One User Experience

Using Information Object Query Builder

Information in this document is subject to change without notice. Examples provided are fictitious. No
part of this document may be reproduced or transmitted in any form, or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of Actuate
Corporation.

© 1995 - 2011 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 2207 Bridgepointe Parkway, San Mateo, CA 94404

www.actuate.com
www.birt-exchange.com

The software described in this manual is provided by Actuate Corporation under an Actuate License
agreement. The software may be used only in accordance with the terms of the agreement. Actuate
software products are protected by U.S. and International patents and patents pending. For a current list
of patents, please see http://www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:

Actuate, ActuateOne, the Actuate logo, Archived Data Analytics, BIRT, Collaborative Reporting
Architecture, e.Analysis, e.Report, e.Reporting, e.Spreadsheet, Encyclopedia, Interactive Viewing,
OnPerformance, Performancesoft, Performancesoft Track, Performancesoft Views, Report Encyc%opedia,
Reportlet, The people behind BIRT, X2BIRT, and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered
trademarks of their respective owners, companies, or organizations include:

Adobe Systems Incorporated: Flash Player. Apache Software Foundation (www.apache.or%)): Axis, Axis2,
Batik, Batik SVG library, Commons Command Line Interface (CLI), Commons Codec, Derby, Shindig,
Struts, Tomcat, Xerces, Xerces2 Java Parser, and Xerces-C++ XML Parser. Bits Per Second, Ltd. and
Graphics Server Technologies, L.P.: Graphics Server. Bruno Lowagie and Paulo Soares: iText, licensed
under the Mozilla Public License (MPL). Castor (www.castor.org), ExoLab Project (www.exolab.org), and
Intalio, Inc. (www.intalio.org): Castor. Codejock Software: Xtreme Toolkit Pro. DataDirect Technologies
Corporation: DataDirect JDBC, DataDirect ODBC. Eclipse Foundation, Inc. (www.eclipse.org): Babel,
Data Tools Platform (DTP) ODA, Eclipse SDK, Graphics Editor Framework (GEF), Eclipse Modeling
Framework (EMF), and Eclipse Web Tools Platform (WTP), licensed under the Eclipse Public License
(EPL). Jason Hsueth and Kenton Varda (code.google.com): Protocole Buffer. ImageMagick Studio LLC.:
ImageMagick. InfoSoft Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts. Mark
Adler and Jean-loup Gailly (www.zlib.net): zLib. Matt Ingenthron, Eric D. Lambert, and Dustin Sallings
(code.google.com): Sipgmemcached, licensed under the MIT OSI License. International Components for
Unicode (ICU): ICU library. KL Group, Inc.: XRT Graph, licensed under XRT for Motif Binary License
Agreement. LEAD Technologies, Inc.: LEADTOOLS. Microsoft Corporation (Microsoft Developer
Network): CompoundDocument Library. Mozilla: Mozilla XML Parser, licensed under the Mozilla
Public License (MPL). MySQL Americas, Inc.: MySQL Connector. Netscape Communications
Corporation, Inc.: Rhino, licensed under the Netscape Public License (NPL). Oracle Corporation:
Berl?eley DB. PostgreSQL Global Development Group: pgAdmin, PostgreSQL, PostgreSQL JDBC driver.
Rogue Wave Software, Inc.: Rogue Wave Library SourcePro Core, tools.h++. Sam Stephenson
(prototype.conio.net): ﬁrototype.js, licensed under the MIT license. Sencha Inc.: Ext JS. Sun Microsystems,
Inc.: JAXB, JDK, Jstl. ThimbleWare, Inc.: JMemcached, licensed under the Apache Public License (APL).
World Wide Web Consortium (W3C)(MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86
Project, Inc.: (www.xfree86.org): xvfb. Yuri Kanivets (code.google.com): Android Wheel gadget, licensed
under the Apache Public License (APL). ZXing authors (code.google.com): ZXing, licensed under the
Apache Public License (APL).

All other brand or product names are trademarks or registered trademarks of their respective owners,
companies, or organizations.

Document No. 110812-2-731302 July 28, 2011

Contents

About Using Information Object Query Builder. v
Chapter 1
Using Information Object Query Builder 1
Examining the Information Object Query Builder 2
Opening Information Object Query Builder 2
Choosing an information object query editoro oo L 4
Using the expressionbuilder 4
Creating an information object query in the Basic Design interface 5
Creating a customized graphical information object query 9
Selecting one or more information objects oL 11
Hiding column categories 12
Defining output columns 13
Setting column properties 14
Specifying ajoin 15
Aboutjoins 15
Optimizing JOINS o 18
Filtering data 20
Creating a filter condition 20
Creating multiple filter conditionso 28
Prompting for filter values 31
Setting dynamic filter prompt properties L 33
Grouping data 36
Creatinga GROUP BY clause i 37
Removing a column from the GROUP BY clause, 39
Filtering on an aggregate column 41
Defining parameters 42
Specifying a parameter’s prompt properties L 44
Setting parameter properties 46
Setting source parameters 48
Synchronizing source parameters i 49
Creating a textual information object queryl 50
Displaying output columns 52
Displaying parameters 52
Displaying information object query output oL 53
Chapter 2
Actuate SQLreference il 55
About Actuate SQL 56

Differences between Actuate SQL and ANSISQL-92 56

Limitations compared to ANSISQL-92 i 56
Extensions to ANSI SOQL-02 i e e 57
Database limitations 60
FILTERS statement in report designers i ittt 60
Actuate SQL syntax 61
Actuate SQL grammar i 62
Using white space characters 66
Using keywords 66
Using comments 67
Specifying maps and information objects in Actuate SQL queries 68
Using identifiers in Actuate SQL 68
Using column aliases in Actuate SQL 68
Specifying parameter values 68
Using subqueriesin Actuate SQL 70
Using derived tablesin Actuate SQLl 71
Data types and data typecasting 71
Facets 71
Castingrules 72
String comparison and ordering 73
Functions and operators 74
Comparison operators: =, <>, >=,>, <=, <ttt 74
Range test operator: BETWEEN 74
Comparison operator: IN 75
Arithmetic operators: +,-,%, / 75
Numeric functions 76
FLOOR, CEILING, MOD i 76
ROUND .. 77
POWER ... 77
Null test operators:is [not] null 78
Logical operators: and, or,not 78
String functions and operators L 78
Case conversion functions: UPPER, LOWER 78
Concatenation operator: | | ... 79
Length function: CHAR_ LENGTH i 79
LIKE Operator 79
Substring functions: LEFT, RIGHT, SUBSTRING 80
Trimming functions: LTRIM, RTRIM, TRIM i 81
Search function: POSITION i 82
Timestamp functions 82
CURRENT_TIMESTAMP 83
CURRENT_DATE ... 83
DATEADD ..o 84

ii

DATEDIEF . . 84

DATEPART .. 85
DATESERIAL ... 85
Aggregate functions: COUNT, MIN, MAX, SUM, AVGoiiiiiiiiinnn. 86
System function: CURRENT_USER i 87
Providing query optimizationhints 87
Indicating that a table in a joinis optional 88
Using the OPTIONAL keyword with a computed field 89
Using the OPTIONAL keyword with parentheses () 90
Using the OPTIONAL keyword with aggregate functions 91
Specifying the cardinality of ajoin oL 92
Using pragmas totune a query 93
Disabling cost-based optimizationl 93
Disabling indexing 95
Specifying a threshold value forindexing 96
Index i e e e 97

iii

iv

Using Information Object Query Builder provides information about using an
information object as a data source in a BIRT spreadsheet report or e.report
design.

Using Information Object Query Builder includes the following chapters:

m About Using Information Object Query Builder. This chapter provides an
overview of this guide.

n Chapter 1. Using Information Object Query Builder. This chapter describes
procedures for accessing data from information objects created in Actuate
Information Object Designer.

m Chapter 2. Actuate SQL reference. This chapter describes the differences between
Actuate SQL and ANSI SQL-92.

About Using Information Object Query Builder v

vi Using Information Object Query Builder

Using Information Object
Query Builder

This chapter contains the following topics:

Examining the Information Object Query Builder

Creating an information object query in the Basic Design interface
Creating a customized graphical information object query
Creating a textual information object query

Displaying information object query output

Chapter 1, Using Information Object Query Builder 1

Examining the Information Object Query Builder

Information Object Query Builder supports defining a query on information
objects created using Actuate Information Object Designer. Use the query builder
to specify the data to include, the sort order, and parameters for filtering the data.
Information Object Query Builder produces a query that obtains data from the
information object data source. A report developer uses this query builder to
create an information object query or change an existing information object query.

BIRT Spreadsheet Designer and e.Report Designer Professional use Information
Object Query Builder. Information Object Query Builder runs as an application
separate from the designer applications. You must exit Information Object Query
Builder before returning to work in the designer application. When you close
Information Object Query Builder, Windows sometimes does not display the
designer application as the top window. In that event, select the designer
application from the Windows task bar.

Opening Information Object Query Builder

After creating a connection to an information object data source, the next step is to
open Information Object Query Builder to create a query. You can use this step to
reopen an existing information object query.

How to open Information Object Query Builder using BIRT Spreadsheet Designer
1 In BIRT Spreadsheet Designer, choose Report>Create Data Set.
2 On New Data Set, in Data Set Name, type a name for your data set.

3 In Data Source, select an Actuate Data Integration Service Connection data
source. The Data Set Type is already set to Actuate Data Integration Service
Connection Data Source, as shown in Figure 1-1.

New Data Set (2 j_
Create a new data sef, LL

Data Set Mame: ISaIes -- Eastern Region

Data Source: I Sales Data LI (HETS |

Data Set Type: I Actuste Data Integration Service Data Source LI

Cancel | < Back | Mext = | Finish I

Figure 1-1 Creating an Actuate Data Integration Service Connection data set
Choose Finish.

4 In Actuate Data Integration Service Data Source Properties, type the name of
the data set and press Edit. Connection Properties appears.

2 Using Information Object Query Builder

5 Type the appropriate values for the fields that are described in Table 1-1. Then,

choose OK.

Table 1-1 Property values for accessing Information Object Query Builder
Field Description
BIRT iServer The URL to the iServer that manages the Encyclopedia

Port number
Volume

User name

Password

volume with the information objects
The port number to access the iServer
The Encyclopedia volume containing the information objects

The name of the Encyclopedia volume account with access to
the information objects

The password for the Encyclopedia volume account with
access to the information objects

Information Object Query Builder Basic Design appears. You can then choose
how you want to develop your information object query.

How to open Information Object Query Builder using e.Report Designer Professional

1 Select an information object data source component and choose Data. If you
use a report wizard to create a report with an information object data source,

that wizard starts Information Object Query Builder.

2 On Connection Properties, type in the appropriate values for the fields that are
described in Table 1-2, then choose OK.

Table 1-2

Property values for accessing Information Object Query Builder

Field

Description

Password

ServerUri

User name

Volume

The password for the Encyclopedia volume account with
access to the information objects

The URI to the iServer, including the server name and port
number, that manages the Encyclopedia volume with the
information objects, for example http://MyServer:8000

The name of the Encyclopedia volume account with access to
the information objects

The Encyclopedia volume containing the information objects

3 Choose Finish. Information Object Query Builder Basic Design appears. You
can then choose how you want to develop your information object query.

Chapter 1, Using Information Object Query Builder 3

Choosing an information object query editor

You can create an information object query in three ways, depending on the
number of information objects you access in your query and your familiarity with
SQL concepts and the SQL language. Table 1-3 provides a brief description of the
differences between the interfaces. When you open Information Object Query
Builder, you view the Basic Design interface by default.

Table 1-3 Differences between the three Information Object Query Builder
interfaces
Basic Advanced Advanced
Design Design Design
Interface capability (graphical) (graphical) (textual)
Can access more than one information objectin No Yes Yes
the query
Provides the ability to specify sorting options, Yes Yes Yes
filtering, and parameters
Provides the ability to create a complex query No Yes Yes
Provides a graphical interface Yes Yes No
Can access the expression builder Yes Yes No
Requires understanding of SQL concepts such No Yes Yes

as joins, grouping, distinct rows, and filtering
on an aggregate column

Requires the ability to write Actuate SQL code No No Yes

Can open an existing query created or Yes Yes Yes
modified in the Basic Design interface

Can open an existing query created or No Yes Yes
modified in the Advanced Design interface

Can open an existing query created or No No Yes
modified in the textual editor

To access the Advanced Design graphical interface, open Information Object
Query Builder, and choose Advanced Perspective.

To access the textual editor, open Information Object Query Builder, and choose
Advanced Perspective. On Query Design, choose SQL Editor.

Using the expression builder

When designing a query, Actuate SQL expressions support specifying filters or
joins, creating aggregate data, and so on. For example, the expression,

officelD = 101, specifies that data returned by the query must have 101 in the
officelD column. You can type these expressions in any of the three editors. In the

4 Using Information Object Query Builder

textual editor, the expressions are part of the SQL SELECT statement. In the Basic
Design and Advanced Design graphical query editors, you can type the
expressions or use the expression builder to develop expressions. Expression
Builder helps you create expressions by providing a graphical interface for
selecting column names, constants, functions, operators, and so on from lists.

Use the expression builder to create Actuate SQL expressions on the filter page of
Information Object Query Builder Basic Design and many pages in Information
Object Query Builder Advanced Design.

Figure 1-2 shows expression builder. Drag items from the left pane to the right
pane or insert items by choosing the appropriate icon. If you select a function in
the left pane, the function signature appears in the bottom pane.

Function signature

o [=]

Create an expression by dragging columns into the builder, choosing operatars, and tpipg values.
+ | - | 3 | * | ll = | > | € | <>_i ANE| OR | NDTl LIKE| [| 1 | CounlI Surr{ Maxl Minl Augl ? |
@ Constants K- ast{dbo_customers, custID A5 VARCEAR(Z0)) ;I
(== Information Objects LI
CAST[E=pression # AS DataType ') ;I
CAST(E=pression # AS MARCHAR[N])) n = length (INTEGER] ;l
()3 I Cancel |

Figure 1-2 Using Expression Builder to create expressions

Creating an information object query in the Basic
Design interface

You can create a query on a single information object using Information Object
Query Builder Basic Design. This query editor supports specifying sorting
options, filtering, and parameters. If you need to work with more than one
information object or require more customization than this query editor supports,
use Information Object Query Builder Advanced Design.

You can browse an iServer System Encyclopedia volume in Information Object
Query Builder to find and select the information object for the query. If you have
already chosen your information object and are re-entering Information Object

Chapter 1, Using Information Object Query Builder 5

Query Builder, the editor displays the previously selected information object. If
an information object that is used by an existing query no longer exists, you must
specify a new information object and its columns, parameters, and filters.

An expanded folder does not reflect changes to the volume. If you or someone
else loads a new information object to the volume after you expand a folder, you
must collapse and expand the folder to see the changes in the information object.

To specify a basic information object query, perform these tasks:

m Start Information Object Query Builder.

m Select an information object for this query.

m Specify the columns that you want to include in this query.

m Specify any additional information that you want in the query:

Specify how you want to sort the data.

Specify whether users can provide parameter values when they run the
report.

Specify the default values of information object parameters.

Specify any filtering that you want to restrict the data returned by the
information object query.

How to create a basic information object query

1 Start Information Object Query Builder. Information Object Query Builder
displays the Basic Design interface by default.

2 Select an information object and columns by following these steps:

1

In iServer Explorer, expand the Servers node and the Encyclopedia volume
node, as shown in Figure 1-3. Expand folders as necessary to view the
information objects.

—

=S 3 dynamo

E-Z= 050331
(= 050332
"B Fegion 1
"B Region 2
"B Fegion 3
"B Fegion 4
B Sales

Figure 1-3 iServer Explorer

2 Expand the information object to see the columns and parameters, as

shown in Figure 1-4.

6 Using Information Object Query Builder

EI@ Sales

--@ Data Sources

E@ Infarmation Objects
B T_orderz.iob

..... = oty — Data columns

----- E REPID -

-4} CUSTID

..{ ¥ CONTACT_LAST } Parameters
Figure 1-4 Expanding an information object

3 IniServer Explorer, double-click the information object to use in the query.
All columns in the information object appear in Output Columns. Beside
each column, a check mark indicates that the query uses the column, as
shown in Figure 1-5.

Output Columns
Specify output columns:
| | Source colurnmn | Mame |
T_orders.CUSTID CUSTID
T_orders. CONTACT_L&ST COMTACT_LAST
T_orders. CONTACT_FIRST COMTACT_FIRST
T_orders.CUSTOMNAME CUSTOMMAME
T_orders. FHOME FHOME
T_orders. ADDRESS ADDRESS
T_orders.CITY CITY ;I
T_orders. STATE STATE
T_orders.POSTALCODE POSTALCODE LI
T_orders. CREDITRANEK CREDITRAME
T_orders. PURCHASEFREQUENCY PURCHASEFREQUENCY
T_orders. PURCHASEVOLUME PURCHASEVOLUME
T_orders. REFID REFID
Select Al | Unselect Al |
Figure 1-5 Specifying columns to use in the query

Deselect any columns that you do not want to include in the output.

To move a column in the list, select the column, and choose the up or down
arrow until the column is in the right position.

3 Specify the order in which to sort the data:
1 On Query Design, choose Select Sort Order.
2 On Sort, in Available, expand the information object to see the columns.

3 Double-click a column on which to sort. The column appears in Selected.

Chapter 1, Using Information Object Query Builder 7

4 Under Order, as shown in Figure 1-6, click the field beside the first column
on which you want to sort, and use the drop-down list to specify the sort
direction for the column:

o For ascending order, select Asc.

o For descending order, select Desc.

Sort

Select columns to sort:

Available Selected
=8 T_orders | Column name | Order |
""" B T_orders. CUSTID T_orders. COMTALCT_LAST | Asc
----- = T_orders. COMTALCT_FIRST T_orders. CUSTOMMAME Asc
----- =R T_orders. PHOME
----- = T_orders ADDRESS
----- = T_orders.CITY

----- = T_orders. STATE »
----- = T_orders POSTALCODE

----- = T_orders. CREDITRANEK LI
----- = T_orders.PURCHASEFREC

----- = T_orders.PURCHASEVOLL

----- = T_orders. REFID

(KN

I
HemoveAIIl
Figure 1-6 Specifying data sort order

Repeat substeps 3 and 4 for any additional columns on which to sort.

To change the position of a column in the sorting hierarchy, select the
column and choose the up or down arrow key. The data returned by the
query is sorted first by the column at the top of the list, then by each
subsequent column in the list.

4 For each available parameter, specify any default parameter values and
whether users can specify the values of those parameters.

1 On Query Design, choose Define Parameters. Parameters appears, as
shown in Figure 1-7.

Parameters

Check to export as parameter and specify parameter values:

| Parameter | WValue
[/ T_orders.SalesReplD 140
Figure 1-7 Specifying parameters to export

2 To enable report users to specify single parameter values, export the
parameters. In the left column, select each available parameter that you
want to export. Parameters appear on the Requester page.

3 Under Value, specify a for each available parameter. If you export the
parameter, specifying a default value is optional.

8 Using Information Object Query Builder

5 Specify filters to limit the data returned from the query by following these
steps:

1

On Query Design, choose Define Filters.

2 Define the filters. The procedures for adding, editing, and removing filter

conditions in Information Object Query Builder Basic Design are the same
as the procedures for adding, editing, and removing filter conditions in
Information Object Query Builder Advanced Design.

Choose OK to save the query and return to the report design.

Creating a customized graphical information object

query

£

To specify a graphical information object query using Information Object Query
Builder Advanced Design, perform the following tasks:

m Start Information Object Query Builder and enter the Advanced Design
perspective.

m Define the query:

Select one or more information objects for this query.
Define the columns that you want to include in this query.

If you have more than one information object, specify the joins to use in
this query.

Specify any filtering that you want on individual columns.
Specify the sort order for the data.

Select the columns that you want to group in the query.

Specify any aggregate columns that you want to filter in the query.

Specify parameters that report users can provide values for when they run
the report.

Choose OK to save the query and return to the report design.

While developing your query, you can use the following tools:

m Problems pane

As you design your queries using Information Object Query Builder
Advanced Design, error messages appear in Problems, as shown in Figure 1-8.
If an error description is truncated, select the error message. Information
Object Query Builder Advanced Design displays an ellipsis button at the end
of the description column for that error message. To view the complete

Chapter 1, Using Information Object Query Builder 9

description for that error message, choose ellipsis. Line numbers refer to the
standard Actuate SQL query, not the extended Actuate SQL query.

£ To filter the error messages, choose Filters. For more information about using
Problems or Filters, see the Workbench User Guide in the Information Object
Query Builder Advanced Design online help.

Select error Choose Filters to filter
message error messages

|
SOL Preview | Progress)\ata F‘review| :=:{> ¥ =0
1 eror, 0 warnings, 0 infoz

D escription | Resource | Path = | Location

= % Erors (1 item]
o QuenyFileiobex | DefaulProject w

Figure 1-8 Locating errors and filtering error messages

olurn 1.0RDER BY forec:

m SQL Preview pane
While using Information Object Query Builder Advanced Design to create a
query, you can view the resulting Actuate SQL query statement. To display the
query, choose SQL Preview, as shown in Figure 1-9. If you modify the query,
choose Refresh to update the display.

Choose Refresh to
update the SQL query

Choose SQL Preview to
/ display the SQL query

—
Prabler /) X F’rogress| Data F‘review| =0

[istizsh] [Edi S0 | |Show Standard SOL |

FILTERS{ ITEMZODE Yarchar io10 ITEMCODE") j
SELECT iol0LITEMCODE AS ITEMCODE, inl0,ORDERID A5 ORDERID
FROM "050331/Information Objectsfiol0.iob" A5 o010

WHERE :?ITEMCODE

B

Figure 1-9 Displaying the SQL for an information object query

If you use a dynamic filter in your query, the Actuate SQL query includes a
FILTERS clause and :? syntax. The FILTERS clause and :? syntax are part of
extended Actuate SQL. The corresponding standard Actuate SQL statements
substitute dynamic filters with WHERE clause conditions of the correct data
type. To see the standard Actuate SQL query, choose Show Standard SQL in
the SQL Preview pane.

