
Using Actuate BIRT Designer Professional



Information in this document is subject to change without notice. Examples provided are fictitious. No 
part of this document may be reproduced or transmitted in any form, or by any means, electronic or 
mechanical, for any purpose, in whole or in part, without the express written permission of Actuate 
Corporation.

© 1995 - 2011 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 2207 Bridgepointe Parkway, San Mateo, CA 94404

www.actuate.com
www.birt-exchange.com

The software described in this manual is provided by Actuate Corporation under an Actuate License 
agreement. The software may be used only in accordance with the terms of the agreement. Actuate 
software products are protected by U.S. and International patents and patents pending. For a current list 
of patents, please see http://www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:
Actuate, ActuateOne, the Actuate logo, BIRT, Collaborative Reporting Architecture, e.Analysis, e.Report, 
e.Reporting, e.Spreadsheet, Encyclopedia, Interactive Viewing, OnPerformance, Performancesoft, 
Performancesoft Track, Performancesoft Views, Report Encyclopedia, Reportlet, The people behind BIRT, 
and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered 
trademarks of their respective owners, companies, or organizations include:  

Adobe Systems Incorporated: Flash Player. Apache Software Foundation (www.apache.org): Axis, Axis2, 
Batik, Batik SVG library, Commons Command Line Interface (CLI), Commons Codec, Derby, Shindig, 
Struts, Tomcat, Xerces, Xerces2 Java Parser, and Xerces-C++ XML Parser. Bits Per Second, Ltd. and 
Graphics Server Technologies, L.P.: Graphics Server. Bruno Lowagie and Paulo Soares: iText, licensed 
under the Mozilla Public License (MPL). Castor (www.castor.org), ExoLab Project (www.exolab.org), and 
Intalio, Inc. (www.intalio.org): Castor. Codejock Software: Xtreme Toolkit Pro. DataDirect Technologies 
Corporation: DataDirect JDBC, DataDirect ODBC. Eclipse Foundation, Inc. (www.eclipse.org): Babel, 
Data Tools Platform (DTP) ODA, Eclipse SDK, Graphics Editor Framework (GEF), Eclipse Modeling 
Framework (EMF), and Eclipse Web Tools Platform (WTP), licensed under the Eclipse Public License 
(EPL). Jason Hsueth and Kenton Varda (code.google.com): Protocole Buffer. ImageMagick Studio LLC.: 
ImageMagick. InfoSoft Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts. Mark 
Adler and Jean-loup Gailly (www.zlib.net): zLib. Matt Ingenthron, Eric D. Lambert, and Dustin Sallings 
(code.google.com): Spymemcached, licensed under the MIT OSI License. International Components for 
Unicode (ICU): ICU library. KL Group, Inc.: XRT Graph, licensed under XRT for Motif Binary License 
Agreement. LEAD Technologies, Inc.: LEADTOOLS. Microsoft Corporation (Microsoft Developer 
Network): CompoundDocument Library. Mozilla: Mozilla XML Parser, licensed under the Mozilla 
Public License (MPL). MySQL Americas, Inc.: MySQL Connector. Netscape Communications 
Corporation, Inc.: Rhino, licensed under the Netscape Public License (NPL). Oracle Corporation: 
Berkeley DB. PostgreSQL Global Development Group: pgAdmin, PostgreSQL, PostgreSQL JDBC driver. 
Rogue Wave Software, Inc.: Rogue Wave Library SourcePro Core, tools.h++. Sam Stephenson 
(prototype.conio.net): prototype.js, licensed under the MIT license. Sencha Inc.: Ext JS. Sun Microsystems, 
Inc.: JAXB, JDK, Jstl. ThimbleWare, Inc.: JMemcached, licensed under the Apache Public License (APL). 
World Wide Web Consortium (W3C)(MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86 
Project, Inc.: (www.xfree86.org): xvfb. 

All other brand or product names are trademarks or registered trademarks of their respective owners, 
companies, or organizations. 

Document No. 110812-2-745301 August 3, 2011



i

Contents
About Using Actuate BIRT Designer Professional  . . . . . . . . . . . . . . . . . . .xi

Part 1
Retrieving data for reports

Chapter 1
Accessing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Supported data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
How a report accesses data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2
Creating data objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
About data objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Designing data objects for dashboards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Designing data objects for reports created with Actuate BIRT Studio  . . . . . . . . . . . . . . . . . . .11
Designing data objects for reports created with Actuate BIRT Designer  . . . . . . . . . . . . . . . . .11

Building a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Creating new items for a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Exporting items to a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Creating a shared dimension for cubes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Configuring data set columns for summary tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Creating hyperlinks to provide drill-down capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Hiding data sets from users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Providing cached data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Publishing a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Enabling incremental updates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Managing user access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Maintaining a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3
Accessing data in a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Using data object data in a report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Connecting to a data object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Specifying the data to retrieve from a data object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Using a cube in a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4
Accessing data in an information object . . . . . . . . . . . . . . . . . . . . . . . . . . 35



ii

Using information object data in a report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Connecting to an information object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Specifying the data to retrieve from an information object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Chapter 5
Accessing data in a report document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Using report document data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Creating a report document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Specifying bookmark names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Specifying element names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Connecting to a report document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Specifying the data to retrieve from a report document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Chapter 6
Accessing data in an e.report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Using ActuateOne for e.Reports Data Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

About ActuateOne for e.Reports Data Connector functionality  . . . . . . . . . . . . . . . . . . . . . . . .52
Accessing an e.report using Page Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Accessing an e.report having multiple sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Connecting to an e.report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Specifying the data to retrieve from an e.report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Chapter 7
Accessing data in a POJO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Using POJO data in a report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Connecting to a POJO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Specifying the data to retrieve from a POJO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Chapter 8
Combining data from multiple data sources . . . . . . . . . . . . . . . . . . . . . . . 67
Ways to combine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Creating a union data set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Creating a joined data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Joining on more than one key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Specifying a join condition not based on equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Part 2
Designing reports

Chapter 9
Formatting a report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Formatting features in Actuate BIRT Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84



iii

Removing the default themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Hiding columns in a table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Designing for optimal viewer performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 10
Using Flash objects in a report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
About Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Software requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Ways to add Flash objects in a report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Output formats that support Flash  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 11
Using built-in Flash charts and gadgets  . . . . . . . . . . . . . . . . . . . . . . . . . . 93
About Flash charts and gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Creating a Flash chart and gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Formatting a Flash chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Formatting a Flash gadget  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Scale properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Needle properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Needle base or pivot properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Number formatting properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Region properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Tick properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Threshold properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Anchor properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Plot properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Value indicator properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Tooltip properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Font properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Padding and margin properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
AddOn properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Using animation and other visual effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Creating effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Managing effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Animation effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Bevel effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Blur effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Font effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Glow effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Shadow effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Tutorial 1: Creating a Flash chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
Task 1: Create a new report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



iv

Task 2: Build a data source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Task 3: Build a data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
Task 4: Add a Flash chart to the report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Task 5: Select data for the Flash chart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Task 6: Animate the x-axis labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
Task 7: Animate the y-axis labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Task 8: Change the animation effect of the columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

Tutorial 2: Creating a Flash gadget  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
Task 1: Add a Flash gadget to the report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Task 2: Select data for the linear gauge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Task 3: Divide the data area into regions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
Task 4: Add thresholds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Task 5: Animate the region labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Task 6: Animate the sales value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Task 7: Add a glow effect to the needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Chapter 12
Using the Flash object library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
About the Flash object library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

About Flash charts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
About Flash gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
About Flash maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
About Flash power charts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Flash object components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Inserting a Flash object in a report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Providing data to a Flash object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Generating the XML data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Using the dataXML variable to pass XML data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
Using the dataURL variable to pass XML data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Using the Flash object library documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Tutorial 3: Creating a Flash map that gets data through the dataXML variable. . . . . . . . . . . .  159

Task 1: Create a new report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Task 2: Build a data source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Task 3: Build a data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Task 4: Find a suitable Flash map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Task 5: Review the map specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Task 6: Map the data set values to the Flash map entity values  . . . . . . . . . . . . . . . . . . . . . . .163
Task 7: Add the Flash map to the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
Task 8: Generate an XML data string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Task 9: Create the dataXML variable and pass the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Task 10: Format the Flash map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Display sales values in a more readable format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168



v

Building the XML string in readable pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Change the colors used in the map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Define data ranges and apply different colors to each range  . . . . . . . . . . . . . . . . . . . . . . 170
Create city markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Tutorial 4: Creating a Flash chart that gets data through the dataURL variable. . . . . . . . . . . .  173
Task 1: Create a new report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Task 2: Build a data source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Task 3: Build a data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Task 4: Add a Flash chart to the report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Task 5: Create a plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Task 6: Define an extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Task 7: Create a Java class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Task 8: Implement methods in the class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Import the required packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Implement the initialize( ) method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Implement the output( ) method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Implement the release( ) method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Task 9: Deploy the plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Task 10: Create the dataURL variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Debugging a Flash object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Using the Flash object’s debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Resolving errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Chapter 13
Writing expressions using EasyScript . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
About EasyScript  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Choosing between EasyScript and JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Syntax rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Using the EasyScript expression builder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Changing the default expression syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
ABS( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
ADD_DAY( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
ADD_HOUR( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
ADD_MINUTE( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
ADD_MONTH( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
ADD_QUARTER( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
ADD_SECOND( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
ADD_WEEK( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
ADD_YEAR( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
BETWEEN( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
CEILING( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
DAY( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



vi

DIFF_DAY( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
DIFF_HOUR( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
DIFF_MINUTE( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
DIFF_MONTH( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
DIFF_QUARTER( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
DIFF_SECOND( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
DIFF_WEEK( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
DIFF_YEAR( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
FIND( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
IF( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
IN( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
ISNULL( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
LEFT( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
LEN( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
LIKE( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
LOWER( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
MATCH( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
MOD( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
MONTH( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
NOT( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
NOTNULL( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
NOW( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
QUARTER( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
RIGHT( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
ROUND( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
ROUNDDOWN( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
ROUNDUP( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
SEARCH( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
SQRT( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
TODAY( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
TRIM( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
TRIMLEFT( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
TRIMRIGHT( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
UPPER( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
WEEK( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
WEEKDAY( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
YEAR( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

Chapter 14
Specifying filter conditions at report run time  . . . . . . . . . . . . . . . . . . . . 227
About report parameters and filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Enabling the user to specify a filter condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228



vii

Creating a dynamic filter report parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Making a filter parameter optional  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Accepting multiple values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Creating a dynamic filter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Getting information about queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Chapter 15
Adding HTML buttons to a report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
About HTML buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Creating an HTML button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Writing code for an HTML button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Accessing report data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Using the Actuate JavaScript API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Testing an HTML button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Changing the appearance of an HTML button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Chapter 16
Controlling user access to report pages and data  . . . . . . . . . . . . . . . . . 251
About the security model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

About access control lists (ACLs) and security IDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
ACL expression syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Controlling user access to report pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Adding page-level security to a report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Enabling and disabling page-level security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Configuring page numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Testing page-level security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Controlling user access to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Adding security to a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Enabling and disabling data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Testing data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Chapter 17
Accessing iServer environment information . . . . . . . . . . . . . . . . . . . . . . 267
Writing event handlers to retrieve iServer environment information  . . . . . . . . . . . . . . . . . . . . 268

Writing a JavaScript event handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Writing a Java event handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
About the serverContext object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
JavaScript event handler example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Java event handler example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Debugging event handlers that use the iServer API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
iServer API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
appendToJobStatus( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
getAuthenticationId( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



viii

getServerWorkingDirectory( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
getUserAgentString( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
getUserRoles( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
getVolumeName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
setHeadline( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277
setVersionName( )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Part 3
Deploying reports and resources

Chapter 18
Deploying BIRT reports to Actuate BIRT iServer . . . . . . . . . . . . . . . . . . 281
About deploying BIRT reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282
Publishing a report to Actuate BIRT iServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282
Publishing a report resource to Actuate BIRT iServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
Deploying Java classes used in BIRT reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Installing a custom JDBC driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
Installing custom ODA drivers and custom plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Chapter 19
Configuring data source connections in Actuate BIRT iServer  . . . . . . 291
About data source connection properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
Using a connection configuration file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292

Setting up the connection configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
Understanding how iServer uses the connection configuration file . . . . . . . . . . . . . . . . . . . .293
Setting the location of a connection configuration file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294
Encrypting the connection properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Using a connection profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297
Binding connection profile properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

Binding Connection Profile Store URL property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298
Binding a connection profile name to a report parameter . . . . . . . . . . . . . . . . . . . . . . . . . .303

Externalizing the connection profile properties on the iServer  . . . . . . . . . . . . . . . . . . . . . . . .304
Understanding externalization precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
Referencing the external connection profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Accessing BIRT report design and BIRT resources paths in custom ODA plug-ins  . . . . . . . . .306
Accessing resource identifiers in run-time ODA driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306
Accessing resource identifiers in design ODA driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307

Chapter 20
Configuring fonts in Actuate BIRT iServer  . . . . . . . . . . . . . . . . . . . . . . . 309
About configuring fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310
Understanding font configuration file priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310



ix

Understanding how BIRT engine locates a font  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311
Understanding the font configuration file structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

<font-aliases> section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
<composite-font> section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
<font-paths> section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Chapter 21
Working with BIRT encryption in Actuate BIRT iServer . . . . . . . . . . . . . 315
About BIRT encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
About the BIRT default encryption plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

About supported encryption algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
About the components of the BIRT default encryption plug-in . . . . . . . . . . . . . . . . . . . . . . . 317
About acdefaultsecurity.jar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
About encryption.properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
About META-INF/MANIFEST.MF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
About plugin.xml  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Creating a BIRT report that uses the default encryption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Deploying multiple encryption plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Deploying encryption plug-ins to iServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Generating encryption keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Creating a custom encryption plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Using encryption API methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Chapter 22
Using custom emitters in Actuate BIRT iServer  . . . . . . . . . . . . . . . . . . . 331
About custom emitters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Deploying custom emitters to iServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Rendering in custom formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Part 4
Using Actuate BIRT APIs

Chapter 23
Using the BIRT data object API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
About generating data objects from an application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Generating data object elements for BIRT report designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Creating data-object data sets for BIRT report designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Creating data-object data cubes for BIRT report designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Tutorial 5: Creating a data element using the Design Engine API  . . . . . . . . . . . . . . . . . . . . . . .  344
Task 1: Set up a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Task 2: Create a GenerateDataObject Java class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Task 3: Create the main( ) method to test the code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348



x

Task 4: Run the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353



A b o u t  U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l xi

A b o u t  U s i n g  A c t u a t e  B I R T
D e s i g n e r  P r o f e s s i o n a l

Using Actuate BIRT Designer Professional describes how to use Actuate BIRT 
Designer to create reports, and the Actuate BIRT option to configure and 
distribute BIRT reports.

Using Actuate BIRT Designer Professional describes the additional functionality 
available in Actuate BIRT Designer that is not available in the open-source BIRT 
Report Designer. Actuate provides this functionality as extra Eclipse features that 
integrate into the Eclipse BIRT report designer environment. For information 
about the functionality shared with the open-source BIRT Report Designer, see 
BIRT: A Field Guide and Integrating and Extending BIRT, both published by 
Addison-Wesley. 

Using Actuate BIRT Designer Professional includes the following chapters:

■ About Using Actuate BIRT Designer Professional. This chapter provides an 
overview of this guide.

■ Part 1. Retrieving data for reports. This part explains how to connect to various 
data sources and retrieve data for use in reports.

■ Chapter 1. Accessing data. This chapter lists all the types of data sources that 
Actuate BIRT Designer supports, and provides an overview of how reports 
access data.

■ Chapter 2. Creating data objects. This chapter describes how to create data 
objects to provide data for dashboards and reports.

■ Chapter 3. Accessing data in a data object. This chapter describes how to connect 
to and retrieve data from a data object.

■ Chapter 4. Accessing data in an information object. This chapter describes how to 
connect to and retrieve data from an information object.

■ Chapter 5. Accessing data in a report document. This chapter describes how to 
connect to and retrieve data from a report document.



xii U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ Chapter 6. Accessing data in an e.report. This chapter describes how to connect to 
and retrieve data from a report developed with Actuate eReport Designer 
Professional.

■ Chapter 7. Accessing data in a POJO. This chapter describes how to connect to 
and retrieve data from a POJO.

■ Chapter 8. Combining data from multiple data sources. This chapter describes how 
to combine data from different data sets.

■ Part 2. Designing reports. This part describes the additional design functionality 
available in Actuate BIRT Designer.

■ Chapter 9. Formatting a report. This chapter describes the additional report 
formatting options in Actuate BIRT Designer.

■ Chapter 10. Using Flash objects in a report. This chapter describes the 
requirements and methods for adding Flash objects in a report.

■ Chapter 11. Using built-in Flash charts and gadgets. This chapter describes how to 
create and format Flash charts and gadgets using the Flash chart and Flash 
gadget builders.

■ Chapter 12. Using the Flash object library. This chapter describes how to add 
Flash objects from the InfoSoft Flash object library to a report.

■ Chapter 13. Writing expressions using EasyScript. This chapter describes how to 
write expressions using EasyScript, which is an expression syntax similar to 
the syntax used in Excel formulas. The chapter also provides a reference to the 
EasyScript functions and operators.

■ Chapter 14. Specifying filter conditions at report run time. This chapter describes 
how to create dynamic filters and report parameters, which provide users 
more control over what data they see in a report.

■ Chapter 15. Adding HTML buttons to a report. This chapter describes how to use 
HTML buttons to run JavaScript code.

■ Chapter 16. Controlling user access to report pages and data. This chapter describes 
how to use the page-level security and data security features in Actuate 
iServer to control user access to particular sections in a report and a particular 
set of data in a data object.

■ Chapter 17. Accessing iServer environment information. This chapter describes 
how to write event handlers in a report to retrieve iServer environment 
information.

■ Part 3. Deploying reports and resources. This part explains how to deploy reports 
and resources to an Actuate iServer encyclopedia.

■ Chapter 18. Deploying BIRT reports to Actuate BIRT iServer. This chapter 
describes how to use the Actuate BIRT Report option to run and distribute 
BIRT reports in Actuate iServer.



A b o u t  U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l xiii

■ Chapter 19. Configuring data source connections in Actuate BIRT iServer. This 
chapter describes how to set up and use a data source configuration file using 
Actuate iServer.

■ Chapter 20. Configuring fonts in Actuate BIRT iServer. This chapter describes how 
to set up and use custom fonts in Actuate BIRT reports using Actuate iServer.

■ Chapter 21. Working with BIRT encryption in Actuate BIRT iServer. This chapter 
describes how to set up and use report encryption using Actuate iServer.

■ Chapter 22. Using custom emitters in Actuate BIRT iServer. This chapter describes 
how to provide custom output formats for Actuate BIRT reports on Actuate 
iServer.

■ Part 4. Using Actuate BIRT APIs. This part explains how to use classes in the 
com.actuate.birt.* public packages.

■ Chapter 23. Using the BIRT data object API. This chapter describes how to work 
with BIRT data objects and report designs programmatically.



xiv U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



Part 1Retrieving data for reports

PartOne1





C h a p t e r  1 ,  A c c e s s i n g  d a t a 3

C h a p t e r

1
Chapter 1Accessing data

This chapter contains the following topics:

■ Supported data sources

■ How a report accesses data



4 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Supported data sources
Actuate BIRT Designer supports all the types of data sources that open-source 
BIRT Report Designer supports, and more. Table 1-1 lists the types of data sources 
that each product supports.

Actuate data objects, Actuate information objects, and BIRT report documents are 
data files that report developers or data architects create with Actuate BIRT 
Designer. These files contain the information to connect to and retrieve data from 
enterprise data sources, such as databases and web applications.

ActuateOne for e.Reports is a data driver that supports the retrieval of data from 
reports developed using Actuate e.Report Designer Professional.

Like the JDBC data source, the JDBC connection for Query Builder data source 
supports the retrieval of data from JDBC databases. However, instead of typing a 
SQL query to select the data to retrieve, you use a graphical query builder to 
construct the SQL query.

A static data source is a set of data that you create in Actuate BIRT Designer. This 
type of data is useful when you need to create sample data quickly for testing 
purposes.

Table 1-1 Supported data source types

Data source type Actuate BIRT Designer BIRT Report Designer

Actuate data object ✓

Actuate information object ✓

ActuateOne for e.Reports ✓

BIRT report document ✓

Flat file ✓ ✓

JDBC ✓ ✓

JDBC connection for Query 
Builder

✓

Plain Old Java Object (POJO) ✓

Scripted ✓ ✓

Static ✓

Web service ✓ ✓

XML document ✓ ✓



C h a p t e r  1 ,  A c c e s s i n g  d a t a 5

How a report accesses data
A report uses the same mechanism to access data from any of the sources listed in 
Table 1-1. First, you create a data source, which is a BIRT object that contains the 
information to connect to an underlying data source. Each type of data source 
requires different connection information. For a JDBC data source, for example, 
you specify the driver, URL, and user login to connect to a database. An XML 
data source requires the location of the XML file and, optionally, the location of 
the XML schema.

Next, you create a data set, which is a BIRT object that specifies and returns all the 
data that is available to a report. For a JDBC data source, for example, you write a 
SQL query or run a stored procedure to retrieve specific data from a database. For 
an XML data source, you use XPath expressions to specify the XML elements and 
attributes from which to retrieve data.

This book provides instructions for accessing data from data sources that only 
Actuate BIRT Designer supports. For information about accessing data from data 
sources that both BIRT products support, see BIRT: A Field Guide.



6 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 7

C h a p t e r

2
Chapter 2Creating data objects

This chapter contains the following topics:

■ About data objects

■ Design considerations

■ Building a data object

■ Providing cached data

■ Publishing a data object

■ Managing user access

■ Maintaining a data object



8 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About data objects
A data object is a BIRT object that contains all the information necessary to 
connect to an external data source, retrieve data from that data source, and 
structure the data in a way that supports business analysis. Data objects are 
similar to data marts, which are simplified repositories of data gathered from 
corporate data sources and designed to address specific business queries.

Data architects or report developers create data objects to provide data for the 
following items:

■ Dashboards, which users create using Actuate BIRT 360 Studio, a dashboard 
application on Actuate BIRT iServer

■ BIRT reports that are created using either Actuate BIRT Designer or Actuate 
BIRT Studio on iServer

Data objects use Actuate’s in-memory analytics technology, which loads data in 
memory to speed up the processing of data.

Design considerations
A data object is a collection of the following BIRT objects:

■ Data sources

■ Data sets

■ Data cubes

■ Report parameters

A data object can include any number of data sources, data sets, data cubes, and 
report parameters. Although it is possible to create a single data object that 
contains all the data that dashboard users or report developers could possibly 
need, a data object that provides too much data can be confusing for users. In 
addition, the amount of memory that a data object uses increases with the 
number of data rows returned by data sets and the number of aggregations 
calculated by cubes.

If creating data objects for diverse groups of users or reports, evaluate how best to 
organize data into data objects and how much data to include in each data object.

The objects to include in a data object depend on which item—dashboard or BIRT 
report—is using the data object. Table 2-1 lists the objects that you typically 
include when creating a data object for a dashboard and for a report.



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 9

The following sections describe in more detail the guidelines for designing data 
objects for dashboards and reports.

Designing data objects for dashboards
Actuate BIRT 360 is a web application designed for business users who want to 
measure the effectiveness of their business processes and have this decision-
support information displayed graphically in a dashboard. The data objects you 
create for dashboards need to extract the right data and provide it in a structure 
suitable for dashboard gadgets.

Use the following guidelines when designing data objects for dashboard users:

■ Identify the users and create a data object or series of data objects for each user 
group.
A typical approach is to create data objects by groups of users, where each 
data object fulfills a different business need. For example, executives, sales 
managers, and customer support managers represent three distinct user 
groups with different data requirements. Executives might be interested in 
viewing revenue by month or quarter. Sales managers might need to evaluate 
the sales numbers of individual sales representatives by month or quarter. 
Customer support managers might need to monitor support call volume by 
days. Depending on how iServer user accounts are set up, you might be able 
to leverage the defined user roles and groups to identify the user groups by 
which to organize data objects. Contact the iServer administrator for this 
information.

■ Provide users with sufficient data that they can use to analyze by different 
dimensions and at different levels of detail.
Users often need to view data from different dimensions. For example, sales 
managers might need to view sales by product line, by region, or by sales 
representative, and by different time periods. If viewing sales data by region, 
sales managers might need to drill down to view sales by cities within each 
region.

■ Design data sets and cubes to provide data that is suitable for the gadgets that 
will be used to display data.
The dashboard provides a suite of gadgets for displaying data. Each gadget 
accesses data in the same way as the corresponding element does in a BIRT 
report.

■ All chart gadgets use data from either a data set or a cube.

Table 2-1 Typical objects in a data object for a dashboard and a report

Data source Data set Cube Report parameter

Dashboard ✓ ✓ ✓ ✓

BIRT report ✓ ✓ ✓



10 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ The cross tab gadget uses data from a cube.

■ The table and summary table gadgets use data from a data set. In addition, 
summary tables require that each column in the data set be assigned the 
appropriate analysis type to provide the expected functionality. For more 
information, see “Configuring data set columns for summary tables,” later 
in this chapter.

■ Design data sets or report parameters to provide lists of values to display in 
data selector gadgets. Just as a report parameter supports run time filtering of 
data in a report, a data selector gadget enables a dashboard user to filter data 
in a chart, cross tab, table, or any other gadget that displays data.

Figure 2-1 shows a dashboard that uses five gadgets to display sales data. 
Descriptions of each gadget follow the illustration.

■ The data selector gadget displays a list of countries. The data selector is linked 
to the column chart next to it. Dashboard users select values from the data 
selector to filter the data to display in the column chart. The data selector gets 
its values from a data set, a cube, or a report parameter.

■ The column chart gadget is linked to the data selector, as described previously. 
The column chart derives its data from a data set or a cube.

■ The line chart gadget derives its data from a data set or a cube.

■ The linear gauge gadget derives its data from a data set or a cube.

Figure 2-1 Sample dashboard displaying five gadgets

Column chart Line chartLinear gauge Cross tabData selector



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 11

■ The cross tab gadget derives its data from a cube.

Designing data objects for reports created with 
Actuate BIRT Studio
Actuate BIRT Studio is a web-based report design tool on iServer designed for 
users who want to create reports quickly and easily without deep understanding 
of database architecture or report design techniques. BIRT Studio users create 
reports using predefined data sources and templates that provide the data and 
basic layout for their reports.

The data objects you create should provide the data in a structure that is 
appropriate for business users and for the report elements that users can add to a 
report. The design guidelines discussed in the previous section apply here as 
well, except for the following: 

■ In BIRT Studio, a chart uses data from a table in a report. The chart does not 
use data directly from a data set or a cube.

■ Report parameters in a data object do not link to parameters created in BIRT 
Studio, so you typically do not include report parameters in a data object that 
you create for BIRT Studio users.

Designing data objects for reports created with 
Actuate BIRT Designer
A data object can be used as a data source for BIRT reports. As an alternative to 
defining data sources and data sets for each report, you can create a data object 
that multiple reports share. This principle is similar to reports sharing data 
sources and data sets stored in a library. One design option is to create data 
objects by types of reports. For example, if creating a set of sales reports and a set 
of customer reports, create one data object to provide data for the first set of 
reports and another for the second set of reports. 

Report parameters in a data object cannot be reused in a report. A report 
parameter in a data object acts as a filter. You are prompted to specify a parameter 
value when you create a data source based on the data object, and the data source 
returns only the rows that meet the filter criteria. 

Building a data object
Building a data object entails creating a data object file, then adding data sources, 
data sets, and cubes to the data object. To add these data items, you can:

■ Create new data items within the data object.

■ Export data items in reports or libraries to the data object.



12 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

How to create a data object

1 In the Report Design perspective, choose File➛New➛Data Object.

2 In New Data Object, do the following:

1 Select the folder in which to store the data object.

2 Edit the default file name to specify a new name. The extension must be 
.datadesign and the file name must not contain the following characters: 

[ ] * / \ : & ?

Use a descriptive name that enables users to determine the contents of the 
data object. A descriptive name is particularly important if users have 
access to multiple data objects.

3 Choose Finish. The report editor displays a blank data object design. 

3 Start adding data sources, data sets, and cubes to the data object.

Creating new items for a data object
The procedures for creating data sources, data sets, cubes, and report parameters 
for a data object are the same as the procedures for creating these items for a 
report. Use Data Explorer to create, edit, and delete data items in a data object. 
Figure 2-2 shows a data object that contains one data source, two data sets, and 
two cubes. 

Figure 2-2 Contents of a data object



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 13

In this data object example, the Corporate_db data source connects to a corporate 
database. The ds_Revenue and ds_Expenses data sets retrieve data from the 
database. The Revenue and Expenses cubes use data from the ds_Revenue and 
ds_Expenses data sets, respectively. For information about creating data sources, 
data sets, and cubes, see BIRT: A Field Guide.

Exporting items to a data object
An organization that creates and uses BIRT reports has data sources, data sets, 
and cubes on hand. As a data object designer, you can reuse these items by 
exporting them from a report or a library to a data object.

The export utility copies the items to the data object. The exported items do not 
reference the original items in the report or the library. The export utility also 
detects and copies dependent items. For example, if you export a cube, the utility 
also exports the data source and data set that the cube uses.

Be careful when exporting multiple data sources, data sets, or cubes from 
different sources. If the data object contains an item with the same name, BIRT 
warns of the name conflict and asks whether or not to overwrite the item in the 
data object. Overwrite the item only if you want to replace it. The overwrite 
action cannot be undone. If you select a data set or a cube to export, and BIRT 
displays the name-conflict message, the duplicate names apply not only to the 
selected data set or cube, but to any dependent item. For a cube, for example, the 
data set or data source used by the cube might have the same name as a data set 
or data source in the target data object.

How to export data items to a data object

1 Open the report or library that contains the data items to export to a data 
object.

2 In Data Explorer, right-click a data item, then choose Export to Data Object, as 
shown in Figure 2-3.

Figure 2-3 Exporting a data source to a data object



14 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Export Elements to Data Object—Select Data Object displays the data objects 
(.datadesign files) in the resource folder, if any exists, as shown in Figure 2-4. 
By default, BIRT uses the current project folder as the resource folder.

Figure 2-4 Export Elements displaying the data objects in the resource folder

3 Perform one of the following steps:

■ Select an existing data object to which to export data items.

■ Create a new data object by specifying a file name in New File Name. BIRT 
saves the data object in the resource folder.

4 Choose Next.

5 In Export Elements to Data Object—Select Elements, shown in Figure 2-5, 
select one or multiple data items to export. If you select a data set, BIRT also 
exports the data source that the data set uses. Similarly, if you select a cube, the 
associated data set and data source are exported.

Figure 2-5 Export Elements displaying the data items that you can export

6 Choose Finish.

If BIRT does not detect any name conflicts between the items selected for 
export and the items in an existing data object, BIRT exports the items and 
asks if you want to open the data object.

7 Open the data object to review its contents. The exported data items appear in 
the data object.



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 15

Creating a shared dimension for cubes
If designing multiple cubes that contain the same dimension, create a shared 
dimension. For example, if one cube contains sales data by country, state, and city, 
and another cube contains budget data by country, state, and city, you can create a 
shared multi-level dimension that provides country, state, and city data. By using 
a shared dimension, you define and maintain dimension data in one place, and 
reuse the dimension in multiple cubes. Reusing a dimension also speeds up data 
processing.

There are two ways to create a shared dimension. You can:

■ Create a new shared dimension. 

■ Convert an existing cube dimension into a shared dimension.

How to create a shared dimension

This procedure assumes that you have already created a data object, as well as, 
the data set that provides the data for the dimension.

1 Open the data object.

2 In Data Explorer, right-click Shared Dimensions, then choose New Shared 
Dimension.

3 In Dimension Builder, specify the following information:

■ In Dataset, select the data set that contains the columns to use in the 
dimension.

■ In Available Columns, drag a column and drop it in the following location:

(Drop a field here to create a group)

■ If creating a multi-level dimension, drag and drop additional columns. 
Figure 2-6 shows an example of a multi-level dimension that contains 
country, state, and city data.

Figure 2-6 Dimension Builder displaying a defined shared dimension



16 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Choose OK. The shared dimension appears under Shared Dimensions in Data 
Explorer and in the data object design. 

How to convert a cube dimension into a shared dimension

This procedure assumes that you have already included cubes in a data object.

1 Open the data object.

2 In Data Explorer, expand the cube that contains the dimension to convert to a 
shared dimension, then right-click the dimension and choose Convert to 
Shared Dimension, as shown in Figure 2-7.

Figure 2-7 Converting a dimension to a shared dimension

The converted dimension appears under Shared Dimensions in Data Explorer 
and in the data object design, as shown in Figure 2-8. BIRT also replaces the 
original cube dimension with the shared dimension.

Figure 2-8 Data Explorer and data object showing the shared dimension



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 17

Configuring data set columns for summary tables
Summary tables are commonly used in dashboards and BIRT Studio reports to 
display key summary information. Figure 2-9 shows an example of a summary 
table created in BIRT Studio. Order data is grouped by date, in quarterly 
intervals, and by product line. The price of each order is summed to display 
subtotals for each quarter and product line, as well as, a grand total.

Figure 2-9 Summary table

To create a summary table quickly, users select a table’s auto-summarize feature, 
then select the data set columns whose data to group and aggregate. When the 
auto-summarize feature is enabled, the software performs the grouping and 
aggregating. To support this feature, you must configure each data set column to 
provide the software with the appropriate information to perform these tasks. For 
example, it makes sense to group sales data by order date or product line, but not 
by revenue. Conversely, it makes sense to aggregate revenue values, but not order 
date or product line values.

To provide the appropriate information to generate a summary table, set the 
Analysis Type property of each data set column to one of the following values:

■ Dimension

Use this analysis type to support the grouping of data in the column. For 
example, to display revenue by product line, set the product line column as a 
dimension.

■ Attribute



18 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

An attribute describes the items associated with a dimension. For a product 
dimension, for example, attributes might include color, size, and price. When 
you set a column as an attribute, you must also specify the dimension column 
of which it is an attribute. The summary table cannot group data in an 
attribute column.

■ Measure

Use this analysis type to support the aggregating of values in the column. For 
example, to calculate revenue totals, set the revenue column as a measure.

If you do not set a column’s analysis type, BIRT Studio and the dashboard assign 
a value using the following criteria:

■ If the column contains numeric values, the analysis type is measure.

■ If the column contains date values, the analysis type is dimension.

■ If the column contains string or Boolean values, the analysis type is attribute.

■ If the column is a primary key, a foreign key, or an indexed column in a 
database, the analysis type is dimension even if the column contains numeric 
values.

In many cases, however, the default analysis type values do not provide usable 
data for a summary table. To create a well-designed data object, it is necessary to 
assign an analysis type for every column in the data set. The default values have 
the following limitations:

■ Most columns containing data that users want to group, such as region and 
product line, are of string type. The default analysis type for these columns is 
attribute, and data in attribute columns cannot be grouped.

■ Although BIRT assigns the attribute type to a column that contains string and 
Boolean data, it cannot specify the dimension column to which the attribute 
column is associated. As a result, the attribute column does not provide data 
that is usable in a summary table.

■ Not all numeric data should be measures. Order or customer IDs, for example, 
are typically of numeric type, but, because it does not make sense to aggregate 
this type of data, a more appropriate analysis type is dimension or attribute.

How to set the analysis type of a data set column

This procedure assumes that you have already created a data object and added a 
data set to it.

1 Open the data object.

2 In Data Explorer, double-click the data set to edit it.

3 In Edit Data Set, choose Output Columns, then double-click the column whose 
analysis type to set. Edit Output Column displays the properties of the 
selected column, as shown in Figure 2-10.



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 19

Figure 2-10 Properties of a data set column

4 In Analysis Type, select Dimension, Attribute, or Measure. If you select 
Attribute, in the list box that displays <Select Field Name...>, select a column 
of which this column is an attribute. The column you select must be a 
dimension column.

Creating hyperlinks to provide drill-down capability
Hyperlinks are commonly used in reports to enable users to find related 
information or drill down to more detailed data. For example, a summary report 
that displays sales totals by region can use hyperlinks to link each region to 
another report that displays detailed sales data. To provide this functionality in a 
dashboard or in a report, create hyperlinks in the following items in a data object:

■ Data set columns

■ Dimensions and measures in a cube

You can create the following types of hyperlinks:

■ Drill-through, to link to a bookmarked location in a report

■ URI, to link to a document or a web page

Figure 2-11 shows an example of a drill-through hyperlink definition that 
specifies a link to a bookmark, row["COUNTRY"], in a target report named 
SalesByCountryAndProduct.rptdesign.



20 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 2-11 Definition of a drill-through hyperlink to link to a report

Figure 2-12 shows an example of a URI hyperlink definition that specifies a link 
to a document.

Figure 2-12 Definition of a hyperlink that uses a URI to link to a document

How to create a hyperlink from a data set column

This procedure assumes that you have already created a data object and added a 
data set to it.



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 21

1 Open the data object.

2 In Data Explorer, double-click the data set to edit it.

3 In Edit Data Set, choose Output Columns, then double-click the column to 
which to add a hyperlink. Edit Output Column displays the properties of the 
selected column, as shown in Figure 2-13.

Figure 2-13 Edit Output Columns displaying the properties of a column

4 Choose Edit next to the Link To property.

5 In Hyperlink Options, select the type of hyperlink to create, then set the 
properties of the hyperlink. These steps are the same as the steps for defining a 
hyperlink in a report, and are described in BIRT: A Field Guide.

How to create a hyperlink from a dimension or measure in a cube

This procedure assumes that you have already created a data object and added a 
cube to it.

1 Open the data object.

2 In Data Explorer, double-click the cube to edit it.

3 In the cube builder, choose Groups and Summaries.

4 Under Groups and Summaries, double-click the dimension or measure to 
which to add a hyperlink.

The properties of the selected dimension or measure appear. Figure 2-14 
shows the properties of a measure.



22 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 2-14 Edit Summary Field displaying the properties of a measure

5 Choose Edit next to the Link To property.

6 In Hyperlink Options, select the type of hyperlink to create, then set the 
properties of the hyperlink. These steps are the same as the steps for defining a 
hyperlink in a report, and are described in BIRT: A Field Guide.

Hiding data sets from users
When you publish a data object in iServer, dashboard and BIRT Studio users who 
are granted access to the data object can select any of the data sets and cubes in 
the data object as a source of data for their dashboard gadget or report. However, 
not all data sets return data that is suitable for a dashboard or a report. 

Some data sets are created to provide data specifically for a cube or a report 
parameter, and the data usually is not useful for a dashboard or report. For 
example, a data set created for a report parameter that displays a list of countries 
would return only values from a country column. For some cubes, multiple data 
sets are linked to provide data for the cube, and the individual data sets do not 
provide sufficient data for a dashboard or report. 

To present to users only data sets and cubes that are designed to provide data for 
dashboards and reports, you should hide data sets that only provide limited data 
for a report parameter or a cube.

How to hide data sets from users

1 In the data object design, right-click the data set to hide, and choose Edit.

2 In the data set editor, choose Settings.

3 In Visibility, deselect Include this data set in the generated data object store, as 
shown in Figure 2-15.



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 23

Figure 2-15 Data set editor displaying the Settings page

Providing cached data
When a dashboard or a report uses a data object, each time the dashboard is 
refreshed or the report is run, the data object connects to the underlying data 
source and retrieves data from it. This operation is typically resource-intensive. 
For a more efficient data access alternative, cache the data in a data object store, 
and provide dashboard and report users with access to the data object store.

How to create a data object store

1 Open the data object design (.datadesign) file.

2 Choose Run➛Generate Data Objects.

3 In Generate Data Objects, type a file name for the data object store. The file 
name must have a .data extension. Choose OK. 

BIRT creates a data object store (.data file) that contains the materialized data. 
The file is saved in the same folder in which the data object design file resides.

Publishing a data object
To make data objects available to report developers using Actuate BIRT Designer, 
place the data objects in the shared resource folder, just as you do with other 
shared resources, such as libraries and style sheets.

To make data objects available to dashboard and BIRT Studio users, you must 
publish the data objects in an iServer Encyclopedia volume. From the iServer 



24 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

perspective, a data object is a resource, similar to Java classes, image files, or 
libraries, which are resources for reports published in iServer. 

You can publish data object design (.datadesign) files or data object stores (.data). 
A common strategy is to publish the design files, then schedule those files to be 
run regularly to generate the data object stores. To manage system resources 
effectively, iServer volume administrators can make the data object stores 
generally available to users while limiting access to the data object design files.

How to publish a data object in an iServer volume

1 Create an iServer profile, which specifies the information to connect to an 
iServer volume.

2 Place the data object in the BIRT resource folder. The location of the resource 
folder is specified in the Preferences page, which you access by choosing 
Windows➛Preference from the main menu, then choosing Report Design—
Resource. The default location is the current project folder.

3 Choose File➛Publish Resources to iServer, then select the data object to 
publish.

For more information about creating an iServer profile, assigning a resource 
folder in iServer, and publishing items to an iServer volume, see “Deploying BIRT 
reports to Actuate BIRT iServer,” later in this book. For information about 
managing files in iServer, see Managing an Encyclopedia Volume.

Enabling incremental updates
Data object stores (.data) containing cached data are typically updated regularly 
to provide the latest data to dashboards and reports. In some cases, you can speed 
up the generation process by using the incremental updates option. Instead of 
retrieving the full set of data rows each time the data object store is generated, the 
incremental updates option retrieves only additional data rows that meet 
specified criteria. 

Use this option to add new data rows on a regular basis to a large set of legacy 
data. For example, a data object retrieves order information. When the data object 
is generated initially, it contains all the order information to date. Each week, a 
new data object store is generated to capture new order data. For cases like this, 
adding only the new data each week improves performance significantly. 

Observe the following guidelines when designing a data object that uses the 
incremental update option:

■ For each update, you must specify which data rows to add to an existing data 
object store. To accomplish this task, create a parameter in the data object. In 
the example described previously, the data object would use a date-time 
parameter to specify which week of data to retrieve.



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 25

■ Data rows can only be added to the result set returned by a data set, provided 
that the data set definition does not change between updates. If you change 
the definition of a data set, for example, by adding or deleting a column, you 
must generate a new data object store without using the incremental updates 
option. 

■ If the data object contains a cube and you want the cube to include the new 
data set rows, or if you change the cube definition, you must also generate a 
new data object store without the incremental updates option.

How to enable incremental updates

This procedure assumes that you have already created the data object design 
(.datadesign).

1 In the layout editor, right-click in an empty area of the data object design.

2 Choose Enable Incremental Update.

After you publish this data object to iServer, incremental updates occur each time 
the data object is generated. Depending on the job properties that you specify, 
iServer replaces the existing .data file with the updated version or maintains 
multiple versions of the .data file. Dashboards and BIRT Studio reports 
configured to use the latest .data file display the new data when users refresh the 
dashboard or report.

If you share the data object in a file system with other report developers using 
Actuate BIRT Designer, you replace the .data file manually.

How to apply incremental updates to a .data file stored in the file system 

This procedure assumes that you have already created the data object design 
(.datadesign) and generated the initial data object store (.data).

1 In the layout editor, right-click in an empty area of the data object design, then 
choose Enable Incremental Update.

2 Choose Run➛Generate Data Objects.

3 In Incremental Update, do the following:

1 Select Use incremental update.

2 Select the .data file to update.

3 In Target data file name, type a temporary .data file to which to write the 
new data. This step is required because a file saved in the file system 
cannot be read and written to at the same time.

Figure 2-16 shows an example of values specified in Incremental Update. 
In this example, Employees.data is the file to update, and 
Employees_Temp.data is the temporary file to which to write the new data.



26 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 2-16 Incremental Update

4 Choose OK.

4 In Navigator, delete the original .data file. In the example shown in 
Figure 2-16, you would delete Employees.data.

5 Rename the temporary .data file to the name of the original .data file. In the 
example shown in Figure 2-16, you would rename Employees_Temp.data as 
Employee.data.

Managing user access
When you publish a data object to an iServer Encyclopedia volume, you grant 
specific users or user groups access to the data object. This type of security is 
implemented in iServer, and users either have access to all the items in the data 
object, or none at all. For information about implementing security in iServer, see 
Managing an Encyclopedia Volume.

Using Actuate BIRT Designer in conjunction with iServer, you can apply more 
granular security rules to control user access to individual items in a data object, 
down to which data set columns, cube dimensions and measures, and data rows 
are available to particular groups of users. For information about implementing 
this type of security, see Chapter 16, “Controlling user access to report pages and 
data,” later in this book.

Maintaining a data object
Changes you make to any item in a data object propagate to the reports and 
dashboard gadgets that use that item. For example, if you add a dimension to a 
cube in a data object, all reports and gadgets that use that cube have access to the 



C h a p t e r  2 ,  C r e a t i n g  d a t a  o b j e c t s 27

new dimension. This automatic-update functionality is useful for applying 
necessary updates, such as connection properties in a data source, to all reports 
and gadgets. 

However, the automatic-update functionality also means that you have to be 
careful with the type of change that you make. The following changes can cause 
errors in reports and gadgets:

■ Renaming a data object, data source, data set, or cube

■ Deleting a data object, data source, data set, or cube

■ Deleting items within a data set or a cube, such as a column, dimension, or 
measure

To fix errors resulting from a renamed or deleted data object item, the user has to 
recreate the report element or dashboard gadget to use a different data object 
item.



28 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  3 ,  A c c e s s i n g  d a t a  i n  a  d a t a  o b j e c t 29

C h a p t e r

3
Chapter 3Accessing data in a data

object
This chapter contains the following topics:

■ Using data object data in a report

■ Connecting to a data object

■ Specifying the data to retrieve from a data object

■ Using a cube in a data object



30 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using data object data in a report
A data object provides a report access to predesigned data sources, data sets, and 
cubes. Report developers create data objects to streamline the report creation 
process. Data objects provide the following benefits:

■ Simplified data access and retrieval. The predesigned data sources, data sets, 
and cubes in a data object enable report developers to select the data to use in 
a report without knowledge of the underlying data source, how to connect to 
it, and how to extract data from it.

■ Reusability across multiple reports. If a suite of reports require the same data, 
designing the data sources, data sets, and cubes once in a shared data object 
eliminates the need to design the same elements repeatedly for each report.

■ Dynamic updates to data items. Changes to data items in a data object 
propagate to reports that use the data object, ensuring that reports have the 
latest updates, such as connection properties.

A report accesses data from a data object through either a data object design 
(.datadesign) file or a data object store (.data). The data design file retrieves data, 
on demand, each time the report is run. A data object store contains cached, or 
materialized, data, and provides much more efficient access to data. If getting 
real-time data is more important than report generation speed, use the data object 
design file. If data in the underlying data source does not change constantly, or if 
a data object store is generated regularly, use the data object store.

As with other types of data sources, for a report to use data from a data object, 
you must create the following BIRT objects:

■ A data source that contains the information to connect to a data object

■ A data set that specifies the data to use from the data object

Connecting to a data object
When creating a data source to connect to a data object, the only information 
required is the name of the data object.

How to connect to a data object

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Actuate Data Object Data Source from the list of data source types, as 
shown in Figure 3-1.

2 In Data Source Name, type a name for the data source. 



C h a p t e r  3 ,  A c c e s s i n g  d a t a  i n  a  d a t a  o b j e c t 31

Figure 3-1 Selecting BIRT data object as a data source type

3 Choose Next.

3 In New Actuate Data Object Data Source, next to Data Object, choose Browse. 
Select Data Object File displays all the data objects (.datadesign and .data files) 
in the resource folder. Select the data object to use in the report, then choose 
OK.

Figure 3-2 shows an example of a data object data source that connects to a 
data object named Revenue.data.

Figure 3-2 Data object selected

4 Choose Next. This button is enabled if the data object contains report 
parameters. Provide the parameter values.

5 Choose Finish.



32 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

The data source appears under Data Sources in Data Explorer. The report now 
has access to all the data sets and cubes defined in the data object.

Specifying the data to retrieve from a data object
Because a data object contains predesigned data sets, all you do is select a data set 
from the data object and the columns from the selected data set.

How to specify what data to retrieve from a data object

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the data object data source to use. Data Set 
Type displays Actuate Data Object Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In New Actuate Data Object Data Set, in Available Data Sets, select one of the 
data sets defined in the data object.

4 Select the columns to retrieve, and move them to the right pane.

5 Choose Finish to save the data set. Edit Data Set displays the columns in the 
data set, as shown in Figure 3-3.

Figure 3-3 Columns in a data set

6 Choose Preview Results to view the data rows that the data set returns.

7 Choose OK to close the data set editor.



C h a p t e r  3 ,  A c c e s s i n g  d a t a  i n  a  d a t a  o b j e c t 33

Using a cube in a data object
To add a cross tab to the report, a cube is required to provide data for the cross 
tab. You can create a cube, using data from a data set, or you can use a 
predesigned cube in the data object. The option you choose depends on how 
familiar you are with creating cubes, whether you want modifications to the 
original cube to propagate to the cross tab, or whether you need control over the 
cube data. You cannot edit a cube from a data object.

How to use a cube in a data object

1 In Data Explorer, right-click Data Cubes, then choose Use Data Object Cube.

2 In Use Data Object Cube, specify the following information. Then choose OK.

1 In Name, type a name for the cube.

2 In Select Data Source, select the data source that connects to the data object 
that contains the cube.

3 In Available Data Cubes, select a cube.

Figure 3-4 shows the selection of a cube named Revenue from a data object 
data source named Revenue_Expenses Data Object.

Figure 3-4 Cube selected from a data object



34 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  4 ,  A c c e s s i n g  d a t a  i n  a n  i n f o r m a t i o n  o b j e c t 35

C h a p t e r

4
Chapter 4Accessing data in an

information object
This chapter contains the following topics:

■ Using information object data in a report

■ Connecting to an information object

■ Specifying the data to retrieve from an information object



36 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using information object data in a report
An information object is an encapsulated SQL query designed for use with report 
design applications, such as Actuate BIRT Designer and Actuate BIRT Studio. 
Created using the IO Design perspective in Actuate BIRT Designer, information 
objects can extract and integrate data from a variety of sources, including 
relational databases, stored procedures, web services, and XML documents. For 
information about creating information objects, see Designing BIRT Information 
Objects.

Information objects provide the following benefits that data objects also provide:

■ Simplified data access and retrieval. Report developers select the data to use 
without knowledge of the underlying data source, how to connect to it, and 
how to extract data from it.

■ Reusability across multiple reports. Reports can use the same set of data, yet 
can use different columns, sorting and grouping rules, filters, and parameters.

■ Dynamic updates to data properties. Changes to an information object 
propagate to reports that use the information object, ensuring that reports 
have the latest updates, such as modified connection properties and queries.

As with other types of data sources, for a report to use data from an information 
object, you must create the following BIRT objects:

■ A data source that contains the information to connect to an information object

■ A data set that specifies the data to use from the information object

Connecting to an information object
All information objects are stored in an Actuate BIRT iServer volume. To use an 
information object as a source of data for a report, you must have a user account 
on an iServer volume with the privileges that are required to access and run the 
information object. You need the following information to access an information 
object:

■ The URL to the iServer and the name of the iServer volume that contains the 
information object

■ Your login credentials

Contact the iServer administrator for this information.

How to connect to an information object

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:



C h a p t e r  4 ,  A c c e s s i n g  d a t a  i n  a n  i n f o r m a t i o n  o b j e c t 37

1 Select Actuate Information Object Data Source from the list of data source 
types, as shown in Figure 4-1.

2 In Data Source Name, type a name for the data source. 

Figure 4-1 Selecting information object as a data source type

3 Choose Next.

3 In New Actuate Information Object Connection Profile, provide the following 
information to connect to the iServer volume on which the information object 
is stored:

1 In Server URI, type the URL to the iServer, using the following syntax:

http://<server name>:<port>

The following is an example of a URL:

http://athena:8700

2 In Volume, type the name of the iServer volume that contains the 
information object.

3 In User Name, type the user name required to log into the volume.

4 In Password, type the password required to log into the volume.

5 In Use logged in user credentials on iServer, select Yes or No.

❏ Select Yes to use the credentials of the user specified at login when the 
report is run on iServer. This option enables other users to run and view 
the report.



38 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

❏ Select No to use the iServer URI, volume, user name, and password 
specified in the report design when the report is run on iServer. This 
option restricts access to the report.

Figure 4-2 shows an example of connection information specified for an 
information object data source.

Figure 4-2 Information to connect to an information object

4 Choose Finish.

The data source appears under Data Sources in Data Explorer. 

Specifying the data to retrieve from an information 
object

An information object returns data rows in the structure required by BIRT 
reports. To specify what data rows to retrieve from an information object, you 
create a query using the Information Object Query Builder, which is integrated 
with the data set editor. The query builder provides a graphical interface that you 
use to select an information object, select data columns, specify group, sort, and 
filter criteria, and view the resulting query. Alternatively, if you are familiar with 
the content of an information object and are well-versed in Actuate SQL (based 
on the ANSI SQL-92 standard), you can type the query.

How to specify what data to retrieve from an information object

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:



C h a p t e r  4 ,  A c c e s s i n g  d a t a  i n  a n  i n f o r m a t i o n  o b j e c t 39

1 In Data Source Selection, select the information object data source to use. 
Data Set Type displays Actuate Information Object Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

New Data Set—Actuate Information Object Query appears, as shown in 
Figure 4-3.

Figure 4-3 Information object query builder

3 Create a query to specify the data to retrieve from the information object. Use 
either the graphical tools to create the query or the SQL Editor to type the 
query. For information about creating an information object query and using 
Actuate SQL syntax, see Designing BIRT Information Objects. The query builder 
integrated with the data set editor has the same user interface and 
functionality as the query builder in the Information Object Designer.

Figure 4-4 shows an example of a graphical query in which three information 
objects are joined. Only a few columns from each information object are 
selected.



40 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 4-4 Information object query builder displaying a graphical query

4 Choose Next. New Data Set—Actuate Information Object Query displays a 
message indicating the status of the query. 

5 If the query contains errors, choose Back to fix the query. If the query is valid, 
choose Finish. Edit Data Set displays the columns in the data set, as shown in 
Figure 4-5.

Figure 4-5 Columns in a data set

6 Choose OK to close the data set editor.



C h a p t e r  5 ,  A c c e s s i n g  d a t a  i n  a  r e p o r t  d o c u m e n t 41

C h a p t e r

5
Chapter 5Accessing data in a report

document
This chapter contains the following topics:

■ Using report document data

■ Creating a report document

■ Connecting to a report document

■ Specifying the data to retrieve from a report document



42 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using report document data
A report document is a binary file that contains report design information and 
cached data. It has the file extension .rptdocument. You can generate a report 
document from a report design, then use the report document as a data source for 
other reports. Using data from a report document provides the following benefits:

■ Faster report-generation time because the report does not have to connect to 
an external data source, such as a database or web service, to retrieve data.

■ Reuse of calculated data. If a table or chart in a report document contains 
calculated data, such as aggregations, that data is available to your report 
design.

■ Simplifies report creation. You do not need to gather all the information to 
connect to an external data source, nor do you need to create the query to 
retrieve data from the data source. Eliminating these steps is particular useful 
if data retrieval requires a complex SQL query to get data from a database, or a 
complex SOAP request to get data from a web service.

A report document provides efficient access to data, but at the cost of data 
possibly being out of date. It is most useful in cases where connecting to and 
querying a data source is resource-intensive, or when the data changes 
infrequently. 

