One User Experience

Actuate BIRT Java Components
Developer Guide

Information in this document is subject to change without notice. Examples provided are fictitious. No part of
this document maﬁ be reproduced or transmitted in any form, or by any means, electronic or mechanical, for
any purpose, in whole or in part, without the express written permission of Actuate Corporation.

© 1995 - 2012 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 951 Mariners Island Boulevard, San Mateo, CA 94404

www.actuate.com
www.birt—exchange.com

The software described in this manual is provided by Actuate Corporation under an Actuate License
agreement. The software may be used only in accordance with the terms of the agreement. Actuate software
products are protected by U.S. and International patents and patents pending. For a current list of patents,
please see http:/ /www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:

Actuate, ActuateOne, the Actuate logo, Archived Data Analytics, BIRT, BIRT 360, BIRT Data Analyzer, BIRT
Performance Analytics, Collaborative Reporting Architecture, e.Analysis, e.Report, e.Reporting,
e.Spreadsheet, Encyclopedia, Interactive Viewing, OnPerformance, Performancesoft, Performancesoft Track,
Performancesoft Views, Report Encyclopedia, Reportlet, The people behind BIRT, X2BIRT, and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered
trademarks of their respective owners, companies, or organizations include:

Mark Adler and Jean-loup Gailly (www.zlib.net): zLib. Adobe Systems Incorporated: Flash Player. Apache
Software Foundation (www.apache.org): Axis, Axis2, Batik, Batik SVG library, Commons Command Line
Interface (CLI), Commons Codec, Derby, Hive driver for Hadoop, Shindig, Struts, Tomcat, Xalan, Xerces,
Xerces2 Java Parser, and Xerces-C++ XML Parser. Castor (www.castor.org), ExoLab Project (www.exolab.org),
and Intalio, Inc. (www.intalio.org): Castor. Codejock Software: Xtreme Toolkit Pro. Eclipse Foundation, Inc.
(www.eclipse.org): Babel, Data Tools Platform (DTP) ODA, Eclipse SDK, Graphics Editor Framework (GEF),
Eclipse Modeling Framework (EMF), and Eclipse Web Tools Platform (WTP), licensed under the Eclipse
Public License (EPL). Bits Per Second, Ltd. and Graphics Server Technologies, L.P.: Graphics Server. Gargoyle
Software Inc.: HtmlUnit, licensed under Apache License Version 2.0. GNU Project: GNU Regular Expression,
licensed under the GNU Lesser General Public License (LGPLv3). HighSlide: HighCharts.
IDAutomation.com, Inc.: IDAutomation. Jason Hsueth and Kenton Varda (code.google.com): Protocole
Buffer. IDRsolutions Ltd.: JBIG2, licensed under the BSD license. ImageMagick Studio LLC.: ImageMagick.
InfoSoft Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts. Matt Inger
(sourceforge.net): Ant-Contrib, licensed under Apache License Version 2.0. Matt Ingenthron, Eric D. Lambert,
and Dustin Sallings (code.google.com): Spymemcached, licensed under the MIT OSI License. International
Components for Unicode (gICU): ICU library. jQuery: jQuery, licensed under the MIT License. Yuri Kanivets
(code.google.com): Android Wheel gadget, licensed under the Apache Public License (APL). KL Group, Inc.:
XRT Graph, licensed under XRT for Motif Binary License Agreement. LEAD Technologies, Inc.:
LEADTOOQOLS. Bruno Lowagie and Paulo Soares: iText, licensed under the Mozilla Public License (MPL).
Microsoft Corporation (Microsoft Developer Network): CompoundDocument Library. Mozilla: Mozilla XML
Parser, licensed under the Mozilla Public License (MPL). MySQL Americas, Inc.: MySQL Connector. Netscape
Communications Corporation, Inc.: Rhino, licensed under the Netscape Public License (NPL). OOPS
Consultancy: XMLTask, licensed under the Apache License, Version 2.0. Oracle Corporation: Berkeley DB,
Java Advanced Imaging, JAXB, JDK, Jstl. PostgreSQL Global Development Group: pgAdmin, PostgreSQL,
PostgreSQL JDBC driver. Progress Software Corporation: DataDirect Connect XE for JDBC Salesforce,
DataDirect JDBC, DataDirect ODBC. Rogue Wave Software, Inc.: Rogue Wave Library SourcePro Core,
tools.h++. Sam Stephenson (prototype.conio.net): prototype.js, licensed under the MIT license. Sencha Inc.:
Ext JS. ThimbleWare, Inc.: JMemcached, licensed under the Apache Public License (APL). World Wide Web
Consortium (W3C)(MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86 Project, Inc.:
(www.xfree86.0rg): xvib. ZXing authors (code.google.com): ZXing, licensed under the Apache Public License
(APL).

All other brand or product names are trademarks or registered trademarks of their respective owners,
companies, or organizations.

Document No. 120201-2-771302 February 14, 2012

Contents

About Actuate BIRT Java Components Developer Guide............. vii
Part 1
Customizing an Actuate Java Component
Chapter 1
Introducing Actuate Java Components 3
About Actuate Java Components 4
Licensing Java Components i 4
Setting up Actuate Java Component i 5
Customizing Java components for installation 6
About using a cluster of applicationservers oo oo oo 7
About Actuate Java Component architecture il 7
Using proxy servers with Actuate Java Component 8
About Actuate Java Component pagesoiiiiiiiiiiii 9
Working with Actuate Java Component URIs 10
About Actuate Java Component URIs i 10
Using a special characterina URL 11
About UTF-8 encoding ... 12
Chapter 2
Deploying Actuate BIRT reports using an Actuate Java Component ... 13
Publishing a BIRT report design to the Actuate Java Component 14
Publishing a BIRT resource to an Actuate Java Component 15
Installing a custom JDBC driver in an Actuate Java Component 16
Installing custom ODA drivers and custom plug-ins in an Actuate Java Component 16
Accessing BIRT report design and BIRT resources paths in custom ODA plug-ins 16
Accessing resource identifiers in run-time ODA driver 17
Accessing resource identifiers in design ODA driver 17
Using fonts 18
Understanding font configuration file levels and priorities 19
Understanding how BIRT accessesafont i, 20
Understanding the font configuration file structure 21
<font-aliases> section 21
<composite-font>section 22
<font-paths>section....... 22
Using BIRT encryption 23
About the BIRT default encryption plug-in 23
Deploying encryption plug-ins to Actuate Java Components 24