Information Object Query Builder uses the standard Actuate SQL statement to
validate the syntax of the query. If Information Object Query Builder reports a
syntax error, the line number in the error message refers to the syntax that
appears in standard SQL. If the query contains syntax errors, use Show

10 Using Information Object Query Builder

Standard SQL to locate and identify the syntax errors. You can then return to
viewing the extended Actuate SQL syntax by choosing Show Extended SQL.

m Progress pane
Choose Progress to view the progress of long-running tasks. Typically, tasks
do not run long enough for Progress to be used. For more information about
using Progress, see the Workbench User Guide in the Information Object Query
Builder Advanced Design online help.

m Data Preview pane
Choose Data Preview to view the data rows returned by the query.

Selecting one or more information objects

You can browse an iServer Encyclopedia volume using Information Object Query
Builder to find and select the information objects for the query.

If you have already chosen your information objects and are re-entering
Information Object Query Builder, the editor displays the previously selected
information objects. If an information object used by an existing query no longer
exists, you must specify a new information object and specify its columns,
parameters, and filters.

An expanded folder does not reflect changes to the Encyclopedia volume. If you
or someone else loads a new information object in the volume after you expand a
folder, you must collapse and expand the folder to see the information object.

How to select an information object

1 IniServer Explorer, expand the Servers node and the Encyclopedia volume
node, as shown in Figure 1-10.

dynarno

{z= Forecasts
{z= 0603
{z= 060332
{= Region1
{= Region 2
E-{= Region 3

E-{= Region 4
B Sales

Figure 1-10 Viewing information objects in iServer Explorer
To view your information objects, expand the appropriate folders.

Drag the appropriate information objects from iServer Explorer to the upper

pane of Query Design. The items appear in the upper pane of Query Design,
as shown in Figure 1-11. By default, Information Object Query Builder selects
all columns in each information object.

Chapter 1, Using Information Object Query Builder 11

EEEEE [T
W Select &) Select &l Select &l
custD orderlD itemcode
contact_lagt farecastOrderD ate description
contact_first shipByD ate
customMame forecastShipDate
phane status
address izsue arderlDl
city azkByDate
state custlD
postalcode category
creditrank.
purchaseFrequency
purchaseWolume
replDr
Figure 1-11 Selected information objects as they appear in Query Design

Hiding column categories

To help you locate information object columns, the data modeler can organize
them into categories. For example, for an information object that returns customer
data, the data modeler can create a Customer address category that contains the
columns StreetAddress, City, State, and PostalCode.

Column categories appear in iServer Explorer, the upper pane of Query Design,
and expression builder. To hide column categories in Query Design, select Toggle
categories view in the upper right corner of the information object, as shown in
Figure 1-12. The information object on the left displays the Customer address
category. The information object on the right does not display column categories.

Click here to hide
column categories

Coegoiesn e
i Select &l i Select &l
BB (& Customer address addrezsLinel
[E] addiessLinel addressLine?
[E] addiessLine2 city
[city state
[E] state postalCode
[E] postalCode county
=] country customeMumber
=] custormerMumber customerMame
=] customerM ame contact,asth ame
=] contactLastame contactFirsth ame
ET] contactFirsth ame phone
E] phone salesRepEmployest umber
=] salesPepEmployeeMumber creditlimit
=] creditLimit
Figure 1-12 Information object with and without categories displayed

To hide column categories by default, choose Window—>Preferences and deselect
Show categories in graphical editor by default in Preferences—Information
Objects, as shown in Figure 1-13.

12 Using Information Object Query Builder

Deselect to hide categories
in Query Design by default

M=k
|type filter tewst Informatic/{ Objects ks w7

(- General

-- D ata Management
1] Help

i Information Objects [Bhow cateqaries in graphical editor by defaulf

(- Install/Update

General Zettings for Information Dbjects

Dab/Freview Timeout [seconds): ISDD

Restore Defaults | Apply |

Figure 1-13 Preferences—Information Objects

Defining output columns

To define the output columns for an information object query, use Query
Design—Columns. For example, you can create the following SQL fragment:

SELECT ename AS employee, (salary * 12) AS annual_ comp
FROM Employees

How to define output columns

1 In Query Design, choose Columns.

2 In the upper pane of Query Design, select the columns to include and deselect
the columns to exclude from the query. To select all columns, select Select All
at the top of the listing for that information object. By default, the query
includes all columns in an information object. Selected columns appear in
Columns.

3 In Query Design—Columns:

m To return only distinct rows, select Distinct values only. Some queries
return duplicate rows. In a group of duplicate rows, each selected column
contains the same value for all the rows in the group. To return only one
row for each group of duplicate rows, select Distinct values only. This
setting affects only rows in which all column values match. The query
returns rows in which only some of the column values match.

m To change a column alias, type the new alias in Name. If a column alias
contains a special character, such as a period (.) or a space, enclose the alias
in quotation marks ("). Do not use column aliases that are identical except
for case. For example, do not use both status and STATUS as column
aliases.

m To enter an expression, select the source column, and type the expression
or choose ellipsis, as shown in Figure 1-14. Choosing ellipsis opens
expression builder.

Chapter 1, Using Information Object Query Builder 13

E m To change the order of the columns, use the up and down arrows.

Choose ellipsis to create
an expression

Columns

Specify output columng:

T Aistinct values anly

Remave | Remave Al |

| Source column or expression T ame |A
dbocustomers. custl D vI I custlD
dbo_customers. contact_last contact_last
dbo_customers. contact_first contact_first
dbo_custarmers. customM ame custorMame
dbo_customers. phone phone |
dbo_customers. addiess address LI
dbo_customers. ity city
dbo_customers. state state ;I
dbo_customers. postalcode postalcode
dbo_customers. creditrank creditrank.
dbo_customers. purchaseFrequency | purchaseFrequency
dbo_customers. purchaszeolume purchaseWolume
dbo_customers.replD 1eplD LI

Figure 1-14

4 To define column

Defining output columns

properties, such as the display name, select the column in

Columns, and define the properties in Properties.

How to delete output columns

To delete an output column, select the column in Query Design—Columns, and
choose Remove. To delete all output columns, choose Remove All

Setting colum

n properties

Table 1-4 lists column properties and a description of each property.

Table 1-4 Column properties
Column
property Can set? Description
Aggregate Type Not used Not used.

Analysis Type Yes

Category Path No

Analysis type in e.Analysis. If the column contains
numeric values or the data type is unknown, the default is
Measure. If the column contains data of type TIMESTAMP,
the default is Dimension. If the column contains data of
type VARCHAR or BOOLEAN, the default is Attribute. If
the column is a primary key, a foreign key, or an indexed
column in the database, the default is Dimension even if
the column contains numeric values.

Path for column category and subcategories.

14 Using Information Object Query Builder

Table 1-4 Column properties
Column
property Can set? Description
Data Type No Actuate SQL data type. If the data type is unknown, choose
the Synchronize button.
Description Not used Not used.

Display Format Not used Not used.

Display Length Yes Number of characters to allow for display of column

values in report output.

Display Name Not used Not used.

Expression
Has Null

Heading
Help Text

Horizontal
Alignment

Indexed
Name

Text Format
Word Wrap

Yes, onthe Expression for a computed field.
Columns tab

Yes If column contains NULLs, set to True. Otherwise, set to
False.

Not used Not used.
Not used Not used.
Not used Not used.

No Indicates whether the column is indexed in the data
source. True indicates that the column is indexed. False
indicates that it is not indexed.

Yes, onthe The alias for the column in the information object query.
Columns tab

Not used Not used.
Not used Not used.

Specifying a join

To define the joins for an information object query, use Query Design—]Joins. For
example, the following SQL fragment specifies that the value of the custID
column in the Customers table must match the value of the custID column in the
Orders table. The query returns no rows for Customer records having no
matching Order records.

FROM Customers
INNER JOIN Orders ON (Customers.custID = Orders.custID)

About joins

A join specifies how to combine data from two information objects. The
information objects do not have to be based on the same data source. A join

Chapter 1, Using Information Object Query Builder 15

consists of one or more conditions that must all be true. In the resulting SQL
SELECT statement, join conditions are linked with AND.

A join can consist of multiple conditions in the following form:
columnA = columnB

A join can have only one condition that uses an operator other than equality (=)
or an expression, for example:

columnA < columnB

Information Object Query Builder Advanced Design does not support right outer
joins or full outer joins.

How to define a join condition
1 In Query Design, choose Joins.

2 In the upper pane of Query Design, drag the join column from the first
information object, and drop it on the join column in the second information
object.

The upper pane shows the join condition, like the one in Figure 1-15, and the
join columns and operator are listed in Query Design—Joins.

Equality operator

[T [y
v Select Al Seleal

custlD o/derD
contact_last I A forecastOrderD ate
contact_first shipByD ats
customMame forecastShipD ate
phone status

address izsue

city askByDate

state custlD

postalcode category
creditrank

purchaseFrequency

purchasetolume

replD

Figure 1-15 Joined columns from two information objects

3 In Query Design—TJoins, select the row that describes the new join condition.
If necessary, select a different join condition operator from the drop-down list.

By default, Information Object Query Builder Advanced Design uses the
equality operator (=) to relate two columns.

[5 Tochange a column name to an expression, select the column name, and type
the expression, or choose Ellipsis to display the expression builder, as shown
in Figure 1-16.

16 Using Information Object Query Builder

8

Choose ellipsis to create
an expression

Select a join
condition operator

Joins

Select joir:

Select join typer | Inner Join =

Defing jain using columns and expressionz/

Idbu_cuslumers <--» dbo_orders,

j M Deletel

dbo_customers

(' Operatar

| dbo_orders

dba_orders.custD

Figure 1-16

Defining a join condition

If the join has a condition that uses an operator other than equality (=) or an
expression, the symbol shown in Figure 1-17 appears in the upper pane of

Query Design.

Join using an operator other than
equality (=) or an expression

Select Al

custlD
contack_last
contact_first
customMame
phone

address

city

shate

postalcode
creditrank,
purchazeFrequency
purchaze¥olume
replly

doouonss U doorer

Select Al

arderlD
forecastOrderD ate
shipByD ate
forecastShipDate
status

issUE

askByDate

custlD

cateqgory

Figure 1-17

If the join consists of more than one condition, repeat this procedure for the

other conditions.

Choose one of the following join types:

s Innerjoin

= Left outer join

Optimize the join.

How to delete a join condition

To delete a join condition, select the join condition in the upper pane of Query
Design, and press Delete.

Chapter 1, Using Information Object Query Builder

A join that uses an expression or an operator other than equality

17

Optimizing joins

You can improve a query’s performance by optimizing the joins. To optimize a
join, you can specify the cardinality of the join. Specifying the cardinality of the
join adds the CARDINALITY keyword to the Actuate SQL query. If your query is

based on two or more information objects that are based on different data sources,
you can also optimize the joins by specifying join algorithms.

Figure 1-18 shows how to specify the cardinality of a join and how to specify a
join algorithm in Query Design—Joins.

Applies
Specify relationship: For each value in dbo_CUSTOMERS, the number of values in dbo_ORDERS is: ID or more j CARDlNALlTY
For each value in dbo_ORDERS. the number of values in dbo_CUSTOMERS is: |1 -] keyword
Specify join algorithm: IDependEnt = SpeC.lﬂeS join
algorithm

Figure 1-18 Optimizing a join

When joining information objects built from different data sources, the Actuate
SQL compiler chooses a join algorithm. If you have a good understanding of the
size and distribution of the data, however, you can specify the join algorithm.
Choosing the correct join algorithm can significantly reduce information object
query execution time. Actuate SQL supports three join algorithms:

m Dependent

m Merge

m Nested Loop

When you join information objects that are built from the same data source,
specifying a join algorithm has no effect. The join is processed by the data source.
About dependent joins

A dependent join is processed in the following way:

m The left side of the join statement is executed, retrieving all the results. The
results are then processed one at a time (pipelined).

m For each left side result, the right side of the join is executed, parameterized by
the values provided by the current left side row.

A dependent join is advantageous when the cardinality of the left side is small,
and the selectivity of the join criteria is both high and can be delegated to the data
source. When the cardinality of the left side is high, a dependent join is relatively
slow because it repeatedly executes the right side of the join.

Dependent joins can be used for any join criteria, but only join expressions that
can be delegated to the right side’s data source result in improved selectivity
performance.

18 Using Information Object Query Builder

About merge joins
A merge join is processed in the following way:

m The left side of the join statement executes, retrieving all the results sorted by
the left side data source. The results are then processed one at a time

(pipelined).

m Theright side of the join statement executes, retrieving all the results sorted by
the right side data source. The results are then processed one at a time
(pipelined).

A merge join supports only an equijoin. A merge join has much lower memory
requirements than a nested loop join and can be much faster. A merge join is
especially efficient if the data sources sort the rows.

About nested loop joins
A nested loop join is processed in the following way:

m The left side of the join statement is executed, retrieving all the results. The
results are then processed one at a time (pipelined).

m The right side of the join statement is executed. The results are materialized in
memory. For each row on the left side, the materialized results are scanned to
find matches for the join criteria.

A nested loop join is advantageous when the cardinality of the right side is small.
A nested loop join performs well when the join expression cannot be delegated to
the data source. A nested loop join supports any join criteria, not just an equijoin.

A nested loop join is a poor choice when the cardinality of the right side is large
or unknown, because it may encounter memory limitations. Increasing the
memory available to the Integration service removes this limitation. The
Integration service parameter Max memory per query specifies the maximum
amount of memory to use for an Integration service query. For more information
about this parameter, see Configuring BIRT iServer.

How to specify a join algorithm

In Query Design—]Joins, select the appropriate join and choose one of the
following from the Specify join algorithm drop-down list shown in Figure 1-19:

m Dependent
m Merge
m Nested loop

Specify join algorithn: IDefauIt j

Dependent
erge
Nested Loap

Figure 1-19 Specifying the join algorithm

Chapter 1, Using Information Object Query Builder 19

Filtering data

If an information object query returns more data rows than you need, restrict the
number of data rows by using a filter. For example, rather than list all customer
sales, create a filter to select only the sales data for a particular week or only the
sales data for a particular region.

Filtering data helps you work effectively with large amounts of data. It enables
you to find the necessary pieces of information to answer specific business
questions, such as which sales representatives generated the top ten sales
accounts, which products generated the highest profit in the last quarter, which
customers have not made a purchase in the past 90 days, and so on.

Filtering data can also have a positive effect on processing speed. Limiting the
number of data rows can reduce the load on the databases because the
information object query does not need to return all the rows every time it is run.

Creating a filter condition

When you create a filter, you define a condition that specifies which data rows to
return. A filter condition is an If expression that must evaluate to true in order for
a data row to be returned. For example:

If the order total is greater than 10000
If the sales office is San Francisco
If the order date is between 4/1/2008 and 6/30/2008

Filter conditions are appended to the information object query’s WHERE clause,
for example:

WHERE OrderTotal > 10000 AND SalesOffice LIKE 'San Francisco%' AND
OrderDate BETWEEN TIMESTAMP '2008-04-01 00:00:00' AND TIMESTAMP
'2008-06-30 00:00:00"

Figure 1-20 shows an example of a condition defined in Filter Conditions. Filter
Conditions helps you define the condition by breaking it down into the following
parts:

m The column to evaluate, such as credit limit.

m The comparison operator that specifies the type of comparison test, such as >
(greater than).

m The value to which all values in the column are compared, such as 10000.

20 Using Information Object Query Builder

The column to
evaluate

The value to
compare to

The comparison
operator

Filker by:

[CLASSICMODELS_Customers.creditLimit v | J B | |1nnoﬁ | J Select Value
Cancel |
Figure 1-20 Filter Conditions displaying a filter condition
Table 1-5 lists the operators you can use when you create expressions for filter
conditions.
Table 1-5 Operators in filter condition expressions
Operator Use to test whether Example
BETWEEN A column value is between two Profit BETWEEN 1000 AND 2000
specified values.
= (Equal to) A column value is equal to a CreditLimit = 100000

> (Greater than)

>= (Greater than

or equal to)
IN

specified value.

A column value is greater than a
specified value.

A column value is greater than or
equal to a specified value.

A column value is in the specified
set of values.

ISNOT NULL A column value is not a null value.
A null value means that no valueis
supplied.

ISNULL A column value is a null value.

< (Less than)

<= (Less than or

equal to)
LIKE

NOT
BETWEEN

<> (Not equal

to)

A column value is less than a
specified value.

A column value is less than or
equal to a specified value.

A column value matches a string
pattern.

A column value is not between two
specified values.

A column value is not equal to a
specified value.

Chapter 1, Using Information Object Query Builder

Total > 5000
Total >= 5000
Country IN ('USA’, 'Canada’,

'Mexico')
CreditLimit IS NOT NULL

CreditLimit IS NULL

Total < 5000

Total <= 5000

ProductName LIKE 'Ford %'
Profit NOT BETWEEN 1000 AND
2000

CreditLimit <> 100000

(continues)

21

Table 1-5 Operators in filter condition expressions (continued)

Operator Use to test whether Example

NOT IN A column value is not in the Country NOT IN ('USA', 'Canada’,
specified set of values. ‘Mexico')

NOT LIKE A column value does not matcha ProductName NOT LIKE 'Ford %'

string pattern.

How to create a filter condition

1 In Query Design, choose Filters.

2 On Query Design—Filters, choose New.

3 In Filter Conditions, in Filter by, do one of the following:

= Select a column from the drop-down list. The drop-down list contains the
non-aggregate columns that you defined on Query Design—Columns. To
create a filter for an aggregate column, use Query Design—Having.

m Type an expression.
| m Choose Ellipsis to create an expression.

4 Select the comparison test, or operator, to apply to the selected column or
expression. Depending on the operator you select, Filter Conditions displays
one or two additional fields, or a completed filter condition.

5 If you selected an operator that requires a comparison value, specify the value
in one of the following ways:

m Type the value or expression.

m Ifyou selected a column in Filter by, choose Select Value to select from a list
of values. Figure 1-21 shows the selection of Boston from a list of possible
sales office values.

Filter text: |

Find
Landon

MNYC

Pariz

San Francisco
Sydney
Tokya

The choices above reprezent a preview of values from the database. Enter a
filker walue ta refine the results based on a prefiz match.

Select one or more values.

Add Cancel |
Figure 1-21 Select Values showing the values in the selected column

22 Using Information Object Query Builder

m Select a parameter or column from the drop-down list. You create
parameters on Query Design—Parameters.

m Choose Ellipsis to create an expression.
Figure 1-22 shows the completed filter condition.

=i X

Filter by: Value:

[CLASSICMODELS_ODffices.city =l J Juke x| [Bostonz =l J Select Value
I

Figure 1-22 Filter Conditions displaying a completed filter condition

Choose OK. The filter condition appears on Query Design—Filters as
shown in Figure 1-23.

Filters

Column filters:

CMODELS Offices city LIKE ‘Boston®'

[e]

Figure 1-23 Query Design—Filters displaying a filter condition

6 Display the Actuate SQL query. Verify that the filter condition is appended to
the WHERE clause and that the syntax is correct, for example:

WHERE SalesOffice LIKE 'Boston%'

How to create a filter condition using Actuate SQL

1 In Query Design, choose Filters.

2 On Query Design—Filters, complete the following tasks:
m Click in the text box.

m Type the filter condition using Actuate SQL, as shown in Figure 1-24. If a
table or column identifier contains a special character, such as a space,
enclose the identifier in double quotation marks (").

Add the following Actuate SOL expression to the 'WHERE clause:
dbo_customers. creditrank. LIKE 'A% ;I

|
Figure 1-24 Using Actuate SQL to create a filter condition

Chapter 1, Using Information Object Query Builder 23

Selecting multiple values for a filter condition

So far, the filter examples specify one comparison value. Sometimes you need to
view more data, for example, sales details for several sales offices, not for only
one office. To select more than one comparison value, select the IN operator,
choose Select Values, then select the values. To select multiple values, press Ctrl as
you select each value. To select contiguous values, select the first value, press
Shift, and select the last value. This action selects the first and last values and all
the values in between.

Figure 1-25 shows the selection of London and Paris from a list of sales office
values.

=i X
Filter by: Walues:
[CLASSICMODELS_ODffices.city | J Jin =l [Lender add
Edit
Femaove

Select Values

Figure 1-25 Filter Conditions showing the selection of multiple comparison values

Excluding data

You use comparison operators, such as = (equal to), > (greater than), or < (less
than), to evaluate the filter condition to determine which data to include.
Sometimes it is more efficient to specify a condition that excludes a small set of
data. For example, you need sales data for all countries except USA. Instead of
selecting all the available countries and listing them in the filter condition, simply
use the NOT LIKE operator. Similarly, use NOT BETWEEN to exclude data in a
specific range, and <> (not equal to) to exclude data that equals a particular value.

For example, the following filter condition excludes orders with amounts
between 1000 and 5000:

OrderAmount NOT BETWEEN 1000 AND 5000

The filter condition in the next example excludes products with codes that start
with MS:

ProductCode NOT LIKE 'MS%'

Filtering empty or blank values

Sometimes, rows display nothing for a particular column. For example, suppose a
customer database table contains an e-mail field. Some customers, however, do

not supply an e-mail address. In this case, the e-mail field might contain an empty
value or a blank value. An empty value, also called a null value, means no value
is supplied. A blank value is entered as " (two single quotes without spaces) in the

24 Using Information Object Query Builder

database table field. Blank values apply to string fields only. Null values apply to
all data types.

You can create a filter to exclude data rows where a particular column has null or
blank values. You use different operators to filter null and blank values.

When filtering to exclude null values, use the IS NOT NULL operator. If you want
to view only rows that have null values in a particular column, use IS NULL. For
example, the following filter condition excludes customer data where the e-mail
column contains null values:

email IS NOT NULL

The following filter condition displays only rows where the e-mail column
contains null values:

email IS NULL

When filtering blank values, use the NOT LIKE operator with " (two single
quotes without spaces) as the operand. For example, to exclude rows with blank
values in an e-mail column, specify the following filter condition:

email NOT LIKE ''

Conversely, to display only rows where the e-mail column contains blank values,
create the following condition:

email LIKE ''

In a report, you cannot distinguish between an empty value and a blank value in
a string column. Both appear as missing values. If you want to filter all missing
values whether they are null or blank, specify both filter conditions as follows:

email IS NOT NULL AND email NOT LIKE ''

Specifying a date as a comparison value

When you create a filter condition that compares the date-and-time values in a
column to a specific date, the date value you supply must be in the following
format regardless of your locale:

TIMESTAMP '2008-04-01 12:34:56'

Do not use locale-dependent formats such as 4/1/2008.