As with other types of data sources, for a report to use data from a report 
document, you must create the following BIRT objects:

■ A data source that contains the information to connect to a report document

■ A data set that specifies the data to use from the report document

Creating a report document
Generate a report document from a report design by choosing Run➛Generate 
Document. Specify the folder in which to save the report document. To share the 
report document with other report developers, put the file in a shared resource 
folder.

When used as a data source, the report document provides access to its result sets. 
At report generation, a result set is created for each table, chart, cross tab, and list. 
The data in a result set is defined by the data column bindings created for a table, 
chart, cross tab, or list. A report design has access to all result sets in a report 
document, except for a cross tab’s result set.

For example, Figure 5-1 shows a report that displays sales data in two tables and 
a chart.



C h a p t e r  5 ,  A c c e s s i n g  d a t a  i n  a  r e p o r t  d o c u m e n t 43

Figure 5-1 A report displaying data in two tables and a chart

A report design that uses a report document generated from this report has access 
to the result sets generated for the two tables and the chart. When you create a 
data set to specify which result set data to use, the data set editor displays all the 
available results sets, as shown in Figure 5-2. 

Figure 5-2 Data set editor displaying available result sets with default names

Table

Chart

Table



44 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

The result sets are organized under three categories: Bookmark, Element ID, and 
Result Set ID. The result sets named __bookmark_1, __bookmark_2, and 
__bookmark_3 correspond to the result sets for the first table, the chart, and the 
second table, respectively. Similarly, the result sets named Table_252, Chart_312, 
and Table_6 correspond to the result sets for the first table, the chart, and the 
second table. Finally, the result sets named QuRs0, QuRs1, and QuRs2 also 
correspond to the result sets for the first table, the chart, and the second table.

While it seems redundant to provide three methods to select any given result set, 
each method offers different benefits. 

■ For result sets that appear under Bookmark, the report developer designing 
the report from which a report document is generated can specify descriptive 
names. The name can be a literal string or an expression.

■ For results sets that appear under Element ID, the report developer can also 
specify descriptive names, but can only use literal strings to do so. Result sets 
are also organized hierarchically if a report, such as a master-detail report, 
contains nested tables.

■ For result sets that appear under Result Set ID, the report developer cannot 
specify alternate names. These generated names are useful for accessing a 
result set programmatically.

Figure 5-3 shows another example of the data set wizard displaying the result sets 
available to a report design. 

Figure 5-3 Data set editor displaying two result sets with custom names



C h a p t e r  5 ,  A c c e s s i n g  d a t a  i n  a  r e p o r t  d o c u m e n t 45

This time, the result sets under Bookmark use custom names, rather than the 
default __Bookmark_#. Result sets under Element ID are organized hierarchically 
under Orders and Payments, which are custom names. This hierarchy reflects the 
structure of data in the report document. 

Specifying bookmark names
As Figure 5-2 showed, BIRT generates a bookmark for each result set, and assigns 
bookmark names using the __bookmark_# format. If you are designing the report 
from which to generate a report document, you can specify more descriptive 
bookmark names to better identify the data in result sets. For example, instead of 
using the default name, __bookmark_1, to refer to the result set for the sales 
summary table, specify a name, such as Sales Totals by State.

How to specify a bookmark name

1 Open the report design to be used to generate a report document.

2 In the report layout, select the table, chart, or list for which to specify a 
bookmark.

3 In Properties Editor—Properties, choose Bookmark.

4 In Bookmark, specify one of the following:

■ A name, such as "Sales Totals by State". If typing a name, enclose it within 
double quotation marks, as shown in Figure 5-4.

Figure 5-4 Specifying a bookmark name for an element

■ An expression, such as the following: 

row["COUNTRY"]
"Order: " + row["ORDERNUMBER"]

Specify an expression if, for example, a table is nested within another table 
or a list. In this case, the generated report document typically contains 
multiple instances of the inner table, and each table instance has a result 
set. If each table instance provides data about a particular sales order, for 
example, it is useful to identify each result set by order number, as shown 
in Figure 5-3.

5 Save the report.



46 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Specifying element names
BIRT also assigns an element ID for each result set. As Figure 5-2 showed, each ID 
consists of the element type, an underscore, and a number, for example, Table_252 
or Chart_312. If you are designing the report from which to generate a report 
document, you can specify more descriptive element IDs to describe the data in 
result sets.

How to specify an element name

1 Open the report design to be used to generate a report document.

2 In the report layout, select the table, chart, or list for which to specify a name.

3 In Properties Editor—Properties, choose General.

Notice that the Name property is undefined. Notice, too, that the Element ID 
property has a read-only number, which BIRT automatically assigns to every 
report element. BIRT uses this number in the default result set name.

4 In Name, type a descriptive and unique name. A report cannot contain 
duplicate element names. Figure 5-5 shows an example of a name, Sales Chart, 
specified for a chart.

Figure 5-5 Specifying a name for a chart element

5 Save the report.

Connecting to a report document
When creating a data source to connect to a report document, the only 
information required is the location and name of the report document.

How to connect to a report document

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select BIRT Report Document Data Source from the list of data source 
types, as shown in Figure 5-6.



C h a p t e r  5 ,  A c c e s s i n g  d a t a  i n  a  r e p o r t  d o c u m e n t 47

2 In Data Source Name, type a name for the data source. 

Figure 5-6 Selecting BIRT report document as a data source type

3 Choose Next.

3 In New BIRT Report Document Data Source Profile, use one of the following 
steps to provide a value for Report Document Path:

■ To select a report document in the resource folder, choose Browse. Select 
the report document, then choose OK.

■ To specify a report document in a location other than the resource folder, 
type the path to the file. The path must be relative to the current folder, for 
example:

../MyReportDocuments/CustomerReport.rptdocument

Figure 5-7 shows an example of a report document data source that connects 
to a file named SalesReport.rptdocument in the resource folder.

Figure 5-7 Report document selected



48 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

4 Choose Finish.

The data source appears under Data Sources in Data Explorer. The report now 
has access to the data saved in the report document.

Specifying the data to retrieve from a report document
Because a report document contains cached data in the form of result sets, all you 
do is select the result set or result sets whose data to use in a report design. You 
must create a data set for each result set.

How to retrieve data from a report document

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the report document data source to use. 
Data Set Type displays BIRT Report Document Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

New BIRT Report Document Data Set displays all the result sets in the report 
document. These items are organized under Bookmark, Element ID, and 
Result Set ID.

3 Expand a category, then select a result set to see its data columns, as shown in 
Figure 5-8.

Figure 5-8 Selecting a result set



C h a p t e r  5 ,  A c c e s s i n g  d a t a  i n  a  r e p o r t  d o c u m e n t 49

4 Select the result set that contains the data to use in the report, then choose 
Finish. Edit Data Set displays the columns in the data set, as shown in 
Figure 5-9.

Figure 5-9 Columns in a data set

5 Choose Preview Results to view the data rows that the data set returns.

6 Choose OK to close the data set editor.



50 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  6 ,  A c c e s s i n g  d a t a  i n  a n  e . r e p o r t 51

C h a p t e r

6
Chapter 6Accessing data in an

e.report
This chapter contains the following topics: 

■ Using ActuateOne for e.Reports Data Connector

■ Connecting to an e.report

■ Specifying the data to retrieve from an e.report



52 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using ActuateOne for e.Reports Data Connector
The ActuateOne for e.Reports Data Connector is an Open Data Access (ODA) 
driver that enables BIRT to retrieve data from an e.report, a report developed 
using Actuate e.Report Designer Professional. The e.report is a report object 
instance (.roi) file. Using the ActuateOne for e.Reports Data Connector driver to 
access the data and business logic from the existing e.report's data schema 
preserves the business logic in the report while BIRT consumes the data.

To apply BIRT features to data from an ROI file, a developer designs a BIRT report 
that uses the ActuateOne for e.Reports Data Connector driver to draw data from 
an existing e.report. After verifying the connection’s functionality, the BIRT report 
design can be expanded using additional data sources and formatting as business 
needs require. For more information about e.reports, see Working with Actuate 
e.Reports.

About ActuateOne for e.Reports Data Connector 
functionality
A BIRT data object, information object, or report design can use the data 
connector to retrieve data from an existing ROI file in an Encyclopedia volume on 
Actuate BIRT iServer Release 11 or higher. The ROI file does not need to be on the 
same Encyclopedia volume as the BIRT report design.

The report object design (.rod) file used to generate the ROI file must have 
searchable fields defined. The ActuateOne for e.Reports Data Connector uses the 
display names for the searchable fields to name the columns in the BIRT data set.

An ActuateOne for e.Reports data source connects to an Encyclopedia volume. 
An ActuateOne for e.Reports data set maps controls in a specified e.report in that 
volume to data set columns. The user interface for creating the data set displays 
the control names as available columns. The names of the columns that the 
e.report data source uses are not available.

Accessing an e.report using Page Level Security
The ActuateOne for e.Reports Data Connector respects the Page Level Security 
(PLS) privileges implemented in the source e.report. The BIRT report developer 
must specify user credentials for an ROI file in order to retrieve data from that 
ROI file. PLS privileges of the specified user restrict the data that the BIRT report 
design retrieves from the ROI file.

Accessing an e.report having multiple sections
A BIRT report design can retrieve data from a complex, multi-section e.report. 
Each ActuateOne for e.Reports data set can access data from a single section only.



C h a p t e r  6 ,  A c c e s s i n g  d a t a  i n  a n  e . r e p o r t 53

To determine which controls are available for use in the same data set, open the 
ROD file in e.Report Designer Professional. If the ROD file is not available, use 
the Output Columns page in Edit Data Set in BIRT Designer Professional to 
examine the partially scoped name of each column. The name’s scope appears 
before the scope resolution operator (::).

Connecting to an e.report
When creating an ActuateOne for e.Reports data source in a BIRT report to 
connect to an e.report, you specify the Encyclopedia volume that contains the ROI 
files. You specify iServer connection properties and the name of the Encyclopedia 
volume. Specify the use of a trusted connection to improve performance. As you 
edit the data source and the data set, a trusted connection uses the same session to 
communicate with the iServer. A non-trusted connection uses the specified 
credentials to log in to the iServer for each communication. 

How to create an ActuateOne for e.Reports data source

1 In Data Explorer, right-click Data Sources and choose New Data Source.

2 In New Data Source, select ActuateOne for e.Reports Data Source, as shown in 
Figure 6-1. Choose Next.

Figure 6-1 Selecting ActuateOne for e.Reports Data Source

3 In New ActuateOne for e.Reports Data Source Profile, type the URL of the 
server, the user credentials, the volume name, and whether the connection is 
trusted, as shown in Figure 6-2. 



54 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 6-2 Creating a data source profile

4 Choose Test Connection. A message with the results of the test appears.

■ If a Success message appears, as shown in Figure 6-3, choose OK.

Figure 6-3 Successful connection test

■ If an Error message appears, as shown in Figure 6-4, choose OK. Then, 
check and correct the server connection properties. Choose Test 
Connection.

Figure 6-4 Failed connection test

5 Choose Finish to create the data connection.

Specifying the data to retrieve from an e.report
The controls in an e.report provide the columns for a data set. You must use 
columns from controls in only a single section in the e.report. The scoped name of 
the column shows the section that contains the control. This name is available in 
the user interface for editing the data set.



C h a p t e r  6 ,  A c c e s s i n g  d a t a  i n  a n  e . r e p o r t 55

How to create an ActuateOne for e.Reports data set

1 In Data Explorer, right-click Data Sets and choose New Data Set.

2 In New Data Set, type a name for the new data set as shown in Figure 6-5. 
Then, choose Next.

Figure 6-5 Naming the ActuateOne for e.Reports data set

3 In Select Columns, choose Browse.

4 Navigate to the location of the ROI file and select the ROI file, as shown in 
Figure 6-6. Choose OK.

Figure 6-6 Selecting the ROI file



56 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

5 In Select Columns, choose Refresh Columns. The column names from the ROI 
file appear, as shown in Figure 6-7.

Figure 6-7 Available columns in Detail.roi

6 Select the columns that the BIRT report design requires. Choose the right 
arrow to move the columns to the Selected Columns pane, as shown in 
Figure 6-8. Choose Finish.

Figure 6-8 Selecting columns

7 In Edit Data Set, select Preview Results, as shown in Figure 6-9.



C h a p t e r  6 ,  A c c e s s i n g  d a t a  i n  a n  e . r e p o r t 57

Figure 6-9 Preview of data set results

■ If column values appear, select Output Columns.

■ If either error message shown in Figure 6-10 appears, perform the 
following steps:

Figure 6-10 Data set preview error messages

1 In the error message, choose OK.

2 Select Output Columns.

3 Expand Name to make the full names of the output columns visible, as 
shown in Figure 6-11. Note each name’s prefix, then select Select 
Columns.



58 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 6-11 Checking scope prefixes

4 In Selected Columns, select columns that are in a different report section 
from other columns. See “Accessing an e.report having multiple 
sections,” earlier in this chapter for information on using scope name 
prefixes to determine a column’s report section. Choose the left arrow.

5 Repeat step 7.

8 In Edit Data Set, as shown in Figure 6-12, edit the data set column properties if 
desired. Choose OK. The data set appears in Data Explorer.

Figure 6-12 Editing the data set column properties



C h a p t e r  7 ,  A c c e s s i n g  d a t a  i n  a  P O J O 59

C h a p t e r

7
Chapter 7Accessing data in a POJO

This chapter contains the following topics:

■ Using POJO data in a report

■ Connecting to a POJO

■ Specifying the data to retrieve from a POJO



60 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using POJO data in a report
Plain Old Java Objects (POJOs) are simple Java objects that do not implement 
framework-specific interfaces such as those defined by the EJB framework. Java 
developers use POJOs to separate an application’s business logic from 
infrastructure frameworks, which constantly evolve. POJOs are frequently used 
for data persistence—the storage and retrieval of data—in Java applications.

Actuate BIRT Designer supports the use of POJOs as a data source for reports. As 
with other types of data sources, such as databases, XML files, and web services, 
for a report to use data from a POJO, you must create the following BIRT objects:

■ A POJO data source that contains the information to connect to a POJO

■ A POJO data set that defines the data that is available to a report

No programming is required to create these BIRT objects. However, if using 
POJOs created by another developer, a basic understanding of what the classes do 
and the data they provide is necessary. A simple POJO example typically consists 
of the following classes: 

■ A class that describes the data object, for example, a books class that describes 
the properties of books, including book title, author, publisher, year published, 
and so on.

■ A class that specifies how to retrieve data. For example, such a class can 
retrieve data about each book by using the Java interface, Iterator, and 
implementing the open( ), next( ), and close( ) methods to iterate through all 
the book objects.

Connecting to a POJO
When creating a POJO data source in a BIRT report to connect to a POJO, you 
specify the location of the JAR file that contains the POJO classes. You can specify 
either a relative or absolute path.

How to create a POJO data source

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Actuate POJO Data Source from the list of data source types, as 
shown in Figure 7-1.

2 In Data Source Name, type a name for the data source. 



C h a p t e r  7 ,  A c c e s s i n g  d a t a  i n  a  P O J O 61

Figure 7-1 Selecting POJO as a data source type

3 Choose Next.

3 In New POJO Data Source Profile, shown in Figure 7-2, specify the properties 
to connect to the POJO.

Figure 7-2 POJO data source properties



62 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

1 In Runtime Properties, specify the location of the POJO classes that define 
the run time properties of the data source. Click the arrow icon next to Add 
Jars, then select either Relative path or Absolute path.

❏ Select Relative path to specify a path that is relative to the folder 
designated as the resource folder. By default, BIRT uses the current 
project folder as the resource folder.

In Select Jars/Zips, which displays the contents of the resource folder, 
as shown in Figure 7-3, select the JAR file, then choose OK.

Figure 7-3 Select Jars/Zips displaying the contents of the resource 
folder

❏ Select Absolute path to specify the full path in the file system. Browse 
the file system and select the JAR file, then choose OK.

2 In Design Time Properties, specify the location of the POJO classes that 
define the design time properties of the data source. The data set editor 
uses this information to list the get methods, which you select to define the 
column mappings for the POJO data set. Use the instructions in the 
previous step to specify either a relative path or absolute path to the POJO 
classes.

4 Choose Test Connection to ensure that the connection information is correct. If 
Test Connection returns an error, repeat the preceding steps to correct the 
error.

5 Choose Finish. The new POJO data source appears under Data Sources in Data 
Explorer.

Specifying the data to retrieve from a POJO
BIRT reports must use data that is structured as a table consisting of rows and 
columns. For a POJO data set to return data in this format, you map methods or 
members of a POJO class to columns. Listing 7-1 shows an example of a class that 
represents music CDs. The class describes the members and uses pairs of get and 



C h a p t e r  7 ,  A c c e s s i n g  d a t a  i n  a  P O J O 63

set methods to persist the data. To create a data set using this class, you would 
map the get methods to columns.

Listing 7-1 Class representing music CDs

package dataset;
public class CD {

private String cdTitle;
private String cdArtist;
private String cdCountry;
private String cdCompany;
private String cdPrice;
private String cdYear;

public CD(String title) {
this.cdTitle = title;

}
public String getCDTitle() {

return cdTitle;
}
public void setCDTitle(String title) {

this.cdTitle = title;
}
public String getCDArtist() {

return cdArtist;
}
public void setCDArtist(String artist) {

this.cdArtist = artist;
}
public String getCDCountry() {

return cdCountry;
}
public void setCDCountry(String country) {

this.cdCountry = country;
}
public String getCDCompany() {

return cdCompany;
}
public void setCDCompany(String company) {

this.cdCompany = company;
}
public String getCDPrice() {

return cdPrice;
}

(continues)



64 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

public void setCDPrice(String price) {
this.cdPrice = price;

}
public String getCDYear() {

return cdYear;
}
public void setCDYear(String year) {

this.cdYear = year;
}

}

How to create a POJO data set

This procedure assumes you have already created the POJO data source that this 
data set uses. Examples in this section refer to the POJO example in Listing 7-1.

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the POJO data source to use. Data Set Type 
displays Actuate POJO Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In New Actuate POJO Data Set, specify the following information:

1 In POJO Data Set Class Name, specify the POJO class that retrieves the data 
at run time. Choose Browse to find and select the class.

2 In Application Context Key, use the default key or delete it. This property 
is optional.

Figure 7-4 shows an example of properties set for a POJO data set.

Figure 7-4 POJO data set properties



C h a p t e r  7 ,  A c c e s s i n g  d a t a  i n  a  P O J O 65

4 Choose Next.

5 Map methods or fields in a POJO class to data set columns, using the 
following steps:

1 In POJO Class Name, specify the POJO class that contains the get methods 
to map to columns. You can choose Browse to find and select the class.

The data set editor uses a get* filter to display all the get methods in the 
specified POJO class, as shown in Figure 7-5.

Figure 7-5 Data set editor displaying the get methods in a POJO class

2 Double-click the get method to map to a data set column.

Add Column Mapping displays the mapping information, as shown in 
Figure 7-6.

Figure 7-6 Column mapping information



66 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Choose OK to accept the default values.

3 Repeat the previous step for every column to add to the data set. Figure 7-7 
shows an example of column mappings defined in a POJO data set.

Figure 7-7 Data set editor displaying the column mappings

6 Choose Finish to save the data set. Edit Data Set displays the columns, and 
provides options for editing the data set.

7 Choose Preview Results to view the data rows returned by the data set. 
Figure 7-8 shows an example of data rows returned by a POJO data set.

Figure 7-8 Data rows returned by a POJO data set



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 67

C h a p t e r

8
Chapter 8Combining data from
multiple data sources

This chapter contains the following topics:

■ Ways to combine data

■ Creating a union data set

■ Creating a joined data set



68 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Ways to combine data
Sometimes, the data that a report requires originates in several data sources. For 
example, an application system generates monthly transaction data and the data 
for each month is saved in a separate CSV file, or a system saves data in different 
formats, such as XML and CSV. 

Actuate BIRT Designer provides two options for combining data from multiple 
sources. You can create a union data set or a joined data set. The option you 
choose depends on the data structures and the results you want. Both options 
entail combining data sets, so before creating a union data set or a joined data set, 
you first create the individual data sets. For example, to combine data from an 
XML file with data from a CSV file, you must first create the XML data set and the 
flat file data set.

Creating a union data set
A union data set combines the results returned by two or more data sets. Creating 
a union data set is similar to using a SQL UNION ALL statement, which 
combines the result sets of two or more SELECT statements into a single result 
set.

Create a union data set to consolidate data from multiple sources that have 
similar data structures. For example, a company maintains separate database 
tables to store contact information about employees and contractors. The 
structure of the tables are similar. Both contain Name and Phone fields. Suppose 
you want to create a master contact list for all employees and contractors. The 
solution is to create one data set to retrieve employee data, a second data set to 
retrieve contractor data, and a union data set that combines data from the 
previous data sets.

Figure 8-1 illustrates the data sets that return employee and contractor data.

Figure 8-1 Data sets with common fields returning employee and contractor 
data

When creating a union data set, you select the fields to include. Figure 8-2 shows 
a union data set that includes all the fields from both Employees and Contractors 

Name Phone E-mail

Mark Smith

Patrick Mason

Soo-Kim Yoon

Maria Gomez

650-343-2232

650-343-1234

650-343-5678

650-343-9876

msmith@acme.com

mason@acme.com

skyoon@acme.com

gomez@acme.com

Name Phone

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

650-545-3645

415-242-8254

650-662-9735

408-234-2645

Employees data set Contractors data set



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 69

data sets. The Name field contains all employee and contractor names. The Phone 
field also contains all employee and contractor phone numbers. The E-mail field 
exists only in the employee data set, so only employee data rows have e-mail 
data.

Figure 8-2 Union data set that combines all data from Employees data set and 
Contractors data set

Figure 8-3 shows a union data set that includes only the common fields, Name 
and Phone, from the Employees and Contractors data sets.

Figure 8-3 Union data set that combines data from common fields in Employees 
data set and Contractors data set

In the previous example, the two data sets used to create a union data set 
contained common fields with the same names. This condition is required for 
consolidating data into a single field. However, data sources often use different 
field names. 

Suppose the Name field in the Employees and Contractors tables is 
EmployeeName and ContractorName, respectively. To create a union data set 
that consolidates employee and contractor names in a single field, rename the 
field names in the individual data sets to use the same name. When creating the 

Name Phone E-mail

Mark Smith

Patrick Mason

Soo-Kim Yoon

Maria Gomez

650-343-2232

650-343-1234

650-343-5678

650-343-9876

msmith@acme.com

mason@acme.com

skyoon@acme.com

gomez@acme.com

Union data set

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

650-545-3645

415-242-8254

650-662-9735

408-234-2645

Name Phone

Mark Smith

Patrick Mason

Soo-Kim Yoon

Maria Gomez

650-343-2232

650-343-1234

650-343-5678

650-343-9876

Union data set

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

650-545-3645

415-242-8254

650-662-9735

408-234-2645



70 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Employees data set, in Output Columns, use the Alias property to give the 
EmployeeName field another name. Figure 8-4 shows the EmployeeName field 
with the alias, Name.

Figure 8-4 Alias specified for the EmployeeName field

Similarly, when creating the Contractors data set, edit the ContractorName field 
to use the same alias.

How to create a union data set

This procedure assumes that you have created the data sets to be included in the 
union data set.

1 In Data Explorer, right-click Data Sets, and choose Union Data Set.

2 In New Data Set, in Data Set Name, optionally type a name for the union data 
set.

3 Choose New.

4 In New Union Element, in Select Data Set, select the first data set that contains 
the data to include in the union data set.

New Union Element displays the fields in the selected data set, as shown in 
Figure 8-5.

Figure 8-5 Fields in a data set selected for a union data set

5 Select the fields to include in the union data set, then choose OK.



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 71

6 Repeat steps 3 to 5 to add the next data set to the union data set.

Figure 8-6 shows a union data set named MasterCustomerList that consists of 
fields from two data sets, PlatinumCustomers and GoldCustomers.

Figure 8-6 Definition of a union data set that combines two data sets

7 Choose Finish. Edit Data Set displays the selected fields, and provides options 
for editing the data set.

8 Choose Preview Results. Figure 8-7 shows the rows returned by the 
MasterCustomerList union data set.

Figure 8-7 Data rows returned by the union data set



72 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Creating a joined data set
A joined data set combines the results of two or more data sets that are related 
through a common key. Creating a joined data set is similar to joining tables in a 
database using a SQL JOIN clause. Use a joined data set to combine data from 
different data sources in which a relationship exists, as shown in the following 
example.

Figure 8-8 illustrates data sets that return data about customers and orders. The 
data sets are related through the CustomerID field. You can retrieve order 
information for each customer by joining the data sets.

Figure 8-8 Data sets with a common field returning customer and order data

Figure 8-9 shows the results of joining the customers and orders data sets on the 
CustomerID key, and displaying only the CustomerName and Amount fields in 
the joined data set.

Figure 8-9 Data rows returned when the customers and orders data sets are 
joined

Actuate BIRT Designer supports the functionality of joined data sets available in 
the open-source version, and provides the following additional features in an 
updated user interface:

■ The capability to join more than two data sets

■ The capability to join on more than one key

■ Support for new join operators: <>, <, >, <=, >=

■ Support for a new type of join, the side-by-side join

Unlike the other types of supported joins (inner, left outer, right outer, and full 
outer), the side-by-side join links data sets without requiring a key. The resulting 

CustomerName CustomerID

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

1001

1002

1003

1004

Customers data set Orders data set

OrderID Amount CustomerID

110

115

120

125

1500.55

12520.00

8450.50

7550.00

1003

1001

1004

1002

CustomerName Amount

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

12520.00

7550.00

1500.55

8450.50



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 73

joined data set displays the selected fields side by side. Figure 8-10 shows two 
data sets that do not share a common field. The first data set returns customer 
data, and the second data set returns order data.

Figure 8-10 Data sets without a common field

Figure 8-11 shows the results of joining the customers and orders data sets using 
the side-by-side join. When using this type of join, do not misinterpret the results. 
As Figure 8-11 shows, the data from the two data sets appear side by side, 
implying that each customer has a relationship with an order when, in fact, no 
such relationship exists.

Figure 8-11 Results of a side-by-side join

For information about the other types of supported joins, see BIRT: A Field Guide.

How to create a joined data set

This procedure assumes that you have created the data sets to be included in the 
joined data set.

1 In Data Explorer, right-click Data Sets, and choose Join Data Set.

2 In New Data Set, in Data Set Name, optionally type a name for the joined data 
set.

3 Specify the data sets to use in the joined data set. Under Available data sets, 
drag each data set to the editing area. Figure 8-12 shows three data sets in the 
editing area.

CustomerName CustomerID

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

1001

1002

1003

1004

Customers data set Orders data set

OrderID Amount

110

115

120

125

1500.55

12520.00

8450.50

7550.00

CustomerName CustomerID

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

1001

1002

1003

1004

OrderID Amount

110

115

120

125

1500.55

12520.00

8450.50

7550.00



74 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 8-12 Three data sets selected for a joined data set

4 Specify the fields from each data set to include in the joined data set. Perform 
the following tasks for each data set:

1 Select a data set by clicking anywhere in the image of the data set. Do not, 
however, click on a field name.

2 Choose Output Columns.

3 In Edit Data Set Properties, under Select output columns, select the desired 
data set fields, then choose OK.

5 Specify the conditions for joining the data sets. Perform the following tasks for 
each pair of data sets. In the example shown in Figure 8-12, specify a condition 
for joining the first and second data sets, and a condition for joining the 
second and third data sets.

1 Select the arrow between two data sets.

2 Choose Conditions.

3 In Define join type and join conditions, specify the following information:

1 In Join Type, select the type of join to use.

2 If you select a join type other than sideBySide, define a join condition.



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 75

❏ Choose New. 

❏ Select the fields on which to join, and select a operator that specifies 
how to compare the values in the fields being joined. Figure 8-13 
shows a join condition that combines data when the 
CUSTOMERNUMBER value in the Customers data set is equal to 
the CUSTOMERNUMBER value in the Orders data set.

Figure 8-13 Joining data sets on a common field

❏ Choose OK.

The Define join type and join conditions dialog displays the specified 
condition, as shown in Figure 8-14.

Figure 8-14 Definition of an inner join

4 Choose OK.

6 Choose Finish to save the joined data set.



76 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Joining on more than one key
You can specify more than one join condition when joining two data sets. For 
example, you can join a customers data set with a sales offices data set, shown in 
Figure 8-15, to find the names of customers and sales managers that are located in 
the same city and state. 

Figure 8-15 Data sets with two common fields, City and State

You would create the following join conditions:

■ The first condition, shown in Figure 8-16, compares the State values in the 
Customer and SalesOffices data sets and looks for a match.

Figure 8-16 Joining on a State field

■ The second condition, shown in Figure 8-17, compares the City values in both 
data sets and looks for a match. 

Figure 8-17 Joining on a City field

The joined data set returns the results shown in Figure 8-18.

Name City

Mark Smith

Patrick Mason

Paula West

Joanne Kim

San Francisco

Los Angeles

New York

San Diego

Customers data set Sales Offices data set

City State SalesMgr

Los Angeles

New York

San Francisco

California

New York

California

Robert Diaz

Monica Blair

Susan Kline

State

California

California

New York

California



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 77

Figure 8-18 Data rows returned by the joined data set

Specifying a join condition not based on equality
The condition for joining values in two fields is usually based on equality (=), as 
shown in all the examples so far. Less common are join conditions that use any of 
the other comparison operators: not equal (<>), greater than (>), less than (<), 
greater than or equal to (>=), and less than or equal to (<=). 

The following example shows the use of joins that are not based on equality. In 
the example, a Sales data set is joined with a Commissions data set. The joined 
data set uses a >= join and a < join to look up the commissions to pay to sales 
managers, based on their sales totals and management levels. 

Figure 8-19 shows the Sales and Commissions data sets. In the Commissions data 
set, each level has four commission rates. For level 1, a commission rate of 25% is 
paid if a sales total is between 75000 and 100000, 20% is paid if a sales total is 
between 50000 and 75000, and so on.

Figure 8-19 Data sets returning sales and commission rates data

The following join conditions specify the fields on which to join and how to 
compare the values in the fields being joined:

SalesMgr Level

Susan Kline

Robert Diaz

Monica Blair

Sean Calahan

1

2

2

1

Sales data set Commissions data set

Level LowRange HighRange

1

1

1

1

75000

50000

25000

15000

100000

75000

50000

25000

TotalSales

55000

45000

28000

23000

Commission

25

20

15

10

2

2

2

2

70000

45000

20000

10000

100000

70000

45000

20000

25

20

15

10



78 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ The first condition, shown in Figure 8-20, compares the Level values in the 
Sales and Commissions data sets and looks for a match. 

Figure 8-20 Joining on the Level field and looking for a match

■ The second condition, shown in Figure 8-21, uses the >= operator to compare 
the TotalSales values in the Sales data set with the LowRange values in the 
Commissions data set. 

Figure 8-21 Joining on TotalSales and LowRange fields using the >= operator

■ The third condition, shown in Figure 8-22, uses the < operator to compare the 
TotalSales values in the Sales data set with the HighRange values in the 
Commissions data set. 

Figure 8-22 Joining on TotalSales and HighRange fields using the < operator

The second and third join conditions check if a sales total is greater than or equal 
to LowRange and less than HighRange.



C h a p t e r  8 ,  C o m b i n i n g  d a t a  f r o m  m u l t i p l e  d a t a  s o u r c e s 79

The joined data set returns the results shown in Figure 8-23. 

Figure 8-23 Data rows returned by the joined data set



80 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



Part 2Designing reports

Part Two2





C h a p t e r  9 ,  F o r m a t t i n g  a  r e p o r t 83

C h a p t e r

9
Chapter 9Formatting a report

This chapter contains the following topics:

■ Formatting features in Actuate BIRT Designer

■ Removing the default themes

■ Hiding columns in a table

■ Designing for optimal viewer performance



84 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Formatting features in Actuate BIRT Designer
Actuate BIRT Designer supports all the formatting features available in the open-
source version, and provides a few additional features. The reports you create 
using Actuate BIRT Designer are typically published to the Actuate BIRT iServer, 
where they can be viewed in Interactive Viewer, opened in BIRT Studio, or added 
to a dashboard. Often, as you design a report, you consider how the report is 
viewed and used by these applications.

This chapter describes the additional report formatting options in Actuate BIRT 
Designer. For information about other formatting options, see BIRT: A Field Guide. 
This chapter also describes the design issues to consider when designing reports 
that users view in the web viewer.

Removing the default themes
By default, new reports that you create use a set of themes that apply formatting 
to charts, gadgets, tables, and cross tabs. Figure 9-1 shows a table with the default 
formats.

Figure 9-1 Table with the default formats

The themes are defined in a library, ThemesReportItems.rptlibrary, which is 
added to every new report. 

To apply your own themes or styles in a report, disable the default themes by 
doing one of the following:

■ When creating a new report, in the second dialog of the New Report wizard, 
deselect Include the default themes. Figure 9-2 shows this option selected, 
which is the default.



C h a p t e r  9 ,  F o r m a t t i n g  a  r e p o r t 85

Figure 9-2 Include the default themes selected by default

■ If a report already includes the default themes, in the Outline view, expand 
Libraries, then right-click ThemesReportItems and choose Remove Library, as 
shown in Figure 9-3.

Figure 9-3 Removing ThemesReportItems.rptlibrary from a report

The previous procedures remove all the default themes from a report. You can, 
however, choose to remove themes from specific report elements while 
maintaining default themes for other report elements. Figure 9-4 shows an 

Option to include or 
exclude default themes



86 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

example of removing a default theme, ThemesReportItems.default-table, from a 
table by setting the Theme property to None.

Figure 9-4 Setting a table’s Theme property to None

Hiding columns in a table
There are two ways to hide a column in a table. You can:

■ Set the column’s Display property to No Display.

■ Set the column’s Visibility property to Hide.

Use the Display property if you are designing a report for Interactive Viewer and 
you want to hide one or more columns when the report is first displayed in 
Interactive Viewer. Users viewing the report can then choose to show the hidden 
columns. The Display property is available under Advanced properties in the 
Property Editor, as shown in Figure 9-5.

Figure 9-5 Display property of a table column set to No Display

Use the Visibility property to hide a column based on the output format or on a 
specific condition. For example, you can hide a column in all formats except PDF, 



C h a p t e r  9 ,  F o r m a t t i n g  a  r e p o r t 87

or hide a column if it contains no values. The Visibility property is available 
under Properties in the Property Editor, as shown in Figure 9-6.

Figure 9-6 Visibility property of a table column set to Hide Element

In releases prior to 11SP1, columns hidden by the Visibility property were 
available for display in the Interactive Viewer. In releases 11SP1 and later, they are 
not. Reports created in a release prior to 11SP1 and which used the Visibility 
property to hide or display a column now exhibit different behavior in Interactive 
Viewer. To restore the original behavior, change the report to use the Display 
property instead of the Visibility property.

Designing for optimal viewer performance
Actuate BIRT viewers support a feature called progressive viewing, which 
displays the first few pages as soon as they are generated instead of waiting until 
the entire report is generated. For long reports, this feature can significantly 
reduce the amount of time a user waits before the first page appears.

The design and functionality of a report affect the time it takes for BIRT to 
generate the initial pages. A major factor that hinders performance is the retrieval 
of data from an underlying data source, and the storage and processing of all that 
data before BIRT can render the first report page. Optimal viewing performance 
occurs when BIRT renders a page as soon as the data for that page has been 
retrieved, before data for the entire report is processed.

To achieve optimal progressive viewing performance, observe the following 
guidelines:

■ Ensure that data sets return only the data that you want to display in each 
report element (tables, lists, or charts). 

For example, if the data in a table must be filtered, grouped, sorted, or 
aggregated, perform these tasks at the data source level. To manipulate data at 
the table level, BIRT not only has to retrieve and store more data, it also has to 
spend more time processing the data.



88 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ If, as recommended in the previous point, you create a data set to return data 
rows that are already grouped, disable the group sorting in BIRT, which 
occurs when you create a group using the group editor. 

To disable group sorting in BIRT, select the table in which grouping is defined. 
In Property Editor, choose Advanced, then set the Sort By Groups property to 
false.

■ If creating nested tables (a table within another table) as is common in master-
detail reports, create a data set for each table instead of creating a single data 
set that both the outer and inner tables use.

■ Avoid the following items:

■ Top n or bottom n filters. These filters require that BIRT process an entire 
set of data to determine the subset of data to display.

■ Aggregations that require multiple passes through data, for example, 
subtotals as a percentage of a grand total.

■ Summary tables. Even though these tables do not display detail rows, BIRT 
must still process all the detail rows to calculate and display the summary 
data.



C h a p t e r  1 0 ,  U s i n g  F l a s h  o b j e c t s  i n  a  r e p o r t 89

C h a p t e r

10
Chapter 10Using Flash objects in a

report
This chapter contains the following topics:

■ About Flash

■ Software requirements

■ Ways to add Flash objects in a report

■ Output formats that support Flash



90 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About Flash
Flash, developed by Adobe Systems, is software commonly used for adding 
animation and interactivity to web pages, and to create rich Internet applications. 
Actuate BIRT Designer supports the use of Flash objects, such as Flash charts and 
gadgets, in reports. Figure 10-1 shows examples of the types of Flash objects that 
reports can display.

Figure 10-1 Flash charts and gadgets

Software requirements
You must install Adobe Flash Player to view and interact with Flash objects in a 
report design. Flash player installs as an ActiveX control or browser plug-in. It is 
available from Adobe at the following location:

http://www.adobe.com/products/flashplayer

Ways to add Flash objects in a report
Add Flash objects in a report in any of the following ways. The methods are listed 
in order of difficulty, from easiest to most difficult:



C h a p t e r  1 0 ,  U s i n g  F l a s h  o b j e c t s  i n  a  r e p o r t 91

■ Use a built-in Flash chart or Flash gadget. These elements are available in the 
palette and provide the basic types of charts and gadgets. Actuate BIRT 
Designer provides tools for creating these elements without any 
programming. For information about using these elements, see Chapter 11, 
“Using built-in Flash charts and gadgets.”

■ Use a Flash chart, gadget, or other object in the InfoSoft Flash Object Library, a 
third-party library that is packaged with Actuate BIRT Designer. Using a Flash 
object from this library requires programming in JavaScript or Java to convert 
data to the XML format required by the object and then to pass the converted 
data to the object. For information about using objects in the InfoSoft Flash 
Object Library, see Chapter 12, “Using the Flash object library.”

■ Use a Flash object from a third-party library other than InfoSoft. The 
procedure for using this type of Flash object is similar to the procedure for 
using objects in the InfoSoft Flash Object Library. 

■ Use a custom Flash object that you or another programmer develops using 
third-party software. This method provides full control and access to the 
underlying code of the Flash object, but requires knowledge of how the object 
is created, as well as, how to integrate and use the object in the report. The 
procedure for using a custom Flash object is similar to the procedure for using 
objects in the InfoSoft Flash Object Library.

To determine the method to use, consider the data to present and which type of 
Flash object is most suitable for the data, then look at the available types of built-
in Flash charts and gadgets. For example, if you determine that a doughnut chart 
is best, you need look no further than the built-in Flash chart. However, if you 
decide that a Flash map is best, look at the maps included in the InfoSoft Flash 
Object Library. In most cases, the built-in Flash objects and the InfoSoft Flash 
Object Library provide all the objects suitable for presenting report data. 

Output formats that support Flash
HTML reports display Flash content. Report users must have Flash Player 
installed. PDF reports can also display Flash content if the Adobe Reader 
supports Flash. Download a version of Adobe Reader that supports Flash from 
the following location:

http://www.adobe.com/acrobat

If creating a report that contains Flash content and that will be viewed in other 
formats, such as XLS or DOC, use the visibility property to hide Flash objects in 
formats that do not support Flash. If you do not hide the Flash objects, the report 
displays a message, such as “Flash report items are not supported in this report 
format.” As a substitute for a Flash chart or gadget, use a standard chart and set it 
to appear in formats that do not support Flash content.



92 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 93

C h a p t e r

11
Chapter 11Using built-in Flash charts

and gadgets
This chapter contains the following topics:

■ About Flash charts and gadgets

■ Creating a Flash chart and gadget

■ Formatting a Flash chart

■ Formatting a Flash gadget

■ Using animation and other visual effects

■ Tutorial 1: Creating a Flash chart

■ Tutorial 2: Creating a Flash gadget



94 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About Flash charts and gadgets
Flash charts are charts that use visual effects and animation. Actuate BIRT 
Designer supports the creation of both Flash charts and standard charts. Standard 
charts are static images whereas flash charts add motion and more visual interest. 
For example, an animated Flash column chart can progressively draw its columns 
from the bottom to the top and its x-axis labels from left to right. Actuate BIRT 
Designer provides these Flash chart types: column, bar, line, pie, and doughnut. 

Like Flash charts, Flash gadgets display data graphically and with animation. The 
difference between the two elements is that a gadget typically displays a single 
value whereas a chart plots multiple values for comparison. The supported Flash 
gadgets, shown in Figure 11-1, are meter, linear gauge, sparkline, cylinder, 
thermometer, and bullet.

Figure 11-1 Flash gadgets

Creating a Flash chart and gadget
The procedure for creating a Flash chart and gadget is the same as the procedure 
for creating a standard chart. To create a Flash chart or gadget, perform the 
following tasks:

■ Drag the Flash chart or Flash gadget element from the palette and drop it in 
the report.

■ Choose a type of chart or gadget.

■ Specify the data to present in the chart or gadget.

■ Format the chart or gadget.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 95

The formatting options available to the Flash elements are different from the 
formatting options available to standard charts. While many of the chart parts 
and formatting attributes are the same, Flash lets you add animation and special 
visual effects to parts of a chart or gadget.

This chapter describes the formatting options that are unique to Flash charts and 
gadgets. Flash gadgets are covered in more detail because gadgets have features 
that differ from those in a standard chart. For information about the different 
chart types, specifying data for a chart, and using the standard formatting 
options, see BIRT: A Field Guide.

Formatting a Flash chart
The Flash chart builder is similar to the standard chart builder. Both provide a 
separate page for formatting tasks. Figure 11-2 shows an example of the Format 
Chart page displaying Series properties for a Flash chart. This page is similar to 
the Format Chart page in the standard chart builder. The primary difference is the 
capability to add animation and special visual effects, such as bevels, glow, and 
blur, to a Flash chart. These tasks are described later in this chapter.

Figure 11-2 Format Chart page in the Flash chart builder



96 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Formatting a Flash gadget
Like the Flash and standard chart builders, the Flash gadget builder provides a 
separate page for formatting tasks. Figure 11-3 shows an example of the Format 
Gadget page displaying the general properties for a linear gauge. 

Figure 11-3 Format Gadget displaying a linear gauge and its general properties

Format Gadget lists formatting properties of each visual part of a gadget. As 
Figure 11-3 shows, for a linear gauge, you can format its scale, needle, numbers, 
regions, ticks, thresholds, and so on. Each gadget has a different set of formatting 
properties, which change specific aspects of the gadget’s appearance.

General properties
The general properties of a gadget control overall appearance, such as color 
scheme, background and border style, and whether animation is enabled. General 
properties can also define the radius of a cylinder gauge, the needle position of a 
linear gauge, or the start and end angles of a meter gauge. For example, 
Figure 11-4 shows how changing the Radius, Height, and Viewing Angle 
properties affects the view of a cylinder gauge gadget. Radius and Height values 
are expressed as percentages of the gadget area.

Categories of 
formatting 
properties



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 97

Figure 11-4 Examining results of setting properties for a cylinder gauge

Figure 11-5 shows examples of setting the Start Angle and End Angle properties 
to change the shape and orientation of a meter gauge. The examples also show 
how to use the Outer Radius and Inner Radius properties to set the thickness of 
the arc in the gauge.

Figure 11-5 Examining results of setting properties for a meter gadget

Radius: 20%(default)
Height: 50% (default)
Viewing Angle: 30 (default)

Radius: 30%
Height: 60%
Viewing Angle: 0

Start Angle: 180 (default)
End Angle: 0 (default)
Outer Radius: 70% of Height (default)
Inner Radius: 40% of Height (default)

Start Angle: 90
End Angle: -90
Outer Radius: 40% of Height
Inner Radius: 25% of Height

Start Angle: 225
End Angle: -45
Outer Radius: 30% of Height 
Inner Radius: 25% of Height 

Start Angle:45
End Angle: 135
Outer Radius: 50% of Height
Inner Radius: 50% of Height



98 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Table 11-1 shows all the general properties and lists the gadgets to which they 
apply. Some properties appear for only one type of gadget. Other properties are 
common to multiple types of gadgets.

Table 11-1 General properties

Property Gadget Usage

Background Color All Sets the background color of the gadget.

Base Color All Sets the color scheme of the gauge. You can use 
either a base color or a preset color scheme. All other 
selections derive from this selection.

Center X 
Coordinate

Meter Specifies the x coordinate of the gauge center.

Center Y 
Coordinate

Meter Specifies the y coordinate of the gauge center.

Color All Specifies the color of the border around the gadget.

Connect Missing 
Data

Sparkline Connects a line between missing points of data.

End Angle Meter Specifies the angle where the gauge ends drawing.

Fill color Cylinder, 
thermometer

Specifies the color of the contained image within a 
filled type of gadget, such as a cylinder or 
thermometer.

Height Cylinder, 
thermometer

Specifies the percentage of the gadget area that the 
gadget image height occupies.

Inner Radius Meter Specifies the radius of the inner portion of the 
gauge.

Outer Radius Meter Specifies the radius of the outer portion of the 
gauge.

Preset Scheme All Selects a preset color scheme for the gauge. You can 
use either a base color or a preset color scheme. All 
other selections derive from this selection.

Radius (or Bulb 
Radius)

Cylinder, 
thermometer

Species the percentage of the gadget area that the 
gadget image radius occupies.

Show Border All Enables or disables the border around the gadget.

Show Dial Values Meter Enables or disables the value display on the dial. 
The dial position can be selected to be above or 
below the dial.

Show Needle On Linear gauge Set to top to have needles appear on top of the 
gadget, set to bottom to have them appear on the 
bottom.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 99

Scale properties
Scale properties define the range of values and the number of tick marks that a 
gadget displays. The scale properties affect the numbers displayed on the gadget, 
not its size. Minimum Value and Maximum Value specify the lowest and highest 
numbers, respectively. However, if the data set value (represented by the needle 
value) is lower than the minimum value or higher than the maximum value, the 
minimum or maximum value is ignored.

Figure 11-6 shows scale properties set for a linear gauge. 

Show Needle Value Linear gauge Enables or disables the display of the value at the 
needle. If enabled, set to Above Needle to display 
the value above the needle, or set to Below Needle to 
display the value below the needle.

Show Round 
Corners

Linear gauge, 
bullet

Enables or disables rounded corners on the gauge.

Show Value Cylinder, 
thermometer

Enables or disables the display of the value the 
gadget is illustrating.

Start Angle Meter Specifies the angle where the gauge begins drawing.

Start X Coordinate Cylinder Chooses a starting x coordinate percentage that 
positions the image within the gadget. Selecting 0 
starts the image at the left side of the gadget. 

Start Y Coordinate Cylinder Chooses a starting y coordinate percentage that 
positions the image within the gadget. Selecting 0 
places the starting y coordinate at the top of the 
gadget, selecting 100 places it at the bottom.

Style All Supports adding a style to the gadget.

Sub-Title Sparkline, bullet Adds a subtitle to the gadget.

Title Sparkline, bullet Adds a title to the gadget.

Turn Off All 
Animations

All Enables or disables all animation effects.

Turn Off Default 
Animations

All Enables or disables default animation.

Viewing angle Cylinder Specifies the angle at which the gadget is viewed. 
Valid values are 0 through 50. 0 appears flat, 50 is 
tilted towards the viewer.

Width Linear gauge, 
meter

Specifies the thickness of the border around the 
gadget.

Table 11-1 General properties

Property Gadget Usage



100 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 11-6 Format Gadget displaying a linear gauge and its scale properties

Table 11-2 shows all the scale properties and lists the gadgets to which they apply.

Needle properties
Needle properties define the shape, size, and color of a needle. A needle appears 
only in a linear gauge and in a meter gauge, and is used to point to a data value. 
Figure 11-7 shows the needle properties set for a meter gauge.

Table 11-2 Scale properties

Property Gadget Usage

Auto Adjust 
Tickmarks

All but 
sparkline

Enables or disables tick marks created 
evenly across the scale

Major Tickmarks 
Count

All but 
sparkline

Specifies the number of major tick marks 
to display on the scale

Maximum Value All Sets the highest value of the scale

Minimum Value All Sets the lowest value of the scale

Minor Tickmarks 
Count

All but 
sparkline

Specifies the number of minor tick marks 
to display between major tick marks



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 101

Figure 11-7 Selecting options for the needle of a meter gauge gadget

For a meter gauge, the needles properties apply only to the pointer part of the 
needle. To format the base, or pivot, of the needle (represented by the circle), 
choose Needle Base/Pivot. 

Table 11-3 shows all the needle properties and lists the gadgets to which they 
apply.



102 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Needle base or pivot properties
Needle base or pivot properties define the appearance of a needle base, or pivot. 
Drawn as a circle, the base is the point around which the needle rotates. A needle 
base appears only for a meter gauge. Figure 11-8 shows the needle base properties 
set for a meter gauge. The size of the needle base is larger than the default size, 
and the fill color is set to a radial gradient. 

Table 11-3 Needle properties

Property Gadget Usage

Base Width Meter Sets the size of the bottom part of the 
needle, as a percent of the size of the 
gadget.

Border Color Linear gauge, 
meter

Sets the border color of the needle.

Border Width Linear gauge, 
meter

Sets the thickness of the needle border.

Fill Background 
Color

Meter Sets the background color of needle.

Fill Color Linear gauge Sets the interior color of the needle.

Rear Extension Meter Sets the size of the portion of the needle 
behind the pivot as a percent of the size of 
the gadget.

Shape Linear gauge Sets the shape of the needle.

Show Value Meter Enables or disables the display of the 
value to which the needle points.

Size Linear gauge, 
meter

Sets the size in pixels, or in percent of 
gadget width, of the needle.

Tooltip Linear Gauge, 
meter

Specifies text for the tooltip.

Top Width Meter Sets the size of the tip of the needle as a 
percent of the size of the gadget.

Value Linear gauge, 
meter

Sets which needle to format. Several 
needles can co-exist, based on the data 
used to create the gadget.

Value Textbox X 
Co-ordinate

Meter Sets the x coordinate of the value text, as a 
percent of gadget width.

Value Textbox Y 
Co-ordinate

Meter Sets the y coordinate of the value text, as a 
percent of gadget height.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 103

Figure 11-8 Selecting options for the needle base of a meter gauge

Table 11-4 shows all the needle base or pivot properties. These properties are used 
only in a meter gauge.

Table 11-4 Needle base/pivot properties

Property Usage

Border Color Sets the border color of the needle base.

Border Thickness Sets the width of the needle base border.

End Color Sets the ending color to use in a fill gradient.

Fill Color Sets the interior color of the needle base to a solid color. 

(continues)

Needle 
base



104 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Number formatting properties
Number formatting properties define how numbers are displayed in a gadget. 
Use these properties to abbreviate numbers, to add text before or after a number, 
or to specify the number of digits to display after a decimal point. Figure 11-9 
shows the number formatting properties set for a thermometer gauge. Numbers 
display with the dollar symbol ($) before the number and they appear in 
abbreviated format, such as $30K instead of $30,000.

Figure 11-9 Examining a linear gauge and its number formatting properties

Table 11-5 shows all the number formatting properties. These properties are used 
in all the gadgets.

Fill Gradient Sets the interior color of the needle base to a color gradient.

Pattern Specifies the pattern of the fill gradient. Choose Radial or 
Linear.

Rotation Sets the angle of a linear fill gradient.

Show Border Displays or hides the border around the needle base.

Size Sets the size of the needle base as a percent of the meter 
radius.

Start Color Sets the starting color to use in a fill gradient.

Table 11-4 Needle base/pivot properties (continued)

Property Usage



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 105

Region properties
Region properties enable the division of the data plot into regions. Use regions to 
provide more information about values in a gadget. Compare the linear gauges in 
Figure 11-10 and Figure 11-11. The gauge in Figure 11-10 does not show regions. 
The gauge in Figure 11-11 displays three regions, labeled Fair, Good, and 
Excellent.

Figure 11-10 Linear gauge without regions

Figure 11-11 Linear gauge with three regions

Figure 11-12 shows the properties set for the region labeled Fair in Figure 11-11.

Figure 11-12 Properties specified for a region labeled Fair

Table 11-5 Number formatting properties

Property Usage

Auto Abbreviation Abbreviates a number to an appropriate number factor. 
For example, 10,000 becomes 10K.

Force Trailing Zeros Enables or disables the display of trailing zeros after 
the decimal point.

Format Numbers Enables and disables number formatting.

Fraction Digits Specifies the number of digits displayed after the 
decimal point.

Prefix Specifies a text value to display before a number.

Suffix Specifies a text value to display after a number.



106 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Table 11-6 shows all region properties and lists the gadgets to which they apply.

Tick properties
Tick properties define the size, color, and position of tick marks on a gadget. 
Figure 11-13 shows the tick properties set for a linear gauge. Tick marks appear at 
the top and inside the gauge. The first and last tick values display Min and Max 
instead of numbers.

Figure 11-13 Format Gadget displaying a linear gauge and its tick properties

Table 11-6 Region properties

Property Gadget Usage

Color Linear gauge, meter, bullet Specifies the color of the region.

End Value Linear gauge, meter, bullet Specifies where the region ends.

Label Linear gauge, meter, bullet Specifies the name of the region.

Region Linear gauge, meter, bullet Chooses the region for which the 
settings apply. You can also add or 
remove a region from the list.

Show Labels Linear gauge Display or hide the region labels.

Start Value Linear gauge, meter, bullet Specifies where the region starts.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 107

Table 11-7 shows all the tick properties and lists the gadgets to which they apply.

Table 11-7 Tick properties

Property Gadget Usage

Major Tick Marks 
Color

Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the color of major tick marks.

Major Tick Marks 
Height

Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the height of major tick marks.

Major Tick Marks 
Width

Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the width of major tick marks.

Maximum Label Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the highest tick mark value. Text 
replaces the numeric value.

Minimum Label Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the lowest tick mark value. Text 
replaces the numeric value.

Minor Tick Marks 
Color

Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the color of minor tick marks.

Minor Tick Marks 
Height

Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the height of minor tick marks.

Minor Tick Marks 
Width 

Linear gauge, meter, bullet, 
cylinder, thermometer

Sets the width of minor tick marks.

Position Cylinder, thermometer Positions tick marks on the right side of the 
gadget.

Position Above Linear gauge, meter, bullet Sets tick marks to appear above the gadget.

Position Below Linear gauge, meter, bullet Sets tick marks to appear below the gadget.

Position Left Cylinder, thermometer Positions tick marks on the left side of the 
gadget.

Show Limits 
Value

Linear gauge, meter, bullet, 
cylinder, thermometer

Enables or disables the display of the first 
and last values.

Show Tick Marks Linear gauge, meter, bullet, 
cylinder, thermometer

Enables or disables the display of tick 
marks on the gadget.

Show Tick Values Linear gauge, meter, bullet, 
cylinder, thermometer

Enables or disables the display of values on 
tick marks.

Ticks Inside Linear gauge, meter, bullet Sets tick marks to appear inside or outside 
of the gadget.

Values Inside Linear gauge, meter, bullet Sets tick mark values to appear inside or 
outside of the gadget.



108 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Threshold properties
Threshold properties define thresholds, which you use to identify meaningful 
values. For example, in a linear gauge that displays a sales total, you can add a 
threshold that identifies the target sales amount, as shown in Figure 11-14. By 
displaying this threshold value, the gauge shows whether the actual sales total is 
over or under the sales target.

