the Eclipse Public License
(EPL). Jason Hsueth and Kenton Varda (code.google.com): Protocole Buffer. ImageMagick Studio LLC.:
ImageMagick. InfoSoft Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts. Mark
Adler and Jean-loup Gailly (www.zlib.net): zLib. Matt Ingenthron, Eric D. Lambert, and Dustin Sallings
(code.google.com): Sipgmemcached, licensed under the MIT OSI License. International Components for
Unicode (ICU): ICU library. KL Group, Inc.: XRT Graph, licensed under XRT for Motif Binary License
Agreement. LEAD Technologies, Inc.: LEADTOOLS. Microsoft Corporation (Microsoft Developer
Network): CompoundDocument Library. Mozilla: Mozilla XML Parser, licensed under the Mozilla
Public License (MPL). MySQL Americas, Inc.: MySQL Connector. Netscape Communications
Corporation, Inc.: Rhino, licensed under the Netscape Public License (NPL). Oracle Corporation:
Berl?eley DB. PostgreSQL Global Development Group: pgAdmin, PostgreSQL, PostgreSQL JDBC driver.
Rogue Wave Software, Inc.: Rogue Wave Library SourcePro Core, tools.h++. Sam Stephenson
(prototype.conio.net): ﬁrototype.js, licensed under the MIT license. Sencha Inc.: Ext JS. Sun Microsystems,
Inc.: JAXB, JDK, Jstl. ThimbleWare, Inc.: JMemcached, licensed under the Apache Public License (APL).
World Wide Web Consortium (W3C)(MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86
Project, Inc.: (www.xfree86.org): xvfb. Yuri Kanivets (code.google.com): Android Wheel gadget, licensed
under the Apache Public License (APL). ZXing authors (code.google.com): ZXing, licensed under the
Apache Public License (APL).

All other brand or product names are trademarks or registered trademarks of their respective owners,
companies, or organizations.

Document No. 110812-2-961006 July 19, 2011

Contents

About Using BIRT Spreadsheet Engineand API Xi
Chapter 1
About Actuate BIRT Spreadsheet Engineand API 1
About Actuate BIRT Spreadsheet Engineand API 2
About Actuate BIRT Spreadsheet Engine and API documentation 3
About the BIRT Spreadsheet APl licensed features 3
Accessing data souIces 4
Exporting spreadsheet reports 4
Creating a calculationengine 4
Separating responsibilities by area of expertise 4
About Actuate BIRT Spreadsheet Engine and APIfiles 5
Deploying Actuate BIRT Spreadsheet Engine, 6
About Actuate BIRT Spreadsheet report design files......................... 6
About Actuate BIRT Spreadsheet Engine examples 7
About the BIRT Spreadsheet API packages, 7
About the workbook classes i 8
About the utility classes 9
About the classes that JBook accessesiiiiiniiiii i, 10
Aboutexceptions 10
Aboutthe APIconstants........... i 10
Chapter 2
Working with workbooks and worksheets 13
About working with workbooks o 14
Understanding the JBook class 14
Understanding the JBookAppletclass 14
Understanding the BookModellmplclass 14
Understanding the BookModel interface 15
Accessing other components from a BookModel object 15
Understanding BookModel method declarations 15
Creating a workbook 16
Writing a Java applet that displays aspreadsheet 17
Compiling the HelloWorld applet 17
Understanding the HTML code for displaying an applet 18
Running the HelloWorld applet 19
Embedding a worksheet in a web page without writing any code 19
Writing a Java swing application that displays a Spreadsheet 20
Creating a servlet or an application without a userinterface 23

Editing a workbook using BookModel interface objects 24

Resetting a workbook to defaultsettings L 25
Grouping workbooks 25
Attaching workbooks 26
Refreshing datain a workbook 26
Understanding multithreading issues 26
Working with worksheetso 27
Understanding selected worksheets il 28
Understanding the active worksheet i i i il 28
Creating worksheets 29
Inserting worksheets L 29
Manipulating worksheets using the BookModel interface 29
Manipulating worksheets through the Sheet interface 30
Deleting worksheets 31
Hiding aworksheet 31
Chapter 3
Working with worksheetelements iuas. 33
About worksheet elements 34
Working with a worksheettab 34
Working withrows and columns i i 34
Setting the first row or columntodisplay 35
Hiding or showing a column orrow i ittt 35
Limiting visible rowsand columns 35
Working with columnwidths o i 36
Setting the units of columnwidth 36
Using automatic columnsizing i 37
Maintaining column width when importingdata 37
Freezingarow oracolumn 37
Determining the last row or column containing data 38
Working with headings 39
Selecting a column orarow heading i 40
Getting and setting heading dimensions 40
Getting and setting heading text 40
Supplying a multiline column orrow heading 41
Setting heading font 41
Hiding row or column headings 42
Working with cells 42
Inserting cells into a worksheet 42
Selecting acell 44
Making the active cell visible 45
Selecting an entire row when selectingacell 45
Making multiple, non-contiguous selections o L. 45

ii

Enabling users to move the active cell by pressing the Enterkey 45

Setting cell protection 46
Merging cells 47
Working witharangeof cells 47
Accessingarangeof cells 48
Copying a range of cells from one worksheet toanother 48
Clearing @ Tange oo e e e e e 48
Working with a worksheet outline i il 49
Working with scrollbars 50
Chapter 4
Working with inputandoutput 53
Reading workbook data fromafile 54
Using the Document class toopenafile 54
About the Group parameter 55
About the DocumentOpenCallback parameter 56
Creating a BookModel object from an Excel spreadsheet file 59
Creating a JBook object from a Document object 59
Reading from an input stream 59
Writing anoutput file 60
About the file type parameter 61
About the DocumentSaveCallback parameter, 63
Writing arange of cells 63
Setting the code page type foranoutputfilel 64
Setting passwords for anoutputfile 64
Using a JBook to refresh an Excel document oo oL 65
Writing toan output stream 65
Writing toan HTML file 66
Setting the formatting options 66
Writing an entire bookas HTML 67
Writing toan XML file 68
Including cell formatting information in the XML outputfile 68
Associating a style sheet with the XML outputfile 69
Writing single or multiplecellranges i i i il 69
Controlling the mergemode 69
Skipping empty cells 69
Writing the XML outputcode 69
Saving window-specific information 70
Understanding Excel file format limitations o i L. 71
Chapter 5
Working withdatasourcest 73
Using data SOUICES 74

ii

Accessing a data source 74

Casting the Source object 75
Setting the properties of the datasourcel 76
Creating and setting a query object 76
Creating a DataRange object and setting itsquery 77
Setting up a detail section to containdata 77
Usingacellentrytoloaddata 78
Generating the workbook 78
Generating Excel output 78
Using afiledatasource 80
Creating a connection to afiledatasource oo 80
Using a delimited text file datasource i 82
Defining a fixed-width textfilequeryl 83
Using a URL to specify afilelocation 83
Using the data set cacheasadatasource i 84
Chapter 6
Working withdatarangescciiiiiiiiii ittt 85
About data ranges e 86
About the data range interfaces 86
Understanding the DataRangeModel interface 86
Understanding the DataRange interface 86
Updating an existing data range definition oL 87
Creating a DataRangeDef object for anew datarange 87
Getting the DataRangeDef object for an existing datarange 87
Creating a Range object that is based on the current selection 88
Formatting thedatarange i 88
Understanding the DataRangeDef interface 88
Understanding the Section interface L 89
Understanding data commands and report script L 90
Writing a Java class that contains data range functionality 90
Chapter 7
Workingwithcelldataoiiiiiiiiiiiii i 93
Aboutcell data 94
Getting and setting cell contents 94
Getting the contentsof acell 94
Using BookModel.getCellText() and Sheet.getText() 94
Using BookModel.getEntry() and Sheet.getEntry() 94
Using getFormula() and getNumber() 95
Setting the contents of acell 96
Understanding the setEntry() methods L 96
Understanding methods that set the content of the activecell 96

iv

Supplying the same valueinarangeofcells, 97

Copying cell data to and from anarray 97
Copying cell data between ranges ...t 98
Loading cells from a tab-delimited string 98
Setting a validation rule foracellorarange il 99
Displaying multiline datainacell 99
Entering concatenated strings and cell references 100
Referring to a cell in another workbook L 100
Creating a hyperlink 100
Clearing, cutting, or deletingacellorcellcontents 101
Clearing cell contentsina JBook 102
Using the editCut() method 102
Understanding locking and protection oL 102
Deleting cells 103
Copying and pasting cell data 103
Copyingdata 103
Pastingavalueonly 104
Usingadefinedname 104
Creatingadefinedname 105
Finding the number of definednamesl 105
Deleting adefinedname 106
Testing if a defined name exists L 106
Getting cell coordinates of a defined namerange 106
Specifying constant coordinates in a defined namerange 107
Accessing cell data 107
Getting the text valueof aformula oo 107
Finding out celldatatype i 107
Getting a formatted cell reference 108
Sorting cell data 108
Using the sortand sort3methods o 108
Sorting dates or numbers suppliedastextl 109
Chapter 8
Working with formatting and display options 111
Formattingacell orrangeof cells 112
Setting a pattern and colorofacell 112
Setting vertical and horizontal alignment 114
Applying formatting tosubstrings 115
Hiding and locking acell 115
Formatting numbers, dates,and times 116
Understanding locale-specific formatting 120
Understanding setCustomFormatLocal() 120
Displaying all digits of alargenumber L 121

Formattingadate e 121

Formatting text 122
Changing a font 122
Setting font attributes 122
Setting text direction 123
Getting formatted text fromacell 124

Using a conditional format 124

Understanding ConditionalFormat objects L. 125
Understanding condition types i i il 125
Understanding the comparison operators, 125
Understanding the conditional formulas 126
Understanding the formula parameter 127
Understanding setEntry1(), setEnty2(), setFormulalLocal(), and

setFormula2local()ooo ot 127
Understanding setFormulal() and setFormula2() 127
Understanding the row and column parameters 128

Understanding the conditional formatting process 128

Understanding custom display options 129
Turning typemarkerson 129
Showing either a formulaoritsresulto L 129

Chapter 9

Working with graphical objects andcharts 131

Understanding the charting API ... 132

Setting the chart type e 132

Assigning cell datatoachart 134

Finding achartbyname 135

Setting series, axes, and chart titles 136

Creatingachartsheet 136

Setting the series typeo i 136

Creatinga3Dchart 137

Adding a picture toaworksheet 139
Adding a graphical object to a worksheet 139
Chapter 10

Working with printoptions i i 141
About print Options 142
Printing a worksheet or a defined range of cells 143
Setting print orientation 144
Working with printscale 144

Printing to a specific scale or number of pages 144

Setting the printscale 145

Scaling to fit-to-page horizontallyonly 145

vi

Using fitToPage with multiple printranges 145

Working witha printarea 146
Settingaprintarea i 146
Returning print area information i 147
Clearing a print areauuun e 147

Printing in greyscale 147

Working with a print header, footer, ortitle o i il 147
Settingaprinttitle 147
Formatting a print headerorafooter 148
Creating a multiline printheaderl 149
Printing a four-digit year in a headerorafooter 149
Printing column and row headingsl 150
Printing row or column titlesoneverypage L 150

Printing with nobordersor gridlines oL 150

Chapter 11

Working with pivotrangescciiiiiiiiii i it i 151

ADbOUt PIVOL TANGES e 152

Creating a pivot Tangeottt 152

Understanding the pivot range class organization 152
Understanding the PivotRangeModel object 152
Understanding the PivotRangeobject il 153
Understanding the PivotRangeDef object 154

Understanding the PivotRangeOptionsobject 154
Understanding the DataSourcelnfo object, 155
Understanding the Areaobjects il 155
Understanding Field objects 155
Understanding the Item object i i 155
Understanding row, column, and data field objects 156
Understanding calculated fields 157
Understanding the special data field object 158
Understanding the SummaryField object 158
Setting the format of a summary field L 159
Understanding the FieldSettings object 159
Understanding the SummaryFieldSettings object 160
Understanding the Rangeobject 161
Understanding pivot field grouping il 162
Formattingapivotrange 163

Chapter 12

Workingwitheventst i e 165

About events 166

Working with userediting i 167

vii

Determining whether a worksheet has been modified 167

Determining whether the userisineditmode 167
Getting the most recent dataentry i 168
Maintaining cell format when the userentersavalue 168
Cancelling what a user typesinacell 169
Initiating in-cell editing 169
Getting a cell value before user editing begins 170
Working with user key and mouseevents i il L 170
Determining which key the user pressed 170
Converting pixels to twipsonmouseevents il 170
Creating a shortcut key for copying or pasting 171
Locating theactivecell 171
Working with user selectioneventsl 172
Determining when a user changescells ... 172
Determining when a user changes worksheets 172
Restricting USer access 173
Restricting editing toacolumn 173
Enabling users to delete values and formatting 173
Allowing users to select an unprotected cellonly 174
Limiting the selectionrange 174
Preventing users from typing data o L 174
Limiting characters users typeinacell L 175
Validating edit data fromcode L 175
Chapter 13
Understanding BIRT Spreadsheet Engine performance 177
Using memory efficiently 178
Getting and releasing locks 178
Allocating row and column referencesiiiiiiiiiiiiiiiia 179
Understanding data structure and memory size 180
Usingarow reference i 180
Usingacellreference 181
Usingacell 181
Increasing or decreasing garbage collection 181
Understanding recalculation 182
Maintaining speed when readingindata L 182
Chapter 14
Integrating BIRT Spreadsheet Engine with Java applications 183
About BIRT Spreadsheet Engineand J2SE i 184
Writing an application class that extends JFrame oo L 184
Accessing the BIRT Spreadsheet API using JavaScript 186
Using an add-in function 188

viii

Understanding the FuncContextobject 189

Understanding the Valueobject il 190
About an example of an add-in function 191
Making add-in functions determinant oo o il 192
Chapter 15
Integrating BIRT Spreadsheet Engine with servlets and JSPs 193
About BIRT Spreadsheet Engineand J2EE i i, 194
Using BIRT Spreadsheet Engine withina Javaservlet 194
Compiling and deploying a Java servlet that uses the BIRT Spreadsheet API 194
Setting the MIME type 194
Writing to the servlet outputstream i i il 195
Getting data i 196
Using sample servlets i 196
Sending an Excel file to the browser 196
Displaying a chartasanimage i i 197
Creating HTML output i 199
Passing parameters i 201
Index e e e 203

ix

Using BIRT Spreadsheet Engine and API provides concise discussions and code
examples to answer common questions about how to use the BIRT Spreadsheet
API

Using BIRT Spreadsheet Engine and API includes the following chapters:

m About Using BIRT Spreadsheet Engine and API. This chapter provides an
overview of this guide.

m Chapter 1. About Actuate BIRT Spreadsheet Engine and API. This chapter explains

the Actuate spreadsheet products and technologies.

m Chapter 2. Working with workbooks and worksheets. This chapter describes how to
use the BIRT Spreadsheet API to create and manipulate worksheets, provides

an overview of the classes and interfaces that represent workbooks and
worksheets, and explains multithreading methods and best practices.

n Chapter 3. Working with worksheet elements. This chapter explains how to use the

BIRT Spreadsheet API to create and work with sheets, rows, columns, cells,
headings, ranges, outlines, and scrollbars.

m Chapter 4. Working with input and output. This chapter describes how to use
BIRT Spreadsheet API read and write methods, including discussions about
how to write BIRT Spreadsheet data into various output formats.

m Chapter 5. Working with data sources. This chapter explains how to use the BIRT

Spreadsheet API to create a database or file connection, set a data range, use
stylesheet, refresh source data, and configure connection information.

a

m Chapter 6. Working with data ranges. This chapter describes how to use the BIRT
Spreadsheet API to create or modify a data range and how to write a Java class

that contains data range functionality.

About Using BIRT Spreadsheet Engine and API

xi

Xii

Chapter 7. Working with cell data. This chapter describes how to manage cell
data and defined names using the BIRT Spreadsheet APL

Chapter 8. Working with formatting and display options. This chapter describes
how to format cells and cell data using the BIRT Spreadsheet APL

Chapter 9. Working with graphical objects and charts. This chapter describes how
to create and manipulate graphical objects and charts using the BIRT
Spreadsheet API.

Chapter 10. Working with print options. This chapter describes how to
manipulate common print settings using the BIRT Spreadsheet API.

Chapter 11. Working with pivot ranges. This chapter describes how to create and
manipulate a pivot range using the BIRT Spreadsheet API.

Chapter 12. Working with events. This chapter describes how to handle Java
events in Swing applications using the BIRT Spreadsheet API.

Chapter 13. Understanding BIRT Spreadsheet Engine performance. This chapter
describes how to maximize the performance of the Actuate BIRT Spreadsheet
Engine.

Chapter 14. Integrating BIRT Spreadsheet Engine with Java applications. This

chapter describes how to integrate the Actuate BIRT Spreadsheet Engine into
Java applications and applets.

Chapter 15. Integrating BIRT Spreadsheet Engine with servlets and JSPs. This
chapter describes how to integrate the Actuate BIRT Spreadsheet Engine into
servlets and JSPs.

Using BIRT Spreadsheet Engine and API

About Actuate BIRT
Spreadsheet Engine
and API

This chapter contains the following topics:

About Actuate BIRT Spreadsheet Engine and API

About Actuate BIRT Spreadsheet Engine and API documentation
About the BIRT Spreadsheet API licensed features

About Actuate BIRT Spreadsheet Engine and API files

About the BIRT Spreadsheet API packages

Chapter 1, About Actuate BIRT Spreadsheet Engine and API

1

About Actuate BIRT Spreadsheet Engine and API

The Actuate BIRT Spreadsheet Engine and APl is a collection of Java components
that can control and edit spreadsheet reports. The technology can collectively
design, securely distribute, and dynamically display spreadsheets as a Java
Application, Applet, Java Server Page(JSP), or servlet. Any of these
implementations can also provide a user interface whereby users can interact
with the spreadsheets dynamically, redesign them, and redistribute them in a
secure and versioned fashion. The report is interactive because it allows the user
to enter data and formulas into the report, using familiar Excel spreadsheet
controls. It is dynamic because it populates the report with data from one or more
live data sources.

BIRT Spreadsheet API consists of the following two logical components:

m BIRT Spreadsheet API (application programmer interface) is a Java class
library for accessing and editing spreadsheet reports. You do not require a
license to use the BIRT Spreadsheet API. This API supports the following
actions:

m Reading and writing an Excel 97 or Excel 2007 file
m Accessing Excel charts

m Accessing Excel pivot tables

m VBA macro pass-through

The BIRT Spreadsheet API does not support creating or using spreadsheet
object design (.sod) or spreadsheet object instance (.soi) files. You cannot
access external data sources using this API. The API does not support printing
or exporting Excel files to other formats such as PDF or HTML.

m Actuate BIRT Spreadsheet Engine is a complimentary Java Class library to the
BIRT Spreadsheet API that supports creating spreadsheet reports inside Java
applications, applets, servlets, and JSPs.

Developing and deploying applications that use the Actuate BIRT Spreadsheet
Engine requires a license file. For information about obtaining a license file,
see Installing BIRT Spreadsheet Engine and API. For information about
deploying the license file with an application, see the information in this book
about creating an application as an applet, servlet, and so on.

For more information about the BIRT Spreadsheet API classes, see the API
Javadoc. The default location of the Javadoc is:

<Install Dir>\espreadsheetengineandapi\javadoc

In addition, Actuate provides the Actuate BIRT Spreadsheet Designer, a design
tool for creating spreadsheet object design (.sod) files. The User Interface uses the

2 Using BIRT Spreadsheet Engine and API

BIRT Spreadsheet API extensively. For more information about the Actuate BIRT
Spreadsheet Designer, see Designing Spreadsheets using BIRT Spreadsheet Designer.

About Actuate BIRT Spreadsheet Engine and API
documentation

In addition to the Javadoc, this manual and others describing the Actuate BIRT
Spreadsheet products are included with the Actuate BIRT Spreadsheet Engine
and API. The default location of the Javadoc is:

<Install Dir>\espreadsheetengineandapi\manuals

About the BIRT Spreadsheet API licensed features

The BIRT Spreadsheet API contains licensed functionality that supports creating,
editing, displaying and managing every aspect of a spreadsheet report, including:

m One or more data sources and data sets with which to populate the report
m Cell, column, and row formats

m Formulas

m Protection and visibility controls at cell, sheet, and workbook levels

m Pivot ranges

m Report parameters and query parameters

m Hyperlinks

m Charts that link to chart data ranges

m VBA macro pass-through implementations

Through the BIRT Spreadsheet API, you can also import a file that defines any or
all of the features of the spreadsheet report. Using the BIRT Spreadsheet API, you
can import the following kinds of files:

m Existing Excel spreadsheets

m Spreadsheet object design (.sod) files

m BIRT Spreadsheet report template (.vts) files from earlier releases
m Comma-separated values (.csv) files

m XML files

Chapter 1, About Actuate BIRT Spreadsheet Engine and APl 3

Accessing data sources

By using functionality that is embedded in the BIRT Spreadsheet API, you can
query database sources from several kinds of connections, including;:

s JDBC

m Text file

m Text data from a URL

m SAPR/3 or BW

m Actuate Information Object
m Web service

You create a custom query on each data source that you use and specify a data
range that the data populates. For more information about accessing data sources,
see Designing Spreadsheets using BIRT Spreadsheet Designer.

Exporting spreadsheet reports

A user can view an embedded report and manipulate its data, using the familiar
Excel spreadsheet interface. If the user makes changes to data in the report, the

program can save the data to an Excel file, commit the changes to a database, or
pass the data to another application in a number of different formats, including;:

s HTML

m Excel

m Spreadsheet object instance (.soi) file
s PDF

m Text

Creating a calculation engine

You can use BIRT Spreadsheet Engine on an application server as a calculation
engine. When you embed BIRT Spreadsheet Engine in a J2EE project, you
automate the process of accessing, updating, calculating, and extracting data
from a company’s databases and other data sources.

Separating responsibilities by area of expertise

With Actuate BIRT Spreadsheet Engine, Java developers can write the code to
access and extract data from spreadsheets and databases while spreadsheet
experts can write and maintain the business logic and calculations on Excel
spreadsheets. In this way you apply human resources more appropriately.

4 Using BIRT Spreadsheet Engine and API

About Actuate BIRT Spreadsheet Engine and API files

The set of files that accompanies BIRT Spreadsheet Engine includes files that
contain the BIRT Spreadsheet Engine and files that contain documentation and
sample code. Some of the files appear in both the espreadsheet and
espreadsheetengineandapi directory trees. Table 1-1 lists the entire set of BIRT

Spreadsheet files.
Table 1-1 Actuate BIRT Spreadsheet Engine files
Type Name Description
Documentation \espreadsheetengineandapi\ Contains information about BIRT
readme.txt Spreadsheet Engine and BIRT
Spreadsheet Designer Release Notes.
JAR files \espreadsheetengineandapi\jars = Contains the JAR files necessary for
building reports in applets,
applications, servlets, and JSPs.
APIJAR file \espreadsheetengineandapi\jars\ Provides almost all the functionality
essd1l jar of the BIRT Spreadsheet API classes.
essd11 jar includes BIRT Spreadsheet
Engine’s Java Swing-specific classes.
Secondary JAR, \espreadsheetengineandapi\jars\ Provides classes that relate to the
WAR, and EXE derbyjar sample databases, including the
files Derby JDBC Driver. Required for
Actuate Spreadsheet file formats, .sod
and .soi.
\espreadsheetengineandapi\jars\ Helps with hyperlinks.
HyperlinkHelper.exe
\espreadsheet\idapi.jar Provides classes for internal Actuate
e.Spreasheet Engine operations.
\espreadsheetengineandapi\jars\ Provides classes for creating PDF
JNIMethods.dll files.
\espreadsheetengineandapi\jars\ Provides classes for creating PDF
iText.jar files.
Localization \espreadsheetengineandapi\local Provides localized language support
files for BIRT Spreadsheet Designer. Each

supported locale has a separate .jar
file of the form f1j11_xx.jar, where xx
is a two-letter locale code.

(continues)

Chapter 1, About Actuate BIRT Spreadsheet Engine and API

5

Table 1-1 Actuate BIRT Spreadsheet Engine files (continued)

Type

Name

Description

Localization
files (continued)

API
documentation

Documentation
Sample

databases

Examples

Help

\espreadsheetengineandapi\local
(continued)

\espreadsheetengineandapi\
javadoc

\espreadsheetengineandapi\
manuals

\espreadsheetengineandapi\
databases

\espreadsheetengineandapi\
examples

\espreadsheetengineandapi\
Servlets

\espreadsheetengineandapi\help

For example, f1j11_ja.jar provides
Japanese language support.

For more information about the
languages that BIRT Spreadsheet
Designer supports, see Designing
Spreadsheets using BIRT Spreadsheet
Designer.

Contains API documentation for the
BIRT Spreadsheet API in Javadoc
format. The primary Javadoc file that
links to all the other Javadoc files is
index.html.

Provides the user guides in PDF
format.

Contains sample databases to which
the BIRT Spreadsheet examples refer.

Contains several sets of example code
that shows how to use BIRT
Spreadsheet code in applications and
applets.

Contains the writeURL servlet.

Contains online help files in HTML
format.

Deploying Actuate BIRT Spreadsheet Engine

To use BIRT Spreadsheet Engine in an application or applet, you must include
essd1ljar and derbyjar in the classpath of the application or applet. The relevant
JAR files reside in the \espreadsheetengineandapi\jars folder. You must also
deploy the license file, eselicense.xml, in the application’s classpath or with the

applet.

About Actuate BIRT Spreadsheet report design files

BIRT Spreadsheet Engine can create, read, and save information about a
workbook or worksheet in a report design file, called the spreadsheet object
design file. A spreadsheet object design file has the .sod extension. You can create
a report design file with either BIRT Spreadsheet Designer or the BIRT
Spreadsheet API.

6 Using BIRT Spreadsheet Engine and API

About Actuate BIRT Spreadsheet Engine examples

BIRT Spreadsheet Engine provides several example programs that illustrate how

to integrate the product into applets, applications, JSPs, and servlets. The
examples also illustrate some common analytical techniques that you can use in

your own programs. These examples are available on-line:

http://es.actuate.com/eSeDemos

http://es.actuate.com/xlsreporting

http://www.birt-exchange.org/wiki/FAQ:Spreadsheets in Java/

About the BIRT Spreadsheet API packages

The BIRT Spreadsheet API is organized into several packages, all of which are
available in essd11.jar. As shown in Table 1-2, some of the packages are used in
BIRT Spreadsheet Designer in addition to the BIRT Spreadsheet Engine and APL

Table 1-2 BIRT Spreadsheet API packages
Package Description Used in Primary classes
com.flj.addin Contains the abstract class BIRT Func
Func for creating a custom Spreadsheet
worksheet function Engine and
accessible from the API
spreadsheet.
com.flj.chart Contains the charting API, BIRT ChartModel
which supports dynamically Spreadsheet
creating and altering BIRT Designer,
Spreadsheet charts. BIRT
Spreadsheet
Engine and
API
com.flj.data.* Contain the external data BIRT DataSet
connection API for Spreadsheet
dynamically creating a data Designer,
source, data query, and data BIRT
range for creating a Spreadsheet
spreadsheet report. Engine and
API
com.flj.mvc Contains the base interface ~ BIRT Constants
for a model in the BIRT Spreadsheet ~ Models
Spreadsheet Engine model- Engine and
view-controller architecture. API

(continues)

Chapter 1, About Actuate BIRT Spreadsheet Engine and APl 7

http://es.actuate.com/eSeDemos
http://es.actuate.com/xlsreporting
http://www.birt-exchange.org/wiki/FAQ:Spreadsheets_in_Java/

Table 1-2 BIRT Spreadsheet API packages (continued)
Package Description Used in Primary classes
com.flj.ss Contains user interface BIRT BookModel
classes for saving Spreadsheet CellFormat
spreadsheets as HTML, Designer, Document
formatting cells, and BIRT Sheet
accessing a spreadsheet. Spreadsheet
Engine and
API
com.flj.swing.engine.ss Contains BIRT Spreadsheet =~ BIRT JBook
components for Spreadsheet JBookApplet
manipulating spreadsheet Engine and
content. API
com.flj.swing.designer ~Provides BIRT Spreadsheet =~ BIRT Designer
Designer interface for Spreadsheet
accessing interface Engine and
components. API
com.flj.swing.ui.ss Contains classes for opening BIRT For example,
Swing-based dialog boxes to Spreadsheet =~ FormatCellsDlgand
collect information from a Engine PageSetupDlg
user.
com.flj.util Contains the BIRT BIRT F1Exception
Spreadsheet exception class. Spreadsheet
Designer,
BIRT
Spreadsheet
Engine and
API

The following sections describe the most commonly used classes in the BIRT
Spreadsheet API, including the workbook, utility, exceptions, and constant
classes, and the classes that JBook accesses.

About the workbook classes

Spreadsheets are organized into workbooks. The BIRT Spreadsheet Engine and
API uses the JBook class to display and interact with a workbook. Like the other
workbook classes provided by the BIRT Spreadsheet Engine and API, JBook
implements the BookModel interface and serves as a practical example of any
workbook class. For more information about using the JBook class, see Chapter 2,
“Working with workbooks and worksheets.”

8 Using BIRT Spreadsheet Engine and API

Table 1-3 describes the main classes that create and deploy workbooks in an

application or applet.

Table 1-3 Primary classes

Class

Description

com.flj.swing.engine.ss.JBook

com.flj.swing.engine.ss.
JBookApplet

com.flj.swing.designer.Designer

Provides methods for manipulating
workbook contents. You can instantiate this
class from an applet, servlet, or application.

An applet implementation of the JBook
class.

Provides menus, toolbars, and dialog boxes,
on top of the com.flj.swing.engine.ss.JBook
spreadsheet component to support creating,
modifying, and formatting spreadsheet
files.

This class is a licensed feature of the BIRT

Spreadsheet Engine, and is not available in
the unlicensed BIRT Spreadsheet APL

About the utility classes

Table 1-4 describes the classes that write HTML files from spreadsheets and
support JDBC database connectivity for BIRT Spreadsheet Engine.

Table 1-4 Utility classes

Class

Description

com.f1j.ss. HTMLWriter
com.f1j.ss. XMLWriter

com.flj.swing.engine.ss.
ChartImageEncoder

com.flj.util. Group

Provides static methods for converting a
worksheet to an HTML table.

Provides methods for converting a
worksheet range to XML.

Creates images and image maps from
charts, typically for use in a servlet.
This class is a licensed feature of the BIRT

Spreadsheet Engine, and is not available in
the unlicensed BIRT Spreadsheet APIL.

Specifies the locale in which to run BIRT
Spreadsheet Engine.

Chapter 1, About Actuate BIRT Spreadsheet Engine and API

9

About the classes that JBook accesses

Table 1-5 describes the classes that the JBook class has access to. These classes
support the spreadsheet features that JBook exposes in the user interface.

Table 1-5 Classes that JBook returns
Class Description
com.flj.util.CellFormat Sets and gets formatting information from
spreadsheet cells.
com.flj.drawing.Shape Represents graphical objects that appear on
a spreadsheet.
com.f1j.ss.GRObjectPos Provides the coordinates of a graphical
object.
com.flj.ss.FindReplacelnfo Contains information about the last find
and replace operation that was called.
com.flj.ss.NumberFormat Represents the custom formats in a
spreadsheet.
com.flj.ss.RangeRef Represents a range of cells.
com.flj.ss.CellRef Represents a cell.

About exceptions

The one exception class in the BIRT Spreadsheet Engine and API is
com.f1j.util. F1Exception. Several method calls throughout the API can throw
com.f1j.util. F1Exception.

About the API constants

All BIRT Spreadsheet API constants are in the four Constants interfaces. Table 1-6
describes the BIRT Spreadsheet API Constants interfaces.

Table 1-6 BIRT Spreadsheet API Constants interfaces

Interface Contains

com.flj.chart.Constants ~ Constants that the ChartModel interface uses to
create, format, and print charts.

com.flj.data.Constants ~ Constants that the Data interface uses.

com.flj.mvc.Constants Paper size constants.
com.flj.ss.Constants Constants that most BIRT Spreadsheet API classes
use.

10 Using BIRT Spreadsheet Engine and API

Importing any of these interfaces provides access to the BIRT Spreadsheet API
constants that it contains. Referring to an individual class provides access to all
the constants within that class.

Most BIRT Spreadsheet API classes implement the com.f1j.ss.Constants interface.
You can access these constants using any BIRT Spreadsheet API class that
implements the com.f1j.ss.Constants interface.

Chapter 1, About Actuate BIRT Spreadsheet Engine and API 11

12 Using BIRT Spreadsheet Engine and API

Working with workbooks
and worksheets

This chapter contains the following topics:

About working with workbooks

Creating a workbook

Editing a workbook using BookModel interface objects
Understanding multithreading issues

Working with worksheets

Chapter 2, Working with workbooks and worksheets

13

About working with workbooks

This chapter provides a foundation for understanding the workbook classes
implemented by the BIRT Spreadsheet API. For a complete list and descriptions
of all the methods in the workbook classes and interfaces, refer to the BIRT
Spreadsheet API Javadoc.

The following three classes provide editing capabilities to a workbook and they
all implement the BookModel interface:

m com.flj.swing.engine.ss.JBook provides user interface elements for displaying
and editing a workbook.

m com.flj.swing.engine.ss.JBookApplet provides methods for displaying and
editing a workbook as an applet.

m com.flj.ss.BookModellmpl provides methods for editing a workbook, but
does not have a user interface.

Understanding the JBook class

JBook is a fully functional Java Swing component that you use inside a Java
Swing application to access and display a workbook. JBook extends the
com.flj.swing.common.Panel class, which supports adding a JBook object to a
Java Swing pane. The JBook class contains an underlying spreadsheet data
structure that you can access directly by requesting a com.flj.ss.Bookmpl object
from a JBook object.

The JBook class also implements the BookModel interface. All of the BIRT
Spreadsheet functionality of the JBook class that does not pertain to the user
interface resides in the methods declared by the BookModel interface.

Understanding the JBookApplet class

JBookApplet is functionally identical to JBook, but it extends javax.swing.JApplet
instead of javax.swing.JPanel. This makes it accessible from an HTML page.

Understanding the BookModellmpl class

BookModellmpl is a generic class that provides editing functionality for
workbook content and implements the BookModel interface. BookModellmpl
only extends java.lang.object so does not include swing functionality like JBook
or JBookApplet. It does contain the view information associated with the other
user interface implementations, such as current selection and visible rows and
columns. The view information that BookModellmpl provides control over
includes:

m The current selection

14 Using BIRT Spreadsheet Engine and API

m The first visible row and column, which specifies the view position
m Split windows and frozen panes
m All the options a user can set in Tools>Option>View in Excel

m All the options a user can set in Tools>Options>General in BIRT Spreadsheet
designer

m All the options a user can set in Format>Sheet->Properties>View in BIRT
Spreadsheet Designer

The above controls are in addition to those declared by the BookModel interface
for editing workbook content.

Understanding the BookModel interface

The BookModel objects provide access and editing capabilities to workbooks and
workbook content. The BookModel interface does not include methods that relate
to the user interface, such as event handling and listener management, but the
JBook and JBookApplet classes add this functionality.

Besides JBook, JBookApplet, and BookModellmpl, callback classes also use a
BookModel object to provide access to the workbook. For more information about
callback classes and examples, see Designing Spreadsheets using BIRT Spreadsheet
Designer.

Accessing other components from a BookModel object

The BookModel interface declares methods to get the components of a workbook,
including:

m Sheets

m Cells

m Data ranges

m Data sources
m Charts

m Pivot ranges

m Format objects

Understanding BookModel method declarations
The BookModel interface declares methods to do the following tasks:
m Operate on individual worksheets and sets of worksheets.

m Manage the following aspects of a workbook:

Chapter 2, Working with workbooks and worksheets 15

Selected cells, rows, columns, and sheets

Active cell, row, column, and sheet

Defined names

Specific cell content

Display characteristics, such as fonts, labels, and column and row sizes
File input and output

Password protection

Graphic objects

Transactions

Allowable user actions

Print settings

m Attach and copy the workbook to another workbook.

m Recalculate the workbook.

m Manage the appearance of the workbook, including such features as:

The default font

The view scale

The visible area

The workbook border

Creating a workbook

How you create a workbook depends on whether you are using the workbook in

an environment that has a user interface. If you create a workbook in an
environment where the user can interact with the workbook, you must use a
JBook object because a JBook object contains functionality for managing user

interface events. If you create a workbook in a servlet or that does not have a user
interface, use a BookModellmpl object because it eliminates the extra overhead of

user interface functionality. There is also an option to create and display the
workbook in a web browser using JBookApplet, which requires no code.

The following sections detail examples of how to use each object. The applet
examples involve the least code, so they appear first.

16 Using BIRT Spreadsheet Engine and API

Writing a Java applet that displays a spreadsheet

The following Java applet contains the minimum necessary code to create a
spreadsheet using JBook that displays “Hello World”:

import java.awt.*;
import javax.swing.*;
import com.flj.swing.engine.ss.*;

public class HelloWorld extends JApplet

{

public void init ()

{

}
}

getContentPane () .setLayout (null) ;
JBook jbookl = new JBook() ;
jbookl.setSize (400, 400);
jbook.setText (1, 0, "Hello World");
getContentPane () .add (jbookl) ;
setVisible (true) ;

This example illustrates a standard way of writing a Java applet, but there are two
lines that require explanation.

The following line shows the creation of the primary object that provides access

to BIRT Spreadsheet APIL:
JBook jbookl = new JBook() ;
This line:

getContentPane () .add (jbookl) ;

illustrates how you add a spreadsheet to the content pane of the applet. You can
add a JBook object to the content pane of an applet because the JBook class
descends from javax.swing.JPanel.

Compiling the HelloWorld applet

To compile the HelloWorld Java source file as HelloWorld.java in a directory of

your choice, use javac on the command line in a command window. To
successfully compile the HelloWorld applet, you must include essd11 jar,
derby;jar, and the license file, eselicense.xml, in your classpath. You can

temporarily add the jar files to your classpath by specifying the jar file’s path in

the command line of the compile statement, as shown in the following example:

javac -classpath .;.\license\;C:\Program Files\Actuatell\
espreadsheetengineandapiljars\essdll.jar;C:\Program Files\
Actuatell\espreadsheetengineandapil\jars\derby.jar
HelloWorld. java

Chapter 2, Working with workbooks and worksheets

17

An easier alternative is to add the JAR and license files permanently to your
classpath by adding them to your CLASSPATH environment variable. In this
case, the compile statement is:

javac HelloWorld.java

Both of these javac statements assume that the current directory contains a Java
source file named HelloWorld.java and that the license file is in the subdirectory,
license. Successful compilation results in a file named HelloWorld.class, which
javac creates in the current directory.

Understanding the HTML code for displaying an applet

The following HTML code uses the ARCHIVE attribute of the applet to locate the
resources that the applet requires. This APPLET element contains the minimum
necessary code to run the applet and display the spreadsheet in a browser that
has a Java plug-in:

<HTML>
<BODY >
<APPLET CODE="HelloWorld.class"

ARCHIVE="essdll.jar, derby.jar, license/"
WIDTH="400" HEIGHT="400">

</APPLET>
</BODY>
</HTML>

This code assumes that essd11.jar and derby;jar are in the same directory as
HelloWorld.class and that the license file, eselicense.xml, is in the license
subdirectory. After you compile the HelloWorld applet, you can use this HTML
file to verify that Actuate BIRT Spreadsheet Engine is properly installed on your
machine and that you have a compatible browser using the latest Java virtual
machine (JVM) on your system. To run an BIRT Spreadsheet Engine applet as a
Java plug-in, you can use JavaScript code similar to the following lines:

document .writeln
document .writeln

'<APPLET WIDTH="100%" HEIGHT="100%">"') ;

'<PARAM NAME = scriptable VALUE = "false">');

document .writeln ('<PARAM NAME codebase VALUE = "applet/">');

document .writeln ('<PARAM NAME = code VALUE =
"HelloWorld.class">"') ;

document .writeln ('<PARAM NAME = cache archive VALUE =
"essdll.jar">"'); -

document .writeln ('<PARAM NAME = name VALUE = "f1">');

document .writeln ('<PARAM NAME = type VALUE =
"application/x-java-applet;version=1.5">");

document .writeln ('<PARAM NAME = workbook VALUE ="file.xls">');

document .writeln('</APPLET>"') ;

(
(
(
(

This code assumes that the license file, eselicense.xml, is in the codebase directory,
applet. Depending on which browser you use, you need to write APPLET,

18 Using BIRT Spreadsheet Engine and API

EMBED, or OBJECT tags. Consult your browser’s documentation to check its
requirements.

Running the HelloWorld applet
To run the applet, you must perform the following tasks:

m Create a file containing the HTML code discussed in “Understanding the
HTML code for displaying an applet,” earlier in this chapter.

m Save the HTML file into the same directory as the HelloWorld.class file,
naming it HelloWorld.html.

m Copy essdll.jar and derby;jar into the same directory as HelloWorld.html and
HelloWorld.class or insure that the three jar files are in the classpath.

Open HelloWorld.html in a browser, such as Internet Explorer or Mozilla
Firefox.

You see a spreadsheet appear in the browser window, similar to the one in
Figure 2-1.

A [B

1 [Hello World Spreadshest |
|2 12
ER 1567

4 0.481245777
5] $58.15
|5 |

7
Figure 2-1 HelloWorld applet example

Embedding a worksheet in a web page without writing any
code

The BIRT Spreadsheet API includes a fully functional applet, JBookApplet, that
displays a worksheet without requiring you to write any Java code. You can
accomplish displaying a worksheet in a web page with one line of HTML code.

The following code creates an empty workbook in a web page:

<HTML>
<BODY >
<APPLET CODE="com.flj.swing.engine.ss.JBookApplet"
ARCHIVE="essdll.jar, derby.jar, license/" WIDTH=550
HEIGHT=375>

</APPLET>
</BODY>
</HTML>

This code assumes that essd11.jar and derby;jar are in the same directory as the
HTML file and that the license file, eselicense.xml, is in the subdirectory, license.
The JBookApplet class extends javax.swing.JApplet, which qualifies it as an

Chapter 2, Working with workbooks and worksheets 19

applet. You can pass a parameter to JApplet that instructs JBookApplet to load a
workbook into the spreadsheet. The following example illustrates how to load an
Excel file from the same directory as the HTML file:

<HTML>
<BODY >
<APPLET CODE="com.flj.swing.engine.ss.JBookApplet"
ARCHIVE="essdll.jar, derby.jar, license/"
WIDTH=550 HEIGHT=375>
<PARAM name="workbook" value="MyExcelSheet.xls">
</APPLET>
</BODY>
</HTML>

The key line in this code is:
<PARAM name="workbook" value="MyExcelSheet.xls">

The parameter name is workbook and the value you specify is a URL identifying
the workbook you want to appear in the web page. When the workbook is in the
same directory as the HTML file, you only need to specify the name of the
workbook file. Besides being able to specify an Excel file, you can also specify a
spreadsheet object design file (.sod file). If you specify a SOD file, the applet must
be digitally signed and the JDBC driver and the database must be present on the
client. A better approach is to set the workbench parameter to a servlet that uses a
SOD file. With this approach, the applet does not have to be signed and the
database and the JDBC driver remains on the server.

Writing a Java swing application that displays a
Spreadsheet

You can write the application class to extend the Java Swing class JFrame to
display a spreadsheet using the JBook class. In the HelloWorldApp example that
follows, the main() method creates a JBook object and sets its visible property to
true. The constructor prepares itself by performing standard Java Swing tasks,
including:

m Setting the layout method of the content pane
m Setting the frame’s size and title

m Creating a WindowAdapter object and passing it to the addWindowListener()
method

The HelloWorld App class constructor then does a few operations specific to BIRT
Spreadsheet API, including:

m Instantiating a JBook object

m Adding the JBook object to the frame’s content pane

20 Using BIRT Spreadsheet Engine and API

m Passing the JBook object to the doSpreadsheetTasks() method that does all the
spreadsheet-related tasks

import
import
import
import
import

public

{

com.flj.swing.engine.ss.*;
java.awt.*;

javax.swing. *;
java.awt.event.*;
com.flj.ss.*;

class HelloWorldApp extends JFrame

public HelloWorldapp()
getContentPane () .setLayout (null) ;
setSize (450, 275);
setTitle ("Swing application") ;
SimpleWindow sWindow = new SimpleWindow () ;
addwindowListener (sWindow) ;
// Create a JBook object, add it to the content pane

JBook jbookl = new JBook () ;

jbookl.setBounds (10,5,400,200) ;
getContentPane () .add (jbookl) ;

// pass it to doSpreadsheetTasks
doSpreadsheetTasks (jbookl, new Object()) ;

public static void main(String args[1) {
(new HelloWorldApp ()) .setVisible(true) ;

}

class SimpleWindow extends WindowAdapter

{

public void windowClosing (WindowEvent event)

}

Object object = event.getSource() ;
if (object == HelloWorldApp.this)
SimpleApp WindowClosing (event) ;

void SimpleApp WindowClosing (WindowEvent event) {
setVisible (false) ;
dispose() ;
System.exit (0) ;

}

private void doSpreadsheetTasks (BookModel bk,Object obj)
try{

}

bk.setText (1, 0, "Hello World") ;
catch (Exception e) {}

Chapter 2, Working with workbooks and worksheets

21

The JBook class implements the BookModel interface. Therefore, you can pass a
JBook object to any method that takes a BookModel argument. Almost all of the
spreadsheet-specific functionality in JBook is also in the BookModel interface.