Specifying a humber as a comparison value

When you create a filter condition that compares the numeric values in a column
to a specific number, use a period (.) as the decimal separator regardless of your
locale, for example:

123456.78

Do not use a comma (,).

Chapter 1, Using Information Object Query Builder 25

Comparing to a string pattern

For a column that contains string data, you can create a filter condition that
compares each value to a string pattern instead of to a specific value. For
example, to display only customers whose names start with M, use the LIKE
operator and specify the string pattern, M%, as shown in the following filter
condition:

Customer LIKE 'M%'

You can also use the % character to ensure that the string pattern in the filter
condition matches the string in the column even if the string in the column has
trailing spaces. For example, use the filter condition:

Country LIKE 'USA%'

instead of the filter condition:

Country = 'USA'

The filter condition Country LIKE 'USA%' matches the following values:

'USA'
'USA !
‘USA !

The filter condition Country = "USA' matches only one value:
'USA'
You can use the following special characters in a string pattern:

m % matches zero or more characters. For example, %ace% matches any value
that contains the string ace, such as Ace Corporation, Facebook, Kennedy
Space Center, and MySpace.

m _ matches exactly one character. For example, t_n matches tan, ten, tin, and
ton. It does not match teen or tn.

To match the percent sign (%) or the underscore character (_) in a string, precede
those characters with a backslash character (\). For example, to match S_10, use
the following string pattern:

S_10
To match 50%, use the following string pattern:

50\%

Comparing to a value in another column

Use a filter condition to compare the values in one column with the values in
another column. For example, in a report that displays products, sale prices, and
MSRP (Manufacturer Suggested Retail Price), you can create a filter condition to
compare the sale price and MSRP of each product, and display only rows where
the sale price is greater than the MSRP.

26 Using Information Object Query Builder

How to compare to a value in another column

1 In Query Design, choose Filters.

On Query Design—Filters, choose New.

In Filter Conditions, in Filter by, select a column from the drop-down list.

Select the comparison test, or operator, to apply to the selected column.

a A ON

In Value, select a column from the drop-down list. Figure 1-26 shows an
example of a filter condition that compares the values in the priceEach column
with the values in the MSRP column.

=l x|
Filker by: Walue:
[CLASSICMODELS_OrderDetails. pricef acl x| J B x| |CLASSICMODELS Pioducts MSRP =] Select Value

0K | Cancel |

Figure 1-26 Comparing the values in priceEach with the values in MSRP
Choose OK.

Using an expression in a filter condition

An expression is any combination of Actuate SQL constants, operators, functions,
and information object columns. When you create a filter condition, you can use
an expression in Filter by, Value, or both. You create an expression with the
expression builder.

For example, in an information object query that returns customer and order data,
you want to see which orders shipped less than three days before the customer
required them. You can use the DATEDIFF function to calculate the difference
between the ship date and the required date:

DATEDIFF('d', shippedDate, requiredDate) < 3

Figure 1-27 shows this condition in Filter Conditions.

Expression Click to open Expression Builder
Filker by: Walue:
[Datedifd", CLASSICMODELS_Orders.shi x| J B N E =l J & ¢
Ok | Cancel |

Figure 1-27 Filter Conditions with expression in Filter by

In an information object query that returns order data, you want to see which
orders were placed today. You can use the CURRENT_DATE function to return
today’s date:

orderDate = CURRENT DATE()

Chapter 1, Using Information Object Query Builder 27

Figure 1-28 shows this condition in Filter Conditions.

Expression
Filker by: Walue:
[CLASSICMODELS OdersrdeDate 7] || |- = Jeoment_daten = L]
oK | Cancel |

Figure 1-28 Filter Conditions with expression in Value

In an information object query that returns employee data, you want the
information object query to return only data for the user who is currently logged
in to the Encyclopedia volume. Use the LEFT function and the concatenation
operator (| |) to construct the employee’s user name, and the CURRENT_USER
function to return the name of the user who is currently logged in:

LEFT (firstName, 1) || lastName = CURRENT USER()

Figure 1-29 shows this condition in Filter Conditions.

Expressions
Filker by: Walue:
ILelt[CLASSIEIMDDELS?Emponees.ﬂrstNaj J |= j |Cunentﬁuser[] j Select Value

oK | Cancel |

Figure 1-29 Filter Conditions with expressions in Filter by and Value

Creating multiple filter conditions

When you create a filter, you can define one or more filter conditions. Each
condition you add narrows the scope of data further. For example, you can create
a filter that returns rows where the customer’s credit rank is either A or B and
whose open orders total between $250,000 and $500,000. Each condition adds
complexity to the filter. Design and test filters with multiple conditions carefully.
If you create too many filter conditions, the information object query returns no
data.

Adding a condition

You use Query Design—Filters, shown in Figure 1-23, to create one or more filter
conditions. To create a filter condition, you choose New and complete the Filter
Conditions dialog, shown in Figure 1-22. When you create multiple filter
conditions, Information Object Query Builder precedes the second and
subsequent conditions with the logical operator AND, for example:

SalesOffice LIKE 'San Francisco%' AND
ProductLine LIKE 'Vintage Cars%'

28 Using Information Object Query Builder

This filter returns only data rows that meet both conditions. Sometimes, you want
to create a filter to return data rows when either condition is true, or you want to
create a more complex filter. To accomplish either task, use the buttons on the
right side of Query Design—TFilters, shown in Figure 1-30.

If you create more than two filter conditions and use different logical operators,
use the parentheses buttons to group conditions to determine the order in which
they are evaluated. Display the query output to verify the results.

Filters Filter conditions

Colurmin filkers:

CLASSICMODELS_Offices.city LIKE 'San Francizco®!
AMD CLASSICMODELS ProductLines. productLine LIKE “intage Cars

i i Eﬂl qu
ﬂ And| Or | Mot |—Logica| operators

ﬂl (_"l)_"l)_‘Fl — Parentheses

Figure 1-30 Query Design—Filters displaying two conditions

Selecting a logical operator

As you add each filter condition, the logical operator AND is inserted between
each filter condition. You can change the operator to OR. The AND operator
means both filter conditions must be true for a data row to be included in the
report. The OR operator means only one condition has to be true for a data row to
be included. You can also add the NOT operator to either the AND or OR
operators to exclude a small set of data. For example, the following filter
conditions return only sales data for classic car items sold by the Boston office:

SalesOffice LIKE 'Boston%' AND ProductLine LIKE 'Classic Cars%'

The following filter conditions return all sales data for the San Francisco and
Boston offices:

SalesOffice LIKE 'San Francisco%' OR SalesOffice LIKE 'Boston%'

The following filter conditions return sales data for all product lines, except
classic cars, sold by the San Francisco office:

SalesOffice LIKE 'San Francisco%' AND
NOT (Product Line LIKE 'Classic Cars%')

Specifying the evaluation order

Information Object Query Builder evaluates filter conditions in the order in which
they appear. You can change the order by selecting a filter condition in Query
Design—Filters, shown in Figure 1-23, and moving it up or down using the arrow
buttons. Filter conditions that you type in the Actuate SQL text box, shown in
Figure 1-24, are preceded by AND and are evaluated last.

Chapter 1, Using Information Object Query Builder 29

If you define more than two conditions, you can use parentheses to group
conditions. For example, A AND B OR C is evaluated in that order, so A and B
must be true or C must be true for a data row to be included. In A AND (B OR C),
B OR C is evaluated first, so A must be true and B or C must be true for a data row
to be included.

The following examples illustrate the difference a pair of parentheses makes.
The following filter contains three ungrouped conditions:

Country IN ('Australia', 'France', 'USA') AND
SalesRepNumber = 1370 OR CreditLimit >= 100000

Figure 1-31 shows the first 10 data rows returned by the query. Although the filter
specifies the countries Australia, France, and USA and sales rep 1370, the data
rows display data for other countries and sales reps. Without any grouped
conditions, the filter includes rows that meet either conditions 1 and 2 or just
condition 3.

|= ¢ Problems | S0OL Preview [Data Preview &8 l @ [EN= =]
Show |50 rows at a time
"Cuztomer name" | CoLntry | "5 ales Iep, number'' | "'Credit limit" -
satkelier graphique France 1370 21000.0
Austialian Collectors, Co. | Australia 1611 117300.0
La Rochelle Gifts France 1370 118200.0 —
Mini Gifts Distributars Lid. | LISA 1165 210500.0
Land of Toys Inc. USA 1323 114500.0
Euro+ Shopping Channel | Spain 1370 227600.0
Saveley & Henriot, Co France 1337 123300.0
Dragon Souveniers, Ltd Singapore 1621 103800.0
Muzcle Maching Inc LISA 1286 138500.0
Diecast Classics Inc US4 1216 100600.0 LI
Row(z] 1- 30
Figure 1-31 Results of a complex filter without parentheses grouping

The following filter contains the same three conditions, but this time the second
and third conditions are grouped:

Country IN ('Australia', 'France', 'USA') AND
(SalesRepNumber = 1370 OR CreditLimit >= 100000)

Figure 1-32 shows the first 10 data rows returned by the query. The Country IN
('Australia’, 'France', 'USA") condition must be true, then either the
SalesRepNumber = 1370 condition or the CreditLimit >= 100000 condition is true.

H F‘rnblems| SOL Preview | Data Preview &3 | @ [N =
Show |50 rows at a lime
"'"Customer hame' | Country | "Sales rep humber”! | "Credit limit” -
itelier graphique France 1370 21000.0
Australian Collectors, Co Australia 1611 117300.0
La Rochels Gifts France 1370 118200.0
Mini Gifts Distributors Ltd, | US4, 1165 210500.0
Land of Tays Inc. USA, 1323 114900.0 [
Saveley & Henriot, Co France 1337 123500.0
Muzcle Maching Inc LSa 1286 138500.0
Diecast Classics Inc LISA 1216 100600.0
Daedalus Designs Imports | France 1370 82900.0
bdini Caravy France 1370 53800.0 LI
FRow(z)1-18

Figure 1-32 Results of a complex filter with parentheses grouping

30 Using Information Object Query Builder

Changing a condition

You can change any of the conditions in Query Design—Filters.

How to change a filter condition

1 In Query Design—Filters, shown in Figure 1-23, select the filter condition.
Choose Edit.

2 In Filter Conditions, shown in Figure 1-22, modify the condition by changing
the values in Filter by, Operator, or Value. Choose OK.

Deleting a condition

To delete a filter condition, in Query Design—TFilters, select the condition. Then,
choose Delete. Verify that the remaining filter conditions still make sense.

Prompting for filter values

You can prompt the report user for a single filter value or for multiple filter
values. To prompt for a single value, create an Actuate SQL parameter. To prompt
for multiple values, create a dynamic filter.

Prompting for a single value

Use an Actuate SQL parameter to prompt the report user for a single filter value.
An Actuate SQL parameter enables the report user to restrict the data rows
returned by the information object query without having to modify the WHERE
clause. For example, for an information object query that returns sales data by
sales office, instead of creating a filter that returns data for a specific office, you
can create an Actuate SQL parameter called param_SalesOffice to prompt the
report user to select an office. The WHERE clause is modified as follows:

WHERE SalesOffice LIKE :param SalesOffice

You create Actuate SQL parameters and define their prompt properties on Query
Design—Parameters. Prompt properties include the parameter’s default value, a
list of values for the user to choose from, and whether the parameter is required
or optional. Parameters appear in the Value drop-down list in Filter Conditions
with a : (colon) preceding the parameter name, as shown in Figure 1-33.

Parameter name
preceded by a colon

Filker by: Walue:
|CLASSICMODELS_Dffices. city = J JLikE =l Jparam_SalesDifice =l J Eelect Vallue!

oK | Cancel |

Figure 1-33 Filter Conditions with a parameter in the Value field

Chapter 1, Using Information Object Query Builder 31

Do not use an Actuate SQL parameter in a filter condition with the IN operator,
for example:

Country IN :param_Country

Actuate SQL parameters accept only a single value, but the IN operator takes
multiple values. Instead, create a dynamic filter.

Prompting for multiple values

Use a dynamic filter to prompt the report user for multiple values. A dynamic
filter can accept a single value, a list of values, or a range of values. For example,
you want to prompt the report user for the location of one or more sales offices.
You create a dynamic filter for the SalesOffice column. When the report user runs
the report, they type the expression Boston | NYC to display data for the Boston
and New York sales offices.

Data modelers can create one or more predefined filters when they design an
information object. If an information object used in a query has a predefined filter,
the predefined filter appears in the Information Object Query Builder as a
dynamic filter.

Dynamic filters are also called ad hoc parameters. The syntax that the report user
employs to provide a list of values or a range of values is called QBE syntax. For
more information about ad hoc parameters and QBE syntax, see Using Information
Console.

How to create a dynamic filter
1 In Query Design, choose Filters.

2 On Query Design—TFilters, scroll down to see Select dynamic filters, as shown
in Figure 1-34.

Select dynamic filkers:

Column or expression | Diata bipe | Prompt editor

io_dynamic_par_dynamic_picklist CATEGORY_ORDER Double)
in_dynamic_par_dynamic_picklist PRICEQUOTE Integer (=3
io_dynamic_par_dpnamic_picklist CATEGORY “Yarchar Lk
io_dynamic_par_dpnamic_picklist, SHIPBYDATE Timestamp 7
io_dwnamic_par_dpnamic_picklist CATEGORY_1 Diouble Lk

Remove | Remove Al |

Figure 1-34 Selecting a dynamic filter

3 To create a new dynamic filter, click in the first blank row in the Column or
expression column. Use the drop-down menu to add a column or choose
Ellipsis to create an expression.

4 For each dynamic filter, you can perform the following steps:

1 To set or change the data type, click the filter’s row under Data type, and
select a data type from the drop-down list.

32 Using Information Object Query Builder

2 To specify how the user is prompted when running the report, click the
filter’s row under Prompt Editor. This action displays Prompt editor, where
you can change the prompt properties for the filter.

How to remove a dynamic filter
1 In Query Design, choose Filters.
2 On Query Design—Filters, complete the appropriate task:

m To delete a single dynamic filter, select the filter in Select dynamic filters,
and choose Remove.

m To delete all dynamic filters, choose Remove All.

Setting dynamic filter prompt properties

When you create a dynamic filter, use the Prompt editor to specify the filter’s
display control type, list of values, and default value. You create a list of values by
specifying the values or by typing an Actuate SQL query that retrieves the values.
Information Object Query Builder does not validate the query. You can specify the
filter values as well as the values displayed to the report user. If you type a query,
the query must meet the following requirements:

m The query must retrieve one or two columns from an information object or
map, for example:

SELECT DISTINCT CAST (custID AS VARCHAR(50)), customName
FROM "MyInformationObject.iob"
ORDER BY 2

The first column contains the filter values and must be of string data type. The
second column contains the values displayed to the report user. The
information object or map must reside in the same volume as the report
executable. You must use an absolute path to reference the information object
or map. If the information object or map defines a parameter, you must
provide a value for the parameter, for example:

SELECT DISTINCT CAST (custID AS VARCHAR(50)), customName
FROM "MyInformationObject.iob" ['CA']
ORDER BY 2

m The query must not contain a WITH clause.

The filter values are interpreted as QBE expressions. Certain characters, for
example, the comma (,) and the pipe sign (|), are interpreted as operators in a
QBE expression. For example, the QBE expression:

16M x 1 Dynamic Ram, 3.3 volts
is interpreted as:

WHERE description LIKE 'l6M x 1 Dynamic Ram%'
OR description LIKE '3.3 volts%'

Chapter 1, Using Information Object Query Builder 33

If you want these characters to be interpreted literally, enclose the strings in four
single quotation marks (") as shown in the following Actuate SQL queries:

m To match a string exactly:

SELECT '''' || description || '''"'
FROM "MyInformationObject.iob"

m To match a string using the LIKE operator:

SELECT '''' || description || '&'"'
FROM "MyInformationObject.iob"

| | is the concatenation operator.

The values returned by the query appear when a report user specifies a value for
the dynamic filter when running the report in the Encyclopedia volume. The
values do not appear when running the report in the report designer. In this
environment, the prompt is a text box.

How to set the prompt properties of a dynamic filter

Setting the prompt properties of a dynamic filter affects how the report user sees
the filter when running the report.

1 In Query Design, choose Filters.

2 In Query Design—TFilters, scroll down to Select Dynamic Filters.
3 In the row for the filter, choose Prompt editor.
4

On Prompt editor, complete the following tasks, as shown in Figure 1-35:

& X

Specify the prompt properties for this parameter. Prompt properties specify the behavior and appearance of fiters that
appear on requester pages for reparts wsing this infarmation object. Users can specify values for these filkers ta limit
the data in a report.

~ Show as
 Text box I~ Dynamic list of values
' Drop-down list [read only) T futn suggest
€ Cambo box (editable) Start Auto suggest after |1 'I character(s]

£~ Radio buttons

Walues

2 =] .
Default value: [g =l Select Values Select from a list
Yalue | Display name | of database
[Califarnia values
M Massachussetts d
NY Mew York ;I
=1} Pennzylvania Type values and

display names

Remave | Remove all Sart Alphabetically

Reset | oK | Cancel |

Figure 1-35 Typing values and display names for a filter

34 Using Information Object Query Builder

= In Show as, select the display control type. The choices available and
appearance of the page depend on the display control type you select.

= If you choose a display control type other than Text box, you can specify a
list of values for the user to choose from by typing the values and,
optionally, the display names. Alternatively, you can select from a list of
database values by choosing Select Values.

= In Default value, specify the default value. The default value can be a QBE
expression.

To create an Actuate SQL query that retrieves the values, select Dynamic list of
values, as shown in Figure 1-36, and type the query.

Select Dynamic
list of values

| Atelier graphique

SELECT DISTINCT ''''||customerWName||'''', CAST (''''||customerl

Figure 1-36 Creating an Actuate SQL query to generate values for a filter

If you select Combo box (editable), Dynamic list of values, and Auto suggest, a
list appears after the report user types the number of characters specified in
Start Auto suggest after N character(s). The list contains values that begin with
the characters the user typed. For example, if the user typed 'Atel and N=4, the
list contains the value 'Atelier graphique'. In this case, the query that retrieves
the values must select two columns, a value column and a display name
column.

Choose OK.

Chapter 1, Using Information Object Query Builder 35

Grouping data

A GROUP BY clause groups data by column value. For example, consider the
following query:

SELECT orderNumber
FROM OrderDetails

The first 10 data rows returned by this query are as follows:

orderNumber
10100
10100
10100
10100
10101
10101
10101
10101
10102
10102

Each order number appears more than once. For example, order number 10100
appears four times. If you add a GROUP BY clause to the query, you can group
the data by order number so that each order number appears only once:

SELECT orderNumber
FROM OrderDetails
GROUP BY orderNumber

The first 10 data rows returned by this query are as follows:

orderNumber
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109

Typically, you use a GROUP BY clause to perform an aggregation. For example,
the following query returns order numbers and order totals. The Total column is
an aggregate column. An aggregate column is a computed column that uses an
aggregate function such as AVG, COUNT, MAX, MIN, or SUM.

36 Using Information Object Query Builder

SELECT orderNumber, (SUM(quantityOrdered*priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

Figure 1-40 shows the first 10 data rows returned by the information object query.
The data is grouped by order number and the total for each order appears.

Creating a GROUP BY clause

By default, Information Object Query Builder creates a GROUP BY clause
automatically. If you prefer, you can create a GROUP BY clause manually.

Creating a GROUP BY clause automatically

When an information object query’s SELECT clause includes an aggregate
column and one or more non-aggregate columns, the non-aggregate columns
must appear in the GROUP BY clause. If the non-aggregate columns do not
appear in the GROUP BY clause, Information Object Query Builder displays an
error message. For example, consider the following information object query:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails

When you attempt to compile the information object query, the error message
shown in Figure 1-37 appears in the Problems view.

- (o]

I/' ‘\I An operation on the Actuate iServer faied.
= Reason
Line 2, Column 32 The column reference "quantityOrdered” iz invald because
itis contained in an aggregate function and there is no GROUP BY clause.
Sum(CLASSICMODELS_DrderDetails. quantityOrdered *
CLASSICMDDELS_PrderDetails.priceEach] JAS Total

| Details »»

Figure 1-37 Information object query requires a GROUP BY clause

To avoid this problem, Information Object Query Builder automatically creates a
GROUP BY clause:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

If more than one column appears in the GROUP BY clause, you can change the
order of the columns using the up and down arrows in Group By, as shown in
Figure 1-38.

Chapter 1, Using Information Object Query Builder 37

Group By

Select columnsz to group,

Available Selected

ZL <Computed: arderNumber
Sl <Outputs productCode

L=
KL

— Up and
down arrows

= Show all Remove Al\l
Figure 1-38 Changing the order of GROUP BY columns

Creating a GROUP BY clause manually

If automatic grouping does not generate the desired SQL query, create the
GROUP BY clause manually. Create the GROUP BY clause manually if you want
to group on a column that does not appear in the SELECT clause, for example:

SELECT (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

How to create a GROUP BY clause manually
1 In Query Design, choose Group By.
2 In Query Design—Group By, deselect Use Automatic Grouping.

3 In Available, expand the Computed and Output nodes to view the available
columns.

By default, Information Object Query Builder displays only output columns
and non-aggregate computed fields. To group on a column that is not an
output column, choose Show all.

III 4 In Available, select the appropriate column, and choose Select. This action
moves the column name to Selected, as shown in Figure 1-39.

Repeat the previous step for each GROUP BY column.

E 6 To change the order of the GROUP BY columns, select a column in Selected,
and use the up or down arrow.

38 Using Information Object Query Builder

Group By

Select columnsz to group,

Available Selected

Bl <Computed: CLASSICMODELS_QOrderDetails. orderNurnber
By <Output

B [CLa5SICMODELS_OrderDe

=1 CLASSICMODELS_Orde

E CLASSICMODELS_Drde

E CLASSICMODELS_Orde _>| ;I
E CLASSICMODELS_Orde ﬂ j
N i

¥ Show all Remave All
Figure 1-39 Selecting a GROUP BY column

Removing a column from the GROUP BY clause

By default, Information Object Query Builder removes GROUP BY columns
automatically. If you disable automatic grouping, you must remove GROUP BY
columns manually.