About the components of the BIRT default encryption plug-in 25

About acdefaultsecurityjar 25
About encryption.properties 25
About META-INF/MANIFESTMF 27
About plugin.xml 28
Deploying multiple encryption plug-ins 29
Generating encryption keys 33
Deploying custom emitters 34
Rendering in custom formats 35
Chapter 3
Creating a custom Java Component web application 39
Java Component web application structure and contents 40
Understanding Java Component directory structure 41
Building a custom Java Component contextroot 44
Modifying existing content or creatingnew contentl 46
Activating a new web application 47
Configuring a custom Java Component web application 47
Customizing Java Component configuration 47
Customizing requester pagesttt 49
Customizing a Java Component web application 49
Viewing modifications to a custom web applicationo 50
Locating existing pages and linking innew pages 51
Obtaining information about the user and the session 52
Customizing accessible files and page structure using templates 54
Specifying a template and templateelements 54
Changingatemplate 55
Modifying global styleelements 57
Understanding style definition files L 57
Specifying colorsand fonts L 58
Customizing page styles for BIRT Studio 60
Modifyingimages 60
Part 2
Actuate Java Component Reference
Chapter 4
Actuate Java Component configuration 65
About Actuate Java Component configuration 66
Configuring Java Component web applications i 66
Configuring the Java Component using web.xml 66
Configuring Java Component functionality levels with functionality-level.config 71

ii

Configuring Java Component locale using localemap.xml............................ 75

Configuring Java Component locales using TimeZones.xml 75
Configuring the Actuate Java Component repository 76
Configuring the BIRT Viewer and Interactive Viewer 77
Configuring BIRT Studio 77
Configuring BIRT Data Analyzer i 77
Chapter 5
Actuate Java Component URIs i 79
Actuate Java Component URIs overview i 80
Actuate Java Component URIs quick reference 80
Common URI parameterst 81
Java Component Struts actionsoiiiiiiiiiiiiii 82
Actuate Java Component URIsreference i, 85
aboutpage 87
authenticate page 87
bannerpage 88
browse file page 89
delete file status page 89
detail page 89
Arop Page . . .o oo 91
1S3 (0] o = 91
execute report page 92
homepage 94
INAeX Page 95
Hcense pageou 95
list page ... 96
loginbanner page 97
loginpage 98
logout page 98
pagenotfound page 99
Parameters PAge 99
Actuate BIRT Viewer URIsreferenceoiiiiiiiiiiiiiiiiiiiann 99
Chapter 6
Actuate Java Component JavaScript 101
Actuate Java Component JavaScript OVerview ... 102
Actuate Java Component JavaScript reference oo 102
Chapter 7
Actuate Java Componentservlets 103
Java Component Java servlets overview i i 104

About thebaseservlet 104

iii

Invoking aservlet 104

Java Component Java servlets quick reference L. 105
Java Component Java servlets reference i 105
ExecuteReport servlet 105
Interactive Viewer servlet 107
Chapter 8
Actuate Java ComponentJavaBeans 111
Java Component JavaBeans overview i i 112
Java Component JavaBeans package referenceo il 112
Java Component JavaBeans classreference i 112
Documents 112
General 113
JODS 113
Chapter 9
Using Actuate Java Component security 115
About Actuate Java Component security o i i 116
Protecting corporate data 116
Protecting corporate data using firewalls 116
Protecting corporate data using Network Address Translation 117
Protecting corporate data using proxy Servers 117
Understanding the authentication process 117
Customizing Java Component authentication, 118
Creating a custom security adapter i 118
Accessing the IPSE Java classes ... 119
Creating a custom security adapterclass i 119
Understanding a security adapterclass............ il 121
Chapter 10
Customizing Java Componentonlinehelp 123
About Actuate Java Component online help files 124
Understanding the Java Component help directory structure 124
Understanding a help collection 125
Understanding a documentroot i 126
Understanding context-sensitivehelp o il 127
Understanding locale support i 128
Usingacustom helplocation 129
Creating a localized help collection 131
Customizing icons and the company logo 133
Changing the corporate logo 133
Changing the corporate logo on the titlepage, 134
Changing the logo in the help contentpages 134

iv

Changing icONs 135

Changing the browser window titlel 137
Changing helpcontent 138
Changing existinghelpcontentl 138
Adding or removing help topics 139
Adding and removing content files ool 140
Changing the tableof contentsl 141
Changingtheindex 144
INdeX 147

vi

vii

viii

Actuate BIRT Java Components Developer Guide is a guide to designing, deploying
and accessing custom reporting web applications using Actuate Java Component.

Actuate BIRT Java Components Developer Guide includes the following chapters:

About Actuate BIRT Java Components Developer Guide. This chapter provides an
overview of this guide.

Part 1. Customizing an Actuate Java Component. This part describes how to use
Java Component and how to customize its appearance and layout.

Chapter 1. Introducing Actuate Java Components. This chapter introduces Actuate
Java Component web applications and explains how Java Components work.

Chapter 2. Deploying Actuate BIRT reports using an Actuate Java Component. This
chapter explains how to publish and support BIRT reports and features using
Java Components.

Chapter 3. Creating a custom Java Component web application. This chapter
explains how to work with Java Component JSP files to design custom
reporting web applications.

Part 2. Actuate Java Component Reference. This part describes the code
components that make up Java Component, such as URIs, JavaScript files,
servlets, tags, beans, and security facilities.

Chapter 4. Actuate Java Component configuration. This chapter describes the Java
Component configuration files and how to use them.

Chapter 5. Actuate Java Component URIs. This chapter describes the Java
Component JSPs and URL parameters.

Chapter 6. Actuate Java Component JavaScript. This chapter describes the Java
Component JavaScript files.

Actuate BIRT Java Components Developer Guide

Chapter 7. Actuate Java Component servlets. This chapter describes the Java
Component Java servlets.

Chapter 9. Actuate Java Component JavaBeans. This chapter lists the Java
Component JavaBeans.

Chapter 8. Using Actuate Java Component security. This chapter introduces the
iPortal Security Extension (IPSE) and explains how to use it.

Chapter 10. Customizing Java Component online help. This chapter describes how
to customize the Java Component online help files.

About Actuate BIRT Java Components Developer Guide ix

X Actuate BIRT Java Components Developer Guide

One

Customizing an Actuate Java
Component

Introducing Actuate Java
Components

This chapter contains the following topics:
m About Actuate Java Components

m About Actuate Java Component architecture

Chapter 1, Introducing Actuate Java Components 3

About Actuate Java Components

Actuate Java Component is a web application that supports accessing and
working with report information using a web browser. Web developers and
designers use Actuate Java Component’s industry-standard technology to design
custom e.reporting web applications to meet business information delivery
requirements.

Actuate Java Component technology is platform-independent and customizable.
By separating user interface design from content generation, Java Components
ensures that reporting web application development tasks can proceed
simultaneously and independently. You deploy Actuate Java Component on a
web or application server. Java Component accesses documents in a file system
repository. Actuate Java Component technology is also scalable.

When deployed, the context root is name of the web archive (.war) or engineering
archive (.ear) file without the file extension. For example, if your web archive
(-war) file were named DeploymentKit.war, the URL to access the application is:

http://<web servers:<ports>/DeploymentKit/

The context root for Java Component is the root directory of the web archive
(-war) file when it is extracted.