Figure 11-14 also shows the threshold properties set to create the threshold. You 
can specify a label, create a threshold line or a threshold zone, specify a threshold 
value or range of values, and format the line and marker. You can create multiple 
thresholds for a gadget.

Figure 11-14 Examining a linear gauge and its threshold properties



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 109

Table 11-8 shows all the threshold properties and lists the gadgets to which they 
apply.

Table 11-8 Threshold properties

Property Gadget Usage

Arc Inner Radius Meter Specifies the inner radius of arc for the threshold 
area

Arc Outer Radius Meter Specifies the outer radius of arc for the threshold 
area

Border Color Linear gauge, meter Sets the border color of the threshold marker

Color Linear gauge, meter, 
sparkline

Sets the color of the threshold area on the gadget

End Value Linear gauge, meter, 
sparkline

Sets the end value of the threshold zone

Label Linear gauge, meter Specifies the text to apply to the threshold

Length Bullet Specifies the length of the threshold as a percent of 
gadget size

Line Style Linear gauge, meter, 
sparkline

Sets the line style of the threshold

Marker Color Linear gauge, meter Sets the color of the threshold marker

Radius Linear gauge Sets the size of the threshold marker

Show as Zone Sparkline Enables or disables display of the threshold as a 
zone

Show Border Meter Enables or disables display of a border around the 
threshold

Show Marker Linear gauge, meter Enables or disables display of the marker on the 
threshold

Show Threshold Sparkline, bullet Enables or disables display of the threshold

Show Value Meter Enables or disables display of the threshold value

Show Value 
Inside

Meter Displays value inside or outside of the arc on the 
gadget

Show Value on 
Top

Linear gauge Enables or disables display of the threshold value

Size Meter Sets the size of the threshold marker

Start Value Linear gauge, meter, 
sparkline

Sets start value of the threshold zone

Threshold Linear gauge, meter Sets which threshold the settings affect

(continues)



110 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Anchor properties
Anchor properties control the shape, size, color, and visibility of markers, or 
anchors, in a sparkline gadget. Unlike other gadgets that display only one or two 
data values, a sparkline gadget plots multiple values and, by default, uses 
anchors to highlight the first, last, lowest, and highest values. Figure 11-15 shows 
the anchor properties set for a sparkline gadget.

Figure 11-15 Examining a sparkline gadget and its anchor properties

Table 11-9 shows all the anchor properties. These properties are used only in a 
sparkline gadget.

Threshold Line/
Threshold Zone

Linear gauge, meter Sets whether the threshold is a single line or a zone

Tooltip Linear gauge, meter Sets tooltip text for the marker on the threshold

Width Sparkline, bullet Sets the width of the threshold

Table 11-8 Threshold properties (continued)

Property Gadget Usage



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 111

Plot properties
Plot properties control the appearance of elements in the data plot area of bullet 
and sparkline gadgets. For a bullet gadget, you can add a border around the 
gadget or a shadow below it. You can also specify whether to display the value 
label and whether to display the value indicator as a line or as a dot. 

For a sparkline gadget, you can specify whether to display the first, last, lowest, 
or highest values, change the color and width of the data line, and add bars in the 
background to represent period blocks. For example, if a sparkline displays daily 
stock quotes over a month, you can show period blocks that have a length of 5 to 
divide the stock values into weeks. 

For example, Figure 11-16 shows the preview of a sparkline gadget. The gadget 
displays period bars that span five values. Alternate bars appear in color.

Figure 11-16 Format Gadget displaying a sparkline gadget

Figure 11-17 shows the plot properties specified for the plot that appears in the 
sparkline gadget example shown in Figure 11-16.

Table 11-9 Anchor properties

Setting Usage

Shape Sets the shape of the anchors.

Size Sets the size of the anchor in pixels.

Visibilities Sets the visibility and color of the anchors. Open, Close, 
High, and Low anchors are visible by default. To display 
anchors for all the other values, select Other Anchors.



112 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 11-17 Examining the plot properties for a sparkline gadget

Table 11-10 shows all the plot properties. 

Table 11-10 Plot properties

Property Gadget Usage

Border Bullet Enables or disables the border around the 
gadget.

Border Color Bullet Sets the color of the border around the 
gadget.

Border Width Bullet Sets the thickness of the border around the 
gadget.

Line Color Sparkline Sets the color of the plot line.

Line Width Sparkline Sets the thickness of the plot line.

Period Bars Color Sparkline Sets the color of the period bars. The color 
is applied to alternate bars.

Period Bars Length Sparkline Sets the number of values that each period 
bar highlights.

Show as Dot Bullet Enables or disables the display of the 
value indicator as a dot instead of a solid 
line.

Show Close Value Sparkline Enables and disables the display of the 
close value.

Show High and Low 
Values

Sparkline Enables and disables the display of the 
high and low values.

Show Open Value Sparkline Enables and disables the display of the 
open value.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 113

Value indicator properties
Value indicator properties control the size, color, and border of the value indicator 
in a bullet gadget, as shown in Figure 11-18.

Figure 11-18 Examining a bullet gadget and its value indicator properties

Table 11-11 shows the value indicator properties. These properties are used only 
in a bullet gadget.

Show Period Bars Sparkline Enables and disables the display of period 
bars.

Show Shadow Bullet Enables or disables the appearance of a 
shadow below the gadget.

Show Value Label Bullet Enables or disables the display of the 
value on the gadget.

Table 11-11 Value indicator properties

Property Gadget Usage

Border Color Bullet Sets the color of the border

Border Width Bullet Sets the thickness of the border

Color Bullet Sets the color of the value indicator

Show Border Bullet Enables or disables a border around the value 
indicator

Width Bullet Sets the value indicator width as a percent of 
the plot thickness

Table 11-10 Plot properties

Property Gadget Usage

Value indicator



114 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Tooltip properties
Tooltip properties control the visibility and appearance of tooltips in a gadget. A 
tooltip displays a data value when the mouse pointer is placed over a value 
marker. Figure 11-19 shows a bullet gadget that displays a tooltip and the 
properties set for the tooltip. 

Figure 11-19 Format Gadget displaying a bullet gadget and its tooltip properties

Table 11-12 shows the tooltip properties. These properties are available to all the 
gadgets.

Table 11-12 Tooltip properties

Property Usage

Show Tooltip Enables and disables the display of a tooltip

Background Sets the background color for the tooltip

Border Sets the border color for the tooltip



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 115

Font properties
Font properties define the type, size, and color of the font used for any text in a 
gadget. Table 11-13 shows the font properties. These properties are available to all 
the gadgets.

Padding and margin properties
Padding and margin properties support the addition of space on all sides of a 
gadget, between a title and the plot, and between a data value and the plot. 
Compare the sparkline gadgets in Figure 11-20 and Figure 11-21. The gadget in 
Figure 11-20 uses default values for all the padding and margin properties.

Figure 11-20 Format Gadget displaying a sparkline gadget and its default padding 
and margin property settings

Table 11-13 Font properties

Property Usage

Font Specifies the name of the font

Size Specifies the font size in points

Color Specifies the color of the text



116 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

The gadget in Figure 11-21 uses the margin and padding properties to add extra 
space between the elements in the gadget.

Figure 11-21 Format Gadget displaying a sparkline gadget that uses padding and 
margin properties to add extra space between elements

Table 11-14 shows the padding and margin properties.

AddOn properties
AddOn properties support the creation of custom objects, called AddOns, to add 
to a gadget. You can add rectangles, polygons, circles, arcs, lines, text, and images 

Margin 
Left

Padding 
Title

Padding 
Value

Margin 
Right

Margin 
Top

Margin 
Bottom

Table 11-14 Padding and margin properties

Property Gadget Usage

Padding 
Title

Sparkline, 
bullet

Adds space, in pixels, between the title and the 
element next to it

Padding 
Value

All Adds space, in pixels, between the data value and 
the element next to it

Margins 
Left, Right, 
Top, Bottom

All Adds space, in pixels, around the entire gadget on 
the left, right, top and bottom sides



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 117

to any gadget to enhance its appearance. You can create any number of objects 
and arrange objects on top of or behind one another. 

Figure 11-22 shows an example of adding two rectangles with rounded corners 
behind a meter gauge. To create this image, create one rectangle with a white 
border, then create another rectangle that is slightly larger. Use the same fill color 
for both rectangles. Place the larger rectangle behind the smaller rectangle.

Figure 11-22 AddOn objects used to enhance a meter gadget

Figure 11-23 shows the AddOns page. AddOns lists the two rectangles added to 
the meter gauge. The objects are listed in z order, which is the order from front to 
back.

Figure 11-23 Format Gadget displaying a meter gauge and its AddOn properties

Figure 11-24 shows the properties set for the larger rectangle. Notice that the size 
of the rectangle is not fixed. Rather, the size is a percentage of the gadget’s size. 
You define an AddOn’s size by specifying values for these four properties: Start X 
coordinate, Start Y coordinate, End X coordinate, and End Y coordinate. By using 
a relative size, AddOns adjust to the size of the gadget area.

Objects listed 
in z order



118 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 11-24 Properties of an AddOn object

Table 11-15 shows the properties for creating the different types of objects that 
you can add to a gadget.

Table 11-15 AddOn properties

Property Object Type Usage

Center X 
coordinate

Polygon, Circle, Arc Specifies the location, as a percentage of the size 
of the gadget, of the x coordinate of the object.

Center Y 
Coordinate

Polygon, Circle, Arc Specifies the location, as a percentage of the size 
of the gadget, of the y coordinate of the object.

Color Line, Text Specifies the color of the line.

Dash Gap Line Specifies the length of gaps between dashes, in 
pixels.

Dash Length Line Specifies the length of dashes, in pixels. 



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 119

End Angle Circle, Arc Specifies the end angle of the object.

End Color Rectangle, Polygon, 
Circle, Arc

Specifies the end color of the gradient fill.

End X coordinate Rectangle Specifies the location, as a percentage of the size 
of the gadget, of the end x value of the object.

End Y coordinate Rectangle Specifies the location, as a percentage of the size 
of the gadget, of the end y value of the object.

Font Text Specifies the font for the object. You can also select 
Bold, Italic, or Underline.

Font Size Text Specifies the font size in points.

Horizontal Text Supports the selection of horizontal text 
alignment within the gadget.

Inner Radius Arc Specifies the radius of the inner portion of the 
object, as a percent of the size of the gadget.

Gradient Rectangle, Polygon, 
Circle, Arc

Select to have a gradient type of fill. Choose a 
Radial or Linear pattern.

Label Text Specifies the text that appears on the object.

Name All Specifies the name of the object. This name 
appears in the list on AddOns options.

Outer Radius Arc Specifies the radius of the outer portion of the 
object, as a percent of the size of the gadget.

Radius Circle Specifies the radius, as a percent of the gadget, of 
the object.

Rotation Rectangle, Polygon, 
Circle, Arc

Specifies the rotation angle for the fill within the 
object.

Rotation Angle Polygon Specifies the rotation angle of the object.

Scale Image Image Enables or disables image scaling. Adjust the 
height and width of the image by percent.

Scale This Font Text Select to alter the size of the text. Adjust the 
scaling amount for width and height by percent.

Show as Dashed Line Enables or disables dashed lines.

Show Border Rectangle, Polygon, 
Circle, Arc

Enables or disables the drawing of a border line 
around the object. Select the color and thickness of 
the border with the Color and Thickness drop-
down menus.

(continues)

Table 11-15 AddOn properties (continued)

Property Object Type Usage



120 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using animation and other visual effects
By default, every Flash chart and gadget animates the data plot, the part of the 
chart or gadget that represents the data. For example, the columns in a column 
chart grow vertically and horizontally, and the pie and doughnut charts rotate. 

Show Round 
Corners

Rectangle Enables or disables rounded corners. Type the 
percent of a circle to round the corner.

Sides Polygon Specifies the number of sides on the object.

Size Polygon Specifies the size, as a percent of the gadget, of the 
object.

Solid Color Rectangle, Polygon, 
Circle, Arc

Select to use a solid fill color for the object. Select a 
color from the associated drop-down listbox.

Start Angle Circle, Arc Specifies the beginning angle of the object.

Start Color Rectangle, Polygon, 
Circle, Arc

Specifies the start color of the gradient fill.

Start X coordinate Rectangle Specifies the location, as a percentage of the size 
of the gadget, of the beginning x value of the 
object.

Start Y coordinate Rectangle Specifies the location, as a percentage of the size 
of the gadget, of the beginning y value of the 
object.

TextBox 
Background Color

Text Specifies the background color of the text box.

TextBox Border 
Color

Text Sets the border color of the text box.

Text Wrap Text Disables or enables text wrap. Choose, by percent 
of the gadget, the maximum height and width for 
the wrap.

Thickness Line Specifies the thickness of the line.

Transparent Image Specifies the amount of transparency, in percent, 
of the image.

URL Image Specifies the location of the image for AddOn file 
types of .gif, .jpg, .png, or .swf.

Vertical Text Supports the selection of vertical text alignment 
within the gadget.

Table 11-15 AddOn properties (continued)

Property Object Type Usage



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 121

You can change the default animation and define custom animations and visual 
effects. The types of visual effects you can apply are shadow, glow, bevel, blur, 
and font.

When defining custom animations and visual effects, do the following:

■ Select the part of the chart or gadget to animate or to apply a visual effect.

■ Select the type or types of effects to apply and set their properties.

If a standard formatting property and an effect property are set for the same chart 
or gadget part, the effect property takes precedence. For example, if the font 
property and a font effect are set for the x-axis labels, the font effect is used.

Creating effects
There are two approaches to designing effects for a Flash chart or gadget. You can 
create one or both of the following effects:

■ A specialized effect that applies to a single chart or gadget part

■ A general purpose effect that applies to multiple parts of a chart or gadget

The first approach is typical. For example, you might create one animation effect 
that draws a chart’s x-axis labels horizontally, and a second animation effect that 
draws y-axis labels vertically.

Use the second approach to apply the same animation or visual effects to more 
than one chart or gadget part. For example, to apply the same font properties to 
the legend title, x-axis labels, and y-axis labels, create an effect with the desired 
font properties, then apply this effect to the three chart parts. Whenever you need 
to change the font for these chart parts, you modify a single effect. This approach 
enables you to reuse and maintain common effects easily. 

How to create an effect

1 Select the part of the chart or gadget to which to apply an effect. If the selected 
part supports effects, the Effects button appears.

2 Choose Effects. Effects shows the part of the chart or gadget selected for an 
effect. Figure 11-25 shows an example of X-Axis Labels selected for a Flash 
chart. 

Figure 11-25 Effects displaying the chart part selected for an effect

Selected part



122 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

3 To apply an effect to a different part of the chart or gadget, select a different 
part from the drop-down list.

4 Choose Add to create an effect.

5 In Add New Effect, type a name for the effect, then choose OK. Effect, shown 
in Figure 11-26, lists the types of effects that you can apply. Animation is 
selected by default. 

Figure 11-26 Types of effects that can be set for Flash object

6 Choose an effect type, then choose Enable.

7 Set the properties of the selected effect type. The properties of each effect type 
are described later in this chapter.

8 If desired, choose another effect type. For example, you can create an effect 
that uses the glow and shadow effect types.

9 Choose OK when you finish creating the effect. Effects displays information 
about the effect you created. Figure 11-27 shows an example. 

Figure 11-27 A defined effect named Animate Labels

Types of effects

Properties of 
the selected 
effect



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 123

My List shows an effect named Animate Labels. The check mark indicates that 
the effect applies to X-Axis Labels. The symbol under Animation and Font 
indicates that the Animate Labels effect uses animation and font effects.

For specific examples of creating effects, see the tutorials later in this chapter.

How to apply an effect to multiple parts in a chart or gadget

This procedure assumes that you have already created the effect.

1 Select the part of the chart or gadget to which to apply an existing effect, then 
choose Effects. Alternatively, choose Effects for any part that currently appears 
in the Format Chart or Format Gadget page. The point is to open the Effects 
dialog.

Effects lists all the effects defined for the Flash chart or gadget.

2 In Effects, in Chart Parts (for a Flash chart) or Effect Target (for a Flash gadget), 
select the item to which to apply an effect, if necessary.

3 Under My List, select the effect to apply by clicking the checkbox next to the 
effect. Figure 11-28 shows an example of the Highlight effect selected for the 
needle in a Flash gauge.

Figure 11-28 Applying an effect to a Flash object’s needle

Managing effects
A single Flash chart or gadget can use any number of effects. The Effects dialog 
box, shown in Figure 11-28, shows all the effects created for a chart or gadget. In 
this dialog box, aside from creating a new effect as described previously, you can 
perform the following tasks:

■ See which parts of the chart or gadget have effects applied. Open the drop-
down list next to Chart Part or Effect Target. Items that have effects applied 
appear in bold.



124 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ See which parts of the chart or gadget a particular effect applies to. Under My 
List, hover the mouse pointer over an effect. A tooltip displays the name of the 
chart or gadget part that uses the effect. For example, the following tooltip 
indicates that an effect applies to a chart’s y-axis labels and title:

Target: Y-Axis Labels, Title

■ Edit an effect. Under My List, select the effect, then choose Edit.

■ Delete an effect. Under My List, select the effect, then choose Delete.

Animation effect
Using the animation effect, you can animate different parts of a chart or gadget, 
including the background, title, data plot, data values, x-axis labels, y-axis labels, 
and more. After selecting the object to animate, you set properties to define how 
the object moves, including the direction, pattern, and duration of the animation. 

For example, you can animate the data plot of a column chart so that the columns 
are drawn from the left side of the chart to the right side in five seconds, with a 
bouncing motion at the end. Figure 11-29 shows the properties set to create this 
type of animation. The Attribute to Animate property value of X coordinate 
specifies that the x (horizontal) position of the plot is animated. The Start Value 
property of Chart Start X specifies that the animation starts from the left side of 
the chart. 

Figure 11-29 Definition of an animation effect

Table 11-16 describes the animation properties.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 125

Table 11-17 describes the attributes of a chart part, or object, that you can animate.  

Table 11-18 describes the macros that you can select for the Start Value property 
described in Table 11-16. Chart refers to the entire area of the Flash chart or 
gadget. Canvas refers to the plot area.

Table 11-16 Animation properties

Property Description

Attribute To 
Animate

Specifies the property of the object to animate as described in 
Table 11-17. Each attribute produces different movements. 
Not all attributes apply to all chart objects. For example, the 
rotation attribute applies only to the data plot of a pie and 
doughnut chart.

Duration Specifies the duration of animation in seconds.

Start Value Specifies the start position of the animation. Either specify a 
fixed pixel location or select a macro. Macros are useful for 
setting a start x or y position at the start, center, or end 
position of chart. Without a macro, such as Chart Center X, 
you would have to experiment with many x values to find 
the center of the chart. Macros are described in Table 11-18.

Type Specifies the type of animation as described in Table 11-19. 
The animation type determines acceleration and 
deceleration during animation. For example, a chart object 
might gradually increase its speed near the beginning of an 
animation, but slow down at the end of the animation. 

Table 11-17 Animation attributes

Attribute Description

Horizontal Scale Animates the x (horizontal) scale of the object. For example, 
for the data plot of a column chart, the columns are 
animated to grow widthwise.

Rotation Animates pie and doughnut charts in a circular motion.

Transparency Specifies alpha transition, or transparency fading.

Vertical Scale Animates the y (vertical) scale of the object. For example, 
for the data plot of a column chart, the columns are 
animated to grow in height.

X coordinate Animates the x position of the object.

Y coordinate Animates the y position of the object.



126 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Table 11-19 describes the type of animation that you can select for the Type 
property described in Table 11-16.  

Table 11-18 Animation Start Value macros

Macro Description

Chart Start X The start x position of the chart, which is equal to 0

Chart Start Y The start y position of the chart, which is equal to 0

Chart Width The width of the chart

Chart Height The height of the chart

Chart End X The end x position of the chart, which is the same as the 
chart width

Chart End Y The end y position of the chart, which is the same as the 
chart height

Chart Center X The center x position of the chart

Chart Center Y The center y position of the chart

Canvas Start X The start x position of the canvas, which is the x coordinate 
of the left side of the canvas

Canvas Start Y The start y position of the canvas, which is the y coordinate 
of the top of the canvas

Canvas Width The width of the canvas

Canvas Height The height of the canvas

Canvas End X The canvas end x position, which is the x coordinate of the 
right side of the canvas

Canvas End Y The canvas end y position, which is the y coordinate of the 
bottom of the canvas

Canvas Center X The center x position of the canvas

Canvas Center Y The center y position of the canvas

Table 11-19 Animation types

Type Description

Bounce Adds a bouncing motion at the end of the animation. The 
number of bounces relates to the duration. Longer durations 
produce more bounces.

Elastic Adds an elastic motion at the end of the animation. The 
range of motion is larger than that of the bounce. The 
amount of elasticity is unaffected by duration.

Linear Adds a smooth movement from start to end of the animation 
without any changes in speed. 



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 127

Bevel effect
Use the bevel effect to create bevels on chart and gadget objects. This effect is 
typically applied to a data plot, as shown in Figure 11-30. As the figure shows, the 
bevel makes the pie chart appear more three-dimensional. By setting properties, 
you can control the angle, depth, and color of the bevel.

Figure 11-30 Definition of a bevel effect

Table 11-20 describes the bevel properties.

Regular Adds slower movement at the end of the animation. 

Strong Adds an effect similar to regular, but the effect is more 
pronounced.

Table 11-20 Bevel properties

Property Description

Angle Specifies the angle of the bevel. Values are 0 to 360 degrees.

Distance Specifies the offset distance of the bevel. Values are in pixels.

Highlight Specifies the color of the highlight portion of the bevel.

(continues)

Table 11-19 Animation types

Type Description



128 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Blur effect
Use the blur effect to blur a chart or gadget object. Figure 11-31 shows this effect 
applied to the gauge of a linear gauge gadget.

Figure 11-31 Definition of a blur effect

Table 11-21 describes the blur properties.

Font effect
By default, all text in a Flash chart and gadget appear in the same font. Use the 
font effect to apply different fonts to different text objects. For example, you can 
use one font for the axes labels and another for the legend labels.

Table 11-22 describes the font effect properties.

Horizontal Blur Specifies the amount of horizontal blur in pixels.

Shadow Specifies the color of the shadow portion of the bevel.

Vertical Blur Specifies the amount of vertical blur in pixels. 

Table 11-21 Blur properties

Property Description

Horizontal Blur Specifies the amount of horizontal blur in pixels 

Vertical Blur Specifies the amount of vertical blur in pixels

Table 11-20 Bevel properties (continued)

Property Description



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 129

Glow effect
Use the glow effect to add a glowing outline around a chart or gadget object. 
Figure 11-32 shows this effect applied to the data plot of a pie chart.

Figure 11-32 Definition of a glow effect

Table 11-23 describes the glow effect properties.

Table 11-22 Font effect properties

Property Description

Background color Sets the background color for the text box

Bold Sets text to bold

Border color Creates a border around the text of specified color

Color Sets the font color

Font Sets the font family for the text

Italic Sets text to italic

Size Specifies the font size

Underline Sets text to underline

Table 11-23 Glow properties

Property Description

Color Specifies the color of the glow

Horizontal Blur Specifies the amount of horizontal blur in pixels

Vertical Blur Specifies the amount of vertical blur in pixels



130 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Shadow effect
Use the shadow effect to add a shadow to a chart or gadget object. Figure 11-33 
shows this effect applied to the data plot of a pie chart.

Figure 11-33 Definition of a shadow effect

Table 11-24 describes the shadow effect properties.

Table 11-24 Shadow properties

Property Description

Angle Specifies the angle of the shadow. Valid values are from 0 to 
360 degrees.

Color Specifies the color of the shadow. 

Distance Specifies the offset distance for the shadow in pixels.

Horizontal Blur Specifies the amount of horizontal blur in pixels. 

Vertical Blur Specifies the amount of vertical blur in pixels. 



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 131

Tutorial 1: Creating a Flash chart
This tutorial provides step-by-step instructions for building a report that uses an 
animated Flash column chart to display sales by product line. You perform the 
following tasks:

■ Create a new report.

■ Build a data source.

■ Build a data set.

■ Add a Flash chart to the report.

■ Select data for the Flash chart.

■ Animate the x-axis labels.

■ Animate the y-axis labels.

■ Change the animation effect of the columns.

Task 1: Create a new report
This task assumes you have already created a project for your reports. 

1 Choose File➛New➛Report.

2 On New Report, type the following text as the file name:

ProductLineSales.rptdesign

3 Choose Finish. A blank report appears in the layout editor.

Task 2: Build a data source
In this procedure, create a data source to connect to the Classic Models sample 
database.

1 Choose Data Explorer.

2 Right-click Data Sources, and choose New Data Source from the context menu.

3 Select Classic Models Inc. Sample Database from the list of data sources. Use 
the default data source name, then choose Next. Connection information 
about the new data source appears.

4 Choose Finish. The new data source appears under Data Sources in Data 
Explorer.



132 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Task 3: Build a data set
In this procedure, build a data set to indicate what data to retrieve from the 
OrderDetails and Products table.

1 In Data Explorer, right-click Data Sets, and choose New Data Set.

2 In New Data Set, in Data Set Name, type the following text:

SalesTotals

Use the default values for the other fields.

■ Data Source Selection shows the name of the data source that you created 
earlier.

■ Data Set Type specifies that the data set uses a SQL SELECT query to 
retrieve the data.

3 Choose Next.

4 In New Data Set —Query, type the following SQL SELECT statement to 
indicate what data to retrieve:

select Products.ProductLine,
sum(OrderDetails.QuantityOrdered * OrderDetails.PriceEach) as 

TotalPrice
from OrderDetails, Products
where products.productcode = orderdetails.productcode
group by products.productline
order by products.productline

This statement calculates the total sales amount for each product line.

5 Choose Finish to save the data set. Edit Data Set displays the columns 
specified in the query, and provides options for editing the data set.

6 Choose Preview Results. Figure 11-34 shows the data rows that the data set 
returns.

Figure 11-34 SalesTotals data set preview



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 133

7 Choose OK.

Task 4: Add a Flash chart to the report
Use the palette to insert a Flash chart, then select a chart type.

1 Choose Palette, then drag the Flash Chart element from the palette to the 
blank report design. The Flash chart builder opens and displays the Select 
Chart Type page, as shown in Figure 11-35.

Figure 11-35 Flash chart builder displaying the Select Chart Type page

2 Create a column chart, using the default values for all the properties.

Task 5: Select data for the Flash chart
In this procedure, select the data to present in the chart.

1 In the Flash chart builder, choose Next to display the Select Data page. 

On this page, under Select Data, Use Data From is selected by default and its 
value is set to SalesTotals, the data set you created earlier. Data Preview shows 
the columns and values returned by the data set.



134 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

2 In Data Preview, select the PRODUCTLINE column header and drag it to the 
empty field to the right of Category (X) Series, as shown in Figure 11-36.

3 Select the TOTALPRICE column header and drag it to the empty field in Value 
(Y) Series, as shown in Figure 11-36.

Figure 11-36 Specifying the data to use for the category and value series

The image in Chart Preview changes to use the specified data.

4 Before formatting the Flash chart, preview the chart. 

1 Choose Finish to close the Flash chart builder.

2 In the layout editor, enlarge the Flash chart. Increase its width to seven 
inches, and increase its height to three inches.

3 Choose Preview.

The Flash chart is animated. Columns are drawn linearly from the bottom to 
the top. Figure 11-37 shows the generated chart.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 135

Figure 11-37 Preview of the Flash chart

Task 6: Animate the x-axis labels
In this procedure, animate x-axis labels to draw them linearly from left to right.

1 Choose Layout to resume editing the report.

2 Double-click the Flash chart to open the Flash chart builder.

3 Choose Format Chart.

4 Choose X-Axis in Chart Area, shown in Figure 11-38. Then, choose Effects.

Figure 11-38 Select X-Axis and Effects to apply animation to x-axis labels

X-Axis

Effects



136 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

In Effects, Chart Parts displays X-Axis Labels, indicating that is the part of the 
chart selected for an effect.

5 Choose Add to create an effect.

6 In Add New Effect, type the following text as the name of the effect, then 
choose OK:

Animate Horizontally

In Effect—Animate Horizontally, Animation is selected by default.

7 Specify the following animation values, as shown in Figure 11-39:

■ Select Enable.

■ In Attribute to Animate, select X co-ordinate.

■ In Start Value, select Canvas Start X.

■ In Duration, type 3.

■ In Type, select Linear.

Figure 11-39 Animation values specified for the Animate Horizontally effect

8 Choose OK to save the effect.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 137

In Effects, shown in Figure 11-40, My List shows Animate Horizontally, the 
effect you just created. The check mark indicates that the effect applies to 
X-Axis Labels. A symbol under Animation indicates that the effect uses 
animation.

Figure 11-40 Effects lists the Animate Horizontally effect

Task 7: Animate the y-axis labels
In this procedure, animate the y-axis labels to display them from top to bottom 
with a bouncing movement.

1 In Effects, in Chart Parts, select Y-Axis Labels.

2 Choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then 
choose OK:

Animate Vertically

4 Specify the following animation values:

■ Select Enable.

■ In Attribute to Animate, select Y co-ordinate.

■ In Start Value, select Chart Start Y.

■ In Duration, type 3.

■ In Type, select Bounce.

5 Choose OK to save the effect.

Task 8: Change the animation effect of the columns
As you saw earlier, the default animation for a column chart is the drawing of 
columns vertically from bottom to top. In this procedure, animate the columns to 
grow in both height and width.

1 In Effects, in Chart Parts, select Data Plot.



138 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

2 Choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then 
choose OK:

Animate Columns

4 Specify the following animation values:

■ Select Enable.

■ In Attribute to Animate, select Horizontal Scale

■ In Start Value, select Canvas Start X.

■ In Duration, type 3.

■ In Type, select Linear.

5 Choose OK to save the effect.

In Effects, the Animate Columns effect is added to the list, as shown in 
Figure 11-41.

Figure 11-41 Effects listing the three effects created

6 Close Effects, then choose Finish to close the Flash chart builder.

7 View the report in the web viewer.

Tutorial 2: Creating a Flash gadget
This tutorial provides step-by-step instructions for creating an animated Flash 
gadget to display a sales grand total. This tutorial continues with the report built 
in the previous tutorial, which used a Flash chart to display sales totals by 
product line. The Flash gadget in this tutorial uses the data from the data set 
created in the previous tutorial. If you want to skip creating the Flash chart in the 
previous tutorial, set up the data required by the Flash gadget by running 
through the following tasks from the previous tutorial: 

■ Task 1: Create a new report



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 139

■ Task 2: Build a data source

■ Task 3: Build a data set

This tutorial covers the following tasks:

■ Add a Flash gadget to the report.

■ Select data for the linear gauge.

■ Divide the data area into regions.

■ Add thresholds.

■ Animate the region labels.

Task 1: Add a Flash gadget to the report
1 Choose Palette, then drag the Flash Gadget element from the palette and drop 

it in the report, above the Flash chart. The Flash gadget builder opens and 
displays the Select Gadget Type page, as shown in Figure 11-42.

Figure 11-42 Flash gadget builder displaying the Select Gadget Type page

2 Create a linear gauge, the gadget selected by default.

Task 2: Select data for the linear gauge
In this procedure, specify the data to present in the gauge.

1 In the Flash gadget builder, choose Next to display the Select Data page. 



140 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

On this page, under Select Data, Use Data From is selected by default and its 
value is set to SalesTotals, the data set you created earlier. Data Preview shows 
the columns and values returned by the data set.

2 In Data Preview, select the TOTALPRICE column header and drag it to the 
empty field in Value Definition, as shown in Figure 11-43.

Figure 11-43 Specifying the data to use for the gauge value

The gauge in Preview changes to use the specified data. The needle shows a 
value of 3.85M, which is the total for Classic Cars, the value in the first row 
returned by the data set.

3 Specify that the gauge display the sum of sales across all product lines.

1 Click the down arrow button next to the sigma ( ) symbol.

2 In Aggregate Expression, select Sum, then choose OK.

In Preview, the needle now shows a value of 9.6M.

4 Before formatting the gauge, preview the report.

1 Choose Finish to close the Flash gadget builder.

Σ



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 141

2 In the layout editor, resize the gauge. Increase its width to 7 inches, and 
decrease its height to 1.5 inches.

3 Choose Run➛View Report➛In Web Viewer. The gauge is animated. The 
gauge is drawn linearly from the left to the right, and the needle moves 
from the left edge of the gauge to its final position.

Task 3: Divide the data area into regions
In this procedure, divide the data area into three regions labeled Fair, Good, and 
Excellent.

1 Choose Layout to resume editing the report.

2 Double-click the gauge to open the Flash gadget builder.

3 Choose Format Gadget.

4 Choose Regions from the list of options. Figure 11-44 shows the default region 
properties. There are three predefined regions: A, B, and C. A is selected by 
default. 

Figure 11-44 Format Gadget page displaying default region properties

5 In Properties, change the properties of region A as follows:

1 In Label, type:

Fair



142 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

2 In Start Value, use the default value 0.

3 In End Value, type 3,000,000.

4 In Color, select a red color.

6 Select B, then set its properties as follows:

1 In Label, type:

Good

2 In Start Value, type 3,000,000.

3 In End Value, type 7,500,000.

4 In Color, select a yellow color.

7 Select C, then set its properties as follows:

1 In Label, type:

Excellent

2 In Start Value, type 7,500,000.

3 In End Value, type 10,000,000.

4 In Color, select a green color.

Preview shows the data area of the gauge divided into three regions, as shown 
in Figure 11-45. The regions appear in the specified colors, but the region 
labels do not appear.

Figure 11-45 Gauge displaying three regions

8 Select Show Labels to display the region labels. The gauge displays Fair, Good, 
and Excellent in the corresponding regions, as shown in Figure 11-46.

Figure 11-46 Gauge displaying region labels

Task 4: Add thresholds
In this procedure, add two threshold points to represent nominal and target sales 
values.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 143

1 Choose Thresholds from the list of options. 

The page displays the properties for a predefined threshold, Threshold1.

2 Change the properties of Threshold1 as follows:

1 In Properties—Label, type:

Nominal

2 In Start Value, type 2,500,000

3 In Marker, select Show Marker.

In Preview, the gauge displays a threshold line that displays the Nominal label 
above the marker.

3 Create a new threshold. In the drop-down list that displays the text 
Threshold1, click the down arrow button, then choose <New Threshold...>. 

4 Set the properties of Threshold2 as follows:

1 In Properties—Label, type:

Target

2 In Start Value, type 8,000,000.

3 In Marker, select Show Marker.

The gauge displays the Target threshold. Figure 11-47 shows the gauge with 
the two thresholds added.

Figure 11-47 Gauge displaying thresholds

Task 5: Animate the region labels
In this procedure, animate the region labels to move from the left of the gauge to 
their final positions.

1 Choose Regions.

2 In Properties, Choose Effects, next to the Label property value. In Effects, 
Effect Target displays Gauge Labels, indicating that is the part of the gadget 
selected for an effect.

3 Choose Add to create an effect.



144 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

4 In Add New Effect, type the following text as the name of the effect, then 
choose OK:

Animate Horizontally

In Effect—Animate Horizontally, Animation is selected by default.

5 Specify the following animation values, as shown in Figure 11-48:

■ Select Enable.

■ In Attribute to Animate, select X co-ordinate.

■ In Start Value, select Chart Start X.

■ In Duration, type 3.

■ In Type, select Linear.

When you finish specifying the values, Sample Preview shows the animation. 

Figure 11-48 Animation values specified for the Animate Horizontally effect

6 Choose OK to save the effect.

In Effects, shown in Figure 11-49, My List shows Animate Horizontally, the 
effect you just created. The check mark indicates that the effect applies to 
Gauge Labels. A symbol under Animation indicates that the effect uses 
animation.



C h a p t e r  1 1 ,  U s i n g  b u i l t - i n  F l a s h  c h a r t s  a n d  g a d g e t s 145

Figure 11-49 Effects lists the Animate Horizontally effect

Task 6: Animate the sales value
In this procedure, animate the sales value to move it from the top of the gauge to 
its final position above the needle.

1 In Effects, in Effect Target, select Value.

2 Choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then 
choose OK:

Animate Vertically

4 Specify the following animation values:

■ Select Enable.

■ In Attribute to Animate, select Y co-ordinate.

■ In Start Value, select Chart Start Y.

■ In Duration, type 2.

■ In Type, select Linear.

5 Choose OK to save the effect, then choose OK to close Effect.

6 Display the sales value above the needle.

1 In the Format Gadget page, choose General.

2 In Properties, next to Show Needle Value, select Above Needle.

Task 7: Add a glow effect to the needle
In this procedure, highlight the needle by adding a glow effect.

1 Choose Needles from the list of options, then choose Effects.



146 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

2 In Effects, choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then 
choose OK:

Highlight

4 In Effect—Highlight, choose Glow.

5 Specify the following glow values:

■ Select Enable.

■ Use the default values for Horizontal Blur, Vertical Blur, and Color.

6 Choose OK to save the effect, then choose OK to close Effect.

7 Choose Finish to save the formatting changes to the gauge.

8 Preview the report. The gauge should look like the one in Figure 11-50.

Figure 11-50 Preview of finished Flash gadget

Limitations
Due to certain aspects of using Flash objects with Actuate BIRT, there are 
situations where the Flash object does not work as expected. Data for the Flash 
object is embedded in the Flash object by default. If you create a Flash chart or 
gadget that contains data exceeding 64KB, you get an error, such as “A script in 
this movie is causing Adobe Flash Player to run slowly.” This error can appear in 
either Actuate BIRT Designer or Actuate Interactive Viewer. 

To fix this error, set the Embed Data property of the chart or gadget to false, and 
rebuild the report. This property setting prevents data from being embedded in 
the Flash object, and the object displays properly. To set the Embed Data property, 
in the report layout, select the Flash chart or gadget, and in Property Editor, select 
Advanced. Note, however, that setting a chart’s Embed Data property to false 
displays the chart in an HTML report only. The chart does not appear in PDF.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 147

C h a p t e r

12
Chapter 12Using the Flash object

library
This chapter contains the following topics:

■ About the Flash object library

■ Inserting a Flash object in a report

■ Providing data to a Flash object

■ Using the Flash object library documentation

■ Tutorial 3: Creating a Flash map that gets data through the dataXML variable

■ Tutorial 4: Creating a Flash chart that gets data through the dataURL variable

■ Debugging a Flash object



148 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About the Flash object library
Actuate BIRT Designer includes a library of Flash objects developed by InfoSoft. 
This third-party library provides hundreds of Flash objects organized in four 
categories—charts, power charts, widgets, and maps. If the Flash chart and Flash 
gadget elements, described in the previous chapter, do not provide the type of 
chart or gadget that you want to use in a report, look in the Flash object library. 

Unlike the Flash chart and Flash gadget elements in the palette, using a Flash 
object from this library requires programming in JavaScript or Java. Knowledge 
of XML is also essential.

About Flash charts
The Flash object library provides all the basic chart types—bar, column, line, pie, 
and doughnut—supported by the built-in Flash chart element, as well as, an 
extensive gallery of advanced charts, including combination, multi-series, scroll, 
and XY plot charts. 

Figure 12-1 shows examples of Flash charts.

About Flash gadgets
The Flash object library provides all the common gadgets—linear, meter, bullet, 
cylinder, and thermometer—supported by the built-in Flash gadget element, and 
many others, including funnel, pyramid, gantt, and LED gadgets. Gadgets, 
commonly used in dashboard applications, are suitable for displaying KPIs (Key 
Performance Indicators) and other critical data that are monitored in real time.

Figure 12-2 shows examples of Flash gadgets.

Figure 12-1 Column 3D line dual Y combination chart and scatter chart



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 149

About Flash maps
Flash maps are vector maps suitable for displaying data by geographical 
divisions, such as population distribution, electoral results, office locations, 
survey results, weather patterns, and real-estate sales. The Flash object library 
provides hundreds of maps, including maps of the world, continents, countries, 
European regions, USA states, and so on.

Figure 12-3 shows examples of Flash maps.

Figure 12-2 Funnel gadget and pyramid gadget

Figure 12-3 US map and Europe map



150 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About Flash power charts
Flash power charts are specialized charting widgets that provide unique ways to 
present data. Charts, such as the drag-node, logarithmic, radar, kagi, and 
waterfall chart can be used for a wide variety of purposes, including simulations, 
scientific plotting, financial analysis, and hierarchical diagrams.

Figure 12-4 shows examples of power charts.

Figure 12-4 Waterfall chart and radar chart

Flash object components
Essentially, the Flash object library is a collection of Shockwave Flash (SWF) files 
that generate Flash charts, gadgets, or maps based on data and configuration 
settings provided in XML format. Each Flash object used in a report comprises the 
following components:

■ An SWF file, which is a ready-to-use chart, gadget, or map

■ XML data, which defines the data values and properties for rendering the 
Flash chart, gadget, or map

The Flash object library provides the SWF files. You provide the XML data in the 
format required by the Flash object.

Inserting a Flash object in a report
Just like the other report elements, you can insert a Flash object directly in the 
report page or in any of the container elements, which is the typical case. The 
location depends on various factors, including the position of the Flash object 
relative to other report elements, or whether the Flash object shares data in a data 
set that is used by other elements. For information about laying out a report, see 
BIRT: A Field Guide.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 151

How to insert a Flash object

1 Drag the Flash Object element from the palette and drop it in the report layout.

2 In Flash Builder, specify the following information:

1 In Select content from, select Flash Object Library, as shown in Figure 12-5.

Figure 12-5 Selecting Flash Object Library

2 In Enter resource file, choose the open folder button to select a Flash file 
from the library.

Browse for Flash Files displays the top-level contents of the Flash Object 
Library, as shown in Figure 12-6.

Figure 12-6 Top-level contents of the Flash Object Library

3 Expand the folder that contains the type of Flash object you want, then 
select the SWF file for the object. Figure 12-7 shows some of the SWF files in 
the Flash Charts folder. The names of the SWF files reflect the chart types. 
For example, to insert a bubble chart in the report, select Bubble.swf.



152 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 12-7 Available flash charts

4 Choose OK.

3 Choose Finish. The Flash object appears in the report layout.

Providing data to a Flash object
All Flash objects are controlled by XML properties. You must use XML to provide 
data to a Flash object and to define the visual and functional properties of a Flash 
object. Unlike the Flash charts and gadgets that you create using the Flash chart 
and Flash gadget elements, an object in the Flash library cannot access data 
directly from a data set. After creating a data set to retrieve data from a data 
source, you write code that accesses the data and converts it to the required XML 
format.

Before you can write this code, you need to know what XML is required for a 
given Flash object. The XML differs depending on the type of Flash object. The 
following example shows a basic single-series chart and the XML that defines its 
data and properties. Figure 12-8 shows a doughnut chart that displays a 
company’s revenue by business division.

Figure 12-8 Doughnut chart displaying revenue by business division



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 153

Listing 12-1 shows the XML that defines the data and properties of the doughnut 
chart. 

Listing 12-1 Sample XML for a doughnut chart

<chart caption='Company Revenue' numberPrefix='$' 
labelSepChar=':'> 
<set label='Services' value='2500000'/> 
<set label='Hardware' value='3280000'/> 
<set label='Software' value='4550000'/> 

</chart>

In a BIRT report, the values highlighted in bold are data values that are derived 
from a data set. Other XML attributes and values define the appearance of the 
chart. For example:

■ caption='Company Revenue' sets the title of the chart.

■ numberPrefix='$' adds the dollar symbol as a prefix to all numbers on the 
chart.

■ labelSepChar=':' specifies that the colon character be used to separate the data 
label and data values on the chart.

Even if you are not well-versed in XML, you quickly learn that chart data and 
formatting information are defined using the attribute='value' format. Notice that 
the sample XML is brief for a chart that looks presentable. Only three visual 
attributes are specified. The XML does not define attributes for fonts or colors. 
Every Flash object uses default values for visual attributes. You define attributes 
only to change default settings, or to add items that do not appear by default.

The next example shows a multi-series chart and the XML that defines its data 
and properties. Figure 12-9 shows a multi-series column chart that displays 
expenses and revenue from 2005 to 2009.

Figure 12-9 Multi-series column chart displaying expenses and revenue for five 
years



154 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Listing 12-2 shows the XML that defines the data and properties of the multi-
series chart. 

Listing 12-2 Sample XML for a multi-series column chart

<chart caption='Expenses and Revenue' showValues='0' decimals='0' 
numberPrefix='$'> 
<categories> 

<category label='2005' /> 
<category label='2006' /> 
<category label='2007' /> 
<category label='2008' /> 
<category label='2009' /> 

</categories> 

<dataset seriesName='Expenses'> 
<set value='38000' /> 
<set value='48000' /> 
<set value='50000' /> 
<set value='55000' /> 
<set value='57000' /> 

</dataset> 

<dataset seriesName='Revenue'> 
<set value='48000' /> 
<set value='53000' /> 
<set value='60000' /> 
<set value='75000' /> 
<set value='52000' /> 

</dataset> 
</chart>

The values highlighted in bold are data values that are provided by a data set. 
Compared to the single-series doughnut chart, the XML for defining the data for 
a multi-series column chart is slightly more complex. The data for the multi-series 
chart is divided into three sections, whereas the data for the single-series 
doughnut chart is contained in one section.

Once you determine the XML needed to define the data and properties for a 
specific Flash object, perform the following tasks:

1 Write code to generate the XML.

Use either JavaScript or Java, depending on the method you use to pass the 
XML to the Flash object, described next.

2 Pass the XML to the Flash object.

There are two ways to accomplish this task. Use either the dataXML variable 
or the dataURL variable to pass the XML to the Flash object.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 155

Generating the XML data
Defining the visual attributes is straightforward. Simply use the attribute='value' 
format for each attribute; for example, color='8BBA00'. Defining the data, 
however, requires programming to iterate through a data set and retrieve values 
from each row of data. 

The following examples include code snippets, which show how to accomplish 
this task using JavaScript. For complete programming examples using JavaScript 
and Java, review the tutorials later in this chapter.

Doughnut chart example

In the doughnut chart example shown in Figure 12-8, data is defined using the 
<set> tag and the following format:

<set label='Services' value='2500000'/>

The code you write must get values from two columns, one that stores business 
division values, and another that stores revenue values. Assume that the data set 
providing the data values returns rows as shown in Figure 12-10.

Figure 12-10 Data rows returned by data set in doughnut chart example

The JavaScript code for getting the division and revenue values from a data set 
row and creating a single <set> line would look like the following:

var setData = "<set ";
setData = setData + "label='" + 

this.getRowData().getColumnValue("Division") + "'";
setData = setData + "value='" + 

this.getRowData().getColumnValue("Revenue") + "'/>";

To generate all the <set> lines, add code, such as the following:

xmlData = xmlData + setData;



156 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Multi-series chart example

In the multi-series chart example shown in Figure 12-9, category data is defined 
within the <categories> tag using the <category> tag in the following format:

<category label='2005' />

Value series data is defined within the <dataset> tag using the <set> tag in the 
following format:

<set value='38000' />

The code you write gets values from three columns in each data set row. Assume 
that the data set providing the data values returns rows as shown in Figure 12-11.

Figure 12-11 Data rows returned by data set in multi-series chart example

The JavaScript code for getting the column values from each data set row would 
look like the following:

var YearData = "<category label='" + 
this.getRowData().getColumnValue("Year")+ "'/>";

var ExpenseData = "<set value='" + 
this.getRowData().getColumnValue("Expenses") + "'/>";

var RevenueData = "<set value='" + 
this.getRowData().getColumnValue("Revenue") + "'/>";

To generate all the <category> and <set> lines, add code, such as the following:

dataPart1 = dataPart1 + YearData;
dataPart2 = dataPart2 + ExpenseData;
dataPart3 = dataPart3 + RevenueData;

Using the dataXML variable to pass XML data
Use the dataXML variable if the XML to pass to the Flash object is less than 64KB, 
a limit imposed by the Flash Player. Passing the data through the dataXML 
variable embeds the data in the Flash object. If the XML exceeds 64KB, the Flash 
Player displays an error. When using the dataXML variable, you write JavaScript 
code, as shown in the code examples in the previous section, to generate the XML. 



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 157

Writing this code requires a basic understanding of BIRT events and their order of 
execution, as well as, BIRT elements and the functions for manipulating data.

How to use the dataXML variable to pass data to the Flash object

This procedure assumes you have already generated the data in XML format, as 
described in the previous section.

1 In the report layout, select the Flash object.

2 In Property Editor, choose the Flash Variables tab.

3 In the Flash Variables page, choose Add.

4 In Add Variables, do the following:

1 In Name, type:

dataXML

2 In Expression, choose the JavaScript expression builder.

5 In the JavaScript expression builder, type an expression that passes the 
complete XML to the Flash object. The following expression passes the XML 
for creating the doughnut chart shown earlier in Figure 12-8:

//Get the data generated and saved in the g_dataPart global var
var g_dataPart = 

reportContext.getPersistentGlobalVariable("g_dataPart");

//Build the complete XML
"<chart caption='Company Revenue' showPercentageValues='1'>" + 

g_dataPart + "</chart>"

6 Choose OK to save the expression.

7 Choose OK to save the dataXML variable.

Using the dataURL variable to pass XML data
Use the dataURL variable if the XML to pass to the Flash object exceeds 64KB, 
which can occur for more complex objects, such as multi-series combination 
charts that require many rows of data or the definition of a large number of 
attributes. 

When you use the dataURL variable, the XML data is stored in a separate file 
rather than embedded in the Flash object. To use this method, you write a Java 
class to generate the XML file, then pass the URL of the program to the Flash 
object. 

Writing a Java class requires experience with the Eclipse Java development 
process. The Java class must be implemented as a plug-in, which is a modular 
component that provides a specific type of service within the Eclipse platform. In 



158 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

fact, all the tools in Eclipse and Actuate BIRT Designer are plug-ins. For 
information about developing plug-ins, see the Eclipse documentation.

How to use the dataURL variable to pass data to the Flash object

This procedure assumes you have already implemented a plug-in that generates 
the XML file to pass to the Flash object.

1 In the report layout, select the Flash object.

2 In Property Editor, choose the Flash Variables tab.

3 In the Flash Variable page, choose Add.

4 In Add Variables, do the following:

1 In Name, type:

dataURL

2 In Expression, choose the JavaScript expression builder.

5 In the JavaScript expression builder, type an expression that passes the URL of 
of the plug-in to the Flash object. Use the createDataURL( ) method of the 
flashContext object, as shown in the following example:

flashContext.createDataURL("ComboChartXMLFormat", true, null);

The first argument, ComboChartXMLFormat, is the format defined in the 
plug-in. The second argument, true, specifies that the URL is encoded. The 
third argument, null, specifies that there are no custom parameter names and 
values to pass to the URL.

6 Choose OK to save the expression.

7 Choose OK to save the dataURL variable.

Using the Flash object library documentation
This chapter describes the procedures for inserting a Flash object from the library 
in a report and passing data to the object. This chapter does not provide 
documentation about every Flash object, the structure of each object, or the XML 
elements and attributes that you use to create an object. This information, 
essential for generating the required XML, is available in the InfoSoft 
documentation, which is included in Actuate BIRT Designer’s online help.

To access the InfoSoft documentation, in the main menu, choose Help➛Help 
Contents. In Help, expand Actuate BIRT Guide. The InfoSoft documentation is 
titled Flash Object Library Reference.

This reference is organized by Flash object type, as shown in Figure 12-12.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 159

Figure 12-12 Contents of the Flash Object Library Reference

To find documentation about a particular Flash object, choose the corresponding 
reference, then drill down until you find the specification for the specific Flash 
object. The specification provides a complete reference to the object, including 
descriptions of all the parts of the object, and all the properties that can be set to 
manipulate and format the object. For example, let’s say you want to see reference 
information about the 3D pie chart. First, choose Flash objects chart reference. In 
the InfoSoft documentation for charts, navigate through the following topic 
structure: Chart XML API—Single Series Charts—Pie 3D Chart. 

If you prefer to learn by example, look at the sample Flash objects and view the 
XML for creating those objects. To see a sample of a 3D pie chart, for example, 
navigate through the following topic structure: Sample Charts—Single Series 
Charts—Pie 3D Chart.

Tutorial 3: Creating a Flash map that gets data 
through the dataXML variable

This tutorial provides step-by-step instructions for building a report that uses a 
Flash map from the Flash object library to display sales by territory. The map uses 
data from the Classic Models sample database, which you convert to XML and 
pass to the map through the dataXML variable. 

You perform the following tasks in this tutorial:

■ Create a new report.

■ Build a data source.

■ Build a data set.



160 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ Find a suitable Flash map.

■ Review the map specifications.

■ Map the data set values to the Flash map entity values.

■ Add the Flash map to the report.

■ Generate an XML data string.

■ Create the dataXML variable and pass the data.

■ Format the Flash map.

Task 1: Create a new report
This task assumes you have already created a project for your reports. 

1 Choose File➛New➛Report.

2 On New Report, type the following text as the file name:

SalesByTerritory.rptdesign

3 Choose Finish. A blank report appears in the layout editor.

Task 2: Build a data source
In this procedure, create a data source to connect to the Classic Models sample 
database.

1 Choose Data Explorer.

2 Right-click Data Sources, and choose New Data Source from the context menu.

3 Select Classic Models Inc. Sample Database from the list of data sources. Use 
the default data source name, then choose Next. Connection information 
about the new data source appears.

4 Choose Finish. The new data source appears under Data Sources in Data 
Explorer.

Task 3: Build a data set
In this procedure, build a data set to specify what data to retrieve and combine 
from various tables in the database.

1 In Data Explorer, right-click Data Sets, and choose New Data Set.

2 In New Data Set, in Data Set Name, type the following text:

Sales By Territory

Use the default values for the other fields.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 161

■ Data Source Selection shows the name of the data source that you created 
earlier.

■ Data Set Type specifies that the data set uses a SQL SELECT query to 
retrieve the data.

3 Choose Next.

4 In New Data Set —Query, type the following SQL SELECT statement to 
retrieve the sales total for each territory:

SELECT CLASSICMODELS.OFFICES.TERRITORY,
SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED *
CLASSICMODELS.ORDERDETAILS.PRICEEACH) as SALES
FROM CLASSICMODELS.CUSTOMERS,
CLASSICMODELS.ORDERS,
CLASSICMODELS.ORDERDETAILS,
CLASSICMODELS.OFFICES,
CLASSICMODELS.EMPLOYEES
WHERE CLASSICMODELS.ORDERS.ORDERNUMBER = 

CLASSICMODELS.ORDERDETAILS.ORDERNUMBER
AND CLASSICMODELS.CUSTOMERS.SALESREPEMPLOYEENUMBER = 

CLASSICMODELS.EMPLOYEES.EMPLOYEENUMBER
AND CLASSICMODELS.EMPLOYEES.OFFICECODE = 

CLASSICMODELS.OFFICES.OFFICECODE
AND CLASSICMODELS.CUSTOMERS.CUSTOMERNUMBER = 

CLASSICMODELS.ORDERS.CUSTOMERNUMBER
GROUP BY CLASSICMODELS.OFFICES.TERRITORY

5 Choose Finish to save the data set. Edit Data Set displays the columns 
specified in the query, and provides options for editing the data set.

6 Choose Preview Results. Figure 12-13 shows the data rows that the data set 
returns.

Figure 12-13 Sales By Territory data set preview

7 Choose OK.



162 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Task 4: Find a suitable Flash map
The data set created in the previous task returns sales data for four worldwide 
territories: APAC (Asia Pacific), EMEA (Europe and middle east), Japan, and NA 
(North America). In this procedure, look in the Flash object library for a map 
suitable for representing data in these territories.