The doSpreadsheetTasks() method in the HelloWorld App example takes a
BookModel argument and an Object argument. This means that
doSpreadsheetTasks() has the same signature as both the start method and the
end method of a callback class. For more information about callback classes, see
Designing Spreadsheets using BIRT Spreadsheet Designer. Using the same signature
for doSpreadsheetTasks() as the signatures of the start() and end() methods of a
callback class is useful for the following two reasons:

m You can easily reuse your doSpreadsheetTasks() code in a callback class.

m There are numerous examples of callback class code that apply equally well to
applications and applets.

Compiling a Java application is no different than compiling a Java applet. When
you compile either an applet or a Java application that accesses the BIRT
Spreadsheet API, you must have essd11.jar and derby;jar in the classpath. You
must also have the license file, eselicense.xml, in the classpath. Running a Java
application that uses the BIRT Spreadsheet API also requires that these files be in
the classpath.

How to compile and run the HelloWorldApp application

1 Ensure that essd11 jar, derby.jar, and eselicense.xml are in your classpath, as
explained in “Compiling the HelloWorld applet,” earlier in this chapter.

2 Compile the source program, HelloWorld App.java:
javac HelloWorldApp.java

3 Execute the resulting HelloWorld App.class file:
java HelloWorldApp

When you run the HelloWorld App application, a window appears, similar to the
one in Figure 2-2.

& Gwing application

SRR s e
1 |
2 |Hello ¥World
3

m Sheetl /
Figure 2-2 HelloWorldApp example application

22 Using BIRT Spreadsheet Engine and API

Creating a servlet or an application without a user
interface

Any Java application use the BIRT Spreadsheet API BookModellmpl class to
function as a spreadsheet calculation engine. When used this way, there is no
need for the user interface overhead of a JBook object, so you can use
BookModellmpl instead. The following code example illustrates a servlet that
reads in an BIRT Spreadsheet Designer report design file named template.sod,
adds a password to protect the workbook, and writes out a file in Excel format:

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import com.flj.ss.*;

public class PasswordProtectServlet extends HttpServlet
{
private static final long serialVersionUID = 1L;
@Override
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{

/***

* Tell the browser we are sending an Excel file
***/
response.setContentType ("application/vnd.ms-excel") ;
ServletOutputStream out = response.getOutputStream() ;
Document doc = null;
try

{

/***

* Populate the document from a spreadsheet report design
***/
File templateFile = new File("c:\\template.sod") ;
doc = new Document (null, templateFile,
new DocumentOpenCallback()) ;
doc.getLock () ;

/***

* Password protect the book
***/

BookModel bmi book =
BookModel .Factory.create (doc.getBook ()) ;
bmi book.setBookProtection(true, "password",
Constants.kProtectStructure) ;

(continues)

Chapter 2, Working with workbooks and worksheets 23

/**

* Output the document to the output stream
**/
doc.fileSaveAs (out, DocumentType.EXCEL 97 REPORT VIEW,
new DocumentSaveCallback()) ;

catch (Throwable e)

{

System.out.println(e.getMessage()) ;

}

finally

{

/***

* Release the thread lock on the document
**/
out.close() ;
if (doc != null)
doc.releaselLock () ;
doc.release () ;

}

There are several BIRT Spreadsheet API and Engine classes used in
PasswordProtect Servlet, which include:

m com.flj.ss.Document: a wrapper for handling files on the file system.
Document is used to lock template.sod, generate a Book object to access its
contents, load it into a BookModel object, and save the spreadsheet in another
file format.

m com.flj.ss.BookModel.Factory: a class for creating BookModellmpl objects.
Document provides the Book object using the getBook() method as input.

PasswordProtectServlet is only implementable using the licensed BIRT
Spreadsheet Engine and API because it uses sophisticated file formats and
implements security. In the Java Enterprise environment, the potential for
JavaScript Engine and API servlet applications like this one is enormous. For
examples of servlet applications spanning a wide array of functional topics, see
Chapter 15, “Integrating BIRT Spreadsheet Engine with servlets and JSPs.”

Editing a workbook using BookModel interface objects

The BookModel interface declares several required methods for handling generic
tasks for workbooks. Use these methods from any BookModel object.

24 Using BIRT Spreadsheet Engine and API

Resetting a workbook to default settings

You can reset a workbook loaded in any BookModel object to its initial default
settings at any time with the following statement:

bm book.initWorkbook () ;

This method also clears the workbook of all content. You must call this method
immediately after instantiating a new workbook object unless you are using the
BookModel object to input a workbook from the disk or an input stream. The
following code reads a workbook from the disk:

File templateFile = new File("c:\\template.sod") ;

doc = new Document (null, templateFile, new
DocumentOpenCallback()) ;

doc.getLock () ;

BookModel bm book = BookModel.Factory.create (doc.getBook()) ;

Grouping workbooks

You assign a workbook to a group by calling the setGroup() method, as in the
following statement:

bm book.setGroup (java.lang.String group) ;

When you group two or more workbooks, a formula in one workbook can
reference a cell in another workbook of the same group.

Grouping workbooks also offers you the ability to:

m Attach one workbook to another workbook

m Ensure that a single thread does background processing on all workbooks
m Save memory by having multiple workbooks share resources

Do not use a workbook group if you are concerned about:

m Lack of concurrency when manipulating multiple workbooks

You must acquire a lock on all workbooks in the group before modifying any
workbook. Acquiring a lock on one workbook in a group automatically
acquires a lock on all workbooks in the group.

m Support for garbage collection within a workbook

If a workbook is part of a named group, you can only free the resources
associated with the workbook by calling its destroy() method.

m Support for each group having a thread for background processing as well as
certain other resources used primarily for workbook formulas

The setGroup() method instantiates a new Group object if one does not exist but
BookModel only references a group by its name. For more information on using

Chapter 2, Working with workbooks and worksheets 25

Group objects directly, see About the Group parameter in Chapter 4, “Working with
input and output.”

Attaching workbooks

You can attach one workbook to another so that a change to the value or formula
of a cell in one of the workbooks appears as change in the attached workbook.
You typically use this technique in an application that has a user interface to
dynamically change the user interface values displayed. For example, you can
attach a hidden workbook to a visible workbook for the purpose of manipulating
the visible workbook through the hidden one. Manipulating a visible workbook
through a hidden workbook is useful when you need to change the selection, but
you want the view of the visible worksheet to remain unchanged. You attach one
workbook to another workbook by calling the attach() method from any
BookModel object, as in the following statement:

bm book.attach (otherWorkbookName) ;

The other workbook effectively becomes a copy of the workbook it is attached to
where all value manipulation done in one workbook is transferred to the other.

Refreshing data in a workbook

If a worksheet relies on external data from a database or external file, you can
refresh the data by creating and saving a new Document object, as shown in the
following code:

com.flj.ss.Document d doc = bm book.getDocument () ;
try {
d doc.fileSaveAs (new java.io.File("report.xls"),
_-com.flj.ss.DocumentType.EXCEL_97_WORKBOOK,
new com.flj.ss.DocumentSaveCallback()) ;

}
finally {
d doc.release();

}

You must always call the Document.release() method after creating the
document. If you do not call this method, the engine retains a lock on the output
file. For more information about using the Document class, see Chapter 4,
“Working with input and output.”

Understanding multithreading issues

When you want to share a workbook across clients, for example in a servlet, you
must make the workbook thread-safe to maintain data integrity and state. You

26 Using BIRT Spreadsheet Engine and API

make a workbook thread-safe by calling the BookModel.getLock() method before
any operation that alters the workbook or any of its components.

The BookModel.getLock() method places a lock on the workbook and all of its
components. From the time you call BookModel.getLock() until you call
BookModel.releaseLock(), any other thread trying to access the workbook object
is suspended. You can nest calls to getLock(), but you must call releaseLock()
once for each getLock().

If you have code that modifies a workbook while inside a try-catch block, the
safest place to put the releaseLock() is in the finally clause of the try-catch block.
If the releaseLock() is not in the finally clause and an exception occurs, the
releaseLock() will never be executed, and all threads waiting for access to the
workbook will hang.

bm_book.getLock () ;
try {

}

catch (Throwable e)

}

finally {
bm_book.releaseLock () ;

}

In the proceeding example and throughout the book, the object with the name
book is any object that implements the BookModel interface. It can be a JBook
object, a BookModellmpl object, or an object passed to a callback class.

Working with worksheets

A workbook can have multiple worksheets. The Sheet interface represents a
worksheet in the BIRT Spreadsheet API and is implemented by the Sheetlmpl
class. It is common to use the terms sheet and worksheet interchangeably. Most
methods that refer to a specific worksheet identify the worksheet by index
number. Worksheets are indexed according to their positions in the set of
worksheet tabs at the bottom of the workbook. The left most worksheet is
worksheet 0 and the right most worksheet has an index number equal to the
number of worksheets minus one.

The getSheetName method returns the name of the worksheet specified by index
number. To get the name of the active worksheet, use the BookModel.getSheet
method in place of the worksheet index number parameter. The following
example shows how to return the name of the active worksheet:

String mySheet = bm book.getSheetName (bm book.getSheet ()) ;

Chapter 2, Working with workbooks and worksheets 27

Understanding selected worksheets

A worksheet can be selected or deselected. There can be more than one selected
worksheet in a workbook, but there is always at least one. In applications that
have a user interface, selected worksheets are those whose tabs are highlighted.
Also, certain operations apply to all selected worksheets. For more information
about operations that apply to all selected worksheets, see “Operating on all
selected worksheets,” later in this chapter. To select a worksheet, use the
setSheetSelected() method, as in the following statement:

bm book.setSheetSelected (0, true);

You deselect a worksheet by passing false to setSheetSelected(), as in the
following line of code:

bm book.setSheetSelected (0, false);

This method does not deselect a worksheet if it is the only worksheet in the set of
selected worksheets.

Understanding the active worksheet

There can only be one active worksheet. Certain operations apply just to the
active worksheet. The active worksheet is the worksheet that is in view in an
application that has a GUIL You can also make a worksheet active in an
application that does not have a user interface.

To make a worksheet active, use setSheet(), as in the following statement:
bm book.setSheet (2) ;

When you make a worksheet the active worksheet, it is automatically becomes a
selected worksheet.However, if a worksheet is not selected when you make it
active, all selected worksheets become deselected and only the new active
worksheet is a selected worksheet. If a worksheet is already selected when you
make it the active worksheet, the set of selected worksheets does not change. For
more information about operations that apply to just the active worksheet, see
“Operating on the active worksheet,” later in this chapter.

Do not confuse the active worksheet with the selected worksheet. There can be
multiple selected worksheets, but only one active worksheet. Formally, when a
worksheet is not the active worksheet, its name appears on the worksheet tab, but
the worksheet is not visible. All methods of the BookModel interface that are
specific to a single unspecified worksheet apply to the active worksheet and any
currently selected worksheets. For example, the following statement clears all the
cells in the range A1:E5 on the active and any selected worksheets:

bm book.clearRange (0, 0, 4, 4, Constants.eClearAll) ;

28 Using BIRT Spreadsheet Engine and API

Creating worksheets

When you create a workbook, you can specify how many worksheets you want
by calling setNumSheets(), as in the following statement:

bm_book.setNumSheets (5) ;

You can call setNumSheets() at any time to either increase or decrease the
number of worksheets in a workbook. Sheets are added or deleted at the end of
the list of worksheets. If setSheets deletes the active worksheet, the worksheet at
the end of the book becomes the active worksheet.

Inserting worksheets

You use the insertSheets() method to insert worksheets. You specify how many
worksheets to insert and where to insert them. The following statement inserts
three worksheets in the sheet index position 5:

bm book.insertSheets (5, 3);

When you insert worksheets, all the worksheet indexes above the point of
insertion increase by the number of worksheets you insert. Therefore, in the
preceding example, worksheet in index 6 moves to worksheet index 9 to
accommodate the insertion of worksheets in indexes 5 through 8. In addition, the
first worksheet inserted becomes the active worksheet.

Manipulating worksheets using the BookModel
interface

You can perform many operations on worksheets directly through the
BookModel interface without an explicit Sheet object. You can use any of several
methods in the BookModel interface that allow you to specify the worksheet you
want to change. There are also methods that only apply to the active worksheet,
as well as a few methods that apply to all selected worksheets.

Operating on a specific worksheet

The BookModel interface contains numerous method declarations designated to
perform operations on a worksheet that you specify by index. These operations
include:

m Adding a hyperlink

m Getting an array of hyperlinks

m Loading data from an array

m Copying a range from one worksheet into another
m Getting and setting the cell format for a specific cell

m Getting a collection of ranges

Chapter 2, Working with workbooks and worksheets 29

m Getting and setting the contents and formula and cell type of a specific cell
m Getting and setting a worksheet name

m Working with protection characteristics

m Getting and setting the cell type for a specific cell

m Working with selection characteristics

Operating on the active worksheet

There are also many method declarations of the BookModel interface designated
to operate on the active worksheet. These operations include:

m Copying, cutting, deleting, and pasting the selected range

m Getting and setting the print controls

m Printing the active worksheet

m Working with the auto filters

m Getting the active row and column

m Getting and setting the contents, formula, and cell type of the active cell

m Getting and setting the maximum and minimum display row and column

Operating on all selected worksheets

There are several method declarations of the BookModel interface that operate on
all selected worksheets. These operations include:

m Deleting a range

m Moving a range

m Setting cell values and formulas

m Setting header heights and widths
m Setting the top left text

Manipulating worksheets through the Sheet interface

Some sheet operations are only available using the sheet interface. To get a Sheet
object from a BookModel object, you must get a Book object from the BookModel
object and get the Sheet object from the Book object. The following statement
illustrates getting a Sheet object by index, starting with the BookModel object:

Sheet s_someSheet = bm book.getBook () .getSheet (1) ;

The Sheet interface has several method declarations designated for manipulating
a worksheet that are not in the BookModel interface. It also duplicates some

30 Using BIRT Spreadsheet Engine and API

methods. You have a choice of which interface to use when the same functionality
is in both interfaces.

m Setting the worksheet name

You can get and set the worksheet name through either interface, as in the
following statements:

bm book.setSheetName (2, "Expenses") ;
s_worksheet .setName ("Expenses") ;

m Getting and setting cell content

You can get and set cell content through either interface, as in the following
statements:

bm book.setText (row, col, "March");
s_worksheet.setText ("March") ;

The BookModel interface implementation sets text to the active worksheet and
any selected worksheets.

m Controlling outlining

m Setting worksheet protection

m Setting hidden state

m Setting row and column names
m Setting the worksheet type

m Setting the top left text

For more information about using the Sheet interface, see Chapter 3, “Working
with worksheet elements.”

Deleting worksheets

You can delete any worksheet in a workbook unless there is only one. There must
always be at least one worksheet in the book. To delete one or more worksheets,
you select the worksheets and then call editDeleteSheets(). The following
statement illustrates how to delete worksheet number 3:

bm book.setSheet (3) ;
bm book.editDeleteSheets() ;

Hiding a worksheet

You use the Sheet.setHiddenState() method to control whether a worksheet is
hidden and whether the user can reveal it. Table 2-1 shows the effects of the three
values you can pass to setHiddenState().

Chapter 2, Working with workbooks and worksheets 31

You pass the following constants to control the visibility of a worksheet.

Table 2-1 Constants that control the visibility of a worksheet

Constant Description

eSheetShown Make the worksheet visible.

eSheetHidden Hide the worksheet but allow a user to make it visible.

eSheetVeryHidden Hide the worksheet. Do not allow a user to make it visible.

To hide a worksheet in the workbook, use a sheet object as shown in the following
code:

Sheet s _someSheet = bm book.getBook () .getSheet (1) ;
//Hide a Sheet object
s_someSheet.setHiddenState (Constants.eSheetVeryHidden) ;

32 Using BIRT Spreadsheet Engine and API

Working with worksheet
elements

This chapter contains the following topics:

About worksheet elements
Working with a worksheet tab
Working with rows and columns
Working with headings

Working with cells

Working with a range of cells
Working with a worksheet outline

Working with scroll bars

Chapter 3, Working with worksheet elements

33

About worksheet elements

You can use the BIRT Spreadsheet API to create or manipulate worksheets, rows,
columns, row and column headings, cells, ranges, worksheet outlines, and scroll
bars. For more information about using the BIRT Spreadsheet API to manipulate
worksheet elements, see the Javadoc.

Working with a worksheet tab

A worksheet tab displays a worksheet name. Use the setShowTabs() method to
set the display status and position of the worksheet tabs on a workbook, as
shown in the following statement:

bm book.setShowTabs (Constants.eTabsBottom) ;

Table 3-1 describes the allowable values for the setShowTabs parameter.

Table 3-1 setShowTabs parameter values

Constant Description
eTabsOff Tabs hidden
eTabsBottom Tabs on bottom
eTabsTop Tabs on top

When you create a new worksheet, the name of the worksheet is Sheetx by
default, where x is a sequence number. The first sheet is Sheet1, the next one is
Sheet2, and so forth. The newest worksheet appears to the left of the others and
the rightmost worksheet is always Sheetl.

The numbering system for sheet names is different than that which the BIRT
Spreadsheet API uses when assigning index numbers for worksheets. The
worksheet index numbers start at zero for the leftmost sheet and go to x-1 for the
rightmost worksheet. When you insert or delete a sheet, the sheet indexes shift to
accommodate the deletion or insertion. You use worksheet indexes to get specific
worksheets, as shown in the following statement that gets the leftmost worksheet:

Sheet s _mySheet = bm book.getBook () .getSheet (0) ;

Working with rows and columns

This section illustrates the following ways to manipulate rows and columns:

m Setting the first row or column to display

34 Using BIRT Spreadsheet Engine and API

http://www.actuate.com/download/ActuateFormulaOne/swingdoc/index.html

m Hiding or showing a column or row
m Working with column widths
m Freezing a row or a column

m Determining the last row or column containing data

Setting the first row or column to display

Use the setLeftCol() and setTopRow/() methods to set the first row and column to
display on the active sheet. You refer to columns by their index number. Column
indexes start with zero for column A and row indexes start with zero for row 1.
The following example shows how to set column E and row 6 as the upper left
corner of the visible section of the active worksheet:

bm book.setLeftCol(4); // column E
bm_book.setTopRow (5); // row 6

Hiding or showing a column or row

Use the setColHidden() and setRowHidden() methods to hide or show columns
and rows on the selected sheets. There are two versions of both methods, to
specify a single column or row, or a range of columns or rows. The following
statements illustrate the various ways you can use these two methods:

bm_book.setColHidden (0, true); // hides column A
bm_book.setColHidden (0, false); // shows column A
bm_book.setRowHidden (0, true); // hides row 1

bm book.setRowHidden (0, false); // shows row 1

bm book.setColHidden (0, 3, true); // hides columns A-D
bm book.setColHidden (0
bm book.setRowHidden (0
(0

bm book.setRowHidden

3, false); // shows column A-D
, 3, true); // hides row 1-4
3

’

, false); // shows row 1-4

’

Limiting visible rows and columns

Use BookModel’s setMinCol(), setMaxCol(), setMinRow(), and setMaxRow/()
methods to set the visible rows and columns in the active worksheet. The
following example shows how to limit the visible rows and columns in the active
worksheet to the range D5:F7:

bm book.setMinCol (3); // Set minimum visible column to D
bm book.setMinRow(4); // Set minimum visible row to 5
bm book.setMaxCol (5); // Set maximum visible column to F
bm_book.setMaxRow (6); // Set maximum visible row to 7

Chapter 3, Working with worksheet elements 35

Working with column widths

This section describes how to change default column width, get the column width
in twips, maintain column width when importing data, and resize a column as
data changes.

Setting the units of column width

There are several BookModel methods to set the width of a column or columns on
a worksheet. These methods all take a column width parameter. Table 3-2 lists all
the methods you can use to set column widths.

Table 3-2 BookModel Methods to use when setting column widths
Method to set column width Description
setColWidth(int col, int width) Sets the width of a single column on
the active worksheet.
setColWidth(int coll, int col2, int Sets the width of a range of columns
width, boolean defaultWidth) on the active worksheet. If

defaultWidth is true, this method also
sets the default width to width.

setColWidthTwips(int col, int width) ~ Sets the width of a single column in
twips on the active worksheet.

setColWidthTwips(int coll, int col2, Sets the width of a range of columns in

int width, boolean defaultWidth) twips on the active worksheet. If
defaultWidth is true, this method also
sets the default width to width.

For the first two methods in the table, the meaning of the column width
parameter varies according to the most recent global setting of the column width
units. You use setColWidthUnits() to change the units of the column width
parameter. When you make a change to column width units, you change the
meaning of the width parameter that you subsequently pass to either of the first
two methods in the table. Table 3-3 lists the allowable constants that you can pass

to setColWidthUnits().
Table 3-3 Constants that can be passed to setColWidthUnits()
setColWidthUnits constant Description
eColWidthUnitsNormal 1/256 of the width of character

zero (0) in default font and font size
eColWidthUnitsTwips One twentieth of a printer’s point, or

about 1/1440 inch

36 Using BIRT Spreadsheet Engine and API

The default setting of column width units is eColWidthUnitsNormal, also called
the normal setting. The alternate setting of column width units is
eColWidthUnitsTwips. It is common to specify column widths in twips when
there are constraints on the width of printed output. You can change column
width units back and forth between the normal setting and twips at any time.

The following statement changes the column units to twips:
bm book.setColWidthUnits (Constants.eColWidthUnitsTwips) ;

The following statement sets the width of a column to either eight inches wide
(11,520/1440 inches), or 45 times the width of the character zero (11,520/256),
depending on the most recent setting of column width units:

bm book.setColWidth(coll, col2, 11520);

Using automatic column sizing

Use BookModel.setColWidthAuto() to set a range of columns to either the
default column width or to widths just large enough to accommodate the widest
text in each column for the active sheet. You specify a range of cells and a
parameter that indicates whether to use the greatest text width in the column or
the default text width. If you specify greatest text width, and a column has no
cells that have a width greater than the default width, setColWidthAuto() sets
that column’s width to the default width.

bm_book.setColWidthAuto(rl, cl, r2, c2, false); // widest text
bm_book.setColWidthAuto(rl, cl, r2, c2, true); // default width

If you select all rows, this method also considers the widths of the column
headers when adjusting column widths to accommodate the widest text.

Maintaining column width when importing data

To maintain column width when populating a data range with data, pass false to
DataRange.setAdjustColWidth(). If you do not pass it a true value, the incoming
data determines the column width of all columns set for autowidth. The
following statement shows how to maintain the column width when importing
data:

dr range.setAdjustColWidth (false) ;

For more information about importing data, see Chapter 5, “Working with data
sources.”

Freezing a row or a column

Freezing rows and columns in the active worksheet causes the designated
columns and rows to remain always visible. These frozen areas are sometimes
called panes. To fix and unfix rows and columns, use the
BookModel.freezePanes() method.

Chapter 3, Working with worksheet elements 37

To freeze rows, specify the top row of the frozen pane in the topRow parameter
and set the splitRow parameter to the number of rows to be visible in the top
pane. If you set the splitRow parameter to zero, the topRow parameter is ignored.
To freeze columns, specify the left column of the frozen pane in the leftColumn
parameter and set the splitColumn parameter to the number of columns to be
visible in the left pane. If you set the splitColumn parameter to zero, the
leftColumn parameter is ignored.

If a pane is frozen and there are unfrozen columns or rows to the left or above the
frozen panes, then those columns and rows are no longer accessible. You cannot
scroll to the left of a frozen column pane or above a frozen row pane. The
splitView parameter of freezePanes() determines whether autoFreezePanes()
and unfreezePanes() convert the frozen panes to a split view. If splitView is false,
those methods convert the view to its default, unsplit, state.

The following statements show how to freeze a horizontal and vertical pane,
where the horizontal pane includes rows 2 through 4 and the vertical pane
includes columns 4 through 6:

int topRow=2;

int splitRows=3;

int leftCol=4;

int splitCols=3;

boolean splitView=false;

bm book.freezePanes (topRow, leftCol, splitRows, splitCols,
splitView) ;

If you save a workbook with frozen panes to an .xIs file, you must use the
following statement if you want the output file to also have frozen panes:

bm_book.saveViewInfo();

Determining the last row or column containing data

The Sheet and BookModel interfaces declare six methods that return the last row
or column in a sheet containing data, as shown in Table 3-4. The BookModel
methods gather this data from the active sheet. A cell that contains data is
different from a non-empty cell. Non-empty cells include cells containing data,
formatting, or validation rules, regardless of whether the cells contain data.

Table 3-4 Methods that return the last row or column containing data
Method Description
getLastRow() Returns the last row that contains a non-empty cell
getLastCol() Returns the last column that contains a non-empty
cell
getLastColForRow() Returns the last filled column in the specified row
getLastDataRow() Returns the last row that contains data

38 Using BIRT Spreadsheet Engine and API

Table 3-4 Methods that return the last row or column containing data

Method Description

getLastDataCol() Returns the last column that contains data

getLastDataColForRow() Returns the last column in the specified row that
contains data

The following example shows how to return the index number of the last row and
column that contain data in the current worksheet, ignoring cells that contain
only formatting:

1

int lastRowIndex = s_sheet.getLastDataRow () ;
int lastColIndex = s_sheet.getLastDataCol ()

Working with headings

As the default behavior, row and column headings appear as gray cells
containing numbers to the left of rows and letters above columns in a worksheet.
You can modify the formatting and contents of heading cells, but they can only
contain text and formatting, not worksheet data such as formulas or values. The
single heading cell that is at the intersection of the row headings and column
headings is called the top left heading.

In addition to the heading-specific methods of BookModel, you can format and
edit header cells using com.flj.ss.CellFormat objects. The information presented
in this section about cell formatting is covered in more detail in “Working with
cells,” later in this chapter.

Providing a column or row heading is useful for reflecting the data in the row or
column. A heading of Total Revenue is more informative than column H, for
example. The headings are only useful for display purposes. Formulas still
reference rows and columns by their numbers and letters. A heading can be up to
9 lines and 254 bytes. A CR (carriage return) and LF (line feed) combination are
counted as two characters.

This section provides examples of how to programmatically select and format
worksheet headings. For information about adding print headings and footers,
see “Working with a print header, footer, or title” in Chapter 10, “Working with
print options.”

If you save a workbook to an .xIs file, the worksheet headings do not appear in
the resulting Excel file.

Chapter 3, Working with worksheet elements 39

Selecting a column or a row heading

Use the BookModel.setHeaderSelection() method to select column or row
headings for selected sheets. This method takes three parameters, as shown in

Table 3-5.
Table 3-5 Parameters for the setHeaderSelection() method
Parameter Description
topLeftHeader Boolean that specifies whether the cell at the
intersection of the row and column headings is
selected
rowHeader Boolean that specifies whether the row headings

are selected

colHeader Boolean that specifies whether the column
headings are selected

The following example selects the top left heading and column headings, but not
row headings:

bm book.setHeaderSelection (true, false, true);

Getting and setting heading dimensions

You can get and set row heading width and column heading height using the
getHeaderWidth(), getHeaderHeight(), setHeaderWidth(), and
setHeaderHeight() methods.

The getHeaderWidth() and setHeaderWidth() methods get and set the row
heading width in normal units. The getHeaderHeight() and setHeaderHeight()
methods get or set the column heading height in twips. For more information
about twips and normal units, see “Setting the units of column width,” earlier in
this chapter.

Getting and setting heading text

Table 3-6 describes the methods used for formatting heading text for all selected
sheets. Retrieve column heading text using the getColText() method. Retrieve
row heading text with getRowText(). Set column and row heading text using the
setColText(), setRowText(), and setTopLeftText() method.

Table 3-6 Methods that affect all selected sheets
Method Description
getColText() Get the column heading text.
setColText() Set the column heading text.

40 Using BIRT Spreadsheet Engine and API

Table 3-6 Methods that affect all selected sheets

Method Description

getRowText() Get the row heading text.
setRowText() Set the row heading text.
getTopLeftText() Get the top left heading corner text.
setTopLeftText() Set the top left heading corner text.

The following example shows how to add text to the first row and column
headings, size the column to accommodate the text, and set the row heading
width to match the column heading width:

// Adds text to the first row and column headers
bm book.setColText (0, "Column Name") ;
bm book.setRowText (0, "Row Name") ;

// Sizes the column to display the text
bm book.setColWidthAuto (0, 0, bm book.getMaxRow(),
bm book.getMaxCol (), false);

// Sizes the row header to be the same width as the column
bm book.setHeaderWidth (bm book.getColWidth (0)) ;

Setting the text for a heading to a null value resets the heading to the default
heading text. The following example shows how to reset the first row and first
column headings to default heading text:

bm book.setColText (0, null);
bm book.setRowText (0, null) ;

Supplying a multiline column or row heading

Supply multiline text in a column or row heading using the new line character,
\n, to designate the beginning of a each new line.

The following example shows how to set two lines of text in the heading and
increases the heading height to twice the specified heading height:

bm book.setColText (0, "This is a \n new line");
bm book.setHeaderHeight (bm book.getHeaderHeight () *2) ;

Like setColText, setHeaderHeight applies to all selected worksheets.

Setting heading font

To format a heading row for all selected sheets, select the heading cells using
setHeaderSelection, retrieve their format using a CellFormat object, then apply

Chapter 3, Working with worksheet elements 41

the desired formatting using and the formatting methods of a CellFormat object.
The following example shows how to select the headings and set their format:

bm book.setHeaderSelection (true, true, true);

CellFormat cf cellFormatl = bm book.getCellFormat () ;
AlignFormat af aFormat = cf cellFormatl.align();

FontFormat ff fontFormat = cf cellFormatl.font();

af aFormat.setHorizontalAlignment (AlignFormat.eHorizontalLeft) ;
ff fontFormat.setBold(false);

ff fontFormat.setItalic(true);

ff fontFormat.setSizeTwips (220);//or setSizePoints(11)

ff fontFormat.setName ("Arial");

bm book.setCellFormat (cf cellFormatl) ;

Hiding row or column headings

Use the BookModel.setShowRowHeading() or
BookModel.setShowColHeading() methods to hide or reveal row or column
headings for the active worksheet. The following example shows how to hide row
and column headings:

bm_ book.setShowRowHeading (false) ;
bm book.setShowColHeading (false) ;

Working with cells

This section describes common ways to manipulate cells, including inserting
cells, selecting a cell, setting cell protection, and merging cells.

Inserting cells into a worksheet

Use BookModel.insertRange() or BookModel.editInsert() to insert cells into a
range of cells that you specify or select. With insertRange(), you specify a range
of cells to insert using the method’s row1, coll, row2, and col2 parameters. Before
you use editInsert(), you must select a range of cells in which to insert new cells.
The insertRange() or editInsert() methods insert the cells into all selected
worksheets. With either method, the selected or specified range defines how
many cells you insert into the worksheet and where.

The following example shows how to insert a range of cells beginning at C1, and
ending at C12. Using eShiftHorizontal causes the range to shift one column to the
right, replacing the range with empty cells:

bm book.insertRange (0, 2, 13, 2, Constants.eShiftHorizontal) ;

The last parameter in the insertRange() method and the only parameter in the
editInsert() method is the shiftType parameter. The shiftType parameter defines

42 Using BIRT Spreadsheet Engine and API

how to handle the cells that initially occupy the range of cells you specify or select
to insert cells into. There are two kinds of constants associated with the shiftType
parameter. The first kind of constant specifies how to shift the data in the existing
cells in the worksheet when inserting new cells. The second kind of constant
specifies how to adjust formulas and defined names that refer to an area of the
worksheet adjacent to the selection. You must specify one of the constants that
describes how to shift data. You are not required to use a formula adjustment
constant but if you do, you add it to the cell shift constant. Table 3-7 describes
both kinds of constants.

Table 3-7 Constants for shiftType parameter

shiftType parameter

constant Description

eShiftHorizontal Inserts a block of empty cells with the same coordinates

as the selection. Shifts all cells in all rows of the
selection, starting with the selection. Shifts cells to the
right as many columns as there are in the selection.
Cells in rows not in the selection are not affected.

eShiftColumns Inserts as many new columns as there are columns in
the selection. Starting with the selected columns, shifts
all columns to the right for as many columns as there
are in the selection. Affects every row in the worksheet.

eShiftVertical Inserts a block of empty cells with the same coordinates
as the selection. Shifts all cells in all columns of the
selection, starting with the selection. Shifts cells down
as many rows as there are in the selection. Cells in
columns not in the selection are not affected.

eShiftRows Inserts as many new rows as there are in the selection.
Starting with the selected rows, shifts all rows down for
as many rows as there are in the selection. Affects every
column in the worksheet.

eFixupPrepend Used in combination with one of the first four
constants. Adjusts formulas and defined names that
refer to an area adjacent to the selection. When used in
combination with eShiftVertical or eShiftRows, expands
any such reference whose first row is less than or equal
to the top row of the selection. When used with
eShiftColumns or eShiftHorizontal expands any
reference whose first column is the last column of the
selection. Ranges in formulas and defined names
expand upon row and column insertion without using
this constant if any part of the insertion selection falls
within the range.

(continues)

Chapter 3, Working with worksheet elements 43

Table 3-7 Constants for shiftType parameter (continued)

shiftType parameter
constant Description

eFixupAppend A constant used in combination with one of the first
four constants. Adjusts formulas and defined names
that refer to an area near the selection. When used with
eShiftVertical or eShiftRows, expands any such
reference whose last row is immediately above the
selection. When used with eShiftColumns or
eShiftHorizontal, expands any such reference whose
last column is immediately to the left of the selection.
Ranges in formulas and defined names expand upon
row and column insertion without using this constant if
any part of the insertion selection falls within the range.

The following example shows how to insert five rows and adjust appropriate
formulas and defined names:

// Select D10:D15 and append 6 rows

bm book.setSelection(9, 3, 14, 3);

bm book.editInsert ((short) (Constants.eFixupAppend +
Constants.eShiftRows)) ;

In the preceding example, the program inserts six rows at row 10, and rows 10-15
are shifted down six rows. The data that was in cell D10 is now in cell D16, and
the data that was in cell D11 is now in D17, and so forth. Since the shiftType
parameter included eFixupAppend, any formulas and defined names in the
worksheet whose last row is immediately about the selection are changed.
Therefore, if the worksheet had a formula before the insert operation, such as
=sum(D14:D16), it would be changed to =sum(D14:D22) upon the completion of
the insertion operation.

Selecting a cell

This section describes how to select worksheet cells, including how to set the
active cell, select non-contiguous cells, locate the active cell, display the active
cell, and move the active cell down when the user presses Enter. Each worksheet
has an active cell specific to that worksheet.

Use the BookModel.setActiveCell() to set the active cell for all selected
worksheets. You reference the cell by its row and then its column. The following
example shows how to make the cell in the second row and second column the
active cell:

bm book.setActiveCell(1,1) ;

44 Using BIRT Spreadsheet Engine and API

Making the active cell visible

To make the active cell visible in the displayed worksheet, use one of the
following methods:

m Use BookModel.showActiveCell(). If the active cell does not appear in the
visible portion of the window, showActiveCell() repositions the window so
that the active cell is visible.

m Use BookModel.setTopRow() and BookModel.setLeftCol() to position the
active worksheet to show the active cell.

The following example shows how to position the worksheet to show the active
cell:

bm book.showActiveCell () ;

Selecting an entire row when selecting a cell

The BookModel.setRowMode() method selects the rows containing a selected
cell for all cells currently selected on all selected worksheets. Passing true to
setRowMode() makes cell selections select an entire row. Passing false makes cell
selection select just the cell.

The following example shows how to select the rows containing any selected
cells, including the active cell:

bm book.setRowMode (true) ;

Making multiple, non-contiguous selections

Use setSelection() to select multiple cell ranges on all selected sheets. To select
multiple, non-contiguous ranges of cells, pass setSelection() a string containing
the ranges separated with commas.

The following example shows how to select three separate non-contiguous cell
ranges:

bm book.setSelection("Al, B2:B4, C5");

Enabling users to move the active cell by pressing the Enter
key

Call setEnterMovesDown() to indicate whether pressing the Enter key moves the
active cell down or not.

The following example shows how to move the active cell down if the user
presses Enter:

bm book.setEnterMovesDown (true) ;

Chapter 3, Working with worksheet elements 45

Setting cell protection

Worksheets are either protected or unprotected and cells are either locked or
unlocked. By default, all cells are locked and all worksheets are unprotected. The
locked status of a cell is only relevant when its worksheet is protected. When a
cell is locked and its worksheet is protected, it is not possible to alter the contents
of the cell. When a worksheet is unprotected, all its cells can be altered, even those
that are flagged as locked.

The setSheetProtection() method controls whether a sheet is protected or not. It
also determines what kinds of operations are allowed on the sheet. The
setSheetProtection() parameter that enables and disables protection determines
whether cells marked locked or hidden are really locked or hidden. The second
parameter is the sum of all the protection features you want to allow for the sheet.
Table 3-8 contains all the protection flags you can set. For more information about
hiding rows or columns, see Hiding or showing a column or row earlier in this

chapter.

Table 3-8 Cell protection options

Flag Protection

kAllowNone No operations allowed
kAllowEditObjects Allow editing of objects
kAllowFormatCells Allow formatting of cells

kAllowFormatColumns
kAllowInsertRows
kAllowInsertColumns

kAllowInsertHyperlinks

Allow formatting of columns
Allow inserting rows
Allow inserting columns

Allow inserting hyperlinks

kAllowDeleteColumns Allow deleting columns
kAllowDeleteRows Allow deleting rows
kAllowSelectLocked Allow selecting locked cells
kAllowSort Allow sorting
kAllowUseAutoFilter Allow auto filters
kAllowUsePivotRanges Allow adding pivot ranges
kAllowSelectUnlocked Allow selecting of unlocked cells

The following example shows how to activate locking and hiding for a worksheet
and to set which other operations are allowed. The first parameter is the sheet
index, the second parameter enables protection, the third parameter is a null
object, which specifies no password protection, and the last parameter is the

46 Using BIRT Spreadsheet Engine and API

allowable operations flag. In this case, the only allowable operations that can be
performed on this sheet are sorting and adding pivot ranges:

bm book.setSheetProtection (sheetl, true, null,
Constants.kAllowSort + Constants.kAllowUsePivotRanges) ;

The following example shows how to unlock all cells in the worksheet, lock the
worksheet range A1:C2, then enable protection for the entire worksheet:

// Unlock cells.

bm book.setSelection (0, 0, bm book.getMaxRow (), book.getMaxCol()) ;

CellFormat cf = bm book.getCellFormat () ;

cf.protection() .setLocked (false) ;

bm book.setCellFormat (cf) ;

// Locks desired range and enables protection.

cf.protection() .setLocked (true) ;

bm book.setCellFormat (cf, 0, 0, 1, 2);

bm book.setSheetProtection (bm book.getSheet (), true, null,
bm_book.kAllowNone) ;

Merging cells

You can merge any contiguous range of cells that forms a rectangle. When you
merge cells, BIRT Spreadsheet Engine or BIRT Spreadsheet Designer removes cell
borders within the range and deletes all data except the data in the top left cell.
Merged cells function as a single cell on the worksheet, having a row and column
reference of the top left cell in the merged range. All references to cells in the
range also become references to that cell. For example, merging cells A1:B5 results
in a single cell with the cell reference Al. Adjacent cell references do not change
after merging.

To merge cells, first create a selection using the BookModel.setSelection()
method, then pass true to the CellFormat.setMergeCells() method. Both methods
operate on all selected sheets. The following example shows how to merge cells
D1:E1 and D2:E3:

CellFormat cf = bm book.getCellFormat () ;

cf.align() .setMergeCells (true) ;

bm book.setSelection(0, 3, 0, 4);

bm book.setCellFormat (cf); // Merges D1:E1 (horizontal)

bm book.setSelection (1, 3, 2, 4);

bm_book.setCellFormat (cf); // Merges D2:E3 (horizontal & vertical)

Working with a range of cells

This section shows how to work with ranges of cells, using examples of how to:

m Get all the ranges of the current selection

Chapter 3, Working with worksheet elements 47

m Get the coordinates of a selection range

m Delete and copy a range

Accessing a range of cells

These examples use BookModel.getSelection() to return the cell reference of the
selected cell range. The following example shows how to return the cell reference
for the active selection. If more than one range is selected, this example returns a
comma-separated list of all active ranges:

String s = bm book.getSelection() ;
The following example shows how to get a Range object for the current selection:
Range r_ range = bm book.getSelectedRange () ;

If the current selection contains multiple non-contiguous blocks of cells, the
Range object returned by BookModel.getSelectedRange() provides individual
access to all the components. The BIRT Spreadsheet API refers to these blocks of
cells as areas, but the method you use to get an area returns yet another Range
object. You get an area from a range by passing its index number to the
Range.getArea() method, as in the following statement:

Range r firstSelectionBlock = r range.getArea(0) ;
You can get the total number of areas in a range with the following statement:
int selectionCount = range.getAreaCount () ;

You can get the cell and row coordinates of a cell range with the following four

statements:

int rowl = r_ range.getRowl(); // Returns first row of range
int row2 = r_range.getRow2(); // Returns last row of range

int coll = r_range.getColl(); // Returns first column of range
int col2 = r range.getCol2(); // Returns last column of range

Copying a range of cells from one worksheet to
another

To copy a range within the same worksheet or from one worksheet to another
worksheet in a different workbook, use BookModel.copyRange(). For an example

of copying a range, see “Copying and pasting cell data” in Chapter 7, “Working
with cell data.”

Clearing a range

You use theBookModel.clearRange() method to clear a specified range of cells on
all selected sheets. You pass this method a range of cells and a parameter that
specifies what to clear. You can clear values, formats, or both. The Sheet class

48 Using BIRT Spreadsheet Engine and API

version of clearRange clears the range without checking the protection status of
cells within the range or checking for partial clearing of array entered formulas.
Table 3-9 identifies all the valid clear options.

Table 3-9 Options for specifying how to clear a range

Clear constant Effect

eClearContents Clears values and formulas but not formats
eClearFormats Clears formats but not values and formulas
eClearAll Clears values, formulas, and formats

The following example shows how to clear everything from the specified range:

bm book.clearRange (rowl, coll, row2, col2, Constants.eClearAll);

Working with a worksheet outline

A worksheet outline allows a user to expand or collapse sets of rows or columns
on a worksheet to change the level of displayed content. A worksheet can use up
to eight levels of outlining for rows and eight for columns.

To set up outlining on the active sheet, use the BookModel.setRowOutlineLevel()
and BookModel.setColOutlineLevel() methods to arrange rows and columns into
detail groups. The setColSummaryBeforeDetail() and
setRowSummaryBeforeDetail() methods specify whether summary rows and
columns appear before or after the row or column detail information. The
setRowOutlineLevel() and setColOutlineLevel() methods establish the outline
level by either setting it to a specific detail level or by incrementing the current
outline level. To set a range of columns or rows to a specific outline level, use a
statement like either of the following two lines:

bm book.setColOutlineLevel (coll, col2, outlineLevel, false);
bm book.setRowOutlineLevel (rowl, row2, outlineLevel, false);

In the preceding statements, you set the specified range of columns or rows to the
value of outlineLevel, which must be between 0 and 7. The final parameter
specifies that the specified level is not added to the current highest setting.

To set the outline level for range of columns or rows to an amount greater than
the current highest level, use a statement like either of the following two lines:

bm book.setColOutlineLevel (coll, col2, outlineLevel, true);
bm book.setRowOutlineLevel (rowl, row2, outlineLevel, true);

In the preceding statements, you set the outline level to the current high level plus
the value of outlineLevel. The resulting level must not exceed 7. To collapse or

Chapter 3, Working with worksheet elements 49

expand an outline level for a specific column or row, use statements like the
following two lines:

s _sheet.setColOutlineCollapsed(col, true);
s_sheet.setRowOutlineCollapsed(row, true);

The preceding statements collapse the outline level for the specified row or
column. Passing false to either method expands the outline level for the specified
row or column. You can control whether the summary precedes or follows the
detail in a collapsed set of rows or columns. Passing true to either
BookModel.setColSummaryBeforeDetail() or
BookModel.setRowSummaryBeforeDetail() causes the summary to precede the
detail. Passing false causes the summary to follow the detail. In the following
statements, you cause the summary to follow the detail:

bm book.setColSummaryBeforeDetail (false) ;
bm book.setRowSummaryBeforeDetail (false)

The following example shows how to add outlining by increasing the detail level
to create groups of 11 rows, leaving each 12th row to hold summary information.
It also creates a secondary row outline level within the initial levels and a column
outline level that includes columns B through D and sets the column outline
summary to appear before the detail columns:

//Group rows 1-11. Summary row = 12

bm book.setRowOutlineLevel (0,10,1, false);

//Group rows 13-21. Summary row =22

bm book.setRowOutlineLevel (12,20,1, false) ;

//Group rows 23-40. Summary row =41

bm book.setRowOutlineLevel (22,39,1, false) ;

// BAdd secondary group from rows 1-6

bm book.setRowOutlineLevel (0,5,1, true) ;

// Add secondary group from rows 8-10

bm book.setRowOutlineLevel (7,9,2, false) ;

bm book.setColOutlineLevel (1, 3, 1, false); // Group B:D
bm_book.setColSummaryBeforeDetail (true); //Put summary in col 0

The following example shows how to group rows 0 through 5 and collapse them,
hiding them behind the summary level. Row 6 holds the subtotal:

Sheet s = bm book.getBook () .getSheet (0) ;
s.setRowOutlineLevel (0, 5, 0, false);
s.setRowOutlineCollapsed (6, true); // Group rows 0-5 with 6

Working with scroll bars

The information in this section explains how to scroll through a worksheet and
how to control whether scrollbars are visible or hidden.