Actuate Java Component technology includes the following features:

m JavaServer Pages (JSPs) support creating HTML or XML pages that combine
static web page templates with dynamic content.

m Simple Object Access Protocol (SOAP) standards provide plain text
transmission of XML using HTTP.

m Report designs and documents are stored on a file system.
m Secure HTTP (HTTPS) supports secure information transfer on the web.

m JSR 168 compliant portlets provide access to reports through portal servers
that support the JSR 168 standard.

Licensing Java Components

Java Components have a temporary license by default. To fully license the Java
Component you have purchased, you must move the license file received from
actuate into the <context root>\WEB-INF directory of the web archive (.war) file.

How to license Java Component

1 Rename the Java Component license file that Actuate sent you to
ajclicense.xml.

4 Actuate BIRT Java Components Developer Guide

2 Create a temporary directory, such as C:\Temp\jc on a Microsoft Windows

server or /temp/jc on a UNIX server. If you use an existing directory, ensure
that this directory is empty.

Extract the contents of the Java Component WAR file into a temporary
directory.

= On a Windows server, open a command window and type the following
commands, replacing the E: DVD drive letter with the path of your Java
Component WAR file:

cd C:\Temp\jc
copy E:\ActuateJavaComponent.war
jar -xf ActuateJavaComponent.war

The Java Component files appear in the temporary directory. Leave the
command window open.

= Ona LINUX or UNIX server, type the following commands, replacing the
DVD drive name with the path of your Java Component WAR file:

cd /temp/jc
cp /dev/dsk/cd/ActuateJavaComponent .war
jar -xf ActuateJavaComponent.war

The Actuate Java Component files appear in the temporary directory.

Copy the ajclicense.xml file into the extracted <context root>\WEB-INF
directory.

Type the following command:
jar -cf ..\DeploymentKit.war *

This command creates DeploymentKit.war in the parent directory. This new
Java Component WAR file contains the license.

Deploy the DeploymentKit.war file to the application server or servlet engine
as an application.

7 Restart the application server or servlet engine.

Setting up Actuate Java Component
To deploy a report to the web, you need:

An Actuate Java Component installation.

An application server or JSP or servlet engine such as Actuate embedded
servlet engine or IBM WebSphere.

One or more Actuate designer tools.

Permission to read, write, and modify operating system directories as
necessary. For example, the directory Java uses to hold temporary files is

Chapter 1, Introducing Actuate Java Components 5

defined by the java.io.tmpdir property and is by default the value of the TMP
system variable in the Windows environment and /var/tmp in the UNIX and
LINUX environments. Read and write permission must be provided to the
application server running Information Console for this directory.

For more information about installing Java Component, see Installing an Actuate
Java Component.

Customizing Java components for installation

When you deploy Java Components on an application server, you can use a
customized Java Component application. To do this, you need to extract the
contents of the Actuate Java Components WAR or EAR file and customize the
files directly. After you customize the system, recreate a WAR or EAR file using
the Java jar utility and redeploy it to your application server. The customizations
can include any modifications of JavaScript, Java Server Pages (JSP) and other
web pages, and skins. Later chapters in this book provide detailed information
about customizing JavaScript and JSPs.

When Actuate Java Component is deployed, you cannot further customize skins,
add pages, or make any other changes that affect the Actuate Java Component file
structure without extracting the contents of the WAR or EAR file, modifying the
contents, and re-deploying it.

Clustered Actuate Java Component instances can use a third-party application to
balance the load among the application servers. Actuate Java Component
supports third-party load balancing, as illustrated in Figure 1-1, to ensure high
availability and to distribute tasks for efficient processing.

Application
Web server o
browser \ / Java 1
1Component [~
Third-party Application
Web application sgrp\)/er =T
= =
browser server load
balancer Java <
1Component [~
Application
Web / \ server |
browser
Java -
‘1Component [~
[StateServer or SqlServer|<——
Figure 1-1 Load-balancing architecture for Java Component

6 Actuate BIRT Java Components Developer Guide

About using a cluster of application servers

If the application servers running Java Component support session state
management, you can configure Actuate Java Component and the application
servers to share and maintain a web browsing session state across a cluster of Java
Component instances.

How to customize and deploy Actuate Java Component

To customize Actuate Java Component and deploy it to application servers in a
clustered environment, use the following general procedure.

1 Extract the contents of the Actuate Java Component WAR file into a temporary
directory.

2 Customize the Actuate Java Component JavaScript, skins, and web pages as
desired.

3 Save all files and archive Actuate Java Components as a new WAR or EAR file
using the Java jar utility.

4 Deploy the WAR or EAR file to each machine in your cluster.

About Actuate Java Component architecture

This section describes the general operation, authentication, and structure of Java
Component as a web application.

The Actuate Java Component architecture is illustrated in Figure 1-2.

Fi relwall

Web or Application server

Servlet or Page engine

browser Component

|
Web |
€ Actuate Java
<—|-|>
|
I

Figure 1-2 Actuate Java Component architecture overview

A user submits a request by choosing a link that specifies an Actuate Java
Component URI. As shown in Figure 1-2, the web or application server passes the
URI to the servlet or page engine, which invokes Actuate Java Component and
interprets the URL The web server returns the results to the web browser. Then,
the web browser displays the results for the user.

Actuate Java Component manages requests as part of a JSP engine within a web
or application server. See your web or application server documentation for more
information on managing the engine.

Chapter 1, Introducing Actuate Java Components 7

Using proxy servers with Actuate Java Component

When setting up a proxy server with Actuate Java Component, there are steps
you must take if your internal application server port is protected by a firewall. In
this situation, when the proxy server changes the URL to point to the new
context’s port, that port is unavailable due to the firewall. The usual solution is to
configure a reverse proxy, but if you are using multiple proxies and a reverse
proxy is not practical for your installation, Actuate Java Component can perform
the redirection.

To redirect a page without using a reverse proxy, Actuate Java Component
forwards the URL to redirect to the processRedirect.jsp page and updates the
browser’s location bar accordingly. This action processes on the client. The
browser takes the current URL location and updates the rest of the URI using the
redirected URL. You must also set the ENABLE_CLIENT_SIDE_REDIRECT
configuration parameter to true and modify the redirect attributes in the <context
root>/WEB-INF/struts-config.xml file. The necessary modifications are included
in the file. You just need to comment out the lines that have the redirect attribute
set to true and uncomment the lines that forward to the processRedirect.jsp page.

For example, the following code is the struts-config.xml entry for the login action.
By default the forward statement for success points to getfolderitems.do with the
redirect attribute set to true. This code instructs the application server to send a
redirect with the getfolderitems.do URL when the user logs in.