Removing a GROUP BY column automatically

Information Object Query Builder automatically removes a column from the
GROUP BY clause when:

m You remove the column from the SELECT clause. For example, consider the
following information object query:

SELECT orderNumber, productCode, (SUM(quantityOrdered *
priceEach)) AS Total

FROM OrderDetails

GROUP BY orderNumber, productCode

You remove the productCode column from the SELECT clause. Information
Object Query Builder automatically removes productCode from the GROUP
BY clause:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

m You manually add a column to the GROUP BY clause that does not appear in
the SELECT clause and then enable automatic grouping. For example,
consider the following information object query:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber, productCode

Chapter 1, Using Information Object Query Builder 39

The productCode column appears in the GROUP BY clause but not in the
SELECT clause. You enable automatic grouping. Information Object Query
Builder automatically removes productCode from the GROUP BY clause:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

Information Object Query Builder automatically removes the GROUP BY clause
when:

m You remove all aggregate columns from the SELECT clause. For example,
consider the following information object query:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

You remove the aggregate column SUM(quantityOrdered * priceEach) from
the SELECT clause. Information Object Query Builder automatically removes
the GROUP BY clause:

SELECT orderNumber
FROM OrderDetails

m Youremove all non-aggregate columns from the SELECT clause. For example,
consider the following information object query:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

You remove the orderNumber column from the SELECT clause. Information
Object Query Builder automatically removes the GROUP BY clause:

SELECT (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
Removing a GROUP BY column manually

If you disable automatic grouping, you must remove GROUP BY columns
manually.

How to remove a GROUP BY column manually

1 In Query Design, choose Group By.

2 In Query Design—Group By, complete one of the following tasks:
EI m Select the column in Selected, and choose Deselect.

m To remove all Group By columns, choose Remove All.

40 Using Information Object Query Builder

Filtering on an aggregate column

If an information object query includes a GROUP BY clause, you can restrict the
data rows the query returns by adding a HAVING clause. The HAVING clause
places a filter condition on one or more aggregate columns. An aggregate column
is a computed column that uses an aggregate function such as AVG, COUNT,
MAX, MIN, or SUM, for example SUM(quantityOrdered * priceEach).

For example, the following query returns order numbers and order totals. The
Total column is an aggregate column. The data is grouped by order number and
no filter condition is placed on the Total column.

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

Figure 1-40 shows the first 10 data rows returned by this information object query.

|5 Problems | SOL Preview [Data Preview &3 1 @ O C o
ShowISU rows at a time
orderMumber | ToEs_I | -
10100 1022383
101 10549.01 |—
10102 5494.78
10103 50218.950000000004
10104 A0206.2
10105 53959.20933333333
10106 52151.61000000001
10107 22292.620000000003
10108 51001.219939933334
10109 2553514 =l
Fow(s] 1 - 50

Figure 1-40 Data rows returned by query with GROUP BY clause

You can add a HAVING clause to this information object query to place a filter
condition on the Total column. The following information object query returns
only rows for which the order total is greater than or equal to 50000:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails

GROUP BY orderNumber

HAVING SUM(quantityOrdered * priceEach) >= 50000

Figure 1-41 shows the first 10 data rows returned by this information object query.

The procedures for creating filter conditions for aggregate columns are identical
to the procedures for creating filter conditions for other columns, except that you
use Query Design—Having instead of Query Design—TFilters. Filter conditions
that you create using Query Design—TFilters are evaluated before filter conditions
that you create using Query Design—Having. In other words, filter conditions in
the WHERE clause are applied before filter conditions in the HAVING clause.

Chapter 1, Using Information Object Query Builder 41

| Problems | SOL Preview [Data Freview &3 1 8w =0

Shaw IED Tows at a time

orderMumber | Tatal | -
10103 50218, 950000000004

10105 £3959.20993393333

10106 52151.61000000001

10108 51001.2199939399954

10122 H0524.659939399996

10126 57131.92

10127 58841.35

10135 55601 .84 0000000004

10142 BE052. 56000000001

10145 50342.74 =l
Row(s] 1 - 36

Figure 1-41 Data rows returned by query with GROUP BY and HAVING clauses

Defining parameters

An Actuate SQL parameter is a variable that is used in an information object
query. When a report developer runs the report on the desktop, they provide a
value for this variable. When a user runs the report in an Encyclopedia volume,
the user provides a value for this variable on the Requester page in Information
Console.

For example, the following Actuate SQL query uses the parameters lastname and
firstname in the WHERE clause:

WITH (lastname VARCHAR, firstname VARCHAR)
SELECT lname, fname, address, city, state, zip
FROM customerstable

WHERE (lname = :lastname) AND (fname = :firstname)

If an Actuate SQL query defines a parameter in a WITH clause but does not use
the parameter, the query does not return any rows if no value is provided for the
parameter when the report runs. For example, the following query does not
return any rows if no values are provided for the lastname and firstname
parameters when the report runs:

WITH (lastname VARCHAR, firstname VARCHAR)
SELECT lname, fname, address, city, state, zip
FROM customerstable

How to define a parameter
1 In Query Design, choose Parameters.

2 In Query Design—Parameters, click the top empty line, and complete the
following tasks:

m In Parameter, type the name of the parameter. If a parameter name contains
a special character, such as a period (.) or a space, enclose the name in
double quotation marks ().

m In Data type, select a data type from the drop-down list.
m In Default value, type the default value:

42 Using Information Object Query Builder

o If Default value is a string, enclose the string in single quotation marks,

as shown in the following example:
'New York City'
o If Default value is a timestamp, it must be of the following form:

TIMESTAMP '2001-02-03 12:11:10"'

o If Default value is a number, use a period (.) as the decimal separator, as

shown in the following example:
123456.78
NULL is not a valid parameter value. You cannot use a QBE expression.
m To change the order of the parameters, use the up or down arrow.

m To use the Prompt editor to specify the parameter’s prompt properties,
choose Prompt editor, as shown in Figure 1-42.

Parameters

Create a parameter by specifying a name, data type, and default value:

I Parameter I Data type | Default valuel Prompt editor
(e T - I ————— Choose Prompt
editor to specify
prompt properties

= =

Remove | Femove Al |

Figure 1-42 Choosing Prompt editor to specify a parameter’'s prompt
properties

m To define other parameter properties, such as display name, select the
parameter in Parameters, and define the properties in Properties.

How to delete a parameter
1 To delete a parameter, in Query Design, choose Parameters.
2 On Query Design—Parameters, complete one of the following tasks:

m To delete an individual parameter, select the parameter, and choose
Remove.

m To delete all parameters, choose Remove All.

Chapter 1, Using Information Object Query Builder

43

Specifying a parameter’s prompt properties

Use the Prompt editor to specify a parameter prompt’s properties, including
display control type, list of values, and default value.You can specify the
parameter values and, if desired, a corresponding set of display values that report
users choose from. You create a list of values by typing the values or by typing an
Actuate SQL query that retrieves the values.

The query must meet the following requirements:

m The query must retrieve one or two columns from an information object or
map, as shown in the following example:

SELECT DISTINCT custID, customName
FROM "MyInformationObject.iob"
ORDER BY 2

The first column contains the parameter values. The second column contains
the values that are displayed to the report user. The information object or map
must reside in the same volume as the report executable. You must use an
absolute path to reference the information object or map. If the information
object or map defines a parameter, you must provide a value for the
parameter, as shown in the following example:

SELECT DISTINCT custID, customName
FROM "MyInformationObject.iob" ['CA']
ORDER BY 2

m The first column’s data type must match the parameter’s data type.
m The query must not contain a WITH clause.

The query editor does not validate the query. The values returned by the query
appear when a user specifies a value for the parameter. The values do not appear
when a report developer specifies a value for the parameter on the desktop.

How to specify a parameter’s prompt properties

1 Locate the appropriate parameter in Query Design—Parameters, and choose
Prompt editor.

2 On the Prompt editor, in Show as, select the method of prompting the user, as
shown in Figure 1-43. If you use a type of display other than text box, you can
specify a list of values for the user to choose from.

Show az

© Text box

& Drop-down list [read only)
€~ Combo box (editable)

™ Radio buttons

Figure 1-43 Selecting the method of prompting the user

44 Using Information Object Query Builder

You can create a list of values by typing the parameter values and, optionally,
the display names, as shown in Figure 1-44. If you do not provide display
names, the parameter values are displayed to the user.

3 ————— Type values
Ssogchusols and display
Pennsylvania names

Figure 1-44 Typing a list of values and display names

You can create an Actuate SQL query that retrieves the parameter values or
both the values and the corresponding display names. If the query has two
columns, the values in the second column are used as the display names. To
use a query to create the list of values, select Dynamic list of values, as shown
in Figure 1-45, and type the query.

If you select Combo box (editable), Dynamic list of values, and Auto suggest, a
drop-down list appears after the report user types the number of characters
specified in Start Auto suggest after N character(s). The list contains values
that begin with the characters the user typed. For example, if the user typed
'Atel and N=4, the list contains the value 'Atelier graphique'. In this case, the
query that retrieves the values must select two columns, a value column and a
display name column.

In Default value, specify the default value.

You also can specify values for the following additional properties:

m Conceal value

= Do not prompt

= Required

When you finish specifying the property values for the prompt, choose OK.

Chapter 1, Using Information Object Query Builder 45

Select

Dynamic list
of values
SELECT DISTINCT custID, customilamme
FROM "MyInformationtbject.ich" TypeACtUate
CORDER BY 2 SQL query

Figure 1-45 Specifying an Actuate SQL query to provide a dynamic list of
values

Setting parameter properties

Table 1-6 lists parameter properties and provides a description of each property.

Table 1-6 Parameter properties
Parameter property Can set? Description
Conceal Value Yes, in the Visibility of the value that the user provides for this
Prompt parameter. To conceal the value, set to True. To display
editor the value, set to False. This parameter property applies
only to parameters with the varchar data type and the
text box display type.
Data Type Yes, on the Parameter’s data type.
Parameters
tab
Default Value Yes, in the Parameter’s default value. If a parameter does not have a
Prompt default value, and the Required property is set to False,
editor the parameter takes one of the following values if the

user does not provide a value:

46 Using Information Object Query Builder

Table 1-6

Parameter properties

Parameter property Can set?

Description

Default Value
(continued)

Description

Display Control
Type

Display Format
Display Length
Display Name

Do Not Prompt

Heading
Help Text

Horizontal
Alignment

Name

Parameter Mode

Required

Size

Yes, in the
Prompt
editor
(continued)

Not used

Yes, in the
Prompt
editor

Not used
Not used
Not used

Yes, in the
Prompt
editor

Not used
Not used
Not used

Yes, on the
Parameters
tab

Yes

Yes, in the
Prompt
editor

Yes

m 0 if the parameter is of type decimal, double, or
integer.

m Empty string if the parameter is of the varchar data

type.
m Current date and time if the parameter is of the
timestamp data type.

Not used.

Control type for this parameter. The options are text box,
read-only drop-down list, editable drop-down list, or
radio buttons.

Not used.
Not used.
Not used.

Visibility of the parameter to the user. To hide this
parameter, set to True. To display the parameter, set to
False.

Not used.
Not used.
Not used.

Parameter name.

Setting for parameters that are in stored procedures and
ODA data source queries to specify the input or output
type of the parameter. The options are Input, Output,
InputAndOutput, or ReturnValue. ReturnValue is used
only for stored procedures and is equivalent to Output.

Indicator of whether the parameter is required. To
require a value for this parameter, set to True. Otherwise,
set to False.

The size of the parameter if the parameter data type is
varchar. Otherwise, not used. Must be set if size is greater
than 1300.

Chapter 1, Using Information Object Query Builder 47

Setting source parameters

A source parameter is a parameter that is defined in an information object from
which you are building an information object query. If a query contains an
information object with a parameter, Query Design—Parameters has a Source
parameter field.

You can set a source parameter to one of the following types of values:
m A single scalar value
m A local parameter in the information object query that you are creating

You cannot set a source parameter to a column reference, such as
ORDERS.ORDERID, or an Actuate SQL expression.

When you set a source parameter to a local parameter, you can indicate that the
local parameter inherits the values of its prompt properties from the source
parameter. The available prompt properties are Conceal Value, Default Value,
Display Control Type, Do Not Prompt, and Required. If you specify that the local
parameter inherits its prompt property values from the source parameter, and
prompt property values for the source parameter change, the changes are
propagated to the local parameter. For example, if the display control type for the
source parameter changes from text box to read-only drop-down list, the display
control type for the local parameter also changes from text box to read-only
drop-down list.

If you change a prompt property value for a local parameter, its prompt property
values are no longer inherited from the source parameter. For example, if you
change the display control type for the local parameter to editable drop-down list,
and the display control type for the source parameter later changes to text box,
the change is not propagated to the local parameter. To reinstate inheritance,
choose Reset in the Prompt editor. Choosing Reset returns all property values in
the local parameter to inherited values, and the local parameter inherits any
future changes to property values in the source parameter.

To set source parameters, use Query Design—Parameters. To define a local
parameter and set a source parameter to the local parameter in one step, drag the
source parameter from Source parameter, and drop it in Parameter, as shown in
Figure 1-46.

How to set a source parameter
1 In Query Design, choose Parameters.
2 On Parameters, complete the following tasks:
m In Source parameter, select the appropriate parameter.

= In Value, complete one of the following tasks:

48 Using Information Object Query Builder

Parameters

Create a parameter by zpecifying a name, data type, and default value:

Paiameter | Data type | Default value | Prompt edilurl
paramState Warchar ‘T

|
|

Remove | Remave Al

Specify the value for each source plrameter. A source parameter is a parameter defined
in an information object used by this |farmation object. To use a source parameter as a
local parameter far this infarmation otjiect, drag the source parameter to the Parameter

column.

| Source parameter I Yalue | Feset valuesl
MulrfarmationD bject |:|aramEitahal ‘paramState 8 ————— Choose Reset

toresetvalue to
default value

Figure 1-46 Setting a source parameter to a local parameter

o Choose a parameter from the drop-down list. The drop-down list
contains the local parameters for the information object query you are
building.

[

Type a value, as shown in Figure 1-47:

o If Value is a string, enclose the string in single quotation marks, as
shown in the following example:

'New York City'

[

If Value is a timestamp, it must be in the following form:
TIMESTAMP '2001-02-03 12:11:10'

o If Value is a number, use a period (.) as the decimal separator, as
shown in the following example:

123456.78
o If Value is a parameter, precede the parameter name with a colon (:).
Specily the value for each source p . & source p izap defined

in an infarmation object used by this information object. To use a source parameter as a
local parameter for this information object. drag the source parameter to the Parameter
calumi,

| Source parameter | Walue | Feset valuesl
MylnfomationObject paramState MY b=

Figure 1-47 Providing a value for a source parameter

Synchronizing source parameters

You must synchronize source parameters when parameters in a source
information object are added, removed, or reordered, or their data types or other

Chapter 1, Using Information Object Query Builder 49

properties change. To synchronize source parameters, choose Synchronize in the
upper pane of Query Design, as shown in Figure 1-48. Synchronizing source
parameters refreshes the list of source parameters on Query Design—Parameters.

Choose Synchronize to synchronize source parameters

@ | =4
T

v Select Al =l
custlD
cantact_last
cantact_first
customM ame
phione ||
address

city

state

postalcode
credirank
puichaszeFrequency
puichazeVolume j

| Source parameter | W alue | Feset values
ylnfarmation0bject. paramState MY F=|

[N

Columns | Joing | Filters| Sort| Group By | Having | Parameters |

Figure 1-48 Synchronizing source parameters

Creating a textual information object query

Use the Actuate SQL text editor if either of the following conditions is true:

m Information Object Query Builder Advanced Design does not generate the
desired Actuate SQL query, so you must edit the query. For example, if the
query includes OR or UNION, you must use the Actuate SQL text editor to
edit the query.

m You want to type or paste an Actuate SQL query instead of creating it
graphically.

If you save a query in the Actuate SQL text editor, you cannot modify the query in
the graphical editor.

To display the Actuate SQL text editor, complete one of the following tasks:
m In Query Design, choose SQL Editor, as shown in Figure 1-49.

50 Using Information Object Query Builder

Choose SQL editor to
edit the SQL query

% | =4

i Select Al
custlly
contact_last
contact_first

phone
address
city

state
postalcode
credirank

customM ame

purchazeFrequency
purchaszelolume ;I

-

Figure 1-49

Choosing SQL editor to edit an Actuate SQL query

m On SQL Preview, choose Edit SQL.
Figure 1-50 shows the Actuate SQL text editor.

|WHERE :?ITEMCODE

kil

Columns

Describe Query

ILTERS{ ITEMCODE Varchar io10 ITEMCODE') -

FROM "050331 (Infarmation Objectsfiol0.iob" AS io10

ELECT ial0,ITEMCODE AS ITEMCODE, i010,0RDERID AS ORDERID Edit SQL query

Output colurn

| .D ata type I

TR
ORDERID

“Varchar
Integer

Colurmins [Parameters|

Figure 1-50

You edit the query in the upper pane of the Actuate SQL text editor. The lower

Editing the Actuate SQL query in the text editor

pane displays output columns or parameters.

Chapter 1, Using Information Object Query Builder

51

When you edit a query in the SQL text editor, do not use table and column aliases
that are identical except for case. For example, do not use both status and STATUS
as column aliases.

Use absolute paths in the Information Object Query Builder because the report
executable and information object may not be in the same Encyclopedia volume.

Displaying output columns

In SQL Text Editor—Columns, to display the query’s output columns and the
data type for each column, choose Describe Query, as shown in Figure 1-51.

Choose Describe Query to display
the query’s output columns

Columns

Describe Queny |

Output column | Diata type |
CTTEMEGDE” “archar :
ORDERID Integer

Figure 1-51 Using Describe Query to display the query’s output columns

To specify column property values, select the column and specify the property
values in Properties.

Displaying parameters

On SQL Text Editor—Parameters, choose Describe Query to display the query’s
parameters and the data type for each parameter. You can type a default value for
a parameter in Default value, as shown in Figure 1-52.

Choose Describe Query to
display the query’s parameters

Parameters

Describe Queny |

Parameter | Data type | Defalt value | Prompt editorl
paramState Warchar My = —— Choose PrOmpt editor
to specify the prompt
property values

Figure 1-52 Using Describe Query to display the query’s parameters

You can choose Prompt Editor to set the prompt property values.

52 Using Information Object Query Builder

Displaying information object query output
You can display information object query output in Data Preview.
How to display information object query output
1 Choose Data Preview.

2 In Data Preview, choose Refresh. Parameter Values, shown in Figure 1-53,
appears if the information object query defines parameters.

= —Iolx]

Specify parameter values

Farameter | Diata type | Walue |
patamState Warchar MY

ok I Cancel |

Figure 1-53 Specifying parameter values

3 On Parameter Values, type the parameter values. A parameter value must be a
single value, not a list of values. Choose OK. Information object query output
appears, as shown in Figure 1-54.

Next Page
Previous Page
Refresh
Page Size list box
| ¢ Problems | SOL Preview [Data Preview &3 l @ [CN= A=
ShowISD roves at & time
custlD I contact_last | contact_first | custorM ame | phaone | address | city | state &
156 Tarmn Wai Chung | Advanced Design Corp. 9145556707 | B13 Furth Circle Mew Rochelle NY
m Hernandez | Maria Advanced Design Inc. 2125558493 | 905 Pomptan St MY NY
166 Fong Fawai Advanced Solutions Inc. 5185559644 | 2732 Spinnaker Dr. Albany MY
160 “fung SiuLun CompuE ngineering 5185553342 | 1352 Baden Av. Albany NY
168 Chandler Leslie CompuMicraSysterns Carp. 9145559081 | 8281 Industrial ‘Way Sneadons Landing | NY'
157 Barajaz Joze Computer Engineering 91450557064 | 5420 Ingle Ln Mew Rochelle NY
128 Al tdaria Computer MicroSystems Corp. | 9145568205 | 7457 Baden Ay, White Plaing MY
158 Cervantes Jogze Dresign Boards Co. 9145557468 | 8165 South Bay Ln. Mew Rochelle MY
115 Thompszon | Bill Dresign Salutions Carp. 2125553675 | 7824 Baden Av. MY NY
159 Thompson | Sue Dresign Systems 9145553870 | 8439 Industrial ‘Way Mew Rochelle NY
161 Smith Stan E xozoft Corp. 9145667172 | 2399 Park Ln Sneadons Landing | NY =
109 Frick tdichael InfoE ngineering 2125551500 | 2678 Kingston Rd. MYC MY
129 “foung Julie InfaSpecialists 9145557265 | 78934 Hillside Dr. ‘White Plains NY
162 King Pater Signal MicraSystemns 5185554154 | 4123 Industial ‘Way Albany NY
104 Kuo Kee SigniS pecialists Corp. 2125551957 | 5290 Morth Pendale Street | MYTC MY
1 1|3 Tu Fwai Technical Design Inc. 21 255I5?81 8 | 897 Long Airport Avenue | MNYTC NY_Iﬂ
4 *

Figure 1-54 Viewing the information object query’s output

4 Use the scroll bars to view all columns and displayed rows. Use the Page Size
list box to change the number of rows displayed on each page. Use the Next
Page and Previous Page icons to navigate through the data preview one page
at a time.

Chapter 1, Using Information Object Query Builder 53

54 Using Information Object Query Builder

Actuate SQL reference

This chapter contains the following topics:

About Actuate SQL

Differences between Actuate SQL and ANSI SQL-92
Actuate SQL syntax

Data types and data type casting

Functions and operators

Providing query optimization hints

Using pragmas to tune a query

Chapter 2, Actuate SQL reference

55

About Actuate SQL

An information object encapsulates an Actuate SQL query. You can create the
Actuate SQL query that defines an information object in Information Object
Designer by typing the Actuate SQL query in the textual query editor or by
specifying the desired query characteristics in the graphical query editor. If you
use the graphical query editor, you can view the resulting Actuate SQL query in
SQL Preview.