50 Using BIRT Spreadsheet Engine and API

To scroll to the right of the worksheet, repeatedly call the BookModel.setLeftCol()
method, increasing the column number with each call. To scroll to the bottom of
the worksheet, repeatedly call the BookModel.setTopRow() method, increasing
the row number with each call. To keep the scroll bar on continuously, call the
BookModel.setShowVScrollBar() and BookModelsetShowHScrollBar() methods
with eShowOn. The following example shows how to set the worksheet to scroll
down one row and over one column:

int i = bm book.getTopRow () ;
bm book.setTopRow (i+1) ;
int j = bm book.getLeftCol() ;
bm book.setLeftCol (j+1) ;

The following example shows how to display the vertical and horizontal scroll
bars:

bm book.setShowVScrollBar (Constants.eShowOn) ;
bm book.setShowHScrollBar (Constants.eShowOn) ;

Chapter 3, Working with worksheet elements 51

52 Using BIRT Spreadsheet Engine and API

Working with input and
output

This chapter contains the following topics:

Reading workbook data from a file
Reading from an input stream
Writing an output file

Writing to an output stream

Writing to an HTML file

Writing to an XML file

Saving window-specific information

Understanding Excel file format limitations

Chapter 4, Working with input and output

53

Reading workbook data from a file

You can populate the content of an BIRT Spreadsheet workbook by reading the
data from an input file. The input file can be any of the following types:

m BIRT Spreadsheet design (.sod and .vts)

The BIRT Spreadsheet API supports opening a spreadsheet object design (.sod
or .vts) file for any past or current version of BIRT Spreadsheet.

m Excel spreadsheet (.xls)

The BIRT Spreadsheet API supports opening any Excel spreadsheet created
with any version of Excel beginning with Excel-95.

m Text file (.txt)

The content of a text file must include logical column and row separators. In
the absence of a properties file to specify seperators, tab characters are
assumed to be column separators and return characters are assumed to be row
separators.

All of the BIRT Spreadsheet Engine and API methods that load file data into a
workbook, all of which use the com.f1j.ss.Document class to access a file. These
methods include the following:

m BookModel.factory.create(Document.getBook()), used in the servlet example,
creates a generic BookModel object and loads the contents of the file delivered
by Document.getBook() into the spreadsheet.

m JBook(Document.getBook(), Group) constructs a new JBook. loads the
contents of the file delivered by Document.getBook() into the spreadsheet, and
adds it to the Group specified by the Group argument.

m JBook(Document) constructs a new JBook and loads the contents of the
Document object into the spreadsheet.

The Document object stores the data it loads from a file in a Book object. The Book
interface has been largely deprecated but is still used to move information from a
Document object to a BookModel object without using additional memory. As the
previous examples illustrate, the Document.getBook() method returns a Book
object and BookModel object constructors accept a Book object as an argument.

Using the Document class to open a file

To access data that was saved to a supported file type, create an instance of the
Document class using one of the constructors that uses the file name as the file
argument. The following Document constructor reads the data from a file:

Document (Group group, java.io.File file, DocumentOpenCallback
openCallback)

54 Using BIRT Spreadsheet Engine and API

where

m Group is the group of workbooks to associate the data with. For more
information on the group argument, see the Group argument discussion
below.

m java.io.file is java File object.

m DcoumentOpenCallback is a callback method that is called when the
Document object is created. For more information about the
DocumentOpenCallback parameter, see the DocumentOpenCallback
argument discussion below.

When you use the Document object, it automatically locks the file it reads data
from or writes data to until you release the lock. You can release the lock by
closing the application or calling the Document.release() method as shown in the
following code:

Document .release () ;
Failure to release a file results in the lock remaining until the application closes.

Be careful not to confuse a file lock with a thread lock. File locks prevent
modification of the file until it is released. Thread locks prevent threads from
modifying the same object simultaneously. The methods to make a Document
object thread-safe are getLock() and releaseLock(), and should be used following
the thread-safe pattern shown below:

d_Doc.getLock () ;
try {

}

catch(Throwable e)

}

finally {
d Doc.releaseLock () ;
}

The file lock can be released in the finally block or anytime afterwards to release
the file but cannot be unlocked if the object is still thread locked.

About the Group parameter

The Group argument that you pass to a Document constructor specifies the group
to which the file data is to be included. Specifying different groups for different
Documents isolates them from workbooks in other groups. Specifying the same
group for two or more Documents gives workbooks in that group access to each
of them.

Chapter 4, Working with input and output 55

The Group object has the following uses:
m Specifies the locale for the user interface

The Group class constructor has an argument that specifies the locale for the
user interface. All workbooks in a group have the same user interface locale,
maintaining that locale for all the file data in that Group.

m Specifies the locale for number formats

Number formats can use a different locale than the user interface uses. The
Group class constructor has an argument that specifies the locale for number
formats. All workbooks in a group have the same number format locale.

m Provides a global context for thread locking

When an application has multiple tasks in a multi-threaded environment and
all tasks need access to their respective workbooks simultaneously, if each task
is in its own group none of the tasks will block any of the others unless an
object is currently thread-locked.

m Provides visibility between workbooks

Workbooks in the same group can externally reference one another, whereas
workbooks in separate groups cannot.

About the DocumentOpenCallback parameter

Every Document constructor that reads data from a file has a
DocumentOpenCallback parameter. You use the
com.f1j.ss.DocumentOpenCallback object to specify parameters for opening the
file. You can set following parameters with the DocumentOpenCallback object:

m The code page type that the file uses
m A password that allows modifying the file
m A password that allows opening the file

The DocumentOpenCallback class also has methods for notifying BIRT
Spreadsheet Designer if the document is read-only, locked for editing, and the file
format. There is also a method to provide the file’s globally unique identifier
(GUID) to BIRT Spreadsheet Designer.

Setting the code page type

The code page type determines the character set in use in a file. When creating a
workbook by opening an BIRT Spreadsheet report design or an Excel file, the
Document constructor determines the code page type based on the contents of
the file. When reading a text file, it is not always possible to make this
determination. Your program may call setCodePage () on the

56 Using BIRT Spreadsheet Engine and API

DocumentOpenCallback object before reading a text file. The following statement
sets the code page to UTFES.

docOpenCallback.setCodePage (DocumentOpenCallback.CODEPAGE UTF8) ;
The following list contains the set of supported code pages:
m CODEPAGE_DEFAULT

m CODEPAGE_DEFAULT_ANSI

s CODEPAGE_UNICODE_BIGENDIAN

s CODEPAGE_UNICODE_LITTLEENDIAN

m CODEPAGE_ UTF8

m CODEPAGE_UTF16

m CODEPAGE_UTF 16BE

m CODEPAGE_WIN_ARABIC

s CODEPAGE_WIN_BALTI

s CODEPAGE_WIN_CENTRAL_EUROPE

m CODEPAGE_WIN_CHINESE_SIMPLIFIED

m CODEPAGE_WIN_CHINESE _TRADITIONAL
s CODEPAGE_WIN_CYRILLIC

s CODEPAGE_WIN_GREEK

s CODEPAGE_WIN_HEBREW

s CODEPAGE_WIN_JAPANESE

s CODEPAGE_WIN_JOHAB

s CODEPAGE_WIN_KOREAN

s CODEPAGE_WIN_THAI

m CODEPAGE_WIN_TURKISH

s CODEPAGE_WIN_VIETNAMESE

m CODEPAGE_WIN_WESTERN

Setting the open password

Some files can only be opened after the user enters a password. When opening a
protected file through the API, it is necessary for the program to specify the
password. Use the setOpenPassword() method of the DocumentOpenCallback
object to set the password for opening a password-protected file.

Chapter 4, Working with input and output 57

Setting the modify password

Some files can only be modified after the user enters a password. To open a file
with modification protection, pass a string containing the password to the
setModifyPassword() method of the DocumentOpenCallback object.

Getting the open password

There are two versions of the DocumentOpenCallback.getOpenPassword(). One
version has no arguments and returns the value of the password as set by the
setOpenPassword() method. The other version of the getOpenPassword()
method is designed to prompt the user for a password that you then submit to the
operating system to allow the protected file to be opened. You implement it in a
class that extends the DocumentOpenCallback class. The second version accepts
two arguments, a String argument typically used for a userame and a
DocumentOpenCallback.Password object, with which you can submit a
password to the Java Virtual Machine to authenticate it.

A typical implementation of the getOpenPassword() method prompts the user
for a password, attempts to submit it, and throws an exception if it is not
accepted. The following example illustrates a possible implementation:

protected void getOpenPassword(String s_userName,
Password p password)
throws DocumentCancelException

while (true)

{

try
{
String s pwd = JOptionPane.showInputDialog(
"Password to open the file:");
if (s_pwd != null){
p_password.submitPassword (s _pwd) ;
return;
} else{
throw new DocumentCancelException() ;

}
}

catch (com.flj.ss.AccessDeniedException e)

{

JOptionPane.showMessageDialog (null,
"Invalid password.") ;

58 Using BIRT Spreadsheet Engine and API

Getting the modify password

There are two versions of the DocumentOpenCallback.getModifyPassword()
method. One version has no arguments and returns the value of the password as
set by the setModifyPassword() method. The other version of the
getModifyPassword() method is designed to be implemented in a class that
extends the DocumentOpenCallback class. You can use this method to prompt
the user for a password that you then use to open the file. If you change the
method name in the previous example to getModifyPassword(), it serves as an
example of a possible implementation of the getModifyPassword() method.

Creating a BookModel object from an Excel
spreadsheet file

The following example illustrates creating an BIRT Spreadsheet Book object by
reading the data from an Excel spreadsheet.

java.util.Locale 1 local = new java.util.Locale("en", "US");

Group g _group = new Group(l local) ;

java.io.File £ file = new java.io.File("C:/myExcelSheet.xls");

DocumentOpenCallback doc OpenCb = new DocumentOpenCallback() ;

doc_OpenCb.setOpenPassword ("abracadabra") ;

doc_OpenCb.setCodePage (DocumentOpenCallback.CODEPAGE UTF8) ;

Document d_bookDoc = new Document (g group, f file, doc_OpenCb) ;

BookModel bm book = BookModel.Factory.create(d_bookDoc.getBook(),
g _group) ;

While this example specifies a locale when creating a Group object, it is often not
necessary. A group is automatically initialized according to the system’s locale
settings, which is often sufficient.

Creating a JBook object from a Document object

To create a JBook object from a Document object, use the constructor of JBook that
takes a Document argument, as shown in the following statement:

JBook jb _book = new JBook (d_doc) ;

Reading from an input stream

To create a workbook, worksheet, or a partial worksheet from an input stream,
use a Document constructor that has an InputStream parameter. The following
example shows how to read a workbook from an input stream:

java.io.File f myFile = new java.io.File(
"C:\\mySerializedWorkbook.stt") ;

(continues)

Chapter 4, Working with input and output 59

java.io.FileInputStream fis inputStream =

new java.io.FileInputStream(f myFile) ;
DocumentOpenCallback doc OpenCb = new DocumentOpenCallback() ;
doc_OpenCb.setCodePage (DocumentOpenCallback.CODEPAGE UTF8) ;
Document d_bookDoc =

new Document (g group, fis inputStream, doc_ OpencCb) ;
BookModel bm book = BookModel.factory.create(

d_bookDoc.getBook ()) ;

Writing an output file

Use the Document class to write a workbook to an output file. The Document
class has several methods you can use to create an output file, including:

m fileSave(DocumentSaveCallback saveCallback)
Saves the document to the same location from which it was opened

n fileSaveAs(java.io.File outputFile, DocumentType docType,
DocumentSaveCallback saveCallback)

Saves the document to any location

n fileSaveCopyAs(java.io.File outputFile, DocumentType docType,
DocumentSaveCallback saveCallback)

Saves a copy of the document to any location

n fileSaveCopyAs(java.io.OutputStream stream, DocumentType docType,
DocumentSaveCallback saveCallback)

Saves a copy of the document to any location

With the exception Document.fileSave(), each of the preceding methods take
three arguments, one to specify the output file or stream, one to specify the file
type, and one to specify a callback class to handle special situations. The
fileSave() method re-writes the document to the same file from which it was
created.

You pass workbook data from a workbook to a Document object using the
BookModel.getBook().getDocument() method. Additionally, if you are using a
JBook object, you can use the JBook.getDocument() method to pass the
workbook data into a Document object. The resulting Document object can be
saved to a file using any of save methods. The following example illustrates the

60 Using BIRT Spreadsheet Engine and API

creation of an BIRT Spreadsheet workbook file that is compatible with the current
version of BIRT Spreadsheet:

String fileName = pathToOutputFile + "\\saveWorkbook.sod";
Document d doc = bm book.getBook () .getDocument () ;

try{
d doc.fileSaveAs (new java.io.File(fileName),

com.flj.ss.DocumentType.CURRENT FORMAT,

new com.flj.ss.DocumentSaveCallback()) ; }
finally f{

d doc.release() ;

}

As with opening a document, you use the Document.release() method to release
the automatic file lock when the code is finished working with a file.

About the file type parameter

You use the DocumentType parameter to specify the type of file to write. You can
create the following kinds of output files with the BIRT Spreadsheet API:

m BIRT Spreadsheet report formats (.sod, .sox, or .soi)

The BIRT Spreadsheet API supports writing a BIRT Spreadsheet report design,
executable, and document files in the current BIRT Spreadsheet format but not
in formats for earlier versions.

m Excel spreadsheet (.xls)

The BIRT Spreadsheet API supports writing an Excel spreadsheet formatted
for with any version of Excel from Excel-95 to present.

m Tab-delimited text file

Tab-delimited text files can contain either UNICODE or ASCII characters. A
tab-delimited text file can include values and formatting information or just
values.

s HTML

HTML output can consist of a simple table with no formatting or it can be
formatted with an external XSL file.

s XML

XML output can be as simple as row elements containing a set of column
elements, or it can refer to an external XSL file for more complex formatting.

Chapter 4, Working with input and output 61

The DocumentType class defines the file type constants in Table 4-1.

Table 4-1

File type constants defined by the DocumentType class

DocumentType constant

Output file type

ACTUATE_10_REPORT_EXECUTABLE
ACTUATE_10_REPORT_INSTANCE
ACTUATE_10_REPORT_VIEW
ACTUATE_10_WORKBOOK
CURRENT_FORMAT

EXCEL_5_WORKBOOK
EXCEL_97_REPORT_VIEW

EXCEL_97_WORKBOOK
HTML

HTML_DATA_ONLY

OPEN_XML_REPORT_VIEW

OPEN_XML_WORKBOOK

PDF

PDF_REPORT_VIEW
TABBED_TEXT
TABBED_TEXT_VALUES_ONLY

UNICODE_TEXT

UNICODE_TEXT_VALUES_ONLY

The Actuate 10 and 11 report executable format
(.sox)

The Actuate 10 and 11 report instance format
(.soi)

The Actuate 10 and 11 report view format
(.sov). This format only saves the results of any
queries present in the workbook.

The Actuate 10 and 11 workbook format (.sod)
The current Actuate workbook file format
The Excel 5-95 workbook format (.xIs)

An Actuate 9 and higher report view in the
Excel 97-2003 workbook format (.xls). Saving
in this format executes the report and only
saves the resulting output.

The Excel 97-2003 workbook format (.xls)

Default HTML format. For HTML options, use
the HTMLWriter() class described in “Writing
to an HTML file,” later in this chapter.

HTML format, showing plain cell data only

An Actuate 11 report view in the Open XML
(Excel 2007) workbook format (.xIsx)

Open XML (Excel 2007) workbook format
(xIsx)

PDF format
PDF format report view format
Text format, with columns tab-delimited

Text format, showing plain cell values only,
with columns tab-delimited

Unicode text format, with columns
tab-delimited

Unicode text format, showing plain cell values
only, with columns tab-delimited

62 Using BIRT Spreadsheet Engine and API

About the DocumentSaveCallback parameter

The DocumentSaveCallback class contains several methods to handle special
situations that may occur when writing an output file. The methods include:

n fileExists(boolean readOnly)
Called if the save operation will overwrite an existing file
m foreignFileFormatLosesData()

Called if the save operation will lose data because the file is being written in a
non-Actuate file format that does not support all of the workbook’s data

m getCacheStream()

Returns a stream to which the data cache is to be written, instead of writing it
to the workbook file itself

m getSheet()

Called when the file format only supports saving a single sheet
m getViewHandle()

Called to determine which view information to use when saving the file
m notifyGUID(java.lang.String guid)

Called by the BIRT Spreadsheet engine to provide the workbook file’s GUID
to the application

If an application has no need to handle any of these situations, you can pass null
to the Document method that writes the file.

Writing a range of cells

Use the Range class to write a range of sheets and cells to an output file. The
following snippet illustrates creating a tabbed text file for a range of cells:

java.io.File £ file = new File(fileName) ;

Range r range = bm book.getRange(startRow, startCol, endRow,
endCol); // works with the current worksheet

r range.write(f file, DocumentType.TABBED TEXT) ;

The main restriction on writing a range of cells is that the output file type can only
be one of the following document types:

m DocumentType. TABBED_TEXT

m DocumentType. TABBED_TEXT_VALUES_ONLY

m DocumentType. UNICODE_TEXT

m DocumentType. UNICODE_TEXT_VALUES_ONLY

Chapter 4, Working with input and output 63

It is also possible to write to an output stream by substituting an OutputStream
object for the File object in the last line of code in the previous example.

Setting the code page type for an output file

You can set the unicode type encoding for an output file using the
DocumentSaveOptions.setCodePage() method and then passing that object to
the Document.setDocumentSaveOptions() method.

While you can specify a code page type for tabbed text files, you cannot specify
one for BIRT Spreadsheet or Excel formats. If you do not specify a code page type
for tabbed text, the Document.saveAs() method uses the default ANSI code page.
The saveAs() method also uses the ANSI code page for Excel version 3 or 5
formats. For the newer BIRT Spreadsheet formats and for more recent Excel file
formats, the saveAs() method uses the Unicode Little Endian code page.

The default code page for Unicode text files is Unicode Little Endian. If you
specify a code page for Unicode text files, only Unicode Little Endian and
Unicode Big Endian are valid choices. If you specify any other code page for a
Unicode text file, the saveAs() method ignores it and uses the default code page.

The following snippet illustrates saving a workbook with the code page type set
to Unicode Little Endian:

DocumentSaveOptions dso _docSO = d_doc.getDocumentSaveOptions () ;

dso_docS0.setCodePage (
DocumentSaveOptions.CODEPAGE UNICODE LITTLEENDIAN) ;

d_doc.setDocumentSaveOptions (dso_docSO) ;

d_doc.fileSaveAs (new java.io.File("c:\\files\\example.sod"),
DocumentType .ACTUATE 11 REPORT EXECUTABLE, null);

Setting passwords for an output file

When you output an BIRT Spreadsheet file, there are two kinds of passwords that
you can set. The DocumentSaveOptions.setOpenPassword() methods sets a
password that a user must enter to open the file. The setModifyPassword()
method sets a password that a user must enter to save a modified version of the
workbook. The following example shows how to save a workbook using the
setOpenPassword() and setModifyPassword() methods to control access to the
file:

DocumentSaveOptions dso_docSO =
d_doc.getDocumentSaveOptions() ;

dso_docSO.getDesignProtectionOptions () .setOpenPassword("open
sesame") ;

dso_docSO.getDesignProtectionOptions () .setModifyPassword("modify
sesame") ;

d_doc.setDocumentSaveOptions (dso_docSO) ;
d_doc.fileSaveAs (new java.io.File("c:\\files\\example.sod"),
DocumentType .ACTUATE_11_ WORKBOOK, null) ;

64 Using BIRT Spreadsheet Engine and API

Using a JBook to refresh an Excel document

To use a JBook object to refresh an xls file, you pass the JBook object to the
DocumentSaveCallback constructor when you save the document, as shown in
the following code snippet:

JBook jb_jbook = new JBook(d doc) ;

try {
d doc.fileSaveCopyAs (new java.io.File("myfile.xls"),
com.flj.ss.DocumentType.EXCEL_ 97 WORKBOOK,
new com.flj.ss.DocumentSaveCallback (jb_jbook)) ;
} finally {
jb_jbook.destroy () ;

}

If you do not pass the JBook object to the DocumentSaveCallback constructor, a
BookModellmpl object is used by default. A BookModellmpl object does not
support character or cell sizing. For example, if the document uses auto column
width sizing, the column sizing will not be correct with the default option.

Writing to an output stream

You can write the contents of a workbook directly to an output stream by passing
a java.io.OutputStream object to the appropriate Document.fileSaveAs() method.

The serialized BookModel object that this process creates can be read by the
ObjectInputStream.readObject() method. The following code snippet illustrates
writing to an output stream:

java.io.FileOutputStream fos fileOutputStream =
new java.io.FileOutputStream("c:\\file.srtm");

d doc.fileSaveCopyAs(fos fileOutputStream,
DocumentType .ACTUATE 11 WORKBOOK, null) ;

You are not limited to using a FileOutputStream object in the fileSaveCopyAs()
method because it is only one of several subclasses of java.io.OutputStream. You
can also use any of the following java.io classes:

m BufferedOutputStream

m ByteArrayOutputStream
m DataOutputStream

m FilterOutputStream

Chapter 4, Working with input and output 65

Writing to an HTML file

Use the com.f1j.ss. HTMLWriter class to save an entire workbook or a selected
range of cells to an HTML file and specify how much and what kind of
formatting the HTML file has. The data in the cells of the workbook appear in an
HTML table.

How to write to an HTML file

To create an HTML file, you must perform the following steps:

1 Define a string containing the path to the file you want to write.

2 Instantiate a java.f1lj.ss. HTMLWriter object.

3 Instantiate a java.io.FileWriter object, passing the path to the file in the
constructor.

Set formatting options, using the HTMLWriter.setFlags() method.

Pass the Writer object and workbook to the HTMLWriter.write() method.
Additionally, you can specify a range of cells to write as needed.

6 Close the FileWriter object.

Setting the formatting options

The HTMIWriter.setFlags() method lets you determine which formatting
attributes are taken from the workbook to use in setting formats for the HTML
file. If you do not specify any options, HTMLWriter uses all the options except
border. To select more than one option, add the options together. Table 4-2 lists
the possible options you can set.

Table 4-2 HTML formatting options
Formatting option Description
NONE No tags or value formatting.
VALUE_FORMATS Outputs cell values with value formats.
BORDER_TAG Turns on table border.
HEIGHT_TAG Uses the HTML HEIGHT tag to set row heights.
WIDTH_TAG Uses the HTML WIDTH tag to set the column widths.
BGCOLOR_TAG Uses the HTML BGCOLOR tag to set the background

color of the cells.

FONT_TAG Uses the HTML FONT tag to set the font attributes.
COLSPAN_TAG Uses the HTML COLSPAN tag to display data that

overlaps cells.

66 Using BIRT Spreadsheet Engine and API

Table 4-2 HTML formatting options

Formatting option Description

ALIGN_TAG Uses the HTML ALIGN tag to set the horizontal
alignment.

VALIGN_TAG Uses the HTML VALIGN tag to set the vertical
alignment.

ALL Default. Applies all flags except BORDER_TAG.

The following example creates an HTML file with three formatting options set
and writes a range of cells to it:

HTMLWriter hw Writer = new HTMLWriter();

String filename = pathToOutput + "\\" + "htmlOutput.html";

java.ilo.FileWriter fw _writer =
new java.io.FileWriter (filename) ;

// Set three formatting options

hw Writer.setFlags (hw Writer.VALUE FORMATS +
"hw_Writer.BORDER_TAG + hw Writer.WIDTH TAG) ;

// Write out a part of one sheet in the current book

hw Writer.write (bm book.getBook (), sheetl, startRow, startCol,
_éheet2, endRow,_éndCol, fw_writer) ;

fw _writer.close();

Writing an entire book as HTML

You can also write out an entire book with a different version of the write()
method. When you write the entire book, the HTML file contains a table for each
sheet and the tables are separated by a blank line. The following line writes the
entire book to an HTML file:

hw_htmlWriter.write (bm book.getBook (), fw_fileWriter);

Writing to an XML file

Use the com.f1j.ss. XMLWriter class to create an XML file that contains the
contents of a workbook or a range of cells or multiple cell ranges with specific
formatting options. Additionally, you can use XMLWriter to associate a style
sheet with the output file.

Including cell formatting information in the XML
output file

Whether you associate a style sheet or not, you can choose to include cell
formatting information. The XMLWriter.setWriteFormatAttributes() method of

Chapter 4, Working with input and output 67

XMLWriter determines whether the XML file should contain cell formatting
information. If you pass true to this method, the write() method generates
formatting tags in the output file based on the format content of each cell.
Table 4-3 lists the formatting tags that can appear in the XML file.

Table 4-3 XML formatting tags

Tag Description

width-twips number (cell height in twips, e.g. 240 = 12pt)
hidden boolean (true = cell is hidden)

locked boolean (true = cell is locked)

keys (a list of all defined names referring to this cell)
alignment-horizontal string ("left," "center," "right")
alignment-vertical string ("top," "center," "bottom")

font-bold boolean (true = bold)

font-italic boolean (true = italic)

font-color RGB value (e.g. 0XFF0000 = red)
font-size-twips number (e.g. 240 = 12pt)

merge-horizontal number (of cells merged to the right)
merge-vertical number (of cells merged down)

pattern-fg RGB value (e.g. 0XFF0000 = red)

skip number (of cells skipped. Rows with formatting

are not skipped)
wrap boolean (true = wrap cell text)

Associating a style sheet with the XML output file

XML style sheets are written in Extensible Stylesheet Language Transformations
(XSLT). An XSLT file contains style information that describes how to format an
XML file. For more information on creating a XSLT file, go to

http:/ /www.w3.org/TR/xslt.

To write an XML file formatted with an associated style sheet, create a
FileInputStream object for the XSLT file and pass that object to one of the write()
methods of XMLWriter that takes a FileInputStream parameter.

Writing single or multiple cell ranges

The XML output file can represent a single cell range or a series of ranges. You
control the range selection by passing the write() method either an array of

68 Using BIRT Spreadsheet Engine and API

formula strings or a single formula string. The formula strings you pass contain a
cell range expression such as Sheet1!C2:F5.

Controlling the merge mode

If you choose to write multiple ranges, you can control whether the ranges are
merged or separated by white space. To merge the ranges, pass
eMergeRangeRows to the XMLWriter.setMergeRangeType() method. Passing the
parameter eMergeRangeNone causes the ranges to appear separately.

Skipping empty cells

Calling XMLWriter.setSkipEmptyCells() with a value of true causes the skip
attribute to be included in <row> and <cell> tags for an output file and omit
empty cells form the markup. The skip attribute indicates how many empty cells
precede the cell with the skip attribute, indicated that they have been skipped if
the XML is parsed later. Using this feature optimizes the output stream if the
range contains many empty cells.

Writing the XML output code

The process for writing XML output is almost the same regardless of whether you
associate the file with a style sheet or not, specify one or more ranges, or choose to
include cell formatting tags.

How to create an XML output file
To create an XML output file, you must perform the following steps:

1 Create a FileInputStream object, specifying the path to the XSLT file if you
want to use a style sheet.

Create a FileOutputStream object using the path to the output file.
Get a Book object from the BookModel object.

Create an XMLWriter object by passing the Book object to the constructor of
XMLWriter.

5 Optionally, call XMLWriter.setWriteFormatAttributes() to include cell
formatting tags.

6 Optionally, call XMLWriter.setMergeRangeType() to merge ranges.
Optionally, call XMLWriter.setSkipEmptyCells() to skip empty cells.

Call XMLWriter.write() specifying the range or ranges of your workbook that
you want to write.

Chapter 4, Working with input and output 69

The following example illustrates writing a workbook to an XML file using an
XSLT file and merging two ranges:

FileInputStream fis xsltInput =

new FileInputStréém(pathAndFileForXSLT);
FileOutputStream fos myXMLStream =

new FileOutputStréém(pathAndFileForXML);
XMLWriter xw_xmlWriter = new XMLWriter (bm_book) ;
xw_xmlWriter.setWriteFormatAttributes (true) ;
xw_xmlWriter.setMergeRangeType (XMLWriter.eMergeRangeRows) ;

String[] s _formulas = new String[2];
s formulas[0] = "Sheetl!Al:D9";
s formulas[1l] = "Sheet2!B6:Z22";

xw_xmlWriter.write(s formulas, fis xsltInput, fos myXMLStream) ;

Saving window-specific information

To save window-specific information when writing a file, call the
BookModel.saveViewInfo() method before writing the file. This method saves
properties such as:

m The active cell

m The active sheet

m Zoom percentage

m Freeze panes

m Split views

m Grid lines

The following example shows how to call the saveViewInfo() method before
writing files:

bm book.setShowGridLines (false) ;
bm book.saveViewInfo () ;
try {
bm book.getBook () .getDocument () . fileSaveAs (
new java.io.File(fileName),
com.flj.ss.DocumentType.EXCEL 97 WORKBOOK,
null) ;
}
finally {
bm book.release() ;
}

70 Using BIRT Spreadsheet Engine and API

Understanding Excel file format limitations

Output in any of the Excel file formats is subject to the same limitations as Excel,
including the number of displayed significant digits and the number of columns
and rows. Most versions of Excel prior to Office 2007 allow 15 significant digit
display and 65,536 rows by 256 columns. A BIRT Spreadsheet workbook can
contain significantly more rows and columns than Excel. When you save a
workbook in Excel format, the portion of the workbook that exceeds Excel
limitations is deleted. For more information on the differences between Excel and
BIRT Spreadsheet, see Designing Spreadsheets using BIRT Spreadsheet Designer.

Chapter 4, Working with input and output 71

72 Using BIRT Spreadsheet Engine and API

Working with data sources

This chapter contains the following topics:
m Using data sources
m Using a file data source

m Using the data set cache as a data source

Chapter 5, Working with data sources 73

Using data sources

You can use the BIRT Spreadsheet API to connect to external data sources. You
can connect to the following types of data sources:

m Database. You can connect to relational databases such as Oracle, Access or
other database management systems (DBMS) that support the Java Database
Connectivity interface standard (JDBC).

m File. You can use character-delimited, fixed-width text, or extensible markup
language (XML) formatted files.

m SAP You can use an SAP BW or SAP R/3 data source.
m XML. You can access data stored in an XML document.

m Actuate Information Object. You can use an Actuate Data Integration
connection to access an information object.

m Custom. To use a custom data source developed for your organization, you
must define an open data access connection. For information about creating a
custom data connection, see Designing Spreadsheets using BIRT Spreadsheet
Designer.

To access a database as a data source, you must include the JDBC driver in your
classpath. For example, BIRT Spreadsheet Engine and API provides the Derby
JDBC Diriver to connect to the sample databases. To connect to the sample
databases used in the examples, add Derby.jar to your classpath.

A program that accesses a data source typically does the following tasks:

m Generates a com.flj.data.source.Source object to access data sources

m Casts and sets the properties of Source object to access a specific data source.
m Generates a com.flj.data.query.DataQuery object

m Casts it as DatabaseQuery and sets its SQL string

m Creates a com.flj.ss.datarange.DataRange object to display the data

m Associates the Query object with the DataRange object

m Formats the DataRange

m Recalculates the Workbook and saves it to a file, which runs all of the queries
in the book

Accessing a data source

To connect to and use a data source, you create a com.f1j.data.source.Source object
by using the BookModel.getDataSourceCollection.factory() method. A workbook
automatically generates an empty DataSourceCollection object when you

74 Using BIRT Spreadsheet Engine and API

construct it, so it does not need to be constructed explicitly. Starting from the
BookModel object, this is a two-step process that you can combine into a single
statement:

Source s_src = bm book.getDataSourceCollection() .
factory(dataSrcName, com.flj.data.DataSourceCollection.kFile) ;

where

m getDataSourceCollection() generates a generic data source object and
associates it with the BookModel object.

m dataSrcName is a unique name for this data Source as referenced from the
data source collection.

m com.flj.data.DataSource.Collection.kFile is the type of data source created,
which is dictated by one of the following data type constants. Table 5-1 lists
the valid data source type constants and the type of class that the factory()
method returns for each.

Table 5-1 Data source type constants and data source classes
Data source class
Constant Data source type returned
kFile A file File
kJDBC A JDBC database JDBC
kInputStream An input stream InputStream
kDOM A Document Object Model DOM
kOda3Connection An open data access (ODA) OdaConnection
connection

Casting the Source object

You must cast the Source object that you get from the DataSourceCollection object
into one of the data source classes listed in Table 5-1. The factory() method
returns an object that corresponds to the constant you specify, but it remains
generic until it is cast. For example, if you specify kJDBC to indicate that your
data source is a JDBC data source, you must cast the Source object that factory()
returns to a com.flj.data.source.JDBC object, as in the following statement:

JDBC jdbc dataSrc = (com.flj.data.source.JDBC) s_src;

You can combine the casting operation in the same statement that gets the Source
object, as in the following example:

JDBC jdbc_dataSrc = (com.flj.data.source.JDBC)
bm book.getDataSourceCollection() . factory (dataSrcName,
com.flj.data.DataSource.Collection.kdDBC) ;

Chapter 5, Working with data sources 75

Setting the properties of the data source

After getting a data source object, you must set several of its properties to connect
to a data source. These properties include the database driver and name, and a
valid user name and password. The JDBC.set() method sets these properties for a
JDBC data source, as shown in the following statement:

jdbc_dataSrc.set ("org.apache.derby.jdbc.EmbeddedDriver",
"jdbc:derby:classpath:ClassicModels", "admin", "password",
false) ;

where

m 'org.apache.derbyjdbc.EmbeddedDriver" is a string defining the database
driver to use.

m 'jdbc:derby:classpath:ClassicModels" is the database name.
m "admin" is the database user name.
m "password" is the password for the admin user name.

m false is the metadata update flag, which if true runs all attached queries to
update metadata when set() runs. Only set this argument to true when you
know the metadata is outdated, such as checking it beforehand in an if-then
block. For new data sources, passing null is the best practice.

The set() method is declared in the DataSource interface, so all of the other
DataSource classes implement it with the same arguments.

Creating and setting a query object

You create a com.flj.data.query.DataQuery from a Source object by getting a
com.flj.data.DataQueryCollection object and calling its factory() method, as in
the following statement:

DataQuery dg dataQuery = jdbc dataSrc.getDataQueryCollection() .
factory ("queryl") ;

The name you specify as the argument to the factory() method is a handle for the
query. A data source object automatically generates an empty
DataQueryCollection object when you construct it, so it does not need to be
constructed explicitly. After you have the DataQuery object, you must set its data
handler type and, if accessing a SQL database, its query string. The following
statement sets the handler type:

dg dataQuery.setDataHandlerType (
com.flj.data.handler.Handler.kJDBCResultSet) ;

You must cast the DataQuery object to a com.f1j.data.query.DatabaseQuery object
in order to set the query string. You must do this because the DataQuery interface
does not include a setQuery() method. The factory() method of
DataQueryCollection obtains the connection type and returns an object that

76 Using BIRT Spreadsheet Engine and API

implements the DatabaseQuery interface, though its stated return type is
DataQuery. The following statement a dataQuery object as a DataBaseQuery
object and adds a select statement to the query string:

((DatabaseQuery)dqg dataQuery) .setQuery("select * from Sales",
false) ;

where
m "select * from Sales" is a string defining an SQL command.

m false is a boolean indicating that the query string is not a stored procedure call.

Creating a DataRange object and setting its query

After connecting to a data source, setting the appropriate properties, and
constructing a query, you must create a data range on a worksheet in which to
display the queried data. You do this by calling the
BookModel.getDataRangeModel().createDataRange() method for the target
sheet. The following code demonstrates the createDataRange() method:

DataRange dr r = book.getDataRangeModel () .createDataRange (0, 0, O,
1, 3, dg jdbcQuery) ;

where
m The first 0 is the index of the worksheet that contains the data range.

m The next pair of zeros, 0, 0, are integers representing the starting row and
column, in that order, for the data range. The indexes for rows and columns
begin with 0.

m 1, 3 are integers representing the ending row and column, in that order, for the
data range.

m dq_jdbcQuery is the DatabaseQuery object used to populate the data range
with data.

Setting up a detail section to contain data

A data range requires report functions to acquire data from a data source using a
query. You establish a report function for the data range by creating a section in
the data range and assigning a report function to that section. For the purposes of
this discussion, the detail report function provides direct access to the
information in the data source. The following code sets up a detail section in a
data range for the root row of the data:

Section s_section =
dr r.getRowRootSection() .getChild(1l) .createParent ("detail") ;
section.setCommands ("detail () ") ;

For more information about report functions, see Designing Spreadsheets using
BIRT Spreadsheet Designer.

Chapter 5, Working with data sources 77

Using a cell entry to load data

A data range can load any column from the data source. You set the column of
data to load using BookModel.setEntry(). For example, the following code sets
the country column from the database table to the cell A2 on the first worksheet:

book.setEntry (0, 1, 0, "#write (country)");
where
m The first 0 is the index of the worksheet that contains the data range.

m 1,0, are integers representing the cell in which to put the entry. This cell must
be in a data range section that is connected to a data source.

m "#write(country)" is the entry that is added to the cell. When the workbook is
saved, this entry will populate the column of the assigned cell with data from
the country column of the data source. The column is filled starting with the
row of the assigned cell, which is A2 in this case.

Generating the workbook

Finally, you generate the workbook generating a com.f1j.ss.Document object. You
can refresh a workbook that relies on external data from a database or external file
by creating and saving a new Document object, as shown in the following code:

com.flj.ss.Document d doc = bm book.getBook () .getDocument () ;
try {
d doc.fileSaveAs (new java.io.File("report.xls"),
com.flj.ss.DocumentType.EXCEL 97 WORKBOOK,
new com.flj.ss.DocumentSaveCallback()) ;
}
finally {
d doc.release() ;
}

You must always call the Document.release() method after creating the
document. If you do not call this method, the engine retains a lock on the output
file. For more information about using the Document class, see Chapter 4,
“Working with input and output.”

Generating Excel output

For a program to generate an Excel file containing information from a data
source, the workbook must regenerate at least once to load the data into a data
range before it is saved. This is accomplished by loading the content into a
spreadsheet design file before saving the output into an Excel file. Using all the

78 Using BIRT Spreadsheet Engine and API

thread locking and document locking mechanisms, the following code generates
Excel output that contains data from a data source:

import
import
import
import
import
import

public
public

Document d_doc

java.io.
.88.%;

.ss.datarange. *;
.data.source.JDBC;
.data.query.*;
.data.DataSourceCollection;

com
com
com
com
com

£17
£15
J£15
J£15
J£15

File;

class MyTest {

static void main (String args[]) {

= new Document (null) ;

BookModel bm book = BookModel.Factory.create(d doc.getBook()) ;
bm_book.getLock () ;

try{

JDBC jdbc dataSrc =
(com.flj.data.source.JDBC)bm book.getDataSourceCollection() .fac

tory("test",

com.flj.data.DataSourceCollection.kdDBC) ;

jdbc _dataSrc.set ("org.apache.derby.jdbc.EmbeddedDriver",
"jdbc:derby:classpath:ClassicModels", "", "", false);

//create the query

DataQuery dg _dataQuery =
jdbc_dataSrc.getDataQueryCollection() .factory("queryl") ;
dg dataQuery.setDataHandlerType (
com.flj.data.handler.Handler.kJDBCResultSet) ;

((DatabaseQuery)dq_dataQuery) .setQuery ("select * from \
"Customers\"", false) ;

//Create the data range

DataRange dr

o, 0, 1,
Section section =
dr.getRowRootSection () .getChild (1) .createParent ("detail") ;
section.setCommands ("detail () ") ;

bm book.setText (0, 0, 0, "COUNTRY");

bm book.setEntry (0, 1, 0, "#write(country)");

3,

= bm_book.getDataRangeModel () .createDataRange (0,
dg dataQuery) ;

//Save the report
try {
d _doc.fileSaveAs (new File("C:\\output.sod"),
DocumentType .ACTUATE 11 WORKBOOK, null) ;
d _doc.fileSaveAs (new File("C:\\output.xls"),
DocumentType.EXCEL 97 REPORT VIEW, null);

}

(continues)

Chapter 5, Working with data sources

79

finally {
d doc.release() ;
}

}

catch (Exception e) {
e.printStackTrace () ;
throw new RuntimeException (e) ;
}
finally({
bm book.releaseLock() ;
}

}
}

The spreadsheet design file, output.sod, contains the data source entry as shown
in Figure 5-1.

A | B | € | D E [F
1 [COUNTR
2 |#write(country) |] detail RS
3 1. 1 1
4 Columns
Figure 5-1 The contents of output.sod

The Excel spreadsheet file, output.xls, contains the results from the data source, as
shown in Figure 5-2.

] 5 [=]
A B C -

1 [COUNTRH [

| 2 |France

| 3 |UsA

| 4 |Australia

| 5 |France

B |Morway ﬁ

4% bifsheetr 9| vz
Figure 5-2 The contents of output.xls

Using a file data source

You can use the BIRT Spreadsheet API to connect to a text file and use it as a data
source.

Creating a connection to a file data source

The steps for connecting to a file data source are similar to those for connecting to
a database source as shown in “Using data sources,” earlier in this chapter. The
major difference between using a file data source and a database data source is
that there is no query or associated SQL statement with a file data source. Also,

80 Using BIRT Spreadsheet Engine and API

you set different properties for the file data source DataSource object than for the
database DataSource object. For example, you set the driver, database, user name
and password properties on the database DataSource object and you set the file
path and data handler properties for the file DataSource object.

The following example illustrates connecting to a file data source:

// Use the kFile constant to set a file type for a data source.
com.flj.data.source.File f fileSrc = (com.flj.data.source.File)
bm book.getDataSourceCoiiection().factory(“salesPeople",
DaEaSourceCollection.kFile);
f fileSrc.setFilePath("c:\\shared\\SalesPeople.txt");
f fileSrc.setDataHandler (
_-com.flj.data.handler.Handler.kDelimitedText);
DelimitedText dt FFDef = (DelimitedText)
f fileSrc.getDataHandler () ;
dt FFDef.setStartRow(2) ;
dt_ FFDef.setDelimiters("\t");
DataQuery dg_dataQuery =
f fileSrc.getDataQueryCollection() .factory("queryl") ;

//Create the data range

DataRange dr = bm book.getDataRangeModel () .createDataRange (0, O,
o, 1, 3, dq_daEéQuery);

Section section =
dr.getRowRootSection () .getChild (1) .createParent ("detail") ;

section.setCommands ("detail () ") ;

bm book.setText (0, 0, 0, "First Name");

bm book.setEntry (0, 1, 0,
h#write(“ + dt FFDef.getColumnName (0) + ")");

try {
d _doc.fileSaveAs (new File ("C:\\FFoutput.sod"),
DocumentType .ACTUATE 11 WORKBOOK, null) ;
d_doc.fileSaveAs (new File("C:\\FFoutput.xls"),
DocumentType.EXCEL 97 REPORT VIEW, null);

}

finally {
d doc.release() ;

}

To read a file properly, the appropriate file handler constant must be passed to the
com.flj.data.source.File.setDataHandler() method. Table 5-2 lists the file handler
constants and the file formats they support.

Table 5-2 Options for file handlers

Constant Supported file format
kDelimited Text Character delimited text
kPositionalText Positionally delimited text

Chapter 5, Working with data sources 81

Using a delimited text file data source

Before defining a delimited text file query, you must create a File source object
and set its path and handler, as in the following example:

com.flj.data.source.File f fileSrc =
bm book.getDataSourceCollection() .factory("salesPeople",
DataSourceCollection.kFile) ;
fileSrc.setFilePath("c:\\shared\\delimitedSP.txt") ;
fileSrc.setDataHandler (
com.flj.data.handler.Handler.kDelimitedText) ;

You must also get the handler for the file and cast it as a
com.flj.data.handler.DelimitedText object, as shown in the following statement:

DelimitedText dt FFDef =
(DelimitedText) f fileSrc.getDataHandler () ;

Next, set the starting data row for the data in the DelimitedText object. Often the
data begins in the second row because the first row contains column headings.
You specify the starting row with the setStartRow() method, as shown in the
following statement:

dt_FFDef.setStartRow(2) ;

You must also tell the DelimitedText object what characters separate the columns.
You use the Delimited Text.setDelimiters() method to do this task. The following
statement sets the column delimiter characters to semicolon, colon, and comma.

dt FFDef.setDelimiters(";:,");

Some delimited text files contain delimiter characters that are not intended to
separate columns. The creator of the delimited text file can mark such a character
as data by preceding it with an escape character. Often this character is a
backslash (\). You use the Delimited Text.setTextQualifier() method to set the
escape character. If you use the backslash as an escape character, you must use a
pair of them because the Java compiler also interprets the backslash as an escape
character, as shown in the following statement:

dt_FFDef.setTextQualifier (*\\');

The delimiter that marks the end of a row is always either a carriage return or line
feed character or a combination of one carriage return and one line feed.

By default, all of the data in a text file is retrieved as strings. To change the data
type of a column, use Delimited Text.setColumnDataFormat(), as shown in the
following code:

dt FFDef.setColumnDataFormat (0, Text.kNumber) ;
where

m 0 is the index number for the column to cast.

82 Using BIRT Spreadsheet Engine and API

m Text.kNumber is a constant inherited by Delimited Text from the Text class that
sets the interpretation of the column to a number. kNumber does not accept
symbols, such as $, so currency values are initially be retrieved as text.

Defining a fixed-width text file query

A fixed width text file is one in which columns are a fixed number of characters or
digits wide. Each column can be a different width, but a column’s width is the
same for every row.