<!-- Process a user login -->
<action
path="/login"
name="loginForm"
scope="request"
input="/iportal/activePortal/private/login.jsp"
type="com.actuate.activeportal.actions.AcLoginAction"
validate="false">
<forward name="loginform"
path="/iportal/activePortal/private/login.jsp" />
<!l--
<forward name="success"
path="/iportal/activePortal/private/common
/processredirect.jsp?redirectPath=/getfolderitems.do" />
-=>
<forward name="success" path="/getfolderitems.do"
redirect="true" />
<forward name="landing" path="/landing.jsp"
redirect="false" />
</action>

From behind a firewall and proxy, this redirect will fail because the redirect sent
by the application server points to the application server port instead of the
firewall and proxy port. For this redirect method to operate behind a firewall, you
need to comment out the line that has redirect="true" and uncomment the line

8 Actuate BIRT Java Components Developer Guide

that points to processRedirect.jsp. The following code shows the updated entry in
struts-config.xml:

<!-- Process a user login -->
<action
path="/login"
name="loginForm"
scope="request"
input="/iportal/activePortal/private/login.jsp"
type="com.actuate.activeportal.actions.AcLoginAction"
validate="false">
<forward name="loginform"
path="/iportal/activePortal/private/login.jsp" />
<forward name="success"
path="/iportal/activePortal/private/common
/processredirect.jsp?redirectPath=/getfolderitems.do" />
<!--
<forward name="success" path="/getfolderitems.do"
redirect="true" />
-->
<forward name="landing" path="/landing.jsp"
redirect="false" />
</action>

This change needs to be made for all the actions in struts-config.xml that send a
redirect to the browser.

About Actuate Java Component pages

Actuate Java Component uses JSPs to generate web pages dynamically before
sending them to a web browser. These JSPs use custom tags, custom classes, and
JavaScript to generate dynamic web page content. The JavaScript, classes, and
tags provide access to other pages, JavaBeans, and Java classes. For example,
application logic in Actuate Java Component can reside on the web server in a
JavaBean.

Web browsers can request a JSP with parameters as a web resource. The first time
a web browser requests a page, the page is compiled into a servlet. Servlets are
Java programs that run as part of a network service such as a web server. Once a
page is compiled, the web server can fulfill subsequent requests quickly, provided
that the page source is unchanged since the last request.

The filesfolders JSPs support accessing repository files and folders. These JSPs
reside in <context root>\iportal\activePortal\ private\filesfolders.

The submit request JSPs support submitting new jobs. The submit request JSPs
reside in <context root>\iportal\activePortal\ private \newrequest. For specific
information about running jobs using Actuate Java Component, see Using Actuate
BIRT Java Components.

Chapter 1, Introducing Actuate Java Components 9

The viewing JSPs support the following functionality, according to report type:
m Searching report data

m Using a table of contents to navigate through a report

m Paginating or not paginating a report

m Fetching reports in supported formats

For specific information about viewing reports using Actuate Java Component,
see Using Actuate BIRT Java Components.

Use the default pages, customize the pages, or create entirely new pages to
deploy your reporting web application.

Working with Actuate Java Component URIs

Actuate Java Component Uniform Resource Identifiers (URIs) convey user
requests to an application server. URIs access functionality including generating
reports, managing repository contents, and viewing reports.

About Actuate Java Component URIs

Actuate Java Component URIs consist of the context root and port of the web
server where you install and deploy the JSPs or servlets. Actuate Java Component
URIs have the following syntax:

http://<web servers:<ports>/<context roots>
/<path><pages>.<type>[?<parameter=value>{&<parameter=value>}]

where

m <web server> is the name of the machine running the application server or
servlet engine. You can use localhost as a trusted application’s machine name
if your local machine is running the server.

m <port>is the port on which you access the application server or servlet engine.

m <context root> is the context root for accessing the Actuate Java Component
pages, which by default is the name of the WAR or EAR file.

m <path> is the directory containing the page to invoke.

m <page> is the name of the page or method.

m <type>isjsp or do.

m <parameter=value> specifies the required parameters and values for the page.

For example, to view the document list page, Actuate Java Component uses a URI
with the following format:

http://<web servers:<ports>/ActuatedJavaComponent
/getfolderitems.do?doframe=true&userid=anonymous

10 Actuate BIRT Java Components Developer Guide

where

m ActuateJavaComponent/getfolderitems.do is the JSP that provides file
browsing for Java Component.

m doframe=true is a reserved parameter that displays the documents page in a
frame next to other frames for the banner and file explorer tree.

m userid=anonymous indicates that the default anonymous user is being used
and security is not enabled. This is the default security setting for Actuate Java
Components. For information about customizing security, see Chapter 8,
“Using Actuate Java Component security.”

Using a special character in a URI

Actuate Java Component URIs use encoding for characters that a browser can
misinterpret. You use hexadecimal encoding in these circumstances to avoid
misinterpretation. Use the encoding only when the possibility of misinterpreting
a character exists. Always encode characters that have a specific meaning in a URI
when you use them in other ways. Table 1-1 describes the available character
substitutions. An ampersand introduces a parameter in a URI, so you must
encode an ampersand that appears in a value string. For example, use:

&company=AT%26T
instead of:

&company=AT&T

Table 1-1 Encoding sequences for use in URIs
Character Encoded substitution
ampersand (&) %26
asterisk (*) %?2a
at (@) %40
backslash (\) %5c¢
colon (:) %3a
comma (,) %2c¢
dollar sign ($) %24
double quote (") %22
equal (=) %3d
exclamation (!) %21
greater than (>) %3e
less than (<) %3¢

(continues)

Chapter 1, Introducing Actuate Java Components 11

Table 1-1 Encoding sequences for use in URIs (continued)

Character Encoded substitution
number sign (#) %23
percent (%) %25
period (.) Y%2e
plus (+) %2b
question mark (?) %3f
semicolon (;) %3b
slash (/) Y%2f
space () %20
underscore (_) Y%o5f

If you customize Actuate Java Component by writing code that creates URI
parameters, encode the entire parameter value string with the encode() method.
The encode() method is included in encoder.js, which is provided in the Actuate
Java Component <context root>/js directory. The following example encodes the
folder name /Training/Sub Folder before executing the getFolderltems action:

%-- Import the StaticFuncs class. --%>

<
<%@ page import="com.actuate.reportcast.utils.*" %>

oe

A
o°

String url =
"http://localhost:8080/ActuateJavaComponent/getfolderitems.do
?folder=" + StaticFuncs.encode ("/Training/Sub Folder") ;

response.sendRedirect (url) ;

o°

>

The encode() method converts the folder parameter value from:
/Training/Sub Folder

to:

$2fTraining%2fSub%20Folder

About UTF-8 encoding

UTF-8 encoding is also the default encoding that web browsers support. All Java
Component communication also uses UTF-8 encoding. For 8-bit (single byte)
characters, UTF-8 content appears the same as ANSI content. If, however,
extended characters are used (typically for languages that require large character
sets), UTF-8 encodes these characters with two or more bytes.