If you already have one or more existing information objects, you can access the
information object data by specifying a query on the information object using a
report designer’s Information Object Query Builder. You can create the query on
the information object by typing a Actuate SQL query in the textual query editor
or by specifying the desired query characteristics in a graphical query editor. If
you use the graphical query editor, you can view the resulting Actuate SQL query
in SQL Preview.

A query that defines an information object and a query on an information object
both use Actuate SQL. Actuate SQL is based on the ANSI SQL-92 standard. This
chapter describes the differences between Actuate SQL and ANSI SQL-92. This
chapter also describes the FILTERS statement that you can use when creating a
query from Information Object Query Builder in a report designer.

Differences between Actuate SQL and ANSI SQL-92

Actuate SQL is based on ANSI SQL-92. This section provides an overview of the
differences between Actuate SQL and ANSI SQL-92. This section also provides an
overview of the FILTERS statement that is available from report designers. Report
designers support using the FILTERS statement with Actuate SQL to dynamically
filter SELECT statements.

Limitations compared to ANSI SQL-92
Actuate SQL has the following limitations compared to ANSI SQL-92:
m Only the SELECT statement is supported.

m Data types are limited to integers, strings, timestamps, floating point numbers,
and decimals.

m Intersection and set difference operations are not available.
UNION and UNION DISTINCT are not supported. UNION ALL is
supported. To obtain the same results as a UNION DISTINCT operation,
perform a UNION ALL operation followed by a SELECT DISTINCT
operation. For example, IO3 performs a UNION ALL operation on 101 and
102:

56 Using Information Object Query Builder

SELECT empNo, eName
FROM "IOl.iob" AS IOl
UNION ALL

SELECT empNo, eName
FROM "IO2.iob" AS IO2

To obtain distinct results from 103, create 104, which performs a SELECT
DISTINCT operation on 103:

SELECT DISTINCT empNo, eName
FROM "IO3.iob" AS IO3

m LIKE operator patterns and escape characters must be literal strings,
parameters, or expressions. The LIKE operator does not support column
references, subqueries, or aggregate functions, for example, MAX and AVG.

m Unnamed parameters are not supported.
m Some subqueries are not supported.

m Not all ANSI SQL-92 functions and operators are available.

Extensions to ANSI SQL-92
Actuate SQL has the following extensions to ANSI SQL-92:

m Parameterized queries with named parameters

A parameterized query starts with a WITH clause that specifies the names and
types of parameters that the query uses. The following example shows using
parameters to specify returning rows where salesTotal is within a range
specified by two parameters:

WITH (minTotal DECIMAL, maxTotal DECIMAL)

SELECT o.id, o.date

FROM "/sales/orders.sma" o

WHERE o.salesTotal BETWEEN :minTotal AND :maxTotal

A query with a parameterized SELECT statement is typed and is subject to the
same casting rules as a function call, except that parameter declarations
specify the maximum scale, precision, and length of parameter values. All
parameter values are required. A parameter value must be a literal, for
example 'abc’, NULL, a parameter reference, or an Actuate SQL expression. A
parameter value cannot be a column reference, for example
ORDERS.ORDERID.

m Parameterized table, view, and query references
A parameterized table or view reference in a query enables specification of the
query without knowing the table or view until run time. At run time, the
values of the parameters specify the table. In the following example, the table
is specified by the IOB name and the team and position parameters:

Chapter 2, Actuate SQL reference 57

WITH(team VARCHAR, position VARCHAR, minGamesPlayed
INTEGER)

SELECT playername

FROM "/sports/baseball/japan/players.iob" [:team, :position]

WHERE GamesPlayed > :minGamesPlayed

Parameter passing is typed and is subject to the same casting rules as a
function call.

m Scalar subqueries

A scalar subquery is a query that returns a scalar value that is used in a second
query. For example, the following query returns a scalar value:

SELECT SUM (B.Quantity * B.UnitPrice)
FROM "Order Detail.sma" AS B

This second query uses the previous query as a scalar subquery, evaluating the
result of the scalar subquery and checking if the result is greater than 1000:

SELECT CustomerID
FROM "Customers.sma" C
LEFT OUTER JOIN
"Orders.sma" O
ON (C.CustomerID=0.CustomerID)
WHERE
(SELECT SUM(B.Quantity * B.UnitPrice)
FROM "Order Detail.sma" AS B
) > 1000

m Join control syntax specifying the join algorithm
In Actuate SQL, you can specify the algorithm to use for joins. There are three
join algorithms in Actuate SQL:

m Dependent join
A dependent join specifies obtaining all the results for the left side of the
join and then using each resulting row to process the right side of the join.
This algorithm is especially efficient when the left side of the join does not
return many rows and the data source of the right side can handle
evaluating the join criteria.

= Nested loop join

A nested loop join specifies obtaining and storing in memory all the results
for the right side of the join. Then, for each row resulting from the left side,
a nested loop join evaluates the right side results for matches to the join
criteria. This algorithm is especially efficient when the right side of the join
does not return many rows and the join expression cannot be delegated to
the data source of the right side.

58 Using Information Object Query Builder

m Merge join
A merge join specifies obtaining the results for the right and left sides of the
join and comparing these results row by row. Merge joins are applicable
only for joins where the value on the left must be equal to the value on the
right. This algorithm uses less memory than a nested loop join. This
algorithm is especially efficient if the data sources sort the rows but
presorting is not required.

The following example shows a merge join in a simple SELECT statement:

SELECT customers.custid, customers.customname,
customers.city, salesreps.lastname, salesreps.email

FROM customers MERGE JOIN salesreps

ON customers.repid = salesreps.repid

The following example shows a dependent join in a parameterized SELECT
statement:

WITH (minRating INTEGER)
SELECT c.name, o.date, o.shippingStatus
FROM
"/uk/customers.sma" c
DEPENDENT JOIN
"/sales/orders.sma" o
ON c.id = o.custId
WHERE c.rating >= :minRating

You can also specify whether the join is an inner join or left outer join. The
following example shows a SELECT statement with a left outer join:

SELECT customers.custid, customers.contact last,
customers.contact first, salesreps.lastﬁéme,
salesreps.firstname

FROM salesreps LEFT OUTER JOIN customers

ON salesreps.firstname = customers.contact_ first

For information about inner and outer joins, see the SQL reference guide for
your database.

Pragmas to alter query semantics
Additional functions

The ability to have ORDER BY items other than SELECT items or aliases, for
example:

SELECT customers.contact first || ' ' ||
customers.contact last
"MOST_VALUED CUSTOMERS"
FROM "/customers.sma" customers
WHERE customers.purchasevolume > 3
ORDER BY customers.purchasevolume DESC

Chapter 2, Actuate SQL reference 59

If an ORDER BY item is not a SELECT item or an alias, it must be a grouping
column if a GROUP BY clause is present. ORDER BY items must be SELECT
items if SELECT DISTINCT is specified.

Use ORDER BY only when creating a query in a report designer. Do not use
ORDER BY when you create an information object in Information Object
Designer.

m The ability to have GROUP BY items that are expressions, for example:

SELECT DATEPART ('yyyy', orders.shipbydate) "YEAR",
DATEPART ('m', orders.shipbydate) "MONTH",
COUNT (*) "NUM_ORDERS"

FROM "/orders.sma" orders

GROUP BY DATEPART ('yyyy', orders.shipbydate),
DATEPART ('m', orders.shipbydate)

To use an expression as a GROUP BY item, the expression must appear as a
SELECT item. Aggregate functions are not allowed in GROUP BY expressions
unless they are outer references from a subquery and the subquery is
contained in the HAVING clause of the parent query. Complex GROUP BY
expressions cannot be used in the HAVING clause of the query.

m The ability to use references to aliases

Database limitations

Because the Integration service delegates many of its operations to the databases,
these operations are affected by database limitations, such as the maximum
precision of decimal types or the treatment of zero-length strings.

FILTERS statement in report designers

In addition to Actuate SQL’s extensions to ANSI SQL-92, report designers
support using a FILTERS statement with Actuate SQL to dynamically filter
SELECT statements. A dynamically filtered SELECT statement enables the user to
specify additional filters in the WHERE clause or HAVING clause when running
a SELECT statement or a parameterized SELECT statement. The FILTERS
statement specifies one or more dynamic filters, their data types, and the
beginning of each filter. The user completes conditions using operators, constants,
and column names:

FILTERS (filterl Integer 'o.salesRepID' , filter2 Varchar
'o.territory = ')

WITH (minTotal Decimal, maxTotal Decimal)

SELECT o.1id, o.date

FROM "/sales/orders.sma" o

WHERE o.salesTotal BETWEEN :minTotal AND :maxTotal AND :?filterl
AND :?filter2

60 Using Information Object Query Builder

Information Object Designer does not support use of the FILTERS statement.

Actuate SQL syntax

Actuate SQL syntax is similar to SQL-92 syntax. Actuate SQL has additional
syntax for naming tables and columns. Table 2-1 provides a description of the
typographical conventions used in describing Actuate SQL grammar.

Table 2-1 Typographical conventions used in describing Actuate SQL
grammar

Convention Used for...

NORMAL UPPERCASE Actuate SQL keywords.

ITALICIZED Tokens.

UPPERCASE

| (vertical bar) Separating syntax items. You choose one of the

items.

[] (brackets) Optional syntax items. Do not type the brackets.
{ } (braces) Required syntax items. Do not type the braces.
[,...n] Indicating that the preceding item can be repeated n

number of times. The item occurrences are
separated by commas.

[..n] Indicating that the preceding item can be repeated n
number of times. The item occurrences are
separated by blanks.

<label> The name for a block of syntax. This convention is

used to label syntax that can appear in more than
one place within a statement. Each location in which
the block of syntax can appear is shown with the
label enclosed in chevrons, for example <label>.

Table 2-2 lists the tokens used in the Actuate SQL grammar.

Table 2-2 Tokens used in describing the Actuate SQL grammar
Token Definition
IDENTIFIER A sequence of Unicode letters, digits, dollar signs,

and underscores combining characters and
extenders. The first character must be a letter.

(continues)

Chapter 2, Actuate SQL reference 61

Table 2-2 Tokens used in describing the Actuate SQL grammar (continued)

Token Definition

IDENTIFIER (continued) ~ Use double quotes to quote identifiers. To represent
a double quote within a quoted identifier, use two
double quotes. Quoted identifiers can include any
characters except carriage return or new line.

CHAR_LITERAL Any Unicode text between single quotes other than
carriage return or new line. To represent a single
quote, use two single quotes. Multiple consecutive
character literals are concatenated.

DECIMAL_LITERAL An integer literal followed by a decimal point and
an optional integer representing the fractional part.

Syntax: (INTEGER LITERAL .) |
(. INTEGER_LITERAL) | (INTEGER LITERAL.
[INTEGER _LITERAL])

DOUBLE_LITERAL A number of the form 1.2E+3. If the sign is omitted,
the default is positive.

Syntax: ((. INTEGER LITERAL) |
(INTEGER_LITERAL. [INTEGER_LITERAL]))
[(e|E) [-|+] INTEGER LITERAL]

INTEGER_LITERAL One or more consecutive digits.

TIMESTAMP_STRING A literal string that is interpreted as a timestamp
value, such as '2002-03-31 13:56:02.7'. Years are 4
digits. Seconds are 2 digits with an optional fraction
up to 3 digits. All other fields are 2 digits. The space
between the date and time sections is required.

Format: 'yyyy-mm-dd hh:mm:ss.msec’

Actuate SQL grammar

The Actuate SQL grammar contains one statement. The syntax of this statement
is:

[<Pragma>] [..n] [<QueryParameterDeclaration>] <SelectStatement>

Report designers also use a FILTERS statement that incorporates Actuate SQL.
Information Object Designer does not support use of the FILTERS statement. The
syntax for the FILTERS statement is:

<FilterClause> <QueryParameterDeclaration> <SelectStatement>

62 Using Information Object Query Builder

Table 2-3 provides the syntax for the grammar parts used in these statements.

Table 2-3 Syntax for the Actuate SQL grammar parts

Grammar part Syntax

AdditiveExpression <MultiplicativeExpression> {(+ | - |)
<MultiplicativeExpression>} [...n]

AdHocParameter :?IDENTIFIER
Use AdHocParameter only in a FILTERS statement, which is
available only from a report designer. AdHocParameter cannot
be used in a WITH clause.

AggrExpression COUNT (([ALL | DISTINCT] <ValueExpression> | *))
| (AVG | MAX | MIN | SUM) ([ALL | DISTINCT]
<ValueExpression>)

AndExpression {<UnaryLogicalExpression>} [AND...n]

CardinalityType 11211+

CaseExpression CASE [<ValueExpression>]
{<WhenClause>} [...n]
[ELSE <ValueExpression>]
END

CastExpression CAST((<ValueExpression> | NULL)
AS <ScalarDataType>)

ColumnAlias IDENTIFIER

CondExpr {<AndExpression>} [OR...n]

ConditionalPrimary (<CondExpr>) | <SimpleCondition> | <AdHocParameter>
Use AdHocParameter only in a FILTERS statement.

DataType <ScalarDataType>

ExplicitinnerOuterType LEFT [OUTER] | INNER

ExplicitJoinType MERGE | NL | DEPENDENT

ExpressionList {<ValueExpression>} [,...n]

FilterClause FILTERS(/IDENTIFIER DataType 'ValueExpression' [,...n])
Use FILTERS only from a report designer.

FromClause {FROM <FromTableReference>} [,...n]

FromTableName IDENTIFIER [(<TableParameters>)] [[AS] IDENTIFIER]
If the identifier is not enclosed in quotes, it is interpreted as a
table. If the identifier is enclosed in quotes, it is interpreted as
an absolute or relative path in the Encyclopedia volume.

FromTableReference <JoinExpression> | (<JoinExpression>) | <FromTableName>

FunctionCallOrColumnRef

IDENTIFIER (([<ExpressionList>]) | [. IDENTIFIER])

(continues)

Chapter 2, Actuate SQL reference 63

Table 2-3

Syntax for the Actuate SQL grammar parts (continued)

Grammar part

Syntax

GroupByClause

HavingClause

JoinCondition

JoinElement

JoinExpression
JoinSpec

Length
MultiplicativeExpression
NamedParameter
OrderByClause

ParameterDeclaration
ParamPlaceholder
Pragma

Precision

PrimaryExpression

QueryParameterDeclaration

RelationalOperator

GROUP BY {<ValueExpression>} [,...n]
ValueExpression can be an expression as long as the
expression also appears as a SELECT item.

HAVING <CondExpr>

ON <CondExpr> [{CARDINALITY ('<CardinalityType> -
<CardinalityType>")}]

(<JoinExpression>) | <FromTableName>

<JoinElement> {<JoinSpec><JoinElement> [<JoinCondition>]}

[...n]

[[[LEFT | RIGHT] OPTIONAL] <ExplicitinnerOuterType>]
[<ExplicitdoinType>] JOIN

INTEGER_LITERAL

<UnaryExpression> {(* | /) UnaryExpression} [...n]
IDENTIFIER

ORDER BY {<ValueExpression> (ASC | DESC)? } [,...n]
ValueExpression is not limited to SELECT items or aliases. If
ValueExpression is not a SELECT item or an alias, it must be a
grouping column if a GroupByClause is present.

Use ORDER BY only when creating a query in a report
designer. Do not use ORDER BY when you create an
information object in Information Object Designer.
IDENTIFIER [<AS>] <Data Type>
<NamedParameter>

PRAGMA IDENTIFIER := CHAR_LITERAL
INTEGER_LITERAL

<FunctionCallOrColumnRef>
| <ParamPlaceholder>

| <UnsignedLiteral>

| <AggrExpression>

| (<ValueExpression>)

| <CastExpression>

WITH ({<ParameterDeclaration>} [,...n])
All parameters are required.

=l<>l<l<=I>I>=

64 Using Information Object Query Builder

Table 2-3 Syntax for the Actuate SQL grammar parts (continued)

Grammar part

Syntax

ScalarDataType

Scale
Selectltem
SelectList
SelectStatement

SelectWithoutFrom
SelectWithoutOrder

SetClause

SignedLiteral

SimpleCondition

VARCHAR [(<Length>)]

| DECIMAL [(<Precision>, <Scale>)]
| INTEGER

| DOUBLE [<Precision>]

| TIMESTAMP

INTEGER_LITERAL
<ValueExpression> [[AS] <ColumnAlias>]
{<Selectltem>} [,...n]

(<SelectWithoutOrder> [<OrderByClause>])
| <SelectWithoutFrom>

SELECT <ValueSelectList>
(

(

SELECT [ALL | DISTINCT] <SelectList>
<FromClause>

[<WhereClause>]

[<GroupByClause>]

[<HavingClause>]

[<SetClause>]
|)

(<SelectWithoutOrder>)

[<SetClause>]

UNION ALL
(<SelectWithoutOrder> | <SelectWithoutFrom>)
CHAR_LITERAL
I[+ | -]INTEGER_LITERAL
I[+ | -]DOUBLE_LITERAL
I[+ | -]DECIMAL_LITERAL
ITIMESTAMP TIMESTAMP_STRING
EXISTS <SubQuery>
| <SubQuery> <RelationalOperator> <ValueExpression>
| <ValueExpression>
(<RelationalOperator>

(
([ANY | ALL] <SubQuery>) | <ValueExpression>
)

(continues)

Chapter 2, Actuate SQL reference 65

Table 2-3 Syntax for the Actuate SQL grammar parts (continued)
Grammar part Syntax
SimpleCondition [IS [NOT] NULL
(continued) | [NOT]
(
BETWEEN <ValueExpression> AND <ValueExpression>
| LIKE <ValueExpression> [ESCAPE <ValueExpression>]
I IN <SubQuery>
| IN (ExpressionList)
)
)
The escape character must evaluate to a single character
other than a single quote, a percent sign, or an underscore.
SubQuery (<SelectWithoutOrder> [OPTION (SINGLE EXEC)])
TableParameter (<SignedLiteral> | NULL | <ParameterReference> |
<ValueExpression>)
TableParameters <TableParameter> [,...n]
UnaryExpression [+ | -] <PrimaryExpression>

UnaryLogicalExpression

[NOT] <ConditionalPrimary>

UnsignedLiteral CHAR_LITERAL

[INTEGER_LITERAL

IDOUBLE_LITERAL

IDECIMAL_LITERAL

ITIMESTAMP TIMESTAMP_STRING
ValueExpression <AdditiveExpression> | <CaseExpression>
ValueSelectItem <ValueExpression> [[AS] <ColumnAlias>]
ValueSelectList {<ValueSelectitem>} [,...n]
WhenClause WHEN <ValueExpression> THEN <ValueExpression>
WhereClause WHERE <CondExpr>

Using white space characters

White space characters include the space, tab, and new line characters. Multiple
white space characters are not significant outside of literal strings and quoted

identifiers.

Using keywords
The Actuate SQL keywords are shown in the following list:

66 Using Information Object Query Builder

= ALL

= AND

= ANY

m AS

m ASC

m AVG

s BETWEEN
s BY

m CARDINALITY

m CASE

m CAST

s COUNT

s DEC

= DECIMAL

s DEPENDENT

m DESC

m DISTINCT
= DOUBLE
m ELSE

m END

m ESCAPE

Actuate SQL keywords are not case-sensitive. To prevent incompatibility with

EXEC
EXISTS
FALSE
FILTERS
FROM
GROUP
HAVING
IN
INNER
INT
INTEGER
IS

JOIN
LEFT
LIKE
MAX
MERGE
MIN
NL
NOT
NULL

ON
OPTION
OPTIONAL
OR

ORDER
OUTER
PRAGMA
PRECISION
RIGHT
SELECT
SINGLE
SUM

THEN
TIMESTAMP
TRUE
UNION
VARCHAR
WHEN
WHERE
WITH

other versions of SQL, do not use SQL-92 keywords. If you use an identifier that
is also a keyword, place double quotes around the identifier.

Using comments

Precede a single-line comment with two hyphens. Enclose a multiline comment

with /*and */.

Chapter 2, Actuate SQL reference

67

Specifying maps and information objects in Actuate
SQL queries

In Information Object Designer, a map or information object name should be
qualified by its relative path in the Encyclopedia volume. The path is relative to
the IOB file. Use slashes to separate components of the path, for example:

../Data Sources/MyDatabase/dbo.customers.sma

In a query from a report designer, a map or information object name should be
qualified by its absolute path in the Encyclopedia volume. Use slashes to separate
components of the path, for example:

/MyProject/Data Sources/MyDatabase/dbo.customers.sma

Using identifiers in Actuate SQL

Identifiers include table and column names. Actuate SQL identifiers have the
same limitations as standard SQL identifiers. For example, you must enclose an
identifier in double quotes if it contains an illegal character such as a space or if it
is identical to a SQL-92 keyword. Unlike the SQL-92 standard, however, there is
no length limitation on Actuate SQL identifiers. Identifiers can contain Unicode
characters.

Using column aliases in Actuate SQL
When you use column aliases, the following rules apply:

m The column and alias names of the items in the first SELECT statement of a
UNION of statements are definitive.

m Within the items in a SELECT statement, you can use previously defined
aliases to create expressions, for example:

SELECT coll AS a, col2 AS b, a+b
s Only SELECT and ORDER BY can use aliases.
m You cannot use an alias in an aggregate expression, for example, MAX(a).

m You can use aliases defined in an outer SELECT statement in a nested SELECT
statement.

m You can use aliases from the items in the first SELECT statement in a set of
UNION statements in the ORDER BY clause of the query.

Specifying parameter values
A parameter value must be one of the following:

m A literal value, for example 'abc’ or 123

68 Using Information Object Query Builder

Examples

m The NULL literal value
m A parameter reference

m An expression consisting of literal values, parameter references, and Actuate
SQL functions and operators

A parameter value cannot include column references, subqueries, or aggregate
functions.