Preparing a fixed-width text file connection requires following the same process
described in a “Using a file data source,” earlier in this chapter. The following
example illustrates the process:

DataSourceCollection dsc_DataSources =
bm_ book.getDataSourceCollection() ;
Source s_src = dsc_DataSources.factory(
"salesPeople", DataSourceCollection.kFile) ;
com.flj.data.source.File f fileSrc =
(com.flj.data.source.File) s_src;
f fileSrc.setFilePath("c:\\shared\\fixedWidthFile.txt");
f fileSrc.setDataHandler (com.flj.data.handler.Handler.kPositionalT
ext) ;

As with all text files, you must get the Handler object and cast it appropriately:

PositionalText pt fixedWidth =
(PositionalText) f fileSrc.getDataHandler () ;

You must set where each column begins in the handler by creating and passing an
integer array to PositionalText.setDataPosition(), as in the following statements:

int[] i colPositions =
{ 6, 17, 24, 31, 38, 45, 52, 59, 66, 73,80, 87, 94 };
pt_fixedWidth.setDataPosition (i colPositions) ;

The first number in the array is the position of the second column. The first
column always starts in position 1. Like with delimited text files, you must tell the
handler where the data begins.

Using a URL to specify a file location

The preceding example uses a file path to specify the location of the data source.
You can also use a URL in the setFilePath() method to specify the path to the data
source. For example, you could substitute the following statement for the
statement that sets the file path in the preceding example:

f fileSrc.setFilePath("http://localhost/data/SalesPeople.xml") ;

Chapter 5, Working with data sources 83

One advantage of using a URL is that you can also set user name and password
authentication for a URL, providing you are using Java 2 version 1.3 or higher.
The following example shows how to set HTTP basic authentication for a URL:

f fileSrc.setFilePath(
"http://username:pwd@servername/directory/file.xml") ;

Using the data set cache as a data source

By default, the BIRT Spreadsheet Engine creates a data set cache when it retrieves
data from any data source. To access the data set cache, you can use
DataSourceCollection.getDataSetCacheDataSource(), which returns the data set
cache directly. Alternatively, you can use the get() method of the
DataSourceCollection object, which returns an array of Source objects, the first of
which is the data cache data source. For example, if there exists a data set cache,
get()[0] returns the data set cache and get()[1] returns the first normal data
source. If there is no cache, get() [0] returns the first normal data source.

The BIRT Spreadsheet Engine does not create the data set cache is until an initial
data set is queried.To test whether BIRT Spreadsheet Engine has instantiated the
data set cache, use DataSourceCollection.hasDataSetCache(), which returns true
if there is a cache and false if not. All the queries on the data connections in the
workbook are available to the data cache data source as tables. For example, if
you have a query named queryl for a database connection, and that query
retrieves customers.*, you can create a query in the data cache to retrieve
queryl.*.

84 Using BIRT Spreadsheet Engine and API

Working with data ranges

This chapter contains the following topics:
m About data ranges
m About the data range interfaces

m Writing a Java class that contains data range functionality

Chapter 6, Working with data ranges 85

About data ranges

A data range is an enhanced form of pivot range that can handle multiple and
complex data hierarchies, such as in a star schema or an OLAP data source. A
data range always has at least one associated data set. Unlike a pivot range, a data
range can have multiple associated data sets.

About the data range interfaces

There are several interfaces in the BIRT Spreadsheet API that you can use to
create or modify a data range, which the following sections describe.

Understanding the DataRangeModel interface

The com.flj.ss.datarange.DataRangeModel interface contains method signatures
to:

m Create a new com.flj.ss.datarange.DataRange object.

m Update an existing DataRange definition.

m Create a com.flj.ss.datarange.DataRangeDef object.

m Get a DataRangeDef object for the selected data range.

m Create a com.flj.ss.datarange.Range object based on the current selection.

You create a DataRangeModel object from the BookModel object, as shown in the
following statement:

DataRangeModel drm dataModel = bm book.getDataRangeModel () ;

Understanding the DataRange interface

The DataRange interface contains methods to get the position of the data range in
the workbook and the root column and root row sections of the data range. The
DataRange interface also contains methods to get and set the default data set. The
following statement creates a DataRange object from a DataRangeModel object
using the createDataRange() method of the DataRangeModel class:

DataRange dataRange = (DataRange)
dataModel.createDataRange (sheet, startRow, startCol, endRow,
endCol, dataQuery) ;

86 Using BIRT Spreadsheet Engine and API

You can also create a DataRange object by passing a DataRangeDef object to the
DataRangeModel.applyDataRange() method, as shown in the following code:

DataRangeDef dataRangeDef = dataModel.getDataRangeDef () ;
DataRange dataRange = (DataRange)
dataModel . applyDataRange (dataRangeDef) ;

The method of creating a data range object that the previous example shows is
useful for getting an instance of an existing data range or creating a new data
range that is based on the current selection. If the current selection is not inside an
existing data range, applyDataRange() returns a definition for a new data range.
To create a new data range using applyDataRange(), the current selection must
be outside the bounds of an existing data range.

Updating an existing data range definition

To update an existing data range definition, select the data range that you want to
update, complete the following tasks in this order:

m Place the selection inside the bounds of the data range to modify.

m Get a DataRangeDef object from the DataRangeModel object.

m Modify the attributes of the DataRangeDef object.

m Pass the modified DataRangeDef object to the applyDataRangeDef() method
of the DataRangeModel object.

Creating a DataRangeDef object for a new data range

To create a DataRangeDef object for a new data range, complete the following
tasks in this order:

m Create a selection that is outside the bounds of any existing data ranges and at
the location where you want to create a new data range.

m Call the getDataRangeDef() method of the DataRangeModel object.

The DataRangeDef object that getDataRangeDef() returns contains the definition
of a new data range at the location of the current selection. If more than one cell is
selected, the size and location of the new data range is identical to the size and
location of the selection. If only one cell is selected, the size of the new data range
is four cells by four cells, and the upper left cell of the new data range is at the
same location as the selected cell.

Getting the DataRangeDef object for an existing data range

To create a DataRangeDef object for an existing data range, complete the
following tasks in the order shown:

m Place the current selection inside the data range for which you want a
DataRangeDef object.

Chapter 6, Working with data ranges 87

m Call the getDataRangeDef() method of the DataRangeModel object.

The DataRangeDef object that is returned from the getDataRangeDef() method
represents the data range that contains the current selection.

Creating a Range object that is based on the current selection

The DataRangeModel interface contains two methods with which you can get a
Range object that represents the current selection. The Range object that is
returned represents a range of cells, but it is not a data range. The two methods
are similar and are both named getSelectedRange(). One of the two
getSelectedRange() methods has a Range argument, and the other one has no
arguments. If you want to create the resulting range in an existing Range object,
use the method that takes a Range argument. If you pass null to the
getSelectedRange() method, a new Range object is created. For both methods, the
return value is a reference to the Range object that represents the current
selection.

Formatting the data range

Once you associate a data range with a data query, you can set the range’s
formatting. There are four options for formatting the data range. You pass a
format specification constant to the DataRange.setFormattingMode() method to
specify the formatting mode. Table 6-1 lists the four constants and what effect
they have on the data range.

Table 6-1 Options for formatting the data range
Constant Description
eCellFormatting_Clear Clear existing database formatting.
eCellFormatting_Manual Use manual formatting.
eCellFormatting_Preserve Keep existing database formatting.

eCellFormatting_ReplicateFirstRow Use formatting from first row of data
range.

Understanding the DataRangeDef interface

The DataRangeDef interface defines the location, name, and data set that is
associated with a data range. You use a DataRangeDef object to set and retrieve
the name, location, and data set for a data range. You get a DataRangeDef object
from the DataRangeModel object, as shown in the following statement:

DataRangeDef dataDef = dataModel.getDataRangeDef () ;

When you initially create a DataRangeDef object, the values for the location,
name, and data set that are associated with the data range depend on the current
selection at the time that you create the DataRangeDef object. If the current

88 Using BIRT Spreadsheet Engine and API

selection resides within an existing data range, the DataRangeDef object describes
the data range that contains the active cell. If the active cell is outside all existing
data ranges at the time that you create a DataRangeDef object, default values are
assigned to the name, location, and data set attributes.

The default value for the data range location is the current selection at the time
that you create the DataRangeDef object. If the selection is a single cell, a four-
cell-by-four-cell data range is created. The default value for the data range data
set is the default data set of the workbook. The default data set for a workbook is
initially the first data set that is created for that workbook, but the user can
change the default value to any available data set at any time.

You can change the location, name, and data set for a DataRangeDef object at any
time before you use it to create a DataRange object. You use the setLocation(),
setName(), and setDataSet() methods to change the attributes of a DataRangeDef
object, as shown in the following example:

dataDef .setLocation ("Sheetl!b4:d8") ;

dataDef .getOptions () .setName ("myDataRange") ;
DataQueryCollection dgc = dataSource.getDataQueryCollection() ;
DataSet ds = (DataSet) dgc.find("myQuery") ;

dataDef .setDataSet (ds) ;

Understanding the Section interface

The Section interface defines a single section that you can create in the row and
column areas of a data range. A data range has one root row section and one root
column section. Both the root row section and the root column section can have
child sections, which can, in turn have other child sections. You get the root
column and row sections from the DataRange object, as shown in the following
example:

Section rootRowSection = dataRangel.getRowRootSection() ;
Section rootColumnSection = dataRangel.getColumnRootSection() ;

You can access a child section by index, name, or position, as shown in the
following example:

Section childOfRowRoot = rootRowSection.getChild(0) ;

Section childOfColumnRoot =
rootColumnSection.getChildAt (coll2) ;

Section grandchildOfColumnRoot =
childOfColumnRoot.getChild ("grandkidl") ;

Use Section.setCommands() to enter a data script command into the section. For
example, the following statement sets the grouping for a section:

childOfRowRoot . setCommands ("group (custid) ") ;

The Section interface implements the AbstractSection interface. You can use the
AbstractSection createParent() method to add a parent section. A parent section

Chapter 6, Working with data ranges 89

is one level higher in the section hierarchy than the section on which you call the
createParent() method. The createParent() method makes a String argument that
contains a name to assign to the new parent section.

The AbstractSection interface also has two methods, insertBefore() and
insertAfter(), that you can use to insert new rows and columns into a section. Use
insertBefore() and insertAfter() to increase the height and width of existing
sections. Using these methods has the effect of adding a new leaf section before or
after the section on which the method is called. The following example provides
examples of how to use the methods that are defined in AbstractSection:

Section parentSectionl =

childOfRowRoot .createParent ("parentSectionl") ;
Section leafSection = childOfRowRoot.insertBefore() ;
Section leafSection2= childOfColumnRoot.insertAfter();

Understanding data commands and report script

Data commands form the code that controls the content of a data range. The
commands that drive a data range are text strings entered into data cells. A data
command text string is coded in report script. The set of all report script functions
and their effects on the data range is available in Designing Spreadsheets using BIRT
Spreadsheet Designer.

Writing a Java class that contains data range
functionality

The main features of the data range API are used in the example DataMethods
class, which is included later in this section. The DataMethods class is a Java class
for creating and manipulating a data range. DataMethods can be accessed
through an event handler or from a stand-alone Java program that uses the BIRT
Spreadsheet Engine. DataMethods can:

m Create an empty data range in the workbook.

m Add row sections to the data range.

m Add cell commands to the data range.

The following code shows the DataMethods Java class:

import com.flj.util.*;

import com.flj.data.*;

import com.flj.ss.datarange.*;

import com.flj.ss.report.functions.*;
import com.flj.data.source.*;

90 Using BIRT Spreadsheet Engine and API

import com.flj.ss.*;
import com.flj.data.query.*;

public class DataMethods

public com.flj.ss.datarange.DataRange
createEmptyDataRange (BookModel bm book) throws
FlException {
DataRangeModel drm model = bm book.getDataRangeModel () ;
DataRangeDef drd definition = drm model.getDataRangeDef () ;
return drm model.applyDataRangeDef (drd definition) ;
}
public void addRowSections (com.flj.ss.datarange.DataRange
dr_dataRange) throws FlException {
Section s _rowRoot = dr dataRange.getRowRootSection() ;
Section s firstLeaf = s rowRoot.getChild(0) ;

Section s_sectionl = s firstLeaf.createParent ("Parent") ;
Section s_secondLeaf = s _rowRoot.getChild(1l) ;
Section s _section2 = s _secondLeaf.createParent ("Section2") ;

s_sectionl.setName ("Sectionl") ;
s_section2.setCommands ("group (custid) ") ;

}

private void addCellCommands (BookModel bm book) throws
com.f1lj.util.FlException {

bm book.setEntry (0, 0, "CustID");

bm book.setEntry (1, 0, "#custid");

bm book.setEntry (0, 1, "Last");

bm book.setEntry (1, 1, "#contact last");
bm book.setEntry (1, 2, "#contact first");

Chapter 6, Working with data ranges

91

92 Using BIRT Spreadsheet Engine and API

Working with cell data

This chapter contains the following topics:

About cell data

Getting and setting cell contents

Clearing, cutting, or deleting a cell or cell contents

Copying and pasting cell data
Using a defined name
Accessing cell data

Sorting cell data

Chapter 7, Working with cell data

93

About cell data

This chapter describes how to manipulate data on a worksheet, including:
m Getting and setting cell values and formulas

m Using a defined name

m Using an add-in function

For more information about using the BIRT Spreadsheet API to manipulate data
on a worksheet, see the Javadoc.

Getting and setting cell contents
This section describes how to use the BIRT Spreadsheet API to:
m Get and set the contents of a single cell.
m Supply the same values to all cells in a range.
m Load data from an array.
m Import a block of data into a range.

m Use a validation rule to restrict the data a user can enter in a cell.

Getting the contents of a cell

To get the contents of a cell, use the accessor methods of the BookModel and Sheet
classes.

Using BookModel.getCellText() and Sheet.getText()

BookModel.getCellText() returns the text representation of the active cell. If the
active cell contains a formula, these methods return the result of the computation
defined by the formula. Sheet.getText() returns the text representation of a cell by
row and column reference. The following statements illustrate using these two
methods:

// operates on the active cell

String s _cellText = bm book.getCellText () ;

// operates on specified cell

String s _cellText = s_sheet.getText (row, col);

Using BookModel.getEntry() and Sheet.getEntry()

There are four signatures of BookModel.getEntry() and two signatures of
Sheet.getEntry(), all of which return a string that is either the text representation

94 Using BIRT Spreadsheet Engine and API

of the cell or, if the cell contains a formula, the formula in the cell. The four
signatures of BookModel.getEntry() are summarized in Table 7-1.

Table 7-1 Signatures of BookModel.getEntry()
Method Target cell
getEntry() The active cell on the first selected worksheet
getEntry(row, col) The cell at the specified row and column on the

active sheet

getEntry(sheet, row, col) The cell at the specified row and column on the
specified sheet

getEntry(locationString) ~ The specific location or defined name specified in
the location string

The two signatures of Sheet.getEntry() are summarized in Table 7-2.

Table 7-2 Signatures of Sheet.getEntry()

Method Target Cell

getEntry() The active cell

getEntry(row, col) The cell at the specified row and column

The following statements show the use of these methods to get cell contents:

// gets contents of active cell

String str = bm book.getEntry() ;

// gets cell B2 on Sheet3

String str = bm book.getEntry("Sheet3!B2") ;
// gets cell at row and col on active sheet
String str = bm book.getEntry(row, col);

// gets cell at row and col on sheet

String str = bm book.getEntry(sheet, row, col);
// gets contents of active cell

String str = s_sheet.getEntry();

// gets cell Bl on this Sheet object

String str = s_sheet.getEntry (0, 1);

Using getFormula() and getNumber()

Both BookModel and Sheet contain methods to get the formula contained in a
cell. The methods that get formulas return strings that contain the formula
preceded by an equal sign (=). The methods that get numbers return doubles. If
the method to get a formula specifies a cell that does not contain a formula the
method throws an exception. Likewise, if the method to get a number specifies a
cell that does not contain a number, that method throws an exception. BookModel

Chapter 7, Working with cell data 95

has three methods for getting formulas, all called getFormula(). BookModel also
has three methods for getting numbers, all called getNumber(). The three
methods for getting formulas and the three methods for getting numbers have the
same set of parameters and operate on the same target cells as the first three
methods in the table of BookModel.getEntry() methods, appearing in “Using
BookModel.getEntry() and Sheet.getEntry(),” earlier in this chapter.

Sheet has one method for getting a formula and one method for getting a number,
both of which specify the specific row and column on the sheet that the Sheet
object represents. The following statements illustrate using the BookModel and
Sheet methods to get formulas and numbers from specific cells:

// gets formula in active cell

String formula = bm book.getFormula() ;

String formula = bm book.getFormula (sheet, row, col);
// row and col on active sheet

String formula = bm book.getFormula (row, col);

// row and col this Sheet

String formula = s_sheet.getFormula (row, col);

// gets formula in active cell

Double numericValue = bm book.getNumber () ;

Double numericValue = bm book.getNumber (sheet, row, col);
// on active sheet

Double numericValue = bm_ book.getNumber (row, col);

// row and col this Sheet

Double numericValue = s_sheet.getNumber (row, col);

Setting the contents of a cell

The methods to set the contents of a cell closely parallel the methods to get the
contents of a cell. Both BookModel and Sheet have an analogous method to set
cell contents for every method to get cell contents. The parameters to address the
locations of the affected cells in the methods to set cell content are identical to the
parameters in the analogous methods to get cell content.

Understanding the setEntry() methods

All of the BookModel.setEntry() and Sheet.setEntry() methods take a string
parameter that specifies text in the active cell just as a user would enter
information by typing it. This string can represent text, a number, a date, or a
formula. The setEntry() methods analyze the string and set the cell contents and
format accordingly. They differentiate between dates, times, percentages,
currency, fractions, and scientific notation and apply localized number formats.

Understanding methods that set the content of the active cell

Some of the methods that set cell content of a cell can operate on more than one
cell, whereas all methods to get the contents of a cell always operate on a single

96 Using BIRT Spreadsheet Engine and API

cell. When there is more than one selected sheet, methods that set the contents of
the active cell also set the contents of the same cell in all selected sheets. For
example, if cell Bl of sheetl is the active cell, and sheet2 and sheet3 are also
selected sheets, any method that sets the contents of the active cell then operates
on sheetl!B1, sheet2!B1, and sheet3!B1.

The following statements illustrate setting the contents of the active cell in all
selected sheets:

bm book.setCellText ("Expenses") ;
bm_book.setEntry("02/25/1944") ;
bm book.setNumber (3.14159) ;

bm book.setFormula ("sum(A2:D2)") ;

The following statements illustrate setting the contents of a single cell:

bm book.setFormula (sheet, row, col, "sum(al:c23");
bm book.setNumber (sheet, row, col, 123.99);

bm book.setEntry(row, col, "4.2E05");

bm book.setCellText ("Sheetl1l!B3") ;
s_sheet.setText (row, col, "Payables");
s_sheet.setFormula(row, col, "Al+B1l");

Supplying the same value in a range of cells

To enter one value throughout a range of cells, first create a selection that includes
all the cells you want to change, as in the following statement:

bm book.setSelection("sheetl!Al:K11");

After setting the selection, modify the upper right cell in the selection as in the
following statement:

bm book.setEntry("sheetl!Al", "0.0");

To copy the value in the top left cell of a selection into all the other cells in the
selection, use the following two statements:

bm_book.editCopyDown () ;
bm_book.editCopyRight () ;

The BookModel.editCopyDown() and BookModel.editCopyRight() methods are
only available in the BookModel interface, and not in the Sheet interface.

Copying cell data to and from an array

You can copy cell data to and from an array using methods in the BookModel and
Sheet interfaces. You can only copy numeric data and the array must be a two-
dimensional array of doubles. The following example copies data from a range of
cells in one worksheet into a two-dimensional array of doubles and then copies
that array back into a different range of cells in a different worksheet:

Chapter 7, Working with cell data 97

double[][] d dataArray = new double([3] [5];

bm book.copyDataToArray (sheetl, rowl, coll, row2, col2,
_dataArray);

bm book.copyDataFromArray (sheet2, row3, col3, row4, col4,
dataArray) ;

Copying cell data between ranges

You can also copy a range of cells directly without using an intermediate array by
using the BookModel.copyRange() method. The copyRange() method allows
you to copy between sheets in separate workbooks, as in the following example:

bm_ destBook.copyRange (sheetl, rowl, coll, row2, col2, bm srcBk,
sheet2, row3, col3, row4, col4d);

You can also use this method to copy a cell range within the same workbook by
specifying the same BookModel object for the source as the object on which you
call the method.

Loading cells from a tab-delimited string

You can use the BookModel.setClip() and BookModel.setClip Values() methods
to load cell data from a tab-delimited string. Both methods parse the specified
string into a set of substrings separated by tab characters and return characters. A
return character can be any of the following:

m A single carriage return character
m A single line feed character
m A carriage return and line feed together

The active cell forms the upper left corner of the grid of columns into which these
two methods place the substrings. A tab character signifies the end of a column
entry, and a return characters signifies the end of a row entry. The setClip()
method, like the setEntry() methods, evaluates each substring and formats the
cell accordingly, The setClipValues() method treats every substring as a text
value.

The following example shows how to use setClip() to parse and copy a
tab-delimited string, and place the appropriate values into cell range A1:C3:

String tabDelim =
"AA\tBB\tCC\n3.14159\t01/07/2005\t3E04\r20%\tHH\tII\tJJ";

// start the copy at Al

bm_book.setActiveCell (0, 0);

bm book.setClip (tabDelim) ;

98 Using BIRT Spreadsheet Engine and API

Setting a validation rule for a cell or a range

You can set limitations on what values can be entered into a cell or range of cells
by defining and applying a validation rule. Examples of validation rules are:

» SUM(A6:A7)>A5
» AND(A6>1,A6<100)

s IF(A7>1,A7<100,A7>0)

s OR(ISLOGICAL(A7),A7=1,A7=0)

To set a validation rule for a cell or range, you first get a
com.flj.ss.ValidationFormat object from a com.fl1j.ss.CellFormat object. The
following code snippet illustrates setting a validation rule for a range:

CellFormat cf format = bm book.getCellFormat () ;
ValidationFormat vf format = cf format.validation();
// the range for which we want to set the rule

bm book.setSelection("Al:D5") ;

vE format.setRule("Len(Al)<5", baseRow, baseCol) ;
bm book.setCellFormat (cf format) ;

All cell references in a validation rule are relative references, and you must
specify a base cell for cell references using the Row and Column arguments in
BookModel.setRule(). For example, if you specify cell B7 as the base cell and the
validation rule is:

>B6

the rule requires that the values of this cell, B7, must be greater than that of the
cell one row above, B6. If you set the above rule relatively to cell C8, the rule
transforms to:

>C7

This behavior is similar to how formulas change when moved from one cell to
another cell in Excel. When you apply a validation rule to a range, the rule is
transformed for every cell in the range.

Displaying multiline data in a cell

To display multiline data in a cell, use the new line constant, \n, to separate lines
of text in the cell, or set the wordwrap property of the com.f1j.ss.AlignFormat
object for the cell. The following snippet shows how to display text on separate
lines using a new line constant:

String s_text = "First line" + "\n" + "Second line";
bm book.setText (1, 1, s_text);

To set the word wrap property to multiple cells, set the word wrap property in the
AlignFormat for the workbook’s CellFormat object and use

Chapter 7, Working with cell data 99

BookModel.setCellFormat() to apply the new format to multiple cells. The
following example shows how to use the word wrap method:

CellFormat cf format = bm book.getCellFormat () ;
AlignFormat af format = cf format.align();

af format.setWordWrap (true) ;

bm book.setCellFormat (cf format, rowl, coll, row2, col2);

Entering concatenated strings and cell references

To enter text that consists of strings and references from other cells, use the
setFormula() method combined with the ampersand symbol, &. The following
statement enters a concatenation of a string and data in two other cells:

bm book.setFormula (i sheet, row, col, "\"Whoopie \"&Al&A2");

If you do not escape the internal quotes with backslashes, the setFormula()
method assumes that the text is a defined name. Whenever you want a formula to
display text, you must bracket the text in quotation marks.

Referring to a cell in another workbook

When you specify a formula that contains a reference to a cell in another
workbook, you use the following syntax:

bm book.setFormula (0, 0, "[secondWB]Sheetl!Al");

The string inside the brackets identifies the name of the other workbook. This
statement is only legal if both workbooks are in the same group.

For more information about grouping workbooks, see “Grouping workbooks” in
Chapter 2, “Working with workbooks and worksheets.”

Creating a hyperlink

You can add a hyperlink in a cell or range of cells. A hyperlink can link to:
m A range in the same worksheet

m A range in a different worksheet in the same workbook

m An external file of a registered file type

m A web page

m An e-mail address

To add a hyperlink to a worksheet, use the BookModel.addHyperlink() method.
You use the addHyperlink() method to specify the type of link, the URL and a

100 Using BIRT Spreadsheet Engine and API

ToolTip string. The following statement illustrates creating a link to cell A100 in
the same workbook:

bm book.addHyperlink (i sheetl, rowl, coll, row2, col2, "alOO",
Hyperlink.kRange, "Link to cell aloo0");

The following example illustrates creating a link to a location in a workbook that
is in a file on drive D:

bm book.addHyperlink (i sheetl, rowl, coll, row2, col2,
"' [D:\\example\\example.sod] Sheetl'!A1", Hyperlink.kFileAbs,
null) ;

The following example illustrates creating a link to an absolute URL:

bm_book.addHyperlink (0, 0, 0, 0, 0, "http://www.actuate.com",
Hyperlink.kURLAbs, "Actuate Website");

The following example illustrates creating a link to a relative URL:

bm_book.setHyperlinkBase ("http://www.actuate.com/") ;
bm book.addHyperlink (i sheetl, rowl, coll, row2, col2,
"sitemap.asp", Hyperlink.kURLRel, null);

The following example illustrates creating a link to a Microsoft Office bookmark:

bm book.addHyperlink (i sheetl, rowl, coll, row2, col2,
"D:\\excelworkbook.xls#Sheet2!A100", Hyperlink.kFileAbs,
null) ;

The following example illustrates creating a link to a file using a relative file path:

bm book.addHyperlink (i sheetl, rowl, coll, row2, col2,
"\\test\\ExternalTestHyperlink.xls", Hyperlink.kFileRel, null) ;

The following example illustrates creating a link to a different file type:

bm book.addHyperlink (i sheetl, rowl, coll, row2, col2,
"C:\\temp\\Readme.pdf", Hyperlink.kFileAbs, "Readm.pdf");

The following example illustrates creating a link to send mail, including
commands to set the recipient, the subject, and a cc: recipient:

bm book.addHyperlink (i sheetl, rowl, coll, row2, col2,
"mailto:person@actuate.com?cc= somebody2@actuate.com
&subject = Hyperlink Test",Hyperlink.kURLAbs, null);

For a complete list of all the hyperlink parameters and their valid values, see the
Javadoc.

Clearing, cutting, or deleting a cell or cell contents

This section illustrates how to remove a cell or cell contents from a worksheet and
how to treat remaining cells after you remove cells.

Chapter 7, Working with cell data 101

Clearing cell contents in a JBook

To clear cell contents, select the range to clear and call JBook.editClear(). Use
editClear() to clear all cells in the selected range or all selected objects on all
selected worksheets. The clearType parameter specifies what to clear.

The following example shows how to clear all data and formatting:
jb_jbook.editClear (Constants.eClearAll) ;

The following example shows how to clear data only, leaving formatting intact:
jb_jbook.editClear (Constants.eClearContents) ;

The following example shows how to clear formatting only, leaving data intact:
jb_jbook.editClear (Constants.eClearFormats) ;

The following example shows how to open the warning message, "Are you sure
you want to clear the selected cells?" with YES and NO buttons:

jb_jbook.editClear (Constants.eClearDlg) ;

Using the editCut() method

Like editClear(), BookModel.editCut() clears the selected range and any objects
in the range from the active worksheet. The editCut() method also adds the
selected range or object to the Clipboard for subsequent pasting. The following
example shows how to clear the selected range and add it to the clipboard:

bm_book.editCut () ;

Understanding locking and protection

The locked status of a cell specifies whether the cell can be modified, but it is only
relevant when its worksheet is protected. If a worksheet is unprotected, all cells
can be modified regardless of their locked status. All cells are locked by default,
and all worksheets are unprotected by default. For more information about cell
protection, see “Setting cell protection” in Chapter 3, “Working with worksheet
elements.”

The locked state of a cell is contained in the cell’s format information. When you
clear formatting for a cell, you reset the cell to its default locked status. To clear
the value of a cell and leave its locked status unchanged, use the eClearValues
constant when you call editClear().

The following example shows how to protect a worksheet, lock worksheet cells,
and clear values only from the current selection:

String s _password = "pwd";

bm_book.setSheetProtection (i_sheet, true,s_password,
Constants.kAllowEditObjects) ;

bm book.clearRange (1, 1, 7, 1, Constants.eClearContents);

102 Using BIRT Spreadsheet Engine and API

Deleting cells

The remaining cells in a worksheet shift after a cell is deleted. The way the cells
shift is based the shiftType parameter of the BookModel.deleteRange() method,
which is used to delete cells. To specify how remaining cells shift when cells are
deleted, use deleteRange() with a shiftType parameter. Table 7-3 describes the
constants you use for the shiftType parameter of the deleteRange() method.

Table 7-3 Constants for the shiftType parameter for deleteRange()

Constant Description

eShiftHorizontal ~ Shifts cells horizontally beyond the last column, one cell to
the right.

eShiftVertical Shifts cells vertically beyond the last row, one cell up.

eShiftColumns Shifts all cells beyond the last column, to the left.

eShiftRows Shifts all cells beyond the last row, up to the first deleted
TOw.

The following example shows how to delete a range including rows 1 through 7
of column 1, shifting all columns to the left of column 1:

bm book.deleteRange(l, 1, 7, 1, Constants.eShiftColumns) ;

Copying and pasting cell data

There are several ways to copy and paste data. The common methods
BookModel.editCopy() and BookModel.editPaste() copy and paste selected cells
using the clipboard, like in Excel. Additionally, you can control how data is
copied and pasted using BookModel.copyRange() and JBook.editPasteSpecial().
There are similar methods available using a Sheet object. For more information
about any of the copy or paste methods, see the Javadoc.

Copying data

Using copyRange(), you can use a single method to copy a range from one
worksheet and paste it into the same worksheet, a different worksheet in the
same workbook, or a different worksheet in a separate workbook in the same
workbook group. You call the copyRange() method from the BookModel class
you are copying the data range into, as shown in the following code:

BookModel . copyRange (dstSheet, dstRowl, dstColl, dstRow2, dstCol2,
srcBookModel, srcSheet, srcRowl, srcColl, srcRow2, srcCol2,
what)

where

Chapter 7, Working with cell data 103

m BookModel is the Book you are copying the cells into.

m dstSheet is an integer representing the sheet to which copyRange copies cells.
If you omit the dstSheet argument, the active sheet receives the cells.

m dstRows and dstCols are integers that define the data range to which
copyRange copies cells.

m srcBookModel is a BookModel object that contains the workbook you are
copying cells from.

m srcSheet is an integer representing the sheet from which copyRange copies
cells. If you omit the srcSheet argument, copyRange copies cells from the
current active sheet of srcBookModel.

m srcRows and srcCols are integers that define the data range to which
copyRange copies cells.

m what specifies whether copyRange copies formulas, formats, or values from
the source cells. Table 7-4 describes the valid values for the what parameter for

copyRange().
Table 7-4 Constants for the what parameter for copyRange()
Constant Label Description
1 eCopyFormulas Copies formulas only
2 eCopyValues Copies existing values and formula results
4 eCopyFormats Copies formats only
7 eCopyAll Copies formulas, values, and formats

Pasting a value only

Using editPasteSpecial(), you can filter the type of data to paste, using constants,
including formulas, values, formats, or a combination of types. For example, call
editPasteSpecial() with eCopyValues to paste values in a cell or range but retain
existing cell or range formatting information. You can use editPasteSpecial() to
paste content from Java applications only. Before calling editPasteSpecial(), call
JBook.isCanEditPasteSpecial() to test for the presence of recognizable Clipboard
data. The following example shows how to paste values only:

if (jb_jbook.canEditPasteSpecial())
jb_jbook.editPasteSpecial (com.flj.ss.Constants.eCopyValues) ;

Using a defined name

A defined name provides a meaningful way to identify a cell, a range of cells, a
value, or a formula. This section shows how to create defined names, how to

104 Using BIRT Spreadsheet Engine and API

determine the number of defined names in use, and how to determine whether a
particular defined name is in use.

Creating a defined name
When you create a defined name, the following rules apply:

m A worksheet-level defined name begins with the worksheet name, followed
by an exclamation point. For example, any defined name on the Expenses
worksheet must begin with 'Expenses!".

m Limit the name to 255 characters.
m Use no spaces or quotation marks.

m Begin the name with a letter, _, or \. Supply alphabetic, numeric, _, \ , ., or?
characters for the remainder of the defined name.

m Do not use a name that is the same as any possible cell reference, such as CD45
or IS100. If the name matches a possible column reference, you must enclose
the name in parentheses. This matching only occurs with a defined name up to
4 characters long that contains only letters. For example, you do not have to
distinguish SAM_1 from a column reference.

m Do not use a name that is the same as an existing defined name. Defined
names are case-insensitive.

To create or modify a defined name, use the BookModel.setDefinedName()
method. The following example show how to assign a defined name to a cell,
assign a defined name to a formula, and assign a defined name to a text value:

// BAssigns the defined name MyDefinedName to cell D4.
bm book.setFormula (3, 3, "MyDefinedName") ;

// Assigns the defined name Chance to the formula RAND()*100.
bm book.setDefinedName ("Chance", "RAND() * 100");

bm book.setFormula (3, 3, "Chance");
bm_book.setDefinedName ("Goal", "\"Total Net Gain\"");

bm book.setFormula (3, 3, "Goal");

Finding the number of defined names

To get the number of defined names in use, use the
BookModel.getDefinedNameCount() method, as in the following example:

int count = bm book.getDefinedNameCount () ;

Chapter 7, Working with cell data 105

Deleting a defined name

To delete a defined name, use the BookModel.deleteDefinedName() method, as
in the following example:

bm book.deleteDefinedName ("MyDefinedName") ;

This method does not immediately delete the defined name. It sets the value of
the defined name to an empty string. The name is only deleted the next time
garbage collection runs and finds no references to the name. The count of defined
names is only updated when the name is finally deleted.

Testing if a defined name exists

If a defined name does not exist, the getDefinedName() method throws an
exception. If the defined name exists but was deleted and has not yet been
removed by garbage collection, its value is null. To test for both conditions you
can use code similar to the following example:

String s_definedNameValue;

try{
s_definedNameValue = bm book.getDefinedName ("MyDefinedName") ;
if (s_definedNameValue.compareTo ("") != 0){
// the defined name exists !
}
else {

// the defined name has been deleted but not collected

}

} catch (FlException ex) {
// the defined name does not exist

}

Getting cell coordinates of a defined name range

When a defined name specifies a range, you can get the coordinates and sheets of
that range by using code similar to the following lines:

RangeRef rr rangeR = bm book.formulaToRangeRef ("DefinedName") ;

int rowl = rr rangeR.getRowl() ;
int coll = rr rangeR.getColl();
int row2 = rr rangeR.getRow2() ;

int col2 = rr rangeR.getCol2();
Sheet s _sheetl = rr rangeR.getSheetl();
Sheet s _sheet2 = rr rangeR.getSheet2 () ;

106 Using BIRT Spreadsheet Engine and API

Specifying constant coordinates in a defined name
range
To specify constant coordinates in a defined name range, precede the row and

column values with the $ symbol. The following example shows how to add a
defined name, Name, with an absolute range reference:

bm book.setDefinedName ("DefinedName", "F4:$HS10") ;

Accessing cell data

This section describes several ways to return information about spreadsheet data,
including how to return a formula from a specific cell, a user’s previous entry, cell
data type, and a range reference as a string.

Getting the text value of a formula

The BookModel.getFormula() method returns a cell’s formula as a text string.
The following examples show two methods for getting the formulas of a cell:

String s = bm book.getFormula(); // the active cell
String s = bm book.getFormula(sheetl, rowl, coll);

Finding out cell data type

You can use one of the BookModel.getType() methods to get cell data type. The
getType() methods return one of the type constants listed in Table 7-5. The
getType() method returns a negative value if the cell contains a formula. The
following code example shows three ways to get the cell type of a cell:

short sType bm_book.getType(); // the active cell
short sType bm book.getType (rowl, coll);
short sType = bm book.getType (i sheetl, rowl, coll);

Table 7-5 Type constants for the getType() method

Type constant Cell data type

eTypeEmpty Nothing in the cell

eTypeError Cell containing an error

eTypeLogical Cell containing a Boolean value, true or false
eTypeNumber Cell containing a number value

eTypeText Cell containing a text string

Chapter 7, Working with cell data 107

Getting a formatted cell reference

The BookModel.formatRCNr() method returns a formatted cell reference. The
formatted cell reference is a string such as A5 for the cell at row A, column 5.

The following example shows how to get a formatted cell reference for cell Al:
String cellAddress= bm book.formatRCNr (0, 0, true);

The third parameter is a boolean that specifies whether the reference should be
absolute or relative. If it is absolute, a dollar sign ($) precedes both the row and
column. The preceding example returns A1, but if the last parameter is false, it
returns Al.

Sorting

cell data

This section explains how to sort spreadsheet data. It includes examples using the
sort and sort3 methods as well as examples that explain how to handle blank cells
and formatting when performing a sort.

Using the sort and sort3 methods

You can use either the BookModel.sort() or the BookModel.sort3() method to
sort spreadsheet data. The only difference between the two methods is that you
can specify any number of keys with sort() and only three keys with sort3(). You
specify the keys as an array of integers for sort() and as three separate integer
values for sort3().

For both methods, you specify a range of cells to sort, whether to sort by rows or
by columns, and the keys by which to sort. When you specify to sort by rows, all
columns of a given row stay together. When you specify to sort by columns, all
rows of a given column stay together.

When you sort by rows, the absolute values of the keys specify the relative
columns on which to sort. When you specify sort by columns, the absolute values
of the keys specify the relative rows on which to sort. The sign of each sort key
indicates whether to sort in ascending or descending order. A negative key
indicates sorting in descending order and a positive key indicates sorting in
ascending order. For example, to sort on the first column in a range in ascending
order, the sort key must be 1. To sort on the third column in a range in descending
order, the sort key must be -3. If you don’t use one of the keys, give it a value of 0.
The following example shows how to sort on the first two columns of specified
the range. In this case the range is D10:G11 and the sort columns are D and E.

boolean sortByRows = true;

int myarray[1 = {1, 2};

int rowl = 10, coll = 3, row2 = 11, col2 = 6;

bm book.sort (rowl, coll, row2, col2, sortByRows, myarray) ;

108 Using BIRT Spreadsheet Engine and API

The following example shows how to sort using three keys, using the second
column of the specified range as the primary key, the first column as the
secondary key, and the third column as the third key:

bm book.sort3 (0, 0, 10, 2, true, 2, 1, 3);

Sorting dates or numbers supplied as text

The sort methods understand the format of the columns and rows you use for
keys. If the format is numeric, the column or row sorts numerically. If the format
is date, the column or row sorts chronologically. But if a column or row has
numeric or date information that does not have the proper cell format property,
that column or row will not sort in the order expected. When programmatically
entering numeric or date information in a cell, be sure to use the setEntry() or
setNumber() method if you plan to use that cell in a sort. The following example
shows how to use the setEntry() method to support sorting by date or number:

// To sort dates, use setEntry().
bm_book.setEntry("6/9/2000") ;

// To sort numbers use setNumber () or setEntry().
bm book.setNumber (24.0) ;

bm book.setEntry ("24") ;

Chapter 7, Working with cell data 109

110 Using BIRT Spreadsheet Engine and API

Working with formatting
and display options
This chapter contains the following topics:
m Formatting a cell or range of cells

m Using a conditional format

m Understanding custom display options

Chapter 8, Working with formatting and display options 111

Formatting a cell or range of cells

This section describes some common cell formatting tasks. For more information
about the BIRT Spreadsheet API used in the examples, see the Javadoc. You use a
com.f1j.ss.CellFormat class to set the format options for a cell or range of cells.
The CellFormat class does not contain methods to set format options, but it has
methods that return specialized formatting objects that do. Most of the formatting
capabilities correspond to formatting options that you can set in the user
interface. The CellFormat class has methods to return the specialized formatting
objects listed in Table 8-1.

Table 8-1 Cell formatting options for CellFormat methods
CellFormat
method Formatting object =~ Functionality
fill() FillFormat Sets background and foreground colors
and patterns
align() AlignFormat Sets orientation, alignment, and rotation
of text
border() BorderFormat Sets cell border color and style
font() FontFormat Sets font characteristics, including type
font, size, italic, bold, underline
number() NumberFormat Sets number formatting characteristics
protection() ProtectionFormat Sets visibility and protection
characteristics
validation() ValidationFormat Sets validation characteristics

The most common way to use the specialized formatting objects is by combining
getting the formatting object with calling one of its methods, as shown in the
following example:

CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.font () .setItalic(true);

// apply the format to a range of cells

bm book.setCellFormat (cf fmat, 0, 0, 5, 5);

Setting a pattern and color of a cell

You can set patterns and colors for a cell or range of cells. To set a pattern, use the
setPattern() method of the returned FillFormat object. Use setForeColor() to set
the foreground color and setBackColor()to set the background color.

Foreground color only appears when a pattern is applied to a cell. The
foreground color is the color of the lines of the pattern.

112 Using BIRT Spreadsheet Engine and API

Background color is the color that appears behind a pattern or the fill color of a
solid fill cell.

There are three categories of patterns, shading patterns, line patterns, and
miscellaneous patterns. Table 8-2 lists constants to pass to FillFormat.setPattern()

to produce the kind of pattern you want.

Table 8-2 Pattern constants for the FillFormat.setPattern() method

Pattern constant Effect

ePattern10Percent 10 Percent shading
ePattern20Percent 20 Percent shading
ePattern25Percent 25 Percent shading
ePattern30Percent 30 Percent shading
ePattern50Percent 50 Percent shading
ePattern70Percent 70 Percent shading

ePatternDarkHorizontal Horizontal line pattern

ePatternLightHorizontal Horizontal line pattern
ePatternDarkDownwardDiagonal =~ Diagonal line pattern
ePatternDarkUpwardDiagonal Diagonal line pattern
ePatternLightDownwardDiagonal =~ Diagonal line pattern
ePatternLightUpwardDiagonal
ePatternDarkVertical

ePatternLightVertical

Diagonal line pattern
Vertical line pattern

Vertical line pattern

ePatternSmallCheckerboard Checkerboard pattern
ePatternSmallGrid Grid pattern
ePatternTrellis Trellis pattern

The following example illustrates setting a range of cells to have a trellis pattern,
with light gray cross hatches on a blue background:

bm book.setSelection(2, 2, 6, 8);

FillFormat f£f fill = null;

CellFormat cf fmat = bm book.getCellFormat () ;

cf fmat.fill() .setPattern(ff fill.ePatternTrellis);

cf fmat.fill() .setForeColor(java.awt.Color.lightGray.getRGB()) ;
cf fmat.fill() .setBackColor (java.awt.Color.blue.getRGB()) ;
bm_book.setCellFormat (cf _fmat); //operates on current selection

To set solid, unpatterned formatting, use the FillFormat.setSolid() method, which
takes no parameters. The following example shows how to format a single cell to
a solid red color:

Chapter 8, Working with formatting and display options 113

bm book.setSelection(0, 0, 0, 0);

CellFormat cf fmat = bm book.getCellFormat () ;

cf fmat.fill() .setSolid();

cf fmat.fill() .setForeColor (java.awt.Color.red.getRGB()) ;
bm_book.setCellFormat (cf _fmat); //operates on current selection

Setting vertical and horizontal alignment

Use the setHorizontal Alignment() and setVertical Alignment() methods of the
AlignFormat object to set horizontal and vertical alignment. Table 8-3 describes
the parameter values to use for setHorizontal Alignment() and

setVertical Alignment().

Table 8-3 Alignment constants for the alignment methods

Alignment constant Effect

eHorizontalGeneral Justifies data based on data type.

eHorizontalLeft Aligns data to the left of the cell.

eHorizontalCenter Centers data in the cell left to right.
eHorizontalRight Aligns data to the right of the cell.
eHorizontalJustify Aligns data both right and left, expanding the text as

necessary by inserting spaces between words. This
effect is not visible in the BIRT Spreadsheet report,
but does appear when the report is opened in Excel.
This value is only relevant to text that is oriented

horizontally.
eVerticalTop Aligns the data at the top of the cell.
eVerticalCenter Centers the data top to bottom.
eVerticalBottom Aligns the data at the bottom of the cell.
eVerticalJustify Aligns multiline data both top and bottom,

expanding the text as necessary by inserting spaces
between lines. This effect is not visible in the BIRT
Spreadsheet report, but does appear when the report
is opened in Excel. This constant is only relevant to
text that is oriented vertically.