1 In Help, expand Actuate BIRT Guide, choose Flash Object Library Reference, 
then choose Flash objects maps reference.

2 Choose Map Gallery—World & Continents. This folder lists three world maps: 
World Map, World Map (Countries), and World Map (8 Regions). Review each 
map. 

3 For this tutorial, either World Map or World Map (8 Regions) is suitable for the 
data. Use World Map. The help displays the image of World Map, as shown in 
Figure 12-14.

Figure 12-14 World Map available in Flash Object Library

World Map displays the names of the continents as two-letter abbreviations: 
NA, SA, AF, EU, AS, and AU. The Classic Models data uses these acronyms 
for the sales territories: APAC, EMEA, Japan, NA.

Task 5: Review the map specifications
Each map in the library displays different entities. An entity is the smallest item 
represented in a map. For example, in a world map that shows continents, each 
continent is an entity. In a continent map that shows countries, each country is an 
entity. Similarly, in a country map that shows states, each state is an entity. In this 
procedure, review the entities in World Map.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 163

1 In the online Help for Flash maps, choose Map Specification Sheets—World & 
Continents—World Map.

2 The World Map Specification Sheet, shown in Figure 12-15, displays 
information about the map, including its list of entities. Each entity has the 
following properties:

■ Internal Id—The ID through which an entity is referred to in the XML data 
document

■ Short Name—The abbreviated entity name, which appears on the map

■ Long Name—The full entity name, which appears as a tool tip 

Figure 12-15 World Map Specification Sheet available in online help

Task 6: Map the data set values to the Flash map 
entity values

To display data from the data set in the Flash map, you need to map the territory 
values in the data set to the internal ID values used by World Map.

1 In Data Explorer, under Data Sets, right-click Sales By Territory, then choose 
Edit.

2 In Edit Data Set, choose Computed Columns, then choose New.

3 In New Computed Column, specify the following information:

1 In Column Name, type Territory_ID.

2 In Data Type, select String.

3 In Expression, choose the JavaScript expression builder.

4 In the expression builder, type the following statement, then choose OK.

Each case statement replaces a territory value with the corresponding 
internal ID used by the map.



164 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

switch(row["TERRITORY"]) {
case  "EMEA":

name = "EU";
break;

case  "APAC":
name = "AS";
break;

case  "Japan":
name = "AS";
break;

case  "NA":
name = "NA";
break;

}

5 Choose OK.

4 Choose Preview Results. The data set returns the data shown in Figure 12-16. 
The Territory_ID values match Internal Id values in World Map.

Figure 12-16 Sales By Territory data set preview includes Territory_ID values

5 Choose OK.

Task 7: Add the Flash map to the report
In this procedure, add World Map from the Flash object library to the report.

1 Insert a table that consists of one column and one detail row, and bind the 
table to the Sales By Territory data set.

2 Drag a Flash Object element from the palette and drop it in the table’s footer 
row. 

3 In Flash Builder, specify the following information:

1 In Select content from, select Flash Object Library, as shown in 
Figure 12-17.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 165

Figure 12-17 Selecting Flash Object Library

2 In Enter resource file, choose the open folder button to select a Flash file 
from the library.

3 In Browse for Flash Files, expand Flash Maps, and select 
FCMap_World.swf. Choose OK. In Flash Builder, the path to the Flash file 
appears in Enter resource file.

4 Choose Finish.

Task 8: Generate an XML data string
Data provided to any Flash object must be in the specific XML format that the 
object requires. In this procedure, look at the Flash map documentation for this 
information, then generate an XML data string that provides data in the required 
format.

1 In the online Help for Flash maps, choose How to use FusionMaps. This topic 
describes the procedure for displaying data in a map. It includes an example 
of displaying population data in the world map. The following is the sample 
XML:

<map borderColor='005879' fillColor='D7F4FF' numberSuffix=' 
Mill.' includeValueInLabels='1' labelSepChar=': ' 
baseFontSize='9'>

<data>
<entity id='NA' value='515' />
<entity id='SA' value='373' />
<entity id='AS' value='3875' />
<entity id='EU' value='727' />
<entity id='AF' value='885' />
<entity id='AU' value='32' />

</data> 
</map>



166 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Each XML document for maps starts with the <map> element. As the example 
shows, you can specify formatting attributes for the <map> element. Within 
the <map> element is the <data> element. The <data> element contains 
<entity> elements that define the data for each entity on the map. For 
example, <entity id='NA' value='515' /> assigns the population value 515 to 
the NA (North America) entity. The entity ID corresponds to the internal ID, 
which you saw earlier in the Map Specification Sheet for World Map.

2 Write code to generate an XML string that provides data defined as <entity> 
elements. The code needs to create the content within the <data> element. A 
logical place to put this code is in the OnCreate( ) method for the table’s detail 
row because this method executes with each retrieval of a data row from the 
data set.

1 In the report layout, select the detail row of the table, choose Script, then 
select OnCreate. 

2 Type the following code in the script editor:

var entityLine = "<entity id='" +
this.getRowData().getColumnValue("Territory_ID") + "' " 
+ "value='" + this.getRowData().getColumnValue("SALES") 
+ "'/>";

dataPart = dataPart + entityLine;

reportContext.setPersistentGlobalVariable("g_dataPart", 
dataPart );

The code iterates through the data rows in the data set, and builds an XML 
string using the Territory_ID and SALES values. The full XML string is 
stored as a persistent global variable so that it can be accessed anywhere in 
the report.

3 Initialize the dataPart variable by adding the following code to the table’s 
OnCreate( ) method:

dataPart="";

The table’s OnCreate( ) method is typical for placing start-up or initialization 
code for report elements in a table.

Task 9: Create the dataXML variable and pass the 
data

As described earlier in this chapter, one of the ways to pass data to a Flash object 
is through the dataXML variable. In this procedure, create the dataXML variable 
and assign the XML content to the variable.

1 In the report layout, select the Flash object.

2 In Property Editor, choose Flash Variables, as shown in Figure 12-18.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 167

Figure 12-18 Flash Variables tab in Property Editor

3 Choose Add. 

4 In Add Variables, do the following:

1 In Name, type:

dataXML

2 In Expression, choose the JavaScript expression builder.

5 In the JavaScript expression builder, type the following expression:

var g_dataPart = 
reportContext.getPersistentGlobalVariable("g_dataPart");

"<map><data>" + g_dataPart + "</data></map>"

The first statement retrieves the XML data string that you created earlier and 
stored in the persistent global variable g_dataPart. The second statement 
builds a bare-bones XML data document that contains only the essential 
elements. This line creates the required <map> and <data> elements, and 
appends the g_dataPart variable, which supplies the <entity> data. The XML 
does not include any formatting attributes.

6 Choose OK.

7 Choose Preview. The previewer displays the Flash map. Move the mouse 
pointer over each continent. A tooltip displays the continent’s full name and 
the sales total for that continent (if sales data exists for the continent), as 
shown in Figure 12-19. This Flash map uses all the default data and formatting 
attributes.

Task 10: Format the Flash map
Now that you verified that the map displays the correct sales data for the 
territories, you can focus on adding functionality and visual interest to the map. 
Perform the following tasks in this section:



168 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ Display sales values in a more readable format.

■ Change the colors used in the map.

■ Define data ranges and apply different colors to each range.

■ Create city markers.

Figure 12-19 Preview of the Flash map with the mouse pointer over Europe

You specify formatting attributes by editing the XML string you typed in the 
previous task.

Display sales values in a more readable format
In this procedure, format the sales value so that it displays $4.52M instead of 
4,520,712.27999999. Also, specify that the sales values appear on the map in the 
following format: 

EU: $4.52M

1 Choose Layout to resume editing the map.

2 Select the Flash object. In Property Editor, choose Flash Variables, select the 
dataXML variable, and choose Edit.

3 In Edit Variables, choose the expression builder.

4 In the line that defines the XML (the line that begins with "<map>), add the 
text shown in bold. You must type the entire XML string in a single line.

"<map decimals='2' formatNumberScale='1' numberPrefix='$' 
includeValueInLabels='1' labelSepChar=': '><data>" + 
g_dataPart + "</data></map>"



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 169

For information about these attributes, see the “XML Attributes” topic in the 
Flash map help.

5 Choose Validate to verify the expression. If there are no syntax errors, choose 
OK.

6 In Edit Variables, choose OK.

7 Choose Preview. As Figure 12-20 shows, the sales values appear in $4.52M 
format on the map and in the tooltip.

Figure 12-20 Flash map displaying sales values in new format

Building the XML string in readable pieces
As you add attributes, the XML string becomes increasingly difficult to type and 
read as a single line in the expression builder. This procedure shows how to build 
the XML string piece by piece. 

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Replace the line that 
defines the XML string (the line that begins with "<map>) with the following 
lines:

var str = "<map "
//Format sales numbers
str += "decimals='2' formatNumberScale='1' numberPrefix='$'"

//Display sales numbers in the map
str += "includeValueInLabels='1' labelSepChar=': '"
str += ">"

(continues)



170 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

//Define data
str += "<data>" + g_dataPart + "</data>"
str += "</map>"

The str variable stores the XML string. The += operator adds each successive 
piece of string to the current string. By building the XML string in pieces, you 
can read, edit, delete, and add attributes easily. As the example shows, you can 
also add comments about the purpose of the attributes.

3 Choose Validate to verify the syntax of the expression.

4 Preview the report to ensure that the map displays correctly. The expression 
builder’s validation does not verify that the XML string contains valid content.

Change the colors used in the map
In this procedure, change the fill and background colors of the map. Use Hex 
codes for the color values. 

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Add the following 
lines before the str += ">" line:

//Colors in map
str += "fillColor='DDDDDD' bgColor='FFFFDC'"

3 Validate the expression, then preview the report.

Define data ranges and apply different colors to each range
In this procedure, categorize the sales data into the following ranges, and apply a 
different color to each range:

0 - 1000000, Below target
1000001 - 4000000, Within target
4000001 - 8000000, Above target

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Add the following 
lines after the str += ">" line. Each str line must be a single line.

//Create data ranges
str += "<colorRange> " 
str += "<color minValue='0' maxValue='1000000' 

displayValue='Below target' color='CCFF99' />" 
str += "<color minValue='1000001' maxValue='4000000' 

displayValue='Within target' color='66CCFF' />" 
str += "<color minValue='4000001' maxValue='8000000' 

displayValue='Above target' color='FFDDFF' />" 
str += "</colorRange>"



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 171

3 Validate the expression, then preview the report.

Create city markers
In this procedure, display markers for these cities in which there are sales offices: 
New York, Paris, San Francisco, and Tokyo. To display markers, define the 
properties of each marker, including a user-specified ID, its XY position, the label 
to display, and the position of the label relative to the marker. You can also specify 
the shape, size, and color of each marker. After defining the markers, create the 
list of markers to display on the map.

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Add the following 
lines after the data range definition, that is, after the str += "</colorRange>" 
line. Each str line must be a single line.

// Define city markers
str += "<markers>" 
str += " <definition>" 
str += "<marker id='NYC' x='210' y='140' label='New York' 

labelPos='bottom' />" 
str += "<marker id='PAR' x='360' y='130' label='Paris' 

labelPos='bottom' />" 
str += "<marker id='TOK' x='630' y='160' label='Tokyo' 

labelPos='right' />" 
str += "<marker id='SFO' x='80' y='163' label='San Francisco' 

labelPos='left' />" 
str += "</definition>" 

//Specify the shape, size, and color of the markers
str += "<shapes>" 
str += "<shape id='TOKdot' type='circle' radius='3' 

fillColor='ffd700' labelPadding='+1' /> " 
str += "<shape id='PARdot' type='circle' radius='3' 

fillColor='ffd700' labelPadding='-2' /> " 
str += "<shape id='NYCdot' type='circle' radius='3' 

fillColor='ffd700' labelPadding='+1' /> " 
str += "<shape id='SFOdot' type='circle' radius='3' 

fillColor='ffd700' labelPadding='+1' /> " 
str += "</shapes>" 

//Specify which markers to display
str += "<application>" 
str += "<marker id='TOK' shapeId='TOKdot' />" 
str += "<marker id='NYC' shapeId='NYCdot' />" 
str += "<marker id='PAR' shapeId='PARdot' />" 
str += "<marker id='SFO' shapeId='SFOdot' />" 
str += "</application>" 
str += "</markers>" 



172 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

The entire dataXML expression should look like the one shown in 
Figure 12-21.

Figure 12-21 Expression builder displaying the entire dataXML expression

3 Validate the expression, then preview the report. The map should look like the 
one shown in Figure 12-22. The territories with sales data appear in different 



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 173

colors. A legend displaying the data range colors and labels appears on the 
right. The map displays circular markers and labels for San Francisco, New 
York, Paris, and Tokyo.

Figure 12-22 Flash map displaying all the formats you applied

This tutorial demonstrates only a few of the attributes that you can use to format 
and manipulate a Flash map. For a complete list and descriptions of the 
attributes, see the Flash map help.

Tutorial 4: Creating a Flash chart that gets data 
through the dataURL variable

This tutorial provides step-by-step instructions for building a report that uses a 
combination chart from the Flash object library to display revenue data by 
country. The chart uses data from the Classic Models sample database, which you 
convert to XML and pass to the chart through the dataURL variable.

As described earlier, using the dataURL variable to pass data requires Java 
programming and plug-in development experience. Although this tutorial 
provides detailed procedures accompanied by screen illustrations and conceptual 
explanations, Java programming experience is essential in the event basic 
troubleshooting is required or your Eclipse environment does not match exactly 
the environment shown in this tutorial.

You perform the following tasks in this tutorial:

■ Create a new report.

■ Build a data source.



174 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ Build a data set.

■ Add a Flash chart to the report.

■ Create a plug-in.

■ Define an extension.

■ Create a Java class.

■ Implement methods in the class.

■ Deploy the plug-in.

■ Create the dataURL variable.

Task 1: Create a new report
1 Choose File➛New➛Report.

2 On New Report, type the following text as the file name:

RevenueByCountry.rptdesign

3 Choose Finish. A blank report appears in the layout editor.

Task 2: Build a data source
In this procedure, create a data source to connect to the Classic Models sample 
database.

1 Choose Data Explorer.

2 Right-click Data Sources, and choose New Data Source from the context menu.

3 Select Classic Models Inc. Sample Database from the list of data sources. Use 
the default data source name, then choose Next. Connection information 
about the new data source appears.

4 Choose Finish. The new data source appears under Data Sources in Data 
Explorer.

Task 3: Build a data set
In this procedure, build a data set to indicate what data to retrieve from various 
tables in the database.

1 In Data Explorer, right-click Data Sets, and choose New Data Set.

2 In New Data Set, in Data Set Name, type the following text:

Revenue

Use the default values for the other fields.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 175

■ Data Source Selection shows the name of the data source that you created 
earlier.

■ Data Set Type specifies that the data set uses a SQL SELECT query to 
retrieve the data.

3 Choose Next.

4 In New Data Set—Query, type the following SQL SELECT statement to 
retrieve the revenue and total of items sold for each country:

SELECT CLASSICMODELS.CUSTOMERS.COUNTRY,
SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED * 

CLASSICMODELS.ORDERDETAILS.PRICEEACH) as SALES,
SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED) as QUANTITY
FROM CLASSICMODELS.CUSTOMERS,
CLASSICMODELS.ORDERS, 
CLASSICMODELS.ORDERDETAILS
WHERE CLASSICMODELS.CUSTOMERS.CUSTOMERNUMBER = 

CLASSICMODELS.ORDERS.CUSTOMERNUMBER
AND CLASSICMODELS.ORDERS.ORDERNUMBER = 

CLASSICMODELS.ORDERDETAILS.ORDERNUMBER
GROUP BY CLASSICMODELS.CUSTOMERS.COUNTRY
HAVING SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED * 

CLASSICMODELS.ORDERDETAILS.PRICEEACH) > 200000
ORDER BY 2 DESC

5 Choose Finish to save the data set. Edit Data Set displays the columns 
specified in the query, and provides options for editing the data set.

6 Choose Preview Results. Figure 12-23 shows the data rows that the data set 
returns.

Figure 12-23 Revenue data set preview

7 Choose OK.



176 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Task 4: Add a Flash chart to the report
In this procedure, add the 2D dual-Y combination chart from the Flash object 
library to the report.

1 Drag a Flash Object element from the palette and drop it in the report layout. 

2 In Flash Builder, specify the following information:

1 In Select content from, select Flash Object Library.

2 In Enter resource file, choose the open folder button to select a Flash file 
from the library.

3 In Browse for Flash Files, expand Flash Charts, and select 
MSCombiDY2D.swf, as shown in Figure 12-24.

Figure 12-24 Selecting a Flash chart from the Flash Object Library

4 Choose OK. In Flash Builder, the path to the Flash file appears in Enter 
resource file.

3 Choose Finish.

4 Bind the Flash object to the Revenue data set.

1 While the Flash object is selected, in Property Editor, choose the Binding 
tab.

2 In the Binding page, in Data Set, select Revenue.

The Flash object has access to data in the selected data set.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 177

Task 5: Create a plug-in
Data provided to any Flash object must be in the specific XML format that the 
object requires. To use the dataURL variable to pass data to the Flash object, you 
create a Java class to generate an XML document, and deploy the class as a plug-
in. In this procedure, you create the plug-in using the Eclipse Plug-in 
Development Environment (PDE).

1 In the main menu, choose Window➛Open Perspective➛Other.

2 In Open Perspective, choose Plug-in Development, as shown in Figure 12-25. 

Figure 12-25 Selecting the Plug-in Development perspective

Choose OK. The Plug-in Development perspective displays the views and 
tools for creating and managing plug-ins.

3 Choose File➛New➛Project.

4 In New Project, expand Plug-in Development, and select Plug-in Project, as 
shown in Figure 12-26.

Figure 12-26 Selecting Plug-in Project



178 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Choose Next.

5 In New Plug-in Project, specify the following project information:

1 In Project Name, type:

com.actuate.birt.flash.library.sample.CombinationChart

This name follows the naming convention used by Actuate BIRT plug-ins.

2 In Target Platform, select the following option:

OSGi framework: Equinox

OSGi is a framework specification for developing and deploying modular 
Java applications. Equinox is an Eclipse project that implements the OSGi 
framework and is the plug-in technology used by Eclipse and BIRT.

3 Use the default values for the other properties. Figure 12-27 shows the 
information specified for the plug-in project.

Figure 12-27 Properties of the plug-in project

Choose Next. 

6 In New Plug-in Project—Content, specify the information for generating the 
plug-in. 

1 In Properties, use all the default values.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 179

❏ ID identifies the plug-in. By default, the value you specified as the 
project name in the previous step is used as the ID value.

❏ Version is the version number to assign to this plug-in.

❏ Name is the plug-in’s display name, which appears in general 
descriptions about the plug-in.

❏ Provider is the name of the plug-in contributor.

❏ Execution Environment specifies the JRE (Java Runtime environment) 
to use.

2 In Options, uncheck the first option, Generate an activator, a Java class that 
controls the plug-in’s life cycle. 

Figure 12-28 shows the information for generating the plug-in.

Figure 12-28 Information for generating the plug-in

Choose Finish. 

Eclipse creates the plug-in. The Plug-in editor displays an Overview page, as 
shown in Figure 12-29. This page shows the properties of the plug-in and 
provides links to pages about developing, testing, and deploying a plug-in.



180 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 12-29 Plug-in editor displaying overview information

Task 6: Define an extension
In this procedure, define an extension that customizes the data extraction 
functionality provided by the org.eclipse.birt.report.engine.dataextraction plug-
in. This plug-in defines an extension point, which your plug-in uses to define a 
custom extension to retrieve data from the data set and generate the XML data 
required by the Flash chart.

1 In the Plug-in editor, choose the Extensions tab. If an Extension tab is not 
available, do the following:

1 In the Overview page, in the Extension/Extension Point Content section, 
choose the Extensions link.

2 In the message that appears, choose Yes.

2 In the Extensions page, choose Add.

3 In New Extension, perform the following steps:

1 Deselect Show only extension points from the required plug-ins. 



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 181

2 Select org.eclipse.birt.report.engine.dataExtraction from the list of 
extension points, as shown in Figure 12-30.

Figure 12-30 Selecting an extension point

Choose Finish. A message asks if you want to add a dependency to the 
org.eclipse.birt.report.engine plug-in. Choose Yes. The Extensions page 
displays the new extension to the plug-in.

4 In Extension Element Details, edit the extension properties using the values 
shown in Table 12-1.

Table 12-1 Extension properties

Property Value Description

id com.actuate.birt.flash.library.sample.
combchart.XMLGenerator

The extension identifier.

format CombChartXMLFormat The supported format of this data 
extraction extension. Later, when you 
create the Flash chart’s dataURL 
variable, you pass the format value as 
an argument to the createDataURL( ) 
method.

(continues)



182 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 12-31 shows the specified properties in the Extensions page.

Figure 12-31 Properties of the extension

5 Save the plug-in. Package Explorer displays the folder structure of the plug-in, 
as shown in Figure 12-32.

Figure 12-32 Package Explorer displaying the folder structure of the plug-in

class com.actuate.birt.flash.library.sample.
combchart.XMLGenerator

The Java class that implements the 
IDataExtractionExtension interface. 
You create this class later.

mimeType text/xml Mime type of the file generated by the 
extension.

name Combination Chart XML Format The name of the extension. This name 
appears in the user interface.

isHidden true Specifies whether format is shown in 
the user interface.

Table 12-1 Extension properties (continued)

Property Value Description



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 183

Task 7: Create a Java class
In this procedure, create a Java class that contains the code to generate the XML 
data required by the Flash chart. This class implements the data extraction 
interface, IDataExtractionExtension.

1 In Package Explorer, right-click the src folder, then choose New➛Class.

2 In New Java Class, specify the following information:

1 In Package, type:

com.actuate.birt.flash.library.sample.combchart

2 In Name, type:

XMLGenerator

3 In Interfaces, choose Add to add the data extraction interface.

4 In Implemented Interfaces Selection, select IDataExtractionExtension. If the 
dialog box does not display any interfaces, do the following:

❏ Under Choose interfaces, type:

IDataE

Matching items lists the interfaces that begin with IDataE.

❏ Select IDataExtractionExtension.

❏ Choose OK.

5 Use the default values for the other options.

6 Choose Finish. In Package Explorer, the class, XMLGenerator.java, appears 
in the plug-in’s src folder. The content of XMLGenerator.java appears in the 
editor, as shown in Figure 12-33.

Figure 12-33 Code template for XMLGenerator.java



184 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Task 8: Implement methods in the class
When you create a Java class using the wizard, Eclipse generates a code template, 
as shown in Figure 12-33. As the class declaration shows, the XMLGenerator class 
implements the IDataExtractionExtension interface. The interface defines three 
methods, which your class must implement. Perform the following tasks in this 
section:

■ Import the required packages.

■ Implement the initialize( ) method.

■ Implement the output( ) method.

■ Implement the release( ) method.

Import the required packages
The code template contains import statements to include the packages that 
contain the classes your code needs. Verify that the code contains the following 
import statements. If any are missing, add them.

import java.io.IOException;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;

import org.eclipse.birt.core.exception.BirtException;
import org.eclipse.birt.report.engine.api.IDataExtractionOption;
import org.eclipse.birt.report.engine.api.IDataIterator;
import org.eclipse.birt.report.engine.api.IExtractionResults;
import org.eclipse.birt.report.engine.api.script.IReportContext;
import org.eclipse.birt.report.engine.extension.

IDataExtractionExtension;

Implement the initialize( ) method
The initialize( ) method is the first method that the BIRT report engine calls before 
rendering the Flash object. Use this method to initialize resources.

1 Add the following line after the class declaration line (the line that begins with 
public class XMLGenerator):

private IDataExtractionOption option;

This statement declares a private variable, option, of type 
IDataExtractionOption. The initialize( ) method takes an input argument of 
this type.

2 Add the following line after the initialize( ) method declaration:

this.option = arg1;

This statement assigns the option variable to the input argument arg1. 



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 185

Listing 12-3 shows the edited code in the class definition and initialize( ) 
method.

Listing 12-3 Class definition and initialize( ) method implementation

public class XMLGenerator implements IDataExtractionExtension {

private IDataExtractionOption option;

public void initialize(IReportContext arg0, 
IDataExtractionOption arg1)

throws BirtException {
this.option = arg1;

}

Implement the output( ) method
The output( ) method is where you write the code to build the XML data to pass 
to the Flash chart. Listing 12-4 shows the code. 

Read the comments embedded in the code to understand what each section of 
code does. For information about the XML elements and attributes used to build 
the XML data, see the sample XML for the 2D dual-Y combination chart. In the 
online help for Flash charts, choose Chart XML API—Combination Charts—2D 
Dual Y Combination.

Listing 12-4 output( ) method implementation

public void output(IExtractionResults results) throws 
BirtException {
//Get the handle of the OutputStream defined in the
//IDataExtractionOption option interface
OutputStream stream = option.getOutputStream();

//If the stream is not null, define three string buffers.
//The xml buffer is used to build the full XML.
//The xmlSales and xmlQty buffers store the data for the
//Revenue and Quantity series.
if ( stream != null )
{

StringBuffer xml = new StringBuffer();
StringBuffer xmlSales = new StringBuffer();
StringBuffer xmlQty = new StringBuffer();

//Start building the XML. This section defines chart attributes
xml.append( "<chart caption='Revenue by Country' 

PYAxisName='Revenue' SYAxisName='Quantity' 
numVisiblePlot='8' showValues='0' numberPrefix='$' 
useRoundEdges='1' labelDisplay='ROTATE' >");

(continues)



186 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

//If results is not null, iterate through the data set rows.
//Add the values to the data series. Add the data and
//additional formatting attributes to the XML.
if ( results != null )
{

IDataIterator itr = results.nextResultIterator();
xml.append( "<categories >" );
xmlSales.append("<dataset seriesName='Revenue' >");
xmlQty.append("<dataset seriesName='Quantity' 

parentYAxis='S' >");
while ( itr.next() )
{

String country = 
String.valueOf(itr.getValue("COUNTRY"));

String sales = String.valueOf(itr.getValue("SALES"));
String qty = String.valueOf(itr.getValue("QUANTITY"));
xml.append( "<category label='"+ country + "' />" );
xmlSales.append( "<set value='"+ sales + "' />" );
xmlQty.append( "<set value='"+ qty + "' />" );

}
xmlSales.append("</dataset>");
xmlQty.append("</dataset>");
xml.append( "</categories>" );
xml.append(xmlQty);
xml.append(xmlSales);
xml.append("<trendlines>");
xml.append(" <line startValue='400000' color='91C728' 

displayValue='Target' showOnTop='1'/> ");
xml.append("</trendlines>");
xml.append("<styles> ");
xml.append("<definition> <style name='CanvasAnim' 

type='animation' param='_xScale' start='0' 
duration='1' /> </definition> ");

xml.append(" <application> <apply toObject='Canvas' 
styles='CanvasAnim' /> </application> ");

xml.append("</styles>");
xml.append("</chart>");

//Write the buffer to the output stream. 
//Use the try/catch blocks to catch exceptions.
try 
{

stream.write( xml.toString().getBytes("UTF-8"));
stream.flush();

}
catch ( UnsupportedEncodingException e )
{

e.printStackTrace();



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 187

}
catch ( IOException e )
{

e.printStackTrace();
}

}
}

}

Implement the release( ) method
Use the release( ) method to clean up allocated resources. 

1 Add the following line after the release( ) method declaration:

this.option = null;

This statement releases the handle to the output stream.

2 Save your changes to XMLGenerator.java.

You have finished implementing the class and the plug-in. 

Task 9: Deploy the plug-in
In this procedure, deploy the plug-in using Eclipse’s Export utility. This utility 
creates a plug-in JAR file and copies it to a specified folder. 

1 From the main menu, choose File➛Export.

2 In Export, expand Plug-in Development, and select Deployable plug-ins and 
fragments, as shown in Figure 12-34.

Figure 12-34 Selecting Deployable plug-ins and fragments



188 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

3 Choose Next. In Export, Available Plug-ins and Fragments displays the plug-
in you created.

4 Select com.actuate.birt.flash.library.sample.CombinationChart.

5 In Destination—Directory, type the following path, if necessary:

C:\Program Files\Actuate11\MyClasses\eclipse

All custom plug-ins that Actuate BIRT Designer uses must be placed in this 
folder.

6 Choose Finish.

7 Restart Actuate BIRT Designer. This step is required for the new plug-in to 
take effect.

Task 10: Create the dataURL variable
In this procedure, create the dataURL variable to pass the XML data generated by 
the plug-in to the Flash chart.

1 Open the report design perspective by choosing Report Design in the toolbar.

2 Choose RevenueByCountry.rptdesign, the report you created earlier in this 
tutorial.

3 In the report layout, select the Flash object.

4 In Property Editor, choose the Flash Variables tab.

5 In Flash Variables, choose Add.

6 In Add Variables, do the following:

1 In Name, type:

dataURL

2 In Expression, choose the JavaScript expression builder.

7 In the JavaScript expression builder, type the following expression:

flashContext.createDataURL("CombChartXMLFormat", true, null);

The first argument, CombChartXMLFormat, is the format specified in the 
extension properties of the plug-in. The second argument, true, specifies that 
the URL is encoded. The third argument, null, specifies that there are no 
custom parameter names and values to pass to the URL.

8 Choose OK.

9 Preview the report. The Flash chart should look like the one shown in 
Figure 12-35. The chart has two y axes. The left axis displays revenue values 
and the right axis displays quantity values. The column chart presents revenue 
data and the line chart presents quantity data.



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 189

Figure 12-35 Preview of Flash chart

Debugging a Flash object
Because using a Flash object from the Flash object library requires programming 
and typing XML content, implementation errors are common. To troubleshoot 
errors, use the following debugging tools:

■ The JavaScript debugger in Actuate BIRT Designer. Use this tool to debug the 
JavaScript code you write when using the dataXML variable to pass data to 
the Flash object.

■ The Eclipse debugger. Use this tool to debug the entire report and the Java 
classes that the report uses. This tool is useful for debugging the Java class you 
write when using the dataURL variable to pass data to the Flash object.

■ The debug mode provided by Flash objects. Use this method to see the 
processing that occurs in the Flash object.

Information about using the JavaScript debugger and the Eclipse debugger is 
provided in the Eclipse Series book, Integrating and Extending BIRT. This section 
provides instructions for using the debug mode in Flash objects.

Using the Flash object’s debug mode
The debug mode provides a description and status of the Flash object. When you 
run a report in debug mode and there are errors generating the Flash object, the 
debugger lists the errors. If the Flash object runs without errors, the debugger 
shows the XML used to create the Flash object. Figure 12-36 shows an example of 
the type of information displayed by the debugger.



190 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 12-36 Information displayed by the Flash object debugger

How to enable debug mode

1 In the report layout, select the Flash object to debug.

2 In Property Editor, choose Flash Variables, then choose Add.

3 In Add Variables, specify the following information, then choose OK:

1 In Name, type:

debugMode

2 In Expression, type:

1

4 Preview the report. A debug window opens on top of the Flash object, as 
shown in Figure 12-36. To hide the debug window, click it while pressing 
Shift+D. Use the same keystrokes to redisplay the debug window.

How to disable debug mode

Edit the debugMode variable. Set Expression to 0.

Resolving errors
For information about the types of errors, their typical causes, and ways to 
resolve them, see the Debugging topics in the InfoSoft online documentation. 
Figure 12-37 shows a portion of the “Basic Troubleshooting” topic under 
“Debugging Your Maps.” 



C h a p t e r  1 2 ,  U s i n g  t h e  F l a s h  o b j e c t  l i b r a r y 191

Figure 12-37 Troubleshooting topic in the InfoSoft online documentation



192 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 193

C h a p t e r

13
Chapter 13Writing expressions using

EasyScript
This chapter contains the following topics:

■ About EasyScript

■ Using the EasyScript expression builder

■ Changing the default expression syntax

■ Functions

■ Operators



194 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About EasyScript
EasyScript is an expression syntax similar to the syntax used in Excel formulas. 
Like Excel, EasyScript provides functions for performing calculations on report 
data. In Actuate BIRT Designer, EasyScript is supported in most places an 
expression is required. For example, when specifying an expression for a 
computed column, a column binding, a filter condition, or a map rule, you can 
use either JavaScript or EasyScript.

Choosing between EasyScript and JavaScript
You can use both JavaScript and EasyScript expressions in a report. For simple 
expressions or common calculations, the choice is often based on syntax 
familiarity or simplicity. Users who work with Excel functions will find 
EasyScript syntax familiar and easy to use.

The following example is an EasyScript expression that rounds values in a Price 
field to the nearest integer:

ROUND([Price])

The following example is the equivalent JavaScript expression:

Math.round(row["Price"])

Both expressions are straightforward, although one could argue that the 
EasyScript syntax is simpler. Now, compare the expressions used to round the 
Price values to 2 decimal places. In the following expressions, the first shows 
EasyScript syntax, and the second shows JavaScript syntax:

ROUND([Price], 2)
Math.round(row["Price"]*100)/100

In this case, the EasyScript syntax is clearly simpler and more intuitive. The 
EasyScript ROUND( ) function provides a second argument that lets you specify 
the number of decimal places to which to round the number. The JavaScript 
round( ) function does not, and, therefore, requires additional mathematical 
operations.

If a report needs complex calculations that require lines of code or calculations 
that cannot be done with EasyScript, use JavaScript. For information about 
writing JavaScript expressions, see BIRT: A Field Guide.

Syntax rules
When writing an EasyScript expression, observe the following rules:

■ Enclose field names within square brackets ([ ]), for example, [CustomerID].



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 195

■ Field names and function names are case-sensitive. All function names are 
uppercase.

■ When creating an expression that contains a literal date, always type the date 
according to the conventions of the US English locale. For example, if working 
in the French locale, type 07/10/2010 to represent July 10, 2010. Do not type 
10/07/2010, which is the convention for dates in the French locale. The 
following expression, which calculates the number of days from the current 
date to Christmas, includes a literal date:

DIFF_DAY(TODAY(), "12/25/10")

■ When creating an expression that contains a literal number, always type the 
number according to the conventions of the US English locale. Use a period (.), 
not a comma (,) as the decimal separator.

Using the EasyScript expression builder
When specifying an expression, the JavaScript syntax is the default. Figure 13-1 
shows the icon that represents JavaScript syntax. Clicking on this icon opens the 
JavaScript expression builder.

Figure 13-1 An expression property set to use a JavaScript expression

To switch to EasyScript syntax, click the arrow button next to the JavaScript 
syntax icon and choose EasyScript Syntax, as shown in Figure 13-2.

Figure 13-2 Switching to EasyScript

This action opens the EasyScript expression builder, shown in Figure 13-3.

Icon representing JavaScript 
syntax



196 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 13-3 EasyScript expression builder

Like the JavaScript expression builder, the EasyScript expression builder provides 
help selecting functions and fields to use in an expression. To use a function in an 
expression, type the first letter of the function, then select a function from the list 
that appears. To use a field, type the left square bracket ([), then select a field from 
the list. 

When you finish creating an expression, choose Validate to verify the expression.

Changing the default expression syntax
If you consistently use EasyScript or use it more than JavaScript, you can change 
the Default Syntax property in Preferences to EasyScript syntax. To access this 
property, select Window➛Preferences, and choose Report Design—Expression 
Syntax. After changing the default syntax, the EasyScript syntax icon appears by 
default every time you create a new expression. 

The Default Syntax property does not convert existing JavaScript expressions to 
EasyScript expressions, and vice versa. To change the syntax of an expression, 
you must select the syntax type and edit the expression accordingly.

Functions
This section is a complete reference to all of the EasyScript functions in Actuate 
BIRT Designer. This reference organizes the functions alphabetically. Each 
function entry includes a general description of the function, its syntax, the 



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 197

ABS( )

arguments to the function, the result the function returns, and an example that 
shows typical usage.

ABS( )
Returns the absolute value of a number without regard to its sign. For example, 6 
is the absolute value of 6 and -6.

Syntax ABS(number)

Argument number
The number for which you want to find the absolute value.

Returns An integer that represents the absolute value of a specified number.

Example The following example returns the absolute value for each number in the 
TemperatureCelsius field:

ABS([TemperatureCelsius])

ADD_DAY( )
Adds a specified number of days to a date value.

Syntax ADD_DAY(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of days to add to the start date. If you specify a negative number, the 
result is as if the number is subtracted from the start date.

Returns The date value that results from adding the specified number of days to the start 
date.

Example The following example adds 15 days to each date value in the InvoiceDate field:

ADD_DAY([InvoiceDate], 15)

ADD_HOUR( )
Adds a specified number of hours to a date value.

Syntax ADD_HOUR(date, n)



198 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

ADD_MINUTE( )

Arguments date
The date or date expression that represents the start date. If a start date does not 
have a time value, the function assumes the time is midnight, 12:00 AM.

n
The number of hours to add to the start date. If you specify a negative number, 
the result is as if the number is subtracted from the start date.

Returns The date-and-time value that results from adding the specified number of hours 
to the start date.

Example The following example adds eight hours to each date value in the ShipDate field: 

ADD_HOUR([ShipDate], 8)

ADD_MINUTE( )
Adds a specified number of minutes to a date value.

Syntax ADD_MINUTE(date, n)

Arguments date
The date or date expression that represents the start date. If a start date does not 
have a time value, the function assumes the time is midnight, 12:00 AM.

n
The number of minutes to add to the start date. If you specify a negative number, 
the result is as if the number is subtracted from the start date.

Returns The date-and-time value that results from adding the specified number of 
minutes to the start date.

Example The following example subtracts 30 minutes from each date in the StartTime field:

ADD_MINUTE([StartTime], -30)

ADD_MONTH( )
Adds a specified number of months to a date value.

Syntax ADD_MONTH(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of months to add to the start date. If you specify a negative number, 
the result is as if the number is subtracted from the start date.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 199

ADD_QUARTER( )

Returns The date value that results from adding the specified number of months to the 
start date. This function always returns a valid date. If necessary, the day part of 
the resulting date is adjusted downward to the last day of the resulting month in 
the resulting year. For example, if you add one month to 1/31/08, 
ADD_MONTH( ) returns 2/29/08, not 2/31/08 or 2/28/08, because 2008 is a 
leap year.

Example The following example adds two months to each date value in the InitialRelease 
field:

ADD_MONTH([InitialRelease], 2)

ADD_QUARTER( )
Adds a specified number of quarters to a date value.

Syntax ADD_QUARTER(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of quarters to add to the start date. If you specify a negative number, 
the result is the number subtracted from the start date.

Returns The date value that results from adding the specified number of quarters to the 
start date. A quarter is equal to three months. For example, if you add two 
quarters to 9/22/08, ADD_QUARTER( ) returns 3/22/09.

Example The following example adds two quarters to each date value in the 
ForecastClosing field:

ADD_QUARTER([ForecastClosing], 2)

ADD_SECOND( )
Adds a specified number of seconds to a date value.

Syntax ADD_SECOND(date, n)

Arguments date
The date or date expression that represents the start date. If a start date does not 
have a time value, the function assumes the time is midnight, 12:00 AM.

n
The number of seconds to add to the start date. If you specify a negative number, 
the result is as if the number is subtracted from the start date.



200 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

ADD_WEEK( )

Returns The date-and-time value that results from adding the specified number of 
seconds to the start date.

Example The following example adds 30 seconds to each date value in the StartTime field:

ADD_SECOND([StartTime], 30)

ADD_WEEK( )
Adds a specified number of weeks to a date value.

Syntax ADD_WEEK(date, n)

Arguments date
The date or date expression that represents the start date. 

n
The number of weeks to add to the start date. If you specify a negative number, 
the result is as if the number is subtracted from the start date.

Returns The date value that results from adding the number of weeks to the start date.

Example The following example adds two weeks to each date value in the OrderDate field:

ADD_WEEK([OrderDate], 2)

ADD_YEAR( )
Adds a specified number of years to a date value.

Syntax ADD_YEAR(date, n)

Arguments date
The date or date expression that represents the start date. 

n
The number of years to add to the start date. If you specify a negative number, the 
result is as if the number is subtracted from the start date.

Returns The date value that results from adding the number of years to the start date.

Example The following example adds five years to each date value in the HireDate field:

ADD_YEAR([HireDate], 5)

BETWEEN( )
Tests if a value is between two specified values.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 201

CEILING( )

Syntax BETWEEN(source, target1, target2)

Arguments source
The value to test. The value can be a string, numeric, or date value.

target1
The first value in the range of values to compare to. String and date values must 
be enclosed in double quotation marks (" ").

target2
The second value in the range of values to compare to. String and date values 
must be enclosed in double quotation marks (" ").

Returns True if source is between target1 and target2, or equal to target1 or target2; returns 
false otherwise. 

Examples The following example tests each value in the SalesTotal field to see if the value is 
between 10000 and 20000:

BETWEEN([SalesTotal], 10000, 20000)

The following example tests each value in the CustomerName field to see if the 
value is between A and M:

BETWEEN([CustomerName], "A", "M")

The following example tests each value in the ReceiptDate field to see if the value 
is between 10/01/07 and 12/31/07:

BETWEEN([ReceiptDate], "10/01/07", "12/31/07")

The following example uses BETWEEN( ) in conjunction with the IF( ) and 
ADD_DAY( ) functions to calculate a shipment date. If an orderDate value is in 
December 2007 (between 12/1/07 and 12/31/07), add five days to the orderDate 
value. If an orderDate value is in a month other than December, add three days to 
the orderDate value.

IF(BETWEEN([orderDate], "12/01/07", "12/31/07"), 
ADD_DAY([orderDate], 5), ADD_DAY([orderDate], 3))

CEILING( )
Rounds a number up to the nearest specified multiple.

Syntax CEILING(number, significance)

Arguments number
The number to round up.

significance
The multiple to round number to.



202 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

DAY( )

Returns The number that results from the rounding. If the specified number value is an 
exact multiple of significance, no rounding occurs.

Examples CEILING( ) is commonly used to round up prices. For example, to avoid dealing 
with pennies, you can round prices in a Price field up to the nearest nickel with 
the following expression: 

CEILING([Price], 0.05)

If the Price value is 20.52, CEILING( ) returns 20.55.

The following example rounds prices up to the nearest dime:

CEILING([Price], 0.1)

If the Price value is 20.52, CEILING( ) returns 20.60. If the Price value is 20.50, 
CEILING( ) returns 20.50. No rounding occurs because 20.50 is already a multiple 
of 0.1.

The following example rounds prices up to the nearest dollar:

CEILING([Price], 1)

If the Price value is 20.30, CEILING( ) returns 21.0.

DAY( )
Returns a number from 1 to 31 that represents the day of the month.

Syntax DAY(date)

Argument date
The date or date expression from which you want to extract the day.

Returns The number of the day of the month for the specified date value.

Example The following example gets the number of the day for each date value in the 
ShipDate field:

DAY([ShipDate])

DIFF_DAY( )
Calculates the number of days between two date values.

Syntax DIFF_DAY(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 203

DIFF_HOUR( )

Returns The number of days between date1 and date2. If date1 is earlier than date2, the 
result is a positive number; otherwise the result is a negative number.

Example The following example calculates the time it takes to pay invoices by computing 
the number of days between each value in the invoiceDate field and each value in 
the paymentDate field:

DIFF_DAY([invoiceDate],[paymentDate])

The following example calculates the number of days from an order date to 
Christmas:

DIFF_DAY([orderDate], "12/25/10")

The following example calculates the number of days from the current date to 
Christmas. TODAY( ) is a function that returns the current date.

DIFF_DAY(TODAY(), "12/25/10")

DIFF_HOUR( )
Calculates the number of hours between two date values.

Syntax DIFF_HOUR(date1, date2)

Arguments date1
The first date or date expression to use in the calculation. If the date does not have 
a time value, the function assumes the time is midnight, 12:00 AM.

date2
The second date or date expression to use in the calculation. If the date does not 
have a time value, the function assumes the time is midnight, 12:00 AM.

Returns The number of hours between date1 and date2.

Example The following example calculates the number of hours between each value in the 
startTime field and each value in the finishTime field:

DIFF_HOUR([startTime],[finishTime])

The following example calculates the number of hours from the current date to 
Christmas. NOW( ) is a function that returns the current date and time.

DIFF_HOUR(NOW(), "12/25/10")

DIFF_MINUTE( )
Calculates the number of minutes between two date values.

Syntax DIFF_MINUTE(date1, date2)



204 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

DIFF_MONTH( )

Arguments date1
The first date or date expression to use in the calculation. If the date does not have 
a time value, the function assumes the time is midnight, 12:00 AM.

date2
The second date or date expression to use in the calculation. If the date does not 
have a time value, the function assumes the time is midnight, 12:00 AM.

Returns The number of minutes between date1 and date2.

Example The following example calculates the number of minutes between each value in 
the startTime field and each value in the finishTime field:

DIFF_MINUTE([startTime],[finishTime])

The following example calculates the number of minutes from the current date to 
Christmas. NOW( ) is a function that returns the current date and time.

DIFF_MINUTE(NOW(), "12/25/10")

DIFF_MONTH( )
Calculates the number of months between two date values.

Syntax DIFF_MONTH(date1,date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of months between date1 and date2. The function calculates the 
difference by subtracting the month number of date1 from the month number of 
date2. For example, if date1 is 8/1/08 and date2 is 8/31/08, DIFF_MONTH( ) 
returns 0. If date1 is 8/25/08 and date2 is 9/5/08, DIFF_MONTH( ) returns 1.

Example The following example calculates the number of months between each value in 
the askByDate field and each value in the ShipByDate field:

DIFF_MONTH([askByDate],[shipByDate])

The following example calculates the number of months from each value in the 
hireDate field to the end of the year:

DIFF_MONTH([hireDate], "12/31/10")

DIFF_QUARTER( )
Calculates the number of quarters between two date values.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 205

DIFF_SECOND( )

Syntax DIFF_QUARTER(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of quarters between date1 and date2. DIFF_QUARTER( ) calculates 
the difference by subtracting the quarter number of date1 from the quarter 
number of date2. For example, if date1 is 1/1/10 and date2 is 3/31/10, 
DIFF_QUARTER( ) returns 0 because both dates are in quarter 1. If date1 is 
3/31/10 and date2 is 4/15/10, DIFF_QUARTER( ) returns 1 because date1 is in 
quarter 1 and date2 is in quarter 2.

Example The following example calculates the number of quarters between each value in 
the PlanClosing field and each value in the ActualClosing field:

DIFF_QUARTER([PlanClosing],[ActualClosing])

The following example calculates the number of quarters from each value in the 
orderDate field to the end of the year:

DIFF_QUARTER([orderDate], "12/31/10")

DIFF_SECOND( )
Calculates the number of seconds between two date values.

Syntax DIFF_SECOND(date1, date2)

Arguments date1
The first date or date expression to use in the calculation. If the date does not have 
a time value, the function assumes the time is midnight, 12:00 AM.

date2
The second date or date expression to use in the calculation. If the date does not 
have a time value, the function assumes the time is midnight, 12:00 AM.

Returns The number of seconds between date1 and date2.

Example The following example calculates the number of seconds between each value in 
the startTime field and each value in the finishTime field:

DIFF_SECOND([startTime],[finishTime])

The following example calculates the number of seconds from the current date to 
Christmas. NOW( ) is a function that returns the current date and time.

DIFF_SECOND(NOW(), "12/25/10")



206 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

DIFF_WEEK( )

DIFF_WEEK( )
Calculates the number of weeks between two date values.

Syntax DIFF_WEEK(date1, date2)

Arguments date1
The first date or date expression to use in the calculation. 

date2
The second date or date expression to use in the calculation.

Returns The number of weeks between date1 and date2. The function calculates the 
difference by subtracting the week number of date1 from the week number of 
date2. For example, if date1 is 1/1/10 (week 1 of the year), and date2 is 1/4/10 
(week 2 of the year), DIFF_WEEK( ) returns 1. 

Example The following example calculates the number of weeks between each value in the 
askByDate field and each value in the shipByDate field:

DIFF_WEEK([askByDate],[shipByDate])

The following example calculates the number of weeks from each value in the 
orderDate field to the end of the year:

DIFF_WEEK([orderDate], "12/31/10")

DIFF_YEAR( )
Calculates the number of years between two date values.

Syntax DIFF_YEAR(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of years between date1 and date2. The function calculates the 
difference by subtracting the year number of date1 from the year number of 
date2. For example, if date1 is 1/1/10 and date2 is 12/31/10, DIFF_YEAR( ) 
returns 0. If date1 is 11/25/09 and date2 is 1/5/10, DIFF_YEAR( ) returns 1.

Example The following example calculates the number of years between each value in the 
HireDate field and each value in the TerminationDate field:

DIFF_YEAR([HireDate],[TerminationDate])



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 207

FIND( )

The following example calculates the number of years from each value in the 
HireDate field to the current date. TODAY( ) is a function that returns the current 
date.

DIFF_YEAR([HireDate], TODAY())

FIND( )
Finds the location of a substring in a string. 

Syntax FIND(target, source)

FIND(target, source, index)

Arguments target
The substring to search for. The search is case-sensitive.

source
The string in which to search.

index
The position in str where the search starts.

Returns The numerical position of the substring in the string. The first character of a string 
starts at 1. If the substring is not found, FIND( ) returns 0.

Examples The following example searches for the substring, Ford, in each ProductName 
value: 

FIND("Ford", [ProductName])

If the product name is 1969 Ford Falcon, FIND( ) returns 6.

The following example searches for the first hyphen (-) in each product code:

FIND("-", [ProductCode])

If the product code is ModelA-1234-567, FIND( ) returns 7.

The following example uses FIND( ) in conjunction with the LEFT( ) function to 
display the characters that precede the hyphen in a product code. The LEFT( ) 
function extracts a substring of a specified length, starting from the first character. 
In this example, the length of the substring to display is equal to the numerical 
position of the hyphen character.

LEFT([ProductCode], FIND("-", [ProductCode]))

If the product code is ModelA-1234, the expression returns the following string:

ModelA



208 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

IF( )

IF( )
Returns one value if a specified condition evaluates to true, or another value if the 
condition evaluates to false.

Syntax IF(c, vt, vf)

Arguments c
The condition to test.

vt
The value to return if the condition evaluates to true.

vf
The value to return if the condition evaluates to false.

Returns Returns the vt value if c is TRUE or the vf value if c is false.

Example The following example calculates and displays different discount amounts based 
on the value in the Total field. If the Total value is greater than 5000, the discount 
is 15%. Otherwise, the discount is 10%.

IF([Total]>5000, [Total]*15%, [Total]*10%)

The following example uses IF( ) in conjunction with the BETWEEN( ) and 
ADD_DAY( ) functions to calculate a shipment date. If an orderDate value is in 
December 2010 (between 12/1/10 and 12/31/10), add five days to the orderDate 
value. If a orderDate value is in a month other than December, add three days to 
the orderDate value.

IF(BETWEEN([orderDate], "12/1/10", "12/31/10"), 
ADD_DAY([orderDate], 5), ADD_DAY([orderDate], 3))

The following example checks each value in the Office field. If the value is Boston, 
San Francisco, or NYC, display U.S. If the value is something other than Boston, 
San Francisco, or NYC, display Europe and Asia Pacific.

IF([Office]="Boston" OR [Office]="San Francisco" OR 
[Office]="NYC", "U.S.", "Europe and Asia Pacific")

IN( )
Tests if a value is equal to a value in a list.

Syntax IN(source, target1,..., targetN)

Arguments source
The value to test. The value can be a string, numeric, or date value.

target1, ..., targetN
The value or values to compare to.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 209

ISNULL( )

Returns True if the source value is equal to one of the target values; returns false 
otherwise.

Example The following example tests if New Haven, Baltimore, or Cooperstown are values 
in the city field. If any one of the cities is in the field, IN( ) returns true.

IN([city], "New Haven", "Baltimore", "Cooperstown")

The following example tests if 9/15/08 or 9/30/08 are values in the payDate 
field:

IN([payDate], "9/15/08", "9/30/08")

The following example uses IN( ) in conjunction with the IF( ) function to test if 
Ships or Trains are values in the ProductLine field. If Ships or Trains is a value in 
the field, display Discontinued Item; otherwise, display the product line value as 
it appears in the field.

IF(IN([ProductLine], "Ships", "Trains"),"Discontinued Item", 
[ProductLine])

ISNULL( )
Tests if a value in a specified field is a null value. A null value means that no 
value exists.

Syntax ISNULL(source)

Argument source
The field in which to check for null values. 

Returns True if a value in the specified field is a null value; returns false otherwise.

Example The following example uses ISNULL( ) in conjunction with the IF( ) function to 
test for null values in the BirthDate field. If there is a null value, display No date 
specified; otherwise display the BirthDate value.

IF(ISNULL([BirthDate]), "No date specified", [BirthDate])

LEFT( )
Extracts a substring from a string, starting from the left-most, or first, character.

Syntax LEFT(source)

LEFT(source, n)

Arguments source
The string from which to extract a substring.



210 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

LEN( )

n
The number of characters to extract, starting from the first character. 

Returns A substring of a specific length.

■ If you omit n, the number of characters to extract, the function returns the first 
character only. 

■ If n is zero, the function returns an empty string. 

■ If n is greater than the length of the string, the function returns the entire 
string.

Example The following example displays the first letter of each name in the 
CustomerName field:

LEFT([CustomerName])

The following example uses the LEFT( ) and FIND( ) functions to display the 
characters that precede the hyphen in a product code. 

LEFT([ProductCode], FIND("-", [ProductCode]))

If the product code is ModelA-1234, the expression returns the following string:

ModelA

LEN( )
Counts the number of characters in a string.

Syntax LEN(source)

Argument source
The string expression to evaluate.

Returns The number of characters in the specified string.

Example The following example returns the length of each value in the ProductCode field:

LEN([ProductCode])

The following example uses LEN( ) in conjunction with the RIGHT( ) and FIND( ) 
functions to display the characters that appear after the hyphen in a product code. 
RIGHT( ) extracts a substring of a specified length, starting from the last 
character. In this example, the length of the entire string returned by LEN( ) 
minus the length up to the hyphen is the number of characters to display. 

RIGHT([ProductCode], LEN([ProductCode]) - FIND("-" , 
[ProductCode]))

If the product code is ModelA-Ford, the expression returns Ford.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 211

LIKE( )

LIKE( )
Tests if a string matches a pattern.

Syntax LIKE(source, pattern)

source
The string to evaluate.

pattern
The string pattern to match. You must enclose the pattern in double quotation 
marks (" "). The match is case-sensitive. You can use the following special 
characters in a pattern:

■ A percent character (%) matches zero or more characters. For example, %ace% 
matches any string value that contains the substring ace, such as Facebook, 
and MySpace. It does not match Ace Corporation because this string contains 
a capital A, and not the lowercase a.

■ An underscore character (_) matches exactly one character. For example, t_n 
matches tan, ten, tin, and ton. It does not match teen or tn.

To match a literal percent (%), underscore (_), precede those characters with two 
backslash (\\) characters. For example, to see if a string contains M_10, specify 
the following pattern:

"%M\\_10%"

Returns True if the string matches the pattern; returns false otherwise.

Example The following example returns true for values in the customerName field that 
start with D:

LIKE([customerName], "D%")

The following example returns true for productCode values that contain the 
substring Ford:

LIKE([productCode], "%Ford%")

The following example uses two LIKE( ) expressions to look for the substrings 
“Ford” or “Chevy” in each ProductName value. If a product name contains either 
substring, the expression displays U.S. Model; otherwise, it displays Imported 
Model.

IF(((LIKE([ProductName], "%Ford%") = TRUE) OR (LIKE([ProductName], 
"%Chevy%") = TRUE)), "U.S. model", "Imported Model")



212 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

LOWER( )

LOWER( )
Converts all letters in a string to lowercase.

Syntax LOWER(source)

Argument source
The string to convert to lowercase.

Returns The specified string in all lowercase letters.