12 Actuate BIRT Java Components Developer Guide

Deploying Actuate BIRT
reports using an Actuate
Java Component

This chapter contains the following topics:

m Publishing a BIRT report design to the Actuate Java Component
m Using fonts

m Using BIRT encryption

m Deploying custom emitters

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 13

Publishing a BIRT report design to the Actuate Java
Component

Actuate Java Components generate BIRT reports using BIRT report design
(.rptdesign) files and their associated resource files. Actuate Java Components
access BIRT report design and associated resource files from configurable
locations on a file system.

The default location designated for BIRT report design files is the repository
folder in the context root directory structure, as illustrated in Figure 2-1.

B = WEB-INF =
[attachments
=is
= lib
(= platfarm
= reportengines

E = Home
(= administrator
= = Public
== BIRT and Business Feports Examples
(= JSAP| Eramples
= Spreadshest Examples -

Figure 2-1 Actuate Java Component folder structure
[PublishJKStr.png]

To configure the repository location for publishing BIRTdesigns and documents,
change the value of the STANDALONE_REPOSITORY_PATH parameter in the
Actuate Java Component’s web.xml file. The web.xml file is in the following
location:

<context roots>/WEB-INF

The following code sets STANDALONE_REPOSITORY_PATH to the
<context root>/WEB-INF/repository subfolder:

<context-param>
<param-name>STANDALONE REPOSITORY PATH</param-names
<param-value>WEB-INF/repository</param-value>
</context-param>

BIRT_RESOURCE_PATH specifies the path to the shared resources for Actuate
BIRT Java Components, including libraries, templates, properties, and Java
archive (jar) files for BIRT report designs. The default value is <context root>
/WEB-INEF/repository.

How to publish a BIRT report design to an Actuate Java Component

This procedure uses the default location of the Actuate Java Component
repository.

14 Actuate BIRT Java Components Developer Guide

1 Navigate to the application server’s directory for deployed web applications.
For example, Apache Tomcat stores web applications in <Apache Tomcat root
directory>/Tomcat 6.0/ webapps.

2 In the web application directory, manually copy the BIRT report design to a
directory in the following location:

<context root>/WEB-INF/repository

The installation provides default home and public directories, as shown in
Figure 2-1. All user directories are created in the repository /home directory.

3 To make a report design available to all users, place the file in a directory
within:
<context root>/WEB-INF/repository/Public

4 To make a report design available to an individual user only, place the file in a
directory within:

<context root>/WEB-INF/repository/Home/<user names>

5 Run the Actuate Java Component to access the report design.

Publishing a BIRT resource to an Actuate Java
Component

You configure the repository for publishing a BIRT resource using the
BIRT_RESOURCE_PATH parameter in an Actuate Java Component’s web.xml
file. The web.xml file is in the following location:

<context roots/WEB-INF

The following code sets BIRT_RESOURCE_PATH to the <context root>
/resources subfolder:

<context-param>
<param-name>BIRT RESOURCE PATH</param-name>
<param-value>resources</param-value>
</context-param>

BIRT_RESOURCE_PATH specifies the path to the shared resources for Actuate
BIRT Java Components, including libraries, templates, properties, and Java
archive (jar) files for BIRT report designs. The default value is

<context root>/resources.

If the BIRT report explicitly includes a resource such as a JAR file, library, CSS, a
Flash (.swf) file, images, or JavaScript in the report design, then the resources
need to be copied under the BIRT_RESOURCE_PATH folder to the correct
relative path.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 15

For example, if the images for your report are in the /images folder in your report
design project, when you deploy the report, you copy the images to the
<context root>/resources/images folder.

In cases when an Actuate BIRT report uses Java classes directly from JAR files,
copy your JAR files to:

<context root>/scriptlib

How to publish a BIRT resource to an Actuate Java Component
1 Copy the resource file to the resource directory, defined in web.xml.

2 To test the resource, run the Actuate Java Component to execute and view a
report that uses the resource.

Installing a custom JDBC driver in an Actuate Java
Component

When you use an Actuate Java Component and an Actuate BIRT report uses a
custom JDBC driver, you must install the JDBC driver in the following location:

<context root>/WEB-INF/platform/plugins
/org.eclipse.birt.report.data.oda.jdbc <VERSION>/drivers

Installing custom ODA drivers and custom plug-ins in
an Actuate Java Component

All custom ODA drivers and custom plug-ins need to be installed in the
following folder:

<context root>/WEB-INF/platform/plugins

Accessing BIRT report design and BIRT resources
paths in custom ODA plug-ins

ODA providers often need to obtain information about a resource path defined in
ODA consumer applications. For example, if you develop an ODA flat file data
source, you can implement an option to look up the data files in a path relative to
a resource folder managed by its consumer. Such resource identifiers are needed
at both design-time and run-time drivers. ODA consumer applications are able to
specify the following items as described in the next two sections:

m The run-time resource identifiers to pass o the ODA run-time driver in an
application context map

m The design-time resource identifiers in a DataSourceDesign, as defined in an
ODA design session model

16 Actuate BIRT Java Components Developer Guide

Accessing resource identifiers in run-time ODA driver

For run time, the BIRT ODA run-time consumer passes its resource location
information in a org.eclipse.datatools.connectivity.oda.util.Resourceldentifiers
instance in the appContext map. ODA run-time drivers can get the instance in
any one of the setAppContext methods, such as IDriver.setAppContext. You can
use resource identifiers to perform the following tasks:

m To get the BIRT resource folder URI, call getApplResourceBaseURI() method.

m To get the instance from the appContext map, pass the map key
Resourceldentifiers. ODA_APP_CONTEXT_KEY_CONSUMER_RESOURCE_
IDS, defined by the class as a method argument.

m To get the URI of the associated report design file folder, call
getDesignResourceBaseURI() method. The URI is application dependent and
it can be absolute or relative. If your application maintains relative URLs, call
the getDesignResourceURILocator.resolve() method to get the absolute URI.

The code snippet on Listing 2-1 shows how to access the resource identifiers
through the application context.

Listing 2-1 Accessing resource identifiers at run time

URI resourcePath null;
URI absolutePath = null;

Object obj = this.appContext.get (
ResourceIdentifiers.ODA APP CONTEXT KEY CONSUMER RESOURCE_IDS
)i

if (obj != null)

{
Resourceldentifiers identifier = (Resourceldentifiers)obj;
if (identifier.getDesignResourceBaseURI() != null)

{

resourcePath = identifier.getDesignResourceBaseURI() ;

if (! resourcePath.isAbsolute())
absolutePath =
identifier.getDesignResourceURILocator () .resolve (
resourcePath) ;
else
absolutePath = resourcePath;

}
}

Accessing resource identifiers in design ODA driver

The resource identifiers are available to the custom ODA designer Ul driver. The
designer driver provides the user interface for a custom data source and data set.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 17

Typically, to implement a custom behavior, the data source Ul driver extends:

org.eclipse.datatools.connectivity.oda.design.ui.wizards.
DataSourceWizardPage

The DataSourceWizardPage class has an inherited method
getHostResourceldentifiers() that provides access to the resource and report
paths. The extended DataSourceWizardPage just needs to call the base method to
get the Resourceldentifiers for its paths information.