The following example shows how to set horizontal and vertical alignment:

CellFormat cf fmat = bm book.getCellFormat () ;

cf fmat.align() .setHorizontalAlignment (af.eHorizontalRight) ;
cf fmat.align() .setVerticalAlignment (af.eVerticalTop) ;

bm book.setCellFormat (cf fmat) ;

114 Using BIRT Spreadsheet Engine and API

Applying formatting to substrings

You can format a single word or phrase, or even a single character. You use the

BookModel.setTextSelection() method to create a selection that is a substring of a

text entry in a cell. The following example illustrates changing the font
characteristics for the first four words appearing in a given cell.

bm book.setActiveCell (0,0) ;
String s _text = bm book.getText (0,0) ;
int i _start = 0;

int i_stop = 0;

for(int i=0; i < 4; i++){

// find the breaks between words
i stop = s_text.indexOf (" ", start);

// if stop is -1, no more breaks were found
i stop = (i_stop==-1) ? s_text.length() -1 : i stop;
bm_book.setTextSelection (i_start,i_stop) ;
CellFormat cf fmat = bm book.getCellFormat () ;
FontFormat ff fontFormat;
ff fontFormat = cf fmat.font();
switch (i) {
case 0: cf fmat.font () .setBold(true); break;
case 1: cf fmat.font().setItalic(true); break;
case 2: cf fmat.font () .setUnderline (
FontFBrmat.eUnderlineSingle); break;
case 3: cf fmat.font () .setSizePoints(14); break;
default:
} // end switch
bm book.setCellFormat (cf fmat) ;
i _start = i_stop + 1;
} // end for

Hiding and locking a cell

To hide a cell’s value, call the ProtectionFormat.setHidden() method with a
parameter of true. The following example shows how to hide a cell’s value:

CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.protection() .setHidden (true) ;
bm book.setCellFormat (cf fmat) ;

To lock a cell so that the user can’t change the data, call the
ProtectionFormat.setLocked() method with a parameter of true, as in the

following example:

CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.protection() .setLocked (true) ;
bm book.setCellFormat (cf fmat) ;

Chapter 8, Working with formatting and display options

115

Formatting numbers, dates, and times

Use NumberFormat.setCustomFormat() to set numeric formatting options for a
cell or range of cells. Pass a string to setCustomFormat() that contains up to four
sections separated by semicolons. Each of the first three sections of the formatting
string contains a format mask, one for positive numbers, one for negative
numbers, and one for zeros. The last section is a string that contains error message
that is displayed when the cell contains a non-numeric value. All of the sections

are optional, but the semicolons are not. Table 8-4, Table 8-5, and Table 8-6 list the
characters that you can for creating a date, numeric, and time format strings using
setCustomFormat() method.

Table 8-4 Characters to use in a date format string for the setCustomFormat()
method

Date symbol Description

d Day number. Displays the day as digits with no leading
zero, 1 through 31.

dd Day number. Displays the day as digits with a leading
zero, 01 through 31.

ddd Day abbreviation. Displays the day as an abbreviation,
Sun through Sat.

dddd Day name. Displays the day as a full name, Sunday
through Saturday.

e In a Japanese locale, this character displays the full era
year.

ee In a Japanese locale, this character displays the full era
year with a leading zero.

g In a Japanese locale, this character displays the era
symbol as a Latin letter.

gg In a Japanese locale, this character displays the first
character of an era name.

888 In a Japanese locale, this character displays the full era
name.

m Month number. Displays the month as digits without a
leading zero, 1 through 12. When used with h or hh
formats, m represents minutes.

mm Month number. Displays the month as digits with a
leading zero, 01 through 12. When used with the h or hh
formats, mm represents minutes.

mmm Month abbreviation. Displays the month as a three-letter

abbreviation, Jan through Dec.

116 Using BIRT Spreadsheet Engine and API

Table 8-4 Characters to use in a date format string for the setCustomFormat()

method

Date symbol Description

mmmm Month name. Displays the month as a full name, January
through December.

mmmmm Month abbreviation. Displays the first letter of the name
of the month, J through D.

yy Year number. Displays the year as a two-digit number, 00
through 99.

YYVY Year number. Displays the year as a four-digit number,
1900 through 2078.

Table 8-5 Characters to use in a numeric format string for the

setCustomFormat() method

Numeric symbol

Description

, (comma)

. (period)

[$n]

[conditional value]

Y%

Thousands separator. If the format contains commas
separated by numbers or zeros, the number appears
using commas to separate thousands.

Decimal point. Determines how many digits appear on
either side of the decimal point:

m If the format contains only numbers left of the decimal
point, a number less than 1 begins with a decimal
point.

m If the format contains zeros left of the decimal point, a
number less than 1 begins with a zero followed by the
decimal point.

Currency format. Replace n with a currency symbol, such
as £ or ¥, to create a currency format.

Using the conditional value brackets [], you can
designate a different condition for each of the format
sections.
For example, to display positive numbers in black,
negative numbers in red, and zeros in blue, use the
following conditions:
[>0] [Black]General; [<0] [Red]General;

[0] [Blue] General

Displays the number as a percentage. BIRT Spreadsheet
Designer multiplies the number by 100 and appends a
percent sign (%).

(continues)

Chapter 8, Working with formatting and display options 117

Table 8-5 Characters to use in a numeric format string for the
setCustomFormat() method (continued)

Numeric symbol Description

E- E+e-e+ Displays the number in scientific notation. If the format
contains a scientific notation symbol to the left of a 0 or #
placeholder, the number appears in scientific notation.
The number of 0 and # placeholders to the right of the
decimal determines the number of digits in the exponent.

E- and e- place a minus sign (-) by a negative exponent.
E+ and e+ place a minus sign by a negative exponent and
a plus sign (+) by a positive exponent.

General Displays the number in the applicable predefined
General format.
Table 8-6 Characters to use in a time format string for the setCustomFormat()
method

Time symbol Description

[h] Total number of hours.

[m] Total number of minutes.

[s] Total number of seconds.

AM/PM, Time based on a 12-hour clock. Times between midnight
am/pm, A/P, and noon use AM, am, A, or a. Times between midnight
a/p and noon use PM, pm, P, or p.

h Hour number. Displays the hour as a number without a

leading zero, 1 through 23.

If the format contains an AM or PM format, BIRT
Spreadsheet Designer bases the hour number on a 12-
hour clock. Otherwise, it bases the number on a 24-hour
clock.

hh Hour number. Displays the hour as a number with a
leading zero, 00 through 23. If the format contains an AM
or PM format, BIRT Spreadsheet Designer bases the hour
number on a 12-hour clock. Otherwise, it bases the
number on a 24-hour clock.

m Minute number. Displays the minute as a number
without a leading zero, 0 through 59, when it appears
immediately after the h or hh symbol. Otherwise, BIRT
Spreadsheet Designer interprets it as a month number.

118 Using BIRT Spreadsheet Engine and API

Table 8-6 Characters to use in a time format string for the setCustomFormat()

method
Time symbol Description
mm Minute number. Displays the minute as a number with a

leading zero, 00 through 59, when it appears immediately
after the h or hh symbol. Otherwise, BIRT Spreadsheet
Designer interprets it as a month number.

S Seconds number without a leading zero, 0 through 59.
s.0,5.00, s.000 Seconds number without a leading zero.
ss Seconds number with leading zeros, 00 through 59.
ss.0, ss.00, ss.000 Seconds number with leading zeros.
Table 8-7 shows examples of custom number formats, using the symbols from the
preceding tables.
Table 8-7 Examples of custom number formats
Format Typed value Displayed value
#.4#H 0.456 46
#.0# 123.456 123.46
123 123.0
###0"CR"# ##0"DR",0 1234.567 1,235CR
0 0
-123.45 123DR
#, 10000 10
"Sales="0.0 123.45 Sales=123.5
-123.45 -Sales=123.5
000-00-0000 123456789 123-45-6789
"Cust. No." 0000 234 Cust. No. 0234
m-d-yy 2/3/94 2-3-94
mmm d, yy 2/3/94 Feb 3,94
hh"h" mm"m" 1:32 AM 01h 32m

The following example shows how to make positive numbers black with comma
separators and negative numbers red with comma separators, hide zeros, and
return the indicated text if a user tries to supply non-numeric data:

Chapter 8, Working with formatting and display options 119

CellFormat cf fmat = bm book.getCellFormat () ;

cf fmat.number () .setCustomFormat (
" [Black] #, ###; [Red] #, ###;#; \"Error: Entry must be numeric
\ nn) ;

bm book.setCellFormat (cf fmat) ;

Understanding locale-specific formatting

When BIRT Spreadsheet displays numbers and dates, it examines the locale
setting of the machine on which it is running and adjusts the display of numbers
and dates accordingly. This allows a report to automatically adapt to the client
locale. This feature allows you to distribute a report internationally without
having to create a separate report for every possible locale. For example, in locales
that use US English, the currency symbol is a dollar sign, the decimal point is a
period, and commas separate triads of digits, as in the following example:

$9,765,421.35

In some other locales the decimal point is a comma and periods separate triads of
digits, as in the following example:

9.765.421,35

There are many different currency symbols in use around the world. For example,
in many European countries, the currency symbol is the European Euro (€),
whereas in the United States it is a dollar sign ($) and in Great Britain it is the
British pound (£). The position of the currency symbol also varies by locale. In
some locales, the currency symbol appears before the numeric value, and in
others it appears after the numeric value. Fortunately, BIRT Spreadsheet displays
numbers in whatever format is appropriate for the locale of the client machine
running the BIRT Spreadsheet report. For this reason, the programmer can
usually ignore locale-specific formatting issues.

Understanding setCustomFormatLocal()

However, when you prompt the user for a custom number format string with
which to format a cell or range of cells, it is desirable to allow them to enter the
format string in their own language.

For example, a common English format string for dates is mmddyyyy, where m
stands for month, d stands for day, and y stands for year. A German, however, is
more likely to use TTMM]J]JJJ, where M stands for Monat, T stands for Tag, and]
stands for Jahr.

The setCustomFormatLocal() method assumes that the format string you pass to
it is in the language of the locale of the client machine, and does not consist of the
characters in the preceding tables. The setCustomFormatLocal() method is not
compatible across all locales, however, as illustrated in the following two
statements:

120 Using BIRT Spreadsheet Engine and API

CellFormat cf fmat = bm book.getCellFormat () ;

// does not work in Switzerland

cf fmat.number () .setCustomFormatLocal ("#.##0,00") ;
// does not work in Germany

cf fmat.number () .setCustomFormatLocal ("#'##0.00") ;

The first of the two preceding lines works in a German locale but not in a Swiss
locale, while the second works in a Swiss locale but not a German locale.
Likewise, for the next two lines, the first works in an English locale but not a
German locale, and the second works in a German locale but not an English
locale:

// only works in English version
cf fmat.number () .setCustomFormatLocal ("dd.mm.yy") ;
// only works in German version
cf fmat.number () .setCustomFormatLocal ("TT.MM.JJ") ;

Displaying all digits of a large number

By default, BIRT Spreadsheet Engine and BIRT Spreadsheet Designer use
scientific notation for a number over ten digits (>9,999,999,999). To display a large
number in other than scientific notation, use a format mask such as ### or # ##0.

Formatting a date

The information provided in this section illustrates how to deal with common
date-related formatting issues, including using all four-year digits, displaying a
date in a different locale, and using variations of the date format.

The simplest way to enter a date in a worksheet is to set the format of the cell
using one of the date masks in the proceeding table and then supply the date as a
quoted string, such as "July 4, 1776", or "07/04/1776", or "7-4-76".

Dates are stored internally as integers between 1 and 2,958,465, representing
January 1st, 1900 to December 31, 9999. This is known as the 1900 format. You can
enter a date as an integer in 1900 format and then set the cell’s format to a date
format later. When you format a cell containing an integer, using one of the date
formats, the program interprets the integer as a 1900 format date and displays it
in the format you set. In most cases, however, the 1900 value for a date is not
known, and it is easier to specify the date as a string.

The following statements illustrate supplying a date as an integer, followed by
applying a date format:

bm book.setNumber (27945) ;

CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.number () .setCustomFormat ("mm/dd/yy") ;
bm book.setCellFormat (cf fmat) ;

Chapter 8, Working with formatting and display options 121

BIRT Spreadsheet allows you to set a date with the same set of date formats that
Excel allows. For example, in the following statement, BIRT Spreadsheet assumes
that "07/04/76" is a date and sets the cell’s internal value to a 1900 format integer:

bm_book.setEntry("07/04/76") ;

Formatting text

This section shows examples of how to format text, including changing,
formatting, and scaling a font, setting text color and orientation, and returning
formatted text from a cell.

Changing a font

To change the default font, use BookModel.setDefaultFontName(),
BookModel.setDefaultFontSize() or BookModel.setDefaultFont(). When you set
the font size, you can specify either twips or points. To specify the default font
size in points, use the negative of the point size you desire. To specify size in
twips, specify twenty times the point size you desire. For example, to specify a
default font size of 8, specify either -8 or 160. The following example illustrates
setting the default font name and size:

bm book.setDefaultFontName ("Helvetica") ;
bm book.setDefaultFontSize (20 * 12); // set size to 12 points

Changing the default font to a TrueType font makes the font scale proportionally.

To set the font for a cell or range of cells, use FontFormat.setName(),
FontFormat.setSizePoints(), and FontFormat.setSizeTwips(). When using
setSizePoints(), specify the size in points. When using setSizeTwips(), specify the
size in twips. For example, to specify a font size of 8, use either setSizePoints(8) or
setSizeTwips(160). The following example illustrates setting the font name and
size for a range of cells:

bm book.setSelection(rowl, coll, row2, col2);
CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.font () .setName ("Arial Black");

cf fmat.font () .setSizePoints (20) ;

Setting font attributes

The FontFormat interface includes various methods to change the font
characteristic for a CellFormat object, as listed in Table 8-8.

Table 8-8 Methods to use to change the font characteristics of a CellFormat
object
Method Function
setBold() Sets the bold attribute of the font

122 Using BIRT Spreadsheet Engine and API

Table 8-8 Methods to use to change the font characteristics of a CellFormat

object
Method Function
setColor() Sets the color used to display the font
setColorAuto() Sets whether color is automatically set
setltalic() Sets the italic attribute of the font
setName() Sets the name of the font
setOutline() Sets the outline attribute of the font
setShadow() Sets the shadow attribute of the font
setSizePoints() Sets the font size in points
setSizeTwips() Sets the font size in twips
setStrikeout() Sets the strikeout attribute of the font
setUnderline() Sets the underline attribute of the font

The following example shows how to get the CellFormat of the current cell, set

the font to bold, and apply that format to the current selection:

CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.font () .setBold(true); // Sets the font to bold
bm_book.setCellFormat (cf _fmat); // Sets the cell format

Setting text direction

To change the orientation of cell data, use AlignFormat.setOrientation(). Using
this method, you set orientation to one of five defined orientations or to a custom
orientation. Table 8-9 describes the constant that you pass to the setOrientation()

method.

Table 8-9 Constants that you pass to the setOrientation() method
Constant Description

eOrientationNone Use the default orientation.
eOrientationTopToBottom Leaves characters unrotated, but stacks

them, with the first character on the top and

the last character on the bottom.
eOrientationCounterClockwise = Rotates text 90 degrees to the right.

eOrientationClockwise Rotates text 90 degrees to the left.

The following example shows how to set the data to clockwise orientation:

CellFormat cf fmat = bm book.getCellFormat () ;
cf fmat.align() .setOrientation(af.eOrientationClockwise) ;

Chapter 8, Working with formatting and display options

123

To rotate text an arbitrary number of degrees, use AlignFormat.setRotation(). The
following example sets the data orientation to 45 degrees:

CellFormat cf fmat = bm book.getCellFormat ();
cf fmat.align() .setRotation((short) 45);

Getting formatted text from a cell

You can use BookModel.getFormattedText() to get text from a cell in formatted
form. For example, if a cell contains a date and you want a string similar to "July
4,1776", you can format the cell using the date format, "mmmm d, yyyy" and then
call getFormattedText().

The following example shows how to format cell Al to hold a date, then get the
day of the week for the date stored in Al:

bm_ book.setActiveCell (0,0) ;

CellFormat cf fmat = bm book.getCellFormat () ;

cf fmat.number () .setCustomFormat ("ddd") ;
bm_book.setCellFormat (cf _fmat); // Sets the cell format
String dayOfTheWeek= bm book.getFormattedText (0, 0);

Using a conditional format

Conditional formatting provides a way to control certain display characteristics
of a cell based upon the content of the cell or the result of a calculation. A typical
use of conditional formatting is to highlight values that exceed a predefined limit
by displaying those values in a different color than values that fall below the
limit. You can control the following characteristics of a cell through conditional
formatting:

m Font colors

m Font styles

m Border colors
m Fill colors

m Fill styles

m Fill patterns

You set conditional formatting by first creating a selection to which you to apply a
set of conditions. You can select the entire workbook, one or more worksheets in
the workbook, a range of cells, or a single cell. You can define up to three
conditions for the selection. For each condition, you specify a CellFormat object
containing the formatting options that you want to apply if the condition is met.
You specify a condition using a ConditionalFormat object.

124 Using BIRT Spreadsheet Engine and API

Understanding ConditionalFormat objects

The com.fl1j.ss.ConditionalFormat class contains methods to define a condition
and specify a CellFormat object to associate with the condition. There are three
condition types you can set, formula, cell, and no condition.

A condition definition consists of the following:
m The type of condition, which you specify in ConditionalFormat.setType()

For more information about condition types, see “Understanding condition
types,” later in this chapter.

m An optional comparison operator, which you specify in
ConditionalFormat.setOperator()

For more information about comparison operators, see “Understanding the
comparison operators,” later in this chapter.

m Either one or two formulas, depending on the comparison operator

For more information about formula setting methods, see “Understanding the
conditional formulas,” later in this chapter.

Understanding condition types

There are two ways that BIRT Spreadsheet tests a condition to determine if it
should use the conditional format. You can also specify that a ConditionalFormat
object is not operative, which allows you to toggle a condition off. You specify the
condition type with the setType() method. Table 8-10 lists the three condition
types that you can set with setType().

Table 8-10 Condition types that you can set with the setType()
method

Condition type Description

eTypeCell Uses the comparison operator to compare the cell’s value
to the return values of formulal and formula2.

eTypeFormula Applies conditional formatting if formula returns
boolean true or any positive number.

eTypeNone Turns this condition off.

Understanding the comparison operators

When you specify a condition type of eTypeCell, you must also specify a
comparison operator that describes how to compare the cell’s value to the return
values of formulal and formula2. Table 8-11 compares operator types.

Chapter 8, Working with formatting and display options 125

Table 8-11 Comparison operators that you can pass to
setOperator()

Operator type Description

eOperatorNone No comparison

eOperatorEqual Equal to the return value of formula 1

eOperatorNotEqual Not equal to the return value of formula 1

eOperatorGreaterThan Greater than the return value of formula 1

eOperatorLessThan Less than the return value of formula 1

eOperatorGreaterThanOrEqual ~ Greater than or equal to the return value of
formula 1

eOperatorLessThanOrEqual Less than or equal to the return value of
formula 1

eOperatorBetween Between the return value of formulal and

the return value of formula2

(cell value >= formulal and cell value
<=formula2)

eOperatorNotBetween Outside the range of the return values of
formula 1 and formula 2

(cell value < formulal or cell value >
formula2)

Understanding the conditional formulas

There are three pairs of formula setting methods. One method of each pair
corresponds to the first formula and the other method corresponds to the second
formula. Whether you set one or two formulas depends on the comparison
operator. For more information on comparison operators, see “Understanding the
comparison operators,” earlier in this chapter.

The three pairs of methods for setting formulas are:
m ConditionalFormat.setFormulal() and ConditionalFormat.setFormula2()

m ConditionalFormat.setFormulalLocal() and
ConditionalFormat.setFormula2Local()

m ConditionalFormat.setEntry1() and ConditionalFormat.setEntry2()

All six methods take a formula string parameter, a row parameter, and a column
parameter. The difference between the different pairs of methods is the format of
the formula string.

126 Using BIRT Spreadsheet Engine and API

Understanding the formula parameter

The formula string that you pass to the formula setting methods must be a valid
formula by the same rules that apply to entering a formula in a cell in BIRT
Spreadsheet. All the built-in functions and means of referencing cells and ranges
and defined names are valid for the format string. You can use both relative and
absolute cell addressing.

Understanding setEntry1(), setEnty2(), setFormulaiLocal(),
and setFormula2Local()

The formula parameter for setEntry1(), setEnty2(), setFormulalLocal() and
setFormula2Local() methods is either localized to the locale of the client machine
or assumed to be US English. This localization applies to function names, decimal
points, and dates. Table 8-12 contains examples of equivalent formulas in three
different locales.

Table 8-12 Examples of equivalent formulas in different locales
Locale Formula

English (US) AVERAGE(123.45,678.9)

German (Germany) MITTELWERT(123,45;678,9)
German (Switzerland) MITTELWERT(123.45;678.9)

All three of the preceding formulas produce identical results when the locale
setting of the client machine is as specified. The client machine can have any
locale setting and use US English formatting to get the desired result.

You use setEntry1() and setEntry2() methods when you want the formula string
to be in exactly the same format that a user would enter it in using BIRT
Spreadsheet Designer. You use setFormat1Local() and setFormat2Local() when
you accept a conditional formatting formula from a user entry and want the code
to work without further modification with any locale setting.

The formula string that you pass to setEntry1() and setEntry2() must have an
equal sign (=) for the first character if the string represents a formula and not a
value. The formula string you pass to setFormulalLocal() and
setFormula2Local() does not require an equal sign.

Understanding setFormulai() and setFormula2()

The formula parameter for setFormulal() and setFormula2() must always use
US English formatting. These are the two methods you use when you are not
dealing with a user entry.

You use either the setFormulal(') and setFormula2() methods or the
setFormulalLocal() and setFormula2Local() methods to define the formulas.

Chapter 8, Working with formatting and display options 127

You use the local versions of these methods to specify the formulas in the
language of the locale of the client machine.

Understanding the row and column parameters

All the formula setting methods take a row parameter and a column parameter in
addition to the formula string. The row and column parameters provide a frame
of reference for relative cell addresses. Relative cell addressing works the same
way it does in Excel.

Understanding the conditional formatting process
The following example illustrates the conditional formatting process:

bm book.setSelection(rowl, coll, row2, col2);
ConditionalFormat cf cFmt[] = bm book.getConditionalFormats() ;
// First condition = cell value between 500 and 1000

cf cFmt [0] .setType (ConditionalFormat.eTypeCell) ;

cf cFmt [0] .setFormulal ("500", 0, 0);

cf cFmt[0] .setFormula2("1000", 0, O);

cf cFmt [0] .setOperator (ConditionalFormat .eOperatorBetween) ;
// make it red

CellFormat cf fmat = cf cFmt[0] .getCellFormat () ;

cf fmat.font () .setColor (0xFF0000); //red color

cf cFmt[0] .setCellFormat (cf fmat) ;

// Second condition = cell value > 1000

cf cFmt[1] .setType (ConditionalFormat.eTypeCell) ;

cf cFmt[1].setFormulal("1000", 0, O);

cf cFmt[1] .setOperator (ConditionalFormat.eOperatorGreaterThan) ;
// make it red and italic

cf = cf cFmt[1] .getCellFormat () ;

cf fmat.font () .setColor (0xFF0000); //red color

cf fmat.font () .setItalic(true);

cf cFmt[1] .setCellFormat (cf fmat) ;

// Third condition = cell value < 500

cf cFmt[2] .setType (ConditionalFormat.eTypeCell) ;

cf cFmt[2] .setFormulal ("500", 0, O0);

cf cFmt[2] .setOperator (ConditionalFormat.eOperatorLessThan) ;
// make it green

cf fmat = cf cFmt[2] .getCellFormat () ;

cf.font () .setColor (0x0000FF); //blue color

cf _cFmt[2] .setCellFormat (cf_ fmat) ;

// Apply the conditional format to the selection
bm book.setConditionalFormats (cf cFmt) ;

128 Using BIRT Spreadsheet Engine and API

Understanding custom display options

BIRT Spreadsheet Engine supports displaying type markers and showing either a
formula or its result.

Turning type markers on

A type marker is a colored frame around a cell that indicates what kind of data
that cell has. You use type markers typically for debugging purposes. They do not
export to Excel. You toggle type markers on and off by sending true and false to
the setShowTypeMarkers() method of the BookModel interface. Table 8-13 shows
frames that appear when markers are on.

Table 8-13 Frames that appear when markers are on
Type of data in cell Marker description
Empty cell None
Blank formatted cell Blue frame
Value cell (number or text) Green frame
Formula cell Red frame

Showing either a formula or its result

You can set a cell or range of cells containing formulas to display either the
formula or the result of executing that formula. Use the setShowFormulas()
method of BookModel to toggle between formula display and value display in
the current selection, as in the following example:

bm_book.setShowFormulas (true); // To show formulas
bm_book.setShowFormulas (false); // To show values

Chapter 8, Working with formatting and display options 129

130 Using BIRT Spreadsheet Engine and API

Working with graphical
objects and charts

This chapter contains the following topics:
m Understanding the charting API
m Adding a picture to a worksheet

m Adding a graphical object to a worksheet

Chapter 9, Working with graphical objects and charts 131

Understanding the charting API

To programatically add a chart to a worksheet you need to perform the following
tasks:

m Get a com.flj.ss.DrawingModel object from the BookModel object, which
contains all the graphics objects in the book.

m Get a com.flj.ss.ShapeAnchor object from the DrawingModel object, which
identifies the position of a graphic.

m Get a com.flj.ss.ChartGraphic object from the DrawingModel object using the
ShapeAnchor, which contains the graphic configuration information.

m Set the chart type.

m Associate a range of cells with the chart.

m Give titles to the series, axes, and the chart.

The following lines of code demonstrate the first two tasks in the preceding list:

DrawingModel dm drawingModel = bm book.getDrawing() ;
ShapeAnchor sa_ shapeAnchor = dm drawingModel.createShapeAnchor (0,
0, 8, 1);

The integer arguments for createShapeAnchor() define the range of cells to
contain the graphic. Get the ChartGraphic object by passing the ShapeAnchor
object to the addChart() method of the DrawingModel, then calling the
getGraphic() method, as shown in the following statement:

ChartGraphic cg chart = (ChartGraphic)
dm_ drawingModel.addChart (sa_shapeAnchor) .getGraphic() ;

Setting the chart type

You can create many different kinds of charts with the BIRT Spreadsheet API. To
set the chart type, call ChartGraphic.getChartModel().setChartType(). You can
set the chart to any of the types in Table 9-1.

Table 9-1 Chart types
Chart constant Chart type Example
eArea Area]

08

06
0.4
0.2 4
0 T

1 2

132 Using BIRT Spreadsheet Engine and API

Table 9-1

Chart types (continued)

Chart constant Chart type Example
eBar Bar
2
1
DI D.‘2 0.4 0.6 0.8
eBopPop Bar of Pie /
Pie of Pie e O
eBubble Bubble 08
o @
0.4 .
02
o T T T T T
0 0.5 15 2 248 3 348
eColumn Column -
1
s
06
0.4
0z
0
1 3
eCombination =~ Combination 1
0.8
06
0.4
02
0
1 2 5
eDoughnut Doughnut

Chapter 9, Working with graphical objects and charts

(continues)

133

Table 9-1 Chart types (continued)

Chart constant Chart type Example
eLine Line .
0.8 —
06 M,
0.4
02 —
u] T T
1 2 3
ePie Pie
eScatter Scatter]
P = —
0.4 .\
E s
] 1 2 3 4
eStep Step s
1
08 +
0.6
o i:
0.2 4
D 4
1 2 3

For example, the following statement causes a chart to be a pie chart:

cg_chart.getChartModel () .setChartType (com.f1l]j.chart.ChartModel
.ePie) ;

Assigning cell data to a chart

A chart displays a visual representation of data contained in the cells of a
spreadsheet. Adding a chart() report script function to the sheet properties
associates a chart with a range of cells on a sheet. To use the chart() report script
function, you must name the chart and the range of cells.

Use Shape.setName() to set the name of the chart, as shown in the following line:

dm_ drawingModel.getShape (0) .setName ("SummaryChart") ;

134 Using BIRT Spreadsheet Engine and API

The integer argument for getShape() is the index for the shape in the book to
name.

Use the BookModel.setEntry() method to assign a name to a cell entry, as shown
in the following code:

bm book.setEntry (0, 2, 2, "#write(country)
name (\"ChartData\") ") ;

bm book.setEntry (0, 2, 3, "#count (customerName)
name (\"ChartData\") ") ;

To maintain consistency in how data is presented in a chart, entries assigned the
same name must be contiguous cells. In the example above, the column
containing country and the column containing the customer count are contiguous
and can therefore be safely assigned the same name, ChartData.

Finally, you set sheet properties using the Sheet.setReportFunctionsProperties()
method. This method takes a com.flj.ss.SheetProperties object as an argument,
which you add the chart() report script function to using
SheetProperties.setCommands(), as shown in the following code:

Sheet sh First = bm book.getBook () .getSheet (0) ;

SheetProperties sp pps = sh First.getReportFunctionsProperties() ;
sp_pps.setCommands ("chart (\"SummaryChart\", \"ChartData\",
false) ") ;

sh First.setReportFunctionsProperties (sp_pps) ;

The chart command will run when the spreadsheet is generated. For more
information on the chart() report script function, see Designing Spreadsheets using
BIRT Spreadsheet Designer.

Finding a chart by name

When there is more than one chart or other graphical object in a workbook and
you want to access a particular chart, the surest way is to find the chart by name.
The following code finds a particular chart and changes the range of cells to
which the chart is linked:

ChartGraphic cg chart = null;
DrawingModel dm modeli = bm book.getDrawing() ;
// Loop through the shapes until you find your chart

for (int i=0;i<dm modeli.getShapeCount () ;i++) {

if (dm_modeli.getShape (i) .getName () .equals ("Chart 1")) {
cg_chart = (ChartGraphic)dm modeli.getShape (i) .getGraphic();
break;

}
}

cg_chart.setLinkRange ("Sheet1l!B4:BS15", false) ;

Chapter 9, Working with graphical objects and charts 135

Setting series, axes, and chart titles

The series in the two preceding illustrations have titles, such as Series for
Column A and Series for Row 3. You give the series titles with
ChartGraphic.setSeriesName(). For example, in the first illustration, the series
titles resulted from the following lines of code:

cg_chart.setSeriesName (0, "Series for Column A");
cg_chart.setSeriesName (1, "Series for Column B") ;

The first parameter is the relative column or row to which the series corresponds.
The first series in the chart is always series 0.

Use ChartGraphic.setAxisTitle() to set the titleof an axis. The setAxisTitle()
method takes three parameters, sAxisType, iAxisIndex, and Title. The sAxisType
parameter must be either Chart.eXaxis or Chart.eYaxis. The axis index parameter
assigns the title to an axis. The x axis is always axis 0. The following statement
assigns a title to the third axis, often called the z axis:

cg_chart.setAxisTitle(com.flj.ss.Constants.eYaxis, 2, "Months");

Setting the name of a data series name is similar to setting an axis title. You
specify the series by index, where the first series is always series 0. The following
statement gives a name to the second series:

cg_chart.setSeriesName (1, "February");

Creating a chart sheet

You can either place a chart on a sheet that has other data or you can create a
separate sheet just for the chart. Use the setSheetType() method in the Sheet class
to set a worksheet to a chart sheet. You must set the worksheet type to a chart
type immediately after creating a worksheet.

s_sheet.setSheetType (com.flj.ss.Constants.eSheetTypeSheet) ;

Setting the series type

You can make a single chart where each data series is displayed in different chart
format types, such a line and bar formats on the same chart. This is called a
combination chart. To make a combination chart, you first set the chart type to
eCombination, using ChartGraphic.getChartModel().ChartsetChartType(). Then
set the type of each series using ChartGraphic.getChartModel(). setSeriesType().
The following snippet illustrates creating a combination chart where the first
series is a column type and the second series is a line type:

cg_chart.getChartModel () .setChartType (ChartModel.eCombination) ;
cg_chart.getChartModel () .setSeriesType (0, ChartModel.eLine) ;
cg_chart.getChartModel () .setSeriesType (1, ChartModel.eColumn) ;

136 Using BIRT Spreadsheet Engine and API

Creating a 3D chart

You can create some of the chart types in 3D format as shown in Table 9-2. To

make a chart appear in three dimensions, pass true to
ChartGraphic.getChartModel().set3Dimensional().

Table 9-2

eArea

eBar

eColumn

eLine

3D chart types
Chart constant Chart type Example
3D Area
1
o0&
04
1 2 3 4 5 B T g 3 10
3D Bar
af
7]
5]
N
1
1] 05 1
3D Column
3D Line
3D Pie

ePie

(continues)

Chapter 9, Working with graphical objects and charts

137

Table 9-2 3D chart types (continued)

Chart constant Chart type Example

eStep 3D Step

The following code illustrates creating a 3D chart:

cg chart.getChartModel () .set3Dimensional (true) ;
cg chart.setChartType (ChartModel.eStep) ;

There are several ways you can control the appearance of a 3D chart. You can set
the depth ratio, the Z gap ratio, and you can turn clustering on. The following
statements illustrate how to perform these tasks:

cg chart.getChartModel () .getChartModel3D () .setDepthRatio (20) ;
cg chart.getChartModel () .getChartModel3D () .setZGapRatio (123) ;
cg chart.getChartModel () .getChartModel3D () .setClustered(true) ;

The depth ratio must be between 20 and 2000. Figure 9-1 has a depth ratio of 20.

1

0.5

]

1 2 3 4 a B 7 8 9 10

Figure 9-1 3D area chart with a depth ratio of 20

Figure 9-2 and Figure 9-3 have Z gap ratio of 0. Figure 9-4 has Z gap ratio of 500.

i}
138687 8

Figure 9-2 3D step chart with a Z gap ratio of 0

1 2 34 4 6 74 9 10

Figure 9-3 3D column chart with a Z gap ratio of 0

138 Using BIRT Spreadsheet Engine and API

Figure 9-4 3D column chart with a Z gap ratio of 500

Adding a picture to a worksheet

Adding a picture to a worksheet is very similar to adding a chart, except that you
do not associate data with a picture. Both pictures and charts are graphical objects
and you use the same methods to position them on a worksheet. As with a chart,
you create a ShapeAnchor object, as in the following statement:

ShapeAnchor sa anchor =
bm book.getDrawing () .createShapeAnchor (2, 2, 10, 13);

There are two ways to put the image in the location specified by the
ShapeAnchor. If you have a byte array that contains the image you want to insert
into the worksheet, use a statement such as the following;:

bm book.getDrawing() .addPicture (byteArray, sa_ anchor) ;

If the image resides on an external resource, such as a disk file, use the same
method as the previous statement, except the first parameter is an InputStream
object. The following snippet illustrates this method:

FileInputStream fis input =
new FileInputStream("C:\\myImage.jpg") ;
bm book.getDrawing () .addPicture (fis_input, sa anchor) ;

Adding a graphical object to a worksheet

Adding a graphical object to a worksheet is very much like adding a picture to a
worksheet except that you do not have to load anything from a disk file or a byte
array. For example, the following code adds a rectangle:

bm book.getDrawing () .addShape (DrawingModel .eShapeRectangle,
sa_anchor) ;

You can also add an oval, a line, or a text box.

Chapter 9, Working with graphical objects and charts 139

140 Using BIRT Spreadsheet Engine and API

Working with print options

This chapter contains the following topics:

m About print options

m Printing a worksheet or a defined range of cells
m Setting print orientation

m Working with print scale

m Working with a print area

m Printing in greyscale

m Working with a print header, footer, or title

m Printing with no borders or grid lines

Chapter 10, Working with print options 141

About print options

This section describes some of the ways that you can use the BIRT Spreadsheet
API to manipulate print options, including:

m Showing the print window
m Setting orientation

m Setting print scale

m Setting print areas

m Setting print titles

There are numerous BookModel methods to set print options. These methods
handle all of the same page setup options available in BIRT Spreadsheet Designer.
Table 10-1 describes the setPrint methods.

Table 10-1 setPrint methods
Method Description
setPrintArea() Sets the print area. There are two signatures

for this method, one that sets the area to the
current selection and one that takes a formula
that defines a range.

setPrintAutoPageNumbering() Turns page numbering on and off.

setPrintBottomMargin() Sets the bottom print margin.

setPrintColHeading() Determines whether to print column
headings.

setPrintFooter() Sets the current page footer.

setPrintFooterMargin() Sets the margin for the footer from the
bottom of the page.

setPrintGridLines() Determines whether to print grid lines on the
current worksheet.

setPrintHCenter() Determines whether to center the worksheet
horizontally during printing.

setPrintHeader() Sets the current page heading.

setPrintHeaderMargin() Sets the margin for the heading from the
bottom of the page.

setPrintLandscape() Determines the orientation of the print job.

setPrintLeftMargin() Sets the left print margin.

142 Using BIRT Spreadsheet Engine and API

Table 10-1 setPrint methods

Method Description

setPrintLeftToRight() Determines whether to print the current
worksheet from left to right then top to
bottom, or from top to bottom then left to

right.
setPrintNoColor() Determines whether to print the print job in
greyscale or color.
setPrintNumberOfCopies() Sets the number of copies to print.
setPrintPaperSize() There are two signatures of this method, one

that sets the size of the paper in twips and
one that sets the size of the paper using a
constant designating a standard size.

setPrintRightMargin() Sets the right print margin in inches.
setPrintRowHeading() Determines whether to print row headings.
setPrintScale() Sets the scale for the print job in a range from

10 to 400 percent. There are two signatures of
this method. One only has a scale parameter.
The other has a flag for whether to use a scale
factor to fit the report in the number of
horizontal and vertical pages that you set.

setPrintScaleFitHPages() Sets the number of horizontal pages to which
the print job is fit.

setPrintScaleFitToPage() Sets whether pages are scaled to fit the
specified number of pages when printed.

setPrintScaleFitVPages() Sets the number of vertical pages to which
the print job is fit.

setPrintStartPageNumber Sets the starting page to print.

setPrintTitles() Sets the titles to print at the top of each page.

setPrintTopMargin() Sets the top print margin.

setPrintVCenter() Determines whether to center the worksheet

vertically during printing.

Printing a worksheet or a defined range of cells

Use the filePrint() method of BookModel to print the currently selected
worksheet or a defined range of cells. This method prints the currently selected
worksheet unless one of the following is true:

Chapter 10, Working with print options 143

m There is a user-defined name, Print_Area, that contains a formula for a range
of cells.

m There has been a call to setPrintArea() prior to calling filePrint().

The filePrint () method has a printDialogBox parameter that determines whether
to display a Print dialog box. A value of true for printDialogBox causes the Print
dialog box to display. A value of false suppresses the Print dialog box.

There are two versions of filePrint(). One version has only the printDialogBox
parameter and the other has a printDialogBox parameter and a printJob
parameter. The printJob parameter has the type, Java Object, and represents a
java.awt.PrintJob object. You can use this parameter to attach the BIRT
Spreadsheet report to an existing print job. The following statement causes the
current worksheet to print after displaying a Print dialog box:

bm book.filePrint (true) ;

Setting print orientation

Calling the setPrintLandscape method with a parameter of true sets print
orientation to landscape mode. Calling it with false sets print orientation to
portrait mode. The following statement sets the print orientation to landscape:

bm book.setPrintLandscape (true) ;

Working with print scale

To adjust how large a worksheet or range appears on a printed page, adjust the
print scale.

Printing to a specific scale or number of pages

The setPrintScale() method supports setting the scale to a simple percentage
between 10 percent and 400 percent or to scale the print job to fit a specified
number of pages. The following example shows how to scale the data to print at
50 percent of its current size:

bm book.setPrintScale (50) ;

The following snippet shows how to set the print scale to fit on one page, both
vertically and horizontally:

int verticalPages = 1;
int horizPages = 1;
bm book.setPrintScale (10, true, verticalPages, horizPages) ;

144 Using BIRT Spreadsheet Engine and API

Although the scale is set to 10 percent in the previous example, because the
second parameter is true, BIRT Spreadsheet scales the report to fit in the specified
number of pages.

Setting the print scale

Passing true to the setPrintScaleFitToPage() method fits the report on one page.
Use the setPrintScaleFitToPage() method in combination with the
setPrintScaleFitVPages() and setPrintScaleFitHPages() methods to set the print
scale to fit-to-page. The setPrintScaleFitVPages() and setPrintScaleFitHPages()
methods have no effect unless you first call the setPrintScaleFitToPage() method
with true. The following example shows how to fit the print job to open one page
horizontally and two pages vertically:

bm book.setPrintScaleFitToPage (true) ;
// Fits print job to one page across
bm book.setPrintScaleFitHPages (1) ;

// Fits print job to two pages down
bm book.setPrintScaleFitVPages (2) ;

Scaling to fit-to-page horizontally only

To scale a report to be one page wide and have no constraints on the number of
vertical pages, call setPrintScale() with fitToPage set to true, horizontalPages set
to 1 and verticalPages set to a sufficiently large number to accommodate the
report. BIRT Spreadsheet scales as much as necessary in the horizontal direction
to fill one page and prints as many vertical pages as necessary. The following
example shows how to scale the print job to 100 percent, and to fit the report on
up to 100 pages:

bm book.setPrintScale (100, true, 100, 1);
bm _book.filePrint (false); // false signifies no dialog box

Using fitToPage with multiple print ranges

To use the fitToPage or fit-to-print (setPrintScaleToFitPage) options with multiple
print ranges, complete the following steps:

m Set the print area.
m Call the setPrintScale method with the following parameters:
n fitToPage set to true
m verticalPages set to 1
m horizontalPages set to the number of print ranges in the print area

The following example shows how to print each of two print areas on its own
page:

Chapter 10, Working with print options 145

bm book.setPrintArea ("Al:A40, B2:G25");

// Sets the FitToPage argument to true,

// the Vertical pages to 1 and the

// horizontal pages to the number of print areas.
bm book.setPrintScale (100, true, 1, 2);

bm book.filePrint (false) ;

Working with a print area

The print area is the part of the workbook that prints when you call filePrint()
method or when the user chooses File>Print. You can set the print area
programmatically.

Setting a print area

You set a print area by defining a name called Print_Area and setting its value to a
formula that specifies the range you want to print. You can create a defined name
of Print_Area in two ways:

m Pass a formula string to setPrintArea().

The setPrintArea() method creates a defined name of Print_Area if one does
not already exist. The formula parameter specifies the print area you want to
print.

m Pass Print_Area and a formula to setDefinedName().

A print area can contain one or more ranges. For example, you can set a print area
for A1:C3 and A11:C13. If Print_Area is empty, the selected portion of the active
worksheet prints. Precede column and row specifiers with a $ symbol when
defining a print area for an absolute range. For example, A1:$]$30 is an absolute
print area. Setting the print area to a relative range can result in unexpected print
output. A relative range is based on the active cell at the time you set the print
area. If the active cell changes between the time you set the print area and the
time you call filePrint(), the print area changes as well.

Because Java sometimes incorrectly shifts print output by the dimension of the
unprintable area, a loss of data can occur. The solution to this problem is to adjust
the margin width downward to compensate. The following example shows how
to set the print area to all cells from A1 to the last formatted row and column:

bm book.setPrintArea ("S$AS1:" +
bm book.formatRCNr (bm book.getLastRow (), bm book.getLastCol (),
true)) ;

The following example shows how to set the print area to all cells from A1l to J30:

bm book.setPrintArea ("AS1:J30") ;

146 Using BIRT Spreadsheet Engine and API

Returning print area information

Use the getPrintArea() method to get print area information. The return value is
based on the user-defined name, Print_Area, which defines the worksheet range
to print, in US English. The Print_Area definition can contain one or more ranges.
For example, you can set a print area for A1:C3 and A11:C13. If Print_Area is null
("), the selected portion of the active worksheet prints. The following example
shows how to get print area information:

String myPrintArea = bm book.getPrintArea() ;

Clearing a print area

To clear an existing print area, delete the Print_Area defined name. The following
statement shows how to use deleteDefinedName():

bm book.deleteDefinedName ("Print Area") ;

Printing in greyscale

Call the setPrintNoColor() method of BookModel with a parameter of true to
print in greyscale. Printing in greyscale makes for a cleaner output and minimizes
color printer driver problems. The following example illustrates using the
setPrintNoColor() method to disable the ability to print in color:

bm book.setPrintNoColor (true) ;

Working with a print header, footer, or title

Print headers, footers, and titles are not the same as row and column headings.
Print headers, footers, and titles print above or below each page of the printed
part of the worksheet. This section provides examples illustrating how to print
headers, footers and titles and related information. For more information about
row and column headings, see Chapter 3, “Working with worksheet elements.”

Setting a print title

When setting print titles, make sure that the print title formulas use absolute
references and that you select the entire row or column by specifying the
maximum column or row. For example, A1:$AVLH$1 selects the first row and
A1:5A$1076741824 selects the first column. It is not necessary to remember the
largest possible column number. You can use the constant for the maximum
column, as in the following example:

bm book.setPrintTitles ("SAS1:S$SAVLHS2, SASL:SAS" +
bm_book.kMaxRow) ;

Chapter 10, Working with print options 147

The preceding example prints the first two rows and the first column on every
page of the report.

Formatting a print header or a footer

To set formatting for a print header or a print footer, pass a formatting code to the
setPrintHeader() or the setPrintFooter() method. You can also use a font code.
Table 10-2 describes formatting codes for header or footer text. Unless you specify
&L or &R, text is centered.

Table 10-2 Formatting codes for header and footer text

Formatting code Description

&L Left-aligns the characters that follow.

&C Centers the characters that follow.

&R Right-aligns the characters that follow.

&A Prints the worksheet name.

&D Prints the current date.

&T Prints the current time.

&F Prints the workbook name.

&P Prints the page number.

&P + number Prints the page number plus a specified number.
For example, to display the first page as page 12,
use: &P + 12.

&P - number Prints the page number minus a specified number.
For example, to display page 11 as page 1,
use: &P - 10.

&& Prints an ampersand.

&N Prints the total number of pages in the document.

\n Inserts a carriage return.

Font codes must appear before other codes and text. Alignment codes, such as
&L, restart each section. You can specify new font codes only after an alignment
code. Table 10-3 lists the font codes.

Table 10-3 Font formatting codes

Font code Description

&B Use a bold font.

&I Use an italic font.

&U Underline the header.

148 Using BIRT Spreadsheet Engine and API

Table 10-3 Font formatting codes

Font code Description

&S Strikeout the header.

&O Ignored (Mac specific).

&H Ignored (Mac specific).

&"fontname" Use the specified font.

&nn Use the nn font size, where nn is a two-digit number.