Example The following example displays all the string values in the productLine field in 
lowercase:

LOWER([productLine])

MATCH( )
Tests if a string matches a pattern. The pattern must use JavaScript regular 
expression syntax.

Syntax MATCH(source, pattern)

Arguments source
The string to evaluate.

pattern
The string pattern to match. You must enclose the pattern in quotation marks (" "). 
In JavaScript regular expression syntax, a pattern is enclosed within a pair of 
forward slash (/) characters. However, for this argument, the forward slash 
characters are optional. For example, the following values are equivalent:

"smith"
"/smith/"

You can use any special character supported by JavaScript regular expressions, 
such as the following:

■ A question mark (?) matches zero or one occurrence of the character previous 
to it. For example, "te?n" matches tn, ten, and often. It does not match teen or 
intern.

■ An asterisk (*) matches zero or any number of occurrences of the character 
precious to it. For example, "te*n" matches tn, ten, often, and teen. It does not 
match intern.

■ A period (.) matches any character. For example, "te.*" matches ten, often, teen, 
and intern.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 213

MOD( )

■ A caret (^) specifies that the pattern to look for is at the beginning of a string. 
For example, "^ten" matches ten, tennis, and tense. It does not match often or 
pretend.

■ An i character specifies a case-insensitive search. For example, "/smith/i" 
matches Smith, blacksmith, and Smithsonian. In this case, the pair of forward 
slashes is required.

To match a special character literally, precede the special character with two 
backslash (\\) characters. For example, to check if a string contains S*10, specify 
the following pattern:

"/S\\*10/"

Returns True if the string matches the pattern; returns false otherwise.

Examples The following example returns true for values in the ProductCode field that start 
with S18:

MATCH([ProductCode], "/^S18/")

The following example uses MATCH( ) to check if the values in the SKU field 
contain the letters EM followed by a number that ends with 99. If there is a match, 
display Discontinued; otherwise, display the SKU value.

IF(MATCH([SKU], "/EM.*99/"), "Discontinued", [SKU])

MOD( )
Returns the remainder after a number is divided by another. 

Syntax MOD(number, divisor)

Arguments number
The number to divide.

divisor
The number by which to divide the number value. You must specify a non-zero 
number.

Returns The remainder after the number value is divided by the divisor value. Different 
applications and programming languages define the modulo operation 
differently when either the dividend or the divisor are negative. For example, in 
EasyScript and Excel, MOD(-5, 3) returns 1. However, in JavaScript and most 
databases, the modulo operation returns -2.



214 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

MONTH( )

Examples The following examples shows the results that the function returns for specific 
numbers:

MOD(10, 5) // returns 0
MOD(11, 5) // returns 1
MOD(12, 5) // returns 2
MOD(-10, 5) //returns 0
MOD(-11, 5) //returns 4
MOD(-12, 5) //returns 3
MOD(10, -5) //returns 0
MOD(11, -5) //returns -4
MOD(12, -5) //returns -3

The following example uses MOD( ) to check if numbers in the Grade field are 
odd or even. When the divisor is 2, MOD( ) returns 0 for even numbers, and 1 for 
odd numbers.

MOD([Grade], 2)

The following example uses MOD( ) and YEAR( ) to get the last digit of a year. 
YEAR( ) returns the year number of a date. Dividing a number by 10 returns the 
last digit of the number.

MOD(YEAR([BirthDate]), 10)

MONTH( )
Returns the month for a specified date value.

Syntax MONTH(date)

MONTH(date, option)

Arguments date
The date or date expression whose month to get.

option
A number that represents the month format to return. Use one of the following 
values:

■ 1 to get the month as a number from 1 to 12. 

■ 2 to get the full month name, for example, January. The result is locale-specific.

■ 3 to get the abbreviated month name, for example, Jan. The result is 
locale-specific.

If you omit option, MONTH( ) returns the month as a number.

Returns The month for a specified date value.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 215

NOT( )

Example The following example returns the month (1 - 12) for each value in the ShipDate 
field:

MONTH([ShipDate])

The following example returns the full month name for each ShipDate value:

MONTH([ShipDate], 2)

NOT( )
Negates a Boolean expression.

Syntax NOT(x)

Argument x
The Boolean value or expression to negate. 

Returns True if the expression evaluates to false, and false if the expression evaluates to 
true.

Example The following example uses NOT( ) in conjunction with the IF( ) function. It tests 
if the value in the State field is not CA. If the value is not CA, it returns the value 
in the Markup field multiplied by 10%, and by 15% if it is.

IF(NOT([State]="CA"),[Markup]*10%,[Markup]*15%)

The previous IF( ) expression is semantically equivalent to the following 
expression:

IF([State]="CA",[Markup]*15%,[Markup]*10%)

NOTNULL( )
Tests if a value in a specified field is a non-null value.

Syntax NOTNULL(source)

Argument source
The field in which to check for non-null values. 

Returns True if a value in the specified field is not a null value; returns false otherwise.

Example The following example uses NOTNULL( ) in conjunction with the IF( ) function 
to test for non-null values in the BirthDate field. If there is a non-null value, 
display the BirthDate value; otherwise display No date specified.

IF(NOTNULL([BirthDate]), [BirthDate], "No date specified")



216 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

NOW( )

NOW( )
Returns the current date and time.

Syntax NOW( )

Returns The current date and time. For example:

Feb 10, 2010 2:55 PM

Example The following example uses the DIFF_DAY( ) and NOW( ) functions to calculate 
the number of days from the current date and time to Christmas:

DIFF_DAY(NOW(), "12/25/10")

QUARTER( )
Returns the quarter number for a specified date value.

Syntax QUARTER(date)

Arguments date
The date or date expression whose quarter number to get.

Returns A number from 1 to 4 that represents the quarter for a specified date value. 
Quarter 1 starts in January.

Examples The following example displays the quarter number for each value in the 
CloseDate field:

QUARTER([CloseDate])

The following example displays a string—Q1, Q2, Q3, or Q4—for each value in 
the CloseDate field:

"Q" & QUARTER([CloseDate])

RIGHT( )
Extracts a substring from a string, starting from the right-most, or last, character.

Syntax RIGHT(source)

RIGHT(source, n)

Arguments source
The string from which to extract a substring.

n
The number of characters to extract, starting from the last character. 



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 217

ROUND( )

Returns A substring of a specific length. 

■ If you omit n, the number of characters to extract, the function returns the last 
character only. 

■ If n is zero, the function returns an empty string. 

■ If n is greater than the length of the string, the function returns the entire 
string.

Example The following example displays the last four characters of each value in the 
ProductCode field:

RIGHT([ProductCode], 4)

The following example uses RIGHT( ) in conjunction with the LEN( ) and FIND( ) 
functions to display the characters that appear after the hyphen in a product code. 
This example assumes that the number of characters after the hyphen varies. 
Therefore, the length of the entire string (returned by LEN( )) minus the length up 
to the hyphen (returned by FIND( )) is the number of characters to display. 

RIGHT([ProductCode], LEN([ProductCode]) - FIND("-" , 
[ProductCode]))

If the product code is ModelA-Ford, the expression returns Ford. If the product 
code is ModelCZ15-Toyota, the expression returns Toyota.

ROUND( )
Rounds a number to a specified number of digits.

Syntax ROUND(number)

ROUND(number, dec)

Arguments number
The number to round.

dec
The number of digits to round number to. If you omit dec, ROUND( ) assumes 0.

Returns A number rounded to a specified number of digits.

Example The following example rounds the numbers in the PriceEstimate field to return an 
integer. For example, if the PriceEstimate value is 1545.50, ROUND( ) returns 
1546. If the PriceEstimate value is 1545.25, ROUND( ) returns 1545.

ROUND([PriceEstimate])



218 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

ROUNDDOWN( )

The following example rounds the numbers in the PriceEstimate field to one 
decimal place. For example, if the PriceEstimate value is 1545.56, ROUND( ) 
returns 1545.6. If the PriceEstimate value is 1545.23, ROUND( ) returns 1545.2.

ROUND([PriceEstimate], 1)

The following example rounds the numbers in the PriceEstimate field to one digit 
to the left of the decimal point. For example, if the PriceEstimate value is 1545.56, 
ROUND( ) returns 1550. If the PriceEstimate value is 1338.50, ROUND( ) returns 
1340.

ROUND([PriceEstimate], -1)

ROUNDDOWN( )
Rounds a number down to a specified number of digits.

Syntax ROUNDDOWN(number)

ROUNDDOWN(number, dec)

Arguments number
The number to round down.

dec
The number of digits to round number down to. If you omit dec, ROUND( ) 
assumes 0.

Returns A number rounded down to a specified number of digits.

Example The following example rounds down the numbers in the PriceEstimate field to 
return an integer. For example, if the PriceEstimate value is 1545.25, 
ROUNDDOWN( ) returns 1545. If the PriceEstimate value is 1545.90, 
ROUNDDOWN( ) returns 1545.

ROUNDDOWN([PriceEstimate])

The following example rounds down the numbers in the PriceEstimate field to 
one decimal place. For example, if the PriceEstimate value is 1545.56, 
ROUNDDOWN( ) returns 1545.5. If the PriceEstimate value is 1545.23, 
ROUNDDOWN( ) returns 1545.2.

ROUNDDOWN([PriceEstimate], 1)

The following example rounds the numbers in the PriceEstimate field down to 
one digit to the left of the decimal point. For example, if the PriceEstimate value is 
1545.56, ROUNDDOWN( ) returns 1540. If the PriceEstimate value is 1338.50, 
ROUNDDOWN( ) returns 1330.

ROUNDDOWN([PriceEstimate], -1)



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 219

ROUNDUP( )

ROUNDUP( )
Rounds a number up to a specified number of digits. 

Syntax ROUNDUP(number)

ROUNDUP(number, dec)

Arguments number
The number to round up.

dec
The number of digits to round number up to. If you omit dec, ROUND( ) assumes 
0.

Returns A number rounded up to a specified number of digits.

Example The following example rounds up the numbers in the PriceEstimate field to 
return an integer. For example, if the PriceEstimate value is 1545.25, 
ROUNDUP( ) returns 1546. If the PriceEstimate value is 1545.90, ROUNDUP( ) 
returns 1546.

ROUNDUP([PriceEstimate])

The following example rounds up the numbers in the PriceEstimate field to one 
decimal place. For example, if the PriceEstimate value is 1545.56, ROUNDUP( ) 
returns 1545.6. If the PriceEstimate value is 1545.23, ROUNDUP( ) returns 1545.3.

ROUNDUP([PriceEstimate], 1)

The following example rounds up the numbers in the PriceEstimate field to one 
digit to the left of the decimal point. For example, if the PriceEstimate value is 
1545.56, ROUNDUP( ) returns 1550. If the PriceEstimate value is 1338.50, 
ROUNDUP( ) returns 1340.

ROUNDUP([PriceEstimate], -1)

SEARCH( )
Finds the location of a substring in a string. The substring can contain wildcard 
characters.

Syntax SEARCH(pattern, source)

SEARCH(pattern, source, index)

Arguments pattern
The string pattern to search for. You must enclose the pattern in double quotation 
marks (" "). You can use the following special characters in a pattern:



220 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

SQRT( )

■ An asterisk ( * ) matches zero or more characters, including spaces. For 
example, t*n matches tn, tin, and teen. 

■ A question mark (?) matches exactly one character. For example, t?n matches 
tan, ten, tin, and ton. It does not match teen or tn.

source
The string in which to search.

index
The position in source where the search starts.

Returns The numerical position of the string pattern in the string. The first character of a 
string starts at 1. If the substring is not found, SEARCH( ) returns 0.

Examples The following example searches for the string pattern, S*A, in each product code. 
If the product name is KBS5412A, SEARCH( ) returns 3.

SEARCH("S*A", [ProductCode])

The following example uses SEARCH( ) in conjunction with the LEFT( ) function 
to display the characters that precede the first space character in a product name. 
The LEFT( ) function extracts a substring of a specified length, starting from the 
first character. In this example, the length of the substring to display is equal to 
the numerical position of the space character.

LEFT([ProductName], SEARCH(" ", [ProductName]))

If the product name is 1969 Ford Falcon, the expression returns 1969.

SQRT( )
Calculates the square root of a number.

Syntax SQRT(number)

Argument number
The number for which you want to find the square root. The number must be a 
positive number.

Returns A number that is the square root of the specified number.

Examples The following example calculates the square root of each numeric value in the 
LotSize field:

SQRT([LotSize])

The following example uses SQRT( ) to calculate the actual distance travelled 
uphill, given the base distance and elevation values. This example applies the 
Pythagorean theorem, which states that . Using this theorem, the 
actual distance traveled is c, which means we want to calculate

a
2

b
2

+ c
2

=

c a
2

b
2

+=



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 221

TODAY( )

which translates to the following expression:

SQRT((([Distance] * [Distance]) + ([Elevation] * [Elevation])))

TODAY( )
Returns the current date that includes a time value of midnight, 12:00 AM.

Syntax TODAY( )

Returns The current date in the following format:

Feb 11, 2010 12:00 AM

Examples The following example calculates the number of days from the current date to 
Christmas:

DIFF_DAY(TODAY(), "12/25/10")

The following example calculates the number of years from each value in the 
HireDate field to the current date:

DIFF_YEAR([HireDate], TODAY())

TRIM( )
Removes the leading and trailing blanks from a specified string. TRIM( ) does not 
remove blank characters between words.

Syntax TRIM(source)

Argument source
The string from which to remove leading and trailing blank characters.

Returns A string with all leading and trailing blank characters removed.

Example The following example uses TRIM( ) to remove all leading and trailing blank 
characters from values in the FirstName and LastName fields. The expression 
uses the & operator to concatenate each trimmed FirstName value with a space, 
then with each trimmed LastName value.

TRIM([FirstName]) & " " & TRIM([LastName])

TRIMLEFT( )
Removes the leading blanks from a specified string.

Syntax TRIMLEFT(source)



222 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

TRIMRIGHT( )

Argument source
The string from which to remove the leading blank characters.

Returns A string with all leading blank characters removed.

Example The following example concatenates a literal string with each value in the 
customerName field. TRIMLEFT( ) removes all blank characters preceding the 
customerName value so that there are no extra blank characters between the 
literal string and the customerName value.

"Customer name: " & TRIMLEFT([customerName])

TRIMRIGHT( )
Removes the trailing blanks from a specified string.

Syntax TRIMRIGHT(source)

Argument source
The string from which to remove the trailing blank characters.

Returns A string with all trailing blank characters removed.

Example The following example concatenates each value in the Comment field with a 
semicolon, then with a value in the Action field. TRIMRIGHT( ) removes all blank 
characters after the Comment value so that there are no extra blank characters 
between the Comment string and the semicolon.

TRIMRIGHT([Comment]) & "; " & [Action]

UPPER( )
Converts all letters in a string to uppercase.

Syntax UPPER(source)

Argument source
The string to convert to uppercase.

Returns The specified string in all uppercase letters.

Example The following example displays all the string values in the customerName field in 
all uppercase:

UPPER([customerName]) 

WEEK( )
Returns a number from 1 to 52 that represents the week of the year.



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 223

WEEKDAY( )

Syntax WEEK(date)

Argument date
The date or date expression whose week of the year to get.

Returns A number that represents the week of the year for the specified date value.

Example The following example gets the week number of the year for each date value in 
the ShipDate field:

WEEK([ShipDate])

WEEKDAY( )
Returns the day of the week for a specified date value.

Syntax WEEKDAY(date, option)

Arguments date
The date or date expression from which you want to get the day of the week.

option
A number that represents the weekday format to return. Use one of the following 
values:

■ 1 to get the day as a number from 1 (Sunday) to 7 (Saturday). 

■ 2 to get the day as a number from 1 (Monday) to 7 (Sunday).

■ 3 to get the day as a number from 0 (Monday) to 6 (Sunday).

■ 4 to get the full weekday name, for example, Wednesday. The result is 
locale-specific.

■ 5 to get the abbreviated weekday name, for example Wed. The result is 
locale-specific.

If you omit option, WEEKDAY( ) assumes option 1.

Returns The day of the week for a specified date value.

Example The following example gets the full weekday name for each date value in the 
DateSold field:

WEEKDAY([DateSold], 4)

YEAR( )
Returns the four-digit year value for a specified date value.

Syntax YEAR(date)



224 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

date
The date or date expression from which you want to extract the year part.

Returns The number that represents the four-digit year for the specified date value.

Example The following example gets the four-digit year for each date value in the 
ShipDate field, and adds 15 to the four-digit year. For example, if the ShipDate 
value is Sep 16, 2008, YEAR( ) returns 2023.

(YEAR([ShipDate]) + 15)

Operators
Table 13-1 lists the operators in EasyScript.

Table 13-1 EasyScript operators

Operator Use to Example

+ Add two or more numeric values 
together

[OrderAmount] + [SalesTax]

- Subtract one numeric value from 
another

[OrderAmount] - [Discount]

* Multiply numeric values [Price] * [Quantity]

/ Divide numeric values [Profit]/12

^ Raise a numeric value to a power [Length]^2

% Specify a percent [Price] * 80%

= Test if two values are equal IF([ProductName] = "1919 Ford Falcon", 
"Discontinued Item", [ProductName])

> Test if one value is greater than 
another value

IF([Total] > 5000, [Total]*15%, [Total]*10%)

< Test if one value is less than 
another value

IF([SalePrice] < [MSRP], "Below MSRP", 
"Above MSRP")

>= Test if one value is greater than or 
equal to another value

IF([Total] >= 5000, [Total]*15%, 
[Total]*10%)

<= Test if one value is less than or 
equal to another value

IF([SalePrice] <= [MSRP], "Below or equal 
to MSRP", "Above MSRP")

<> Test if two values are not equal IF([Country] <> "USA", "Imported 
product", "Domestic product")

AND Test if two or more conditions are 
true

IF(([Gender] = "Male" AND [Salary] >= 
150000 AND [Age] < 50), "Match found", 
"No match")



C h a p t e r  1 3 ,  W r i t i n g  e x p r e s s i o n s  u s i n g  E a s y S c r i p t 225

YEAR( )

OR Test if any one of multiple 
conditions is true

IF(([City] = "Boston") OR ([City] = "San 
Francisco"), "U.S.", "Europe and Asia")

& Concatenate string values [FirstName] & " " & [LastName]

Table 13-1 EasyScript operators (continued)

Operator Use to Example



226 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

YEAR( )



C h a p t e r  1 4 ,  S p e c i f y i n g  f i l t e r  c o n d i t i o n s  a t  r e p o r t  r u n  t i m e 227

C h a p t e r

14
Chapter 14Specifying filter

conditions at report run
time

This chapter contains the following topics:

■ About report parameters and filters

■ Enabling the user to specify a filter condition

■ Getting information about queries



228 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About report parameters and filters
Report parameters provide a mechanism for collecting values from a report user 
or a program. They are typically used in filters to collect information that 
determines the data to display in a report. Actuate BIRT Designer supports all the 
functionality of parameters and filters available in the open-source version, and 
provides additional features.

In open-source BIRT Report Designer, the following expression in the filter tool is 
an example of how a filter uses a report parameter to obtain the filter value at run 
time:

row["Total"] Greater than or Equal params[Sales Total].value

The field to evaluate (row["Total"]) and the operator that determines the type of 
filter test (Greater than or Equal) are specified at design time. At run time, the 
report user supplies the parameter value, which, in this example, is a sales total, 
such as 10000.

In Actuate BIRT Designer, report parameters and filters are enhanced to support 
dynamic filter conditions, which provide users more control over what data they 
see in the report. Instead of specifying only the value on which to filter, the report 
user can specify conditions, such as Total Less than 10000, or Total Between 10000 
and 20000, or Total Greater than 20000. The user can also choose to view all totals; 
in other words, the user can choose to omit the filter condition.

Another enhancement is that these filters can modify the underlying query so 
that filtering occurs in the database. This functionality applies when accessing a 
database through an information object or a JDBC connection for query builder 
data source. When using these data source types, only data rows that meet the 
filter criteria are retrieved from the database. By retrieving a limited number of 
rows, Actuate BIRT Designer’s performance improves.

This chapter describes how to create report parameters and filters to enable 
dynamic filtering. For information about other types of parameters and filters, see 
BIRT: A Field Guide.

Enabling the user to specify a filter condition
To enable users to specify a filter condition, complete the following tasks in the 
recommended order:

■ Create a dynamic filter report parameter.

■ Create a dynamic filter and bind it to the report parameter.



C h a p t e r  1 4 ,  S p e c i f y i n g  f i l t e r  c o n d i t i o n s  a t  r e p o r t  r u n  t i m e 229

Creating a dynamic filter report parameter
A dynamic filter report parameter differs from a regular report parameter in one 
important aspect. Using a dynamic filter parameter, you can provide report users 
with a list of operators, which they can use to construct their own filter condition. 

Figure 14-1 shows an example definition of a dynamic filter parameter where the 
display type is a text box. Aside from the Dynamic Filter Condition section, 
where you specify the column on which to filter and the operators to provide to 
users, the properties are similar to the properties for a regular report parameter.

Like the regular report parameter, a dynamic filter parameter can also provide the 
user with a list of values. However, values can be presented in a combo box or list 
box only. Figure 14-2 shows an example definition of a dynamic filter parameter 
that includes a list of values. The display type is set to Combo/List Box.

Standard properties 
for a report 
parameter

Operators to provide 
to report users

Column on which to 
filter

Figure 14-1 Properties of a dynamic filter parameter whose display type is a text box



230 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

How to create a dynamic filter report parameter

1 In Data Explorer, right-click Report Parameters, and choose New Dynamic 
Filter Parameter.

2 Specify the properties of the dynamic filter parameter. For information about 
the standard properties for a report parameter, see BIRT: A Field Guide. The 

Values to provide to 
report users

Display type set to 
Combo/List Box

Operators to provide 
to report users

Figure 14-2 Properties of a dynamic filter parameter whose display type is a combo box or 
list box



C h a p t e r  1 4 ,  S p e c i f y i n g  f i l t e r  c o n d i t i o n s  a t  r e p o r t  r u n  t i m e 231

following Dynamic Filter Condition properties are specific to a dynamic filter 
parameter:

■ In Column, type the name of the field on which to filter.

■ In Operator, select the operators to provide to the user. By default, all the 
operators are selected. To remove an operator, select it and click <.

■ Optionally, set one of the operators as the default. Select the operator, then 
choose Set as Default. A check mark appears next to the operator. If you 
specify a default operator, you must also specify a value in Default Value.

3 Choose OK.

Making a filter parameter optional
When you create a dynamic filter parameter, you can require the user to specify a 
value or you can make the filter optional. It is usually good practice to make the 
filter optional, so that the user can view a report with all the data. For example, if 
a report displays inventory data by vendor and you create an optional parameter 
to filter on vendors, the user can select No Condition to view inventory data for 
all vendors.

On the other hand, you can require that the user specify a value if displaying all 
the data results in a very long report. A report that runs into hundreds of pages is 
not only difficult to read, but the report takes longer to generate.

To make a filter parameter optional, deselect the Is Required property.

Accepting multiple values
Users often want to select any number of values for a filter condition. In an 
inventory report, for example, the user might need to view data for several 
vendors. To support the selection of multiple values, create a dynamic filter 
parameter as follows:

■ Select Combo/List Box as the display type.

■ Select the In operator as one of the operators to provide to the user.

■ Create a list of values.

Creating a dynamic filter
Actuate BIRT Designer supports two types of filters: static and dynamic. Use a 
static filter to define a specific filter condition at design time. Use a dynamic filter 
to enable users to define a filter condition at report run time.

How to create a dynamic filter

This procedure assumes you have already created the dynamic filter report 
parameter to bind to the filter you are creating.



232 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

1 Select the element to which to apply a dynamic filter condition. For example, 
select a data set, a table, or a chart whose data you want to filter.

2 Choose Filters, then choose New or Add to define a filter.

3 In New Filter Condition, specify the following values:

1 Choose Dynamic.

2 In Column, select the field on which to filter.

3 In Filter Parameter, select the dynamic filter parameter to update this filter 
with user-specified values at run time.

Figure 14-3 shows an example in which a QUANTITYINSTOCK field is bound 
to a dynamic filter parameter named Quantity.

Figure 14-3 Definition of a dynamic filter condition

4 Choose OK. 

The filter appears on the Filters page. Figure 14-4 shows the Quantity dynamic 
filter on the Filter page of the data set editor. Unlike a static filter, no values 
appear under Operator, Value 1, or Value 2, indicating that these values are 
specified at run time.

Figure 14-4 Dynamic filter in a data set



C h a p t e r  1 4 ,  S p e c i f y i n g  f i l t e r  c o n d i t i o n s  a t  r e p o r t  r u n  t i m e 233

Getting information about queries
When a report accesses data from a database, it is useful to understand what 
queries the report sends to the database, and how charts and tables get their data. 
For example, if you create a dynamic filter on a table to display sales data for 
certain products only, does BIRT send a query to retrieve sales data for all 
products then filter at the table level to display data for specific products, or does 
BIRT send a query that retrieves only data for specific products? Answers to 
questions such as this can help you optimize the performance of a report.

To get information about the queries that are executed, right-click a report 
element, such as a table or a chart, then choose Show Query Execution Profile. 
Figure 14-5 shows an example of a query that is executed for a table. In this 
example, Query Execution Profile shows the following information:

■ The data set (Products Data Set) that is bound to the table, the original query 
specified, and the query modified by BIRT and sent to the database

■ A sort definition that sorts data rows by product name in ascending order

■ A filter condition (row["QUANTITYINSTOCK"] > 5000

■ A group definition that groups data by vendor

■ Data bindings associated with the table

Figure 14-5 Query execution profile for a table



234 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Select each item in the query execution profile to see more information about that 
item. For example, click the filter, as shown in Figure 14-6, to see whether the 
filter is executed in BIRT or at the database level. In the filter information, “Push 
Down: applied” means that the filter is pushed down to, or executed by, the 
database. Similarly, select the sort and group definitions to see where these tasks 
are executed.

Figure 14-6 Filter information displayed in the query execution profile

Another piece of useful information that the query execution profile provides is 
whether, and how, BIRT modifies a query when you sort, group, or filter data 
using the graphical tools. As discussed at the beginning of this chapter, BIRT can 
modify a query to perform these tasks at the database level if the report accesses 
the database through an information object or a JDBC connection for query 
builder data source.

Select the Original: SELECT statement to see the query specified originally. Select 
the Effective: SELECT statement to see the query modified by BIRT. Figure 14-7 
shows an example of the SELECT statement in the original query. Figure 14-8 
shows an example of the SELECT statement in the modified query. 



C h a p t e r  1 4 ,  S p e c i f y i n g  f i l t e r  c o n d i t i o n s  a t  r e p o r t  r u n  t i m e 235

As Figure 14-8 shows, BIRT changes the original query to add a filter condition 
(WHERE clause) and a sort condition (ORDER BY clause).

Figure 14-7 Original query displayed in the query execution profile

Figure 14-8 Modified (effective) query displayed in the query execution profile



236 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

The performance of a report improves when data is processed by the database 
rather than by BIRT. Data filtering in particular can affect performance 
significantly because filtering can mean the difference between retrieving 
hundreds or millions of rows of data. 

When you create filters using the graphical filter tool, BIRT pushes a filter to the 
database if the filter condition can be mapped to a SQL expression (if using the 
JDBC connection for query builder data source) or an Actuate SQL expression (if 
using an information object data source). Using that criterion, the following are 
examples of when BIRT pushes a filter to the database:

■ The filter uses an operator that is supported by the database, for example, 
<, >, =. 

BIRT-specific operators, such as Match, Top Percent, and Bottom Percent, do 
not have SQL equivalents, so a filter that uses any of these operators is not 
pushed to the database.

■ The filter uses an expression that refers to a field in a database table. For 
example, the following filter condition is pushed to the database if SalesTotal 
is a column in the database table:

row["SalesTotal"] Greater than 5000000

On the other hand, the following filter condition is not pushed to the database 
if Profit is a computed column derived from other columns, for example, 
row["Sales"] - row["Cost"]:

row["Profit"] Greater than 2000000



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 237

C h a p t e r

15
Chapter 15Adding HTML buttons to a

report
This chapter contains the following topics:

■ About HTML buttons

■ Creating an HTML button

■ Writing code for an HTML button

■ Changing the appearance of an HTML button



238 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About HTML buttons
In a BIRT report, an HTML button is a report element that provides the same 
functionality as a button defined with the HTML <button> tag in a web page. The 
HTML button can execute client-side JavaScript code associated with button 
events, such as a button click or double-click.

You can use HTML buttons to provide users with custom interactive reporting 
functionality. For example, you can create HTML buttons that, when clicked, 
filter data, hide or show data, sort data, link to another report, or perform 
calculations. 

Figure 15-1 shows Actuate Viewer displaying a product sales report that contains 
three buttons at the top. Each button provides a different data filtering option. 
The user can choose to view all product sales, the top ten products, or the bottom 
ten products. The report in Figure 15-1 shows the top ten products.

Figure 15-1 Report with HTML buttons that provide different data filtering options

You can also use HTML buttons to integrate a report with other enterprise 
applications. Figure 15-2 shows an example of a report that uses Check Inventory 
and Process Order buttons to link to business processes that run in a different 
application.

The HTML button is supported in HTML reports only. It does not work in other 
output formats, such as PDF or Excel, and appears as static text in those 
documents. If a report is to be viewed in formats other than HTML, use the 
Visibility property to hide HTML buttons in all output formats, except HTML.



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 239

Figure 15-2 Report with HTML buttons that link to business processes

Creating an HTML button
Creating a functional HTML button entails inserting the HTML button element in 
the desired location in the report, specifying the text to display on the button, 
then programming the button’s action. You can place an HTML button in the 
report page, a grid, table, list, and cross tab.

How to create an HTML button

1 Drag an HTML button element from the palette and drop it in the desired 
location in the report.

2 In HTML Button, specify the following values:

1 In Name, type a different name for the element if you do not want to use 
the default name. Each HTML button must have a unique name. 

2 In Value, type the text to display on the button. Alternatively, select 
JavaScript Syntax or EasyScript Syntax to create an expression, which 
displays a dynamic or calculated value. Figure 15-3 shows an example of 
text specified for Value.



240 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 15-3 Definition of an HTML button

3 Choose OK. A message appears, providing information about writing code 
for the button. Choose OK.

The HTML button appears in the report.

3 While the button is selected, choose the Script tab.

4 In the script editor, click New Event Function and select a button event from 
the drop-down list, shown in Figure 15-4. 

Figure 15-4 Click New Event Function to display the list of button events

5 Write JavaScript code to program the button’s action for the selected event. 
The next section provides information about this task.

6 Run the report in the web viewer to test the button’s functionality. If you do 
not receive expected results, or if you receive an error, check the event handler 
script for possible problems.



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 241

Writing code for an HTML button
After inserting an HTML button in a report, you use the script editor to write 
JavaScript code that specifies the task to perform when a particular button event 
occurs. This type of code is called an event handler. HTML button event handlers 
can consist of any valid JavaScript code, and typically access report data and the 
Actuate JavaScript API to provide interactive viewing functionality.

The HTML button supports multiple events, and you can write multiple event 
handlers for a single button to execute different routines based on the event that 
occurs. For example, you can write an event handler that displays help 
information when the user moves the mouse pointer over a button, and a second 
event handler to run a business process when the user clicks the button.

Table 15-1 lists and describes the events that the HTML button supports and for 
which you can write code.

When you select an event for which to write code, the script editor provides a 
JavaScript code template, as shown in Figure 15-5.

The following line of code in the template is a signal to the software to execute the 
code within the braces that follow when a click, or button press, event occurs:

this.onclick = function(event)

Do not modify this line of code. Write your JavaScript code within the braces 
following that line. 

Table 15-1 Supported events

Event Description

onblur Occurs when the button loses focus, or stops being active

onclick Occurs when the button is clicked

ondblclick Occurs when the button is double-clicked

onfocus Occurs when the button gets focus, or becomes active

onkeydown Occurs when a keyboard key is pressed

onkeypress Occurs when a keyboard key is pressed and released

onkeyup Occurs when a keyboard key is released

onmousedown Occurs when a mouse button is pressed

onmousemove Occurs when a mouse pointer moves when it is over the 
button

onmouseover Occurs when a mouse pointer moves onto the button

onmouseup Occurs when a mouse button is released



242 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 15-5 Script editor displaying a script template

If you write multiple event handlers for an HTML button, the script editor places 
all the event handlers serially, as shown in the following code example:

/**
* Occurs when mouse clicks.
 * @param event */

this.onclick = function(event)
{ 

/* onclick code here */
}

/**
* Occurs when a mouse button is released.
 * @param event */

this.onmouseup = function(event)
{ 
 /* onmouseup code here */
}

Accessing report data
It is common to use HTML buttons to perform calculations on-demand or to 
present additional information. For example, rather than display customer notes 
that take up space in a report or that users view infrequently, you can create an 
HTML button that, when clicked, displays the information when users want to 
view the information.

These types of event handlers typically require access to data in the report, such 
as row data, aggregate data, or report parameter values. To provide event 
handlers with access to report data, you must do the following:



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 243

1 Insert the HTML button in a container, such as a table, that provides access to 
data.

2 For each type of data, create a variable for the HTML button using the 
Variables page on Property Editor. Figure 15-6 shows an HTML button 
variable named CustomerNotes whose value is set to the Notes column.

Figure 15-6 Variable associated with an HTML button

After you create a variable, use dataObject to access the variable in an event 
handler. For example, to access the variable CustomerNotes, use 
dataObject.CustomerNotes, as shown in the following event handler code:

/**
* Occurs when mouse clicks.
 * @param event */
this.onclick = function(event)
{ 

alert("Customer notes: " + 
"\n" + dataObject.CustomerNotes );

}

This example uses the JavaScript alert function to display customer notes in a 
message box, as shown in Figure 15-7.

Figure 15-7 Message box displaying a note when the HTML button is clicked

The next example shows how to use an HTML button to calculate the price of a 
product after applying a discount specified by the user at report view time. 
Figure 15-8 shows the report in the web viewer. The report lists the products and 
their MSRP (Manufacturer’s Suggested Retail Price). Each product row contains a 
Discounted Price button for calculating the discounted price for that product.



244 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 15-8 Product report using HTML buttons to calculate discounted prices

When the user clicks a button, a window prompts the user to enter a discount 
percent, as shown in Figure 15-9.

Figure 15-9 Window prompting for a discount percent

After the user enters a value, such as 10, and chooses OK, another window 
displays the product’s discounted price, as shown in Figure 15-10.

Figure 15-10 Window displaying the discounted price

To create this HTML button, a button labeled Discounted Price is inserted in the 
detail row of a table. The HTML button’s event handler code requires the MSRP 



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 245

values to calculate the discounted price, so a variable is created. Figure 15-11 
shows the definition of a variable named Price.

Figure 15-11 Price variable defined for the HTML button

The event handler code for the HTML button is as follows:

this.onclick = function(event)
{ 

Discount = window.prompt('Enter the discount percent: ','');
DiscountedPrice = dataObject.Price - (dataObject.Price * 

(Discount/100));
alert("Discounted price: " + DiscountedPrice);

}

The first line after the opening brace prompts the user for a discount value and 
stores the value in the Discount variable. The second line calculates the 
discounted price using the values in the Price and Discount variables. The third 
line displays the results in a message box. Note that this event handler code 
covers only the main tasks. A more complete event handler would also perform 
data validation to ensure that the input value is a number, and handle the case if 
the user chooses Cancel at the prompt.

How to add a variable to an HTML button

1 In the layout editor, select the HTML button to which to add a variable.

2 Choose Property Editor, then choose the Variables tab. 

3 In Variables, choose Add. 

4 In Add Variables, specify the following values:

1 In Name, type a unique name for the variable. JavaScript event handlers 
use the name to access the variable’s information through dataObject. For 
example, the event handler accesses a variable named credit as 
dataObject.credit.

2 In Expression, type the value that the variable contains. You can also use 
Expression Builder to create a value. Choose OK.

Variables displays the variable you created, as shown in Figure 15-12. 



246 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 15-12 Variable defined for an HTML button

Using the Actuate JavaScript API
Actuate provides a JavaScript API (JSAPI) to support the integration of Actuate 
technology with web applications. Application developers can use the API to 
embed entire reports or individual report elements, such as charts or tables, into 
existing web pages. 

HTML button event handlers can also use JSAPI to access report elements, 
manipulate data, and refresh a report in the Actuate viewer. For example, you can 
use the JSAPI to implement interactive functionality in the viewer, such as sorting 
and filtering data, linking to other report elements, and displaying or hiding 
report elements. 

The three HTML buttons in the report shown in Figure 15-1, which provide three 
data filtering options, use methods in the JSAPI to get the current viewer, create 
the filters, and reload the report with new data each time the user clicks one of the 
buttons. The following is the event handler code for the Top Ten Products button:

this.onclick = function(event)
{ 

//Get the current viewer object and the table with the 
//bookmark DetailTable on the current page.
var viewer = this.getViewer();
var pagecontents = viewer.getCurrentPageContent();
var table = pagecontents.getTableByBookmark("DetailTable");

//Create a top 10 filter on the table
table.setFilters(new actuate.data.Filter("PRICE", 
actuate.data.Filter.TOP_N, "10"));

//Reload the table
table.submit();

}



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 247

The following is the event handler code for the All Products button:

this.onclick = function(event)
{ 

var viewer = this.getViewer();
var pagecontents = viewer.getCurrentPageContent();
var table = pagecontents.getTableByBookmark("DetailTable");
table.clearFilters("PRICE");
table.submit();

}

The JSAPI provides many classes and methods that are useful for adding 
functionality to HTML buttons. For more information about using the JSAPI, see 
Using Actuate JavaScript API.

Testing an HTML button
As mentioned previously, HTML buttons are supported in HTML reports only. To 
test the functionality of an HTML button, run the report in the web viewer. The 
previewer in the report editor does not support the Actuate JavaScript API. You 
can view an HTML button that contains JSAPI code in the previewer, but it does 
not respond to any button events.

Changing the appearance of an HTML button
As with other report elements, you can modify an HTML button by changing 
property values, such as its name, its value, or aspects of its appearance. The tabs 
on the property sheet for the element support altering the appearance, visibility, 
and other features. 

The general properties page provides the ability to change the size, color, and the 
appearance of the text of the button. By default, the button’s size adjusts to the 
length of the text on the button. If a report contains multiple buttons and you 
want all the buttons to be the same size, specify values for the Width and Height 
properties. 

The general properties page also supports adding an image to the face of the 
button. Use the Upload button next to the Image property to add an image. 
Before doing so, make sure the image file is the appropriate size for the button. A 
button expands to display the image in its full size unless you specify Width and 
Height values. So, if an image is large, and you use the default auto-sizing 
feature, the button is large. If you use explicit Width and Height values, and the 
image is larger than the specified button size, the image is truncated. To change 
the size of an image, you must edit the image using a graphic editing tool. 

Figure 15-13 shows the general properties for an HTML button.



248 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 15-13 General properties for an HTML button

Use the padding settings, as shown in Figure 15-14, to add extra space around the 
text or image on the face of the HTML button.

Figure 15-14 Padding properties for an HTML button

Padding supports the use of different units, such as inches or points. When you 
add padding, it affects the HTML button as shown in Figure 15-15. The button on 
the left uses the default padding values. The button on the right uses padding 
values of 0.5 inch at the top and bottom.

Figure 15-15 Padding added to an HTML button using an image

Use the margin settings to increase the space around the entire button. Specifying 
margin values is similar to specifying padding values, as shown in Figure 15-16.

Padding of 0.5 inch at the 
top and bottom of button



C h a p t e r  1 5 ,  A d d i n g  H T M L  b u t t o n s  t o  a  r e p o r t 249

Figure 15-16 Margin properties for an HTML button

However, whereas padding modifies the size of the HTML button, margins 
modify the space around the button and do not change the button size. 
Figure 15-17 shows two buttons, each within a cell. The button on the left uses the 
default margin values. The button on the right uses margin values of 0.5 at the top 
and bottom.

Figure 15-17 Margin space around an HTML button in a table

Visibility, Page Break, Table of Contents, and other properties operate in the same 
manner as they do for other report elements.

How to change the name or value of an HTML button

1 Double-click the HTML button. 

2 In HTML Button, in Name, type the new button name. In Value, type the new 
value. 

3 Choose OK. The HTML button displays the new value.

Margin of 0.5 inch at the 
top and bottom of button



250 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 251

C h a p t e r

16
Chapter 16Controlling user access to

report pages and data
This chapter contains the following topics:

■ About the security model

■ Controlling user access to report pages

■ Controlling user access to data



252 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About the security model
All files stored in an Actuate BIRT iServer Encyclopedia volume are subject to a 
standard security procedure, which restricts file access to authorized users. The 
iServer security model is based on roles and privileges. The iServer administrator 
creates roles for various job functions in an organization, such as finance, 
marketing, and sales. The privileges, or permissions, to perform certain 
operations, such as read, write, and execute, are assigned to roles. Users are 
assigned roles, and, through these roles, acquire the privileges to perform 
particular operations on folders and files. 

With this level of security, each user has access to files and folders on a need-to-
know basis. For security at a more detailed level, iServer provides the following 
types of security:

■ Page-level security, which controls user access to particular sections or pages 
in a report. This security feature requires the Page Level Security option on 
iServer. The published report must be assigned the Secure Read privilege.

■ Data security, which controls user access to a particular set of data provided 
by a BIRT data object. This security feature is part of the core iServer 
functionality. The published data object must be assigned the Secure Read 
privilege.

The security procedure that applies to files and folders in an iServer volume is 
implemented entirely in iServer. Page-level security and data security, however, 
require implementation in Actuate BIRT Designer as well. 

About access control lists (ACLs) and security IDs
Page-level and data security use the same security mechanism in Actuate BIRT 
Designer: access control lists.

An access control list (ACL) is a list of security IDs that tells iServer which users 
have access to a particular item in a report or data object. A security ID can be 
either a user name or a role defined in iServer. Typically, you use roles because 
they are more permanent than user names. A role can be assigned to different 
users at different times as employees leave or change positions.

To implement page-level and data security in Actuate BIRT Designer, perform the 
following tasks:

■ In the report or data object, select the item to which to apply security.

■ For the item’s Access Control List Expression property, specify an expression 
that evaluates to a security ID or a list of security IDs.



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 253

ACL expression syntax
The ACL expression must evaluate to a string, and can be either a JavaScript or 
EasyScript expression. If specifying multiple security IDs, separate each with a 
comma.

The following expressions are examples of ACL expressions in JavaScript. The 
first expression specifies a literal role name. The second expression specifies two 
literal role names. The third expression evaluates to role names, such as Sales 
Manager France or Sales Manager Canada. The fourth expression specifies two 
literal role names and an expression that evaluates to role names.

"CFO"
"CFO, Sales VP"
"Sales Manager " + row["Country"]
"CFO, Sales VP" + "," + "Sales Manager " + row["COUNTRY"]

The following ACL expressions are the EasyScript equivalent:

"CFO"
"CFO, Sales VP"
"Sales Manager " & [Country]
"CFO, Sales VP" & "," & "Sales Manager " & row["COUNTRY"]

Controlling user access to report pages
In a report that uses page-level security, report users can view only pages to 
which they have access. You can design a single report that meets the needs of a 
range of users. The most common case is to create a hierarchy of ACLs where 
each successive level has access to more information. The ACL hierarchy can 
match the organizational hierarchy of a company.

For example, in a report that provides worldwide sales data by region and 
country, you can restrict user access to the content as follows:

■ Each country sales manager can view only the pages that display sales data for 
her country.

■ Each regional sales manager can view all the pages that display sales data for 
the countries in her region.

■ The vice president of sales can view the entire report.

Figure 16-1 shows the page that the sales manager in Belgium can view.



254 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 16-1 Page that the sales manager in Belgium can view

Figure 16-2 shows the pages that the regional sales manager for Europe can view.

Figure 16-2 Pages that the regional sales manager for Europe can view

Figure 16-3 shows the full report, which only the vice president of sales can view.



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 255

Without page-level security, you would need to create multiple reports—one 
report for each user—and the iServer administrator would then have to define 

Figure 16-3 Pages that the vice president of sales can view



256 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

different security rules for each report, and manage multiple reports. In the sales 
report example, which presents data for three regions and eight countries, you 
would have to create twelve reports. For large companies, which typically have 
more hierarchical levels and more users, the number of reports increases.

Adding page-level security to a report
To implement page-level security in a report, perform the following tasks:

■ Identify the sections that require security.
The most common elements to which to apply security are tables, lists, grids, 
and groups defined in a table.

■ Identify the users that can view each section. 
Obtain the security IDs, typically roles, from the iServer volume administrator.

■ Set security.
For each element that requires security, right click the element, then select 
Security from the context menu. Set the Access Control List Expression 
property to the security ID or IDs to which to grant access to the element’s 
content.

Example 1

Figure 16-4 shows the design for the sales report shown in the previous section. 
The report design consists of a single table that groups data by region, country, 
and product.

Figure 16-4 Design of report that groups sales data by region and country

Page-level security is applied to these elements: the table, the Region group, and 
the Country group. Figure 16-5 shows the Security dialog for the table element. 



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 257

Figure 16-5 Page-level security applied to the table and two of its groups

■ The Access Control List Expression property is set to the value "Sales VP".

■ The Cascade ACL option is selected. This setting propagates the specified 
ACL to all the elements in the table.

These settings specify that only the Sales VP has access to all of the table’s 
contents.

■ For the Region group:

■ The Access Control List expression is:

"Regional Sales Manager: " + row["REGION"]

This expression specifies that data for each region is restricted to a specific 
regional sales manager role. For example, only a user with the Regional 
Sales Manager: Europe role can view the sales data for Europe.

■ Cascade is set to True. This value propagates the ACL to the elements in the 
Region group, providing the regional sales manager access to all the data 
within the Region group.

■ For the Country group:

■ The Access Control List expression is:

"Sales Manager: " + row["COUNTRY"]

This expression specifies that data for each country is restricted to a specific 
sales manager role. For example, only a user with the Sales Manager: 
France role can view the sales data for France.

■ Cascade is set to True. This value propagates the ACL to the elements in the 
Country group, providing the sales manager access to all the data within 
the Country group.



258 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Example 2

This example shows how to implement page-level security in a report that 
contains multiple tables. Figure 16-6 shows a report design that contains four 
tables and identifies the roles that can view each table. The last table shows 
detailed sales data grouped by country and product. The CEO, Sales VP, and 
Sales Director can view all the content in this table. Each sales manager can view 
only the sales data for her country.

Figure 16-6 Design of report that contains four tables and the roles that can 
access each table

There are several ways to implement page-level security in this report. You can:

■ Select each table and set each table’s Access Control List Expression property 
to the roles identified in Figure 16-6. 

The ACL for the first, second, and third tables would be:

"CEO, Sales VP"

The ACL for the first fourth table would be:

"CEO, Sales VP, Sales Director"

The ACL for the Country group in the fourth table would be:

"CEO, Sales VP, Sales Director" + "," + "Sales Manager of " + 
row["COUNTRY"]

CEO, Sales VP

CEO, Sales VP

CEO, Sales VP

CEO, Sales VP, 
Sales Director

CEO, Sales VP, 
Sales Director, 
Sales Manager of 
[COUNTRY]



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 259

■ Use the Cascade ACL option to cascade security IDs from a container element 
to its contents. Because the CEO and Sales VP roles can view the entire report, 
it is more efficient to specify the ACL once at the topmost container, the report 
element, than it is to specify the same ACL multiple times.

The ACL for the report element would be:

"CEO, Sales VP"

The ACL for the first fourth table would be:

"Sales Director"

The ACL for the Country group in the fourth table would be:

"Sales Manager of " + row["COUNTRY"]

■ Add a grid to the report, place all the tables in the grid, and cascade the 
"CEO, Sales VP" ACL expression from the grid instead of from the report 
element. This design is more versatile than the previous one because it is often 
practical to leave the ACL at the report level blank, which grants all users 
access to the report. For example, if you add new sections, such as a title page, 
for a broader range of users, it is easier to start with the rule that all users can 
view all the content in a report, then restrict access to particular sections. 

The report examples in this section illustrate several key concepts about page-
level security, which are summarized next. Understanding these concepts can 
help you design a report to use page-level security.

■ When an element’s ACL expression property is blank, there are no viewing 
restrictions for that element, except those restrictions (determined by the 
ACLs) that the element inherits from its container.

■ An element inherits the ACLs from its container when the container’s Cascade 
ACL option is selected. This option, selected by default, means that a user who 
is permitted to view a container can also view all elements within the 
container.

■ The report element is the topmost container. If its ACL expression property is 
blank, BIRT assigns an internal ACL of "__all" to the report. This setting 
combined with the selected Cascade ACL option ensures that a report created 
initially is accessible to all users.

■ BIRT generates one report document, inserting a page break between elements 
that have different ACLs. This concept explains why some pages display just a 
group header, as Figure 16-3 shows, when groups in a table have different 
ACLs. 

Enabling and disabling page-level security
For ACLs to take effect when the report is run on iServer, you must enable page-
level security in the report design. When enabled, BIRT generates a report that 



260 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

consists of pages, which are restricted to users with specified security IDs. If you 
decide later to make the entire report available to users, all you do is disable the 
page-level security option. You do not have to remove the ACLs.

How to turn page-level security on or off

1 In the layout editor, right-click a blank area of the report, then select Security. 

2 In Security, shown in Figure 16-7, either select or deselect Enable Page Level 
Security on generated report document.

Figure 16-7 Enabling page-level security

Configuring page numbers
A report that uses page-level security provides two options for displaying page 
numbers. The report can display page numbers sequentially in the order that they 
appear to a user. For example, if a user can view pages 1, 5, 6, and 8 of a report, 
the page numbers that the user sees are 1, 2, 3, and 4. Alternatively, the report can 
display the actual page numbers 1, 5, 6, and 8. 

Similarly, for page number formats that include the total page count, such as 
1 of 4, the total page count can be the number of pages visible to the user or the 
number of pages in the report.

How to configure page numbers

This procedure assumes that the report already contains page number elements.

1 Choose Master Page to view the page number elements. Figure 16-8 shows an 
example of a master page where the footer contains three elements to display 
page numbers in the format 1 of 10. 

Figure 16-8 Master page containing page number elements

2 Right-click the Page Number element and choose Security.

Option to enable 
or disable page-
level security



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 261

3 In Security, shown in Figure 16-9, select a display option, then choose OK.

■ Select Visible Page Number to display numbers sequentially in the order 
that the pages appear to the user.

■ Select Actual Page Number to display the numbers as they appear in the 
entire report.

Figure 16-9 Selecting a page-numbering option

4 If the page number format includes a total page count, as shown in the sample 
master page in Figure 16-8, use the instructions in the previous step to select a 
display option for the Total Page element.

Testing page-level security
Actuate BIRT Designer supports the simulation of secure report viewing, so that 
you can test page-level security without having to publish the report to iServer, 
log in with different user credentials, run the report and verify its output.

How to test page-level security

1 Make sure page-level security is enabled. This procedure is described earlier in 
this chapter.

2 Choose Run➛View Report with Page Security, and select the output format in 
which to view the report. 

3 In Run Report with Page Level Security, shown in Figure 16-10, type a security 
ID specified in an ACL. For example:

Sales Manager: France

Figure 16-10 Using a specified security ID

Choose OK. The report runs and displays only the page or pages that the 
specified security ID can view.

4 Repeat the previous step until you finish testing all the security IDs used in the 
report.



262 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Controlling user access to data
In addition to page-level security, iServer also supports data security, which 
controls user access to a particular set of data provided by a BIRT data object. For 
example, you can design a data object that returns one set of data rows for one 
group of dashboard or report users, and a different set for another group of users.

You can limit access to the following items in a data object:

■ A data set, its rows and columns

■ A cube, its measures, dimensions, dimension levels, and level members

After designing the data object, generate a data object store (a .data file) and 
publish this file to an iServer volume. iServer supports data security on .data files, 
but not on .datadesign files.

A user can only see and use the data items to which she is granted access. The 
security rules apply to users designing a dashboard or a report in BIRT Studio, as 
well as, users running a dashboard or report.

Adding security to a data object
To implement security in a data object, perform the following tasks:

■ Identify the data items that require security. 

■ Identify the users that can view each item. Obtain the security IDs, typically 
roles, from the iServer volume administrator.

■ In the data object design (.datadesign), for each item that requires security, set 
the item’s Access Control List Expression property to the security ID or IDs to 
which to grant access to the item.

Figure 16-11 shows security applied to the rows in a data set. The expression 
specified for the Row Access Control List Expression property is:

"HR Director" + "," + "Manager: Office " + row["OFFICECODE"]

Figure 16-11 Data security applied to data set rows



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 263

Security applied to data set rows acts as a filter. In the example shown in 
Figure 16-11, the HR Director can view all rows in the data set. Managers can 
view only rows that pertain to their department as specified by the office code.

Figure 16-12 shows a report design that uses the secured data object. In the 
design, a table contains data elements that access the data set columns in the data 
object.

Figure 16-12 Report design that uses data from a data set in a secured data object

When run and viewed by the HR Director, the report displays all the rows in the 
data set, as shown in Figure 16-13.

Figure 16-13 Preview of the report for the HR Director role



264 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

When run and viewed by the manager of a specific office code, the report 
displays only the rows for that office. Figure 16-14 shows the report that
Manager: Office 4 sees.

Figure 16-14 Preview of the report for the Manager: Office 4 role

Enabling and disabling data security
For ACLs to take effect, you must enable data security in the data object. If you 
decide later to make all the data in the data object available to users, all you do is 
disable data security. You do not have to remove the ACLs.

How to turn data security on or off

1 In the layout editor, right-click in an empty area of the data object design, then 
select Security.

2 In Security, shown in Figure 16-15, either select or deselect Enable Data 
Security.

Figure 16-15 Enabling data security

Testing data security
Actuate BIRT Designer supports the simulation of viewing reports with data 
security. You can test data security in a report without having to publish the 
report to iServer, log in with different user credentials, run the report and verify 
its output.

Option to enable 
or disable data 
security



C h a p t e r  1 6 ,  C o n t r o l l i n g  u s e r  a c c e s s  t o  r e p o r t  p a g e s  a n d  d a t a 265

To test data security from the perspective of a user designing a dashboard or a 
report in BIRT Studio, you need to run tests on the iServer. The testing procedure 
entails publishing the data object, assigning user privileges on the data object, 
logging in with user credentials, then launching the dashboard design tool or 
BIRT Studio, and using the data object as a source of data for the dashboard or 
report.

How to test data security in a report

1 Using Actuate BIRT Designer, build a report that uses a secure data object 
store (.data) as its data source. For information about this procedure, see 
Chapter 3, “Accessing data in a data object.” 

2 When you finish building the report, choose Run➛View Report with Data 
Security, and select the output format in which to view the report. 

3 In Run Report with Data Security Enabled, shown in Figure 16-16, type a 
security ID specified in an ACL in the data object. For example:

Manager: Office 4

Figure 16-16 Running a report with data security using a specified security ID

Choose OK.

The report runs and displays only the content that the specified security ID 
can view.

4 Repeat the previous step until you finish testing all the security IDs used in the 
report.



266 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  1 7 ,  A c c e s s i n g  i S e r v e r  e n v i r o n m e n t  i n f o r m a t i o n 267

C h a p t e r

17
Chapter 17Accessing iServer

environment information
This chapter contains the following topics: 

■ Writing event handlers to retrieve iServer environment information

■ Debugging event handlers that use the iServer API

■ iServer API reference



268 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Writing event handlers to retrieve iServer environment 
information

Report developers distribute reports to users by publishing them to Actuate BIRT 
iServer. Sometimes a report requires information about the iServer environment 
to implement application or business logic based on, for example, the security 
credentials of the user running the report, the browser in which the report is 
viewed, the server volume on which the report is run, and so on. BIRT provides 
an API, referred to in this chapter as the iServer API, that enables access to this 
type of information.