Similarly, if the custom driver implements a custom data source editor page, it
extends:

org.eclipse.datatools.connectivity.oda.design.ui.wizards.
DataSourceEditorPage

The DataSourceEditorPage class has an inherited method
getHostResourceldentifiers(). The extended class needs to call the base class
method to get the Resourceldentifiers object for the two resource and report paths
base URIs.

Related primary methods in the org.eclipse.datatools.connectivity.oda.design.
Resourceldentifiers are:

m URI getDesignResourceBaseURI();
m URI getApplResourceBaseURI();

Using fonts

Java Components supports rendering BIRT reports in different formats such as
PDEF, Microsoft Word, Postscript, and PowerPoint. The conversion processes use
the fonts installed on your system to display the report characters by default.

BIRT uses a flexible mechanism that supports configuring font usage and
substitution. This mechanism uses font configuration files for different purposes
that control different parts of the rendering process. The configuration files can
configure the fonts used in specific operating systems, in specific formats, in
specific locales, or combinations of these parameters, as described in the next
section.

The plug-in folder, org.eclipse.birt.report.engine.fonts, contains the font
configuration files. Table 2-1 shows the location of this folder in the supported
BIRT environments.

Table 2-1 Locations of the font configuration file plug-in folder

Environment Font configuration file folder location

Actuate Java $ActuateJavaComponents/ WEB-INF/platform/plugins
Components

18 Actuate BIRT Java Components Developer Guide

Table 2-1 Locations of the font configuration file plug-in folder

Environment Font configuration file folder location

BIRT Report Designer $Actuatell/BRD/eclipse/plugins

BIRT Report Designer $Actuatell /BRDPro/eclipse/plugins
Professional

Understanding font configuration file levels and
priorities

BIRT reports use five different types of font configuration files. The font
configuration file naming convention includes information about the rendering
format, the system platform, and the system locale, as shown in the following
template:

fontsConfig <Format>_ <Platform>_ <Locale>.xml

The platform name is defined by the Java System property, os.name. The
following code shows how to check the os.name property for the proper value in
your configuration:

System.getProperty ("os.name") ;

Table 2-2 lists the supported values for the three properties that form the font
configuration file name. The platform property in this table shows the values that
Sun Microsystems uses for the os.name property.

Table 2-2 Font configuration file name properties
Format Platform Locale
pdf Windows_Vista en
ppt Windows_2003 fr
html Windows_XP de
postscript Windows_2000 it
doc SunOS ja
AIX ko
HP-UX zh
Linux zh_Hans
zh_Hant
fr FR
de DE
it_IT

(continues)

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 19

Table 2-2 Font configuration file name properties (continued)

Format Platform Locale

doc (continued) Linux (continued) ja_JP
ko_KR
zh_Hans_CN
zh_Hant TW
en_GB
en_US
en_CA

BIRT supports the following levels of font configuration files, with increasing
priority:

m For all rendering formats

These files have no format specifier in their names. These configuration files
are divided into three sub-levels:

m The default configuration file:
fontsConfig.xml

m Configuration files for a specific platform, for example:
fontsConfig Windows_XP.xml

m Configuration files for a specific platform and locale, for example:

fontsConfig Windows XP zh.xml
fontsConfig Windows XP zh CN.xml

m For certain formats only

These files include the format specifier in their names. These configuration
files are divided into three sub-levels:

m The default configuration file for a format, for example:
fontsConfig pdf.xml
m Configuration files for a format for a specific platform:

fontsConfig pdf Windows XP.xml

Understanding how BIRT accesses a font

The PDF layout engine renders the PDF, Postscript, and PowerPoint formats. The
engine tries to use the font specified at design time to render. The PDF layout
engine searches for the font files first in the fonts folder of the plug-in,
org.eclipse.birt.report.engine.fonts. If the fonts are not in this folder, the engine

20 Actuate BIRT Java Components Developer Guide

searches for the font in the system-defined font folder. Change the default load
order by using the settings in the font configuration file.

When the required font for a character is not available in the search path or is
incorrectly installed, the engine uses the fonts defined in the UNICODE block for
that character. If the UNICODE definition also fails, the engine replaces the
character with a question mark (?) to denote a missing character. The font used
for the ? character is the default font, Times-Roman.

The engine maps the generic family fonts to a PDF embedded Typel font, as
shown in the following list:

m cursive maps to Times-Roman
m fantasy maps to Times-Roman
= monospace maps to Courier
m sans-serif maps to Helvetica

m serif maps to Times-Roman

Understanding the font configuration file structure

The font configuration file, fontsConfig.xml, consists of three major sections,
<font-aliases>, <composite-font>, and <font-paths> sections.

<font-aliases> section
In <font-aliases> section, you can:

m Define a mapping from a generic family to a font family. For example, the
following defines a mapping from generic family "serif" to Typel font family
"Times-Roman":

<mapping name="serif" font-family="Times-Roman"/>

m Define a mapping from a font family to another font family. This is useful if
you want to use a font for PDF rendering that differs from the font used in
design-time. For example, the following shows how to replace "simsun" with
"Arial Unicode MS":

<mapping name="simsun" font-family="Arial Unicode MS"/>

Previous versions of the BIRT Report Designers use the XML element
<font-mapping> instead of <font-aliases>. In the current release, a
<font-mapping> element works in the same way as the new <font-aliases>
element. When a font configuration file uses both <font-mapping> and
<font-aliases>, the engine merges the different mappings from the two sections. If
the same entries exist in both sections, the settings in <font-aliases> override
those in <font-mapping>.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 21

<composite-font> section

The <composite-font> section defines a composite font. A composite font is a font
consisting of many physical fonts used for different characters. The composite
fonts are defined by <block> entries. Each <block> entry defines a mapping from
a UNICODE range to a font family name, which means the font family is applied
for the UNICODE characters in that range. You cannot change the block name or
range or index as it is defined by the UNICODE standard. The only item you can
change in the block element is the font family name. To find information about all
the possible blocks, go to http:/ /www.unicode.org/charts/index.html.

A composite font named all-fonts is applied as a default font. When a character is
not defined in the desired font, the font defined in all-fonts is used.

For example, to define a new font for currency symbols, you change font-family
in the following <block> entry to the Times Roman font-family:

<composite-fonts>

<block name="Currency Symbols" range-start="20a0" range-end="20cf"
index="58" font-family="Times Roman" />

</composite-font>

In cases when the Times Roman font does not support all the currency symbols,
you can define the substitution character by character using the <character> tag,
as shown in the following example:

<composite-font>
<character value="?" font-family="Angsana New"/>
<character value="\u0068" font-family="Times Roman"/>
</composite-font>

Note that characters are represented by the attribute, value, which can be
presented two ways, the character itself or its UNICODE code.