The following example shows how to set the print header to print the text
Customer Survey in centered, bold, Times New Roman, 16-point type:

bm book.setPrintHeader (
"&C&B&\ "Times New Roman\"&1l6 Customer Survey") ;

Creating a multiline print header

To create multiline print headers, use the setPrintHeader() method. Use the \n
format code to set carriage returns. You can use up to 256 characters in a header.

How to create a multiline print header or footer

To create a multiline print header or footer, complete the following steps:
1 Create a message string, using \n to set carriage returns.

2 Use format codes to change the font size or style. For more information about
print header and footer format codes, see “Formatting a print header or a
footer,” earlier in this chapter.

3 Use the setPrintFooter method and the desired format code to position the
page number.

4 Pass false to the filePrint() method to print the worksheet without a print
dialog.

String message = "&L This is to test printing a header. \n";
message += "This is a test for doing subtitles. &R &D &T";
bm book.setPrintHeader (message) ;

bm book.setPrintFooter ("&R Page &P");

bm book.filePrint (false) ;

Printing a four-digit year in a header or a footer

To print a four-digit year in a print header or a print footer, use the
setPrintHeader() and setPrintFooter() methods. Using the &D code prints the
current date, but in the m/y/dd format. To set the year to a four-digit format in
headers and footers, build the print header or print footer string and concatenate

Chapter 10, Working with print options 149

the data into a string. For more examples of code you use to set number formats,
see “Formatting numbers, dates, and times” in Chapter 8, “Working with
formatting and display options,” and “Formatting a print header or a footer,”
earlier in this chapter. The following example shows how to create the four-digit
date format and centers the date in the footer:

java.text.SimpleDateFormat dateFormat

= new java.text.SimpleDateFormat ("MMM dd, yyyy");
String todaysDate = dateFormat.format (new java.util.Date()) ;
bm book.setPrintFooter ("&C" + todaysDate) ;

Printing column and row headings

Passing true to the setPrintColHeading() method or the setPrintRowHeading()
method prints column or row headings. The following example shows how to call
the setPrintColHeading() and setPrintRowHeading methods():

bm book.setPrintColHeading (true) ;
bm book.setPrintRowHeading (true) ;

Printing row or column titles on every page

Use the setPrintTitles() method to print row or column titles on every page.
When specifying the range, make sure to specify the entire row or column. The
following example shows how to print the first two rows and the first column on
every page:

bm book.setPrintTitles ("A1:AVLH2, Al1:A1073741824");

Printing with no borders or grid lines

Use the setPrintGridLines() method to turn the grid lines on or off on printed
output. To remove the border outline, turn off the print column headings and
print row headings.

Do not confuse the setPrintGridLines() method with the setShowGridLines()
method. The setShowGridlines() method turns off grid lines for the screen output
only.

150 Using BIRT Spreadsheet Engine and API

Working with pivot ranges

This chapter contains the following topics:
m About pivot ranges
m Creating a pivot range

m Understanding the pivot range class organization

Chapter 11, Working with pivot ranges 151

About pivot ranges

An BIRT Spreadsheet pivot range is similar to an Excel pivot table. You use a
pivot range to organize and summarize data flexibly on a spreadsheet. The user
of a spreadsheet that contains a pivot range can modify the pivot range
dynamically to see different organizations and summaries of the data. The user
can also modify many of the characteristics of the pivot range. For more
information about how to use pivot ranges in BIRT Spreadsheet Designer, see
Designing Spreadsheets using BIRT Spreadsheet Designer.

Creating a pivot range
To create a pivot range, you must complete the following steps:
m Get the com.flj.ss.pivot.PivotRangeModel object from the BookModel object.
m Create a PivotRange from the PivotRangeModel.createPivotRange().

You associate a data query with a location and a worksheet using a pivot range as
shown in the following code:

PivotRangeModel prm model = bm book.getPivotRangeModel () ;
PivotRange pr range = prm model.createPivotRange (sheet, row, col,
query) ;

When the BIRT Spreadsheet API to creates a pivot range, it also creates a tool bar
that the user can use to manipulate the pivot range.

Understanding the pivot range class organization

This section is a brief overview of the classes in the com.flj.ss.pivot package. For
complete descriptions of the classes and their methods, see the Javadoc.

Understanding the PivotRangeModel object

The PivotRangeModel object is the gateway object for building a pivot range. You
get a PivotRangeModel object from a BookModel object:

PivotRangeModel prModel = bk.getPivotRangeModel () ;
You use a PivotRangeModel object to:

m Create a PivotRange object.

m Get the range containing the currently active cell.

m Get the currently selected range.

152 Using BIRT Spreadsheet Engine and API

m Get the currently selected pivot range.

m Get the currently selected field.

m Get a PivotRangeDef definition object for the currently selected pivot range.
m Apply the PivotRangeDef definition object to the PivotRangeModel object.
m Update the pivot range with the latest information from the data source.

The following code illustrates some of the uses of the PivotRangeModel object:

int sheet=1, row = 1, col = 5;
PivotRange pr = prModel.createPivotRange (sheet, row, col, query);
Range range = (Range) prModel.getActiveCell () ;

Range selRange= (Range) prModel.getSelectedRange () ;
PivotRange pr = prModel.getActivePivotRange () ;
Field fld = prModel.getActiveField() ;

PivotRangeDef prDef = prModel.getPivotRangeDef () ;
prModel .refresh (pr) ;

Understanding the PivotRange object

The PivotRange object is the source of other objects that define the characteristics
of the pivot range, including:

m The pivot range definition object

m The row, column, page, and data area objects

m Calculated and standard Field objects

m The special data field object

m Formulas

m The bounds of the pivot range

m The name of the pivot range

m The book that contains the pivot range

You can also use the PivotRange object to do other operations including:
m Move and delete formulas.

m Set the pivot range to use a specified AutoFormat style.

m Apply a pivot range definition.

m Add and delete calculated fields.

m Refresh the pivot range with fresh data from the database.

Chapter 11, Working with pivot ranges 153

Understanding the PivotRangeDef object

The com.f1j.ss.pivot.PivotRangeDef class contains the query, worksheet, and
location of a pivot range. Use PivotRangeDef to change these setting for a
PivotRange or a PivotRangeModel using the following steps:

m Get the PivotRangeDef definition object from the PivotRangeModel or
PivotRange object.

m Get the DataSourcelnfo object from the PivotRangeDef object.

m Associate the pivot range with a source, using the DataSourcelnfo object. The
source can be a database, an Excel list, or another pivot range. The method of
the DataSourcelnfo object that you use depends on the type of source.

m Use the PivotRangeDef object to set the workbook location of the pivot range.
m Apply the definition object to the PivotRangeModel or PivotRange object.
The following code snippet sets the location of the pivot range:

PivotRangeModel prm model = bm book.getPivotRangeModel () ;
PivotRangeDef prd def = prm model.getPivotRangeDef () ;
prd def.setLocation (bm book.getBook () .getSheet (0), 0, 0);
prm _model.applyPivotRangeDef (prd def) ;

Understanding the PivotRangeOptions object

You use the PivotRangeOptions object to set various options of the pivot range. A
list of the uses of the PivotRangeOptions object includes:

m Setting the name of the pivot range

m Controlling the display of row and column items

m Controlling the display of error strings

m Controlling print options

m Supporting drill down in fields

m Preserving custom formatting

m Including hidden items in subtotals

m Controlling the display of grand totals for fields in the row and column areas

m Controlling the use of AutoFormatting

154 Using BIRT Spreadsheet Engine and API

The following code illustrates some uses of the PivotRangeOptions object:

po_prOpt.setName ("AcctgSummary") ;
po_prOpt.setDrillDownEnabled (true) ;
po_prOpt.setPreserveFormatting (true) ;
po_prOpt.setSubtotalHiddenPageItems (false) ;
po_prOpt.setUseAutoFormat (false); //true/false
po_prOpt.setWantRowGrandTotal (true) ;

Understanding the DataSourcelnfo object

You use the PivotRangeOptions object to set a data query for a pivot range, as
shown in the following code:

DataSourceInfo dsi sourceInfo = prd def.getDataSourceInfo() ;
dsi sourcelInfo.setDataQuery(dq_query) ;

dqg_query is a dataquery object. For more information about data queries and data
sources, see Chapter 5, “Working with data sources.”

Understanding the Area objects

There are five kinds of Area objects, representing row, column, data, page, and
hidden areas. You get Area objects from the PivotRange object. You use a
parameter to the PivotRange.getArea() method to specify which kind of area you
want, as shown in the following code:

Area a rowArea = pr_range.getArea(PivotRange.EArea.row) ;

Area a_ columnArea = pr range.getArea (PivotRange.EArea.column) ;
Area a dataArea = pr_ range.getArea (PivotRange.EArea.data) ;
Area a pageArea = pr_ range.getArea (PivotRange.EArea.page) ;
Area a hiddenArea = pr range.getArea (PivotRange.EArea.none) ;

You can add fields to an Area object and retrieve fields from it. Its primary use is
to support iteration through all fields in an area. You can add a calculated field
only to the data area. You can only add a summary field to a data area. If a field
has any calculated items, you cannot add it to the page area.

Understanding Field objects

There are several kinds of Field objects. You use each of them differently. There
are column fields, row fields, data fields, summary fields, calculated fields, and a
special data field. Sections later in this chapter describe all these Field objects.

Understanding the ltem object

An Item object represents a value in a field. An Item object can also be a
calculated item. When you use an item as a page filter, it is a page item. For
example, a field of a pivot range that represents the customer name contains as

Chapter 11, Working with pivot ranges 155

many Items as there are customers. Each Item represents the name of one
customer. One way to get an Item object is by adding a calculated item to a field:

Item i calculatedItem = £ fld.addCalculatedItem("my name",
formulaString) ;

You can also get an Item object from a Field object by index or by name:

Item i _someltem = £ fld.getItem("myItem") ;
for(int i = 0; i < £ fld.getItemCount(); i++){
Item i someOtherItem = £ fld.getItem(i);

//... process the item in some way

}

The Item interface has methods to support the following tasks:

m Get and set the item formula.

m Get and set the item name.

m Get and set the item position in the field.

m Get the name of the source field.

m Determine whether the item is calculated or a summary item.
m Determine whether the item is showing detail or is visible.

m Set the item to show or hide detail.

m Set the item to be visible or hidden.

Understanding row, column, and data field objects

To get a row, column, or data field object, you pass the fully qualified name of a
data source field to PivotRange.getField(). For example, you pass
"Employee.phone" to indicate the phone field of the Employee table in your
database. The following snippet illustrates setting various fields:

Field f rowField = pr range.getField("Employee.last");
Field f dataField = pr range.getField("CurrentValue") ;
Field f columnField = pr range.getField("PortfolioDate") ;

You add each field to the appropriate area object using the addField() method of
the Area object, as in the following statements:

a_rowArea.addField (f rowField) ;
a_dataArea.addField(f dataField) ;
a_columnArea.addField(f columnField) ;

The Field object has many methods with which you can define its characteristics.
The following list includes operations you can perform with a Field object:

m Add a calculated item to the field.
m Set the formula for the field if it is a calculated field.

156 Using BIRT Spreadsheet Engine and API

m Set the field name.
m Set the page item on which the field filters.
m Set the field position within the containing Area.
m Create and apply summary field settings for the field.
m Hide the field.
m Create and apply a grouping definition for the field.
m Get and set properties of the special data field.
m Test the field to determine if it is any of the following types of fields:
m Calculated field
m Special data field
m Summary field
= Numeric
m Deleted
The following code illustrates some of the uses of Field objects:

Item i calcItem = f myField.addCalculatedItem(s itemName,
s_faimula); - -

f myField.setFormula (s _newFormula) ;

f myField.setName ("InvoiceAmt") ;

f myField.setPage (i pageltem) ;

f myField.setPosition(1) ;

SummaryFieldSettings sfs settings =
f_myField.getSummaryF{éldSettings();

f myField.setSummaryFieldSettings (sfs_ settings) ;

f myField.hide() ;

FieldGroupDef fgd def = f myField.createFieldGroupDef () ;

Understanding calculated fields

A calculated field uses data source fields in a calculation to create new pivot
range data. Unlike standard fields, a calculated field does not represent a column
in a database table. It represents the result of a formula which may include values
from one or more columns from a database. The user can add a calculated field to
a pivot range, or the program can create one with
PivotRange.addCalcuatedField(). Every calculated field has a formula that
defines how to calculate the field’s value, as illustrated in the following
statement:

Field f calculatedField = pr range.addCalculatedField(
"Total Price", "=priceField * quantityField");

Chapter 11, Working with pivot ranges 157

Understanding the special data field object

A special data field exists from the time that you create a PivotRange object. The
special data field contains the summary fields for the pivot range. You get the
special data field object by calling getDataField() on the PivotRange object, as
shown in the following statement:

Field f specialDataFld = pr range.getDataField() ;

You use the special data field to gain access to the summary field objects, as
shown in “Understanding the SummaryField object,” later in this chapter.

Understanding the SummaryField object

A summary field specifies a summarization method for the special data field. The
special data field can contain multiple summary fields. You get a particular
summary field by passing an index value to the Field.getSummary() method. To
get all summary fields for a data field, you iterate through the list, as shown in the
following code:

for(int i = 0; i < £ specialDataFld.getSummaryCount () ; i++){
Field f summary = f specialDataFld.getSummary (i) ;
//... process the summary field

}

You set the summary method for the data field by getting a
SummaryFieldSettings object from the summary field and calling its
setFunction() method:

SummaryFieldSettings sfs settings =
f summary.getSummaryFieldSettings () ;

sfs settings.setFunction(
BaseFieldSettings.EFunctionType.eAverage) ;

Table 11-1 lists the valid function types and the corresponding constants that you
can pass to setFunction().

Table 11-1 Function types and constants that you can pass to set Function()
Constant in

Function type BaseFieldSettings.EFunctionType
Average eAverage

Count eCount

Count numbers eCountNum

Maximum eMax

Minimum eMin

Product eProduct

Standard deviation eStdDev

Standard deviation population eStdDevP

158 Using BIRT Spreadsheet Engine and API

Table 11-1 Function types and constants that you can pass to set Function()

Constant in

Function type BaseFieldSettings.EFunctionType
Sum eSum

Variance eVar

Variance population eVarP

You set the name of the summary method by calling
SummaryFieldSettings.setName(). The name you choose appears in the Data
field in the upper left corner of the pivot range. The following statement
illustrates setting the name of a summary field:

sfs settings.setName (f dataField.getSourceName() + " Average");

Setting the format of a summary field

You set the format of a summary field by passing a NumberFormat object to the
setNumberFormat() method of the SummaryFieldSettings object:

CellFormat cf fmat = bm book.getCellFormat () ;
com.flj.util.NumberFormat nf fmat = cf fmat.number () ;
String mask = "S#,##) ; [Red] (#, ###.00);0";

nf fmat.setCustomFormat (mask) ;

sfs settings.setNumberFormat (nf fmat) ;

After setting the summarization method and the summary name and format, you
set pass the SummaryFieldSettings object to the setSummaryFieldSettings()
method of the summary Field object:

f summary.setSummaryFieldSettings (sfs_ settings) ;

Understanding the FieldSettings object

You can set many properties of a Field object by getting its FieldSettings object,
setting properties on the FieldSettings object, then applying the FieldSettings object:

FieldSettings fs settings = f columnField.getFieldSettings() ;
fs settings.setAutoShowEnabled (true) ;
f columnField.setFieldSettings(fs_settings) ;

The following list includes some tasks that you can complete using the
FieldSettings object:

m Get the name of the summary field that is the key for AutoShow.
m Iterate through the list of summary fields and AutoSort fields.
m Get and set the field layout.

Chapter 11, Working with pivot ranges 159

m Get and set the type of subtotal.

m Set and test whether Auto Show is enabled and if it shows top, bottom, or all
items.

Understanding the SummaryFieldSettings object

You get a SummaryFieldSettings object by calling getSummaryFieldSettings() on
a summary Field object. You use a SummaryFieldSettings object to set certain
properties of a summary Field object. After you get a SummaryFieldSettings
object and alter its properties, you must apply the SummaryFieldSettings to the
Field object, as shown in the following code:

Field f dataFld = pr range.getDataField() ;
// get the first summary field
Field f summary = f dataFld.getSummary (0) ;

SummaryFieldSettings sfs settings =
f summary.getSummaryFieldSettings () ;

sfs settings.setFunction(
BaseFieldSettings.EFunctionType.eAverage) ;

sfs settings.setName (f dataField.getSourceName () + " Average");

You can display a summary field value as a relative value, using another field as
the basis of the comparison. This other field is called the base field. For example,
when the user chooses Options in the Field Settings dialog, Show data appears, as
shown in Figure 11-1.

Source figld. Amount Ok I

Natne: |Average of Amourt
= Cancel |

Surmnatize by:

Hice |
Murmber... |

Cptions ==

Showy data as:

L

Ditference From

Ease field: Base item:

ProductCode
ProductDescription
ProductParertCode
GeoCods LI

Figure 11-1 Specifying how to display data

The choices in the selection list include such values as Difference From, % Of,
and % Difference Of. Below this choice is a list of base fields and base items from
which the user chooses. You can select these base fields and base items using
methods in the SummaryFieldSettings interface.

160 Using BIRT Spreadsheet Engine and API

The following list includes some tasks that you can complete using the
SummaryFieldSettings object:

m Control whether base fields and base items are allowed.
m Get and set base fields and base items.

m Get and set the calculation type for the field.

m Get and set the function type for the field.

Understanding the Range object

The Range object defines a range within a pivot range. You can use this object to
act upon areas within a pivot range. You can complete the following tasks using a
Range object:

m Control whether a cell in the range can show or hide detail.
m Test whether the range contains any of the following items:
» Blank lines
m Data lines
m A field title
= A grand total
= A subtotal
m Get the field that is associated with the range.
m Get the items within the range for a specified field.
m Group and ungroup the items within the range for a specified field.
m Move a field within the range.
m Set the selection type for the range.

You get a Range object from one of four methods of the PivotRangeModel object,
as shown in the following code:

Range r myRange = (Range) prm model.getActiveCell (r destRange) ;
Range r myRange = (Range) prm model.getActiveCell () ;
Range r myRange =
(Range) prm model.getSelectedRange (r destRange) ;
Range r myRange = (Range) prm model.getSelectedRange() ;

Understanding pivot field grouping

You can group pivot fields that are in either the row area or the column area. You
can group either numerically or by date. The data type of the field determines the
type of grouping. You set grouping parameters using the FieldGroupDef object.

Chapter 11, Working with pivot ranges 161

To get a FieldGroupDef object, call Field.createFieldGroupDef() for the field on
which you want to group. This method returns a null value if any row in the

database contains non-numeric data for this field. For this reason, you must test
the FieldGroupDef return value before using it, as shown in the following code:

FieldGroupDef fgd def = f myField.createFieldGroupDef () ;
if (fgd_def != null){

//... set the properties of fgd def
} elsef
//... notify user of bad data in database

}

If the field is a date field, you must specify the period by which to group, such as
month or quarter. You can specify multiple periods, in which case a shorter time
period always groups within longer periods. You specify a grouping period by
passing a constant to setDateType():

fgd def.setDateTypeEnabled (FieldGroupDef .EDateType.eQuarters,
true) ;

Table 11-2 lists the valid period constants.

Table 11-2 Grouping period constants

Grouping period Constant

Seconds FieldGroupDef.EDateType.eSeconds
Minutes FieldGroupDef EDateType.eMinutes
Hours FieldGroupDef EDateType.eHours
Days FieldGroupDef.EDateType.eDays
Months FieldGroupDef.EDateType.eMonths
Quarters FieldGroupDef.EDateType.eQuarters
Years FieldGroupDef EDateType.eYears

To set an initial value for the groups of fields, you must first pass false to the
setWantsDefaultInitial Value() method on the FieldGroupDef object. You must
then call the setInitialValue() method on the FieldGroupDef object to specify the
initial value. The following snippet illustrates this process:

fgd def.setWantsDefaultInitialValue (false) ;
fgd def.setInitialvalue("01/01/2002") ;

To set a final grouping, you call setWantsDefaultFinalValue() and setFinalValue()
on the FieldGroupDef object:

fgd def.setWantsDefaultFinalValue (false) ;
fgd def.setFinalvValue("12/31/2002") ;

162 Using BIRT Spreadsheet Engine and API

For numeric field grouping, you can set initial and final values the same way as
you set dates. For numeric values, you can specify either a string or a double for
the value:

fgd def.setInitialvalue("10000") ;
fgd def.setFinalValue ((double)20000) ;

For numeric field grouping, you must set the field increment. Do this by calling
setIncrement(). You can specify either a double or a string:

fgd def.setIncrement (10000) ;
fgd def.setIncrement ("5000") ;

To apply the field group settings to the field, pass the FieldGroupDef object to the
applyFieldGroupDef() method of the field:

f myField.applyFieldGroupDef (fgd def) ;

Formatting a pivot range

You can choose among several templates to format a pivot range. To set the
formatting template, pass a constant to the setAutoFormat() method of the
PivotRange object:

pr_range.setAutoFormat (PivotRange.EAutoFormat.eClassic) ;

Table 11-3 lists all the auto format constants with which you can format a pivot
range.

Table 11-3 Auto format constants for formatting a pivot range
Auto format type Constant
Classic PivotRange. EAutoFormat.Classic
None PivotRange. EAutoFormat.eNone
Table 1 PivotRange. EAutoFormat.eTablel
Table 2 PivotRange EAutoFormat.eTable2
Table 3 PivotRange EAutoFormat.eTable3
Table 4 PivotRange EAutoFormat.eTable4
Table 5 PivotRange. EAutoFormat.eTable5
Table 6 PivotRange EAutoFormat.eTable6
Table 7 PivotRange EAutoFormat.eTable7
Table 8 PivotRange. EAutoFormat.eTable8
Table 9 PivotRange. EAutoFormat.eTable9
Table 10 PivotRange EAutoFormat.eTable10

(continues)

Chapter 11, Working with pivot ranges 163

Table 11-3 Auto format constants for formatting a pivot range (continued)

Auto format type Constant

Report 1 PivotRange. EAutoFormat.eReportl
Report 2 PivotRange. EAutoFormat.eReport2
Report 3 PivotRange. EAutoFormat.eReport3
Report 4 PivotRange. EAutoFormat.eReport4
Report 5 PivotRange EAutoFormat.eReport5
Report 6 PivotRange EAutoFormat.eReport6
Report 7 PivotRange. EAutoFormat.eReport7
Report 8 PivotRange. EAutoFormat.eReport8
Report 9 PivotRange EAutoFormat.eReport9

For more information about the formats associated with each type of auto
formatting and an example of a callback class that creates a pivot range, see
Designing Spreadsheets using BIRT Spreadsheet Designer.

164 Using BIRT Spreadsheet Engine and API

Working with events

This chapter contains the following topics:

About events

Working with user editing

Working with user key and mouse events

Working with user selection events

Restricting user access

Chapter 12, Working with events

165

About events

This section describes how to use the BIRT Spreadsheet API event model. The
event model allows you to identify user events and restrict user actions. For more
information about the API you use with the event model, see the Javadoc.

Table 12-1 describes BIRT Spreadsheet Engine event classes and listener

interfaces.

Table 12-1

BIRT Spreadsheet Engine events and listeners

Events and Listeners

Triggers

com.flj.swing.engine.ss.CancelEditEvent
com.flj.swing.engine.ss.CancelEditListener

com.flj.chart.ChartEvent
com.flj.chart.ChartListener

com.flj.swing.engine.ss.ChartViewEvent
com.flj.swing.engine.ss.ChartViewListener

com.flj.swing.engine.ss.EndEditEvent
com.flj.swing.engine.ss.EndEditListener

com.flj.swing.engine.ss.EndRecalcEvent
com.flj.swing.engine.ss.EndRecalcListener

com.flj.swing.engine.ss.HyperlinkEvent
com.flj.swing.engine.ss.HyperlinkListener

com.flj.swing.engine.ss.ModifiedEvent
com.flj.swing.engine.ss.FModified Listener

com.flj.swing.engine.ss.ObjectEvent
com.flj.swing.engine.ss.ObjectListener

com.flj.swing.engine.ss.SelectionChangedEnt
com.flj.swing.engine.ss.SelectionChangedListener

com.flj.swing.engine.ss.StartEditEvent
com.flj.swing.engine.ss.StartEditListener

com.flj.swing.engine.ss.StartRecalcEvent
com.flj.swing.engine.ss.StartRecalcListener

com.flj.swing.engine.ss.UpdateEvent
com.flj.swing.engine.ss.UpdateListener

com.flj.swing.engine.ss.ValidationFailedEvent
com.flj.swing.engine.ss.ValidationFailed Listener

166 Using BIRT Spreadsheet Engine and API

The user exits in-cell editing mode by
pressing the Esc key

Something in the chart model changes
Something in the chart view changes

The user exits in-cell editing mode, such
as by pressing Enter or using the arrow
keys or mouse to move to another cell

After the worksheet has completed its
recalculation cycle

When a hyperlink is activated

When worksheet data or formatting
changes

When the user interacts with a graphical
object

Each time the cell selection changes

When the user enters in-cell editing
mode

When the recalculation cycle is about to
begin

When the component has repainted the
spreadsheet

When a validation rule fails

Table 12-1 BIRT Spreadsheet Engine events and listeners

Events and Listeners Triggers
com.flj.swing.engine.ss.ViewChangedEvent When the visible part of the spreadsheet
com.flj.swing.engine.ss.ViewChangedListener changes, such as after scrolling, tab

selection, or window resize

Working with user editing

This section describes how to work with common user editing events, including
how to determine whether a worksheet was modified or whether the user is in
edit mode. Other common user editing events include:

m Obtaining the most recent data entry

m Maintaining the current cell format when the user enters a value
m Cancelling what a user types in a cell

m Initiating in-cell editing

m Getting a cell value before the user edits the worksheet

Determining whether a worksheet has been modified

To find out whether a worksheet has been modified, define a global variable and
initialize it to false. Then, set the flag to true in the ModifiedEvent handler, as
shown in the following code:

void modified (ModifiedEvent e) {
modified = true;

}

Determining whether the user is in edit mode

To determine whether the user is in edit mode, first define a global variable, then
set the variables to true in StartEditEvent, false in CancelEditEvent, and false in
EndEditEvent. The following code assumes that your class implements the
StartEditListener, EndEditListener, and CancelEditListener interfaces:

// ...
boolean isInEditMode; //global variable

jb_jbookl.addCancelEditListener ((CancelEditListener) this);
jb_jbookl.addEndEditListener ((EndEditListener) this);
jb_jbookl.addStartEditListener ((StartEditListener) this);

(continues)

Chapter 12, Working with events 167

public void startEdit (com.flj.swing.engine.ss.StartEditEvent
see_startEditEvent) {
isInEditMode = true;
}
public void endEdit (com.flj.swing.engine.ss.EndEditEvent
eee_endEditEvent)
isInEditMode = false;
}
public void cancelEdit (com.flj.swing.engine.ss.CancelEditEvent
cee cancelEditEvent) {
igsInEditMode = false;

}

Getting the most recent data entry

To get the most recent data entered, create an EndEditListener, then use endEdit()
and getEditString() to return the data, as shown in the following example:

//. ..
jb_jbookl.addEndEditListener ((EndEditListener) this);

/] ..

public void endEdit (com.flj.swing.engine.ss.EndEditEvent
eee edit) {
eee edit.getEditString() ;

}

Maintaining cell format when the user enters a value

When you supply a number in a worksheet cell, BIRT Spreadsheet Engine uses
the data form to derive the data type and formats the cell. For example, if you
type data in the form of a date, 12/1/04, in a cell formatted numerically,
####0.00, BIRT Spreadsheet Engine changes the cell format to a date format. To
change the default behavior, use the EndEditListener interface to watch for
changes to the cell, then reapply the original formatting during the EndEdit
event, as shown in the following example:

public void endEdit (com.flj.swing.engine.ss.EndEditEvent
eee editl)
{ try {
// See if the edited cell is in the formatted range.
if (jb_jbookl.getActiveCellEx() .getRowl() <= 5 &&
jb_jbookl.getActiveCellEx () .getColl() <= 5) {
// Reset the cell value format.
jb_jbookl.setCellFormat (cf specialFormat) ;
}
}
catch (com.flj.util.FlException fle el) { }

}

168 Using BIRT Spreadsheet Engine and API

Cancelling what a user types in a cell

To leave edit mode and cancel what a user typed in a cell, use endEdit() with
cancelEdit(). The following example allows the user to leave edit mode and
cancels what the user typed while in edit mode. Any content in the cell prior to
the user’s entry is preserved:

public void endEdit (EndEditEvent eee e) {
jb_jbookl.cancelEdit () ;

}

To prevent the user from leaving edit mode, and preserve what was typed so far,
use endEdit() and pass true to setCanceled(). The following example prevents
the user from leaving edit mode, but preserves what was typed:

public void endEdit (EndEditEvent eee e) {
eee e.setCanceled(true) ;

}

Initiating in-cell editing

Use startEdit() to enter edit mode for the active cell. You can start from a double-
click event, a menu option, and so on. Set the first parameter to false to edit the
existing data in the cell without clearing it out. The following lines show the
syntax for startEdit():

public void startEdit (boolean clear,
boolean inCellEditFocus,
boolean arrowsExitEditMode)

Table 12-2 describes the parameters for startEdit.

Table 12-2 startEdit parameters

Parameter Description
clear If set to true, clears edit bar when edit mode begins.
inCellEditFocus If set to true, gives editing focus to in-cell editing. If

set to false, gives editing focus to the formula bar.

arrowsExitEditMode If set to true, exits edit mode when an arrow key is
pressed.

The following code example initiates in-cell editing without clearing the cell,
gives the editing focus to in-cell editing, and exits edit mode when any arrow key
is pressed:

jb_jbookl.startEdit (false, true, true);

Chapter 12, Working with events 169

Getting a cell value before user editing begins

To get the value of a cell before user editing begins, call getEntry() in the
StartEditEvent object. This method returns the previous value because the
EndEditEvent object has not yet placed the value into the cell. To get the value
before editing, add the following code to the StartEditEvent object:

try {
String strPrev = jb jbookl.getEntry () ;

}

catch (com.flj.util.FlException fle el) { }

Working with user key and mouse events

The following section describes how to use the BIRT Spreadsheet API to work
with common user key and mouse events.

Determining which key the user pressed

To monitor key presses, set up a KeyListener then capture the KeyEvent using
keyPressed and keyReleased. This listener does not capture text input after
entering edit mode. To monitor key presses, use code similar to the following
lines:

jb_jbookl.addKeyListener (this) ;

public void keyPressed(KeyEvent ke el) {

try {
jb_jbookl.setText (0, O,
ke el.getKeyText (ke el.getKeyCode())) ;

}

catch (com.flj.util.FlException fle e2) { }

}

public void keyReleased (KeyEvent ke el) {

try {
jb_jbookl.setText (0, 0,
ke el.getKeyText (ke el.getKeyCode())) ;

}

catch (com.flj.util.FlException fle e2) { }

}

Converting pixels to twips on mouse events

To convert pixels to twips, create code that converts pixels based on the current
screen resolution to twips. For example, use code similar to the following lines:

170 Using BIRT Spreadsheet Engine and API

public void mouseClicked (MouseEvent me_ e) {
int logPixels = java.awt.Toolkit.getDefaultToolkit () .
getScreenResolution () ;
int twipsX = me_e.getX() * 1440 / logPixels;
int twipsY = me_e.getY() * 1440 / logPixels;
com.flj.ss.CellRef cr cellRef = jb jbookl.twipsToRC (twipsX,
twipsY) ; - -

Creating a shortcut key for copying or pasting

By creating a listener for a KeyPressed event, then calling editCopy() or
editPaste(), you can create a shortcut key to copy or paste. The following code
creates a copy and paste shortcut key by creating a KeyListener, checking if the
shortcut key is pressed, and calling editCopy() or editPaste():

public void jBookl keyPressed(KeyEvent ke e)
try {
if (ke_e.getKeyCode ()==(ke e.CTRL MASK |
java.awt.event.KeyEvent .VK C)) {
jb_jbookl.editCopy () ;
}
else if (ke_e.getKeyCode ()==(ke e.CTRL_MASK |
java.awt.event.KeyEvent .VK V)) {
jb_jbookl.editPaste() ;
}
}

catch (com.flj.util.FlException fle fje) { }

Locating the active cell

Using twipsToRC() in combination with getX(), getY(), getRow(), and getCol()
returns the active cell’s position in coordinates. The following code example
returns the current position of the active cell:

public void mouseClicked(java.awt.event.MouseEvent me_ event) {
try {

int logPixels = java.awt.Toolkit.getDefaultToolkit () .
getScreenResolution () ;

int twipsX = me event.getX(

int twipsY = me event.getY(

com.flj.ss.CellRef cr ref =
twipsY) ; -

Integer inRow = new Integer (cr ref.getRow());

Integer inCol = new Integer (cr ref.getCol());

* 1440 / logPixels;
* 1440 / logPixels;
jb_jbookl.twipsToRC (twipsX,

)
)

(continues)

Chapter 12, Working with events 171

jb_jbookl.messageBox (inRow.toString() +", " +
inCol.toString(), "", jb_jbookl.OK) ;
} catch (Exception e e) { }

Working with user selection events

The following section describes how to use the BIRT Spreadsheet API to work
with common user selection events.

Determining when a user changes cells

You can monitor when a user changes cells by setting up a
SelectionChangedListener. This listener identifies when the cell selection changes.
To monitor the selection, use code similar to the following lines:

jb_jbookl.addSelectionChangedListener ((SelectionChangedListener)
this) ;

public void selectionChanged(
com.flj.swing.engine.ss.SelectionChangedEvent sce e) {
try {
jb_jbookl.setText (0, 0, jb jbookl.getRow() + "," +
jb_jbookl.getCol()) ;

}

catch (com.flj.util.FlException fle el) { }

}

Determining when a user changes worksheets

To monitor whether a user has changed worksheets, establish a value for the
current worksheet, then use selectionChanged() to compare the new worksheet
to the current worksheet. To do this, use code similar to the following lines:

currentSheet = jb jbookl.getSheet () ;
public void selectionChanged(
com.flj.swing.engine.ss.SelectionChangedEvent sce el)
int newSheet = jb_ jbookl.getSheet () ;
if (newSheet != currentSheet) {
currentSheet = newSheet;
}

172 Using BIRT Spreadsheet Engine and API

Restricting user access

BIRT Spreadsheet Engine offers a number of ways to limit how an end user
interacts with a worksheet. BIRT Spreadsheet Engine contains some restrictions,
like cell protection. Other restrictions require more sophisticated programming
techniques, such as setting up a listener. This section illustrates several ways to
add user restrictions using code. For more information about the BIRT
Spreadsheet API for setting user restrictions, see the Javadoc.

Restricting editing to a column

To restrict editing by columns, check the column the user is in when the
startEditEvent triggers, then cancel the edit if the user is attempting to put text
into one of the restricted columns you set. The following code restricts users from
editing worksheet cells after column E. This event allows the user to place data in
the first five columns. If the user attempts to edit data outside of this range, the
edit is canceled:

public void startEdit (StartEditEvent see e) {
int m_iCol = jb jbookl.getActiveCol() ;
// If the user is in the restricted column,
//cancel the edit mode.
if (m_iCol > 4)
e.setCanceled (true) ;

}

Enabling users to delete values and formatting

By default, using the Delete key deletes values only. To enable users to delete both
values and formatting, pass setAllowDelete() false, then use the KeyPressed
event to trap the Delete key’s keycode and perform the clear, passing eClearAll to
editClear().

First, pass false to setAllowDelete(), as shown in the following code:
jb_jbookl.setAllowDelete (false) ;

Then, supply the following code in the KeyPressed event, as shown in the
following code:

try {
if (e.getKeyCode ()==e.VK DELETE)
jb_jbookl.editClear (jb_jbookl.eClearAll) ;

}

catch (com.flj.util.FlException el) { }

Chapter 12, Working with events 173

Allowing users to select an unprotected cell only

In the SelectionChangedEvent object, use isLocked() to determine whether a cell
is locked. If the cell is locked, move the selection to a predetermined cell, the next
cell, or the previous cell. The following code prevents users from selecting
protected cells. When a user attempts to select a protected cell, cell B2 becomes
active instead:

try {
com.flj.ss.CellFormat cf fmat = jb jbookl.getCellFormat () ;
if (cf fmat.protection() .isLocked() == true)

jb_jbookl.setActiveCell(1l, 1);

}

catch (com.flj.util.FlException fle el) { }

In this example, jb_jbook1.setActiveCell(1,1) moves the selection to cell B2.

Limiting the selection range

You can limit the selection range to a specific area by using the getRow() and
getCol() methods in the CellRef class to set the selection equal to the active cell.
When you do this, users can only select within the specified selection range. The
following example limits the user’s selection range to a single cell. You can
modify this example to set a larger selection range.

Add the following code to the SelectionChangedEvent object to limit the selection
range to one cell:

try {
com.flj.ss.CellRef cf clSelection = (CellRef)
jb_jbookl.getActiveCellEx() ;
jb_jbookl.setSelection(cf clSelection.getRow(),
cf clSelection.getCol(),
cf clSelection.getRow(), cf clSelection.getCol());

}

catch (com.flj.util.FlException fle el) { }

Preventing users from typing data

You can enable cell protection to prevent a user from entering data. Enabling
protection applies protection to all locked cells. By default, BIRT Spreadsheet
Engine locks worksheet cells, but it does not protect them. To support modifying
a cell or range in a protected worksheet, unlock the cell or range before you
enable protection. For more information about unlocking a cell or range, see
“Setting cell protection” in Chapter 3, “Working with worksheet elements.”

The following code registers a listener for the StartEditEvent, then defines
startEdit() in the StartEditListener class to detect when a user enters edit mode in
cell B2 of the worksheet. If the user attempts to supply data in the cell, the entry is

174 Using BIRT Spreadsheet Engine and API

cancelled. Implement the com.f1j.swing.engine.ss.EndEditListener interface, then

use the following lines to register and unregister it.

How to prevent users from typing data
1 Register a StartEditListener:

// Add a StartEditListener
jb_jbookl.addStartEditListener((StartEditListener) this);

2 Define a startEdit() function in the StartEditListener class:

public void startEdit(
com.flj.swing.engine.ss.StartEditEvent see event) {

if (jb_jbookl.getActiveRow() == 1 && Jjb_ jbookl.getActiveCol ()

== 1)
3 If a user tries to type in cell B2, cancel the attempt:

see event.setCanceled(true) ;

}

Limiting characters users type in a cell

To add a limit to the number of characters a user can type, add an
EndEditListener to your code and implement the endEdit() method that sets a
limit on character entry. The following code prevents the user from typing a
string that has more than 15 characters. To do this, implement the
com.flj.swing.engine.ss.EndEditListener interface, then use the following
procedure to register it.

How to limit the number of characters a user can type
1 Register an EndEditListener:
jb_jbookl.addEndEditListener ((EndEditListener) this);

2 Define an endEdit() method in the EndEditListener class. At the end of the
entry, if the number of characters exceeds 15, cancel the entry:

public void endEdit (com.flj.swing.engine.ss.EndEditEvent
eee_event) ({
if (eee_event.getEditString() .length() > 15)
jb_jbookl.cancelEdit () ;

}
Validating edit data from code

You can perform validation within the endEditEvent object, as shown in the
following code example. This code cancels edit mode when the user enters
anything that does not begin with an equal sign:

Chapter 12, Working with events

175

public void endEdit (com.flj.swing.engine.ss.EndEditEvent eee el) {
if (! eee el.getEditString() .startsWith("="))
jb_jbookl.cancelEdit () ;

176 Using BIRT Spreadsheet Engine and API

Understanding BIRT
Spreadsheet Engine
performance

This chapter contains the following topics:
m Using memory efficiently
m Understanding recalculation

m Maintaining speed when reading in data

Chapter 13, Understanding BIRT Spreadsheet Engine performance 177

Using memory efficiently

This section contains information that can help you use memory efficiently with
BIRT Spreadsheet Engine code. To use memory efficiently, follow these
guidelines:

Lock a book before performing multiple related actions to improve
performance and ensure consistency. For more information about locking a
book, see “Getting and releasing locks,” later in this chapter.

Build a worksheet by rows rather than columns. For more information about
building a worksheet, see “Allocating row and column references,” later in
this chapter.

Build a range from the bottom right corner of the worksheet. For more
information about row and column references, see “Allocating row and
column references,” later in this chapter.

Avoid adding an empty row or a column for white space. Adjust the row
height or column width to create white space instead of adding empty rows or
columns. If you must add empty rows or columns, adding empty rows is more
efficient.

Disable repainting when performing a series of operations. When performing
a number of sequential operations on a worksheet, disable repainting with
setRepaint() so the screen does not repaint after each operation. This increases
the speed of the operation and avoids unnecessary screen flashing.

Use a method to copy and move data. Use the editCopyRight(),
editCopyDown(), copyRange(), and moveRange() methods to copy and
move cells. These methods are much faster than using the Clipboard. In
addition, these methods update cell references to maintain the integrity of
your formulas.

Getting and releasing locks

Any class that implements the lockable interface, including Group, BookModel,
Document, and Sheet, can be made thread-safe using

getLock().BookModel.getLock() locks all selections and workbooks for the
current group so that no other thread is allowed to access them until
BookModel.releaseLock() is called. Calls to getLock() can be nested, but
releaseLock() must be called once for each getLock().

178 Using BIRT Spreadsheet Engine and API

Typically, you use getLock() as shown in the following example:

book.getLock() ;
try {

} catch(FlException ex){...}

finally {
book.releaseLock () ;

}

Locking a workbook before performing multiple related actions ensures
consistency and improves performance. Increases in performance from using the
getLock() and releaseLock() methods are highest on multiple-processor
machines. Improved speeds can be up to 26 times faster than processes that do
not use the getLock() and releaseLock() methods. On single processor machines,
the speed is approximately 1.5 times faster.

Locking is also critical for BIRT Spreadsheet reports that you deploy to Actuate
BIRT iServer. Without locking, when more than one user accesses the same report
at the same time, the condition can occur where updates are lost.

Allocating row and column references

Where possible, fill the worksheet by rows instead of columns. An array of row
references is allocated for each row with data. For each allocated row, BIRT
Spreadsheet Engine allocates an array of column references. Rows without data
have only a row reference, not an array of column references for that row.

Load the worksheet from bottom right to top left. Since BIRT Spreadsheet Engine
allocates row and column references based on the last row or column containing
data, loading the worksheet from bottom right to top left increases efficiency by
allowing BIRT Spreadsheet Engine to allocate the entire array of row and column
references before filling the worksheet. Once these arrays are allocated, BIRT
Spreadsheet Engine only allocates space, not references, for each cell. Loading the
worksheet the opposite way, from top left to bottom right, means that the arrays
of row and column references must grow as the number of rows and columns
grows. Each time these arrays need to grow, BIRT Spreadsheet Engine must
allocate a new array. This leads to increased garbage collection, or memory
reallocation, and decreased speed.

Preallocate the arrays by putting a value in the lower right corner of the expected
range. This preallocates the row references. To preallocate all the arrays of column
references, load a value into every cell in the column on the right of the range.
This technique is especially recommended in a worksheet with a large number of
columns. After loading data into the worksheet, delete the data in these
preloaded cells. The worksheet then reevaluates the amount of memory and
releases the remaining memory. This decreases load times considerably.

Chapter 13, Understanding BIRT Spreadsheet Engine performance 179

Understanding data structure and memory size

The three basic parts of the BIRT Spreadsheet Engine data structure are row
references, cell references, and cells.

Using a row reference

The row reference array is a contiguous block of memory containing one object
reference for each row. Each reference requires 4 bytes. For example, in a
spreadsheet with 10 rows, the row reference array contains 10 references of 4
bytes each in this implementation. As you add rows, this array expands.

The following program outputs the number of bytes per object reference. Since
this value varies with the JVM version, you can use this program to discover the
value for your environment:

public static void main(String[] args) ({
try {
java.lang.Runtime rt = java.lang.Runtime.getRuntime () ;

long beforeGCFreeMemory = rt.freeMemory() ;

long beforeGCTotalMemory = rt.totalMemory () ;

long beforeGCUsedMemory =
beforeGCTotalMemory - beforeGCFreeMemory;

for (int i = 0; i < 10; i++) {
// Give the JVM opportunity to garbage collect
System.gc () ;

Thread.sleep(1000) ;
}
long startFreeMemory = rt.freeMemory () ;
long startTotalMemory = rt.totalMemory () ;
long startUsedMemory = startTotalMemory - startFreeMemory;
Object[] o = new Object[10000000] ;
long endFreeMemory = rt.freeMemory() ;
long endTotalMemory = rt.totalMemory () ;
long endUsedMemory = endTotalMemory - endFreeMemory;
System.out.println(" beforeGC Free: " + beforeGCFreeMemory
+ " total: "
+ beforeGCTotalMemory + " used: "
+ beforeGCUsedMemory) ;
System.out.println(" start Free: " + startFreeMemory
+ " total: "
+ startTotalMemory + " used: "
+ startUsedMemory) ;

System.out.println(" end Free: " + endFreeMemory
+ "total: "
+ endTotalMemory + " used: " + endUsedMemory) ;

180 Using BIRT Spreadsheet Engine and API

System.out.println ("Apparent # of bytes per reference: "
+ ((endUsedMemory
- startUsedMemory) / 10000000.0)) ;

catch (Throwable e)
System.out.println("main() got exception e=" + e);
e.printStackTrace() ;

}

System.exit (0) ;

}

Using a cell reference

Each non-blank row consists of an array of cell references large enough to point to
the last cell in a row. A cell reference array is a contiguous block of memory
containing one 4-byte reference for each cell. Therefore, if the last cell in a row is
located in column H, the eighth column, that row contains 4-byte references for
columns A through H.