To use the iServer API in a report, you write event handler scripts in either Java or 
JavaScript. BIRT event handlers are associated with all the elements that make up 
a report, such as data sources, data sets, tables, charts, and labels. When a report 
is run, BIRT fires events and executes event handlers in a specific sequence to 
generate and render the report. 

Writing event handlers in a report requires knowledge of the BIRT event model. 
For information about the event model and details about writing event handlers 
in Java and JavaScript, see Integrating and Extending BIRT. This chapter describes 
the additional requirements for accessing and debugging the iServer API in an 
event handler.

Writing a JavaScript event handler
You write a JavaScript event handler that uses the iServer API the same way you 
write other event handlers. In Actuate BIRT Designer, you select an element, such 
as the report design or a table, then use the script editor to select an event, such as 
beforeFactory or onCreate, for which to write an event handler.

Figure 17-1 shows the script editor displaying event-handling code written for 
the report design’s beforeFactory event.

Figure 17-1 Event-handling code in the script editor



C h a p t e r  1 7 ,  A c c e s s i n g  i S e r v e r  e n v i r o n m e n t  i n f o r m a t i o n 269

Writing a Java event handler
Writing a Java event handler that uses the iServer API is similar to writing other 
types of event handlers. You create a Java event handler class, make the class 
available to BIRT, and associate the class with a report element. The difference is 
the additional JAR files required to access the iServer API. 

You must add the following JAR files in the build path and classpath when 
configuring the Java event handler project:

■ $ACTUATE_HOME\iServer\Jar\BIRT\lib\scriptapi.jar

This JAR file provides the event handler classes and access to the 
reportContext object. If you use the ULocale methods, com.ibm.icu_version.jar 
is also required. $ACTUATE_HOME is the location where iServer is installed.

■ $ACTUATE_HOME\iServer\reportengines\lib\jrem.jar

This JAR file contains the definitions of the classes and methods in the iServer 
API.

Figure 17-2 shows the build path of a Java project that uses the iServer API. In this 
example, Actuate BIRT Designer is installed in the same path where iServer is 
installed. If Actuate BIRT Designer is installed on a different machine, you must 
copy the JAR files from the iServer machine to your workspace.

Figure 17-2 Build path of a Java project that uses the iServer API



270 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About the serverContext object
The BIRT engine uses an object called serverContext to store information about 
the iServer environment. The serverContext methods and properties are defined 
in the IServerContext interface. The container for the serverContext object is the 
application context object appContext. The appContext object stores objects and 
values that are used in all phases of report generation and presentation.

The appContext object, in turn, is a property of the reportContext object. This 
object stores information associated with the instance of the report that is being 
generated or viewed. For example, the reportContext object stores information 
about report parameters, global variables, report output format, locale, the 
request that runs the report, and the application context. The report context class 
defines methods for setting and retrieving these properties. Every event handler 
in a BIRT report has access to the reportContext object. In Java, the report context 
object is an argument to all event-handler methods.

To call a method to retrieve iServer environment information, the code must 
reflect the relationships between the serverContext, appContext, and 
reportContext objects. 

The following JavaScript code snippet shows how to call the getVolumeName( ) 
method to retrieve the name of the iServer volume in which a report runs:

reportContext.getAppContext().get("ServerContext").getVolumeName()

The following example shows the equivalent code snippet in Java:

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.getVolumeName();

JavaScript event handler example
The code example in Listing 17-1 uses the getUserRoles( ) method to retrieve the 
user’s roles and displays the contents of a report element if the user role is 
Manager. This code can be used, for example, in the onPrepare event of a table 
element to hide or display the table depending on the user role. The code example 
also uses the appendToJobStatus( ) method to write messages about the user’s 
roles to the server job status.

Listing 17-1 JavaScript event handler

userRoles = reportContext.getAppContext().get("ServerContext")
.getUserRoles();

reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("The user roles are:" + userRoles +"\n");



C h a p t e r  1 7 ,  A c c e s s i n g  i S e r v e r  e n v i r o n m e n t  i n f o r m a t i o n 271

if (userRoles != null) 
{

for (i = 0; i < userRoles.size(); i++) 

{
if ( userRoles.get(i) == "Manager")
{

reportContext.setGlobalVariable("HideDetails", "false");
reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("The user has a Manager role\n");
break;

}

}
}

Java event handler example
Like the JavaScript event handler in the previous section, the Java code example 
in Listing 17-2 uses the getUserRoles( ) method to retrieve the user’s roles and 
displays the contents of a table if the user role is Manager. The TableEH class 
extends the TableEventAdapter class and implements the event-handler script in 
the onPrepare event method.

Listing 17-2 Java event handler class

package server.api.eh;

import java.util.List;

import org.eclipse.birt.report.engine.api.script.IReportContext;
import org.eclipse.birt.report.engine.api.script.element.ITable;
import org.eclipse.birt.report.engine.api.script.eventadapter

.TableEventAdapter;

import com.actuate.reportapi.engine.IServerContext;

public class TableEH extends TableEventAdapter {

public void onPrepare(ITable tbl, IReportContext reportContext)
{

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
List<String> userRoles =  scontext.getUserRoles();
scontext.appendToJobStatus("The user roles are:" + userRoles

+"\n");

(continues)



272 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

for (int i = 0; i < userRoles.size(); i++) 
{

if ( userRoles.get(i).contentEquals("Manager"))
{

reportContext.setGlobalVariable("HideDetails", "false");
scontext.appendToJobStatus("The user has a Manager role

\n");
break;

}
}

}
}

Debugging event handlers that use the iServer API
A report that uses the iServer API returns the expected results only when it is run 
on iServer. When the report is run in Actuate BIRT Designer, the report cannot 
access the iServer to retrieve the server information, and the report typically 
returns null values. Therefore, you cannot debug the iServer API calls in the same 
way you debug other event handlers in Actuate BIRT Designer.

To debug iServer API calls, use the appendToJobStatus( ) method to write a 
debugging message for each event handler. For example, if you write a JavaScript 
event handler for the beforeFactory event, add the following line of debugging 
code:

reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("Debugging: beforeFactory called.\n");

In a Java event handler, write:

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.appendToJobStatus("Debugging: beforeFactory called.\n");

The appendToJobStatus( ) method writes a specified string message in the status 
section of a job-completion notice. After running the report on iServer, you can 
view these messages in either iServer Management Console or iServer 
Information Console.

In Management Console, choose Jobs—Completed, then choose the job’s details. 
The job’s Status page displays the debug messages in the Status section, as shown 
in Figure 17-3.



C h a p t e r  1 7 ,  A c c e s s i n g  i S e r v e r  e n v i r o n m e n t  i n f o r m a t i o n 273

Figure 17-3 Debug message in the job status page in Management Console

In Information Console, choose My Jobs—Completed, then choose Details next to 
the job whose status you want to review. The debug messages appear in the 
Status section in the job details page, as shown in Figure 17-4.

Figure 17-4 Debug message in the status section in the job detail page in 
Information Console



274 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

iServer API reference
This section lists all the methods in the iServer API in alphabetical order. Each 
method entry includes a general description of the method, the JavaScript and 
Java syntaxes, the result the method returns, and examples.

appendToJobStatus( )
Appends a specified string to the status of the current job. iServer writes status 
messages for each report-generation job.

JavaScript
syntax

appendToJobStatus(statusString)

Java
syntax

public void appendToJobStatus( String statusString )

Argument statusString
The string to add to the job status.

Usage Use to provide information for debugging purposes. For example, to verify that 
an event handler is executed, write a message indicating that the event method is 
called.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("This message appears when beforeFactory is 
called.\n");

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.appendToJobStatus("This message appears when 

beforeFactory is called.\n");

getAuthenticationId( )
Retrieves the current user’s authentication ID. 

JavaScript
syntax

getAuthenticationId()

Java
syntax

public String getAuthenticationId()

Usage Use in cases when the report application needs to pass the ID to another 
application, such as IDAPI calls to iServer.

Returns An authentication ID in String format.



C h a p t e r  1 7 ,  A c c e s s i n g  i S e r v e r  e n v i r o n m e n t  i n f o r m a t i o n 275

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getAuthenticationId();

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.getAuthenticationId();

getServerWorkingDirectory( )
Retrieves the path to the folder in the file system where temporary files are stored. 

JavaScript
syntax

getServerWorkingDirectory()

Java
syntax

public String getServerWorkingDirectory()

Usage Use to read or write information from and to the file system.

Returns The full path to the iServer working directory.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getServerWorkingDirectory();

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.getServerWorkingDirectory();

getUserAgentString( )
Identifies the browser used to view a report. 

JavaScript
syntax

getUserAgentString()

Java
syntax

public String getUserAgentString()

Usage Use in cases when an application requires different code for different browsers. 
The browser information is available only when the report is rendered, so use 
getUserAgentString( ) in a report element’s onRender event.

Returns The browser type in String format. For Internet Explorer, for example, 
getUserAgentString( ) might return a string, such as:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; InfoPath.1; 
MS-RTC LM 8)

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getUserAgentString();



276 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.getUserAgentString();

getUserRoles( )
Retrieves the roles assigned to the current user. 

JavaScript
syntax

getUserRoles()

Java
syntax

public List<String> getUserRoles()

Usage Use in cases when an application requires different code for different iServer 
security roles.

Returns The current user’s security roles.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getUserRoles();

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
List<String> userRoles = scontext.getUserRoles();

getVolumeName( )
Retrieves the name of the iServer volume on which the report runs. 

JavaScript
syntax

getVolumeName()

Java
syntax

public String getVolumeName()

Usage Use in cases when an application running in a multi-volume environment 
requires volume information, for example, to implement logging in a report.

Returns The name of the iServer volume running a report.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getVolumeName();

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.getVolumeName();



C h a p t e r  1 7 ,  A c c e s s i n g  i S e r v e r  e n v i r o n m e n t  i n f o r m a t i o n 277

setHeadline( )
Sets the headline of a generated report. A headline appears in a job completion 
notice that iServer writes to a channel.

JavaScript
syntax

setHeadline(headline)

Java
syntax

public void setHeadline( String headline )

Argument headline
A string that represents the headline of a completed job.

Usage Use to specify a headline based on the contents of a report, or on the value of a 
report parameter.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.setHeadline("Sales Report for " + params["Region"].value);

Java
example

String region = (String)reportContext.getParameterValue("Region")
IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.setHeadline("Sales Report for " + region);

setVersionName( )
Sets the version name of a generated report.

JavaScript
syntax

setVersionName(versionName)

Java
syntax

public void setVersionName( String versionName )

Argument versionName
A string that represents the report’s version name.

Usage Use to specify a version name that includes dynamic data, such as the contents of 
a report, the value of a report parameter, or the report-generation date.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.setVersionName("Version " + new Date());

Java
example

IServerContext scontext;
scontext = (IServerContext) 

reportContext.getAppContext().get("ServerContext");
scontext.setVersionName("Version " + new Date());



278 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



Part 3Deploying reports and resources

Part Three3





C h a p t e r  1 8 ,  D e p l o y i n g  B I R T  r e p o r t s  t o  A c t u a t e  B I R T  i S e r v e r 281

C h a p t e r

18
Chapter 18Deploying BIRT reports to

Actuate BIRT iServer
This chapter contains the following topics:

■ About deploying BIRT reports

■ Publishing a report resource to Actuate BIRT iServer

■ Deploying Java classes used in BIRT reports

■ Installing a custom JDBC driver

■ Installing custom ODA drivers and custom plug-ins



282 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About deploying BIRT reports
This chapter describes how to run and distribute BIRT reports in the Actuate 
business reporting system. To deploy BIRT reports, you need to understand the 
environment in which the reports run. 

Actuate Information Console provides a central location from which business 
users can access, run, and view reports. You can use Actuate Information Console 
to run report executables, and to manage, generate, view, and print report 
documents.

Actuate Information Console is available in Actuate BIRT iServer, a report server 
that can store and manage the scheduling, versioning, and archiving of large 
numbers of reports. iServer uses the Actuate BIRT option to run and distribute 
BIRT reports.

Actuate BIRT Designer Professional, the tool that you use to develop BIRT 
reports, has built-in capabilities that facilitate the deployment process. The 
Actuate BIRT Designer integrates with iServer in several important ways to 
support performing the following tasks: 

■ Use an Open Data Access (ODA) information object data source that resides 
on an Encyclopedia volume.

■ Publish a report design to an Encyclopedia volume.

■ Publish a resource to an Encyclopedia volume.

■ Install a custom JDBC driver for use by BIRT reports running in the iServer 
environment.

A user accesses BIRT Studio from Actuate Information Console. BIRT Studio is a 
licensed option of iServer. To deploy templates and reports to BIRT Studio you 
use the deployment features available in Actuate BIRT Designer Professional. The 
following sections describe these capabilities. 

Publishing a report to Actuate BIRT iServer
The purpose of publishing a report to iServer is to make it accessible to a large 
number of users. A published report is available to manage, meaning you can 
schedule re-running the report to include updates from the data sources. You can 
also choose who can access part or all of the report.

Actuate BIRT Designer Professional provides tools for easy deployment of 
reports, templates and their resources to iServer. The designer connects directly to 
an iServer and deploys the reports to selected iServer folders. The designer 
provides an iServer Explorer view for managing iServer connections. Using 
iServer Explorer, you can create iServer connection profiles to store the 



C h a p t e r  1 8 ,  D e p l o y i n g  B I R T  r e p o r t s  t o  A c t u a t e  B I R T  i S e r v e r 283

connection properties to a specific Encyclopedia volume. Figure 18-1 shows 
iServer Explorer displaying an iServer profile. 

Figure 18-1 iServer Explorer view

How to create a new iServer profile

1 In Actuate BIRT Designer, open iServer Explorer. If you do not see the iServer 
Explorer view in the designer, select Windows➛Show view➛iServer Explorer.

2 In iServer Explorer, right-click Servers, and choose New iServer Profile. 

3 In New iServer Profile, specify the connection information. Figure 18-2 
displays an example of connection properties provided for an iServer named 
Athena.

Figure 18-2 Setting properties in a new iServer profile



284 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

1 In Profile name, type a unique name that identifies the new profile.

2 In iServer, type the name or IP address of the computer on which iServer is 
installed.

3 In Port number, type the number of the port to access iServer.

4 In Volume, select the iServer Encyclopedia volume.

5 In User name, type the user name required to access the volume.

6 In Password, type the password required to access the volume.

4 Choose Finish to save the iServer profile. The iServer profile appears in the 
iServer Explorer as shown in Figure 18-1.

How to publish a report design to iServer

1 Choose File➛Publish Report to iServer. 

2 On Publish Report Designs, select the report, as shown in Figure 18-3.

Figure 18-3 Selecting a report to publish

3 If there is no appropriate profile in the iServer profile list, create a new profile 
by choosing Add. In New iServer Profile, complete the information in the 
New iServer Profile, as shown in Figure 18-2. Then, choose Close.

4 In Publish Report Designs, in Publish location, type or browse for the location 
on the Encyclopedia volume in which to publish the report design, as shown 
in Figure 18-4.



C h a p t e r  1 8 ,  D e p l o y i n g  B I R T  r e p o r t s  t o  A c t u a t e  B I R T  i S e r v e r 285

Figure 18-4 Selecting a server and location

5 Choose Publish Files. A window showing the file upload status appears. 

In Publishing, wait until the upload finishes, then choose OK, as shown in 
Figure 18-5.

Figure 18-5 Confirming the report publishing

6 In Publish Report Designs, choose Close.

Publishing a report resource to Actuate BIRT iServer
BIRT reports frequently use files with additional information to present report 
data to the users. A BIRT resource is any of the following items:

■ Static image that a BIRT report design uses

■ Report library



286 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ Properties file

■ Report template

■ Data object

■ CSS file

■ External JavaScript file

■ SWF file of a flash object

■ Java Event Handler class packaged as a Java Archive (JAR) file

You can publish BIRT resources from the BIRT Report Designer’s local resource 
folder to iServer. By default, the Resource folder is the current report project 
folder. If you use shared resources with other developers and the resource files for 
your reports are stored in a different folder, you can change the default Resource 
folder. Use Windows➛Preferences➛Report Design➛Resource menu to set the 
resource folder. 

In the Encyclopedia volume, the Resource folder is set to /Resources by default. 
In the sample Encyclopedia volume, the /Public folder contains sample reports. 
The libraries and templates used by these sample reports are stored in the 
/Resources folder.

If the resource folder in the Encyclopedia volume is different from the default, 
before publishing a resource, you need to set up the Resource folder in the 
Encyclopedia volume. 

How to change the Resource folder on an Encyclopedia volume

1 Open Management Console and log in to the Encyclopedia volume.

2 Create a folder to designate as a resource folder.

3 Choose Volume.

4 On Volume, choose Properties.

5 On Properties—General, in Resource folder, type or browse to the folder to 
which you want to publish BIRT resources.

How to publish a resource from the Resource folder to iServer

1 In Actuate BIRT Designer, choose File➛Publish Resource to iServer.

2 On Publish Resources, expand the Actuate BIRT Designer’s Resource Folder 
and select the resources to publish.

3 Select the iServer profile, as shown in Figure 18-6.



C h a p t e r  1 8 ,  D e p l o y i n g  B I R T  r e p o r t s  t o  A c t u a t e  B I R T  i S e r v e r 287

Figure 18-6 Publish Resources dialog

4 Choose Publish Files. A new window showing the file upload status appears. 

5 Choose OK when the upload finishes.

6 In Publish Resources, choose Close.

Deploying Java classes used in BIRT reports
A BIRT report uses scripts to implement custom functionality. For example, you 
can use scripts to create a scripted data set or to provide custom processing for a 
report element. When you deploy a BIRT report to an Encyclopedia volume, you 
must provide iServer with access to the Java classes that the scripts reference. You 
package these classes as JAR files that can be recognized and processed from an 
iServer Java factory process. There are two ways to deploy Java classes:

■ Deploy the JAR files to the Encyclopedia volume.

This method supports creating specific implementations for each volume in 
iServer. This method of deployment requires packaging the Java classes as a 
JAR file and attaching the JAR file as a resource to the report design file. You 
treat a JAR file as a resource in the same way as a library or image. Using this 
method, you publish the JAR file to iServer every time you make a change in 
the Java classes.

■ Deploy the JAR files to the following iServer subdirectory:

$ACTUATE_HOME\iServer\resources

This method uses the same implementation for all volumes in iServer. Actuate 
does not recommend deploying JAR files to an iServer /resources folder 
because iServer must be restarted after deploying the JAR file. Another 
disadvantage of this deployment technique is that the JAR file, deployed in 
the iServer /resources directory is shared across all volumes, which can cause 



288 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

conflicts if you need to have different implementations for different volumes. 
When using this method, you do not have to add the JAR file to the report 
design’s Resource property.

How to configure BIRT reports and deploy a JAR file to an Encyclopedia volume

1 Package the Java classes as a JAR file and copy the JAR file to the Actuate BIRT 
Designer resource folder.

2 Open the report design in Actuate BIRT Designer. 

3 In Outline, select the root report design slot and select Resources property 
group in the Property Editor window. 

4 In Resources, in JAR files, choose Add and navigate through the Resource 
folder to select the JAR file, as shown on Figure 18-7.

Figure 18-7 Add JAR file as a resource to a report

When the report executes, the engine searches for the required classes and 
methods only in this JAR file.

5 Choose File➛Publish Resource to iServer to publish the JAR file to the iServer. 
Select the server profile and the JAR file. The JAR file is stored in the 
Encyclopedia volume’s Resource folder. 

6 Choose File➛Publish Report to iServer to publish your BIRT report design to 
iServer. 

7 Run the report from Information Console or Management Console.

How to deploy a JAR file to an iServer /resources folder

1 Copy the JAR file to the following iServer subdirectory:

$ACTUATE_HOME\iServer\resources



C h a p t e r  1 8 ,  D e p l o y i n g  B I R T  r e p o r t s  t o  A c t u a t e  B I R T  i S e r v e r 289

$ACTUATE_HOME is the folder where Actuate products install. By default, it 
is C:\Program Files\Actuate11 for version 11.

2 Publish the report to iServer as described in “Publishing a report resource to 
Actuate BIRT iServer,” earlier in this chapter. 

3 Restart iServer.

4 Run the report from Information Console or Management Console.

Installing a custom JDBC driver 
In order to run a BIRT application in the iServer environment when the BIRT 
application uses a custom JDBC driver, you must install the JDBC driver in the 
following location:

$ACTUATE_HOME\Jar\BIRT\platform\plugins
\org.eclipse.birt.report.data.oda.jdbc_<VERSION>\drivers

Installing custom ODA drivers and custom plug-ins 
All custom ODA drivers and custom plug-ins must be installed in the following 
folder:

$ACTUATE_HOME\iServer\MyClasses\eclipse\plugins

By default, Actuate iServer and Information Console load custom plug-ins from 
this folder. If your application uses a different location to store custom plug-ins, 
you must set this location in each product’s link file. Actuate products use link 
files to locate folders where the custom plug-ins are deployed. The name of the 
link files are customPlugins.link and customODA.link. As the file names suggest, 
the customODA.link file stores the path for custom ODA drivers, and 
customPlugins.link is for all plug-ins used by BIRT reports and the BIRT engine, 
such as custom emitters, or flash object library plug-ins. Typically, the link files 
are stored in a \links subfolder of the Eclipse instance of the product. For Actuate 
BIRT Designer, for example, the file is located in:

$ACTUATE_HOME\BRDPro\eclipse\links

You can change the path in customPlugins.link file and deploy the plug-ins to the 
new location.

When you install the InformationConsole.war file to your own J2EE application 
server, the shared folder MyClasses is not available. In this case, custom plug-ins 
should be copied to this folder:

WEB-INF/platform/dropins/eclipse/plugins 



290 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

The locations of the link files for each product are listed in Table 18-1.

Table 18-1 .link files locations

Product Paths of .link files

Actuate BIRT Designer 
Professional

$ACTUATE_HOME\BRDPro\eclipse\links

Actuate iServer $ACTUATE_HOME\iServer\Jar\BIRT
\platform\links

Information Console WEB-INF/platform/dropins/eclipse/plugins



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 291

C h a p t e r

19
Chapter 19Configuring data source

connections in
Actuate BIRT iServer

This chapter contains the following topics: 

■ About data source connection properties

■ Using a connection configuration file

■ Using a connection profile

■ Accessing BIRT report design and BIRT resources paths in custom ODA 
plug-ins



292 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About data source connection properties
Every BIRT data source object specifies the connection properties required to 
connect to an underlying data source. Typically, many report designs access the 
same data source. Rather than typing the same connection properties for each 
design, you can create a connection profile to reuse the same connection 
properties across multiple designs. The connection profile includes information 
about the database driver, a user ID, password, port, host, and other properties 
related to the type of data source. 

Typically, you change database connection properties used in the development 
environment when you publish the reports to Actuate BIRT iServer. To change 
the connection properties dynamically when you design or deploy your reports, 
you can use one of two approaches, connection configuration file or connection 
profile. The following sections describe these two approaches.

Using a connection configuration file 
A connection configuration file is an XML file that sets the data source connection 
properties to use when iServer runs a report. Externalizing data source 
connection information in this file enables an administrator to modify these 
settings without modifying the report. 

iServer expects the configuration file to use UTF8 encoding. You also can use a file 
that only has ASCII characters. The settings that you use in a connection 
configuration file override the settings in a report. 

Setting up the connection configuration file
In a BIRT report design, the configuration key that specifies a data source is the 
concatenation of the ODA plug-in’s data source extension ID and the data source 
design name separated by an underscore (_) character. 

The connection property names are the connection properties defined for your 
data source. To find the correct names for the connection properties, check the 
data source definition in the XML source of the BIRT report design file. You can 
view the report’s XML source by selecting the XML Source tab in the report 
editor.

The code example in Listing 19-1 shows the XML definition of a MySQL 
Enterprise database in a report design. Using this data source, the report 
developer can test the report in development. This XML data source definition 
specifies the connection properties, odaDriverClass, odaURL, odaUser, 
odaPassword, for the data source, ClassicModels.



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 293

Listing 19-1 The XML definition of a MySQL Enterprise database

<data-sources>
<oda-data-source extensionID=
"org.eclipse.birt.report.data.oda.jdbc" name="Customers" 
id="4">

<property name="odaDriverClass">
com.mysql.jdbc.Driver

</property>
<property name="odaURL">

jdbc:mysql://localhost/ClassicModels
</property>
<property name="odaUser">root</property>
<property name="odaPassword">pwd</property>

</oda-data-source>
</data-sources>

At run time, the report uploaded to iServer connects to a production database 
that resides on a different database server. The connection properties specify a 
machine IP address, 192.168.218.226, and a different username and password. To 
externalize the database connection information, create the configuration 
property file, DBConfig.xml, with the settings shown in Listing 19-2.

Listing 19-2 A configuration property file that connects to a production database

<Config>
<Runtime>
<ConnectOptions 

Type="org.eclipse.birt.report.data.oda.jdbc_Customers">
<Property PropName="odaDriverClass">

com.mysql.jdbc.Driver
</Property>
<Property PropName="odaURL">

jdbc:mysql://192.168.218.226:3306/ClassicModels
</Property>
<Property PropName="odaUser">operator</Property>
<Property PropName="odaPassword">pwd</Property>

</ConnectOptions>
</Runtime>
</Config>

Understanding how iServer uses the connection 
configuration file
When the report runs, iServer searches the path in the configuration file 
parameter for the configuration file that contains the valid ConnectOptions 
values. The Factory process reads the configuration file containing the 
ConnectOptions values when the process starts. Factory processes that are 



294 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

running when you change the configuration file do not use the new information. 
Only Factory processes that start after the configuration file changes use the new 
information. To ensure that a report executable file uses the updated 
configuration file information, confirm that no reports are active and stop all 
currently running Factory processes before you change the configuration file. 
After you change the file, iServer starts a Factory process for the next report 
request using these settings.

Setting the location of a connection configuration file
There is no default location for the connection configuration file. iServer uses the 
value of the configuration file parameter to locate the connection configuration 
file. 

If you do not specify a value for this parameter, iServer uses the database 
connection properties in the report executable file. When you set or change the 
value of the configuration file parameter, you must restart iServer for the change 
to take effect.

On a Windows operating system, the configuration file parameter can specify a 
path and file name or a URL. For example: 

C:\BIRTRptConfig\DBConfig.xml

or: 

http://myserver/configs/testconfig.xml

On a UNIX or Linux operating system, the parameter value can only be a path 
and file name. The parameter value cannot be a URL. 

If you have an iServer cluster, each iServer in the cluster must have access to the 
file. You must use a local absolute path for each machine in the cluster. If you use 
a single copy of the file for a cluster, put the file in a shared location and set the 
path to that shared location for all iServers in the cluster.

How to set up a configuration file in iServer Configuration Console

To set up a connection configuration file, create the file and specify the name and 
location using the ConnConfigFile parameter in iServer Configuration Console. 

1 Log in to iServer Configuration Console.

2 From the banner, select Advanced view.

3 From the side menu, select Server Configuration Templates.

4 In Server Configuration Templates, select the name of the template to modify.

5 In Properties Settings, select iServer to expand the property list. 

6 In the iServer property list, choose Database Connection Configuration File.



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 295

7 In Servers—Properties—Runtime, in Configuration file for database 
connections and search path, type the configuration file’s location, as shown in 
Figure 19-1.

Figure 19-1 Specifying the location of a connection file

8 Restart iServer.

Encrypting the connection properties
Actuate BIRT supports the encryption of connection properties in the connection 
configuration file. The encryption conversion is created in Actuate BIRT Designer, 
using BIRT's encryption framework. The encryption user interface reads a user-
specified configuration file, and writes the encrypted values for a specified 
property type to a new output file. The configuration file must have the file name 
extension .acconfig.

The runtime decryption processing runs in Actuate BIRT Designer, iServer, and 
Actuate Java Component. You must deploy the encrypted version of a 
configuration file to the iServer or Actuate Java Component environments, and 
set up the database configuration for iServer.

For more information about the BIRT encryption mechanism, see Chapter 21, 
“Working with BIRT encryption in Actuate BIRT iServer.”

How to encrypt a configuration file in BIRT Designer

This procedure assumes you have already created a connection configuration file 
with an extension .acconfig. Listing 19-3 shows an example of connection 
properties specified for Microsoft SQL server. The properties are not encrypted.

Listing 19-3 Connection configuration file

<?xml version="1.0" encoding="UTF-8"?>
<Config>

<Runtime>
<ConnectOptions

Type='org.eclipse.birt.report.data.oda.jdbc_Athena'>

(continues)



296 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

<Property PropName='odaDriverClass'>
com.actuate.jdbc.sqlserver.SQLServerDriver

</Property>
<Property PropName='odaURL'>

jdbc:actuate:sqlserver://
Athena:1433;databasename=Financials

</Property>
<Property PropName='odaUser'>

fmanager
</Property>
<Property PropName='odaPassword'>password</Property>

</ConnectOptions>
</Runtime>

</Config>

1 In Actuate BIRT Designer, choose File—Encrypt Property values from the 
main menu.

2 In Encrypt property values, in Connection configuration file name, choose 
Browse and select the connection file to encrypt.

3 Select the properties to encrypt.

4 In Encryption extension, select the encryption algorithm. 

5 In Save as file name, type or click Browse to specify the file path and name for 
the encrypted connection file.

Figure 19-2 shows an example of encryption options specified for a connection 
configuration file.

Figure 19-2 Encrypting property values

6 Choose Save to encrypt the properties. The encrypted configuration file looks 
like the one in Listing 19-4.



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 297

Listing 19-4 Encrypted connection configuration file

<?xml version="1.0" encoding="UTF-8"?>
<Config>
    <Runtime>
        <ConnectOptions 

Type='org.eclipse.birt.report.data.oda.jdbc_Athena'>
            <Property PropName='odaDriverClass'>
                com.actuate.jdbc.sqlserver.SQLServerDriver
            </Property>
            <Property PropName='odaURL'>
                amRiYzphY3R1YXRlOnNxbHNlcnZlcjov....
            </Property>
            <Property PropName='odaUser'>
                Zm1hbmFnZX...
            </Property>
            <Property PropName='odaPassword'>
                cGFzc3...
            </Property>
            <Property PropName='encryptedPropNames'>
                odaURL|odaUser|odaPassword
            </Property>
            <Property PropName='encryptionExtName'>
                base64
            </Property>
        </ConnectOptions>
    </Runtime>
</Config>

The encryption feature encrypts the selected properties and adds two new 
properties to the connection options. The encryptedPropNames property 
specifies the list of encrypted properties, each property separated by |. The 
encryptionExtName property specifies the encryption algorithm. 

Using a connection profile
A connection profile contains all of the necessary information to allow a BIRT 
report to connect to a data source. BIRT supports using a connection profile when 
creating a data source in a report design. When the connection profile changes, 
the BIRT report picks up those changes. This behavior makes migration from a 
test to a production environment straightforward. 

The connection profile is stored in the .metadata folder in your workspace. The 
default name of the connection profile is ServerProfiles.dat. You can use the 
Export feature in Data Source Explorer to create a connection profile with a 



298 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

different name. All the connection profile properties can be bound to report 
parameters or expressions and changed when the report is generated. 

When deploying reports that use connection profiles, you must deploy the 
connection profile to the correct folder in the file system on the iServer machine. 
For example, if a report uses a connection profile stored in a folder C:\
ActuateBIRT11\ConnProfile\MySQL.dat, as shown in Figure 19-3, you must 
manually create the same folder structure on the iServer machine and copy the 
MySQL.dat file there. 

Figure 19-3 Connection profile properties in BIRT Designer

The next section shows how to bind a parameter to change the connection 
information. You can also use the Property Binding feature to specify a JavaScript 
expression for the value of OdaConnProfileStorePath property. This feature 
provides the flexibility to define a different root path for different file properties. 
For example, the JavaScript expression can include a variable to control the root 
path:

config[ "birt.viewer.working.path" ].substring(0,2) + 
"../../data/ProfileStore.dat"

Alternatively, you can use a reportContext object to pass session information and 
build the path expression. 

For more information about creating and managing connection profiles, see BIRT: 
A Field Guide.

Binding connection profile properties
All the connection profile properties can be bound to report parameters or 
expressions and updated when the report is generated.

Binding Connection Profile Store URL property 
The report developer can use the Property Binding feature in the BIRT Data 
Source editor to assign a dynamic file path or URL to the Connection Profile Store 
URL property at report run time without changing the report design itself.

The connection profile store URL’s property name is OdaConnProfileStorePath. 
The next example shows you how to bind the connection profile store URL 
property to a report parameter.



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 299

How to bind the connection profile store URL property to a report parameter

This example shows how to create a report design that uses a CSV file as a data 
source, using Actuate BIRT Designer Professional. At design time, the report 
design uses the CSV file in the folder, C:\ConnProfile. 

Typically, the design time CSV file contains only a few records. In the production 
environment, the CSV file, which contains more records, is in the folder, 
S:\ConnProfile. This example report design takes the full path to the connection 
profile as a parameter. In this way, the report runs as expected in development 
and production environments.

1 In Actuate BIRT Designer, to ensure that Data Source Explorer is open, choose 
Window➛Show View➛Other. 

2 On Show View, expand Data Management. If Data Source Explorer is active, 
select this item. Then, choose OK. If Data Source Explorer is not active, close 
Show View.

3 In Data Source Explorer, right-click Flat File Data Source. Choose New. 

4 Name the Flat File Data Source connection profile CSVFlatFile. Choose Next.

5 In folder, type C:\ConnProfile. This folder in your development environment 
contains the csvTestODA.csv file. Choose Next. 

6 Choose Finish.

The CSVFlatFile connection profile properties are shown on Figure 19-4.

Figure 19-4 Connection profile properties dialog

A data sample from csvTestODA.csv file is shown on Listing 19-5.



300 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Listing 19-5 csvTestODA.csv

PRODUCTNAME,QUANTITYINSTOCK,MSRP
1969 Harley Davidson Ultimate Chopper,7933,95.7
1952 Alpine Renault 1300,7305,214.3
1996 Moto Guzzi 1100i,6625,118.94
2003 Harley-Davidson Eagle Drag Bike,5582,193.66
1972 Alfa Romeo GTA,3252,136

7 Export the connection profile to C:\ConnProfile\CSVProfile.dat, as shown in 
Figure 19-5. For simplicity, save the profile to the same location that contains 
the data source CSV file.

Figure 19-5 Export Connection Profile

8 From the main menu, choose Data➛New Data Source. On New Data Source, 
select Create from a connection profile in the profile store. Then, choose Next. 
As shown in Figure 19-6, browse to and select the development connection 
profile, C:\ConnProfile\CSVProfile.dat.

Figure 19-6 Select a connection profile



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 301

Choose Next. Then, choose Finish.

9 From the main menu, choose Data➛New Data Set➛New Data Set. Choose 
Next. Include all the available columns from the csvTestODA.csv file. Choose 
Finish. Choose OK.

10 Add a table containing all the columns in the data set to the report layout.

11 Preview the report. The report shows only the six data rows from the 
development CSV file, as shown in Figure 19-7.

Figure 19-7 Report preview

12 In Data Explorer, right-click Report Parameters and choose New Parameter. 
Add a report parameter, named ConnProfileURL, using the default options, as 
shown in Figure 19-8. Choose OK.

Figure 19-8 Creating a parameter

13 In Data Explorer, double-click the CSVFlatFile data source to open the 
Properties dialog. In the left frame, select Property Binding. To bind the 
ConnectionProfileStoreURL property to the report parameter, in Connection 
Profile Store URL, type the following expression:

params["ConnProfileURL"]

The property binding page looks like the one on Figure 19-9.



302 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Figure 19-9 Data Source Property Binding

14 In Data Source Explorer, right-click the CSVFlatFile data source type and 
choose Properties. As shown in Figure 19-10, in Select folder, type the path of 
the production environment:

S:\ConnProfile

Figure 19-10 Connection profile properties

15 Export this connection profile to the production environment. As shown in 
Figure 19-11, in Specify a file name, type:

S:\ConnProfile\CSVProfileProduction.dat

Figure 19-11 Export the production connection profile



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 303

16 Preview the report and type the location of the production connection profile 
as the value for the parameter:

S:\ConnProfile\CSVProfileProduction.dat

The report shows the full set of data rows from the production profile, similar 
to Figure 19-12.

Figure 19-12 Production report preview

Binding a connection profile name to a report parameter
You can externalize the connection profile name for a data source by binding it to 
a report parameter. For example, you have two JDBC connection profiles to the 
same database using different user names and passwords. At run time, you can 
select the profile you want to use to connect to the database. The connection 
profile name property is OdaConnProfileName, as shown in Listing 19-6.

Listing 19-6 Data source definition in a BIRT report

<data-sources>
<oda-data-source 
extensionID="org.eclipse.datatools.connectivity.oda.flatfile" 
name="CSVFlatFile" id="8">

<property name="HOME">C:\ConnProfile</property>
<property name="DELIMTYPE">COMMA</property>
<property name="CHARSET">UTF-8</property>
<property name="INCLTYPELINE">NO</property>
<property name="OdaConnProfileName">CSVFlatFile</property>
<property name="OdaConnProfileStorePath">

C:\testABIRT\metadata\.plugins\
org.eclipse.datatools.connectivity\ServerProfiles.dat

</property>
</oda-data-source>

</data-sources>



304 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Externalizing the connection profile properties on the 
iServer
The iServer database connection configuration file is used to externalize the data 
source properties for any data source connection property in a BIRT report 
design. The data source properties are externalized in the connection 
configuration file that is made accessible to the iServer.

As the connection profile store URL is the ODA data source property, 
OdaConnProfileStorePath, the file path to the Connection Profile can itself be 
externalized. To externalize the report design’s Connection Profile Store URL 
ODA data source property, specify it in the iServer‘s connection configuration 
file. When the report is deployed to the iServer and executed, the server reads the 
connection profile from the file path specified in the iServer‘s database connection 
configuration file. The file path specified in the report design is ignored. 

Understanding externalization precedence 
Data source properties in a report design can be externalized to the connection 
profile and to the iServer connection configuration file. In addition, the 
Connection Profile Store URL itself can be externalized. The following precedence 
rules explain how iServer and Information Console determine the final list of data 
source properties for report execution:

■ Information Console

Data source properties in the connection profile override the data source 
properties in the report design. 

■ iServer

Data source properties in the iServer connection configuration file override the 
data source in the connection profile that overrides the data source connection 
properties in the report. The ascending order of precedence for iServer is as 
follows: 

■ Data source properties in the report design 

■ Data source properties in the connection profile 

■ Data source properties in the iServer connection configuration file 

The following sample connection configuration file externalizes the file path to 
the connection profile and shows the required structure:

<Config> 
<Runtime> 
<ConnectOptions Type="org.eclipse.birt.report.data.oda.jdbc_SQL 

Server Data Source">
<Property PropName="OdaConnProfileStorePath">

C:\SqlServer.profile



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 305

</Property>
</ConnectOptions> 
</Runtime> 
</Config> 

The connection profile referenced by the BIRT report design is read when the 
report is executed in Information Console and iServer. The path to the connection 
profile in the design has to be visible to the Information Console and iServer 
applications.

Referencing the external connection profile
The path to the external connection profile is stored in the BIRT report design. 
The ODA data source property, Connection Profile Store URL, holds this value. 
The path can be a relative or an absolute file path, or a URL. File paths, whether 
relative or absolute, must be accessible by the Information Console web 
application when the report is deployed to Information Console. Similarly this 
path must be accessible by the iServer when the report is deployed to the iServer. 
Actuate does not recommend the use of relative file paths. Typically, the location 
of the connection profile in all three environments, Actuate BIRT Designer, 
Information Console, and iServer, resolves to a different path. Absolute paths 
have the disadvantage that the absolute path used in the Actuate BIRT Designer 
environment on Windows will not be available when the report is deployed to 
Information Console or iServer on UNIX. On UNIX, you can use relative paths 
with the use of soft links, but these links are not available on Windows. 

When the file path to the connection profile is different in the design environment 
compared to the Information Console and iServer deployment environments, 
there are some options to avoid having to change the report design file before 
deployment, as described in the following sections.

When specifying network paths in BIRT reports always use the Universal 
Naming Convention (UNC) to describe the path, instead of a mapped drive letter. 
Windows XP and later do not allow processes running as services to access 
network resources through mapped network drives. For this reason, a report that 
uses a mapped drive letter to access a resource runs in Actuate BIRT Designer 
Professional, but fails when the report runs on iServer or Information Console, 
because the iServer or Information Console processes cannot resolve the mapping 
address.

For example, a BIRT report uses a flat file Production.csv as a data source. The flat 
file is located on a shared network drive on a machine, named ProductionServer. 
The UNC network path to the file is \\ProductionServer\e$\Data and it is 
mapped as X:\ in your system. Using the path X:\ to define the data source 
HOME folder works only in Actuate BIRT Designer. Using the UNC path 
\\ProductionServer\e$\Data in the data source definition is the correct way to 
define network paths.



306 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Accessing BIRT report design and BIRT resources 
paths in custom ODA plug-ins

ODA providers often need to obtain information about a resource path defined in 
ODA consumer applications. For example, if you develop an ODA flat file data 
source, you can implement an option to look up the data files in a path relative to 
a resource folder managed by its consumer. Such resource identifiers are needed 
at both design-time and run-time drivers. 

ODA consumer applications are able to specify:

■ The run-time resource identifiers and pass them to the ODA run-time driver in 
an application context map 

■ The design-time resource identifiers in a DataSourceDesign, as defined in an 
ODA design session model

Accessing resource identifiers in run-time ODA driver
For run time, the BIRT ODA run-time consumer passes its resource location 
information in a org.eclipse.datatools.connectivity.oda.util.ResourceIdentifiers 
instance in the appContext map. ODA run-time drivers can get the instance in 
any one of the setAppContext methods, such as IDriver.setAppContext:

■ To get the instance from the appContext map, pass the map key 
ResourceIdentifiers.ODA_APP_CONTEXT_KEY_CONSUMER_RESOURCE_
IDS, defined by the class as a method argument. 

■ To get the BIRT resource folder URI call getApplResourceBaseURI( ) method. 

■ To get the URI of the associated report design file folder call 
getDesignResourceBaseURI( ) method. The URI is application dependant and 
it can be absolute or relative. If your application maintains relative URLs, call 
the getDesignResourceURILocator.resolve( ) method to get the absolute URI.

The code snippet on Listing 19-7 shows how to access the resource identifiers 
through the application context.

Listing 19-7 Accessing resource identifiers at run time

URI resourcePath = null;
URI absolutePath = null;

Object obj = this.appContext.get( 
ResourceIdentifiers.ODA_APP_CONTEXT_KEY_CONSUMER_RESOURCE_IDS 
);

if ( obj != null )
{

ResourceIdentifiers identifier = (ResourceIdentifiers)obj;



C h a p t e r  1 9 ,  C o n f i g u r i n g  d a t a  s o u r c e  c o n n e c t i o n s  i n  A c t u a t e B I R T  i S e r v e r 307

if ( identifier.getDesignResourceBaseURI( ) != null )
{ resourcePath = identifier.getDesignResourceBaseURI();

if ( ! resourcePath.isAbsolute() )
absolutePath = 

identifier.getDesignResourceURILocator().resolve( 
resourcePath );

else
absolutePath = resourcePath;

}
}

Accessing resource identifiers in design ODA driver
The resource identifiers are available to the custom ODA designer UI driver. The 
designer driver provides the user interface for the custom data source and data 
set. Typically, to implement a custom behavior, the data source UI driver extends 
the following class: 

org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSourceWizardPage

The DataSourceWizardPage class has an inherited method 
getHostResourceIdentifiers( ) that provides access to the resource and report 
paths. The extended DataSourceWizardPage just needs to call the base method to 
get the ResourceIdentifiers for its path’s information. Similarly, if the custom 
driver implements a custom data source editor page, it extends:

org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSourceEditorPage

The DataSourceEditorPage class has an inherited method 
getHostResourceIdentifiers( ). The extended class just needs to call the base class 
method to get the ResourceIdentifiers object for the two resource and report paths 
base URIs. Related primary methods in the 
org.eclipse.datatools.connectivity.oda.design.ResourceIdentifiers class are:

■ getDesignResourceBaseURI();

■ getApplResourceBaseURI();



308 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



C h a p t e r  2 0 ,  C o n f i g u r i n g  f o n t s  i n  A c t u a t e  B I R T  i S e r v e r 309

C h a p t e r

20
Chapter 20Configuring fonts in
Actuate BIRT iServer

This chapter contains the following topics: 

■ About configuring fonts

■ Understanding font configuration file priorities

■ Understanding how BIRT engine locates a font

■ Understanding the font configuration file structure



310 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About configuring fonts
Actuate Information Console and iServer support rendering BIRT reports in 
different formats such as PDF, Microsoft Word, Postscript, and PowerPoint. The 
processes that do the conversion use the fonts installed on your system to display 
the report characters.

BIRT uses a flexible mechanism that supports configuring font usage and 
substitution. This mechanism uses font configuration files for different purposes 
that control different parts of the rendering process. The configuration files can 
configure the fonts used in specific operating systems, for rendering to specific 
formats, in specific locales only, or combinations of these parameters.

The plug-in folder, org.eclipse.birt.report.engine.fonts, contains the font 
configuration files. Table 20-1 shows the location of this folder in the supported 
BIRT environments.

Understanding font configuration file priorities
BIRT reports use five different types of font configuration files. The font 
configuration file-naming convention includes information about the rendering 
format, the system platform, and the system locale, as shown in the following 
general format:

fontsConfig_<Format>_<Platform>_<Locale>.xml

The platform name is defined by the Java System property, os.name. The current 
Java Network Launch Protocol (JNLP) specification does not list the values for 
the os attributes. Instead it states that all values are valid as long as they match 
the values returned by the system property os.name. Values that only match the 
beginning of os.name are also valid. If you specify Windows and the os.name is 
Windows 98, for example, the operating system name is accepted as valid. 

Table 20-1 Locations of the font configuration file plug-in folder

Environment Font configuration file folder location

Actuate BIRT 
Designer Professional 

$Actuate<release>\BRDPro\eclipse\plugins

Information Console $Information Console\iportal\WEB-INF\platform
\plugins

iServer $Actuate<release>\iServer\Jar\BIRT\platform
\plugins



C h a p t e r  2 0 ,  C o n f i g u r i n g  f o n t s  i n  A c t u a t e  B I R T  i S e r v e r 311

The following sample Java class code shows how to check the os.name property 
for the value on your machine:

class WhatOS 
{
  public static void main( String args[] ) 

{
    System.out.println( System.getProperty("os.name") );

}
}

BIRT supports the following types of font configuration files, with increasing 
priority:

■ For all rendering formats

These files have no format specifier in their names. These configuration files 
are divided into three sub-types.

■ The default configuration file: 

fontsConfig.xml

■ Configuration files for a specific platform, for example:

fontsConfig_Windows_XP.xml

■ Configuration files for a specific platform and locale, for example:

fontsConfig_Windows_XP_zh.xml
fontsConfig_Windows_XP_zh_CN.xml

■ For certain formats only

These files include the format specifier in their names. These configuration 
files are divided into two sub-types:

■ The default configuration file for a format, for example:

fontsConfig_pdf.xml

■ Configuration files for a format for a specific platform:

fontsConfig_pdf_Windows_XP.xml

Understanding how BIRT engine locates a font
The PDF layout engine renders the PDF, Postscript, and PowerPoint formats. The 
engine tries to locate and use the font specified at design time. The PDF layout 
engine searches for the font files first in the fonts folder of the plug-in, 
org.eclipse.birt.report.engine.fonts. If the specified font is not in this folder, the 
BIRT engine searches for the font in the system-defined font folder. You can 
change the default load order by using the settings in the font configuration file.



312 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

When the required font for a character is not available in the search path or is 
incorrectly installed, the engine uses the fonts defined in the UNICODE block for 
that character. If the UNICODE definition also fails, the engine replaces the 
character with a question mark (?) to denote a missing character. The font used 
for the ? character is the default font, Times-Roman.

The engine maps the generic family fonts to a PDF embedded Type1 font, as 
shown in the following list:

■ cursive font styles to Times-Roman

■ fantasy font styles to Times-Roman 

■ monospace font styles to Courier

■ sans-serif font styles to Helvetica

■ serif font styles to Times-Roman

Understanding the font configuration file structure
The font configuration file, fontsConfig.xml, consists of the following major 
sections:

■ <font-aliases>

■ <composite-font>

■ <font-paths>

<font-aliases> section
In the <font-aliases> section, you can:

■ Define a mapping from a generic family to a font family. For example the 
following code defines a mapping from the generic type "serif" to a Type1 font 
family Times-Roman:

<mapping name="serif" font-family="Times-Roman"/>

■ Define a mapping from a font family to another font family. This definition is 
useful if you want to use a font for PDF rendering which differs from the font 
used at design time. For example, the following code shows how to replace 
simsun with Arial Unicode MS:

<mapping name="simsun" font-family="Arial Unicode MS"/>

Previous versions of Actuate BIRT Designer use the XML element 
<font-mapping> instead of <font-aliases>. In the current release, a 
<font-mapping> element works in the same way as the new <font-aliases> 
element. When a font configuration file uses both <font-mapping> and 



C h a p t e r  2 0 ,  C o n f i g u r i n g  f o n t s  i n  A c t u a t e  B I R T  i S e r v e r 313

<font-aliases>, the engine merges the different mappings from the two sections. If 
the same entries exist in both sections, the settings in <font-aliases> override 
those in <font-mapping>.

<composite-font> section
The <composite-font> section is used to define a composite font, which is a font 
consisting of many physical fonts used for different characters. For example, to 
define a new font for currency symbols, you change font-family in the following 
<block> entry to the Times Roman font-family:

<composite-font>
…
<block name="Currency Symbols" range-start="20a0" 

range- end="20cf" index="58" font-family="Times Roman" />
…
</composite-font>

The composite fonts are defined by <block> entries. Each <block> entry defines a 
mapping from a UNICODE range to a font family name, which means the font 
family is applied for the UNICODE characters in that range. You cannot change 
the block name or range or index as it is defined by the UNICODE standard. The 
only item you can change in the block element is the font-family name. You can 
find information about all the possible blocks at 
http://www.unicode.org/charts/index.html.

In cases when the Times Roman font does not support all the currency symbols, 
you can define the substitution character by character using the <character> tag, 
as shown in the following example:

<composite-font>
 …

<character value="?" font-family="Angsana New"/>
<character value="\u0068" font-family="Times Roman"/>

 …
</composite-font>

Note that characters are represented by the attribute, value, which can be 
presented two ways, the character itself or its UNICODE code. 

You can find information about all the currency symbols from 
http://www.unicode.org/charts/symbols.html.

A composite font named all-fonts is applied as a default font. When a character is 
not defined in the desired font, the font defined in all-fonts is used.

<font-paths> section
If the section <font-paths> is set in fontsConfig.xml, the engine ignores the 
system-defined font folder, and loads the font files specified in the section, 



314 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

<font-paths>. You can add a single font path or multiple paths, ranging from one 
font path to a whole font folder, as shown in the following example:

<path path="c:/windows/fonts"/>
<path path="/usr/X11R6/lib/X11/fonts/TTF/arial.ttf"/>

If this section is set, the PDF layout engine will only load the font files in these 
paths and ignore the system-defined font folder. If you want to use the system 
font folder as well, you must include it in this section. 

On some systems, the PDF layout engine does not recognize the system-defined 
font folder. If you encounter this issue, add the font path to the <font-paths> 
section.



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 315

C h a p t e r

21
Chapter 21Working with BIRT

encryption in
Actuate BIRT iServer

This chapter contains the following topics: 

■ About BIRT encryption

■ About the BIRT default encryption plug-in

■ Creating a BIRT report that uses the default encryption

■ Deploying multiple encryption plug-ins

■ Deploying encryption plug-ins to iServer

■ Generating encryption keys

■ Creating a custom encryption plug-in

■ Using encryption API methods



316 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About BIRT encryption
BIRT provides an extension framework to support users registering their own 
encryption strategy with BIRT. The model implements the JCE (Java™ 
Cryptography Extension). The Java encryption extension framework provides 
multiple popular encryption algorithms, so the user can just specify the algorithm 
and key to have a high security level encryption. The default encryption 
extension plug-in supports customizing the encryption implementation by 
copying the BIRT default plug-in, and giving it different key and algorithm 
settings.

JCE provides a framework and implementations for encryption, key generation 
and key agreement, and Message Authentication Code (MAC) algorithms. 
Support for encryption includes symmetric, asymmetric, block, and stream 
ciphers. The software also supports secure streams and sealed objects.

A conventional encryption scheme has the following five major parts:

■ Plaintext, the text to which an algorithm is applied.

■ Encryption algorithm, the mathematical operations to conduct substitutions 
on and transformations to the plaintext. A block cipher is an algorithm that 
operates on plaintext in groups of bits, called blocks.

■ Secret key, the input for the algorithm that dictates the encrypted outcome. 

■ Ciphertext, the encrypted or scrambled content produced by applying the 
algorithm to the plaintext using the secret key. 

■ Decryption algorithm, the encryption algorithm in reverse, using the 
ciphertext and the secret key to derive the plaintext content. 

About the BIRT default encryption plug-in
BIRT’s default encryption algorithm is implemented as a plug-in named:

com.actuate.birt.model.defaultsecurity_<Release> 

Table 21-1 shows the location of this plug-in folder in the supported BIRT 
environments.

Table 21-1 Locations of the default encryption plug-in folder

Environment Font configuration file folder location

Actuate BIRT 
Designer Professional

$Actuate<Release>\BRDPro\eclipse\plugins



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 317

About supported encryption algorithms
Two different cryptographic methods, private-key and public-key encryptions, 
solve computer security problems. Private-key encryption is also known as 
symmetric encryption. In private-key encryption, the sender and receiver of 
information share a key that is used for both encryption and decryption. In 
public-key encryption, two different mathematically related keys, known as a key 
pair, are used to encrypt and decrypt data. Information encrypted using one key 
can only be decrypted by using the other member of the key pair. BIRT’s default 
encryption plug-in supports the following algorithms within these two methods:

■ Private-key encryption

■ DES is the Digital Encryption Standard as described in FIPS PUB 46-2 at 
http://www.itl.nist.gov/fipspubs/fip46-2.htm. The DES algorithm is the 
most widely used encryption algorithm in the world. This algorithm is the 
default encryption that BIRT uses.

■ DESede, triple DES encryption

Triple-DES or DESede is an improvement over DES. This algorithm uses 
three DES keys k1, k2, and k3. A message is encrypted using k1 first, then 
decrypted using k2 and encrypted again using k3. This technique is called 
DESencryptiondecryptionencryption. Two or three keys can be used in 
DESede. This algorithm increases security as the key length effectively 
increases from 56 to 112 or 168. 

■ Public-key encryption supports the RSA algorithm

RSA uses both a public key and a private key. The public key can be known to 
everyone and is used for encrypting messages. Messages encrypted with the 
public key can only be decrypted using the private key. 

About the components of the BIRT default encryption 
plug-in
The BIRT default encryption plug-in consists of the following main modules:

■ acdefaultsecurity.jar

■ encryption.properties file

Information Console $Information Console\iportal\webapps\iportal
\WEB-INF\platform\plugins

iServer $Actuate<Release>\iServer\Jar\BIRT\platform\
plugins

Table 21-1 Locations of the default encryption plug-in folder

Environment Font configuration file folder location



318 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ META-INF/MANIFEST.MF

■ plugin.xml

About acdefaultsecurity.jar
This JAR file contains the encryption classes. The default encryption plug-in also 
provides key generator classes that can be used to create different encryption 
keys.