To find information about all the currency symbols, go to
http:/ /www.unicode.org/charts/symbols.html.

<font-paths> section

If the section <font-paths> is set in fontsConfig.xml, the engine ignores the
system-defined font folder, and loads the font files specified in the section,
<font-paths>. You can add a single font path or multiple paths, ranging from one
font path to a whole font folder, as shown in the following example:

<path path="c:/windows/fonts"/>
<path path="/usr/X11R6/1ib/X11/fonts/TTF/arial.ttf"/>

22 Actuate BIRT Java Components Developer Guide

If this section is set, the PDF layout engine will only load the font files in these
paths and ignore the system-defined font folder. If you want to use the system
font folder as well, you must include it in this section.

On some systems, the PDF layout engine does not recognize the system-defined
font folder. If you encounter this issue, add the font path to the <font-paths>
section.

Using BIRT encryption

BIRT provides an extension framework to support users registering their own
encryption strategy with BIRT. The model implements the JCE (Java™
Cryptography Extension). The Java encryption extension framework provides
multiple popular encryption algorithms, so the user can just specify the algorithm
and key to have a high security level encryption. The default encryption
extension plug-in supports customizing the encryption implementation by
copying the BIRT default plug-in, and giving it different key and algorithm
settings.

JCE provides a framework and implementations for encryption, key generation
and key agreement, and Message Authentication Code (MAC) algorithms.
Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. The software also supports secure streams and sealed objects.

A conventional encryption scheme has the following five major parts:
m Plaintext, the text to which an algorithm is applied.

= Encryption algorithm, the mathematical operations to conduct substitutions
on and transformations to the plaintext. A block cipher is an algorithm that
operates on plaintext in groups of bits, called blocks.

m Secret key, the input for the algorithm that dictates the encrypted outcome.

m Ciphertext, the encrypted or scrambled content produced by applying the
algorithm to the plaintext using the secret key.

m Decryption algorithm, the encryption algorithm in reverse, using the
ciphertext and the secret key to derive the plaintext content.

About the BIRT default encryption plug-in
BIRT’s default encryption algorithm is implemented as a plug-in named:

com.actuate.birt.model.defaultsecurity 11.0.1

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 23

Table 2-3 shows the location of this plug-in folder in the supported BIRT

environments.

Table 2-3 Locations of the default encryption plug-in folder
Environment Font configuration file folder location
Actuate Java $ActuateJavaComponents/WEB-INF/platform/plugins
Components

BIRT Report Designer $Actuatell/BRD/eclipse/plugins

BIRT Report Designer $Actuatell/BRDPro/eclipse/plugins
Professional

Deploying encryption plug-ins to Actuate Java
Components

If you use Java Components, you deploy all new encryption plug-ins to the Java
Components plug-in folder. The BIRT report engine decrypts the encrypted
report data during report generation. To do the decryption, it must have access to
all encryption plug-ins. The report engine loads all encryption plug-ins at start
up. When the engine runs a BIRT report, it reads the encryptionID property from
the report design file and uses the corresponding encryption plug-in to decrypt
the encrypted property. Every time you create reports using a new encryption
plug-in, make sure you deploy the plug-in to Java Components installation,
otherwise the report execution will fail.

How to deploy a new encryption plug-in instance to Actuate Java Components

1 Extract the Java Components WAR or EAR file into temporary directory.
2 Copy:

SACTUATE_HOME/BRDPro/eclipse/plugins
/com.actuate.birt .model.defaultsecurity 11.0.1_rsa

to:
<context root>/WEB-INF/platform/plugins
3 Copy your report design to:
<context root>/WEB-INF/repository/home/<UserHomeFolder>

4 Recompress your Java Components WAR file using the Java jar utility and
redeploy it to the application server or servlet engine as an application.

5 Restart the application service where the Java Components are deployed, to
load the new encryption plug-in.

6 Run your report again. The engine uses the new encryption plug-in to decrypt
the password.

24 Actuate BIRT Java Components Developer Guide

About the components of the BIRT default encryption
plug-in

The BIRT default encryption plug-in consists of the following main modules:

m acdefaultsecurityjar

m encryption.properties file

s META-INF/MANIFEST.MF

= plugin.xml

About acdefaultsecurity.jar

This JAR file contains the encryption classes. The default encryption plug-in also
provides key generator classes that can create different encryption keys.

About encryption.properties

This file specifies the encryption settings. BIRT loads the encryption type,
encryption algorithm, and encryption keys from the encryption.properties file to
do the encryption. The file contains pre-generated default keys for each of the
supported algorithms.

You define the following properties in the encryption.properties file:

m Encryption type

Type of algorithm. Specify one of the two values, symmetric encryption or
public encryption. The default type is symmetric encryption.

s Encryption algorithm
The name of the algorithm. You must specify the correct encryption type for
each algorithm. For the symmetric encryption type, BIRT supports DES and
DESede. For public encryption type, BIRT supports RSA.

= Encryption mode
In cryptography, a block cipher algorithm operates on blocks of fixed length,
which are typically 64 or 128 bits. Because messages can be of any length, and
because encrypting the same plaintext with the same key always produces the
same output, block ciphers support several modes of operation to provide
confidentiality for messages of arbitrary length. Table 2-4 shows all supported
modes.

Table 2-4 Supported encryption modes
Mode Description
None No mode

(continues)

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 25

Table 2-4

Supported encryption modes (continued)

Mode

Description

CBC

CFB
ECB
OFB
PCBC

Cipher Block Chaining Mode, as defined in the National
Institute of Standards and Technology (NIST) Federal
Information Processing Standard (FIPS) PUB 81, "DES
Modes of Operation,” U.S. Department of Commerce, Dec
1980

Cipher Feedback Mode, as defined in FIPS PUB 81
Electronic Codebook Mode, as defined in FIPS PUB 81
Output Feedback Mode, as defined in FIPS PUB 81

Propagating Cipher Block Chaining, as defined by
Kerberos V4

m Encryption padding
Because a block cipher works on units of a fixed size, but messages come in a
variety of lengths, some modes, for example CBC, require that the final block
be padded before encryption. Several padding schemes exist. The supported
paddings are shown in Table 2-5. All padding settings are applicable to all

algorithms.

Table 2-5 Supported encryption paddings

Mode Description

NoPadding No padding.

OAEP Optimal Asymmetric Encryption Padding (OAEP) is a
padding scheme that is often used with RSA encryption.

PKCS5Padding The padding scheme described in RSA Laboratories,
“PKCS #5: Password-Based Encryption Standard,” version
1.5, November 1993. This encryption padding is the
default.

SSL3Padding The padding scheme defined in the SSL Protocol Version

3.0, November 18, 1996, section 5.2.3.2.

m Encryption keys

Actuate provides pre-generated keys for all algorithms.

Listing 2-1 shows the default contents of encryption.properties.