Using a cell

Cells are small data structures containing the cell’s contents. A cell’s structure
includes the cell’s value, its format, its formula, its font, its alignment, and other
attributes. Cells only exist in memory if they contain formulas or data or are
formatted differently than the row or column in which they are located.

Increasing or decreasing garbage collection

Garbage collection refers to a Java system operation that removes objects that are
out of scope. Java does garbage collection automatically when necessary. BIRT
Spreadsheet Engine also performs garbage collection at certain times. As a
general rule, BIRT Spreadsheet Engine collects garbage resources associated with
formatting when a workbook is saved. The following operations automatically
trigger garbage collection:

m Saving a workbook
m Initializing a workbook
m Reading a new workbook

Although the typical garbage collection methodology covers most uses, you may
find some circumstances where it is necessary for the application program to call
BookModel.getBook().gc(). Because all workbooks within a group share one set
of formula information, this operation collects garbage for formulas for all
workbooks in a group. If your application never writes an Excel or BIRT
Spreadsheet workbook, there is no background thread cleaning up the formula
resources. If your application makes many dynamic changes of a non-repetitive
nature to formulas, defined names or workbook formatting such as cell formats,

Chapter 13, Understanding BIRT Spreadsheet Engine performance 181

fonts, and validation rules, you should force garbage collection occasionally to
prevent memory from filling with unused objects.

The following statement collects formatting and formula garbage:

boolean collectFormats = true;
boolean collectFormulas = true;
bm book.getBook () .gc (collectFormats, collectFormulas) ;

Understanding recalculation

To automatically recalculate a worksheet, pass true to
BookModel.setAutoRecalc(). Use BookModel.recalc() to perform a one-time
recalculation. Use BookModel.forceRecalc() to mark for recalculation all cells
containing formulas. You can use iteration, or repeated calculation, to solve
circular references.

How to use iteration
1 DPass true to the BookModel.setlterationEnabled() method.
2 Set the maximum number of iterations using BookModel.setIterationMax().

3 Set the maximum amount of difference between successive iterations with
BookModel.setlterationMaxChange().

BIRT Spreadsheet Engine recalculates until it iterates the number of times
specified by the setlterationMax() method or until all cells change by less than
the amount specified in the setlterationMaxChange() method. The following
example sets the number of iterations to 500 and the maximum difference
between successive iterations to .001:

bm book.setIterationEnabled (true) ;
bm book.setIterationMax(500) ;
bm book.setIterationMaxChange (.001) ;

Maintaining speed when reading in data

When using getEntry() to retrieve a value from a cell, BIRT Spreadsheet Engine
analyzes the content of the cell before returning a string containing the cell
contents. If the cell contains a formula, for example, the returned string has a
preceding equal sign (=).

The analysis of cell content takes time and if you know that a cell contains text or
a number or a formula, it is more efficient to use getText() or getFormula() or
getNumber() instead of getEntry().

182 Using BIRT Spreadsheet Engine and API

Integrating BIRT
Spreadsheet Engine with
Java applications

This chapter contains the following topics:

About BIRT Spreadsheet Engine and J2SE
Writing an application class that extends JFrame
Accessing the BIRT Spreadsheet API using JavaScript

Using an add-in function

Chapter 14, Integrating BIRT Spreadsheet Engine with Java applications 183

About BIRT Spreadsheet Engine and J2SE

The Actuate BIRT Spreadsheet Engine class library gives you spreadsheet
functionality in a Java application or applet. This chapter describes how to:

m Write a Java swing application that is also an applet.
m Access the BIRT Spreadsheet API using JavaScript.
m Deploy the license file in each deployment environment.

All of the example programs in this chapter use the BIRT Spreadsheet API. For
more information about the BIRT Spreadsheet AP]I, see the Javadoc.

Writing an application class that extends JFrame

If you do not want your Actuate BIRT Spreadsheet Engine application to double
as an applet, you can write the application class to extend the Java Swing class
JFrame. In the HelloWorld App2 example that follows, the main() method
instantiates an object of the application class and set its visible property to true.
The constructor prepares itself by performing standard Java Swing tasks,
including:

m Setting the layout method of the content pane
m Setting the frame’s size and title

m Creating a WindowAdapter object and passing it to the addWindowListener()
method

The HelloWorldApp2 class constructor then does a few operations specific to
BIRT Spreadsheet API, including:

m Instantiating a JBook object
m Adding the JBook object to the frame’s content pane
m Creating a BookModel object from the JBook object

m Passing the BookModel object to the doSpreadsheetTasks() method that does
all the spreadsheet-related tasks

import com.flj.swing.engine.ss.*;
import java.awt.¥*;

import javax.swing.*;

import java.awt.event.*;

import com.flj.ss.*;

184 Using BIRT Spreadsheet Engine and API

public class HelloWorldApp2 extends JFrame
{
public HelloWorldApp2 () {
getContentPane () .setLayout (null) ;
setSize (450, 275);
setTitle ("Swing application") ;
SimpleWindow sw_window = new SimpleWindow () ;
addWindowListener (sw_window) ;
// Create a JBook object, add it to the content pane
JBook jb jbookl = new JBook() ;

jb_jbookl.setBounds (10,5,400,200) ;
getContentPane () .add (jb_jbookl) ;

// Create a BookModel object,
// pass it to doSpreadsheetTasks

BookModel bm book = jb_ jbookl.getBookModel () ;
doSpreadsheetTasks (bm _book, new Object());

public static void main(String args|[]) {
(new HelloWorldApp2 ()) .setVisible (true) ;
}

class SimpleWindow extends WindowAdapter

{

public void windowClosing(WindowEvent event) {
Object object = event.getSource() ;
if (object == HelloWorldApp2.this)
SimpleApp WindowClosing (event) ;

}

void SimpleApp WindowClosing (WindowEvent event) {
setVisible (false) ;
dispose() ;
System.exit (0) ;

}

private void doSpreadsheetTasks (BookModel bm book,Object obj) {

try(
bm book.setText (1, 0, "Hello World");

} catch(Exception e){}

}

The JBook class implements the BookModel interface. Therefore, you can pass a
JBook object to any method that takes a BookModel argument. Almost all of the
spreadsheet-specific functionality in JBook is also in the BookModel interface.

The doSpreadsheetTasks() method in the HelloWorld App2 example takes a
BookModel argument and an Object argument. This means that

Chapter 14, Integrating BIRT Spreadsheet Engine with Java applications 185

doSpreadsheetTasks() has the same signature as both the start method and the
end method of a callback class. For more information about callback classes, see
Designing Spreadsheets using BIRT Spreadsheet Designer. Using the same signature
for doSpreadsheetTasks() as the signatures of the start() and end() methods of a
callback class is useful for the following two reasons:

m You can easily reuse your doSpreadsheetTasks() code in a callback class.

m There are numerous examples of callback class code that apply equally well to
applications and applets.

When you compile and run the HelloWorld App2 application, a window appears,
similar to the one in Figure 14-1.

& Gwing application

SRR s e

1
2 |Hello WWorld
g

m Sheetl /
Figure 14-1 HelloWorldApp2 example application

Accessing the BIRT Spreadsheet APl using JavaScript

You can access the BIRT Spreadsheet API using JavaScript. The JBookApplet class
has a method, getJBookEXx(), that returns a JBook object. You can access the JBook
object in a JavaScript script using code similar to the following line:

d_document.japp.getIJBookEx ()

In this snippet, japp is the name of the JBookApplet object, as assigned in the
NAME attribute of the APPLET element. In the following example, the function
startMe() runs every time the web page loads:

<HTML>
<HEAD>
<TITLE> Live Worksheet Page </TITLE>
<SCRIPT>
function startMe() {
document . japp.getJBookEx () .messageBox ("Just press
OK","Testing Message Box", 1);
}
</SCRIPT>
</HEAD>

186 Using BIRT Spreadsheet Engine and API

<BODY onload="startMe () ">
<APPLET CODE="com.flj.swing.engine.ss.JBookApplet"
ARCHIVE="essdll.jar, derby.jar, license/"
NAME="japp" WIDTH=500 HEIGHT=500>
<PARAM name="Workbook" value="myWorkbook.xls">
</APPLET>
</BODY>
</HTML>

The JavaScript function startMe() in the previous example contains the following
line of code that gets a JBook object and calls its messageBox() method:

d_document.japp.getJBookEx () .messageBox ("Just press OK", "Message
Box", 1);

When you open this HTML file in a browser, it displays a message box containing
the message, “Just press OK”. You can access the entire BIRT Spreadsheet API in
this way.

You can use this technique with any applet, including those you write yourself, as
long as you include a method in your applet to return the JBook object. The
following is a modification of the HelloWorld applet that includes a method to
return the JBook object:

import java.awt.*;
import com.flj.swing.engine.ss.*;

public class HelloWorld2 extends javax.swing.JApplet

JBook jb_jbookl = new JBook() ;

public void init () {
getContentPane () .setLayout (null) ;
setSize (500, 500) ;
jb_jbookl.setSize (500, 500);
getContentPane () .add (jb_jbookl) ;

try {
jb_jbookl.setText (1, 0, "Hello World");
}

catch (com.flj.util.FlException e) { }
setVisible (true) ;

public JBook getJBook ()
return jb_jbookl;

Chapter 14, Integrating BIRT Spreadsheet Engine with Java applications 187

The following HTML code uses the added get]Book() method to access the BIRT
Spreadsheet API and display a message box:

<HTML>
<HEAD>
<TITLE> Live Worksheet Page </TITLE>
<SCRIPT>
function startMe() {
document .MyApplet .getJBook () .messageBox (
"Just press OK", "Message Box",1);
}
</SCRIPT>
</HEAD>

<BODY onload="startMe () ">
<APPLET CODE="HelloWorld2.class" ARCHIVE="essdll.jar,
derby.jar, license/"
NAME="MyApplet" WIDTH=500 HEIGHT=500>
<PARAM name="Workbook" wvalue="401k.xls">
</APPLET>
</BODY>
</HTML>

When you open this HTML file in a browser, a web page appears, similar to the
one in Figure 14-2.

A e e EE
|
Hello WWoarld

Testing Mezzage Box

yjig Just press OK
:

Java Applet Windaw

00 | ~d | O (7 | s | L) | B =

[|[»]3, Sheet1 / [(E] |»||:
Figure 14-2 Web page containing HelloWorld2 applet

Using an add-in function

An add-in function creates a spreadsheet function, like SUM(), that you can
reference in the spreadsheet with an equals sign followed by the function
definition, like =myFunction(). An add-in function is supported for Actuate file
formats, .sod and .soi, and in BookModel instances. Add-in functions are not

188 Using BIRT Spreadsheet Engine and API

supported in Excel. Loading an add-in function in Excel displays #fORMULA
instead of the resulting calculated value.

To implement an add-in function in BIRT Spreadsheet Engine, create a class that
extends com.flj.addin.Func. The new class must:

m Extend the com.flj.addin.Func class.

m Have the same case-sensitive name as the add-in function that the application
uses to call it.

m Support only one instance of itself. To do this, the class must:
= Have a private constructor.

The constructor calls the superclass constructor and passes the name of the
add-in function and the function’s minimum and maximum number of
parameter, as in the following snippet:

private MyConcat () {
super ("MyConcat", 1, 30);
}

= Contain a static initializer such as:

static {
new MyConcat () ;

m Override the evaluate() method of com.flj.addin.Func. The evaluate()
method provides the functionality of the add-in. Use the synchronized
modifier with the evaluate() method to provide thread safety, as in the
following snippet:

public synchronized void evaluate (
com.flj.addin.FuncContext fc_context)

m Bein the application’s class path.

m Have essdll jar, derbyijar, and the license file, eselicense.xml, in the
application’s class path.

Understanding the FuncContext object

The evaluate() method contains a FuncContext parameter, which provides access
to the parameter values that the application passes to the add-in function. The
FuncContext object has the following methods that the add-in can use to get the
parameters:

m getArgumentCount() returns the number of parameters that the application
passes to the add-in function.

Chapter 14, Integrating BIRT Spreadsheet Engine with Java applications 189

m getArgument() takes a parameter number argument and returns the specified
parameter as a com.flj.addin.Value object. For more information on the Value
object, see “Understanding the Value object,” later in this chapter.

m setReturnValue() comes in five varieties, each variety having a parameter of a
a different type. The five parameter types are:

boolean
double
short

String
StringBuffer

Understanding the Value object

The Value object contains methods to evaluate and extract the value of a
parameter that the application passes to the add-in function. The Value object
contains the following kinds of methods:

m Methods to check the type of the parameter, including:

checkLogical(), which checks whether the value is a Boolean
checkText(), which checks whether the value is a text string

checkNumber(), which checks whether the value is numeric

All the preceding methods check for their specific type and attempt to convert
the value to the specified type if it is not. All the preceding methods return
false if the value is not and cannot be converted to the specified type.

m Methods to check the type of the value without attempting to convert it if it is
not. These methods include:

isArea() tests if the value is a cell range

isCell() tests if the value is a single cell reference
isEmpty() tests if the parameter is empty
isLogical() tests if the value is a Boolean values
isNumber() tests if the value is a number

isText() tests if the value is a text string

isTrue() tests if the value is a Boolean true

m Methods to get the parameter value. These methods include:

getColl() gets the column of the beginning of a range if the value is a cell
range

190 Using BIRT Spreadsheet Engine and API

m getCol2() gets the column of the end of a range if the value is a cell range

m getRowl() gets the row of the beginning of a range if the value is a cell
range

= getRow2() gets the row of the end of a range if the value is a cell range

n getColCount() gets the number of columns in the range if the value is a cell
range

m getSheet() gets the sheet for a cell range
n getText() gets the value as a text string

n getText(StringBuffer) gets the value in a string buffer

About an example of an add-in function

The following example demonstrates an add-in function that concatenates text:

public class MyConcat extends com.flj.addin.Func {
// The following variable is shared
StringBuffer sb_accum = new StringBuffer();

static { //static initializer
new MyConcat () ;

private MyConcat() { // private constructor
super ("MyConcat", 1, 30); // Specify 1-30 arguments
}

public synchronized void evaluate(com.flj.addin.FuncContext fc)

{
sb_accum.setLength(0) ;
int argCount = fc.getArgumentCount () ;
for (int ii=0; ii < argCount; ii++) {
com.flj.addin.Value v_val = fc.getArgument (ii) ;
if (v_val.checkText ()) {
m_accum.append (v_val.getText ()) ;
}
else {
fc.setReturnValue (v_val.eValueInvalidvalue) ;
return;

}
}

fc.setReturnValue (sb_accum.toString()) ;

}

Chapter 14, Integrating BIRT Spreadsheet Engine with Java applications 191

Making add-in functions determinant

Functions in BIRT Spreadsheet are either determinant or non-determinant. A
determinant function, such as ABS(n), consistently returns the same value for a
given parameter. BIRT Spreadsheet only recalculates a determinant function if the
method has a parameter value that BIRT Spreadsheet has not encountered before.
A non-determinant function, such as RAND(), returns a value that varies with
every execution. BIRT Spreadsheet always recalculates the return value for a
non-determinant method.

Although BIRT Spreadsheet add-in functions are non-determinant by default,
you can change this default behavior by calling the setDeterminant() method of
the com.flj.addin.Func object. After calling this method, the add-in function
becomes determinant. Calling the setDeterminant() method can make a
significant improvement in recalculation performance.

192 Using BIRT Spreadsheet Engine and API

Integrating BIRT
Spreadsheet Engine with
serviets and JSPs

This chapter contains the following topics:
m About BIRT Spreadsheet Engine and J2EE
m Using BIRT Spreadsheet Engine within a Java servlet

m Using sample servlets

Chapter 15, Integrating BIRT Spreadsheet Engine with servlets and JSPs 193

About BIRT Spreadsheet Engine and J2EE

By integrating BIRT Spreadsheet Engine with a Java 2 Enterprise Edition (J2EE)
web application, you can leverage the power of the BIRT Spreadsheet API to
distribute an interactive, database-driven spreadsheet report over the web.

A large part of the popularity of]2EE is due to the separation of roles and
responsibilities between the Java programmer, who writes the servlets that access
the database, and the report designers, who write the JSPs. By integrating BIRT
Spreadsheet Engine with J2EE, you extend the concept of separation of roles and
responsibilities to include the specialists who design and program the
spreadsheets. This relieves the Java programmer of the responsibility of having to
learn about the esoteric sciences and mathematical models in which your experts
specialize. This further separation of responsibilities speeds the development of
the web application and greatly increases its accuracy.

Using BIRT Spreadsheet Engine within a Java servlet

This section provides common coding techniques for writing servlets that use
BIRT Spreadsheet Engine. This section also provides examples of ways to display
spreadsheet data and how to get data from external data sources.

Compiling and deploying a Java servlet that uses the
BIRT Spreadsheet API

When you compile a servlet that uses the BIRT Spreadsheet API, essd11 jar,
derby;jar, and the license file, eselicense.xml, must be in the Java classpath. When
you deploy the servlet to the application server, all these files must be accessible
to the servlet. How your application references the jar files and where they must
reside depends on your application server.

Setting the MIME type

Anytime a servlet sends anything but text to the browser, you must specify the
type of information the servlet is sending. You specify the type of information by
specifying a Multipurpose Internet Mail Extensions (MIME) type. A servlet
sending a spreadsheet, for example, can send it in many different formats,
including in Excel, XML, or image format. For each different format, you must set
a different MIME type.

You set the MIME type by calling the setContentType() method of the servlet
response object. For example, to send the browser an Excel file, you set the MIME
type with a statement like the following:

response.setContentType ("application/vnd.ms-excel") ;

194 Using BIRT Spreadsheet Engine and API

Table 15-1 lists some common data formats and the corresponding value that you

send to the setContentType() method.

Table 15-1 Data formats and corresponding parameter values for the
setContentType() method
Data format Parameter value
Excel application/vnd.ms-excel
GIF image/ gif
HTML text/html
JPEG image/jpeg
PNG image/png
XML text/xml

Writing to the servlet output stream

Use the book.write method to output the worksheet as an Excel file. When you

output the worksheet, follow this method with out.close to close the file.

The following example outputs the worksheet as an Excel file. The file format,

book.eFileExcel97, outputs the file using the Excel 97 through 2003 format. The

following example also closes the file:

response.setContentType ("application/vnd.ms-excel") ;

ServletOutputStream sos out = response.getOutputStream() ;
com.flj.ss.Document d_doc = null;
try {

d _doc = new Document (null, new File("jdbc.sod"),
new DocumentOpenCallback()) ;
d_doc.getLock () ;

d_doc.fileSaveAs (sos_out,
com.f1lj.ss.DocumentType.EXCEL 97 WORKBOOK,
new com.flj.ss.DocumentSaveCallback()) ;
}
catch (Throwable e) {
System.out.println(e.getMessage()) ;
}

finally({
sos_out.close() ;
if (d_doc != null)
d doc.releaseLock() ;

Chapter 15, Integrating BIRT Spreadsheet Engine with servlets and JSPs

195

Getting data

You can use the BIRT Spreadsheet API to get information from a variety of data
sources. You can extract data from a database, text file, connection pool, or Java
object.

The quickest way to get data from a database or external file is to create the
connection to the data in BIRT Spreadsheet Designer. You can create a worksheet
to establish a connection, get data in the worksheet, and then read the worksheet
in your servlet.

You can base the information in the report design on a parameter so that the
database information can be dynamically gathered. For more information about
using parameters in a servlet, see “Passing parameters,” later in this chapter.

Using sample servlets

The following section contains sample servlets that you can modify and include
in your servlets. The actions performed by these sample servlets include:

m Sending an Excel file to the browser
m Displaying a chart as an image
m Creating HTML output

m Passing parameters

Sending an Excel file to the browser

The following example, ExcelHelloWorldServlet, creates a new workbook and
sends it to the browser as an Excel file. This example is written as a
multi-threaded servlet. For more information about multi-threaded servlets, see
“Understanding multithreading issues” in Chapter 2, “Working with workbooks
and worksheets.”

import java.io.File;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServletRequest;
import com.flj.ss.Document;

import com.flj.ss.DocumentOpenCallback;

import com.flj.ss.DocumentSaveCallback;

import com.flj.ss.DocumentType;

196 Using BIRT Spreadsheet Engine and API

public class ExcelHelloWorldServlet extends HttpServlet {
private static final long serialVersionUID = 1L;

public void doGet (HttpServletRequest request,
HttpServletResponse response) throws
ServletException, java.io.IOException

{

/***

* Tell the browser we are sending an Excel file

***/
response.setContentType ("application/vnd.ms-excel") ;
ServletOutputStream out = response.getOutputStream() ;
Document doc = null;

try{

/***

* Populate the document from a spreadsheet report design
***/
File templateFile = new File("c:\\template.sod") ;
doc = new Document (null, templateFile,
new DocumentOpenCallback()) ;
doc.getLock () ;

/**

* OQutput the document to the output stream
**/
doc.fileSaveAs (out, DocumentType.EXCEL 97 REPORT VIEW,
new DocumentSaveCallback()) ;
catch (Throwable e)
System.out.println(e.getMessage()) ;

finally({

/**

* Unlock the document so other threads can access it
**/

out.close() ;
if (doc != null) doc.releaseLock() ;

Displaying a chart as an image

In a Java servlet, you can output a chart from an Excel file or BIRT Spreadsheet
Designer file to the browser as a GIF, JPG, or PNG image. This type of output
allows you to present a chart in the browser. The following example servlet
outputs a chart from a spreadsheet as a GIF image.

Chapter 15, Integrating BIRT Spreadsheet Engine with servlets and JSPs 197

The example worksheet on which this example is based, graph_11.sod, contains a
chart and data from an external database. In the servlet, when you refresh the
data, the chart dynamically changes on the worksheet as well as in the output.

The key tasks for writing the chart as an image include:
m Informing the browser that the MIME type is GIF

m Getting the chart object from the worksheet

m Instantiating the ChartImageEncoder

m Creating the chart image

m Writing the GIF image to the browser

The following example servlet shows how to output a chart as a GIF image in the
browser. Modify the worksheet name in this servlet to a specific worksheet name
to output a chart from a specific file to a GIF image in the browser.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.File;

import com.flj.drawing.Shape;

import com.flj.ss.Document;

import com.flj.ss.DocumentOpenCallback;

import com.flj.swing.engine.ss.ChartImageEncoder;
import com.flj.swing.engine.ss.JBook;

import com.flj.ss.FcChart;

class ChartAsGIFServlet extends HttpServlet
{
private static final long serialVersionUID = 1L;
public void doGet (HttpServletRequest request,
HttpServletResponse response) throws
ServletException, java.io.IOException
{

// Inform the browser that the MIME type is GIF
response.setContentType ("image/gif") ;
javax.servlet.ServletOutputStream out =

response.getOutputStream() ;
Document d_doc = null;
JBook jb _book = null;
try{
d doc = new Document (null, new File("graph 11.sod"),
" new DocumentOpenCallback()) ; B
jb_book = new JBook (doc) ;
jb_book.getLock () ;
jb_book.recalc() ;

198 Using BIRT Spreadsheet Engine and API

// Assuming the chart object is the first shape
Shape firstShape = jb book.getDrawing() .getShape (0) ;

// Instantiate the ChartImageEncoder and encode the chart
ChartImageEncoder cie img = new ChartImageEncoder () ;
cie img.encode (jb _book, (FcChart) firstShape);

// Write the chart as a GIF Image to the browser
cie img.writeImage (out, "GIF");
out.close() ;

1

catch (Exception e) {
System.out.println(e) ;
e.printStackTrace() ;

1

finally{
if (jbook != null) jbook.releaseLock() ;
if (doc != null) doc.release() ;

1

}

After you run this servlet, a GIF image appears, similar to the one in Figure 15-1.

<= Back ~ ”HAdduess &7 hittps /es. actuate. com/demos_F1eSE_10/demo_22/ ~| @Ga ‘
(i »“ File Edt View Favoites Todls Help
Sales Figures
Sales Totals for West Region
Select Sales Report
West = Get Report m.January
| February
oMarch
o April
u Way
m.June
mJuly
mAugust
W September
| October
o Movernber
| December
Months
]
|&] Done [[[intemet 4

Figure 15-1 Example of outputting a chart as a GIF

Creating HTML output

You can write an entire worksheet or a selected area of the worksheet as an HTML
table in the browser. You can also save most of the formatting attributes of a
worksheet when you write the worksheet to HTML.

Chapter 15, Integrating BIRT Spreadsheet Engine with servlets and JSPs 199

The key tasks for creating output as HTML include:

m Informing the browser that the MIME type is HTML
m Creating an HTML writer

m Outputting the data as HTML in the browser

The following example servlet shows how to create HTML output from a
spreadsheet in the browser:

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import com.flj.ss.*;

public class SheetAsHTMLServlet extends HttpServlet {
private static final long serialVersionUID = 1L;

public void doGet (HttpServletRequest request,
HttpServletResponse response) throws
ServletException, IOException

{

// Inform the browser that the MIME type is HTML
response.setContentType ("text/html") ;
OutputStreamWriter osw out =

new OutputStreamerier(response.getOutputStream());
Document d _doc = null;
try{
d doc = new Document (null,
_-getServletContext().getResourceAsStream(
"/WEB-INF/templates/jdbc_11.sod"),
new DocumentOpenCallback()) ;
d doc.getLock () ;
d doc.getBook () .recalc() ;

// Create an HTML writer and output to browser as HTML
HTMLWriter hw Writer = new com.flj.ss.HTMLWriter();
hw Writer.write(d doc.getBook(), 0, 0, 0, 0, 40, 20,
_-osw_out); -
}
catch (Throwable e) {
System.out.println(e.getMessage()) ;

}
finally({
osw_out.close() ;
if (doc != null) d doc.releaseLock() ;

200 Using BIRT Spreadsheet Engine and API

The resulting HTML output looks like Figure 15-2.

January February March o April May June Q2
East
Region
Alexander 410039 35219 24888 $1,01146 54365 20307 39641 $1,143.13
Baker 5754 A1015 47905 $1,046.74 a6.11 35587 78.81 $490.79
Dye 28233 39628 45737 117604 36360 28556 12963 $FVET9
Jones 3230 11654 41403 $85428 50594 16203 108.07 $776.04
Thomas 26723 24937 27947 $BI60F 18567 43571 25069 87207
East
Region
Totals $1,361.26 $1,624.53 $1,918.80 $4,904.59 $1,654.97 $1,442.24 $963.61 $4,060.82
Region
Totals
North
Region
Arthur 17205 54230 44484 $1,15919 52849 35515 40018 $1.283.82
Figure 15-2 Example of creating HTML output from a spreadsheet

Passing parameters

The following example sends a custom Excel file to the browser. The content of
the file is based on a parameter passed into the servlet. You can pass a parameter
to a servlet from a JSP page, an HTML form, or as part of a URL.

The key tasks for passing a parameter include:

m Passing the region parameter provided by the user

m Setting the parameter value
m Forcing a recalculation
m Refreshing the data source

m Outputting the new Excel file to the browser

The following example shows how to pass parameters to a servlet:

import
import
import
import
import
import
import

public

{

private static final long serialVersionUID =

Chapter 15, Integrating BIRT Spreadsheet Engine with servlets

java.io.*;

javax.servlet.*;
javax.servlet.http.*;
com.flj.ss.*;
com.flj.data.source.JDBC;
com.flj.data.DataQueryCollection;
com.flj.data.query.JdbcQuery;

class ParamServletJDBC extends HttpServlet
1L;

(continues)

and JSPs 201

public void doGet (HttpServletRequest request,
HttpServletResponse response) throws
ServletException, IOException

response.setContentType ("application/vnd.ms-excel") ;

ServletOutputStream out = response.getOutputStream() ;
Document d _doc = null;
try(

d doc = new Document (null, new File("jdbc 11.sod"),
new DocumentOpenCallback()) ;
d doc.getLock () ;
// Pass the region parameter provided by the user
String region = request.getParameter ("region") ;
JDBC jdbc_ds = (JDBC) d_doc.getBook() .
getDataSourceCollection() .find ("Cxnl") ;
// Get the query from the data source:
DataQueryCollection dqc =
jdbc_ds.getDataQueryCollection() ;
JdbcQuery jdbcQuery = (JdbcQuery) dgc.find("Queryl") ;
// Set the parameter value:
jdbcQuery.getParameterCollection () .
getNamedParameter ("region") .setValue (region) ;
// Output the new Excel file to the browser:
doc.fileSaveCopyAs (out,
DocumentType.EXCEL 97 REPORT VIEW,
new DocumentSaveCailbgck());_
}
catch (Throwable e)
System.out.println(e.getMessage()) ;
}

finally({
out.close() ;
if (doc != null) doc.releaseLock() ;

}

202 Using BIRT Spreadsheet Engine and API

Index

Symbols

; (semicolon) character 116

" (double quotation mark) character 100
() (parentheses) characters 105

\ (backslash) character 82,100

\n character 41,99

& (ampersand) character 100, 148

= (equal sign) character 95,127

$ (dollar sign) character 107, 108, 146

Numerics
3-D charts 137-139

A

absolute print areas 146
absolute references 107, 108
absolute URLs 101
AbstractSection interface 89
access restrictions 173
accessing

API constants 11

BIRT Spreadsheet Engine and API 186,

188

charts 135

data sources 4, 74, 80

external data files 196

external image files 139

sample code 6

sample databases 6

sample programs 7

sample servlets 196
actions. See events
active cell 45,96, 98, 171
active worksheet 27, 28, 30
addCalcuatedField method 157
addCalculatedItem method 156
addChart method 132
addField method 156
addHyperlink method 100
add-in functions 189-192
addin package 7

adding
calculated fields 155, 157
cells 42-44,181
chart sheets 136
charts 132, 136
column or row headings 39
columns to worksheets 42
conditional formats 124
data ranges 86
defined names 105
graphical objects 10, 139
hyperlinks 100-101
multiline data 99
multiline headings 39, 41
multiline print headers 149
pivot ranges 47, 152
rows to worksheets 42, 44
summary fields 155
worksheet tabs 34
worksheets 27, 29
addKeyListener method 170
addPicture method 139

addSelectionChangedListener method 172

addShape method 139

align method 112

AlignFormat interface 114, 123
AlignFormat objects 112
alignment 114, 148

alignment codes (print) 148
alignment-horizontal tag 68
alignment-vertical tag 68
ampersand (&) character 100, 148

APIs. See application programming interfaces

appending columns and rows 44
APPLET tag 18,186
applets

developing 17,184, 187

displaying worksheets in 17, 19, 186
integrating BIRT Spreadsheet Engine

with 6,7
loading Excel files for 20
running 18, 19

Index

203

application programming interfaces (APIs) BIRT Spreadsheet Designer

documentation for 6,7 developing with 7
applications interface components for 8
accessing sample code for 6 language support for 5
accessing sample programs for 7 release notes for 5
compiling 22 BIRT Spreadsheet Engine
creating 23 as calculation engine 4
creating stand-alone 20, 184 data structures for 180
deploying worksheets from 9 deploying 6
developing 178, 184 developing with 4, 184
exporting spreadsheet reports and 4 embedding in J2EE projects 4
forcing garbage collection and 181 implementing add-in functions for 189
instantiating workbook objects for 16 integrating with J2EE 194
integrating BIRT Spreadsheet Engine optimizing memory usage for 178
with 6,7 release notes for 5
pasting data from 104 running with Java servlets 194
selecting worksheets and 28, 30 sample code for 6
shifting print output and 146 sample databases for 6
applyDataRange method 87 sample programs for 7
applyFieldGroupDef method 163 specifying default locale for 9, 56, 59
area charts 132, 137 testing installation of 18
Area class 155 user access restrictions for 173
Area objects 155 BIRT Spreadsheet Engine and API
areas (defined) 48 accessing 186, 188
arrays accessing constants for 11
cell references and 181 class files for 5, 8,9, 10
column and row references and 179, 180 creating charts with 132
copying data and 97 documentation for 2, 6,7
fixed-width text and 83 event model for 166
images and 139 JavaScript and 186-188
preallocating 179 overview 3
sort keys and 108 BIRT Spreadsheet Engine files 5
arrowsExitEditMode parameter 169 BIRT Spreadsheet reports. See spreadsheet
ascending sort order 108 reports
attach method 26 BIRT SpreadsheetEngine
authentication 84 components of 2
autoFreezePanes method 38 blank cells 69
automatic recalculation 182 bold attribute 122, 148
book object 27
B Book objects 59
background colors 113 BookImpl objects 181
backslash (\) character 82,100 bookmarks 101
bar charts 133, 137 BookModel interface
BIRT iServer implementing 14 . L
spreadsheet-specific functionality in 22,

deploying to 179

BIRT Spreadsheet components 8 185

workbook operations and 15

204 Using BIRT Spreadsheet Engine and API

worksheet operations and 15, 28, 29-30
BookModel objects 15, 22, 65, 185
BookModellmpl objects 16
border method 112
BorderFormat objects 112
borders 47,129, 150
browsers. See web browsers
bubble charts 133
BufferedOutputStream class 66
ByteArrayOutputStream class 66

C

cache 84
cache data source 84
calculated fields (pivot ranges) 155, 157
calculated items (pivot ranges) 155, 156
calculation engine 4, 23
calculations 94, 157
callback classes 15,22, 185, 186
cancelEdit method 169
CancelEditEvent class 166
CancelEditListener class 166
cancelling data entry 169
carriage return characters 39, 82, 98, 148
casting operations 75, 76, 82
cell blocks. See range of cells
cell coordinates 48, 106, 107, 171
cell data types 107
cell reference arrays 181
cell references
adding to formulas 100
adding to validation rules 99
applying conditional formats and 127, 128
creating defined names and 105, 107
developing functionality for 10
entering 100
getting 48, 108
merging cells and 47
multiple workbooks and 25
overview 181
printing and 146, 147
updating 178
cell shift constants 43
CellFormat class 8, 10
CellFormat objects 99, 112, 124
CellRef class 10

cells
See also range of cells
accessing data in 107
adding hyperlinks to 100-101
adding to worksheets 42-44, 181
applying fonts to 122,123
assigning defined names to 105
changing orientation of data in 123
clearing 48, 102
copying 48, 98
determining if locked 174
displaying multiline data in 99
editing data in 167, 169
formatting 112, 124
generating formatting tags for 68
getting active 171
getting contents 170
getting contents of 94-96
getting coordinates of 171
getting formatting information for 10
getting most recent entry in 168
getting textin 31, 124
hiding values in 115
limiting number of characters in 175
locking 46,102, 115
marking for recalculation 182
merging 47, 69
monitoring changes for 167,173
moving 45
pasting data to 104
preserving data in 169
preserving formats for 168
protecting 174
referring to in different workbooks 25
restricting changes to 46, 102, 173,174
restricting data entry in 174
retrieving values from 182
selecting 44, 45, 172, 174
setting contents of 96-101
setting formatting information for 10
setting text in 31
setting validation rules for 99
skipping empty 69
specifying active 45
unlocking 47

centering data 114

centering text 148

Index 205

changes, monitoring 167, 173
changing
data 4, 46, 58, 102
data orientation 123
defined names 105
fonts 115, 122
worksheets 30-31, 167, 181
character attributes. See font attributes
character sets 56, 64
character strings. See strings
character-delimited text files. See delimited
text files
characters
cell references and 100
conditional formatting and 127
defined names and 105
delimited text and 82
formatting masks and 116
heading cells and 39
limiting entry of 175
multiline text and 41
print headers and 149
printing special 148
tab-delimited strings and 98
chart package 7
chart sheets 136
chart type constants 132
ChartEvent class 166
ChartGraphic objects 132
ChartImageEncoder class 9
charting API 7,132-139
ChartListener class 166
ChartModel class 7
ChartModel interface 10
charts
accessing 135
adding 132, 136
associating with cell ranges 134-135
changing cells associated with 135
defining as three-dimensional 137-139
encoding as images 9, 197
labeling axes values in 136
labeling data series in 136
locating by name 135
outputting to web browsers 197
setting type 132, 136
ChartViewEvent class 166

ChartViewListener class 166
checkLogical method 190
checkNumber method 190
checkText method 190
child sections (data ranges) 89
circular references 182
class files 5, 8,9, 10
class library 5, 184
classes
accessing constants for 11
BIRT Spreadsheet Engine and API
reference for 14
creating add-in functions for 189
getting data source types and 75
overview 8
CLASSPATH variable 18
classpaths 6,17, 22, 194
clear parameter 169
clearing
See also deleting
cells 48,102
formats 88,102
print areas 147
workbooks 25
clearRange method 48
clearType parameter 102
Clipboard 102, 104, 178
clipping 98
close method 195
closing spreadsheet files 195
clustering (charts) 138
code pages 56, 64
code samples 6
colHeader parameter 40
collapsing outline levels 49
collapsing worksheet elements 49
color printers 147
color-coding number values 117, 119
colored frames 129
colors
applying conditional formats and 124
applying to fonts 123
specifying cell 112
column areas (data ranges) 89
column areas (pivot ranges) 155, 162
column charts 133, 137
column fields (pivot ranges) 155, 156

206 Using BIRT Spreadsheet Engine and API

column headings
adding 39
creating 40
default behavior for 39
entering multiline text in 41
getting content of 40
getting height of 40
printing 150
resetting to default 41
selecting 40
setting height 40
turning on or off 42
column parameter 128
column sections (data ranges) 89
column separators 54, 82, 98
column width parameter 36
column widths 36-37, 83, 84
columns
adding to data sections 90
adding to worksheets 42, 179
automatically sizing 37
collapsing and expanding 49
deleting data and 103
displaying 35
freezing 37-38
getting last 38
hiding 35
inserting empty 178
limiting number of visible 35
marking end of 98
preserving widths for 37
referencing 39
resizing 36-37, 178
restricting access to 173
returning from text files 82, 83,98
setting first 35
setting outline levels for 49
sorting by 108
combination charts 133, 136
comparison operators 125
compiler 82
compiling 17, 22
concatenation 100, 191
concurrency 25
condition types 125
conditional formats 124-128
conditional formulas 125, 126, 127, 128

ConditionalFormat class 125
ConditionalFormat objects 124, 125
conditions
defining 125
formatting data and 124, 125, 128
formatting numbers and 117
testing 125
connection pools 196
connections
accessing data sources and 4, 74, 76
creating 196
creating file data source 80-81, 83
external data API for 7
constants 10
Constants class 7
Constants interfaces 10
content parameter strings 96
converting pixels to twips 170
coordinates (graphical objects) 10

copy and paste operations 102, 103, 104, 171

copyDataFromArray method 98
copying

data 97,98, 103, 178

formats 104

formulas 104

worksheet cells 48, 98
copyRange method 48, 98, 103, 178
CR characters 39
createDataRange method 86
createFieldGroupDef method 162
createParent method 89
createShapeAnchor method 132, 139
creating

add-in functions 189-192

applications 23

calculation engine 4

chart sheets 136

charts 132, 136

conditional formats 124

connections. See connections

data ranges 77, 86

defined names 105

Excel spreadsheets 23, 64

HTML files 9, 66-67, 199

hyperlinks 100-101

multiline headings 39, 41

multiline print headers 149

Index

207

creating (continued)
output files 60, 61, 63
pivot ranges 152
queries 76,77
report design files 6
row or column headings 40
servlets 23
validation rule 99
workbooks 16, 59
worksheets 9, 29, 59, 178
XML files 68, 69
currency formats 117
currency symbols 117,120
current date 148
current time 148
custom data sources 74
customizing
formats 10, 119
functions 7
cutting cell contents 102
See also clearing; deleting

D

data
See also values
alignment options for 114
changing 4, 46, 58, 102
changing orientation of 123
copying 97, 98,103, 178
deleting 48, 101-103, 173
displaying 77,129
formatting 112, 124
getting previous values for 170
getting recently entered 168
grouping 49
hiding 115
importing 37
loading from arrays 97
loading from tab-delimited strings 98
merging 47
moving 178
preserving 102
refreshing 26, 78, 178
restricting changes to 173, 174
restricting entry of 99, 115, 174, 175
retrieving 54, 196

saving 4
sorting 47,108-109
validating 175
data areas (pivot ranges) 155
data commands 90
data fields (pivot ranges) 155, 156, 158
data handler properties 81
data handler type 76
data handlers 82, 83
Data interface 10
data package 7
data range API 90
data range definitions 87, 88
data range objects 77
data ranges 77, 86, 90
formatting 88
importing data and 37
preserving column widths for 37
specifying 77
data rows. See rows
data set cache 84
data sets 86, 88
data source classes 75
data source objects 74, 75, 81
data source type constants 75
data sources
accessing 4,74
overview 74
reading from input files and 54
retrieving data from 196
setting properties for 76, 81
types supported 74
data structures 180, 181
data type markers 129
data types 107, 162, 168
database drivers 76
database management systems 74
database names 76
database property 81
databases
accessing sample 6
clearing formatting in 88
developing for 9
preserving formatting in 88
retrieving data from 196
types supported 4, 74
Databases directory 6

208 Using BIRT Spreadsheet Engine and API

DataMethods class 90-91
DataOutputStream class 66
DataQuery interface 76
DataQuery objects 76
DataQueryCollection objects 76
DataRange interface 86
DataRange objects 77, 86
DataRangeCollection objects 77
DataRangeDef interface 88
DataRangeDef objects 87, 88
DataRangeModel interface 86, 88
DataRangeModel objects 86
DataSource objects 81
DataSourceCollection class 74
DataSourceCollection objects 26, 75
date formats 109, 121
dates
adding to cells 109, 168
adding to print headers 149
displaying locale-specific 120
entering in worksheets 121
formatting 116, 121, 124
grouping on 162
printing current 148
sorting on 109
DBMS data sources 74
debugging 129
decimal points 117
default column widths 37
default data range location 89
default data set 89
default fonts 122
default locale 9, 56, 59
default settings 25
defined name ranges 106, 107
defined names
applying conditional formats and 127
changing 105
creating 105
deleting 106
getting cell coordinates for 106
getting number of 105
inserting cells and 43
overview 104
specifying cell coordinates in 107
testing for 106
Delete key 173

deleteDefinedName method 106
deleteRange method 103
deleting

See also clearing

data 48, 101-103, 173

defined names 106

formats 173

objects 181

range of cells 103

worksheets 31
delimited text files 74, 80, 82
delimited text separators 82, 98
DelimitedText objects 82
deploying

BIRT Spreadsheet Engine 6

servlets 194

spreadsheet reports 179, 194

worksheets 9
depth ratio (charts) 138
derbyjar 5
descending sort order 108
deselecting worksheets 28
design files 54, 61
Designer class 8, 9
designer package 8
detail groups 49, 50
detail information 49
determinant functions 192
developers 4
developing applets 17,184, 187
developing applications 178, 184
developing servlets 194
developing spreadsheet reports 3, 4
dialog boxes 8,9, 102, 144
directory paths. See paths
display options 129
displaying

active cell 45

columns 35

data 77,129

formulas 107, 129

grid lines 150

heading cells 42

Java applets 18

locale-specific formats 120

rows 35

worksheet names 34

Index

209

Document class 54, 56, 60

Document Object Model. See DOM
documentation xi, 6

documentation package 7
DocumentOpenCallback class 56, 58, 59
DocumentOpenCallback objects 57
DocumentOpenCallback parameter 56
DocumentSaveCallback class 63
DocumentSaveOptions class 64
DocumentType class 62
DocumentType parameter 61

dollar sign ($) character 107, 108, 146
DOM class 75

DOM data sources 75

double quotation mark (") character 100
doughnut charts 133

drawing graphical objects 10

driver property 76, 81

eCount constant 158
eCountNum constant 158
eDays constant 162
edit mode 167,169, 175
editClear method 102,173
editCopy method 171
editCopyDown method 97, 178
editCopyRight method 97, 178
editCut method 102
editDeleteSheets method 31
editing events 167-170

See also changing
editInsert method 42
editPaste method 171
editPasteSpecial method 104
eDoughnut constant 133
eFixupAppend constant 44
eFixupPrepend constant 43

duplicate names 105
dynamic reports 2

eHorizontal AlignmentCenter constant 114
eHorizontal AlignmentGeneral constant 114
eHorizontal AlignmentJustify constant 114
E eHorizontal AlignmentLeft constant 114

eArea constant 132, 137 eHorizontal AlignmentRight constant 114

eAverage constant 158
eBar constant 133, 137
eBopPop constant 133
eBubble constant 133
eCellFormatting_Clear constant 88
eCellFormatting Manual constant 88
eCellFormatting_Preserve constant 88
eCellFormatting_ReplicateFirstRow
constant 88
eClearAll constant 49, 102
eClearAll parameter 173
eClearContents constant 49
eClearDlg constant 102
eClearFormats constant 49, 102
eClearValues constant 102
eColumn constant 133, 137
eColWidthUnitsNormal constant 36
eColWidthUnitsTwips constant 36
eCombination constant 133, 136
eCopyAll constant 104
eCopyFormats constant 104
eCopyFormulas constant 104
eCopyValues constant 104

eHours constant 162
elements. See tags
eLine constant 134, 137
e-mail 101
eMax constant 158
embedding

BIRT Spreadsheet Engine 4
eMergeRangeNone constant 69
eMergeRangeRows constant 69
eMin constant 158
eMinutes constant 162
eMonths constant 162
empty cells 69
empty rows or columns 178
endEdit method 168, 169, 175
EndEditEvent class 166
EndEditListener class 166
end-of-column delimiter 98
end-of-row delimiter 82,98
EndRecalcEvent class 166
EndRecalcListener class 166
engine. See BIRT Spreadsheet Engine
Enter key 45
eOperatorBetween constant 126