MylInformationObject uses the parameters p1, p2, and p3. The following query
passes the parameter values :p1, -100, and 'abc’ to MyInformationObject. :p1
represents the value of parameter p1 provided by the user. -100 and 'abc’ are
literal values:

WITH (pl INTEGER, p2 INTEGER, p3 VARCHAR)
SELECT ..
FROM "MyInformationObject.iob" [:pl, -100, 'abc']

MylInformationObject uses the parameter p1. The following query passes the
NULL literal value to MyInformationObject:

WITH (pl INTEGER)
SELECT ..
FROM "MyInformationObject.iob" [NULL]

MylInformationObject uses the parameter p1. The following query passes the
NULL literal value, cast as integer data type, to MyInformationObject:

WITH (pl INTEGER)
SELECT ...
FROM "MyInformationObject.iob" [CAST (NULL AS INTEGER)]

MylInformationObject uses the parameter p1. The following query passes the
expression :pl + 10 to MyInformationObject:

WITH (pl INTEGER)

SELECT ..

FROM "MyInformationObject.iob" [:pl + 10]

MylInformationObject uses the parameters p1 and p2. The following query passes
the parameter reference :p1 and the expression :pl | | :p2 to
MylInformationObject:

WITH (pl VARCHAR, p2 VARCHAR)

SELECT ..

FROM "MyInformationObject.iob" [:pl, :pl || :p2]

MylInformationObject uses the parameters p1 and p2. The following query passes
two expressions to MyInformationObject:

WITH (pl INTEGER, p2 INTEGER)

(continues)

Chapter 2, Actuate SQL reference 69

SELECT ..
FROM "MyInformationObject.iob" [:pl + 10, CASE WHEN :p2 > 100 THEN
100 ELSE 0 END]

Using subqueries in Actuate SQL

Subqueries have the following limitations:

m Subqueries are supported in every clause except the FROM clause.
Specifically:

m Subqueries cannot be used in Actuate SQL parameters or JOIN conditions.

m Subqueries cannot constitute derived tables.

Derived tables are tables in a FROM clause that are the result of running a
subquery.

m Subqueries must be operands to the operators IN or EXISTS, or operands to a
comparison operator such as =, >, or >=ALL. Only one operand of the
comparison operator can be a subquery, not both.

m Only single-column subqueries are supported. In other words, each subquery
must have only one SELECT item.

m Subqueries cannot have more than one SELECT statement. In other words, set
operators such as UNION ALL are not allowed in subqueries.

Subqueries can use OPTION (SINGLE EXEC). The SINGLE EXEC option
improves the performance of a query when the query cannot be pushed to the
database. When the SINGLE EXEC option is specified, the non-correlated portion
of the subquery is executed once against the target database, while the correlated
portion is executed within the Integration service.

By default, a subquery from a different database is implemented using a
dependent join. Using the SINGLE EXEC option, a subquery can be executed
using a single dependent query instead of executing one dependent query for
each row of the outer query, for example:

SELECT DISTINCT CUSTOMERS.CUSTID AS "CUSTID",
ORDERS.ORDERID AS "ORDERID"

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

INNER JOIN "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS

ON CUSTOMERS.CUSTID = ORDERS.CUSTID

WHERE (SELECT count (ITEMS.PRICEQUOTE)

FROM "../Data Sources/YourDatabase/ITEMS.SMA" ITEMS
WHERE ORDERS.ORDERID = ITEMS.ORDERID
OPTION (SINGLE EXEC)) < 100

ORDER BY CUSTOMERS.CUSTID, ORDERS.ORDERID

70 Using Information Object Query Builder

Using derived tables in Actuate SQL

A derived table is a virtual table that is calculated on the fly from a SELECT
statement. A derived table can be used in a FROM clause, WHERE clause,
HAVING clause, or subquery, for example:

SELECT ColumnO1l
FROM (Derived table)

A derived table can have parameters.

Data types and data type casting

Table 2-4 lists Actuate SQL data types and a description of each data type.

Table 2-4 Actuate SQL data types
Data type Description
String ("VARCHAR") A sequence of Unicode characters. You can specify

a maximum character length for the string. For
example, VARCHAR (30) represents strings with a
maximum length of 30 Unicode characters.

Integer number 32-bit two’s-complement arithmetic numbers.
("INTEGER")

Decimal number Fixed point numbers consisting of up to 100 digits.
("DECIMAL") You can specify a maximum scale and a maximum

precision using the syntax (precision, scale). For
example, DECIMAL (15, 4) represents decimals that
can have up to 15 digits in all and up to 4 digits
after the decimal point.

Floating point number 64-bit IEEE double precision floating point
("DOUBLE") numbers.

Timestamp A combined date and time (hour/minute/second).
("TIMESTAMP")

Facets

The precision, scale, and length associated with a database data type are called
facets. Facets are supported for the corresponding Actuate SQL data type.

An Actuate SQL expression that evaluates to a scalar value has facets. These
facets are determined by the Actuate SQL functions used in the expression and

Chapter 2, Actuate SQL reference 71

the facets on the columns in the expression. You can specify facets for an Actuate
SQL expression by using a cast, for example:

CAST (EXPR AS DECIMAL (38, 8))
CAST (EXPR AS VARCHAR(25))

Parameters in Actuate SQL queries have facets. These facets determine the
maximum precision, scale, and length of parameter values. When no facets are
specified for a parameter or a cast expression, the defaults are used. The default
precision and scale for the Actuate SQL DECIMAL data type are (20, 8). The
default length for the Actuate SQL VARCHAR data type is 50.

If the decimal value passed into a parameter or cast expression is too large for the
precision and scale, an error results. Actuate SQL truncates digits after the
decimal point to force the decimal value to fit within the precision and scale.

If the string or timestamp value passed into a string parameter, or into a cast
expression to VARCHAR, is too large for the string length specified, the string or
timestamp is truncated. If the string value passed into a cast expression to
DECIMAL is too large for the precision and scale specified, an error results.

By default, Actuate SQL has a decimal precision of 38. The decimal precision can
be set to a smaller or larger value up to 100. Results of calculations that exceed
this limit may have their precision and scale truncated. Calculations may also be
limited by the database. The same applies to operations on strings in the
database.

Casting rules
The following casting rules apply:

m Integers can be implicitly cast to decimals and doubles. For implicit casts to
decimals, the resulting decimals have a precision of 10 and a scale of 0.
Integers can be explicitly cast to these types, as well as to strings.

m Decimals can be implicitly cast to doubles. Decimals can be explicitly cast to
doubles, as well as to integers and strings. Conversion to integer type may
result in rounding or truncation of data.

m Doubles can be explicitly cast to strings, as well as to integers and decimals.
Conversion to decimal and integer types may result in rounding or truncation
of data.

m Timestamps can be explicitly cast to strings. Casting to other types is not
permitted.

m Strings can be implicitly or explicitly cast to timestamps. For explicit casting,
the strings must be of the form:

yyyy-MM-dd hh:mm:ss.f£ff

Strings can be explicitly cast to integers, decimals, and doubles.

72 Using Information Object Query Builder

m Because databases vary in their implementation, casts to strings do not have a
defined format. For example, the same value can be represented as 6E5, 60000,
or 60000.00.

m All types can be implicitly cast to the same type.
Table 2-5 summarizes the casting rules for Actuate SQL data types.

Table 2-5 Casting rules for Actuate SQL types
To To To To To
INTEGER DECIMAL DOUBLE VARCHAR TIMESTAMP
From INTEGER Implicit Implicit Implicit Explicit Casting not
casting casting casting casting permitted
occurs occurs occurs required
From Explicit Implicit Implicit Explicit Casting not
DECIMAL casting casting casting casting permitted
required occurs occurs required
From Explicit Explicit Implicit Explicit Casting not
DOUBLE casting casting casting casting permitted
required required occurs required
From Explicit Explicit Explicit Implicit Implicit
VARCHAR casting casting casting casting casting occurs
required required required occurs
From Casting not Castingnot Castingnot Explicit Implicit
TIMESTAMP permitted permitted permitted casting casting occurs
required

String comparison and ordering

The BIRT iServer Integration service compares and orders strings according to the
Unicode code point value of each character. For example, Bright-Abbott is sorted
before Brightman because the hyphen (-) has a Unicode value of 45, while
lowercase m has a Unicode value of 109. The expression:

'Kirsten' LIKE 'ki%'

evaluates to False because uppercase K is different from lowercase k.

Although string comparison is case-sensitive by default, you can configure the
Integration service to do case-insensitive comparison and ordering.

Chapter 2, Actuate SQL reference 73

Functions and operators

Actuate SQL supports several built-in operators and named functions. Functions
and operators are described in the following topics, grouped by related
functionality.

Comparison operators: =, <>, >=, >, <=, <

Comparison operators are used to compare the value of two expressions,
returning True if the comparison succeeds, and False if it does not. The following
rules apply to the use of comparison operators handled by the Integration service:

m For numeric data types, the usual rules of arithmetic comparisons apply.

m For string comparisons, the shorter of the two strings is padded with space
characters to equal the length of the longer string before the comparison is
performed, as in SQL-92.

m Timestamps are compared using chronological order.

m An equality comparison between two floating point numbers does not return
an error.

For information about the Integration service, see Configuring BIRT iServer.
Comparison operations delegated to a remote data source may vary from the
rules for comparison operators handled by the Integration service.

Range test operator: BETWEEN

The BETWEEN operator tests a value to see if it occurs in a given range including
the endpoints. For example, the expression:

col BETWEEN 10 AND 20

evaluates to True if and only if the value of col is at least 10 but no more than 20.
Table 2-6 shows the result type for using BETWEEN for each operand data type.

Table 2-6 Result data types for using BETWEEN with various operand types

First operand type Second operand type = Third operand type Result type
Boolean Boolean Boolean Boolean
Integer Integer Integer Boolean
Decimal Decimal Decimal Boolean
Double Double Double Boolean
Varchar Varchar Varchar Boolean
Timestamp Timestamp Timestamp Boolean

74 Using Information Object Query Builder

The BETWEEN operator follows the same rules as the comparison operators.

Comparison operator: IN

The IN operator tests a row or scalar value to see if it occurs in a set of values. For
example, the expression:

column IN (1,3,5,7,9)

evaluates to True if and only if the value of columnis 1, 3,5, 7, or 9.

Arithmetic operators: +, -, *, /

These operators implement addition, subtraction, multiplication, and division on
the supported numeric data types. For decimal data types, the result’s precision
and scale are shown in Table 2-7. d1 represents an operand expression with
precision p1 and scale s1, and d2 represents an operand expression with precision
p2 and scale s2. The result’s precision and scale may be truncated due to database
limitations.

Table 2-7 Precision and scale of arithmetic operation results

Operation Result’s precision Result’s scale

dl +d2 max(sl, s2) + max(pl-sl, p2-s2) + 1 max(sl, s2)

dl-d2 max(sl, s2) + max(pl-sl, p2-s2) + 1 max(sl, s2)

d1* d2 pl+p2+1 sl+s2

dl /d2 pl-sl+s2+max(6,sl+p2+1) max(6, sl +p2 + 1)

Integer arithmetic operations are performed using 32-bit two’s-complement
semantics. Floating point operations are performed according to the IEEE double
precision standard.

These general rules apply to operations handled by the Integration service.
Operations delegated to remote data sources may vary in their semantics. For
information about the Integration service, see Configuring BIRT iServer.

Table 2-8 shows the result type of using arithmetic operators with each operand
type.

Table 2-8 Result data types for using arithmetic operators with various operand
types
Left operand type Right operand type Result type
Integer Integer Integer
Decimal Decimal Decimal
Double Double Double

Chapter 2, Actuate SQL reference 75

Numeric functions

Actuate SQL supports the following numeric functions:
s FLOOR, CEILING, MOD

= ROUND

s POWER

FLOOR, CEILING, MOD

FLOOR returns the largest integer not greater than the argument’s value. The
result is cast to the specified type:

Decimal FLOOR(value Decimal)
Double FLOOR(value Double)

Example The following code:
SELECT FLOOR(123.45), FLOOR(-123.45), FLOOR(0.0)
returns
123,-124,0

CEILING returns the smallest integer not less than the argument’s value. The
result is cast to the specified type:

Decimal CEILING(value Decimal)
Double CEILING(value Double)

Example The following code:
SELECT CEILING(123.45), CEILING(-123.45), CEILING(0.0)
returns
124,-123,0
MOD returns the remainder after division of two integers:
Integer MOD(vl Integer, v2 Integer)

Example The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE MOD (CUSTOMERS.CUSTID, 2) =1
returns

101,Signal Engineering
109, InfoEngineering
111,Advanced Design Inc.

76 Using Information Object Query Builder

Example

Example

For decimal data types, the result’s precision and scale for the FLOOR and
CEILING functions are (p + 1, s), where (p, s) are the precision and scale of the
operand.

ROUND

ROUND returns the number closest in value to the first argument, rounding
away from zero. The second argument specifies the precision, with positive
values indicating a position to the right of the decimal point, and negative values
indicating a position to the left of the decimal point. All positions to the right of
the specified position are zero in the result:

Integer ROUND (value integer, precision integer)
Decimal ROUND(value Decimal, precision integer)
Double ROUND(value Double, precision integer)

The following code:

SELECT ROUND(123.4567, 2), ROUND(123.4567, -1)
returns

123.46, 120

For decimal data types, the result’s precision and scale are (p + 1, s), where
(p, s) are the precision and scale of the operand.

POWER

POWER raises the left argument (base) to the power of the right argument
(exponent):

Integer POWER(base Integer, exponent Integer)
Decimal POWER(base Decimal, exponent Integer)
Double POWER(base Double, exponent Integer)

The following code:

SELECT CUSTOMERS.CUSTID, POWER (CUSTOMERS.CUSTID, 2)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns

101,10201
102,10404
104,10816

For decimal data types, the result’s precision and scale are (P, s), where P is the
maximum precision in the database or the Integration service, and s is the scale of
the operand.

Chapter 2, Actuate SQL reference 77

Null test operators: IS [NOT] NULL

These operators allow expressions to be tested for NULL values. For example, the
expression:

column IS NULL

evaluates to True if and only if column has the value NULL.

Logical operators: AND, OR, NOT

These operators implement Boolean conjunction, disjunction, and negation,
respectively. AND and OR take two Boolean operands each, while NOT takes a
single operand. All return Boolean values.

For AND and OR, both operands may be evaluated even if one operand is
undefined, particularly in queries against multiple databases. For example, the
clause:

WHERE QUANTITY <> 0 AND TOTALCOST / QUANTITY > 50

may result in an error for rows where QUANTITY = 0.

String functions and operators

Actuate SQL supports the following string functions and operators:
m Case conversion functions: UPPER, LOWER

m Concatenation operator: | |

m Length function: CHAR_LENGTH

m LIKE operator

m Substring functions: LEFT, RIGHT, SUBSTRING

m Trimming functions: LTRIM, RTRIM, TRIM

m Search function: POSITION

Case conversion functions: UPPER, LOWER

These functions return a string formed by converting the characters in the
argument to uppercase or lowercase respectively, provided the character is
alphabetic:

Varchar UPPER(value Varchar)
Varchar LOWER (value Varchar)

Examples The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME,
UPPER (CUSTOMERS . CUSTOMNAME)

78 Using Information Object Query Builder

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
returns

101,Signal Engineering, SIGNAL ENGINEERING
109, InfoEngineering, INFOENGINEERING
111,Advanced Design Inc.,ADVANCED DESIGN INC.

The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME,
LOWER (CUSTOMERS . CUSTOMNAME)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns

101,Signal Engineering, signal engineering
109, InfoEngineering, infoengineering
111,Advanced Design Inc.,advanced design inc.

Concatenation operator: |l

This operator concatenates two string values, returning a new string that contains
the characters from the left operand followed by the characters from the right
operand.

Length function: CHAR_LENGTH

This function computes the length of a string, returning an integer count of its
characters. Trailing spaces are significant:

Integer CHAR LENGTH(value Varchar)
Example The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CONTACT FIRST
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE CHAR_LENGTH(CUSTOMERS.CONTACT_FIRST) > 5

returns

102, Leslie
109,Michael
116, William

LIKE operator
The LIKE operator is used in an expression such as:

column LIKE 'Mar$%'

Chapter 2, Actuate SQL reference 79

In this example, values of column, such as Mary or Martin, satisfy the test because
both start with Mar.

A LIKE operator pattern must be a literal string, for example, 'abc%’, a parameter,
or an expression. The LIKE operator does not support column references,
subqueries, or aggregate expressions. Other examples include:

column LIKE :paramState
column LIKE CURRENT USER()

The following rules apply:

m Literal pattern characters must match exactly. LIKE is case-sensitive.
m An underscore character (_) matches any single character.

m A percent character (%) matches zero or more characters.

Escape a literal underscore, percent, or backslash character with a backslash
character (\). Alternatively, use the following syntax:

test string LIKE pattern string ESCAPE escape character

The escape character must obey the same rules as the LIKE operator pattern.

Substring functions: LEFT, RIGHT, SUBSTRING

These functions transform a string by retrieving a subset of its characters.

LEFT and RIGHT return the leftmost or rightmost n characters, respectively. Each
takes the string as the first argument and the number of characters to retrieve as
the second argument:

Varchar LEFT(value Varchar, offset Integer)
Varchar RIGHT (value Varchar, offset Integer)

Specifying an offset that is less than zero results in an error. If the offset is greater
than the length of the string, these functions return the entire string.

SUBSTRING takes three arguments: the input string, the start position (one-based
offset from the left side), and the number of characters to retrieve. It returns the
substring located at this position:

Varchar SUBSTRING(input Varchar, start Integer, length Integer)
The following actions result in an error:
m Specifying a start position that is less than or equal to zero.
m Specifying a length that is less than zero.
Examples The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE LEFT (CUSTOMERS.CUSTOMNAME, 4) = 'Info'

80 Using Information Object Query Builder

Examples

returns

109, InfoEngineering
117, InfoDesign
129, InfoSpecialists

The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE RIGHT (CUSTOMERS.CUSTOMNAME, 5) = 'Corp.'

returns

104,SigniSpecialists Corp.
115,Design Solutions Corp.
118, Computer Systems Corp.

The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME,
SUBSTRING (CUSTOMERS . CUSTOMNAME, 2, 5)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns

101,Signal Engineering, ignal
102, Technical Specialists Co.,echni
104,SigniSpecialists Corp.,igniSs

Trimming functions: LTRIM, RTRIM, TRIM

These functions strip space characters from a string. LTRIM strips only from the
left side, RTRIM only from the right side, and TRIM from both sides. In all cases
the result value is a string identical to the argument except for the possible
removal of space characters from either side. Other white space characters,
including tabs and newlines, are not removed by these functions:

Varchar LTRIM(value Varchar)
Varchar RTRIM(value Varchar)
Varchar TRIM(value Varchar)

The following code:
SELECT LTRIM(' Title '), 'Author'’
returns

Title ,Author

Chapter 2, Actuate SQL reference 81

The following code:
SELECT RTRIM(' Title '), 'Author’
returns

Title,Author
The following code:
SELECT TRIM(' Title '), 'Author!
returns

Title,Author

Search function: POSITION

The POSITION function takes two arguments: a substring and a search string.
The POSITION function returns the position of the substring in the search string
as an integer or as 0 if the substring is not found. If the substring is the empty
string, the POSITION function returns 1. The POSITION function is
case-sensitive:

Integer POSITION(substring Varchar, searchstring Varchar)
Example The following code:
SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE POSITION('Inc.', CUSTOMERS.CUSTOMNAME) > 0
returns

106, Technical MicroSystems Inc.
111,Advanced Design Inc.
113, Technical Design Inc.

Timestamp functions

These functions perform operations on timestamp values:
m CURRENT_TIMESTAMP

s CURRENT_DATE

s DATEADD

m DATEDIFF

s DATEPART

m DATESERIAL

82 Using Information Object Query Builder

Example

Example

When using these functions, use the control strings listed in Table 2-9 to represent
units of time. The control string used in a function must be a literal string, not an
expression or a parameter.

Table 2-9 Control strings for various units of time
Unit of time Control string
year yyyy
quarter q
month m
day d
day of year y
day of week w
hour h
minute n
second S

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP returns a timestamp value for the current date and
time:

Timestamp CURRENT TIMESTAMP ()
The following code:

SELECT CURRENT_TIMESTAMP ()
returns

2004-10-27 14:49:23.0

CURRENT_DATE

CURRENT_DATE returns a timestamp value for the current date with the time
set to 00:00:00.0:

Timestamp CURRENT DATE ()
The following code:

SELECT CURRENT DATE ()
returns

2004-10-27 00:00:00.0

Chapter 2, Actuate SQL reference 83

DATEADD

DATEADD takes three arguments: a control string, an integer delta value, and a
timestamp value. It returns a timestamp that applies the delta value to the
specified part of the original timestamp. The operation carries if the sum of the
original field value and the delta is illegal:

Timestamp DATEADD (control Varchar, delta Integer,
value Timestamp)

Example The following code:

SELECT ORDERS.ORDERID, ORDERS.SHIPBYDATE,
DATEADD ('d', 14, ORDERS.SHIPBYDATE) AS ExpectedDelivery
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS

returns

1645,1995-05-22 00:00:00.0,1995-06-05 00:00:00.0
1340,1995-06-03 00:00:00.0,1995-06-17 00:00:00.0
1810,1995-04-12 00:00:00.0,1995-04-26 00:00:00.0

DATEDIFF

DATEDIFF takes three arguments: a control string, a start timestamp, and an end
timestamp. It returns the integer delta between the part of the two timestamps
specified by the control string. Components smaller than the control string are
ignored. Components larger than the control string contribute to the result:

Integer DATEDIFF (control Varchar, start Timestamp,
end Timestamp)

Examples The following code:

SELECT ORDERS.ORDERID, ORDERS.SHIPBYDATE, ORDERS.FORECASTSHIPDATE,
DATEDIFF('d', ORDERS.SHIPBYDATE, ORDERS.FORECASTSHIPDATE) AS

ShipDateDifference
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS
returns

1645,1995-05-22 00:00:00.0,1995-06-02 00:00:00.0,11
1340,1995-06-03 00:00:00.0,1995-06-10 00:00:00.0,7
1810,1995-04-12 00:00:00.0,1995-04-27 00:00:00.0,15

The following expression:

DATEDIFF('d', CAST('2005-12-31 23:59:59.0' AS TIMESTAMP),
CAST('2006-01-01 00:00:00.0' AS TIMESTAMP))

returns 1. The control string d indicates that the difference is in days. The
difference between December 31, 2005 and January 1, 2006 is one day. The hours,
minutes, and seconds components are ignored.