About encryption.properties
This file specifies the encryption settings. BIRT loads the encryption type, 
encryption algorithm, and encryption keys from the encryption.properties file to 
do the encryption. The file contains pre-generated default keys for each of the 
supported algorithms. 

You define the following properties in the encryption.properties file:

■ Encryption type

Type of algorithm. Specify one of the two values, symmetric encryption or 
public encryption. The default type is symmetric encryption.

■ Encryption algorithm

The name of the algorithm. You must specify the correct encryption type for 
each algorithm. For the symmetric encryption type, BIRT supports DES and 
DESede. For public encryption type, BIRT supports RSA.

■ Encryption mode

In cryptography, a block cipher algorithm operates on blocks of fixed length, 
which are typically 64 or 128 bits. Because messages can be of any length, and 
because encrypting the same plaintext with the same key always produces the 
same output, block ciphers support several modes of operation to provide 
confidentiality for messages of arbitrary length. Table 21-2 shows all 
supported modes.

Table 21-2 Supported encryption modes

Mode Description

None No mode

CBC Cipher Block Chaining Mode, as defined in the National 
Institute of Standards and Technology (NIST) Federal 
Information Processing Standard (FIPS) PUB 81, “DES 
Modes of Operation,” U.S. Department of Commerce, Dec 
1980

CFB Cipher Feedback Mode, as defined in FIPS PUB 81



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 319

■ Encryption padding

Because a block cipher works on units of a fixed size, but messages come in a 
variety of lengths, some modes, for example CBC, require that the final block 
be padded before encryption. Several padding schemes exist. The supported 
paddings are shown in Table 21-3. All padding settings are applicable to all 
algorithms.

■ Encryption keys

Actuate provides pre-generated keys for all algorithms. 

Listing 21-1 shows the default contents of encryption.properties.

Listing 21-1 Default encryption.properties

#message symmetric encryption , public encryption.
type=symmetric encryption

#private encryption: DES(default), DESede
#public encryption:  RSA
algorithm=DES

(continues)

ECB Electronic Codebook Mode, as defined in FIPS PUB 81

OFB Output Feedback Mode, as defined in FIPS PUB 81

PCBC Propagating Cipher Block Chaining

Table 21-3 Supported encryption paddings

Mode Description

NoPadding No padding.

OAEP Optimal Asymmetric Encryption Padding (OAEP) is a 
padding scheme that is often used with RSA encryption.

PKCS5Padding The padding scheme described in RSA Laboratories, 
“PKCS #5: Password-Based Encryption Standard,” version 
1.5, November 1993. This encryption padding is the 
default.

SSL3Padding The padding scheme defined in the SSL Protocol Version 
3.0, November 18, 1996, section 5.2.3.2.

Table 21-2 Supported encryption modes

Mode Description



320 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

# NONE , CBC , CFB , ECB( default ) , OFB , PCBC
mode=ECB
# NoPadding , OAEP , PKCS5Padding( default ) , SSL3Padding
padding=PKCS5Padding

#For key , support default key value for algorithm
#For DESede ,DES we only need to support private key
#private key value of DESede algorithm : 20b0020…
#private key value of DES algorithm: 527c2qI

#for RSA algorithm , there is key pair. you should support 
private-public key pair

#private key value of RSA algorithm: 30820…

#public key value of RSA algorithm: 30819…

#private key
symmetric-key=527c23…

#public key
public-key=

About META-INF/MANIFEST.MF
META-INF/MANIFEST.MF is a text file that is included inside a JAR to specify 
metadata about the file. Java's default ClassLoader reads the attributes defined in 
MANIFEST.MF and appends the specified dependencies to its internal classpath. 
The encryption plug-in ID is the value of the Bundle-SymbolicName property in 
the manifest file for the encryption plug-in. You need to change this property 
when you deploy multiple instances of the default encryption plug-in, as 
described later in this chapter. Listing 21-2 shows the contents of the default 
MANIFEST.MF.

Listing 21-2 Default MANIFEST.MF

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Actuate Default Security Plug-in
Bundle-SymbolicName: 

com.actuate.birt.model.defaultsecurity;singleton:=true
Bundle-Version: <release><version>
Require-Bundle: org.eclipse.birt.report.model,
 org.eclipse.core.runtime
Export-Package: com.actuate.birt.model.defaultsecurity.api
Bundle-ClassPath: acdefaultsecurity.jar
Bundle-Vendor: Actuate Corporation
Eclipse-LazyStart: true
Bundle-Activator: 

com.actuate.birt.model.defaultsecurity.properties.
SecurityPlugin



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 321

About plugin.xml
plugin.xml is the plug-in descriptor file. This file describes the plug-in to the 
Eclipse platform. The platform reads this file and uses the information to 
populate and update, as necessary, the registry of information that configures the 
whole platform. The <plugin> tag defines the root element of the plug-in 
descriptor file. The <extension> element within the <plugin> element specifies 
the Eclipse extension point that this plug-in uses, 
org.eclipse.birt.report.model.encryptionHelper. This extension point requires a 
sub-element, <encryptionHelper>. This element uses the following attributes:

■ class

The qualified name of the class that implements the interface 
IEncryptionHelper. The default class name is 
com.actuate.birt.model.defaultsecurity.api.DefaultEncryptionHelper.

■ extensionName

The unique internal name of the extension. The default extension name is jce.

■ isDefault

The field indicating whether this encryption extension is the default for all 
encryptable properties. This property is valid only in a BIRT Report Designer 
environment. When an encryption plug-in sets the value of this attribute to 
true, the BIRT Report Designer uses this encryption method as the default to 
encrypt data. There is no default encryption mode in iServer and Information 
Console. The encryption model that BIRT uses supports implementing and 
using several encryption algorithms. The default encryption plug-in is set as 
default using this isDefault attribute. If you implement several 
encryptionHelpers, set this attribute to true for only one of the 
implementations. If you implement multiple encryption algorithms and set 
isDefault to true to more than one instance, BIRT treats the first loaded 
encryption plug-in as the default algorithm.

Listing 21-3 shows the contents of the default encryption plug-in’s plugin.xml.

Listing 21-3 Default plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>

<extension
id="encryption"
name="default encryption helper"
point="org.eclipse.birt.report.model.encryptionHelper">

(continues)



322 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

<encryptionHelper 
class="com.actuate.birt.model.defaultsecurity.api
.DefaultEncryptionHelper"
extensionName="jce" isDefault="true" />

</extension>
</plugin>

Creating a BIRT report that uses the default encryption
This section describes an example that shows how the entire mechanism works. 
This example uses Actuate BIRT Designer to create a report design. The report 
design connects to a MySQL Enterprise database server using the user, root, and 
password, root, as shown in Figure 21-1.

Figure 21-1 Data Source properties for the encryption example

The encryption model stores the encrypted value of the database password in the 
report design file. Along with the value, the model stores the encryptionID. In 
this way, it identifies the encryption mechanism used to encrypt the password, as 
shown in the <encrypted-property> element in the following code:

<data-sources>
<oda-data-source 

extensionID="org.eclipse.birt.report.data.oda.jdbc" name="Data 
Source" id="6">
<property name="odaDriverClass">

com.mysql.jdbc.Driver
</property>
<property name="odaURL">

jdbc:mysql://localhost:3306/classicmodels
</property>



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 323

<property name="odaUser">root</property>
<encrypted-property name="odaPassword" encryptionID="jce">

10e52…
</encrypted-property>

</oda-data-source>
</data-sources> 

iServer uses the encryptionID attribute of the <encrypted-property> element to 
identify the algorithm to decrypt the password. After using the algorithm on the 
value of <encrypted-property>, iServer connects to the database and generates 
the report.

Deploying multiple encryption plug-ins
In some cases, you need to use an encryption mechanism other than the Data 
Source Explorer default in your report application. For example, some 
applications need to create an encryption mechanism using the RSA algorithm 
that the default encryption plug-in supports. In this case, you must create an 
additional encryption plug-in instance. For use within Actuate BIRT Designer, 
you can set this plug-in as the default encryption mechanism. If you change the 
default encryption mechanism, you must take care when you work with old 
report designs. For example, if you change an existing password field in the 
designer, the designer re-encrypts the password with the current default 
encryption algorithm regardless of the original algorithm that the field used.

How to create a new instance of the default encryption plug-in

1 Make a copy of the default encryption plug-in:

1 Copy the folder:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>

2 Paste the copied folder in the same folder:

$ACTUATE_HOME\BRDPro\eclipse\plugins

3 Rename:

$ACTUATE_HOME\BRDPro\eclipse\plugins\Copy of 
com.actuate.birt.model.defaultsecurity_<Release>

to a new name, such as:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>_rsa

2 Modify the new plug-in’s manifest file:



324 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_2.3.2_rsa\
META-INF\MANIFEST.MF

2 Change:

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity

to:

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity.rsa

MANIFEST.MF now looks similar to the one in Listing 21-4.

Listing 21-4 Modified MANIFEST.MF for the new encryption plug-in

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Actuate Default Security Plug-in
Bundle-SymbolicName: 

com.actuate.birt.model.defaultsecurity.rsa;singleton:=true
Bundle-Version: <Release>.<Version>
Require-Bundle: org.eclipse.birt.report.model,
 org.eclipse.core.runtime
Export-Package: com.actuate.birt.model.defaultsecurity.api
Bundle-ClassPath: acdefaultsecurity.jar
Bundle-Vendor: Actuate Corporation
Eclipse-LazyStart: true
Bundle-Activator: com.actuate.birt.model.defaultsecurity

.properties.SecurityPlugin

3 Save and close MANIFEST.MF.

3 Modify the new plug-in’s descriptor file to be the default encryption plug-in:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>_rsa
\plugin.xml

2 Change:

extensionName="jce"

to:

extensionName="rsa"

plugin.xml now looks similar to the one in Listing 21-5.

3 Save and close plugin.xml.



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 325

Listing 21-5 Modified plugin.xml for the new encryption plug-in

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="<Version>"?>
<plugin>
<extension

id="encryption"
name="default encryption helper"
point="org.eclipse.birt.report.model.encryptionHelper">
<encryptionHelper 
class="com.actuate.birt.model.defaultsecurity.api
.DefaultEncryptionHelper"                          
extensionName="rsa" isDefault="true" />
</extension>

</plugin>

4 Modify the original plug-in’s descriptor file, so that it is no longer the default 
encryption plug-in:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>\
plugin.xml

2 Change:

isDefault="true"

to:

isDefault="false"

3 Save and close plugin.xml.

5 Set the encryption type in the new plug-in to RSA:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>_rsa
\encryption.properties

2 Change the encryption type to public encryption:

type=public encryption

3 Change the algorithm type to RSA:

algorithm=RSA

4 Copy the pre-generated private and public keys for RSA to the symmetric-
key and public-key properties. encryption.properties now looks similar to 
the one in Listing 21-6.

5 Save and close encryption.properties.



326 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Listing 21-6 Modified encryption.properties file for the new encryption 
plug-in

#message symmetric encryption , public encryption
type=public encryption

#private encryption: DES(default), DESede
#public encryption:  RSA

algorithm=RSA
# NONE , CBC , CFB , ECB( default ) , OFB , PCBC

mode=ECB
#NoPadding , OAEP , PKCS5Padding( default ) , SSL3Padding
padding=PKCS5Padding
#For key , support default key value for algorithm
#For DESede ,DES we only need to support private key
#private key value of DESede algorithm : 20b0020e918..
#private key value of DES algorithm: 527c23ea...
# RSA algorithm uses a key pair. You should support
#private-public key pair
#private key value of RSA algorithm: 308202760201003....
#public key value of RSA algorithm: 30819f300d0....
#private key
symmetric-key=308202760....
#public key
public-key=30819f300d0.....

6 To test the new default RSA encryption, open Actuate BIRT Designer and 
create a new report design. Create a data source and type the password.

7 View the XML source of the report design file. Locate the data source 
definition code. The encryptionID is rsa, as shown in the following sample:

<data-sources>
<oda-data-source name="Data Source" id="6" 

extensionID="org.eclipse.birt.report.data.oda.jdbc" >
<text-property name="displayName"></text-property>
<property name="odaDriverClass">

com.mysql.jdbc.Driver
</property>
<property name="odaURL">

jdbc:mysql://192.168.218.225:3306/classicmodels
</property>
<property name="odaUser">root</property>
<encrypted-property name="odaPassword" 

encryptionID="rsa">
36582dc88.....

</encrypted-property>
</oda-data-source>

</data-sources>



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 327

8 Create a data set and a simple report design. Preview the report to validate 
that BIRT connects successfully to the database server using the encrypted 
password. Before trying to connect to the data source the report engine 
decrypts the password stored in the report design using the default RSA 
encryption plug-in. Then the engine submits the decrypted value to the 
database server.

Deploying encryption plug-ins to iServer
If you deploy your report designs to iServer, you need to deploy the report and 
the new encryption plug-in to iServer. iServer loads all encryption plug-ins at 
start up. During report execution, iServer reads the encryptionID property from 
the report design file and uses the corresponding encryption plug-in to decrypt 
the encrypted property. Every time you create reports using a new encryption 
plug-in, make sure you deploy the plug-in to iServer, otherwise the report 
execution on the server will fail. 

When using iServer, you do not need to deploy the encryption plug-ins to 
Information Console.

How to deploy a new encryption plug-in instance to iServer

1 Copy:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_2.3.2_rsa

to:

$ACTUATE_HOME\iServer\Jar\BIRT\platform\plugins

2 Publish your report design to iServer.

3 Restart iServer to load the new encryption plug-in.

4 Log in to iServer using Information Console and run the report. iServer now 
uses the new encryption plug-in to decrypt the password.

Generating encryption keys
The default encryption plug-in provides classes that can be used to generate 
different encryption keys. The classes names are SymmetricKeyGenerator and 
PublicKeyPairGenerator. SymmetricKeyGenerator generates private keys, which 
are also known as symmetric keys. PublicKeyPairGenerator generates public 
keys. Both classes require acdefaultsecurity.jar in the classpath.

Both classes take two parameters, the encryption algorithm and the output file, 
where the generated encrypted key is written. The encryption algorithm is a 



328 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

required parameter. The output file is an optional parameter. If you do not 
provide the second parameter, the output file is named key.properties and is 
saved in the current folder. The encryption algorithm values are shown in 
Table 21-4.

How to generate a symmetric encryption key

Run the main function of SymmetricKeyGenerator.

1 To navigate to the default security folder, open a command prompt window 
and type:

cd C:\Program Files\Actuate11\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>

2 To generate the key, as shown in Figure 21-2, type:

java -cp acdefaultsecurity.jar 
com.actuate.birt.model.defaultsecurity.api.keygenerator.
SymmetricKeyGenerator des

Figure 21-2 Symmetric key generation

3 The generated key is saved in the file, key.properties. The content of the file 
looks like this one:

#Key Generator
#Wed Nov 18 16:17:06 PST 2008
symmetric-key=73c76d5…

4 Copy the key from the generated key file to encryption.properties file.

Table 21-4 Key generation classes and parameters

Class name
Encryption algorithm 
parameter

com.actute.birt.model.defaultsecurity.api.
keygenerator.SymmetricKeyGenerator

des

com.actute.birt.model.defaultsecurity.api.
keygenerator.SymmetricKeyGenerator

desede

com.actute.birt.model.defaultsecurity.api.
keygenerator.PublicKeyPairGenerator

rsa



C h a p t e r  2 1 ,  W o r k i n g  w i t h  B I R T  e n c r y p t i o n  i n  A c t u a t e B I R T i S e r v e r 329

How to generate a public key using RSA encryption

Run the main function of PublicPairGenerator.

1 To navigate to the default security folder, open a command prompt window 
and type:

cd C:\Program Files\Actuate11\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>

2 In the command prompt window, type:

java -cp acdefaultsecurity.jar 
com.actuate.birt.model.defaultsecurity.api.keygenerator.

PublicPairGenerator rsa

The class generates a pair of keys saved in key.properties file:

#Key Generator
#Wed Nov 18 15:58:31 PST 2008
public-key=30819f300.....
symmetric-key=3082027502010......

3 Copy the key from the generated key file to encryption.properties file.

Creating a custom encryption plug-in
To create a custom encryption plug-in, you need to extend the following 
extension point:

org.eclipse.birt.report.model.encryptionHelper

The interface IEncryptionHelper defines two methods, as shown in the following 
code:

public interface IEncryptionHelper
{

public String encrypt( String string );

public String decrypt( String string );
}

You need to implement these methods and program your encryption and 
decryption logic there. 

To install the custom encryption plug-in, copy the plug-in to the product’s 
plugins folder, where the default plug-in resides. Change the isDefault property 
in plugin.xml to true. Change the isDefault properties of the rest of the encryption 
plug-ins to false.



330 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Using encryption API methods
You can call the API methods in the default encryption plug-in when you have to 
set the encryptionID property, or encrypt data programmatically. The following 
list describes these methods and shows their signatures:

■ IEncryptionHelper::encrypt encrypts the given string, and returns the 
encrypted string:

String IEncryptionHelper::encrypt( String value )

■ IEncryptionHelper::decrypt decrypts the given encrypted string, and returns 
the original string:

public String IEncryptionHelper::decrypt( String string )

■ MetaDataDictionary::getEncryptionHelper returns the encryption helper with 
the extension ID:

public IEncryptionHelper 
MetaDataDictionary::getEncryptionHelper( String id )

■ MetaDataDictionary::getEncryptionHelpers gets all the encryption helpers:

public List MetaDataDictionary::getEncryptionHelpers( )



C h a p t e r  2 2 ,  U s i n g  c u s t o m  e m i t t e r s  i n  A c t u a t e  B I R T  i S e r v e r 331

C h a p t e r

22
Chapter 22Using custom emitters in

Actuate BIRT iServer
This chapter contains the following topics: 

■ About custom emitters

■ Deploying custom emitters to iServer

■ Rendering in custom formats



332 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About custom emitters
In Actuate BIRT Designer Professional or Interactive Viewer, you can choose to 
render BIRT reports in several different formats, as shown in Figure 22-1. 

Figure 22-1 Rendering formats

Actuate provides out-of-the-box report rendering for the following file formats:

■ DOC - Microsoft Word document 

■ DOCX - Microsoft Word document, introduced in Windows 7

■ HTML - HyperText Markup Language document, a standard format used for 
creating and publishing documents on the World Wide Web 

■ PDF - Created by Adobe, a PDF is a portable file format intended to facilitate 
document exchange. 

■ POSTSCRIPT - A page description language document for medium to high-
resolution printing devices

■ PPT - Microsoft PowerPoint document

■ PPTX - Microsoft PowerPoint document for Windows 7

■ XHTML -Extensible Hypertext Markup Language document, the next 
generation of HTML, compliant with XML standards

■ XLS - MS-Excel Document

If you need to export your document to a format not directly supported by 
Actuate, such as CSV and XML, you need to develop a custom emitter. Actuate 
supports using custom emitters to export reports to custom formats. After a 
system administrator places custom emitters in the designated folder in 
Information Console or iServer, users are able to use them as output formats 
when scheduling BIRT report jobs in iServer or exporting BIRT reports in 
Information Console. Custom emitters are also supported as e-mail attachment 
formats. 

iServer uses the custom emitter format type as a file extension for the output file 
when doing the conversion. When you develop custom emitters, always use the 



C h a p t e r  2 2 ,  U s i n g  c u s t o m  e m i t t e r s  i n  A c t u a t e  B I R T  i S e r v e r 333

same name for a format type and an output file extension type. Management 
Console and Actuate Information Console for iServer display the options of each 
emitter for the user to choose when exporting a report.

The Integrating and Extending BIRT book, published by Addison-Wesley, provides 
detailed information about how to develop custom emitters in BIRT.

Deploying custom emitters to iServer
The custom emitters in BIRT are implemented as plug-ins and packaged as JAR 
files. To make them available to the Actuate products that support them, copy the 
emitters to the following folder:

Actuate<release>/iServer/MyClasses/eclipse/plugins

The MyClasses folder appears at different levels on different platforms but it is 
always available at the product’s installation folder. 

When you install InformationConsole.war file to your own J2EE application 
server, the shared folder MyClasses is not available. In this case, custom emitter 
plug-ins should be copied to the following folder:

<context-root>/WEB-INF/platform/plugins

Every time you deploy a custom emitter you need to restart the product. This 
ensures the emitter JAR is added to the classpath and the product can discover 
the new rendering format.

The following tools and products support custom emitters:

■ Actuate BIRT DesignerProfessional

■ Actuate BIRT Studio

■ BIRT Interactive Viewer for iServer

■ Information Console for iServer

■ iServer

Rendering in custom formats
After deploying the custom emitter, you can see the new rendering formats 
displayed along with built-in emitters in the following places:

■ Preview report in Web Viewer in Actuate BIRT Designer

■ Output page of schedule job in Management Console and Information 
Console for iServer



334 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

■ Attachment Notification page of schedule job in Management Console or 
Information Console for iServer

■ Export Content in Actuate BIRT Viewer and Actuate BIRT Interactive Viewer

The following examples show the deployment and usage of a custom CSV 
emitter. The CSV emitter renders a report as a comma separated file. The JAR file 
name is org.eclipse.birt.report.engine.emitter.csv.jar. The custom format type is 
MyCSV.

To test the emitter functionality with Management and Information Consoles, 
you schedule any BIRT report design or report document from the examples in 
the Public folder. The examples that follow use the report from the sample 
Encyclopedia volume for an iServer:

Public/BIRT and BIRT Studio Examples
/CustomerList.rptdesign

How to deploy a custom emitter

This example assumes that the Actuate products are installed in 
C:\Program Files\Actuate<Release> folder on Windows.

1 Copy org.eclipse.birt.report.engine.emitter.csv.jar to:

C:\Program Files\Actuate<Release>\iServer\MyClasses\eclipse\
plugins

2 Restart the product to make it load the new plug-in in its classpath:

■ If using Actuate BIRT Designer, reopen the designer.

■ If using iServer, restart Actuate iServer <Release> from 
Start➛Settings➛Control Panel➛Administrative Tools➛Services, as shown 
in Figure 22-2.

■ If you use a separately deployed Information Console, you must also 
restart Apache Tomcat for Actuate Information Console <Release>.

Figure 22-2 Services



C h a p t e r  2 2 ,  U s i n g  c u s t o m  e m i t t e r s  i n  A c t u a t e  B I R T  i S e r v e r 335

The following procedures show how to export a BIRT report to the new MyCSV 
format in different products.

How to export a BIRT report from Actuate BIRT Designer

1 Open a BIRT report in Actuate BIRT Designer Professional. 

2 Preview the report in Web Viewer. The new MYCSV format appears in the list 
of formats, as shown in Figure 22-3.

Figure 22-3 List of available formats in Web Viewer

3 Select the MYCSV option. A new window opens and displays the report in 
MYCSV format, as shown in Figure 22-4. 

Figure 22-4 Exported content

How to export a BIRT report in iServer Management Console

1 Open iServer Management Console. 

2 Navigate to the Public/BIRT and BIRT Studio Examples folder. 

3 Click the blue arrow next to CustomerList.rptdesign and choose the Schedule 
option from the menu.



336 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

4 In the Schedule page, select Output tab. The new MYCSV format appears in 
the list of the available formats, as shown in Figure 22-5.

Figure 22-5 Output format in Management Console

5 Choose the Notification Tab in the same Schedule Job page. Select MYCSV 
format from the Format for the attached report’s drop-down list, as shown in 
Figure 22-6.

Figure 22-6 Notification tab in the Schedule Job page

6 Choose OK. The generated report is saved as CustomerList.MYCSV in the 
Encyclopedia volume. The report is also attached to the e-mail notification.

How to export a BIRT report from Information Console or iServer

Schedule a BIRT report to run by choosing Save As on the schedule page. The 
new MYCSV format appears in the Document Format list. You can also select to 
attach the output report to an e-mail notification, as shown in Figure 22-7.



C h a p t e r  2 2 ,  U s i n g  c u s t o m  e m i t t e r s  i n  A c t u a t e  B I R T  i S e r v e r 337

Figure 22-7 Save As tab in the Schedule Jobs page in Information Console

How to export a BIRT report from Actuate BIRT Viewer or Actuate BIRT Interactive 
Viewer

1 Open a BIRT report in Actuate BIRT Viewer or Interactive Viewer.

2 Select Export Content from the viewer menu. The new MyCSV format shows 
up in the Export Formats as shown in Figure 22-8.

Figure 22-8 Export Content in Actuate BIRT Viewers



338 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

3 Choose OK. 

A file download window appears, as shown in Figure 22-9. You can choose to 
open or save the file. The suggested file name is CistomerList.mycsv.

Figure 22-9 File Download 



Part 4Using Actuate BIRT APIs

Part Four4





C h a p t e r  2 3 ,  U s i n g  t h e  B I R T  d a t a  o b j e c t  A P I 341

C h a p t e r

23
Chapter 23Using the BIRT data

object API
This chapter contains the following topics:

■ About generating data objects from an application

■ Generating data object elements for BIRT report designs

■ Tutorial 5: Creating a data element using the Design Engine API



342 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

About generating data objects from an application
Actuate BIRT iServer includes a Design Engine API extension to create and alter 
data objects programmatically. This Actuate extension provides Java classes to 
automate data object generation, retrieving important information required 
regularly for any application. The classes that support BIRT data objects, 
DataMartCubeHandle, DataMartDataSetHandle, and DataMartDataSource
Handle, are contained in the com.actuate.birt.report.model.api package.

Like the BIRT data objects implemented in the BIRT data explorer, BIRT data 
objects generated by the Design Engine API generate data sources and data sets 
from a .datadesign or .data file. Using the extension requires programming in 
Java. Knowledge of XML is also helpful.

Handling data objects for BIRT reports requires knowledge of programming 
using the BIRT reporting API and the report object model. For information about 
the BIRT reporting API and the report object model, see Integrating and Extending 
BIRT. This chapter describes the additional requirements for generating data 
objects for reports.

Generating data object elements for BIRT report 
designs

To generate data-object data sources, data sets, and cubes for a BIRT report 
design, first configure BIRT_HOME to access the Actuate commercial model API 
Java Archive (JAR) files from Actuate iServer. To accomplish this task, generate a 
DesignConfig object with a custom BIRT_HOME path, as shown in the following 
code:

// Create an DesignConfig object.
DesignConfig config = new DesignConfig( );
// Set up the path to your BIRT Home Directory.
config.setBIRTHome("C:/Program Files/Actuate11/iServer/Jar/BIRT/

platform");

Use the path to the iServer installation specific to your system. 

Using this design configuration object, create and configure a Design Engine 
object, open a new session, and generate or open a report design object, as shown 
in the following code:

// Create the engine.
DesignEngine engine = new DesignEngine( config );
SessionHandle sessionHandle = engine.newSessionHandle( 

ULocale.ENGLISH );
ReportDesignHandle designHandle = sessionHandle.createDesign( );



C h a p t e r  2 3 ,  U s i n g  t h e  B I R T  d a t a  o b j e c t  A P I 343

These objects are contained in the model API package 
org.eclipse.birt.report.model.api.

The ElementFactory class supports access to all the elements in a report. The 
following code generates an Element Factory object:

ElementFactory factory = designHandle.getElementFactory( );

To generate data sources, data sets, and cubes, use the datamart methods of an 
ElementFactory object: newDataMartCube( ) for a new cube, 
newDataMartDataSet( ) for a data set, and newDataMartSource( ) for a new data 
source. For example, to instantiate a new data source, use the following code:

DataMartDataSourceHandle dataSource = 
factory.newDataMartDataSource("Data Object Data Source");

Associate a handle for a data-object data source with an actual data source from 
the contents of a data or data design file. For example, to associate a data source 
handle with a data source from test.datadesign, use the following code:

dataSource.setDataMartURL( "test" );
dataSource.setAccessType( 

DesignChoiceConstants.ACCESS_TYPE_TRANSIENT );

Finally, add the data element to the report design, as shown in the following code:

designHandle.getDataSources( ).add( dataSource );

To complete the data source assignment, output the report design into a file and 
close the design handle object, using code similar to the following:

FileOutputStream fos = new FileOutputStream( "output.rptdesign" );
designHandle.serialize( fos );
// Close the document.
fos.close( );
designHandle.close( );

The resulting output file, output.rptdesign, contains the new data source, 
retrieved from test.datadesign. This data source appears in Data Sources in Data 
Explorer and establishes a link to the .datadesign file, test.datadesign. The XML 
source for output.rptdesign includes markup similar to the following lines:

<datamart-node location="file:/MyProject/test.datadesign">
...
<data-sources>

<data-mart-data-source name="Data Object Data Source" id="7">
<property name="datamartURL">test</property>
<property name="accessType">transient</property>

</data-mart-data-source>
</data-sources>

When exporting this report design to an Encyclopedia volume, also export 
test.datadesign to maintain the reference to the data source.



344 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Creating data-object data sets for BIRT report designs
To create a data-object data set, use the newDataMartDataSet( ) method from 
ElementFactory. For example, to instantiate a new data set, use the following 
code:

DataMartDataSetHandle dataSet = 
factory.newDataMartDataSet("Data Set");

Associate the data-object data cube with a DataMartDataSourceHandle object 
and then add the name of a data set from the data or data design file. For 
example, to access a data set called “SetName,” use the following code:

dataSet.setDataSource( dataSource.getName( ) );
dataSet.setDataObject( "SetName" );

DataMartDataSetHandle inherits the setDataSource( ) method from 
DataSetHandle. 

Finally, add the data element to the report design, as shown in the following code:

designHandle.getDataSets( ).add( dataSet );

Creating data-object data cubes for BIRT report 
designs
To create a data-object data cube, use the newDataMartDataCube( ) method from 
ElementFactory. For example, to instantiate a new data cube, use the following 
code:

DataMartDataCubeHandle dataCube = 
factory.newDataMartDataCube("Data Cube");

Associate the data-object data cube with a DataMartDataSourceHandle object 
and assign a data cube from the data or data design file. For example, to access a 
data cube called “CubeName,” use the following code:

dataCube.setDataSource( dataSource.getName( ) );
dataCube.setDataObject("CubeName");

Finally, add the data element to the report design, as shown in the following code:

designHandle.getDataCubes( ).add( dataCube );

Tutorial 5: Creating a data element using the Design 
Engine API

This tutorial provides step-by-step instructions for creating a Java class that 
generates a BIRT report design with a BIRT data source generated from a BIRT 
Data Design file. You perform the following tasks:



C h a p t e r  2 3 ,  U s i n g  t h e  B I R T  d a t a  o b j e c t  A P I 345

■ Set up a project.

■ Create a GenerateDataObject Java class.

■ Create the main( ) method to test the code. 

■ Run the code.

Task 1: Set up a project
To compile a Design Engine API application, the design engine Java archive (JAR) 
files from Actuate iServer must be in your class path. You can find the design 
engine JAR files in the <Actuate home>/iServer/Jar/BIRT/lib directory folder. 
The main JAR files that contain the design engine classes are coreapi.jar and 
modelapi.jar files. In addition, you need a data design file from which to generate 
the data objects. For this tutorial, the data design file is include.datadesign.

1 In Java perspective, select File➛New➛Java Project. New Java Project appears 
as shown in Figure 23-1.

Figure 23-1 Creating the DataObjectExample project

2 In Project Name type:

DataObjectExample

3 In Project layout, select:

Use project folder as root for sources and class files



346 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

4 Choose Next. Java Settings appears.

5 Set the project build path.

1 Select the Libraries tab. 

2 Choose Add External JARs.

3 In JAR Selection, navigate to the iServer\Jar\BIRT\lib directory. For the 
default installation of BIRT on Windows XP, this directory is:

C:\Program Files\Actuate11\iServer\Jar\BIRT\lib

4 In JAR Selection, select all of the JAR files in the directory.

5 Choose Open. The libraries are added to the classpath as shown in 
Figure 23-2.

Figure 23-2 DataObjectsAPI project build path

6 Choose Finish.

6 Import the data design file.

1 In the Package Explorer, right-click the DataObjectExample project.

2 Choose Import from the context menu.

3 In Import, choose General➛FIle System and then choose Next.



C h a p t e r  2 3 ,  U s i n g  t h e  B I R T  d a t a  o b j e c t  A P I 347

4 In File System, choose Browse. 

5 Navigate to and select a data design file. Then choose Finish. The data 
design file appears in the project as shown in Figure 23-3.

Figure 23-3 DataObjectExample project showing the data design file

Task 2: Create a GenerateDataObject Java class
This Java class creates a simple report design, with table, list, and image elements.

1 Choose File➛New➛Class. New Java Class appears.

2 In Name type:

GenerateDataObject

3 In Package, as shown in Figure 23-4, type:

myPackage

Figure 23-4 Creating GenerateDataObject class



348 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

4 Choose Finish. GenerateDataObject.java opens in the Java editor.

5 Add a BIRT_HOME static variable to the class. For the default installation of 
iServer on a 32-bit Windows system, use the following line in the body of the 
GenerateDataObject class body:

private static final String BIRT_HOME = 
"C:/Program Files/Actuate11/iServer/Jar/BIRT/platform";

Task 3: Create the main( ) method to test the code
Add a main( ) method to run the class.

1 Type the following main method:

public static void main( String[] args ) throws Exception
{
}

An error indicating that the BirtException class is not defined appears.

2 Use Quick Fix (Ctrl+1) to import the BirtException class definition.

3 Add the main method body shown in Listing 23-1 to your main( ) method.

Listing 23-1 main() method code

DesignConfig config = new DesignConfig( );
config.setBIRTHome( BIRT_HOME );

DesignEngine engine = new DesignEngine( config );
SessionHandle sessionHandle = engine.newSessionHandle( 

ULocale.ENGLISH );
ReportDesignHandle designHandle = sessionHandle.createDesign();
ElementFactory factory = designHandle.getElementFactory( );

DataMartDataSourceHandle dataSource = 
factory.newDataMartDataSource( "Data Source" );

dataSource.setDataMartURL( "include" );
dataSource.setAccessType( 

DesignChoiceConstants.ACCESS_TYPE_TRANSIENT );
designHandle.getDataSources( ).add( dataSource );

FileOutputStream fos = new FileOutputStream("test.rptdesign");
designHandle.serialize( fos );
fos.close( );

designHandle.close( );
System.out.println("Done");

Read the code explanations:

■ To access a data source and its contents, the application must first generate 
and configure a design engine object.



C h a p t e r  2 3 ,  U s i n g  t h e  B I R T  d a t a  o b j e c t  A P I 349

■ After creating the engine object, the code instantiates a new session. The 
SessionHandle object manages the state of all open data and report 
designs. Use SessionHandle to open, close, and create data designs, and to 
set global properties, such as the locale and the units of measure for data 
elements. Create the session handle only once. BIRT supports only a single 
SessionHandle.

■ Generate a new design handle using the SessionHandle object. Create a 
design engine element factory using the DesignHandle object.

■ Create a new instance of DataMartDataSourceHandle and set the datamart 
URL to the name of a datamart file, include, which corresponds to the 
include.datadesign file added to the project. Then, configure the access 
type and add the data source handle to the design handle object.

■ Finally, open a file output stream to a report design, test.rptdesign, that 
uses the data object. Export the data design element to the report design.

4 Add the import statements shown in Listing 23-2 to the beginning of the file.

Listing 23-2 import statement code

import java.io.FileOutputStream;
import org.eclipse.birt.core.exception.BirtException;
import org.eclipse.birt.report.model.api.DesignConfig;
import org.eclipse.birt.report.model.api.DesignEngine;
import org.eclipse.birt.report.model.api.ElementFactory;
import org.eclipse.birt.report.model.api.ReportDesignHandle;
import org.eclipse.birt.report.model.api.SessionHandle;
import org.eclipse.birt.report.model.api.elements

.DesignChoiceConstants;
import com.actuate.birt.report.model.api

.DataMartDataSourceHandle;
import com.ibm.icu.util.ULocale;

Task 4: Run the code
5 Create a Run configuration for GenerateDataObject.java class. 

1 In Package Explorer, select:

GenerateDataObject.java 

2 From the main menu, choose Run➛ Run Configurations.

3 Double-click the Java Application link in the left frame of the Run 
Configurations. The GenerateDataObjects configuration gets created.

4 Choose Run. Save and Launch appears. Choose OK.

6 After the execution completes, refresh the contents of the DataObjectExample 
project. test.rptdesign appears.



350 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

7 Open the report design and view the XML Source. The XML contains a 
datamart element that points to include.datadesign and a data source called 
include, as shown in the following code:

<datamart-node 
location="file:/DataObjectExample/include.datadesign">

...
<data-sources>

<data-mart-data-source name="Data Source" id="4">
<property name="datamartURL">include</property>
<property name="accessType">transient</property>

</data-mart-data-source>
</data-sources>

8 In Data Explorer, expand Data Sources to view the new data source, as shown 
in Figure 23-5.

Figure 23-5 Data Source in test.rptdesign

The final code for GenerateDataObject is shown in Listing 23-3.

Listing 23-3 GenerateDataObject.java

package myPackage;
import java.io.FileOutputStream;
import org.eclipse.birt.core.exception.BirtException;
import org.eclipse.birt.report.model.api.DesignConfig;
import org.eclipse.birt.report.model.api.DesignEngine;
import org.eclipse.birt.report.model.api.ElementFactory;
import org.eclipse.birt.report.model.api.ReportDesignHandle;
import org.eclipse.birt.report.model.api.SessionHandle;
import org.eclipse.birt.report.model.api.elements

.DesignChoiceConstants;
import com.actuate.birt.report.model.api.DataMartCubeHandle;



C h a p t e r  2 3 ,  U s i n g  t h e  B I R T  d a t a  o b j e c t  A P I 351

import com.actuate.birt.report.model.api.DataMartDataSourceHandle;
import com.ibm.icu.util.ULocale;

public class GenerateDataObject {

private static final String BIRT_HOME = 
"C:/Program Files/Actuate11/iServer/Jar/BIRT/platform";

public static void main( String[] args ) throws Exception
{

DesignConfig config = new DesignConfig( );
config.setBIRTHome( BIRT_HOME );

DesignEngine engine = new DesignEngine( config );
SessionHandle sessionHandle = engine.newSessionHandle( 
ULocale.ENGLISH );
ReportDesignHandle designHandle = sessionHandle.createDesign();
ElementFactory factory = designHandle.getElementFactory( );

DataMartDataSourceHandle dataSource = 
factory.newDataMartDataSource( "Data Source" );
dataSource.setDataMartURL( "include" );
dataSource.setAccessType( 
DesignChoiceConstants.ACCESS_TYPE_TRANSIENT );
designHandle.getDataSources( ).add( dataSource );

FileOutputStream fos = new FileOutputStream("test.rptdesign");
designHandle.serialize( fos );
fos.close( );

designHandle.close( );
System.out.println("Done");
}

}



352 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l



I n d e x 353

Index
Symbols
^ (caret) character 213
^ operator 224
, (comma) character 195, 253
? (question mark) character

font substitution 312
search expressions 212, 220

. (period) character
decimal separators 195
pattern matching 212

" (quotation mark) character 211
[] (square brackets) characters 194
* (asterisk) character 212, 220
* operator 224
/ (forward slash) character 212
/ operator 224
\ (backslash) character 213
& operator 225
% (percent) character 211
% operator 224
+ operator 224
+= operator 170
< operator 224
<= operator 224
<> operator 224
= operator 224
> operator 224
>= operator 224
– operator 224
_ (underscore) character 211, 292

A
ABS function 197
absolute paths 62, 294, 305
absolute values 197
Access Control List Expression property

data objects 252, 262
report elements 256, 259
report objects 252

access control lists
adding data security and 262, 264

adding page-level security and 253, 256, 
259

creating 252, 253
inheriting 259
propagating across report elements 257

access restrictions 38, 252, 253, 262
accessing

custom plug-ins 289
data 5, 23, 30, 52, 242, 292
data objects 24, 26
e.reports 52, 53
encryption plug-in 316
expression builders 195
external data sources 8, 42
Flash Object Library 151
Flash objects 148
font configuration files 310
information objects 36, 37
InfoSoft documentation 158
Java classes 287
multiple data sources 36, 68
report elements 343
reports 282
resource folders 24
resource identifiers 306, 307
resources 305
result sets 42, 44
sample reports 286
web service applications 42

accounts 36
acdefaultsecurity.jar 318, 327
ACLs. See access control lists
Acrobat Reader. See Adobe Acrobat Reader
Actual Page Number property 261
Actuate BIRT Designer

accessing encryption plug-in for 316
accessing font configurations for 310
adding e.report data sources and 53, 55
adding Flash objects and 90, 91
controlling user access and 26, 252, 260, 

264
copying link files for 290
creating joined data sets and 72



354 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Actuate BIRT Designer (continued)
debugging source code and 189
deploying custom emitters to 334
exporting from 335
externalizing connection profiles and 305
filtering data and 228, 231
rendering reports and 332, 333
running iServer API reports and 272
supported data sources for 4
testing data security for 264
testing page-level security for 261
viewing Flash objects and 146

Actuate BIRT Designer Professional xi, 282
See also Actuate BIRT Designer

Actuate BIRT iServer. See iServer
Actuate Data Object Data Source option 30
Actuate Information Object Data Source 

option 37
Actuate Information Object Query page 39
Actuate Interactive Viewer 146, 332, 334, 337
Actuate JavaScript API 246, 247
Actuate POJO Data Set option 64
Actuate POJO Data Source option 60
$ACTUATE_HOME variable 289
ActuateOne for e.Reports data sets 55
ActuateOne for e.Reports data sources 53
ActuateOne for e.Reports driver 4

See also e.Reports Data Connector
Add Column Mapping dialog 65
Add New Effect dialog 122
Add Variables dialog 167, 190, 245
ADD_DAY function 197
ADD_HOUR function 197
ADD_MINUTE function 198
ADD_MONTH function 198
ADD_QUARTER function 199
ADD_SECOND function 199
ADD_WEEK function 200
ADD_YEAR function 200
adding

bookmarks 45
charts 91, 94
connection profiles 297, 298
cross tabs 33
data items to data objects 11, 12
data object data sources 30, 343
data security 262, 264

data sets 32, 38, 48, 55
debugging messages 272, 274
dynamic filter parameters 230
dynamic filters 231–232
e.report data sources 53, 55
expressions 194, 195
Flash charts 91, 94, 133, 148
Flash gadgets 91, 94, 139, 148
Flash maps 91, 149, 159, 165
Flash objects 90, 91, 150, 150–152
flat file data sources 299
HTML buttons 238, 239
hyperlinks 19–22
information object data sources 36
iServer profiles 283
join conditions 76–79
joined data sets 72, 73
page-level security 256
POJO data sets 62, 64
POJO data sources 60
report document data sources 48
security IDs 252, 253
summary tables 17, 18
tooltips 114
union data sets 68, 70
visual effects 121–123, 136

addition operator 224
add-ons 116, 117
AddOns page (Format Gadget) 118
Adobe Acrobat Reader 91
Adobe Flash Player 90
aggregation 8, 17, 42

See also summary tables; summary values
alerts 243
Alias property 70
alignment 119, 120
alpha transition 125
Analysis Type property 17, 19
analysis types 17, 18
analytics technology 8
analyzing data 9
anchor properties (gadgets) 110
anchors (gadgets) 110, 111
AND operator 224
Angle property 127, 130
animation 90, 99, 135, 137, 143
animation attributes 125



I n d e x 355

animation effects 124–126
animation macros 125
animation properties 124
animation types 126
appContext objects 270, 306
appendToJobStatus method 272, 274
Application Context Key property 64
application context objects 270, 306
application programming interfaces 246, 247, 

268, 330, 342
application servers 289
applications

accessing web service 42
adding interactive features to 90, 238, 246
compiling code for 345
creating POJO objects and 60
developing 178, 246, 268
encrypting data and 323
loading custom plug-ins and 289
running 289, 306

Arc Inner Radius property 109
Arc Outer Radius property 109
arcs (drawing element) 116
arcs (gadgets) 97, 109
ASCII text files 292
asterisk (*) character 212, 220
asymmetric encryption 319

See also RSA encryption
attachments 332, 336
Attribute To Animate property 125
Attribute value 17
attributes (fonts) 153, 155
authentication algorithms 316
authentication IDs 274
Auto Abbreviation property 105
Auto Adjust Tickmarks property 100
automatic update 27
auto-summarize operations 17

B
Background Color property 98, 129
Background property 114
backslash (\) character 213
bar charts 148
Base Color property 98
Base Width property 102

BETWEEN function 200
bevel effects 127
bevel properties 127
BIRT 360 application 9
BIRT APIs 246, 247, 268, 342
BIRT engine 270, 289
BIRT Interactive Viewer. See Interactive 

Viewer
BIRT objects 8

See also specific type
BIRT Report Designer xi, 4

See also Actuate BIRT Designer
BIRT Report Designer Professional 53

See also Actuate BIRT Designer 
Professional

BIRT Report Document Data Source 
option 46

BIRT reports 8, 52, 62, 282, 287
See also reports

BIRT resources 285
See also resources

BIRT Studio 11, 265, 282
BIRT Viewer 334, 337
BIRT_HOME variable 342
blank characters 221, 222
block cipher algorithm 316, 318
blur effects 128
blur properties 128
Bold property 129
Bookmark folder (BIRT) 44
bookmark names 45
Bookmark property 45
bookmarks 19, 45
Boolean values 208, 215

See also conditional expressions
Border Color property

needle base 103
needles 102
plots 112
text 129
thresholds 109
value indicators 113

Border property 112, 114
Border Thickness property 103
Border Width property 102, 112, 113
Bounce animation type 126
Browse for Flash Files dialog 151



356 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

browsers. See web browsers
build paths 269
building web applications 90, 246
Bulb Radius property 98
bullet gadgets 111, 113, 114, 148

See also Flash gadgets
Bundle-SymbolicName property 320
button events 238, 240, 241
button names 239
buttons. See HTML buttons

C
cached data 42
caching data 23
calculated data 42
calculations 194, 224, 242
capitalization 222
caret (^) character 213
Cascade ACL setting 257, 259
case 212, 222
case-insensitive searches 213
case-sensitive searches 207, 211
case sensitivity (EasyScript) 195
CBC encryption mode 318
CEILING function 201
Center X Coordinate property 98, 118
Center Y Coordinate property 98, 118
CFB encryption mode 318
changing

bookmark names 45
configuration files 294
connection information 292
connection profiles 297
connection properties 292
data cubes 33
data items 27, 30
default encryption 323
default expression syntax 196
default folders 286
field names 70
HTML buttons 249
information objects 36
Java classes 287
passwords 323
queries 40
report element IDs 46

union data sets 71
variables 168
visual effects 124

character encoding 292
character strings. See strings
character tag 313
characters

counting 210
finding matching 211, 212, 219
finding specific 207, 210, 217
font substitution and 312, 313
matching literal 211, 213
removing leading or trailing 221, 222

chart builder. See Flash chart builder
chart element IDs 46
chart gadgets 9
charts 11, 42, 91, 94, 233

See also chart gadgets; Flash charts
Cipher Block Chaining Mode 318
Cipher Feedback Mode 318
ciphers 316, 318
ciphertext 316
circles 116
CistomerList.mycsv 338
city markers (maps) 171
class attribute 321
class definitions 348
class paths 345
class property 182
classes

BIRT encryption 318, 327
BIRT reports and 287
changing 287
creating Java 184
data objects and 342
debugging 189
deploying 287
Flash objects and 157, 183
HTML buttons and 247
iServer API and 274
Java event handlers and 269
ODA UI driver and 307
POJO data objects and 60, 62

Classic Models database 131, 159, 292
classpaths 269, 320, 327, 333
click events 241
closing values (gadgets) 112



I n d e x 357

clusters 294
code

adding Flash objects and 148, 189
compiling 345
creating run configuration for 349
generating data objects and 342
importing classes for 184
writing event handlers and 241, 242, 268, 

270, 271
code templates 184, 241
Color property

borders 98
font effects 129
glow effects 129
lines 118
regions 106
shadow effects 130
text 115
threshold area 109
value indicators 113

color values 170
column bindings 42
column charts 10, 148, 153, 156
column names 52, 53
columns

See also fields
adding hyperlinks to 21
adding to reports 32
consolidating data for 69, 72
displaying 32, 48
filtering data and 229, 232
generating result sets and 42
getting values from 156
grouping data in 17
hiding 86
mapping to POJO objects and 62, 65
retrieving from e.reports 52, 54, 56
setting analysis type for 18

combination charts 148, 173
combo boxes 229
comma (,) character 195, 253
comma separated files. See CSV files
commercial model API JAR files 342
common fields 69
common keys 72
comparison operators 77
compiling 345

composite fonts 313
composite-font tag 313
concatenation 225
conditional expressions 208, 224
conditions. See filter conditions; join 

conditions
Configuration Console 294
configuration files

accessing font information and 310, 311, 
312

changing 294
connecting to data sources and 292, 293, 

294
creating 294
externalizing data source properties 

and 304
setting default location for 294
updating 294

configuration keys 292
configuration property files 293
ConnConfigFile parameter 294
Connect Missing Data property 98
connection configuration files 292–295
connection definitions 292
connection information

connection profiles and 292
data objects 30
Encyclopedia volumes 37
external data sources 42
externalizing 292, 293
information objects 36
POJO data sources 61
report documents 46

connection profile names 303
connection profile properties 298
Connection Profile Store URL property 298, 

304, 305
connection profiles

binding to reports 298–303
changing 297
connecting to data sources and 292, 297
creating 283, 297, 298
deploying 298
externalizing 303, 304
naming 284
publishing reports and 284
referencing external 305



358 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

connection properties 292, 294, 304
See also connection information

connection property names 292
connections

accessing data and 5, 8, 30, 292
accessing iServer and 282
configuring 292–295
loading e.reports and 53
testing 54, 62

ConnectOptions parameter 293, 294
context objects 270, 298, 306
contributors 179
Convert to Shared Dimension command 16
copying data objects 13
copying JAR files 269
createDataURL method 158
creating

access control lists 252, 253
bookmarks 45
configuration files 294
connection profiles 297, 298
custom encryption plug-in 329
data cubes 33
data items 12
data object data cubes 12, 344
data object data sets 12, 344
data object stores 23
data objects 8, 11
data security 262, 264
data sets 32, 38, 48, 55
data sources 12, 131, 343
dynamic filter parameters 230
dynamic filters 231–232
e.report data sources 53
encryption keys 318, 327, 328, 329
expressions 194, 195
Flash charts 94, 131–138
Flash gadgets 94, 138–146
HTML buttons 238, 239
hyperlinks 19–22
information objects 36
interactive web pages 90
iServer profiles 283
Java classes 184
Java event handlers 269, 271
JavaScript event handlers 268, 270
join conditions 76–79

joined data sets 72–75, 76
multi-level dimensions 15
page-level security 256
plug-ins 177
POJO data sets 62, 64
POJO data sources 60
queries 38, 39
report document data sources 42, 46
report documents 42, 45
reports 11, 30, 42, 322, 327
shared dimensions 15–16
summary tables 17, 18
union data sets 68–71
visual effects 121–123, 136

cross tab gadgets 10, 11
cross tabs 33, 42
cryptographic methods 317

See also encryption
CSV emitter 334
CSV files 68, 299
CSV formats 332
csvTestODA.csv 299
cubes. See data cubes
currency symbols 313
currency values 104, 202
current date and time 216, 221
custom drivers 282, 289
custom emitters 289, 332, 333, 334
custom Flash objects 91
custom plug-ins 289, 329
CustomerList.rptdesign 335
customizing

encryption implementation 316
encryption plug-in 329
Flash objects 116, 121
HTML buttons 247–249
reports 287

customODA.link file 289
customPlugins.link file 289
cylinder gadgets 96, 148

See also Flash gadgets

D
Dash Gap property 118
Dash Length property 118
dashboard gadgets 9



I n d e x 359

dashboards
adding Flash gadgets to 148
building data objects for 8, 9
controlling access to 262, 265
drilling down in 19
filtering data and 10
finding data in 19
retrieving data for 8, 23
selecting data sources for 22
viewing summary information in 17

data
See also data sets; values
accessing 5, 23, 30, 52, 242, 292
aggregating 8, 17, 42
analyzing 9
building cross tabs and 33
building Flash objects and 91, 152, 157, 165
caching 23
combining from multiple sources 68, 69, 

72
controlling access to 26, 252, 262
displaying 9, 32, 228
embedding in Flash objects 146, 156
encrypting 321, 323, 330
filtering 10, 228–232, 238, 246
finding 19, 207
grouping 17
hiding 22
mapping to Flash maps 163
retrieving 4, 8, 30, 36, 54, 60
returning cached 42, 48
returning specified values for 24, 228
specifying analysis type for 18
updating 24, 36

data column bindings 42
data connector. See e.Reports Data Connector
data cubes

building dashboards from 9
building shared dimensions for 15–16
controlling access to 262
creating 12, 33, 344
editing 33
exporting 13, 14
generating 343
hiding data sets in 22
incremental updates and 25
linking to 21

naming 33
selecting 33

data drivers 4, 52
See also drivers

data elements 343, 344
Data Explorer 12
data extraction plug-in 180, 183
data fields. See columns; data set fields
.data files 23, 24, 30, 262

See also data object stores
data files 4

See also data objects
data filters 236
data filters. See filters
data items

See also data; data objects
adding hyperlinks to 19
adding to data objects 11, 12
changing 27, 30
controlling access to 262
creating 12
exporting 13–14
overwriting 13
selecting 22
updating 24, 27

data marts 8
data object classes 342
data object data sources 11, 30
data object design files 14, 24, 30
data object files 12
data object stores 23, 24, 30, 265
data objects

accessing 24, 26
adding data items to 11, 12
building information objects and 36
choosing data items in 22, 32
connecting to 30
controlling access to 262, 263
copying 13
creating 4, 8, 11
defining hyperlinks in 21
deleting items in 27
designing 8–11
developing 342, 344
exporting data items to 13–14
generating 342
overwriting data items in 13



360 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

data objects (continued)
publishing 24
renaming items in 27
retrieving data and 23, 24, 30, 32
securing 252, 262
selecting 31
sharing with multiple reports 11

data rows 8, 32, 38, 228, 263
data security 252, 262, 264
data selector gadgets 10
data selectors 10
data set editor. See Edit Data Set dialog
data set field names 69, 70, 194
data set fields

See also columns
adding to expressions 196
consolidating data and 68, 69, 72, 77
enabling auto-summarizing for 17
finding character patterns in 211, 212, 219
finding specified characters in 207, 210, 

217
mapping e.report data to 52
mapping to report columns 65
removing blank characters in 221, 222
testing for non-null values in 215
testing for null values in 209

data set wizard. See New Data Set dialog
data sets

accessing data and 5, 52
adding 32, 38, 48, 55, 64
binding Flash charts to 176
building dashboards from 9, 10
controlling access to 262, 263
creating data object 12, 344
creating joined 72–75, 76
creating union 68–71
defining hyperlinks for 20
exporting 13, 14
generating 343
generating result sets and 48
hiding 22
joining on multiple keys 76
linking 72
naming 32
retrieving from multiple data sources 68
retrieving from sample database 132
returning specific 24, 228

selecting 32
sharing with multiple reports 36
showing gadget values and 99
viewing contents of 32

data source connection definitions 292
Data Source Explorer 297, 299
data source objects 292
data source types (supported) 4
data source wizard. See New Data Source 

dialog
data sources

accessing cached data and 42, 48
accessing data in 5, 68, 292
accessing e.reports and 52, 53, 54
accessing external 8, 42
building information objects and 36
building POJO data sets and 60, 62
connecting to. See connections
creating 12, 131, 343
exporting 13
externalizing properties for 304
filtering data in 236
generating 343
integrating 36, 68
naming 30
retrieving data from 8, 30, 36, 52, 60
returning specified data from 24, 228
running queries from 234
selecting 30, 36, 46
specifying 292
testing connections for 54, 62