210 Using BIRT Spreadsheet Engine and API

eOperatorEqual constant 126
eOperatorGreaterThan constant 126
eOperatorGreaterThanOrEqual constant 126
eOperatorLessThan constant 126
eOperatorLessThanOrEqual constant 126
eOperatorNone constant 126
eOperatorNotBetween constant 126
eOperatorNotEqual constant 126
eOrientationClockwise constant 123
eOrientationCounterClockwise constant 123
eOrientationNone constant 123
eOrientationTopToBottom constant 123
ePattern10Percent constant 113
ePattern20Percent constant 113
ePattern25Percent constant 113
ePattern30Percent constant 113
ePattern50Percent constant 113
ePattern70Percent constant 113
ePatternDarkDownwardDiagonal
constant 113
ePatternDarkHorizontal constant 113
ePatternDarkUpwardDiagonal constant 113
ePatternDarkVertical constant 113
ePatternLightDownwardDiagonal
constant 113
ePatternLightHorizontal constant 113
ePatternLightUpwardDiagonal constant 113
ePatternLightVertical constant 113
ePatternSmallCheckerboard constant 113
ePatternSmallGrid constant 113
ePatternTrellis constant 113
ePie constant 134, 137
eProduct constant 158
equal sign (=) character 95, 127
eQuarters constant 162
error messages 116
escape characters 82
eScatter constant 134
eSeconds constant 162
eselicense.xml 6,17, 18,19, 22,189, 194
eSheetHidden constant 32
eSheetShown constant 32
eSheetVeryHidden constant 32
eShiftColumns constant 43, 103
eShiftHorizontal constant 43, 103
eShiftRows constant 43, 103
eShiftVertical constant 43, 103

eShowOn constant 51
essd10.jar 5
eStdDev constant 158
eStdDevP constant 159
eStep constant 134, 138
eSum constant 159
eTabsBottom constant 34
eTabsOff constant 34
eTabsTop constant 34
eTypeCell constant 125
eTypeEmpty constant 107
eTypeError constant 107
eTypeFormula constant 125
eTypeLogical constant 107
eTypeNone constant 125
eTypeNumber constant 107
eTypeText constant 107
evaluate method 189
eVar constant 159
eVarP constant 159
event listeners 166
events 16, 166
eVertical AlignmentBottom constant 114
eVertical AlignmentCenter constant 114
eVertical AlignmentTop constant 114
eVerticalJustify constant 114
example programs 7
Examples directory 6
eXaxis constant 136
Excel files 54, 61, 194
Excel spreadsheet interface 4
Excel spreadsheets
See also spreadsheet reports; worksheets
creating 23, 64
developing for 4,184
generating output for 197
limitations for 71
pivot tables in 152
reading as input data sources 54, 59
sending to web browsers 196, 201
setting as MIME type 194
ExcelHelloWorldServlet sample servlet 196
exception class 8, 10
exceptions 10, 27
expanding outline levels 49
expanding worksheet elements 49
exponentiation 118

Index 211

exporting
spreadsheet reports 4
expressions. See formulas
extensible markup language. See XML
extensible stylesheet language
transformation. See XSLT files; XSLT style
sheets
external data connection API 7
external data sources 26, 74, 78, 196
external image files 139
external workbooks 100
eYaxis constant 136
eYears constant 162

F

F1Exception class 8, 10
fljllswing jar 7
factory method 74,75, 76, 77
Field class 155
Field objects 155, 156, 157
FieldGroupDef objects 162
fields
See also columns
adding calculated items to 156
adding to pivot areas 155, 156
adding to pivot ranges 155
calculating values in 157
grouping pivot 162-163
setting initial or final values for 162
setting properties for 159, 160
FieldSettings class 159
FieldSettings objects 159
File class 75
file data sources 74,75, 80
See also specific type
file names 20
File source objects 82
file type constants 62
file types 3, 61
fileExists method 63
FileInputStream objects 69
FileOutputStream objects 66
filePrint method 143, 144, 146
files
See also specific type
controlling access to 64

generating output 60, 61, 63
importing 3
installing BIRT Spreadsheet Engine and 5
linking to 101
opening password-protected 57
reading report design 23
reading workbooks from 54
saving window-specific information
for 70
setting code pages for 56, 64
fileSave method 60
fileSaveAs method 60, 65
fileSaveCopyAs method 60
fill method 112
fill patterns 112, 113
FillFormat interface 112
FillFormat objects 112
FilterOutputStream class 66
filters 155
find and replace operations 10
finding active cell 171
FindReplacelnfo class 10
tit-to-page print option 145
fixed-width text files 74, 80, 83
See also text files
FModifiedListener class 166
focus 45
font attributes 122, 148
font codes (print) 148
font method 112
font names 122,123
font-bold tag 68
font-color tag 68
FontFormat interface 122
FontFormat objects 112
font-italic tag 68
fonts
applying conditional formats and 124
changing 115,122
heading cells and 41
setting size 122,123
font-size-twips tag 68
footers. See print headers and footers
forceRecalc method 182
forcing garbage collection. 182
foreground colors 112
foreignFileFormatLosesData method 63

212 Using BIRT Spreadsheet Engine and API

format masks 116, 121
format specification constants 88
format strings 116, 120, 127
FormatCellsDlg class 8
formatRCNr method 108
formats
applying conditions to 124-128
clearing 49, 88, 102
copying 104
creating pivot ranges and 159, 163
customizing 10, 119
deleting 173
displaying locale-specific 120
Excel limitations for 71
exporting spreadsheet reports and 4
garbage collection and 181, 182
generating HTML files and 66
generating XML files and 68
pasting into cells 104
preserving 102, 168
prompting users for 120
reapplying 168
retrieving data and 98
returning locale-specific 120
setting cell content and 96
sorting data and 109
specifying locales for 56
formatted cell references 108
formatting
data 112,124
data ranges 88
dates 116, 121, 124
heading cells 39, 41
locale-specific reports 120
numbers 116, 117, 119, 159
print headers and footers 148
text 115, 122-124
time values 118
XML data 69
formatting attributes 199
formatting codes (print) 148
formatting examples 112
formatting information 10, 102
formatting mode 88
formatting options 66, 116
formatting symbols 118
formatting tags 68

formatting templates 163

formula parameter 127

formula strings 69

formulas
assigning defined names to 105
attaching workbooks and 26
clearing 49
copying 104
creating calculated fields and 157

defining as condition type 125, 126, 127,

128
display options for 129
displaying as text 107
displaying literal text in 100
garbage collection and 181
getting cell-specific 95
getting results of 94
grouping workbooks and 25
heading cells and 39
inserting cells and 43
pasting into cells 104
printing and 146, 147
recalculating 182
referencing column and rows in 39

referencing external workbooks in 100

freeing resources 25

freezePanes method 37

freezing columns and rows 37-38

Func class 7, 189

FuncContext parameter 189

function types 192

functions
See also methods
adding summary fields and 158
applying conditional formats and 127
creating add-in 189-192
customizing 7

G

garbage collection 25,179, 181-182
gc method 181
General numeric format 118
generating
HTML files 9, 66-67, 199
output files 60, 61, 63
spreadsheet files 60

Index

213

generating (continued)

XML files 68, 69
getActiveCell method 161
getArea method 48, 155
getAreaCount method 48
getArgument method 190
getArgumentCount method 189
getCacheStream method 63
getCellFormat method 42
getCellText method 94
getCol method 171, 174
getColl method 190
getCol2 method 191
getColCount method 191
getColText method 40
getDataField method 158
getDataHandler method 82, 83
getDataQueryCollection method 76
getDataRangeDef method 87, 88
getDataSetCAcheDataSource method 84
getDefinedName method 106
getDefinedNameCount method 105
getEditString method 168
getEntry method 94, 95, 96, 170, 182
getField method 156
getFieldSettings method 159
getFormattedText method 124
getFormula method 96, 107, 182
getHeaderHeight method 40
getHeaderWidth method 40
getltem method 156
get]Book method 188
get]BookEx method 186
getLastCol method 38
getLastColForRow method 38
getLastDataCol method 39
getLastDataColForRow method 39
getLastDataRow method 39
getLastRow method 38
getLock method 27,178, 179
getModifyPassword method 59
getNumber method 96, 182
getOpenPassword method 58
getPivotRangeModel method 152
getPrintArea method 147
getRow method 171, 174
getRow1 method 191

getRow2 method 191
getRowText method 41
getScreenResolution method 171
getSelectedRange method 48, 88, 161
getSelection method 48
getSheet method 27, 30, 34, 63, 191
getSheetName method 27
getSummary method 158
getSummaryFieldSettings method 160
getText method 94, 182, 191
getTopLeftText method 41
getType method 107
getViewHandle method 63
getX method 171
getY method 171
GIF files 197,198
Globally Unique Identifiers. See GUIDs
graph_10.sod 198
graphical objects 10, 135, 139

See also charts; images
graphical user interfaces. See user interfaces
gray cells 39
grid lines 150
GRObjectPos class 10
Group argument 55
Group class 9, 56
Group objects 59
grouping

data 49

data range sections 89

pivot fields 162-163

workbooks 25
grouping parameters 162
groups 55, 56, 59
GUIDs 56, 63
GUIs. See user interfaces

H

Handler objects. See data handlers
headers. See print headers and footers
heading cells

changing contents of 39

creating new lines for 41

entering null values in 41

formatting 39, 41

getting content of 40

214 Using BIRT Spreadsheet Engine and API

selecting 40, 42

setting content of 40

setting size of 40

turning on or off 42
headings. See column headings; row

headings

HelloWorld applet 17-19, 187
HelloWorld servlet 196
HelloWorld App2 application 20, 22, 184
help directory 6
help files 6
hidden areas (pivot ranges) 155
hidden tag 68
hidden workbooks 26
hiding

columns 35

data 115

heading cells 42

rows 35

worksheets 31

zero values 119
highlighted worksheet tabs 28
highlighting values 124
horizontal alignment 114
horizontal scroll bars 51
HTML code 18
HTML files 6,9, 66, 67, 187, 199
HTML output 61
HTML tables 9, 66, 67, 199
HTMILWriter class 9, 66
HyperlinkEvent class 166
HyperlinkHelper.exe 5
HyperlinkListener class 166
hyperlinks 5, 100-101
hypertext markup language. See HTML

iAxisIndex parameter 136
image files 139, 197
image formats 194
image maps 9
images
See also graphical objects
accessing external 139
adding 139
encoding charts as 9, 197

importing

data 37

files 3
in-cell editing 169
inCellEditFocus parameter 169
index numbers

cell ranges and 48

chart series and 136

columns 35, 39

rows 35, 39

worksheet tabs 34

worksheets 27, 29
index.html 6
information objects 74
initWorkbook method 25
input files 54-59
input streams 59, 75, 139
InputStream class 75
InputStream parameter 59
insertAfter method 90
insertBefore method 90
insertRange method 42
insertSheets method 29
integers. See numbers
interactive reports 2
interfaces

See also user interfaces

BIRT Spreadsheet Engine and API

reference for 14

exporting spreadsheet reports and 4
Internet Explorer. See web browsers
io classes 66
isArea method 190
isCanEditPasteSpecial method 104
isCell method 190
isEmpty method 190
isLocked method 174
isLogical method 190
isNumber method 190
isText method 190
isTrue method 190
italic attribute 123, 148
Item class 155
Item objects 155
iteration 155, 182
iTextjar 5

Index

215

J

J2EE environments 4, 194
J2SE environments 184
jar files 5,17
Java 2 Enterprise Edition. See J2EE
environments
Java 2 Runtime Standard Edition. See J2SE
environments
Java applets. See applets
Java applications 22,104, 184
See also applications
Java archive files. See jar files
Java Database Connectivity. See JDBC
Java Development Kit. See JDK software
Java objects 196
Java Runtime Environment. See JRE
Java servlets. See servlets
Java Virtual Machines. See JVMs
javac utility 17
Javadoc 2,6,7
Javadoc directory 6
JavaScript 186-188
JavaServer Pages. See JSPs
JBook class 8,9, 10, 14
JBook objects 16,17, 22, 185, 186
JBookApplet class 8,19, 186
JBookApplet objects 186
JDBC class 75
JDBC data sources
accessing 74,75
developing for 9
JDBC standard 74
JFrame class 20, 184
JNIMethods.dll 5
JPG files 197
JSPs
building 194
integrating BIRT Spreadsheet Engine
with 7
justifying data 114

K

kAllowDeleteColumns constant 46
kAllowDeleteRows constant 46
kAllowEditObjects constant 46
kAllowFormatCells constant 46

kAllowFormatColumns constant 46
kAllowInsertColumns constant 46
kAllowInsertHyperlinks constant 46
kAllowInsertRows constant 46
kAllowNone constant 46
kAllowSelectLocked constant 46
kAllowSelectUnlocked constant 46
kAllowSort constant 46
kAllowUseAutoFilter constant 46
kAllowUsePivotRanges constant 46
kDOM constant 75

key presses 169, 170,173

keyboard events 170, 171

keyboard presses 45

keyboard shortcuts 171

keyPressed method 170
keyReleased method 170

keys tag 68

kFile constant 75

kInputStream constant 75

kJDBC constant 75

L

landscape mode (print) 144

language support 5

leftColumn parameter 38

LF characters 39

license file
eselicense.xml 6,17, 18, 19, 22,189, 194
obtaining 2

line charts 134, 137

line feed characters 39, 82, 98

line patterns 113

linking to files 101

links. See hyperlinks

listeners. See event listeners

literal characters 82

literal text 100

loading
workbooks 20, 25
worksheets 179

local directory 5

locales
additional documentation for 6
developing spreadsheet reports for 5
displaying dates for 121
displaying formats specific to 120

216 Using BIRT Spreadsheet Engine and API

setting code pages for 57
setting formats specific to 120, 127, 128
specifying 9, 56, 59
localization files 5, 6
locating active cell 171
locked tag 68
locking
cells 46,102,115
views 178,179
workbooks 25, 26, 178

M

manual formatting 88
Manuals directory 6
margins 146
memory 178
menus 9
merge-horizontal tag 68
merge-vertical tag 68
merging cells 47, 69
message dialogs 102, 187, 188
messageBox method 187
methods
See also functions
BIRT Spreadsheet Engine and API
reference for 14
changing font characteristics and 122
copying and moving data and 178
creating output files and 60, 63
creating pivot ranges and 152
defining conditional formulas and 126,
127,128
formatting and 112, 125
getting cell content and 94
setting cell content and 96
setting print options and 142
sorting data and 109
worksheet operations and 28, 29, 30
worksheet references and 27, 29
MIME types 194, 195
Model class 7
model-view-controller package 7
ModifiedEvent class 166
modifying. See changing
mouse events 170, 171
moveRange method 178

moving

cells 45

data 178
Mozilla Firefox. See web browsers
multiline column or row headings 39, 41
multiline data 99, 114
multiline print headers 149
multipurpose internet mail extensions. See

MIME types

multi-threaded applications 26, 56, 196
mvc package 7

N

\n character 41, 99
names
See also defined names
creating queries and 76
displaying worksheet 34
external workbooks and 100
printing workbook or sheet 148
naming
fonts 123
summary fields 159
worksheets 31
naming conventions (defined names) 105
negative exponents 118
new line characters 41
new line constant 99
non-contiguous cell ranges 45, 48
non-determinant functions 192
notifyGUID method 63
null values 41
number formats 10, 56, 96, 109, 120
number method 112
NumberFormat class 10, 159
NumberFormat objects 112
numbers
adding to cells 109, 168
color-coding 117, 119
displaying large 121
displaying locale-specific 120
formatting 116, 117, 119, 159
formatting dates as 121
getting 95
grouping on 162
setting initial and final values for 163

Index 217

numbers (continued)
sorting on 109
numeric field groupings 163

o)

ObjectEvent class 166
ObjectListener class 166
objects
deleting 181
ODA data sources 74
OLAP data sources 86
online help files 6
open data access connections 74
opening
spreadsheet files 57
workbooks 54, 56
operators 125
optimizing memory 178
orientation (data) 123
orientation (print) 144
orientation constants 123
outline attribute 123
outlines 49-50
output
column widths and 37
Excel limitations for 71
frozen panes and 38
getting unexpected print 146
sending to web browsers 196, 199, 201
worksheet headings and 39
output files 60-65
output streams 64, 65, 69
OutputStream class 65

P

packages 7
page areas (pivot ranges) 155
page filters (pivot ranges) 155
page items (pivot ranges) 155
page numbers 148
PageSetupDlg class 8
Panel class 14
panes (worksheets) 37
paper size constants 10
parameters

creating add-in functions and 189, 190

defining conditional formulas and 126,
127,128
grouping pivot fields and 162
opening workbooks and 56
passing to servlets 201
retrieving data with 196
parentheses () characters 105
parsing tab-delimited strings 98
Password objects 58
password property 76, 81
password-protected files 57
passwords
accessing data sources and 76, 81
authenticating 84
getting 58-59
prompting for 58, 59
reading input files and 57
setting 64
paste operations 102, 103,104, 171
paths
file data source connections and 81, 83
hyperlinks and 101
Java servlets and 194
pattern constants 113
pattern-fg tag 68
patterns 112,113
PDF documentation 6
percentages 117
performance tuning 177
period constants (dates) 162
pictures. See images
pie charts 134, 137
pivot area restrictions 155
pivot package 152
pivot range classes 152
pivot ranges
adding 47
associating with queries 154
calculating values in 157
creating 152
defining characteristics of 153
defining ranges in 161
formatting data in 163
formatting summary fields in 159
getting areas for 155
getting data fields for 158
getting summary fields for 158, 160

218 Using BIRT Spreadsheet Engine and API

grouping fields in 162-163
overview 152
retrieving field objects for 156
setting initial or final values for 162
setting options for 154, 155
setting properties for 159, 160
pivot tables 152
PivotRange objects 153, 158
PivotRangeDef class 154
PivotRangeModel class 152
PivotRangeModel objects 152
PivotRangeOptions objects 154, 155
pixels 170
PNG files 197
points (font size) 122
portrait mode (print) 144
positional text. See delimited files; fixed-
width text
PositionalText objects 83
positive exponents 118
prepending columns and rows 43
preserving column widths 37
preserving database formatting 88
print areas 146-147
Print dialog boxes 144
print headers and footers 147, 148, 149
print jobs 144, 146, 150
print options 142
print orientation 144
print scale 144-146
print titles 147, 150
Print_Area defined name 144, 146, 147
printDialogBox parameter 144
printers 147
printing
border outlines 150
column and row headings 150
in black and white 147
page numbers 148
range of cells 143,144, 146
special characters 148
specified number of pages 144, 145
worksheets 37,143, 144, 147
PrintJob objects 144
printJob parameter 144
programmers 4
programming interfaces. See interfaces

programs 7
properties
creating pivot ranges and 159, 160
setting data source 76, 81
protecting worksheets 46, 102, 174
protection flags 46
protection method 112
ProtectionFormat objects 112

Q

queries
associating with pivot ranges 154

connecting to file data sources and 80, 82,

83
creating 76,77
recalculating workbooks and 78
retrieving data with 84
supported connections for 4
query objects 76
query strings 76

R

Range argument 88

Range class 63, 161

Range objects 48, 88, 161

range of cells
adding hyperlinks to 100-101
applying fonts to 122,123
assigning defined names to 106, 107
associating charts with 134-135
automatically sizing columns for 37
clearing 48,102
copying 48,98
cutting contents of 102
deleting 103

determining number of empty cells in 69

duplicating values for 97
formatting 112

getting 88

getting areas from 48
getting coordinates of 48
getting references to 48
inserting in worksheets 42
locking 47

merging 47, 69

pasting data to 104

Index

219

range of cells (continued)
printing 143, 144, 146
reading from output files 63
referencing 10, 47
selecting 45
setting validation rules for 99
sorting data for 108
writing to HTML files 66
writing to XML files 68, 69
range of columns 35, 37, 49
range of rows 35, 49
range of values
adding 178
associating with data sets 88
copying 103
See also pivot ranges; data ranges
RangeRef class 10
readme.txt 5
readObject method 65
recalc method 182
recalculation 182,192
reference classes 10
references
See also cell references
columns or rows and 39, 180
defined names as 104
getting size of 180
memory usage and 179
preallocating 179
queries and 76
resolving circular 182
workbooks and 56
worksheets and 27, 29, 34
refresh method 26
refreshes 26,78,178
regenerating 78
relational databases. See databases
relative cell addresses 128
relative paths 101
relative print areas 146
relative references 108
relative URLs 101
relative values 160
Release Notes 5
releaseLock method 27,178, 179
removing. See deleting
repainting. See refreshes

report design files 6, 20, 23, 61
report script 90
report script functions 90

report template files. See report design files

reports. See spreadsheet reports
resizing
columns 36-37, 178
rows 178
resources 25, 181
restricting cell selection 174
restricting user access 173
RGB values 68
rotating text 124
row areas (data ranges) 89
row areas (pivot ranges) 155, 162
row coordinates 48
row fields (pivot ranges) 155, 156
row headings
adding 39
creating 40
default behavior for 39
entering multiline text in 41
getting content of 40
getting width of 40
printing 150
resetting to default 41
selecting 40, 42
setting fonts for 41
setting width 40
turning on or off 42
row parameter 128
row reference arrays 180
row sections (data ranges) 89
row separators 54
rowHeader parameter 40
rows
adding to data sections 90
adding to worksheets 42, 44,179
collapsing and expanding 49
deleting data and 103
displaying 35
freezing 37-38
getting last 38
grouping 50
hiding 35
inserting empty 178
limiting number of visible 35

220 Using BIRT Spreadsheet Engine and API

marking end of 82,98
referencing 39, 180
replicating formatting in 88
resizing 178
selecting 45
setting first 35
setting outline levels for 49
setting starting 82, 83
sorting by 108

rules (validation) 99

running applets 18,19

S

sample code 6
sample databases 6
sample programs 7
sample servlets 196
SAP data sources 74
saveAs method 64
saveViewInfo method 70
saving
cell ranges 63, 66, 69
data 4
formatting attributes 199
window-specific information 70
workbooks 60, 64, 66
sAxisType parameter 136
scatter charts 134
scientific notation 118, 121
screen resolution 170
scroll bars 51
scrolling 38, 50
Section interface 89
selection events 172
selection range 174
selectionChanged method 172
SelectionChangedEnt class 166
SelectionChangedListener class 166
semicolon (;) character 116
send mail links 101
separators 54, 82,98, 117
servlet sample files 6
servlets
accessing sample 196
accessing sample programs for 7
adding charts to 9

compiling 194

creating 23

deploying 194
developing 194
generating output for 200

instantiating workbook objects for 16

integrating BIRT Spreadsheet Engine

with 7,194

outputting charts in 197

passing parameters to 201

setting MIME type for 194

shared workbooks and 26
Servlets directory 6
set method 76
set3Dimensional method 137
setAdjustColWidth method 37
setAllowDelete method 173
setAutoFormat method 163
setAutoRecalc method 182
setAxisTitle method 136
setBackColor method 112
setBold method 122
setCanceled method 169
setChartType method 136
setClip method 98
setClipValues method 98
setClustered method 138
setCodePage method 56, 64
setColHidden method 35
setColor method 123
setColorAuto method 123
setColOutlineLevel method 49

setColSummaryBeforeDetail method 49, 50

setColText method 40
setColWidth method 36
setColWidthAuto method 37
setColWidthTwips method 36
setColWidthUnits method 36
setCommands method 89
setContentType method 194

setCustomFormat method 116, 117
setCustomFormatLocal method 120

setDataHandler method 82
setDataSet method 89
setDateType method 162
setDefaultFont method 122

setDefaultFontName method 122

Index

221

setDefaultFontSize method 122
setDefinedName method 105, 107
setDelimiters method 82
setDepthRatio method 138
setDeterminant method 192
setDocumentSaveOptions method 64
setEnterMovesDown method 45
setEntry method 96, 97, 109
setEntryl method 126, 127
setEntry2 method 126, 127
setEnty2 method 127
setFieldSettings method 159
setFilePath method 81, 82, 83
setFinalValue method 163
setFlags method 66

setFontBold method 42
setFontltalic method 42
setFontName method 42
setFontSize method 42
setForeColor method 112
setFormatlLocal method 127
setFormat2Local method 127
setFormattingMode method 88
setFormula method 100
setFormulal method 126
setFormulalLocal method 126, 127
setFormula2 method 126
setFormula2Local method 126, 127
setFunction method 158

setGroup method 25
setHeaderHeight method 40
setHeaderSelection method 40, 41
setHeaderWidth method 40
setHidden method 115
setHiddenState method 31
setHorizontal Alignment method 42, 114
setIncrement method 163
setlnitialValue method 162
setltalic method 123
setlterationEnabled method 182
setlterationMax method 182
setlterationMaxChange method 182
setLeftCol method 35, 45, 51
setLinkRange method 134
setLocation method 89

setLocked method 115

setMaxCol method 35

setMaxRow method 35

setMergeCells method 47
setMergeRangeType method 69
setMinCol method 35

setMinRow method 35
setModifyPassword method 58, 64
setName method 31, 89, 122, 123, 159
setNumber method 109
setNumberFormat method 159
setNumSheets method 29
setOpenPassword method 57, 64
setOperator method 125
setOrientation method 123

setOutline method 123

setPattern method 112

setPosition method 83

setPrintArea method 142, 146
setPrintAutoPageNumbering method 142
setPrintBottomMargin method 142
setPrintColHeading method 142, 150
setPrintFooter method 142, 148, 149
setPrintFooterMargin method 142
setPrintGridLines method 142, 150
setPrintHCenter method 142
setPrintHeader method 142, 148, 149
setPrintHeaderMargin method 142
setPrintLandscape method 142, 144
setPrintLeftMargin method 142
setPrintLeftToRight method 143
setPrintNoColor method 143, 147
setPrintNumberOfCopies method 143
setPrintPaperSize method 143
setPrintRightMargin method 143
setPrintRowHeading method 143, 150
setPrintScale method 143, 144, 145
setPrintScaleFitHPages method 143, 145
setPrintScaleFitToPage method 143, 145
setPrintScaleFitVPages method 143, 145
setPrintScaleToFitPage method 145
setPrintStartPageNumber method 143
setPrintTitles method 143, 150
setPrintTopMargin method 143
setPrintVCenter method 143
setQuery method 76

setRepaint method 178
setReturnValue method 190
setRotation method 124

222 Using BIRT Spreadsheet Engine and API

setRowHidden method 35
setRowMode method 45
setRowOutlineLevel method 49
setRowSummaryBeforeDetail method 49, 50
setRowText method 41

setRule method 99

setSelection method 45, 47, 97
setSeriesName method 136
setSeriesType method 136

setShadow method 123

setSheet method 28

setSheetName method 31
setSheetProtection method 46
setSheetSelected method 28
setSheetType method 136
setShowColHeading method 42
setShowFormulas method 129
setShowGridlines method 150
setShowHScrollBar method 51
setShowRowHeading method 42
setShowTabs method 34
setShowTypeMarkers method 129
setShowVScrollBar method 51
setSizePoints method 122, 123
setSizeTwips method 122,123
setSkipEmptyCells method 69
setSolid method 113

setStartRow method 82

setStrikeout method 123
setSummaryFieldSettings method 159
setText method 31, 99
setTextQualifier method 82
setTextSelection method 115
setTopLeftText method 41
setTopRow method 35, 45, 51

setType method 125,132
setUnderline method 123

setVertical Alignment method 114
setWantsDefaultFinal Value method 163
setWantsDefaultInitialValue method 162
setWordWrap method 100
setWriteFormatAttributes methods 68
setZGapRatio method 138

shading patterns 113

shadow attribute 123

Shape class 10

ShapeAnchor objects 132, 139

sharing workbooks 26
Sheet interface 27, 30
Sheet objects 30
sheets. See worksheets
shifted print output 146
shifting data in cells 43
shiftType parameter 42, 103
shortcut keys 171
showActiveCell method 45
skip attribute 69
skip tag 68
.sod files. See spreadsheet object design files
.s0i files. See spreadsheet object instance files
sort keys 108, 109
sort method 108
sort order 108
sort3 method 108
sorting data 47, 108-109
source code 6
source data. See data sources
Source objects 74, 75
special characters 148
split views 38
splitColumn parameter 38
splitRow parameter 38
splitView parameter 38
spreadsheet components 8
spreadsheet engine. See BIRT Spreadsheet
Engine
spreadsheet files
as input data sources 54
closing 195
controlling access to 64
Excel limitations for 71
opening 57
outputting charts from 197
saving window-specific information
for 70
setting code pages for 56, 64
spreadsheet object design files 54, 61
spreadsheet report designer. See BIRT
Spreadsheet Designer
spreadsheet report designs 61, 196
spreadsheet reports
deploying 179, 194
developing 3, 4
exporting 4

Index 223

spreadsheet reports (continued)
importing files for 3
spreadsheets. See Excel spreadsheets;
worksheets
SQL databases 76
SQL statements. See queries
ss package 8
star schemas 86
startEdit method 169, 174
StartEditEvent class 166
StartEditListener class 166
startMe function 187
StartRecalcEvent class 166
StartRecalcListener class 166
step charts 134, 138
strikeout attribute 123, 149
strings
concatenating 100, 191
creating data ranges and 90
creating queries and 76
displaying dates as 121, 149
entering literal characters in 82
formatting text in 115
loading data from tab-delimited 98
parsing 98
referencing external workbooks and 100
restricting number of characters in 175
style sheets 69
substrings 98, 115
summary fields (pivot ranges) 155, 158, 159,
160
summary rows and columns 49
summary values 50, 160
SummaryField class 158
SummaryFieldSettings objects 158, 160, 161
Swing components 14
swing designer package 8
swing engine package 8
swing ui package 8
Swing-specific classes 5

T

tab characters 98

tab position constants 34

tab-delimited strings 98

tab-delimited text files 61, 64
See also delimited text files

tables 84
tabs 27, 28, 34
tag libraries
See also JSP tag library
tags
generating formatting 68
testing BIRT Spreadsheet Engine
installations 18
text
adding multiline 39, 41, 99, 149
adjusting column widths to 37
assigning defined names to 105
centering 148
changing fonts for 122
concatenating 191
displaying formulas as 107
displaying literal 100
entering 100
formatting 115, 122-124
getting 124
heading cells and 39, 41
returning cell contents as 94
rotating 124
wrapping 99
text attributes. See font attributes
text files
as data sources 54, 74, 80
connecting to 80
querying 82, 83
retrieving data from 98, 196
saving views for 70
setting code pages for 56, 64
setting delimiters for 82
setting starting column for 83
text strings. See strings
thousands separators 117
threads 25, 26, 56
3-D charts 137-139
throwing exceptions 10
time formats 118
time values 148
toolbars 9
ToolTips 101
top left heading 39
topLeftHeader parameter 40
topRow parameter 38
TrueType fonts 122

224 Using BIRT Spreadsheet Engine and API

try-catch code block 27
twips 37,122,170
twipsToRC method 171
type constants 107
type markers 129

U

underline attribute 123, 148
unfreezePanes method 38
Universal Resource Identifiers. See URIs
unlocking

workbooks 27,178

worksheet cells 47
UpdateEvent class 166
UpdateListener class 166
updating

cell references 178

data ranges 87
URIs 100
URLs

linking to 101

loading workbooks and 20

setting file paths and 83
user actions. See user events
user events 167,172
user interface classes 8
user interface components 8
user interface events 16
user interfaces 16, 56, 112
user name property 76, 81
user names 84
util package 8
utility classes 9

\'}

validate method 112
validating data 175
validation rules 99
ValidationFailedEvent class 166
ValidationFailedListener class 166
ValidationFormat objects 99, 112
Value objects 190
values
See also data; range of values
attaching workbooks and 26
clearing 49

color-coding 117, 119
comparing 125
conditional formatting and 124
copying 104
detecting changes to 167,173
displaying summary 160
filling cells with same 97
getting cell 170
heading cells and 39
heading cells and null 41
hiding 115, 119
highlighting 124
limiting entry of 99
pasting into cells 104
reading 182
recalculating 182, 192
returning from functions 192
setting initial or final 162
setting outline levels for 49
vertical alignment 114
vertical scroll bars 51
ViewChangedEvent class 167
ViewChangedListener class 167
viewing
active cell 45
columns 35
data 77,129
formulas 107, 129
grid lines 150
heading cells 42
Java applets 18
locale-specific formats 120
rows 35
worksheet names 34
views
hidden workbooks and 26
locking 178,179
preserving 26
repositioning active cell for 45
saving information for 70
splitting 38

w

warning messages 102
web applications 194

Index

225

web browsers setting number of worksheets in 29

displaying applets and 18 sharing 26

outputting charts to 197 unlocking 27,178

sending Excel files to 196, 201 writing to HTML files 66, 67

sending HTML output to 199 writing to output streams 65
web pages writing to XML files 68-70

building charts for 197 worksheet classes 14

generating HTML files for 66-67, 199 worksheet interfaces 14

inserting worksheets in 19, 194 worksheet names 27, 31, 34, 148
whatToCopy parameter 104 worksheet objects 30
white space 178 worksheet tab position constants 34
width-twips tag 68 worksheet tabs 27, 28, 34
window-specific information 70 worksheets
word wrapping 99 See also spreadsheet reports
wordwrap property 99 accessing charts in 135
workbench parameter 20 adding charts to 132, 136
workbook classes 14 adding columns or rows to 42,178, 179
workbook interfaces 14 adding graphical objects to 10, 139
workbooks adding headings to 39-42

See also spreadsheet reports adding hyperlinks to 100-101

accessing 15 adding tabs for 34

adding tabs to 34 adding to workbooks 27,29

adding worksheets to 27, 29 aligning datain 114

attaching to other workbooks 26 allocating references for 179

clearing 25 automatically recalculating 182

copying and pasting in 48 changing 30-31, 167, 181

creating 16, 59 converting to HTML 9

developing for 14 converting to XML 9

freeing resources for 25 copying and pasting in 48, 102, 103, 104,

generating 78 171

getting components of 15 copying cells to multiple 98

grouping 25 creating 9, 29,59, 178

hiding worksheets in 31 default names for 34

loading 20, 25 defining active 28

locking 25, 26,178 defining connections in 196

opening 54, 56 deleting 31

printing from 146 deleting data and 103

printing names for 148 deploying 9

recalculating values in 182, 192 deselecting 28

referencing 56, 100 determining if changed 167

refreshing data in 26, 78 developing for 14, 34,184

removing worksheets in 31 embedding 19

resetting defaults for 25 formatting data in 112, 124

returning from input files 54 getting active 27

returning from input streams 59 hiding 31

saving 60, 64, 66 initiating in-cell editing for 169

selecting worksheets in 28 limiting visible columns or rows in 35

226 Using BIRT Spreadsheet Engine and API

loading 179
moving active cell in 45
moving data in 178
naming 31
outlining in 49-50
outputting as HTML 199
outputting selected areas of 199
overview 94
printing 37, 143, 144, 147
protecting 46, 102, 174
referencing 27,29, 34
restricting access to 173-176
scrolling 38, 50
selecting 28,172
setting active 28
setting cell content for multiple 97
setting patterns and colors for 112, 113
splitting views for 38
testing for locked cells in 174
validating data entry for 175
viewing active cell in 45
working with cells in 42-49
working with columns or rows in 34-39
wrap tag 68
wrapping text 99
write method 67, 68, 69
writeURL servlet 6

X

Xls files. See Excel spreadsheets
XML data sources 74
See also XML files
XML documents 74
XML files

adding formatting information to 68

as data sources 74
associating style sheets with 69
connecting to 80
creating 68, 69
retrieving data from 196
setting as MIME type 194
writing to 69, 70

XML output 61

XMLWriter class 9, 68, 69

XSLT files 69

XSLT style sheets 69

y4

Z gap ratio (charts) 138
zero values 119

Index

227

228 Using BIRT Spreadsheet Engine and API

	Contents
	About Using BIRT Spreadsheet Engine and API
	About Actuate BIRT Spreadsheet Engine and API
	About Actuate BIRT Spreadsheet Engine and API
	About Actuate BIRT Spreadsheet Engine and API documentation
	About the BIRT Spreadsheet API licensed features
	Accessing data sources
	Exporting spreadsheet reports
	Creating a calculation engine
	Separating responsibilities by area of expertise

	About Actuate BIRT Spreadsheet Engine and API files
	Deploying Actuate BIRT Spreadsheet Engine
	About Actuate BIRT Spreadsheet report design files
	About Actuate BIRT Spreadsheet Engine examples

	About the BIRT Spreadsheet API packages
	About the workbook classes
	About the utility classes
	About the classes that JBook accesses
	About exceptions
	About the API constants

	Working with workbooks and worksheets
	About working with workbooks
	Understanding the JBook class
	Understanding the JBookApplet class
	Understanding the BookModelImpl class
	Understanding the BookModel interface
	Accessing other components from a BookModel object
	Understanding BookModel method declarations

	Creating a workbook
	Writing a Java applet that displays a spreadsheet
	Compiling the HelloWorld applet
	Understanding the HTML code for displaying an applet
	Running the HelloWorld applet
	Embedding a worksheet in a web page without writing any code

	Writing a Java swing application that displays a Spreadsheet
	Creating a servlet or an application without a user interface

	Editing a workbook using BookModel interface objects
	Resetting a workbook to default settings
	Grouping workbooks
	Attaching workbooks
	Refreshing data in a workbook

	Understanding multithreading issues
	Working with worksheets
	Understanding selected worksheets
	Understanding the active worksheet
	Creating worksheets
	Inserting worksheets
	Manipulating worksheets using the BookModel interface
	Manipulating worksheets through the Sheet interface
	Deleting worksheets
	Hiding a worksheet

	Working with worksheet elements
	About worksheet elements
	Working with a worksheet tab
	Working with rows and columns
	Setting the first row or column to display
	Hiding or showing a column or row
	Limiting visible rows and columns
	Working with column widths
	Setting the units of column width
	Using automatic column sizing
	Maintaining column width when importing data

	Freezing a row or a column
	Determining the last row or column containing data

	Working with headings
	Selecting a column or a row heading
	Getting and setting heading dimensions
	Getting and setting heading text
	Supplying a multiline column or row heading
	Setting heading font
	Hiding row or column headings

	Working with cells
	Inserting cells into a worksheet
	Selecting a cell
	Making the active cell visible
	Selecting an entire row when selecting a cell
	Making multiple, non-contiguous selections
	Enabling users to move the active cell by pressing the Enter key

	Setting cell protection
	Merging cells

	Working with a range of cells
	Accessing a range of cells
	Copying a range of cells from one worksheet to another
	Clearing a range

	Working with a worksheet outline
	Working with scroll bars

	Working with input and output
	Reading workbook data from a file
	Using the Document class to open a file
	About the Group parameter
	About the DocumentOpenCallback parameter

	Creating a BookModel object from an Excel spreadsheet file
	Creating a JBook object from a Document object

	Reading from an input stream
	Writing an output file
	About the file type parameter
	About the DocumentSaveCallback parameter
	Writing a range of cells
	Setting the code page type for an output file
	Setting passwords for an output file
	Using a JBook to refresh an Excel document

	Writing to an output stream
	Writing to an HTML file
	Setting the formatting options
	Writing an entire book as HTML

	Writing to an XML file
	Including cell formatting information in the XML output file
	Associating a style sheet with the XML output file
	Writing single or multiple cell ranges
	Controlling the merge mode
	Skipping empty cells
	Writing the XML output code

	Saving window-specific information
	Understanding Excel file format limitations

	Working with data sources
	Using data sources
	Accessing a data source
	Casting the Source object
	Setting the properties of the data source

	Creating and setting a query object
	Creating a DataRange object and setting its query
	Setting up a detail section to contain data
	Using a cell entry to load data
	Generating the workbook
	Generating Excel output

	Using a file data source
	Creating a connection to a file data source
	Using a delimited text file data source
	Defining a fixed-width text file query
	Using a URL to specify a file location

	Using the data set cache as a data source

	Working with data ranges
	About data ranges
	About the data range interfaces
	Understanding the DataRangeModel interface
	Understanding the DataRange interface
	Updating an existing data range definition
	Creating a DataRangeDef object for a new data range
	Getting the DataRangeDef object for an existing data range
	Creating a Range object that is based on the current selection
	Formatting the data range

	Understanding the DataRangeDef interface
	Understanding the Section interface
	Understanding data commands and report script

	Writing a Java class that contains data range functionality

	Working with cell data
	About cell data
	Getting and setting cell contents
	Getting the contents of a cell
	Using BookModel.getCellText() and Sheet.getText()
	Using BookModel.getEntry() and Sheet.getEntry()
	Using getFormula() and getNumber()

	Setting the contents of a cell
	Understanding the setEntry() methods
	Understanding methods that set the content of the active cell

	Supplying the same value in a range of cells
	Copying cell data to and from an array
	Copying cell data between ranges
	Loading cells from a tab-delimited string
	Setting a validation rule for a cell or a range
	Displaying multiline data in a cell
	Entering concatenated strings and cell references
	Referring to a cell in another workbook
	Creating a hyperlink

	Clearing, cutting, or deleting a cell or cell contents
	Clearing cell contents in a JBook
	Using the editCut() method
	Understanding locking and protection
	Deleting cells

	Copying and pasting cell data
	Copying data
	Pasting a value only

	Using a defined name
	Creating a defined name
	Finding the number of defined names
	Deleting a defined name
	Testing if a defined name exists
	Getting cell coordinates of a defined name range
	Specifying constant coordinates in a defined name range

	Accessing cell data
	Getting the text value of a formula
	Finding out cell data type
	Getting a formatted cell reference

	Sorting cell data
	Using the sort and sort3 methods
	Sorting dates or numbers supplied as text

	Working with formatting and display options
	Formatting a cell or range of cells
	Setting a pattern and color of a cell
	Setting vertical and horizontal alignment
	Applying formatting to substrings
	Hiding and locking a cell
	Formatting numbers, dates, and times
	Understanding locale-specific formatting
	Understanding setCustomFormatLocal()
	Displaying all digits of a large number

	Formatting a date
	Formatting text
	Changing a font
	Setting font attributes
	Setting text direction
	Getting formatted text from a cell

	Using a conditional format
	Understanding ConditionalFormat objects
	Understanding condition types
	Understanding the comparison operators
	Understanding the conditional formulas
	Understanding the formula parameter
	Understanding setEntry1(), setEnty2(), setFormula1Local(), and setFormula2Local()
	Understanding setFormula1() and setFormula2()
	Understanding the row and column parameters

	Understanding the conditional formatting process

	Understanding custom display options
	Turning type markers on
	Showing either a formula or its result

	Working with graphical objects and charts
	Understanding the charting API
	Setting the chart type
	Assigning cell data to a chart
	Finding a chart by name
	Setting series, axes, and chart titles
	Creating a chart sheet
	Setting the series type
	Creating a 3D chart

	Adding a picture to a worksheet
	Adding a graphical object to a worksheet

	Working with print options
	About print options
	Printing a worksheet or a defined range of cells
	Setting print orientation
	Working with print scale
	Printing to a specific scale or number of pages
	Setting the print scale
	Scaling to fit-to-page horizontally only
	Using fitToPage with multiple print ranges

	Working with a print area
	Setting a print area
	Returning print area information
	Clearing a print area

	Printing in greyscale
	Working with a print header, footer, or title
	Setting a print title
	Formatting a print header or a footer
	Creating a multiline print header
	Printing a four-digit year in a header or a footer
	Printing column and row headings
	Printing row or column titles on every page

	Printing with no borders or grid lines

	Working with pivot ranges
	About pivot ranges
	Creating a pivot range
	Understanding the pivot range class organization
	Understanding the PivotRangeModel object
	Understanding the PivotRange object
	Understanding the PivotRangeDef object
	Understanding the PivotRangeOptions object
	Understanding the DataSourceInfo object

	Understanding the Area objects
	Understanding Field objects
	Understanding the Item object
	Understanding row, column, and data field objects
	Understanding calculated fields
	Understanding the special data field object
	Understanding the SummaryField object
	Setting the format of a summary field

	Understanding the FieldSettings object
	Understanding the SummaryFieldSettings object
	Understanding the Range object
	Understanding pivot field grouping
	Formatting a pivot range

	Working with events
	About events
	Working with user editing
	Determining whether a worksheet has been modified
	Determining whether the user is in edit mode
	Getting the most recent data entry
	Maintaining cell format when the user enters a value
	Cancelling what a user types in a cell
	Initiating in-cell editing
	Getting a cell value before user editing begins

	Working with user key and mouse events
	Determining which key the user pressed
	Converting pixels to twips on mouse events
	Creating a shortcut key for copying or pasting
	Locating the active cell

	Working with user selection events
	Determining when a user changes cells
	Determining when a user changes worksheets

	Restricting user access
	Restricting editing to a column
	Enabling users to delete values and formatting
	Allowing users to select an unprotected cell only
	Limiting the selection range
	Preventing users from typing data
	Limiting characters users type in a cell
	Validating edit data from code

	Understanding BIRT Spreadsheet Engine performance
	Using memory efficiently
	Getting and releasing locks
	Allocating row and column references
	Understanding data structure and memory size
	Using a row reference
	Using a cell reference
	Using a cell

	Increasing or decreasing garbage collection

	Understanding recalculation
	Maintaining speed when reading in data

	Integrating BIRT Spreadsheet Engine with Java applications
	About BIRT Spreadsheet Engine and J2SE
	Writing an application class that extends JFrame
	Accessing the BIRT Spreadsheet API using JavaScript
	Using an add-in function
	Understanding the FuncContext object
	Understanding the Value object
	About an example of an add-in function
	Making add-in functions determinant

	Integrating BIRT Spreadsheet Engine with servlets and JSPs
	About BIRT Spreadsheet Engine and J2EE
	Using BIRT Spreadsheet Engine within a Java servlet
	Compiling and deploying a Java servlet that uses the BIRT Spreadsheet API
	Setting the MIME type
	Writing to the servlet output stream
	Getting data

	Using sample servlets
	Sending an Excel file to the browser
	Displaying a chart as an image
	Creating HTML output
	Passing parameters

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.25000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [576.000 792.000]
>> setpagedevice