84 Using Information Object Query Builder

Example

Example

The following expression:

DATEDIFF('m', CAST('2005-12-31 23:59:59.0' AS TIMESTAMP),
CAST('2006-01-01 00:00:00.0' AS TIMESTAMP))

returns 1. The control string m indicates that the difference is in months. The
difference between December 31, 2005 and January 1, 2006 is one month. The day,
hours, minutes, and seconds components are ignored.

DATEPART

DATEPART takes two arguments: a control string and a timestamp. It returns the
part of the timestamp specified by the control string:

Integer DATEPART(control Varchar, value Timestamp)

The following code:

SELECT ORDERS.ORDERID, ORDERS.SHIPBYDATE

FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS
WHERE DATEPART ('m', ORDERS.SHIPBYDATE) = 5

returns

1645,1995-05-22 00:00:00.0
1725,1995-05-10 00:00:00.0
1125,1995-05-03 00:00:00.0

DATESERIAL

DATESERIAL has two forms. The first form takes three arguments: a year value,
a month value, and a day value. It returns a timestamp for the date corresponding
to the specified year, month, and day with the time set to 00:00:00.0:

Timestamp DATESERIAL(year Integer, month Integer, day Integer)

The second form of DATESERIAL takes six arguments: values for the year,
month, day, hour, minute, and second. It returns the timestamp for the specified
values:

Timestamp DATESERIAL (year Integer, month Integer, day Integer,
hour Integer, minute Integer, second Integer)

The following code:

SELECT ORDERS.ORDERID, ORDERS.ASKBYDATE
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS
WHERE ORDERS.ASKBYDATE >= DATESERIAL (1995, 6, 15, 12, 59, 59)

returns
1555,1995-06-28 00:00:00.0

(continues)

Chapter 2, Actuate SQL reference 85

1725,1995-06-23 00:00:00.0
1720,1995-06-17 00:00:00.0

Aggregate functions: COUNT, MIN, MAX, SUM, AVG

These functions aggregate an entire column of values into a single scalar result.
For decimal data types:

m For the MIN, MAX, and AVG functions, the result’s precision and scale are the
same as the precision and scale of the operand.

m For the SUM function, the result’s precision and scale are (P, s), where P is the
maximum precision in the database or the Integration service, and s is the
scale of the operand.

The COUNT function reduces any argument type to a single integer representing
the number of non-NULL items. As in SQL-92, COUNT(*) counts the number of
rows in a table:

Integer COUNT (column)
Example The following code:

SELECT COUNT (ORDERS.ORDERID) AS NumberOfOrders
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS

returns
111

MIN and MAX accept any type and return the minimum or maximum value,
using the same rules that apply to comparison of individual items:

ColumnType MIN(column)
ColumnType MAX(column)

Examples The following code:

SELECT MIN (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns

2

The following code:

SELECT MAX (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns

6203

86 Using Information Object Query Builder

SUM and AVG can be applied to any of the three numeric types and produce the
sum or average of all the numbers:

ColumnType SUM(column)
ColumnType AVG(column)

Examples The following code:
SELECT SUM (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns

606177

The following code:

SELECT AVG (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns

319

System function: CURRENT_USER

CURRENT_USER returns a string containing the user name for the current user:
Varchar CURRENT USER()
Example The following code:
SELECT CURRENT_USER ()
returns

userl

Providing query optimization hints

A report developer or business user uses an information object to create an
Actuate SQL query. When you create the information object, you can provide
hints that help to optimize the query. Specifically, you can:

m Indicate that a table in a join is optional.
m Specify the cardinality of a join.

For query optimization hints to take effect, you must create join conditions with
the ON clause, not the WHERE clause.

Chapter 2, Actuate SQL reference 87

Indicating that a table in a join is optional

When you create an information object, you indicate that a table in a join is
optional using the OPTIONAL keyword. If you indicate that a table is optional
and none of its columns appear in the query created by a report developer or
business user (except in a join condition), the table is dropped from the optimized

query.
The OPTIONAL keyword has no effect in queries created in the Information
Object Query Builder.

For example, consider the following information object CustomersOrders:

SELECT Customers.custid, Customers.customname,
Customers.contact last, Orders.orderid, Orders.custid,
Orders.amount, Orders.shipbydate

FROM Customers.sma LEFT OPTIONAL INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

Now consider the following Actuate SQL query created by a report developer or
business user using CustomersOrders:

SELECT Orders.custid, Orders.orderid, Orders.amount
FROM CustomersOrders.iob
WHERE Orders.amount BETWEEN 10000 and 20000

Because no column from the Customers table appears in the query, and because
the join in CustomersOrders includes the LEFT OPTIONAL keywords, the
Customers table is dropped from the optimized query:

SELECT Orders.custid, Orders.orderid, Orders.amount
FROM Orders.sma
WHERE Orders.amount BETWEEN 10000 and 20000

Now consider another Actuate SQL query created by a report developer or
business user using CustomersOrders:

SELECT Customers.custid, Customers.contact_ last
FROM CustomersOrders.iob
WHERE Customers.city = 'NYC'

No column from the Orders table appears in the query. But because the Orders
table is not optional, it is not dropped from the query:

SELECT Customers.custid, Customers.contact_ last
FROM Customers.sma INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

WHERE Customers.city = 'NYC'

If you use the OPTIONAL keyword without the LEFT or RIGHT qualifier, it
applies to both tables in the join.

88 Using Information Object Query Builder

The OPTIONAL keyword is ignored when it applies to:

m A table whose columns appear in the query created by a report developer or
business user, for example in the SELECT list or in the ORDER BY, GROUP BY,
HAVING, or WHERE clauses.

m The middle table in an information object, for example:

SELECT Customers.custid, Items.orderid, Items.itemcode,
Items.description

FROM Customers RIGHT OPTIONAL INNER JOIN Orders

ON (Customers.custid = Orders.custid)

LEFT OPTIONAL INNER JOIN Items ON (Orders.orderid =
Items.orderid)

In this information object, Orders is the middle table.

An information object that uses the OPTIONAL keyword cannot be joined to
another information object. Therefore, an Actuate SQL query created by a report
developer or business user cannot include more than one information object if
that information object uses the OPTIONAL keyword.

Using the OPTIONAL keyword with a computed field

Do not define a computed field in an information object that contains the
OPTIONAL keyword. Instead, define the computed field in a lower level
information object.

For example, consider the information object MyInformationObject:

SELECT dbo_ CUSTOMERS.CUSTID AS CUSTID, dbo CUSTOMERS.CONTACT FIRST
AS CONTACT_FIRST, dbo CUSTOMERS.CONTACT LAST AS CONTACT_ LAST,
dbo CUSTOMERS.CITY AS CITY, dbo ORDERS.SHIPBYDATE AS
SHIEBYDATE, dbo_ORDERS.FORECASTEHIPDATE AS FORECASTSHIPDATE,
dbo CUSTOMERS.ADDRESS AS ADDRESS,

(dbo ITEMS.PRICEQUOTE * dbo ITEMS.QUANTITY) AS Total

FROM "dbo.CUSTOMERS.sma" AS dbo_ CUSTOMERS

OPTIONAL INNER JOIN "dbo.ORDERS.sma" AS dbo ORDERS

ON (dbo CUSTOMERS.CUSTID=dbo ORDERS.CUSTID)

OPTIONAL INNER JOIN "dbo.ITEMS.sma" AS dbo ITEMS

ON (dbo_ ORDERS.ORDERID=dbo_ ITEMS.ORDERID)

MyInformationObject defines the computed field Total and also contains the
OPTIONAL keyword.

Now consider the following Actuate SQL query created by a report developer or
business user using MyInformationObject:

SELECT MyInformationObject.CUSTID AS CUSTID,
MyInformationObject.CONTACT FIRST AS CONTACT FIRST,
MyInformationObject.CITY AS CITY,
MyInformationObject.CONTACT LAST AS CONTACT LAST

FROM "MyInformationObject.iob" AS MyInformationObject

Chapter 2, Actuate SQL reference 89

The ORDERS and ITEMS tables are not dropped from the query even though the
OPTIONAL keyword is applied to both tables in MyInformationObject and the
SELECT clause does not contain columns from either table. The tables are not
dropped because in MyInformationObject the columns ITEMS.PRICEQUOTE
and ITEMS.QUANTITY are used in a computation outside the join condition.

To avoid this situation, define the computed field in a lower level information
object such as ITEMS.iob. MyInformationObject then contains the following
query:

SELECT dbo_CUSTOMERS.CUSTID AS CUSTID, dbo_CUSTOMERS.CONTACT FIRST
AS CONTACT_FIRST, dbo_CUSTOMERS.CONTACT LAST AS CONTACT LAST,
dbo_CUSTOMERS.CITY AS CITY, dbo_ ORDERS.SHIPBYDATE AS
SHIPBYDATE, dbo_ORDERS.FORECASTSHIPDATE AS FORECASTSHIPDATE,
dbo_CUSTOMERS . ADDRESS AS ADDRESS, ITEMS.Total AS Total

FROM "dbo.CUSTOMERS.sma" AS dbo_CUSTOMERS

OPTIONAL INNER JOIN "dbo.ORDERS.sma" AS dbo_ ORDERS

ON (dbo_CUSTOMERS.CUSTID=dbo_ORDERS.CUSTID)

OPTIONAL INNER JOIN "ITEMS.iob" AS ITEMS

ON (dbo_ORDERS.ORDERID=ITEMS.ORDERID)

Using the OPTIONAL keyword with parentheses ()

You can control the processing of the OPTIONAL keyword with parentheses. For
example, in the following query the tables CUSTOMERS and ORDERS can be
dropped:

SELECT ITEMS.ORDERID, ITEMS.PRICEQUOTE, ITEMS.QUANTITY

FROM "CUSTOMERS.sma" AS CUSTOMERS INNER JOIN "ORDERS.sma" AS
ORDERS ON (CUSTOMERS.CUSTID = ORDERS.CUSTID) LEFT OPTIONAL
INNER JOIN "ITEMS.sma" AS ITEMS ON
(ORDERS.ORDERID = ITEMS.ORDERID)

In the following query, however, only the ORDERS table can be dropped because
the join that includes the LEFT OPTIONAL keywords is enclosed in parentheses:

SELECT ITEMS.ORDERID, ITEMS.PRICEQUOTE, ITEMS.QUANTITY

FROM "CUSTOMERS.sma" AS CUSTOMERS INNER JOIN ("ORDERS.sma" AS
ORDERS LEFT OPTIONAL INNER JOIN "ITEMS.sma" AS ITEMS ON
(ORDERS.ORDERID = ITEMS.ORDERID)) ON
(CUSTOMERS .CUSTID = ORDERS.CUSTID)

In the following examples, A, B, C, and D are tables.
Consider the following query that includes the RIGHT OPTIONAL keywords:

A RIGHT OPTIONAL JOIN B RIGHT OPTIONAL JOIN C RIGHT OPTIONAL
JOIN D

The Actuate SQL compiler interprets this query as:

((A RIGHT OPTIONAL JOIN B) RIGHT OPTIONAL JOIN C)
RIGHT OPTIONAL JOIN D

90 Using Information Object Query Builder

Tables B, C, and D can be dropped from the query.

Consider the following query that includes the LEFT OPTIONAL keywords
without parentheses:

A LEFT OPTIONAL JOIN B LEFT OPTIONAL JOIN C LEFT OPTIONAL
JOIN D

The Actuate SQL compiler interprets this query as:

((A LEFT OPTIONAL JOIN B) LEFT OPTIONAL JOIN C) LEFT OPTIONAL
JOIN D

Tables A, B, and C can be dropped from the query. It is not possible, however, to
drop table C without dropping tables A and B, or to drop table B without
dropping table A, without using parentheses.

Consider the following query that includes the LEFT OPTIONAL keywords with
parentheses:

A LEFT OPTIONAL JOIN (B LEFT OPTIONAL JOIN (C LEFT OPTIONAL
JOIN D))

Table C can be dropped from the query without dropping tables A and B. Table B
can be dropped from the query without dropping table A.

Consider the following query that includes the OPTIONAL keyword without the
LEFT or RIGHT modifier:

A OPTIONAL JOIN B OPTIONAL JOIN C OPTIONAL JOIN D
The Actuate SQL compiler interprets this query as:
((A OPTIONAL JOIN B) OPTIONAL JOIN C) OPTIONAL JOIN D

Any table or set of tables can be dropped from the query.

Using the OPTIONAL keyword with aggregate functions

If a query created by a report developer or business user contains the function
COUNT(*), the OPTIONAL keyword, if it appears in the information object, is
ignored. If a query contains another aggregate function, for example SUM or
COUNT(column), the value returned by the aggregate function depends on
whether the information object includes the OPTIONAL keyword. For example,
consider the following Actuate SQL query created by a report developer or
business user using the CustomersOrders information object:

SELECT COUNT (Customers.custid) AS CustomerCount
FROM CustomersOrders.iob

In the first case, consider the following information object CustomersOrders,
which applies the OPTIONAL keyword to the Orders table:

Chapter 2, Actuate SQL reference 91

SELECT Customers.custid, Customers.customname,
Customers.contact last, Orders.orderid, Orders.custid,
Orders.amount, Orders.shipbydate

FROM Customers.sma RIGHT OPTIONAL INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

Because no column from the Orders table appears in the query and because the
join in CustomersOrders includes the RIGHT OPTIONAL keywords, the Orders
table is dropped from the optimized query:

SELECT COUNT (Customers.custid) AS CustomerCount
FROM Customers.sma

In the second case, consider the following information object CustomersOrders,
which does not apply the OPTIONAL keyword to the Orders table:

SELECT Customers.custid, Customers.customname,
Customers.contact last, Orders.orderid, Orders.custid,
Orders.amount, Oraers.shipbydate

FROM Customers.sma INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

In this case, the Orders table is not dropped from the query:

SELECT COUNT (Customers.custid) AS CustomerCount
FROM Customers.sma INNER JOIN Orders.sma
ON (Customers.custid = Orders.custid)

The value of CustomerCount depends on whether the OPTIONAL keyword is
applied to the Orders table in the CustomersOrders information object.
Specifying the cardinality of a join

You can specify the right-to-left and left-to-right cardinality of a join. Table 2-10
lists the cardinality types and a description of each type.

Table 2-10 Cardinality types

Cardinality type Description

1 One record in the first table matches one record in the
second table.

? One record in the first table matches zero or one record in
the second table.

* One record in the first table matches zero or more records in
the second table.

+ One record in the first table matches one or more records in

the second table.

92 Using Information Object Query Builder

The right-to-left cardinality type is followed by a hyphen (-), and then by the
left-to-right cardinality type. The cardinality type depends on the join column.

For example:

Customers JOIN Orders ON (Customers.custid = Orders.custid)
{CARDINALITY ('1-+')}

indicates that:
m One record in Orders matches one record in Customers.
m One record in Customers matches one or more records in Orders:

Customers JOIN Orders ON (Customers.custid = Orders.custid)
{CARDINALITY ('1-*')}

indicates that:
m One record in Orders matches one record in Customers.
m One record in Customers matches zero or more records in Orders:

Customers JOIN Orders ON (Customers.custid = Orders.custid)
{CARDINALITY ('*-2')}

indicates that:
m One record in Orders matches zero or more records in Customers.

m One record in Customers matches zero or one record in Orders.

Using pragmas to tune a query

If an information object query joins maps or information objects that are based on
different data sources, you may be able to tune the query using the following
pragmas:

m EnableCBO
m applyIndexing
m MinRowsForIndexing

These pragmas are described in the following topics.

Disabling cost-based optimization

If you provide values for the map and join column properties, the Actuate SQL
compiler uses these values to do cost-based query optimization. You can disable
cost-based optimization using the pragma EnableCBO.

For example, consider the following query based on SQL Server and Oracle
database tables:

Chapter 2, Actuate SQL reference 93

SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))
AS Revenue B B
FROM
"/SQL Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
“/SQL_Server/LINEITEM.SMA“ LINEITEM,
“/SQL_Server/SUPPLY.SMA" SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION
WHERE
CUSTOMER.C_CUSTKEY = ORDERS.O_ CUSTKEY
AND LINEITEM.L ORDERKEY = ORDERS.O ORDERKEY
AND LINEITEM.L SUPPKEY = SUPPLY.S SUPPKEY
AND CUSTOMER.C NATIONKEY = SUPPLY.S NATIONKEY
AND SUPPLY.S NATIONKEY = NATION.N NATIONKEY
AND NATION.N REGIONKEY = REGION.R REGIONKEY
AND REGION.R _NAME = 'ASIA'
AND ORDERS.O_ORDERDATE >= TIMESTAMP '1993-01-01 00:00:00'
AND ORDERS.O_ORDERDATE < TIMESTAMP '1994-01-01 00:00:00"'
GROUP BY NATION.N NAME

If you provide values for the map and join column properties, part of the query
plan looks similar to Figure 2-1.

: : Merge Lineitem,
NLJoin Project Join SQL Supply
SQL | Customer SQL |[Orders
Figure 2-1 Example of part of the query plan for which values for the map and

join column properties have been provided

To disable cost-based optimization for the query, set the pragma EnableCBO to
False:

PRAGMA "EnableCBO" := 'falge'
SELECT
NATION.N NAME,
SUM(LINEITEM.L_EXTENDEDPRICE * (1 - LINEITEM.L_DISCOUNT))
AS Revenue
FROM
"/SQL_Server/CUSTOMER.SMA" CUSTOMER,
" /Oracle/ORDERS.SMA" ORDERS,

94 Using Information Object Query Builder

"/SQL Server/LINEITEM.SMA" LINEITEM,
"/SQL Server/SUPPLY.SMA" SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION

WHERE ...

Now this part of the query plan looks similar to Figure 2-2.

NLJoin Project NLJoin SQL | Customer
sqL | Lineitem, SQL | Orders
Supply
Figure 2-2 Example of part of a query plan with cost-based optimization
disabled

Disabling cost-based optimization changes the join sequence and the join
algorithm. The Customer and Lineltem, Supply database subqueries switch
positions, and the merge join is replaced with a nested loop join.

If you create a query using an information object for which cost-based
optimization is disabled, cost-based optimization is disabled for the query as
well.

You can disable cost-based optimization for all information object queries by
setting the BIRT iServer configuration variable Enable cost based optimization to
False. For more information about BIRT iServer configuration variables, see
Configuring BIRT iServer.

Disabling indexing

By default, the Actuate SQL compiler creates indexes for rows that are
materialized in memory during query execution, for example the rows returned
when the right side of a nested loop join is executed. You can disable indexing
using the pragma applyIndexing.

For example, to disable indexing for a query, set the pragma applyIndexing to
False:

PRAGMA "applyIndexing" := 'false'
SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))
AS Revenue a

(continues)

Chapter 2, Actuate SQL reference 95

FROM
"/SQL Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
"/SQL_Server/LINEITEM.SMA" LINEITEM,
"/SQL_Server/SUPPLY.SMA" SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION

WHERE ...

If you create a query using an information object for which indexing is disabled,
indexing is disabled for the query as well.

Specifying a threshold value for indexing

If cost-based optimization is enabled and you provide values for the map and join
column properties, the Actuate SQL compiler creates an index when 100 rows are
materialized in memory during query execution. You can change the number of

materialized rows that triggers indexing using the pragma MinRowsForIndexing.

If cost-based optimization is disabled, or you do not provide values for the map
and join column properties, an index is created for materialized rows if a suitable
column is available.

For example, to change the number of materialized rows that triggers indexing to
1000, set the pragma MinRowsForIndexing to 1000:

PRAGMA "MinRowsForIndexing" := '1000'
SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))
AS Revenue a
FROM
"/SQL Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
"/SQL Server/LINEITEM.SMA" LINEITEM,
“/SQL_Server/SUPPLY.SMA“ SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION
WHERE ...

Specifying the number of materialized rows that triggers indexing for an
information object has no effect on queries that use the information object.

You can specify the number of materialized rows that triggers indexing for all
information object queries by setting the BIRT iServer configuration variable
Minimum rows to trigger creation of an index during materialize operation. For
more information about BIRT iServer configuration variables, see Configuring
BIRT iServer.