Data Sources folder (BIRT) 32
data structures 68
data tag 166
database connection configuration files 304
database connection information 293
database connection profiles 303
database connection properties 292, 294
databases 36, 42, 60, 234

See also data sources
.datadesign files 14, 24, 30, 262
datamart methods 343
dataObject objects 243
dataPart variable 166
DataSourceEditorPage class 307
DataSourceWizardPage class 307
dataURL variable 157



I n d e x 361

dataXML variable 156, 166
date values

adding days to 197
adding months to 198
adding quarters to 199
adding time values to 197, 198, 199
adding weeks to 200
adding years to 200
as literals 195
calculating days between 202
calculating months between 204
calculating quarters between 204
calculating time values between 203, 205
calculating weeks between 206
calculating years between 206
returning current 216, 221
returning month for 214
returning quarter in 216
returning weekdays for 202, 223
returning weeks for 222
returning year for 223
setting conditions for 208
testing equality of 208
testing range of values for 201

DAY function 202
days

See also date values
adding to date values 197
calculating number of 202
returning number in month 202
returning specific 223

DBConfig.xml 293
debug mode 189, 190
debug window 190
debugging

event handlers 272, 274
Flash objects 189–190
reports 189

debugging messages 272, 274
decimal separators 195
decimal values 105, 194, 217, 218, 219
decrypt method 329, 330
decryption 327, 329

See also encryption
decryption algorithms 316
decryption keys 317
default animation 99, 121

default encryption 321, 322, 323
default encryption key 318
default expression syntax 196
default font 312, 313
Default Syntax property 196
default themes 84
Define join type and join conditions 

dialog 75
deleting

blank characters 221, 222
data items 27
visual effects 124

dependencies 13
deploying

connection profiles 298
custom emitters 333, 334
encryption plug-in 320, 323, 327
JAR files 288
Java classes 287
plug-ins 187, 289
report designs 327
reports 282, 298, 305

DES encryption 317
des encryption parameter 328
DESede encryption 317
desede encryption parameter 328
design configuration objects 342
design engine 342
Design Engine API 342, 345
design engine classes 345
design files. See data object design files
design information 42
design-time filters 231
DesignConfig objects 342
designer ODA driver 307
designers xi, 282
designing

data objects 8–11
reports 259

designs
accessing custom ODA plug-ins and 306
accessing data for 42, 52, 292
changing connection properties for 292
changing default encryption and 323
creating data objects for 342
creating data sources for 292, 297, 299, 343
deploying 327



362 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

designs (continued)
enabling page-level security and 259
generating 344
publishing 282, 288
retrieving e.report data for 52
viewing query information for 234

developing
custom emitters 333
data objects 342, 344
Flash objects 91, 152–158, 189
POJOs 60
reports 282
web applications 178, 246, 268

dial values (gadgets) 98
DIFF_DAY function 202
DIFF_HOUR function 203
DIFF_MINUTE function 203
DIFF_MONTH function 204
DIFF_QUARTER function 204
DIFF_SECOND function 205
DIFF_WEEK function 206
DIFF_YEAR function 206
Digital Encryption Standard 317
Dimension Builder 15
dimension columns 18
Dimension value 17
dimensions 9, 15

See also data cubes
directory paths

BIRT_HOME variable for 342
connection profiles 298, 304, 305
data source connections 293, 294
font files 314
Java event handlers and 269
link files 289
ODA data sources 306
POJO classes 60, 62
report documents 47
resources 307
temporary files 275

display names 52
displaying

columns 48
data 9, 32, 228
data objects 14, 31
debugging messages 272
Flash content 91

Flash objects 146
HTML buttons 238
numeric values 105, 107
page numbers 260, 261
query execution profiles 233
reports 261, 264, 282, 310
result sets 43, 44, 48, 56
specific data values 10, 114
summary values 17
tables 270, 271
threshold values 108, 109, 142
XML code 189
XML source files 292

Distance property 127, 130
distributing reports. See deploying
division 213, 224
DOC formats 91, 332
documentation xi, 158
documents. See report documents
DOCX formats 332
double quotation mark (") character 211
doughnut charts 125, 148, 152, 155
downloading Adobe Flash Player 90
drag-node charts 150
drawing elements 116
drilling down functionality 19
drill-through hyperlinks 19
drivers

getting resource identifiers for 306, 307
installing custom 282, 289
retrieving data and 4, 52
running applications and 289, 306

drivers directory 289
drives, mapping 305
drop shadows 113, 130
duplicate names 46
Duration property 125
dynamic filter parameters 229, 230, 231
dynamic filters 228, 231–232

E
e.report data sets 55
e.report data sources 53
e.Report Designer Professional 4
e.reports 52, 53, 54
e.Reports Data Connector 52



I n d e x 363

EasyScript 194
EasyScript expression builder 195, 196
EasyScript expressions 194, 196, 224
EasyScript function reference 196
ECB encryption mode 319
Eclipse debugger 189
Eclipse Plug-in Development 

perspective 177
Edit Data Set dialog

changing e.report column properties 
and 58

creating data sets and 49, 66
creating hyperlinks and 21
creating information objects and 38, 40
hiding data sets and 22
mapping to POJO data and 62
previewing data and 32
viewing result sets and 43, 56

Edit Dynamic Filter Parameter dialog 229
Edit Output Column dialog 21
Edit Summary Field dialog 21
editing. See changing
Effects button 121, 123
Effects dialog box 121, 123, 136, 144
effects. See visual effects
Elastic animation type 126
Electronic Codebook Mode 319
Element ID folder (BIRT) 44
Element ID property 46
ElementFactory class 343
elements. See report elements
e-mail 332, 336

See also notifications
Embed Data property 146
emitters 289, 332, 333, 334
empty strings 210, 217
Enable Data Security property 264
Enable Incremental Update command 25
Enable Page Level Security setting 260
encoding 292
encrypt method 329, 330
encrypted-property tag 322
encryption 316, 322, 323, 329

See also encryption plug-in
encryption algorithm information 318
Encryption algorithm property 318
encryption algorithms 316, 317, 321, 328

encryption API methods 330
encryption classes 318
encryption IDs 322
encryption keys

accessing predefined 319
encryption algorithms and 317
generating 318, 327, 328, 329
loading 318

Encryption keys property 319
Encryption mode property 318
Encryption padding property 319
encryption plug-in

accessing 316
changing default encryption and 316
customizing 329
deploying 320, 323, 327
generating encryption keys and 327
instantiating 323
loading 321, 327
overview 317
setting default 321
supported algorithms for 317

encryption plug-in descriptor file 321
encryption plug-in ID 320
encryption settings 318
encryption type information 318
Encryption type property 318
encryption.properties file 318, 319
encryptionHelper extension point 321, 329
encryptionHelper tag 321
encryptionID property 327, 330
Encyclopedia volumes

accessing data objects in 26
accessing e.report data in 52, 53
connecting to 37
deploying to 287
getting names of 270, 276
publishing data objects to 24
publishing Java classes to 288
publishing reports to 282
publishing resources to 282
securing 252
selecting information objects in 36
sharing resources and 286

End Angle property 97, 98, 119
End Color property 103, 119
End Value property 106, 109



364 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

End X coordinate property 119
End Y coordinate property 119
enterprise applications 238
enterprise data sources 4
entity tag 166
environments 268
Equinox project (Eclipse) 178
errors

data object items and 27
e.report output and 57
Flash objects and 146, 189, 190

event handlers
accessing data and 242
accessing variables in 243
creating HTML buttons and 241–247
debugging 272, 274
retrieving iServer environment and 268, 

270
writing Java 269, 271
writing JavaScript 268, 270

event model 268
events 238, 240, 241
example database 131
example Flash objects 159
example reports 286
Excel document formats 332
Excel functions 194
executable files 294
executing applications 289, 306
executing reports 37, 272, 282, 305, 336
Execution Environment property 179
Explorer view 282
exponentiation 224
Export Content command 337
Export Elements to Data Object dialog 14
Export to Data Object command 13
export utility (BIRT) 13
Export utility (Eclipse) 187
exporting

data cubes 14
data items 13–14
data sets 14
plug-ins 187
reports 332, 335, 336, 337

expression builders 195
expressions

See also EasyScript

access control lists 252, 253
bookmark names and 45
calculations and 194, 224
changing syntax of 196
connection profile properties 298, 301
creating 194, 195
data filters and 228, 231, 236
Flash objects 157, 169
HTML buttons and 239
joined data sets and 72, 74, 76, 77
literal characters in 211, 213
literal values in 195
testing conditions in 208
union data sets and 68
validating 196
variables and 245

extensible markup language. See XML
extension IDs 292
extension points 321
extension properties 181
extension tag 321
extensionName attribute 321
extensions 180
external data sources 8, 42
externalizing

connection information 292, 293
connection profile store URLs 304
connection profiles 303, 304, 305
data source properties 304

F
Factory processes 293, 294
field names 69, 70, 194
fields

See also columns
adding to expressions 196
consolidating data and 68, 69, 72, 77
enabling auto-summarizing for 17
finding character patterns in 211, 212, 219
finding specified characters in 207, 210, 

217
mapping e.report data to 52
mapping to report columns 65
removing blank characters in 221, 222
testing for non-null values in 215
testing for null values in 209



I n d e x 365

file name extensions 12, 332
file names 332
file paths. See directory paths
file types 120
files

See also specific type
changing configuration 294
configuring connections and 292, 294
controlling access to 52, 252
deploying custom plug-ins and 289
deploying reports and 282
displaying XML source 292
exporting plug-ins and 187
generating Flash objects and 150
getting URIs for 306
naming font configuration 310
publishing JAR archives and 287
retrieving data and 4, 30, 42, 52, 68
uploading to iServer 285

Fill Background Color property 102
Fill Color property 98, 102, 103
Fill Gradient property 104
filter conditions 228, 229, 231, 232
filter expressions 228, 231, 236
filter parameters 229, 230, 231
filtering data 10, 228–232, 238, 246
filters 228, 231, 232, 236
Filters page 232
financial analysis 150
FIND function 207
finding data 19, 207
Flash Builder 151

See also Flash chart builder; Flash gadget 
builder

Flash chart builder 95, 133
Flash chart elements 133, 148
Flash chart types 94, 148
Flash charts

See also Flash objects; Flash power charts
adding to reports 91, 94, 133, 148
adding visual effects to 121, 123
animating 120, 121, 124–126
binding to data sets 176
creating 94, 131–138
enhancing appearance of 121, 123
formatting 95, 121
previewing 134

removing visual effects from 124
selecting data for 133
setting values for 152, 155, 156
troubleshooting 146
tutorial for animating 135, 137
tutorial for developing 173–188

Flash gadget builder 96, 139
Flash gadget elements 139, 148
Flash gadget properties

add-ons 117, 118
anchors 110
fonts 115
general 96
needle base 102
needles 100
number formatting 104
padding and margins 115
plot 111
regions 105
scale 99
thresholds 108
tick marks 106
tooltips 114
value indicators 113

Flash gadget types 94, 148
Flash gadgets

See also Flash objects
adding titles to 99
adding to reports 91, 94, 139, 148
adding visual effects to 121, 123, 145
adjusting spacing in 116
animating 99, 120, 121, 124–126
creating 94, 138–146
disabling values in 99, 102, 109, 113
dividing into regions 141
enhancing appearance of 116, 121, 123
formatting 96
previewing 140
removing visual effects from 124
selecting data for 139
setting properties for. See Flash gadget 

properties
setting thresholds for 109, 142
setting values for 152
showing tick marks on 99, 106
showing values in 104, 105, 110
tilting 99



366 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Flash gadgets (continued)
troubleshooting 146
tutorial for animating 143, 145

Flash library. See Flash Object Library
Flash maps 91, 149, 159, 165
Flash maps reference 162
Flash object components 150
Flash object elements 151
Flash Object Library 91, 148, 151, 158
flash object library plug-ins 289
Flash objects

See also specific type
accessing documentation for 158–159
accessing predefined 148
adding 90, 91, 150, 150–152
allocating resources for 184, 187
creating visual effects for 120–130
customizing 91, 116, 121
debugging 189–190
developing 152–158, 189
embedding data in 146, 156
exporting plug-ins for 187
formatting options for 95, 121
generating 91, 189
hiding 91
importing packages for 184
interacting with 90
limitations 146
mapping data to 163
outlining 129
previewing 167
retrieving data for 91, 152, 155, 157, 165
setting properties for 96, 152, 159

Flash objects maps reference 162
Flash Player 90
Flash power charts 150
Flash Variables page 157, 166, 168
flat file data sources 68, 299, 306
folders

accessing custom ODA plug-ins and 306
accessing encryption plug-in and 316
accessing font configuration files in 310, 

314
accessing resource 24
changing resource 286
controlling access to 252
copying custom emitters to 333

deploying connection profiles and 298
deploying JAR files to 287, 288
installing custom plug-ins to 289
installing JDBC drivers to 289
installing ODA drivers to 289
publishing data objects to 24
publishing shared resources to 286
selecting data objects in 14, 31
sharing report documents and 42
viewing data sources in 32

font configuration files 310, 311, 312
font effects 128
font files 311, 313
font properties (gadgets) 115
Font property 115, 119, 129
font scaling property 119
Font Size property 119
font substitution 310, 312
font-aliases tag 312
font-mapping tag 312
font-paths tag 313
fonts 310, 311
fontsConfig.xml 312
footers 260
Force Trailing Zeros property 105
Format Chart page 95
Format Gadget page 96
Format Numbers property 105
format property 181
formats. See output formats
formatting

Flash charts 95, 121
Flash gadgets 96
Flash maps 167

formatting options 95, 121
forward slash (/) character 212
Fraction Digits property 105
function names 195
function reference 196
functions 194, 196

See also methods
funnel gadgets 148

See also Flash gadgets

G
gadget builder. See Flash gadget builder



I n d e x 367

gadget images 98
gadget titles 99
gadgets 9, 27

See also Flash gadgets
gantt gadgets 148
gauges. See specific type
general properties (Flash gadgets) 98
general properties (HTML buttons) 247
Generate Data Objects command 23
Generate Document command 42
generating

data object stores 24
data objects 342
debugging messages 272, 274
encryption keys 318, 327, 328, 329
Flash content 91, 189
Flash objects 91, 189
report designs 344
report documents 42, 45
reports 332
result sets 42, 233
summary tables 17
XML data 155, 156, 165, 180

generic fonts 312
getApplResourceBaseURI method 306, 307
getAuthenticationId method 274
getDesignResourceBaseURI method 306, 307
getEncryptionHelper method 330
getEncryptionHelpers method 330
getHostResourceIdentifiers method 307
getServerWorkingDirectory method 275
getUserAgentString method 275
getUserRoles method 271, 276
getVolumeName method 270, 276
global reporting solutions. See locales
glow effect properties 129
glow effects 129, 145
Gradient property 119
grand totals 17
graphical design tools. See designers; specific 

Actuate designer
graphics 116, 247
graphics file types 120
graphics scaling property 119
graphs. See charts; Flash charts
grids 256
group definitions 233

grouping data 17
groups 8, 256

See also user groups

H
headlines 277
Height property

Flash charts 96, 98
HTML buttons 247

help. See online documentation
Hex color values 170
hiding

columns 86
data sets 22
Flash objects 91
HTML buttons 238
region labels 106
tables 270

hierarchical diagrams 150
Highlight property 127
Horizontal Blur property

bevel effects 128
blur effects 128
glow effects 129
shadow effects 130

Horizontal property 119
Horizontal Scale attribute 125
hours

See also time values
adding to date values 197
calculating number of 203

HTML Button dialog 239, 249
HTML button elements 239
HTML button names 239
HTML buttons

accessing data and 242
adding 238, 239
calculating numeric values and 243
changing values for 249
creating event handlers for 241–247
customizing 247–249
displaying information and 243
filtering data and 238, 246
integrating business processes and 238
renaming 249
setting size of 247



368 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

HTML buttons (continued)
testing 240, 247
viewing 238

HTML formats 332
HTML reports 91
Hyperlink Options dialog 21, 22
hyperlinks 19–22

See also URIs; URLs

I
i character in patterns 213
icu_version.jar 269
ID property 179
id property 181
IDataExtractionExtension interface 182, 183, 

184
IEncryptionHelper class 329, 330
IF expressions 224
IF function 208
image file types 120
image scaling property 119
images 116, 247
import statements 184
importing class definitions 348
IN function 208
In operator 231
Incremental Update dialog 25
incremental updates 24, 25
information 4, 242

See also data
Information Console

accessing encryption plug-in for 317
accessing font configurations for 310
copying link files for 290
customizing emitters for 332, 333, 334
deploying reports to 305
encrypting data and 321, 327
exporting reports from 336
externalizing connection profiles and 304, 

305
loading custom plug-ins and 289
managing reports and 282
publishing Java classes and 288, 289
rendering reports and 310
running BIRT Studio and 282
viewing debugging messages and 273

information object data sources 36, 39, 282
Information Object Query Builder 38, 39
information objects

building queries for 38, 39, 236
changing 36
connecting to 36–38
creating 4, 36
retrieving data from 36, 38–40, 52
selecting 36

InformationConsole.war file 289, 333
InfoSoft documentation 158

See also Flash Object Library
initialize method 184
in-memory analytics technology 8
Inner Radius property 97, 98, 119
input 228, 231, 243
installation

Adobe Flash Player 90
custom plug-ins 289, 329
JDBC drivers 289
ODA drivers 289

interactive reporting 90, 238, 246
Interactive Viewer 146, 332, 334, 337
interfaces. See application programming 

interfaces
internal ACLs 259
IO Design perspective 36

See also information objects
Is Required property 231
isDefault attribute 321
isDefault property 329
iServer

accessing data objects and 26
accessing encryption plug-in for 317
accessing font configurations for 310
accessing information objects on 36, 37
configuring data source connections 

and 292, 293, 294
connecting to 282
copying link files to 290
creating profiles for 283
customizing emitters for 332, 333
deploying connection profiles to 298
deploying custom emitters to 333, 334
deploying report designs to 327
deploying reports to 287, 305
encrypting data and 321, 323



I n d e x 369

exporting reports from 336
externalizing connection profiles and 304, 

305
getting environment information for 268, 

270
loading custom plug-ins and 289
managing reports and 282
publishing data objects to 22, 24
publishing JAR files to 287, 288
publishing reports to 268, 282, 284, 292
publishing shared resources to 285, 286
rendering reports and 310
running BIRT applications and 289
running reports and 272
uploading report files to 285

iServer API 268, 272, 274
iServer Explorer 282
iServer security model 252, 262
iServer volumes. See Encyclopedia volumes
IServerContext interface 270
isHidden property 182
ISNULL function 209
Italic property 129

J
J2EE application servers 289
JAR files

creating 187
custom emitters and 333
deploying 287, 288
generating data objects and 342, 345
generating encryption keys and 327
Java classes 287
Java event handlers and 269
POJO data sources 60, 62
publishing 287, 288
running reports and 288

Java applications 60, 178
Java classes

BIRT encryption 318, 327
BIRT reports and 287
changing 287
creating 184
data objects and 342
debugging 189
deploying 287

Flash objects and 157, 183
HTML buttons and 247
ODA UI driver and 307
POJO data objects and 60, 62

Java code 148
See also source code

Java encryption extension 316
Java event handlers 269, 271
Java factory processes. See Factory processes
Java objects 60
JavaScript APIs 246, 247
JavaScript code 148, 189, 241

See also source code
JavaScript debugger 189
JavaScript event handlers 268, 270

See also event handlers
JavaScript expression builder 157, 195
JavaScript expressions 194, 196, 298

See also expressions
JCE security extension 316
JDBC data sources 236, 303
JDBC drivers 282, 289
jobs 274, 277, 332
join conditions 74, 76–79
Join Data Set command 73
join operators 72, 77
join types 72, 74
joined data sets 72–75, 76
joins 72, 73
jrem.jar 269

K
kagi charts 150
key generator classes 318

See also encryption keys
key pairs (encryption) 317
key.properties file 328
keyboard events 241

L
Label property 106, 109, 119
language-specific reports. See locales
leading characters 221
LED gadgets 148

See also Flash gadgets
LEFT function 209



370 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

legacy databases 24
LEN function 210
Length property 109
libraries

accessing InfoSoft documentation for 158
adding Flash objects and 91, 148
exporting data items from 13
viewing sample reports and 286

LIKE function 211
line chart gadgets 10
line charts 148
Line Color property 112
Line Style property 109
Line Width property 112
Linear animation type 126
linear gadgets 10, 148

See also Flash gadgets
linear gauges 96, 99, 105, 106, 108
lines (drawing element) 116
link files 289
links. See hyperlinks
links directory 289
Linux systems 294

See also UNIX systems
list boxes 229
list element IDs 46
lists

displaying in data selector gadgets 10
enabling page-level security for 256
filtering data and 229
generating result sets for 42, 46
selecting multiple values in 231
testing values in 208

literal characters 211, 213
literal values 195
loading. See opening
locales 195, 310
logarithmic charts 150
login credentials 37
LOWER function 212
lowercase characters 212

M
MAC algorithms 316

See also encryption
macros 125

Major Tick Marks Color property 107
Major Tick Marks Height property 107
Major Tick Marks Width property 107
Major Tickmarks Count property 100
Management Console

changing resource folders and 286
customizing emitters for 333, 334
exporting reports and 335
publishing Java classes and 288, 289
viewing debugging messages and 272

manifest files 320
MANIFEST.MF 320
manuals. See documentation
map entities 162, 166
Map Gallery 162
map markers 171
map specification sheets 163
map tag 166
mapping drives 305
mapping fonts 312, 313
mapping information (columns) 65
maps 91, 149, 159, 165
margin properties (gadgets) 116
margin properties (HTML buttons) 248, 249
Margins property 116
Marker Color property 109
markers (maps) 171
Master Page tab 260
MATCH function 212
matching character patterns 211, 212, 219
mathematical operations 224
Maximum Label property 107
Maximum Value property 100
maximum values 99
measure columns 18
Measure value 18
memory 8
Message Authentication Code 

algorithms 316
message boxes 243
messages 318
metadata 320
metadata directory 297
MetaDataDictionary class 330
meter gadgets 148

See also Flash gadgets
meter gauges 97, 102, 117



I n d e x 371

methods 62, 184, 247, 269, 274
See also functions

mimeType property 182
Minimum Label property 107
Minimum Value property 100
minimum values 99
Minor Tick Marks Color property 107
Minor Tick Marks Height property 107
Minor Tick Marks Width property 107
Minor Tickmarks Count property 100
minutes

See also time values
adding to date values 198
calculating number of 203

missing characters 312
missing data points 98
MOD function 213
modulus 213
MONTH function 214
months

See also date values
adding to date values 198
calculating number of 204
returning 214

mouse events 241
multi-level dimensions 15

See also data cubes
multiple encryption algorithms 321
multiplication operator 224
multi-series charts 148, 153, 156
multi-volume environments 276
MyClasses folder 289, 333

N
name conflicts 13
Name property 46, 119, 179
name property 182, 310, 311
naming

bookmarks 45
connection profiles 284
data cubes 33
data object data sources 30
data object files 12
data sets 32
font configuration files 310
HTML buttons 239

joined data sets 73
plug-in extensions 182
plug-in projects 178
plug-ins 179
POJO data sets 64
POJO data sources 60
report elements 46
reports 277
union data sets 70
variables 245

needle base (gadgets) 102
needle base properties (gadgets) 103
needle pivot. See needle base
needle properties (gadgets) 101
needle size (gadgets) 102
needles (gadgets) 98, 99, 100, 145
needles (gauges) 101
negation 215
nested tables 44, 45
networked environments 305
New Actuate Data Object Data Set dialog 32
New Actuate Data Object Data Source 

dialog 31
New Actuate Information Object Connection 

Profile dialog 37
New Actuate POJO Data Set dialog 64
New ActuateOne for e.Reports Data Source 

Profile dialog 53
New BIRT Report Document Data Set 

dialog 48
New BIRT Report Document Data Source 

Profile dialog 47
New Data Object dialog 12
New Data Set command 32
New Data Set dialog

data objects and 32
e.reports and 55
information objects and 38
joined data sets and 73
POJO data sources and 64
report documents and 48
union data sets and 70

New Data Source command 30
New Data Source dialog

data objects and 30
information objects and 36
POJO objects and 60



372 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

New Data Source dialog (continued)
report documents and 46

New Dynamic Filter Parameter 
command 230

New Extension dialog 180
New Filter Condition dialog 232
New iServer Profile command 283
New iServer Profile dialog 283
New Java Class dialog 183, 347
New Plug-in Project dialog 178
New POJO Data Source Profile dialog 61
New Shared Dimension command 15
New Union Element dialog 70
newDataMartCube method 343
newDataMartDataCube method 344
newDataMartDataSet method 343, 344
newDataMartSource method 343
non-null values 215
NOT function 215
notifications 277, 336
NOTNULL function 215
NOW function 216
null values 209, 272
number formatting properties (gadgets) 104
numbering report pages 260, 261
numeric values

as literals 195
calculating square root of 220
displaying text with 105
dividing 213
formatting 105
replacing with text 107
returning absolute 197
rounding 194, 201, 217, 218, 219
setting conditions for 208
testing equality of 208, 224
testing range of values for 201

O
OAEP encryption padding mode 319
objects 8, 60, 116
ODA connection profiles 298, 303, 304, 305
ODA consumer applications 306
ODA data source editor pages 307
ODA data source wizard pages 307
ODA data sources 282, 304, 306

ODA drivers 52, 289, 306, 307
ODA plug-ins 306
ODA providers 306
ODA user interfaces 307
ODA_APP_CONTEXT_KEY_CONSUMER_ 

RESOURCE_IDS key 306
OdaConnProfileName property 303
OdaConnProfileStorePath property 298, 304, 

305
OFB encryption mode 319
onblur event 241
onclick event 241
OnCreate method 166
ondblclick event 241
onfocus event 241
onkeydown event 241
onkeypress event 241
onkeyup event 241
online documentation xi
online help. See online documentation
onmousedown event 241
onmousemove event 241
onmouseover event 241
onmouseup event 241
onPrepare events 270, 271
onRender events 275
open data access technology. See ODA
opening

custom plug-ins 289
Data Source Explorer 299
Dimension Builder 15
EasyScript expression builder 195
encryption plug-in 321, 327
Flash files 151
font files 311, 313
InfoSoft documentation 158
iServer Explorer 283
JavaScript expression builder 195
report files 252

opening values (gadgets) 112
operating systems 294, 305, 310
operators 72, 77, 224, 229
Optimal Asymmetric Encryption 

Padding 319
See also RSA encryption

optional filter parameters 231
OR operator 225



I n d e x 373

os attributes 310
OSGi framework 178
Outer Radius property 97, 98, 119
outlining Flash objects 129
output 261, 318
output columns (e.reports) 57
Output Feedback Mode 319

See also encryption
output files 328, 332
output formats

exporting data and 332
Flash charts and 146
Flash objects and 91
HTML button elements and 238
PDF layout engine 311
reports 310, 332, 333
retrieving data and 68

output method 185
Overview page (PDE Editor) 179
overwriting data items 13

P
Package Explorer 182
packages 184, 333
packaging Java classes 288
padding properties (gadgets) 116
padding properties (HTML buttons) 248, 249
Padding Title property 116
Padding Value property 116
page breaks 259
page footers 260
page number elements 260
page numbers 260, 261
page-level security

adding 252, 256, 259
displaying reports and 253, 259
loading e.reports and 52
testing 261

page-level security examples 256, 258
parameters

adding to data objects 11
binding connection profiles to 298, 299, 

303
building dashboards and 10
creating 12
filtering data and 229, 230

generating encryption keys and 327
hiding data sets for 22
incremental updates and 25
retrieving data and 228
selecting data sources and 31
specifying as optional 231
specifying as required 231

Password property 37
Password-Based Encryption Standard 319
passwords

See also security
changing 323
decrypting 323
encrypting 322
Encyclopedia volumes 37
JDBC data sources 303

paths
BIRT_HOME variable for 342
connection profiles 298, 304, 305
data source connections 293, 294
font files and 314
Java event handlers and 269
link files 289
ODA data sources 306
POJO classes 60, 62
report documents 47
resources 307
temporary files 275

pattern matching 211, 212, 219
Pattern property 104
PCBC encryption mode 319
PDE Editor (Eclipse) 177
PDF formats 311, 332
PDF layout engine 311, 314
PDF Reader. See Adobe Acrobat Reader
PDF reports 91
percent (%) character 211
percentages 224
performance

creating data objects and 8
loading e.reports and 53
retrieving data and 8, 23, 228, 236
sharing dimensions and 15

performance indicators 148
period (.) character

decimal separators 195
pattern matching 212



374 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

period bars (gadgets) 112, 113
Period Bars Color property 112
Period Bars Length property 112
pie charts 125, 148
pivot properties (gadgets) 103
PKCS5Padding encryption mode 319

See also RSA encryption
Plain Old Java Objects. See POJOs
plot properties (gadgets) 112
plug-in descriptor files 321
Plug-in Development perspective 

(Eclipse) 177
plug-in extension IDs 292
plug-in extension points 321
plug-in extension properties 181
plug-in extensions 180
plug-in IDs 179
plug-in projects 178
plugin tag 321
plugin.xml 321
plug-ins

accessing ODA 306
adding Flash objects and 157, 177
creating 177
customizing emitters and 333
deploying 187, 289
encrypting reports and 316
installing custom 289, 329
naming 179
setting properties for 178
viewing information about 179
viewing source files for 292

plugins directory 289, 333
POJO classes 60, 62, 64
POJO Data Set Class Name property 64
POJO data sets 60, 62, 64
POJO data sources 60, 62, 64
POJO objects 60
polygons 116
portable file formats. See PDF formats
Position Above property 107
Position Below property 107
Position Left property 107
Position property 107
POSTSCRIPT formats 332
Postscript formats 311

power charts. See Flash power charts
PowerPoint documents 332
PowerPoint formats 311
PPT formats 332
PPTX formats 332
predesigned data sources 30
Preferences page 24
Prefix property 105
Preset Scheme property 98
previewing

data 32, 133
Flash charts 134
Flash gadgets 140
Flash objects 167

printing 282, 332
private-key encryptions 317, 327
privileges 36, 52, 252
ProductLineSales.rptdesign 131
profiles. See connection profiles
programming interfaces. See application 

programming interfaces
progressive viewing 87
projects 178
Propagating Cipher Block Chaining 

mode 319
properties

animation 124
bevel effects 127
blur 128
data source connection profiles 298
data source connections 292, 294
dynamic filter parameters 229, 230
encryption 318, 320, 329
Encyclopedia connections 37
externalizing 304
Flash objects 96, 152, 159
font effects 128
glow effects 129
HTML buttons 247
plug-in extensions 181
plug-ins 178
POJO data sources 61, 64
shadow effects 130
visual effects 121

Property Binding option 301
Provider property 179



I n d e x 375

public keys 327, 329
public-key encryption 317

See also RSA encryption
PublicKeyPairGenerator class 327
PublicPairGenerator class 329
Publish Report Designs dialog 284
Publish Report to iServer command 284
Publish Resource to iServer command 24, 

286, 288
Publish Resources dialog 286
publishing

data objects 22, 24
JAR files 287, 288
report designs 288
reports 268, 282, 284, 292
resources 282, 285, 286

Publishing dialog 285
pyramid gadgets 148

See also Flash gadgets

Q
QUARTER function 216
quarters 199, 204, 216

See also date values
queries 38, 39, 42, 228, 233
query builder. See Information Object Query 

Builder
query editor 39
query execution profiles 233, 234
query information 233
question mark (?) character

font substitution 312
search expressions 212, 220

R
radar charts 150
Radius property 96, 98, 109, 119
range of values 99, 200, 224
real-time data 30
Rear Extension property 102
rectangles 116
referencing external connection profiles 305
region labels 106, 142
Region property 106
regions (gadgets) 105, 106, 141
Regular animation type 127

relational databases 36
See also databases

relative paths 62, 305
release method 187
remainders 213
removing

blank characters 221, 222
data items 27
default themes 84
visual effects 124

renaming
connection profiles 297
data items 27
data set fields 70
HTML buttons 249
report element IDs 46
result sets 45

rendering formats 333
See also output formats

rendering reports 310, 332, 333
See also report emitters

report context class 270
report context objects 269, 270, 298
report design engine 342
report design engine classes 345
report design files 306, 322
report design information 42
report designers xi, 282
report designs

accessing custom ODA plug-ins and 306
accessing data for 42, 52, 292
changing connection properties for 292
changing default encryption and 323
creating data objects for 342
creating data sources for 292, 297, 299, 343
deploying 327
enabling page-level security and 259
generating 344
publishing 282, 288
retrieving e.report data for 52
viewing query information for 234

report document data sources 42, 46
report document files 42
Report Document Path property 47
report documents

See also reports
connecting to 46–48



376 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

report documents (continued)
creating 4
displaying 282
enabling page-level security and 259, 260
exporting 332
generating 42, 45
linking to 19
printing 282
retrieving data from 42, 48, 53
selecting 47

report element IDs 46
report element names 46
report elements 46, 246, 259, 287, 343
report emitters 289, 332, 333, 334
report engines 270, 289
report executables 294
report files

See also specific type
controlling access to 52, 252
deploying reports and 282
getting URIs for 306
publishing JAR archives and 287
retrieving data and 4, 30, 42, 52
uploading to iServer 285

report items. See report elements
report object document files 53

See also e.reports; report documents
report object instance files 52

See also e.reports
report parameters

adding to data objects 11
binding connection profiles to 298, 299, 

303
building dashboards and 10
creating 12
filtering data and 229, 230
hiding data sets for 22
retrieving data and 228
selecting data sources and 31
specifying as optional 231
specifying as required 231

report sections 52, 256
report server. See iServer
report specifications. See report design 

information
report templates 282, 286
reportContext objects 269, 270, 298

reports
accessing data for 5, 8, 30, 52, 68
adding interactive features for 90, 238, 246
building data object stores for 23
building data objects for 8, 11
changing connection properties for 292
changing data items and 27
creating 11, 30, 42, 322, 327
customizing 287
debugging 189
deploying 282, 298, 305
designing 259
developing 282
displaying 261, 264, 282, 310
drilling down in 19, 21
exporting 332, 335, 336, 337
externalizing connection profiles and 305
filtering data and 231
finding data in 19, 207
generating 332
integrating with web applications 246
linking to 19
naming 277
publishing 268, 282, 284, 292
rendering 310, 332, 333
restricting access to 38, 252, 253
retrieving data from 4, 42
returning cached data for 42, 48
returning null values 272
reusing data items for 13
running 37, 272, 282, 305, 336
selecting data sources for 22, 30, 36, 42, 60
sharing data objects and 11
sharing data sets and 36
testing 292
viewing Flash content in 91
viewing page numbers in 260, 261
viewing sample 286
viewing summary information in 17

repositories. See Encyclopedia volumes
required parameters 231
resolve method 306
Resource folder 286
resource folders 14, 24, 286, 287, 306
resource identifiers 306, 307
resource paths 306, 307
Resource property 288



I n d e x 377

ResourceIdentifiers class 307
resources

accessing 305
defined 285
deploying JAR files and 287
mapping network drives and 305
publishing 282, 285, 286
releasing 187

resources directory 287, 288
Result Set ID folder (BIRT) 44
result set names 44, 46
result sets

consolidating data and 68, 72
creating data sets for 48
defining report element IDs for 46
displaying 43, 44, 48, 56
generating 42, 233
renaming 45
selecting 44
viewing data in 48

RIGHT function 216
.rod files 53
.roi files 52
role names 253
roles 252, 271, 276
Rotation Angle property 119
Rotation attribute 125
Rotation property 104, 119
ROUND function 194, 217
round function 194
ROUNDDOWN function 218
rounded corners (gadgets) 99, 120
rounding 194, 201, 217, 218, 219
ROUNDUP function 219
rows 8, 32, 38, 228, 263
.rptdocument files 42

See also report documents
RSA algorithms 317, 318
RSA encryption 323, 325, 329
rsa encryption parameter 328
rules 26, 262
Run Report with Data Security Enabled 

dialog 265
Run Report with Page Level Security 

dialog 261
run-time filters 231

running
applications 289, 306
custom plug-ins 289
information objects 36
reports 37, 272, 282, 305, 336

S
sample database 131
sample Flash objects 159
sample reports 286
Scale Image property 119
scale properties (gadgets) 100
Scale This Font property 119
scheduling reports 332
scientific plotting 150
scoped names 53
script editor 241, 268
scripted data sets 287
scripts 287
scroll charts 148
search expressions 207, 211, 212, 219
SEARCH function 219
seconds

See also time values
adding to date values 199
calculating number of 205

secret keys 316
sections 52, 256
security

See also data security; page-level security
accessing data objects and 26
creating reports and 252, 322, 327
loading e.reports and 52
specifying encryption settings and 316, 

318
testing 261, 265

Security command 256, 260
Security dialog 260, 261
security extension 316
security IDs

adding 252, 253
cascading 259
testing 261, 265

security role names 253
security roles 252, 271, 276
security rules 26, 262



378 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

security types 252
Select Chart Type page 133
Select Data Object File dialog 31
Select Data Object page 14
Select Data page 133, 139
Select Elements page 14
Select Gadget Type page 139
sending e-mail attachments 332
Server URI property 37
serverContext objects 270
ServerProfiles.dat 297
servers 289

See also iServer
session state 349
SessionHandle objects 349
setAppContext method 306
setDataSource method 344
setHeadline method 277
setVersionName method 277
shadow effects 130
Shadow property 128
Shape property 102, 111
shared dimensions 15–16
Shared Dimensions folder (BIRT) 16
shared resources 24, 286
Show as Dashed property 119
Show as Dot property 112
Show as Zone property 109
Show Border property

add-on objects 119
gadgets 98
needle bases 104
thresholds 109
value indicators 113

Show Close Value property 112
Show Dial Values property 98
Show High and Low Values property 112
Show Labels property 106
Show Limits Value property 107
Show Marker property 109
Show Needle On property 98
Show Needle Value property 99
Show Open Value property 112
Show Period Bars property 113
Show Query Execution Profile command 233
Show Round Corners property 99, 120
Show Shadow property 113

Show Threshold property 109
Show Tick Marks property 107
Show Tick Values property 107
Show Tooltip property 114
Show Value Inside property 109
Show Value Label property 113
Show Value on Top property 109
Show Value property 99, 102, 109
side-by-side joins 72, 73
Sides property 120
simulations 150
Size property

add-ons 120
anchors 111
fonts 115, 129
needles 102, 104
threshold markers 109

SOAP requests 42
Solid Color property 120
sort definitions 233
source code

adding Flash objects and 148, 189
compiling 345
creating run configuration for 349
generating data objects and 342
importing classes for 184
writing event handlers and 241, 242, 270, 

271
sparkline gadgets 110, 111, 115

See also Flash gadgets
special characters 211, 212, 219
special effects. See visual effects
spreadsheets 332
SQL Editor 39
SQL expressions 236
SQL statements 38, 39, 42, 228, 234
SQRT function 220
square brackets ([]) characters 194
square root 220
SSL encryption protocol 319
SSL3Padding encryption mode 319
Start Angle property 97, 99, 120
Start Color property 104, 120
Start Value property 106, 109, 125
Start X Coordinate property 99, 120
Start Y Coordinate property 99, 120
starting iServer Explorer 283



I n d e x 379

static filters 231
static text 238
stored procedures 36
str variable 170
string patterns 211, 212, 219
strings

See also substrings
concatenating values in 225
converting to lowercase 212
converting to uppercase 222
counting characters in 210
creating XML data 169
finding substrings in 207, 219
matching characters in 211, 212
removing blank characters in 221, 222
returning length of 210
returning substrings in 209, 216
testing conditions for 208, 215
testing equality of 208, 224
testing range of values for 201

Strong animation type 127
Style property 99
substrings

extracting 209, 216
finding location of 207, 219

Sub-Title property 99
subtotals 17
subtraction operator 224
Suffix property 105
summary table gadgets 10
summary tables 17, 18
summary values 17, 208

See also aggregation
SWF files 150, 151
symmetric encryption 317
symmetric encryption keys 327, 328
SymmetricKeyGenerator class 327, 328
system resources 24

T
table element IDs 46
table gadgets 10
tables

building data sets for 132
creating Flash maps and 164
creating reports and 42, 62

displaying 270, 271
enabling page-level security for 256, 257, 

258
generating result sets for 42, 45, 46, 233
setting analysis type for 18
viewing summary information in 17

templates 282, 286
temporary files 275
testing

connections 54, 62
data security 264
encryption 327
HTML buttons 240, 247
page-level security 261
report emitters 334
reports 292
security IDs 261, 265

text 105, 107, 116, 239, 247
text-based query editor 39
text boxes 102, 120, 229
text file data sources 68, 299
text files 292
text scaling property 119
text strings. See strings
Text Wrap property 120
TextBox Background Color property 120
TextBox Border Color property 120
ThemesReportItems.rptlibrary 84
thermometer gadgets 148

See also Flash gadgets
thermometer gauges 104
Thickness property 120
third-party libraries 91
threshold (gadgets) 108, 142
Threshold Line property 110
threshold markers 109
threshold properties (gadgets) 109
Threshold property 109
Threshold Zone property 110
tick marks (gadgets) 99, 106
tick properties (gadgets) 107
tick values 106
Ticks Inside property 107
time values

adding to date values 197, 198, 199
calculating number of 203, 205
returning current 216, 221



380 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

Title property 99
TODAY function 221
tooltip properties (gadgets) 114
Tooltip property 102, 110
tooltips 102, 110, 114
Top Width property 102
Total Page element 261
totals 17, 208
trailing characters 221, 222
trailing zeros 105
transient files 275
Transparency attribute 125
Transparent property 120
TRIM function 221
TRIMLEFT function 221
TRIMRIGHT function 222
triple-DES encryption 317
troubleshooting 190
trusted connections 53
Turn Off All Animations property 99
Turn Off Default Animations property 99
Type property (animation) 125

U
ULocale methods 269
Underline property 129
underscore (_) character 211, 292
UNICODE characters 313
Union Data Set command 70
union data sets 68–71
Universal Naming Conventions 305
UNIX systems 294, 305
updates (automatic) 27
updates (incremental) 24, 25
updating

configuration files 294
connection profiles 297
data items 24, 27
data objects 24
data properties 36
Java classes 287

uploading report files 285
UPPER function 222
uppercase characters 222
URI hyperlinks 19
URIs 306, 307

URL property 120
URLs

connection profile store 298
connection profiles 304, 305
data source connections 294
externalizing 304
Flash objects 158
iServer connections 37

Use Data Object Cube command 33
Use Data Object Cube dialog 33
Use logged in user credentials setting 37
user accounts 36
user groups

accessing data and 26, 262
designing data objects and 8, 9

user interfaces 182, 307
user login credentials 37
User Name property 37
user names

access control lists and 252
connection profiles and 303
Encyclopedia volumes and 37

users
accessing data objects and 26
assigning privileges 252
assigning roles 252
building data objects for 8, 9
getting authentication IDs for 274
getting input from 228, 231, 243
getting security roles for 271, 276
restricting access to 38, 252, 253, 262

V
Validate button 196
value indicator (gadgets) 112, 113
value indicator properties (gadgets) 113
Value property 102
Value Textbox X Co-ordinate property 102
Value Textbox Y Co-ordinate property 102
values

See also data
calculating 194, 224, 242
changing HTML button 249
disabling gadget 99, 102, 109, 113
displaying first or last 110



I n d e x 381

displaying highest or lowest 100, 107, 110, 
112

displaying open or close 112
negating Boolean 215
providing lists of 229
returning absolute 197
returning null 272
returning specific 24, 228
returning square root of 220
rounding 194, 201, 217, 218, 219
selecting at run time 228, 231
selecting multiple 231
setting conditions for 208, 215, 228
showing gadget 104, 105, 110
showing in data selectors 10
showing range of 99
testing conditions for 224
testing equality of 208, 224
testing for non-null 215
testing if null 209
testing range of 200, 224
viewing data 114
viewing threshold 108, 109, 142

Values Inside property 107
variables

creating Flash content and 166
creating HTML buttons and 243, 245
editing 168
naming 245

Variables page 245
version names 277
Version property 179
Vertical Blur property

bevel effects 128
blur effects 128
glow effects 129
shadow effects 130

Vertical property 120
Vertical Scale attribute 125
View Report with Data Security 

command 265
View Report with Page Security 

command 261
viewing

columns 48
data 9, 32, 228
data objects 14, 31

debugging messages 272
Flash content 91
Flash objects 146
HTML buttons 238
numeric values 105, 107
page numbers 260, 261
query execution profiles 233
reports 261, 264, 282, 310
result sets 43, 44, 48, 56
specific data values 10, 114
summary values 17
tables 270, 271
threshold values 108, 109, 142
XML code 189
XML source files 292

Viewing Angle property 99
viewing restrictions 252, 259
Visibilities property 111
Visibility property 23, 91
Visible Page Number property 261
visual effects 120–130, 136, 145
visual effects properties 121
volume names 270, 276
Volume property 37
volumes. See Encyclopedia volumes

W
war files 289
waterfall charts 150
web applications 90
web browsers 275
web pages 19, 90, 246
web service data sources 36, 42, 60
Web Viewer 333
WEEK function 222
WEEKDAY function 223
weekdays

See also date values
adding to date values 197
calculating number of 202
returning number in month 202
returning specific 223

weeks
See also date values
adding to date values 200
calculating number of 206



382 U s i n g  A c t u a t e  B I R T  D e s i g n e r  P r o f e s s i o n a l

weeks (continued)
returning 222

Width property
Flash charts 99, 110, 113
HTML buttons 247

wildcard characters 211, 219
Windows systems 294, 305
Word documents 332
World Map Specification Sheet 163
wrapping text 120

X
X coordinate attribute 125
XHTML formats 332
XLS formats 91, 332
XML code 148, 152, 189, 342
XML data

generating 155, 156, 165, 180
rendering Flash objects and 150
storing 157
writing code for 185

XML data extraction plug-in 180, 183
XML data source definitions 292
XML documents 36, 332
XML files 60, 68, 292
XML formats 332
XML Source page 292
XML strings 165, 169
XMLGenerator class 183, 184
XY plot charts 148

Y
Y coordinate attribute 125
YEAR function 223
years

See also date values
adding to date values 200
calculating number of 206
returning 223


	Contents
	About Using Actuate BIRT Designer Professional
	Accessing data
	Supported data sources
	How a report accesses data

	Creating data objects
	About data objects
	Design considerations
	Designing data objects for dashboards
	Designing data objects for reports created with Actuate BIRT Studio
	Designing data objects for reports created with Actuate BIRT Designer

	Building a data object
	Creating new items for a data object
	Exporting items to a data object
	Creating a shared dimension for cubes
	Configuring data set columns for summary tables
	Creating hyperlinks to provide drill-down capability
	Hiding data sets from users

	Providing cached data
	Publishing a data object
	Enabling incremental updates
	Managing user access
	Maintaining a data object

	Accessing data in a data object
	Using data object data in a report
	Connecting to a data object
	Specifying the data to retrieve from a data object
	Using a cube in a data object

	Accessing data in an information object
	Using information object data in a report
	Connecting to an information object
	Specifying the data to retrieve from an information object

	Accessing data in a report document
	Using report document data
	Creating a report document
	Specifying bookmark names
	Specifying element names

	Connecting to a report document
	Specifying the data to retrieve from a report document

	Accessing data in an e.report
	Using ActuateOne for e.Reports Data Connector
	About ActuateOne for e.Reports Data Connector functionality
	Accessing an e.report using Page Level Security
	Accessing an e.report having multiple sections

	Connecting to an e.report
	Specifying the data to retrieve from an e.report

	Accessing data in a POJO
	Using POJO data in a report
	Connecting to a POJO
	Specifying the data to retrieve from a POJO

	Combining data from multiple data sources
	Ways to combine data
	Creating a union data set
	Creating a joined data set
	Joining on more than one key
	Specifying a join condition not based on equality


	Formatting a report
	Formatting features in Actuate BIRT Designer
	Removing the default themes
	Hiding columns in a table
	Designing for optimal viewer performance

	Using Flash objects in a report
	About Flash
	Software requirements
	Ways to add Flash objects in a report
	Output formats that support Flash

	Using built-in Flash charts and gadgets
	About Flash charts and gadgets
	Creating a Flash chart and gadget
	Formatting a Flash chart
	Formatting a Flash gadget
	General properties
	Scale properties
	Needle properties
	Needle base or pivot properties
	Number formatting properties
	Region properties
	Tick properties
	Threshold properties
	Anchor properties
	Plot properties
	Value indicator properties
	Tooltip properties
	Font properties
	Padding and margin properties
	AddOn properties

	Using animation and other visual effects
	Creating effects
	Managing effects
	Animation effect
	Bevel effect
	Blur effect
	Font effect
	Glow effect
	Shadow effect

	Tutorial 1: Creating a Flash chart
	Task 2: Build a data source
	Task 3: Build a data set
	Task 4: Add a Flash chart to the report
	Task 5: Select data for the Flash chart
	Task 6: Animate the x-axis labels
	Task 7: Animate the y-axis labels
	Task 8: Change the animation effect of the columns

	Tutorial 2: Creating a Flash gadget
	Task 2: Select data for the linear gauge
	Task 3: Divide the data area into regions
	Task 4: Add thresholds
	Task 5: Animate the region labels
	Task 6: Animate the sales value
	Task 7: Add a glow effect to the needle

	Limitations

	Using the Flash object library
	About the Flash object library
	About Flash charts
	About Flash gadgets
	About Flash maps
	About Flash power charts
	Flash object components

	Inserting a Flash object in a report
	Providing data to a Flash object
	Generating the XML data
	Using the dataXML variable to pass XML data
	Using the dataURL variable to pass XML data

	Using the Flash object library documentation
	Tutorial 3: Creating a Flash map that gets data through the dataXML variable
	Task 2: Build a data source
	Task 3: Build a data set
	Task 4: Find a suitable Flash map
	Task 5: Review the map specifications
	Task 6: Map the data set values to the Flash map entity values
	Task 7: Add the Flash map to the report
	Task 8: Generate an XML data string
	Task 9: Create the dataXML variable and pass the data
	Task 10: Format the Flash map
	Display sales values in a more readable format
	Building the XML string in readable pieces
	Change the colors used in the map
	Define data ranges and apply different colors to each range
	Create city markers


	Tutorial 4: Creating a Flash chart that gets data through the dataURL variable
	Task 2: Build a data source
	Task 3: Build a data set
	Task 4: Add a Flash chart to the report
	Task 5: Create a plug-in
	Task 6: Define an extension
	Task 7: Create a Java class
	Task 8: Implement methods in the class
	Import the required packages
	Implement the initialize( ) method
	Implement the output( ) method
	Implement the release( ) method

	Task 9: Deploy the plug-in
	Task 10: Create the dataURL variable

	Debugging a Flash object
	Using the Flash object’s debug mode
	Resolving errors


	Writing expressions using EasyScript
	About EasyScript
	Choosing between EasyScript and JavaScript
	Syntax rules

	Using the EasyScript expression builder
	Changing the default expression syntax
	Functions
	ABS( )
	ADD_DAY( )
	ADD_HOUR( )
	ADD_MINUTE( )
	ADD_MONTH( )
	ADD_QUARTER( )
	ADD_SECOND( )
	ADD_WEEK( )
	ADD_YEAR( )
	BETWEEN( )
	CEILING( )
	DAY( )
	DIFF_DAY( )
	DIFF_HOUR( )
	DIFF_MINUTE( )
	DIFF_MONTH( )
	DIFF_QUARTER( )
	DIFF_SECOND( )
	DIFF_WEEK( )
	DIFF_YEAR( )
	FIND( )
	IF( )
	IN( )
	ISNULL( )
	LEFT( )
	LEN( )
	LIKE( )
	LOWER( )
	MATCH( )
	MOD( )
	MONTH( )
	NOT( )
	NOTNULL( )
	NOW( )
	QUARTER( )
	RIGHT( )
	ROUND( )
	ROUNDDOWN( )
	ROUNDUP( )
	SEARCH( )
	SQRT( )
	TODAY( )
	TRIM( )
	TRIMLEFT( )
	TRIMRIGHT( )
	UPPER( )
	WEEK( )
	WEEKDAY( )
	YEAR( )
	Operators

	Specifying filter conditions at report run time
	About report parameters and filters
	Enabling the user to specify a filter condition
	Creating a dynamic filter report parameter
	Making a filter parameter optional
	Accepting multiple values

	Creating a dynamic filter

	Getting information about queries

	Adding HTML buttons to a report
	About HTML buttons
	Creating an HTML button
	Writing code for an HTML button
	Accessing report data
	Using the Actuate JavaScript API
	Testing an HTML button

	Changing the appearance of an HTML button

	Controlling user access to report pages and data
	About the security model
	About access control lists (ACLs) and security IDs
	ACL expression syntax

	Controlling user access to report pages
	Adding page-level security to a report
	Enabling and disabling page-level security
	Configuring page numbers
	Testing page-level security

	Controlling user access to data
	Adding security to a data object
	Enabling and disabling data security
	Testing data security


	Accessing iServer environment information
	Writing event handlers to retrieve iServer environment information
	Writing a JavaScript event handler
	Writing a Java event handler
	About the serverContext object
	JavaScript event handler example
	Java event handler example

	Debugging event handlers that use the iServer API
	iServer API reference
	appendToJobStatus( )
	getAuthenticationId( )
	getServerWorkingDirectory( )
	getUserAgentString( )
	getUserRoles( )
	getVolumeName( )
	setHeadline( )
	setVersionName( )

	Deploying BIRT reports to Actuate BIRT iServer
	About deploying BIRT reports
	Publishing a report to Actuate BIRT iServer
	Publishing a report resource to Actuate BIRT iServer
	Deploying Java classes used in BIRT reports
	Installing a custom JDBC driver
	Installing custom ODA drivers and custom plug-ins

	Configuring data source connections in Actuate BIRT iServer
	About data source connection properties
	Using a connection configuration file
	Setting up the connection configuration file
	Understanding how iServer uses the connection configuration file
	Setting the location of a connection configuration file
	Encrypting the connection properties

	Using a connection profile
	Binding connection profile properties
	Binding Connection Profile Store URL property
	Binding a connection profile name to a report parameter

	Externalizing the connection profile properties on the iServer
	Understanding externalization precedence
	Referencing the external connection profile


	Accessing BIRT report design and BIRT resources paths in custom ODA plug-ins
	Accessing resource identifiers in run-time ODA driver
	Accessing resource identifiers in design ODA driver


	Configuring fonts in Actuate BIRT iServer
	About configuring fonts
	Understanding font configuration file priorities
	Understanding how BIRT engine locates a font
	Understanding the font configuration file structure
	<font-aliases> section
	<composite-font> section
	<font-paths> section


	Working with BIRT encryption in Actuate BIRT iServer
	About BIRT encryption
	About the BIRT default encryption plug-in
	About supported encryption algorithms
	About the components of the BIRT default encryption plug-in
	About acdefaultsecurity.jar
	About encryption.properties
	About META-INF/MANIFEST.MF
	About plugin.xml

	Creating a BIRT report that uses the default encryption
	Deploying multiple encryption plug-ins
	Deploying encryption plug-ins to iServer
	Generating encryption keys
	Creating a custom encryption plug-in
	Using encryption API methods

	Using custom emitters in Actuate BIRT iServer
	About custom emitters
	Deploying custom emitters to iServer
	Rendering in custom formats

	Using Actuate BIRT APIs
	Using the BIRT data object API
	About generating data objects from an application
	Generating data object elements for BIRT report designs
	Creating data-object data sets for BIRT report designs
	Creating data-object data cubes for BIRT report designs

	Tutorial 5: Creating a data element using the Design Engine API
	Task 2: Create a GenerateDataObject Java class
	Task 3: Create the main( ) method to test the code
	Task 4: Run the code


	Index