96 Using Information Object Query Builder

Symbols

:? operator 10
* operator 75

/ operator 75
+ operator 75
< operator 21
<> operator 21
<= operator 21
= operator 16, 21
> operator 21
>= operator 21
| | operator 28
| | operator 79
—operator 75

A

accessing

data 2

Encyclopedia volumes 3

expression builder 5, 13

information objects 56

iServer 3

Prompt editor 33, 44

query editors 4, 50
accounts 3
Actuate SQL 56, 57
Actuate SQL conventions 61, 62
Actuate SQL data types 15,71, 72
Actuate SQL expressions 4, 48,71
Actuate SQL identifiers 67, 68
Actuate SQL join algorithms 18
Actuate SQL keywords 66, 67
Actuate SQL operators 74
Actuate SQL parameters 42
Actuate SQL queries 50, 56

See also queries; textual queries
Actuate SQL tokens 61
ad hoc parameters 63

See also dynamic data filters
adding

data sets 2

dynamic filters 32, 34

Index

expressions to queries 4
filter conditions 20-30
functions to expressions 5
join algorithms 18,19

join conditions 15, 16, 17, 87

parameters to queries 8, 42-43, 48, 57

addition operator 75
AdditiveExpression declaration 63
AdHocParameter declaration 63
Advanced Design perspective 4,5,
aggregate columns 36, 37, 40, 41
aggregate expressions 63
aggregate functions 36, 60, 86, 91
Aggregate Type property 14
AggrExpression declaration 63
aliases

column names 13, 15, 52, 68

referencing 60

sort operations and 59

table names 52
AND operator 16, 28,29, 78
AndExpression declaration 63
ANSI SQL conventions 56, 57
applyIndexing pragma 95
arithmetic operators 75
Auto suggest option 35
averages 87
AVG function 86, 87

B

Basic Design perspective 3,4, 5
BETWEEN operator 21,74
BIRT iServer property 3

BIRT Spreadsheet Designer 2
blank values 24, 25

Boolean values 78

C

calculations 72

cardinality (joins) 92
CARDINALITY keyword 18
CardinalityType declaration 63

9

Index

97

case conversion functions 78
CAGSE statements 63
CaseExpression declaration 63
case-insensitive comparisons 73
CAST function 72
CAST statements 63
CastExpression declaration 63
casting rules 72,73
Category Path property 14
CEILING function 76
changing
column aliases 13
filter conditions 31
prompt properties 48
queries 2,50, 51
source parameters 49
CHAR_LENGTH function 79
CHAR_LITERAL token 62
characters
as decimal separators 25
Auto suggest option for 35
column aliases and 13
converting case 78
filter conditions and 23
handling white space 66
identifiers and 68
literal text and 62
parameter names and 42
pattern matching and 26
QBE expressions and 33
returning leftmost or rightmost 80
SQL identifiers and 61
string comparisons and 73
timestamps and 62
trimming white space 81
closing Information Object Query Builder 2
column aliases 13, 15, 52, 63, 68
column categories 12, 14
column names 16, 61, 68
See also column aliases
column subcategories 14
ColumnAlias declaration 63
columns
categorizing 12
comparing values across multiple 26, 27
defining computed. See computed fields
defining output. See output columns

98 Using Information Object Query Builder

displaying 6

grouping data and 36, 37, 38

removing from SELECT clause 39, 40

renaming 13

selecting 7,11, 13
Columns page (SQL editor) 52
combo boxes 35
comments 67
comparison operators 74, 75
comparisons

date-and-time values 25

filter conditions and 22, 24, 26

numeric values 25, 74

string values 26, 57,73, 74,79
computed fields 15, 89
concatenation 62, 79
concatenation operator 28,79
Conceal Value property 46
CondExpr declaration 63
conditional expressions 63, 65
ConditionalPrimary declaration 63
connections 2, 3
control types 35, 47
conversions 72
cost-based optimization (joins) 93-95, 96
COUNT function 86, 91
creating

data sets 2

dynamic data filters 32, 34

filter conditions 20-30

join algorithms 18, 19

joins 15-19, 58

list of values 33, 35, 45

queries 2, 4,5, 6,50

SQL expressions 4

subqueries 57, 58, 60, 70
CURRENT_DATE function 27, 83
CURRENT_TIMESTAMP function 83
CURRENT_USER function 28, 87
customizing queries 9

D

data
See also values
accessing 2
aggregating 36

displaying 11, 53
filtering 9, 20-35, 41, 60
grouping 36—41
sorting 7, 60
data filters
comparing values with 22, 24, 25, 26
defining dynamic 32, 34
deleting 33
prompting for values and 32, 33, 34
setting at run time 60
setting conditions for. See filter conditions
setting with graphical editors 9, 22, 23, 60
testing 28
Data Preview pane 11, 53
data rows. See rows
data sets 2
data sources
accessing multiple information objects
and 15, 18,93
connecting to 2,3
filtering data in 20
querying remote 74,75
retrieving distinct values from 13, 57
data type declarations 63, 65
Data Type property 15, 46
data types
assigning to parameters 42, 46
casting 72,73
creating dynamic filters and 32
creating queries and 56, 71
displaying output column 52
database views 57
databases 20, 60, 70
DataType declaration 63
date stamps 83, 84, 85
date values 25, 27
DATEADD function 84
DATEDIFF function 84
DATEPART function 85
DATESERIAL function 85
DECIMAL data type 71,72
decimal precision 64, 71, 72
decimal separators 25
decimal values
aggregating data and 86
arithmetic operations and 75

converting 72
creating facets and 72
defining 71
rounding 77
DECIMAL_LITERAL token 62
default values 8, 35, 42
deleting
dynamic data filters 33
filter conditions 31
information objects 11
join conditions 17
output columns 14
parameters 43
dependent joins 18, 58
derived tables 71
Describe Query button 52
Description property 15, 47
designer applications 2, 56
directory paths 33, 52, 68
Display Control Type property 47
Display Format property 15,47
Display Length property 15,47
Display Name property 15, 47
display names 45
displaying
column categories 12
columns 6
data 11,53
error messages 9
information objects 6, 11
join conditions 16
parameters 6, 51
query output 51, 52, 53
report parameters 52
SQL statements 10
DISTINCT keyword 60
Distinct values only setting 13
division 75,76
Do Not Prompt property 47
documentation v
DOUBLE data type 71,72
double values 71,72,74,75
DOUBLE_LITERAL token 62
duplicate names 13
duplicate rows 13
dynamic data filters 32, 33, 34, 60

Index

99

E

e.Report Designer Professional 2, 3
empty values 24

EnableCBO pragma 93, 94
Encyclopedia volumes 3, 6, 11, 52
Equal to operator 21

equality comparisons 74
equality operator 16

equijoins 19

error messages 9

errors 10

escape characters 66, 80

ESCAPE keyword 80

exiting Information Object Query Builder 2

expanded folders 11

experts. See wizards
ExplicitInnerOuterType declaration 63
ExplicitJoinType declaration 63
exponentiation 77

exporting parameters 8

expression builder 5,12, 13
Expression property 15
ExpressionList declaration 63
expressions. See SQL expressions

F

facets (defined) 71
file paths 33, 52, 68
filter conditions
aggregating data and 41
changing 31
creating 20-30
defining multiple 28, 28-30
deleting 31
entering at runtime 60
excluding sets of values with 24, 25, 29
grouping 29
selecting multiple values for 24
Filter Conditions dialog 20, 22
filter expressions 20, 22, 27
filter operators 21, 22, 25
FilterClause declaration 63
filtering
data 9,20-35, 41, 60
error messages 10
string values 24

filters
comparing values with 22,24, 25, 26
defining dynamic 32, 34
deleting 33
prompting for values and 32, 33, 34
setting at run time 60
setting conditions for. See filter conditions
setting with graphical editors 9, 22, 23, 60
testing 28
FILTERS clause 10
Filters page 22,23, 29, 32
FILTERS statements 56, 60, 63
fixed point numbers 71
floating point numbers 71, 74, 75
FLOOR function 76
folders 6, 11
formula bar. See function signatures
FROM clause 63
FromClause declaration 63
FromTableName declaration 63
FromTableReference declaration 63
full outer joins 16
function signatures 5
FunctionCallOrColumnRef declaration 63
functions
See also SQL functions
adding to expressions 5
aggregating data and 36, 86, 91
ANSI SQL queries and 57, 59
subqueries and 60

G

graphical query editors 4, 5, 50, 56
Greater Than operator 21
Greater Than or Equal to operator 21
GROUP BY clause

creating 36, 37-38

entering expressions and 60

removing columns from 39-40

restricting output for 41

sorting data and 60
GroupByClause declaration 64
grouping

data 3641

filter conditions 29

100 Using Information Object Query Builder

H

Has Null property 15

HAVING clause 41, 60, 64
HavingClause declaration 64
Heading property 15, 47

Help Text property 15, 47

hidden parameters 47

hiding column categories 12

hints 87

Horizontal Alignment property 15,47

IDENTIFIER token 61
identifiers 61, 67, 68
illegal characters 68
IN operator 21,24, 75
Indexed property 15
indexes (SQL queries) 95, 96
information object data source components 3
information object data sources 15
See also information objects
Information Object Designer 60, 61
information object names 68
Information Object Query Builder
accessing expression builder in 5
creating joins and 16
creating queries and 5, 9, 10, 50
defining multiple conditions and 28, 29
defining optional tables and 88
exiting 2
filtering data and 41, 56
grouping data and 37, 38, 39
hiding column categories in 12
overview 2
prompting for values and 33
selecting information objects and 11
starting 2,3
information objects
accessing 56
building data sets for 2
building queries for. See queries
categorizing columns in 12
defining computed fields and 89
defining joins for 15-19, 93
defining parameters in. See source
parameters

deleting 11
disabling indexing for 95
displaying objects in 6
displaying output for 53
displaying parameters for 52
filtering data in 9, 20-35, 41, 60
optimizing for queries 87, 93
retrieving data in 2
selecting 6, 11
sorting data in 7, 60
synchronizing parameters in 49-50
viewing 6, 11
inherited properties 48
inner joins 17, 59, 63
input 32, 33, 34, 44, 48
INTEGER data type 71,72
INTEGER_LITERAL token 62
integers 62,71,72,75
Integration service 19, 60, 73, 74,75
intersection operations 56
IS NOT NULL operator 21, 25,78
IS NULL operator 21, 25,78
iServer 3
iServer Explorer 6,12

J

join algorithms 18, 19, 58, 95

join conditions 15, 16, 17, 87

join operators 16

join types 17, 58, 63

JoinCondition declaration 64

JoinElement declaration 64

JoinExpression declaration 64

joins
accessing multiple data sources and 93
creating 15-19, 58
defining subqueries and 70
disabling cost-based optimization for 93,

94

optimizing 18, 19
setting conditions for. See join conditions
specifying cardinality of 18, 19,92
specifying optional tables for 88

Joins page 15, 16

JoinSpec declaration 64

Index 101

K

keywords (Actuate SQL) 66, 67

L

LEFT function 28, 80
LEFT OPTIONAL keywords 91
left outer joins 17, 59, 63
Length declaration 64
Less Than operator 21
Less Than or Equal to operator 21
LIKE operator 21, 26, 57,79
line numbers 10
literal characters 26, 34, 62, 65, 66
literal numbers 62
literal strings 62, 80
local parameters 48
See also source parameters
logical operators 29, 78
LOWER function 78
LTRIM function 81

M

maps (information objects) 33, 68, 93
matching character patterns 26, 57, 79
MAX function 86

memory 19, 95, 96

merge joins 19, 59

MIN function 86
MinRowsForIndexing pragma 96
missing values 25

MOD function 76

multiline comments 67
multiplication operator 75
MultiplicativeExpression declaration 64

N

Name property 15,47
NamedParameter declaration 64
naming
data sets 2
output columns 13
parameters 42,47
nested loop joins 19, 58
New Data Set dialog 2
NOT BETWEEN operator 21, 24

Not Equal to operator 21
NOT IN operator 22
NOT LIKE operator 22, 24, 25
NOT operator 29,78
null values 15, 25, 43, 78
numbers
arithmetic operations and 75
as literal characters 62
assigning to parameters 49
averaging 87
comparing 25,74
rounding 77
setting default values and 43
numeric data types 71, 72,74, 75
numeric functions 76
numeric tokens 62

o)

ODA data sources 47
online documentation v
opening
expression builder 5,13
Information Object Query Builder 2, 3
Prompt editor 33
operators. See SQL operators
optimizing
joins 18,19
queries 87,93
subqueries 70
OPTION clause 70
OPTIONAL keyword 88, 89, 90, 91
OR keyword 50
OR operator 29,78
ORDER BY clause 59, 60, 64
OrderByClause declaration 64
outer joins 16,17, 59, 63
output 53
See also result sets
output columns
defining 13-14
deleting 14
displaying 51, 52, 53
naming 13
setting character lengths for 15
setting order of 14
setting properties for 14, 52

102 Using Information Object Query Builder

P

Parameter Mode property 47
parameter passing conventions 58
Parameter Values dialog 53
ParameterDeclaration declaration 64
parameterized queries 57, 60
parameterized tables 57
parameters
adding to queries 8, 42-43, 48, 57
assigning data types to 42, 46
assigning null values to 43
assigning to parameters 49
changing properties for 48
defining in information objects. See source
parameters
deleting 43
displaying query output and 53
exporting 8
filtering data and. See dynamic data filters
hiding 47
naming 42, 47
prompting for values and 33, 44, 48
setting facets for 72
setting properties for 44, 46
setting values for 8, 42, 48, 68, 69
specifying required 47
viewing 6, 51, 52
Parameters page (Query Design) 43, 44, 50
Parameters page (SQL editor) 52
ParamPlaceholder declaration 64
Password property 3
paths 33, 52, 68
pattern matching 26, 57, 79
performance 18,19, 20
Port number property 3
POSITION function 82
POWER function 77
Pragma declaration 62, 64
pragmas 59, 93
precision 71,72
Precision declaration 64
predefined data filters 32
PrimaryExpression declaration 64
Problems pane 9
Progress pane 11
Prompt editor 33, 34, 44

prompting for values 32, 33, 34, 44, 48
properties
cost-based optimization and 96
data source connections 2, 3
dynamic data filters 34
inheriting 48
output columns 14, 52
parameters 44, 46

Q

QBE expressions 33, 35

QBE syntax 32

queries
See also SQL statements; textual queries
accessing multiple information objects

and 15, 18,93
accessing remote data sources and 74, 75
adding parameters to 8, 4243, 48, 57
building data sets for 2
changing 2, 50, 51
converting column names for 16
copying 50
creating 2, 4,5, 6,50
customizing 9
defining derived tables and 71
defining optional tables for 88
defining output columns for 13-14
disabling cost-based optimization for 93,
94

optimizing 18, 19, 87, 93
prompting for values and 33, 34, 35, 44, 45
referencing aliases in 60
referencing information objects in 68
referencing tables or views in 57
removing parameters from 43
restricting number of rows in 20, 41
returning duplicate rows and 13
running Integration service and 60
saving 9, 50
setting dynamic filters and 10
unknown data types in 15
validating 10, 29, 33
viewing columns selected for 7
viewing errors with 9, 10
viewing output from 51, 52, 53

Index 103

Query Builder. See Information Object Query
Builder

Query Design 4

query editors 4, 5

query operators. See SQL operators

QueryParameterDeclaration declaration 64

R

range of values 74
range test operator 74
RelationalOperator declaration 64
remainders 76
remote data sources 74, 75
report designer applications 2, 56
report parameters. See parameters
report wizard 3
Required property 47
reserved words (Actuate SQL) 66, 67
result sets
See also queries
changing column order in 14
defining multiple conditions for 28, 28-30
defining output columns for 13-14
excluding duplicate rows from 13
generating computed fields for 15
handling null values in 15
missing values in 42
previewing data in 11,53
removing output columns from 14
restricting number of rows in 20, 41
returning distinct values for 13, 57
returning scalar values in 58
viewing output columns in 51, 52, 53
RIGHT function 80
RIGHT OPTIONAL keywords 90, 92
right outer joins 16
ROUND function 77
TOWs
defining multiple conditions for 29
disabling indexing for 95
excluding duplicate 13
previewing 11, 53
restricting number returned 20, 41
specifying threshold values for 96
RTRIM function 81

S

saving queries 9, 50
scalar subqueries 58
scalar values 58,71, 75
ScalarDataType declaration 65
Scale declaration 65
search function 82
SELECT clause 65
SELECT statements
See also SQL statements
adding expressions to 5
adding parameters to 57
adding subqueries to 58, 70
defining derived tables and 71
defining dynamic filters for 60
defining joins and 58, 59
disabling automatic grouping and 40
dynamically filtering 56
grouping data and 37, 38, 40, 41, 60
removing columns from 39, 40
sorting data and 60
SelectItem declaration 65
SelectList declaration 65
SelectStatement declaration 65
SelectWithoutFrom declaration 65
SelectWithoutOrder declaration 65
serial values 85
ServerUri property 3
set difference operations 56
SetClause declaration 65
SignedLiteral declaration 65
SimpleCondition declaration 65
SINGLE EXEC keywords 70
Size property 47
sort order 8
sorting data 7, 60
source parameters 48-50
space characters 62, 66, 68, 81
special characters. See characters
spreadsheet designer 2
SQL conventions 56
See also Actuate SQL
SQL editor. See textual query editor
SQL Editor button 4, 50
SQL expressions
See also QBE expressions

104 Using Information Object Query Builder

adding 4
comparing values and 73,74, 75
converting column names to 16
counting non-null values and 91
creating joins and 17
defining facets for 72
defining GROUP BY items and 60
defining output columns and 13
entering characters in 23
entering functions in. See functions
entering source parameters in 48
filtering data and 20, 22,27, 32
generating computed fields and 15

SQL functions
aggregation. See aggregate functions
numeric values and 76
string values and 78
substrings and 80, 82
system information and 87
timestamp values and 82

SQL operator reference 74

SQL operators
ANSI SQL conventions and 57
filter conditions 21, 22, 25
joins 16
subqueries and 70

SQL parameters 42

SQL Preview pane 10, 51

SQL statements
See also queries
adding expressions to. See SQL expressions
adding subqueries to. See subqueries
defining joins with 15-19, 58
defining multiple conditions in 28, 28-30
displaying 10
entering manually. See textual queries
filtering data with 9, 20-35, 41, 56, 60
grouping data with 36-41, 60
returning distinct values for 13, 57
sorting data with 7, 59

SQL text editor. See textual query editor

SQL-92 keywords 67

starting Query Builder 2,3

stored procedures 47

string data types 71, 72

string functions 78, 80, 81, 82

string operators 78

string token 62
strings
assigning to parameters 49
casting rules for 72
comparing 73,74
comparing patterns in 26, 57, 79
concatenating 28, 62,79
converting case 78
creating QBE expressions and 34
defining facets and 72
getting length of 79
returning substrings in 80, 82
setting default values and 43
setting maximum length for 71
testing for blank values in 25
trimming white space in 81
subqueries 57, 58, 60, 70
SubQuery declaration 66
SUBSTRING function 80
substring functions 80
substrings 80, 82
subtraction operator 75
SUM function 86, 87,91
synchronizing source parameters 49-50
syntax errors 10

T

table names 52, 61, 63, 68
TableParameter declaration 66
TableParameters declaration 66
tables 57,71, 88
text 62
text boxes 34
Text Format property 15
textual queries
creating 50-52
displaying output columns for 52
displaying parameters for 52
filtering data with 10, 23, 29
prompting for values and 33, 35
saving 50
textual query editor 4, 5, 50, 51, 56
time 25
TIMESTAMP data type 71,72
timestamp functions 82
TIMESTAMP_STRING token 62

Index

105

timestamps
casting rules for 72
comparing 74
defining 49, 62
defining facets and 72
returning current 83
setting default values and 43
tokens 61
trailing spaces 26
TRIM function 81
truncated messages 9
truncated numeric values 72
type casting 72,73
types. See data types

U

UnaryExpression declaration 66
UnaryLogicalExpression declaration 66
UNION keyword 50

UNION statements 56, 65
unknown data types 15

unnamed parameters 57
UnsignedLiteral declaration 66
updating Encyclopedia volumes 11
UPPER function 78

URIs 3

URLs 3

user accounts 3

User name property 3

user names 3, 28, 87

V'

value expressions 63, 66
ValueExpression declaration 66
values
See also data
assigning to parameters 42, 43, 48, 68, 69
averaging 87
comparing. See comparisons
counting non-null 86, 91
creating list of 33, 35, 45

filtering empty or blank 24, 25
filtering on multiple 24, 26, 27, 28
hiding 46
prompting for 32, 33, 34, 44, 48
returning distinct 13, 57
returning largest 76
returning smallest 76
rounding 77
selecting 35
setting control types for 35
setting default 8, 35, 42
testing for null 15, 25, 78
testing range of 74
testing sets of 75
ValueSelectltem declaration 66
ValueSelectList declaration 66
VARCHAR data type 71,72
variant data 47,72
viewing
column categories 12
columns 6
data 11,53
error messages 9
information objects 6, 11
join conditions 16
parameters 6, 51
query output 51, 52, 53
report parameters 52
SQL statements 10
views 57
Volume property 3

w

WHEN clause 66

WhenClause declaration 66

WHERE clause 10, 20, 60, 66

WhereClause declaration 66

white space characters. See space characters
WITH clause 42,57, 64

wizards 3

Word Wrap property 15

106 Using Information Object Query Builder

	Contents
	About Using Information Object Query Builder
	Using Information Object Query Builder
	Examining the Information Object Query Builder
	Opening Information Object Query Builder
	Choosing an information object query editor
	Using the expression builder

	Creating an information object query in the Basic Design interface
	Creating a customized graphical information object query
	Selecting one or more information objects
	Hiding column categories
	Defining output columns
	Setting column properties
	Specifying a join
	About joins
	Optimizing joins

	Filtering data
	Creating a filter condition
	Creating multiple filter conditions
	Prompting for filter values
	Setting dynamic filter prompt properties

	Grouping data
	Creating a GROUP BY clause
	Removing a column from the GROUP BY clause

	Filtering on an aggregate column
	Defining parameters
	Specifying a parameter’s prompt properties
	Setting parameter properties
	Setting source parameters
	Synchronizing source parameters

	Creating a textual information object query
	Displaying output columns
	Displaying parameters

	Displaying information object query output

	Actuate SQL reference
	About Actuate SQL
	Differences between Actuate SQL and ANSI SQL-92
	Limitations compared to ANSI SQL-92
	Extensions to ANSI SQL-92
	Database limitations
	FILTERS statement in report designers

	Actuate SQL syntax
	Actuate SQL grammar
	Using white space characters
	Using keywords
	Using comments
	Specifying maps and information objects in Actuate SQL queries
	Using identifiers in Actuate SQL
	Using column aliases in Actuate SQL
	Specifying parameter values
	Using subqueries in Actuate SQL
	Using derived tables in Actuate SQL

	Data types and data type casting
	Facets
	Casting rules
	String comparison and ordering

	Functions and operators
	Comparison operators: =, <>, >=, >, <=, <
	Range test operator: BETWEEN
	Comparison operator: IN
	Arithmetic operators: +, -, *, /
	Numeric functions
	FLOOR, CEILING, MOD
	ROUND
	POWER

	Null test operators: is [not] null
	Logical operators: and, or, not
	String functions and operators
	Case conversion functions: UPPER, LOWER
	Concatenation operator: ||
	Length function: CHAR_LENGTH
	LIKE operator
	Substring functions: LEFT, RIGHT, SUBSTRING
	Trimming functions: LTRIM, RTRIM, TRIM
	Search function: POSITION

	Timestamp functions
	CURRENT_TIMESTAMP
	CURRENT_DATE
	DATEADD
	DATEDIFF
	DATEPART
	DATESERIAL

	Aggregate functions: COUNT, MIN, MAX, SUM, AVG
	System function: CURRENT_USER

	Providing query optimization hints
	Indicating that a table in a join is optional
	Using the OPTIONAL keyword with a computed field
	Using the OPTIONAL keyword with parentheses ()
	Using the OPTIONAL keyword with aggregate functions

	Specifying the cardinality of a join

	Using pragmas to tune a query
	Disabling cost-based optimization
	Disabling indexing
	Specifying a threshold value for indexing

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.25000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [576.000 792.000]
>> setpagedevice