Listing 2-1 Default encryption.properties

#message symmetric encryption , public encryption.
type=symmetric encryption

26 Actuate BIRT Java Components Developer Guide

#private encryption: DES(default), DESede
#public encryption: RSA
algorithm=DES

NONE , CBC , CFB , ECB(default) , OFB , PCBC
mode=ECB
NoPadding , OAEP , PKCS5Padding(default) , SSL3Padding

padding=PKCS5Padding

#For key , support default key value for algorithm

#For DESede ,DES we only need to support private key

#private key value of DESede algorithm : 20b0020..

#private key value of DES algorithm: 527c2..

#for RSA algorithm, there is a key pair. You should support
private-public key pair

#private key value of RSA algorithm: 30820..

#public key value of RSA algorithm: 308109..
#private key
symmetric-key=527c23..

#public key
public-key=

About META-INF/MANIFEST.MF

META-INF/MANIFEST.MF is a text file that is included inside a JAR file to
specify metadata about the file. Java’s default ClassLoader reads the attributes
defined in MANIFEST.MF and appends the specified dependencies to its internal
classpath.

The encryption plug-in ID is the value of the Bundle-SymbolicName property in
the manifest file for the encryption plug-in. You need to change this property
when you deploy multiple instances of the default encryption plug-in, as
described later in this chapter.

Listing 2-2 shows the contents of the default MANIFEST.MF.
Listing 2-2 Default MANIFEST.MF

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Actuate Default Security Plug-in

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity;singleton:=true

(continues)

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 27

Bundle-Version: 11.0.1l.<versions>
Require-Bundle: org.eclipse.birt.report.model,
org.eclipse.core.runtime

Export-Package: com.actuate.birt.model.defaultsecurity.api

Bundle-ClassPath: acdefaultsecurity.jar

Bundle-Vendor: Actuate Corporation

Eclipse-LazyStart: true

Bundle-Activator:
com.actuate.birt.model.defaultsecurity.properties.
SecurityPlugin

About plugin.xml

plugin.xml is the plug-in descriptor file. This file describes the plug-in to the
Eclipse platform. The platform reads this file and uses the information to
populate and update, as necessary, the registry of information that configures the
whole platform.

The <plugin> tag defines the root element of the plug-in descriptor file. The
<extension> element within the <plugin> element specifies the Eclipse extension
point that this plug-in uses, org.eclipse.birt.report.model.encryptionHelper. This
extension point requires a sub-element, <encryptionHelper>. This element uses
the following attributes:

m class

The qualified name of the class that implements the interface
IEncryptionHelper. The default class name is
com.actuate.birt.model.defaultsecurity.api.DefaultEncryptionHelper.

= extensionName
The unique internal name of the extension. The default extension name is jce.

m isDefault
Field indicating whether this encryption extension is the default for all
encryptable properties. This property is valid only in a BIRT Report Designer
environment. When an encryption plug-in sets the value of this attribute to
true, the BIRT Report Designer uses this encryption method as the default to
encrypt data. There is no default encryption mode in Java Components.

The encryption model that BIRT uses supports implementing and using
several encryption algorithms. The default encryption plug-in is set as default
using this isDefault attribute. If you implement several encryptionHelpers, set
this attribute to true for only one of the implementations. If you implement
multiple encryption algorithms and set isDefault to true to more than one
instance, BIRT treats the first loaded encryption plug-in as the default
algorithm.

Listing 2-3 shows the contents of the default encryption plug-in’s plugin.xml.

28 Actuate BIRT Java Components Developer Guide

Listing 2-3 Default plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
<extension
id="encryption"
name="default encryption helper"
point="org.eclipse.birt.report.model.encryptionHelper">
<encryptionHelper
class="com.actuate.birt.model.defaultsecurity.api
.DefaultEncryptionHelper"
extensionName="jce" isDefault="true" />
</extensions>

Deploying multiple encryption plug-ins

In some cases, you need to use an encryption mechanism other than the Data

Source Explorer default in your report application. For example, some

applications need to create an encryption mechanism using the RSA algorithm
that the default encryption plug-in supports. In this case, you must create an
additional encryption plug-in instance. For use within a BIRT Report Designer,

you can set this plug-in as the default encryption mechanism. If you change the

default encryption mechanism, you must take care when you work with old
report designs. For example, if you change an existing password field in the

designer, the designer re-encrypts the password with the current default

encryption algorithm regardless of the original algorithm that the field used.

How to create a new instance of the default encryption plug-in
1 Make a copy of the default encryption plug-in.
1 Copy the folder:

SACTUATE_HOME/BRDPro/eclipse/plugins
/com.actuate.birt.model.defaultsecurity 11.0.1

2 Paste the copied folder in the same folder:
SACTUATE_HOME/BRDPro/eclipse/plugins
3 Rename:

SACTUATE_HOME/BRDPro/eclipse/plugins/Copy of
com.actuate.birt.model.defaultsecurity 11.0.1

to a new name, such as:

SACTUATE _HOME/BRDPro/eclipse/plugins
/com.actuate.birt.model.defaultsecurity 11.0.1 rsa

2 Modify the new plug-in’s manifest file.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component

29

1 Open:

SACTUATE_HOME/BRDPro/eclipse/plugins
/com.actuate.birt.model.defaultsecurity 11.0.1 rsa
/META- INF/MANIFEST . MF

2 Change:

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity

to:

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity.rsa

MANIFEST.MF now looks similar to the one in Listing 2-4.
Listing 2-4 Modified MANIFEST.MF for the new encryption plug-in

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Actuate Default Security Plug-in

Bundle-SymbolicName: com.actuate.birt.model.
defaultsecurity.rsa;singleton:=true

Bundle-Version: 11.0.1.<versions

Require-Bundle: org.eclipse.birt.report.model,

org.eclipse.core.runtime

Export-Package: com.actuate.birt.model.defaultsecurity.api

Bundle-ClassPath: acdefaultsecurity.jar

Bundle-Vendor: Actuate Corporation

Eclipse-LazyStart: true

Bundle-Activator: com.actuate.birt.model.defaultsecurity.
properties.SecurityPlugin

3 Save and close MANIFEST.MF.

3 Modify the new plug-in’s descriptor file to make it the default encryption
plug-in.

1 Open:

SACTUATE_HOME/BRDPro/eclipse/plugins
/com.actuate.birt .model.defaultsecurity 11.0.1_rsa
/plugin.xml

2 Change:
extensionName="jce"
to:
extensionName="rsa"

plugin.xml now looks similar to the one in Listing 2-5.

30 Actuate BIRT Java Components Developer Guide

Listing 2-5 Modified plugin.xml for the new encryption plug-in

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
<extension id="encryption"
name="default encryption helper"
point="org.eclipse.birt.report.model.encryptionHelper">
<encryptionHelper class="com.actuate.birt.model.
defaultsecurity.api.DefaultEncryptionHelper"
extensionName="rsa" isDefault="true" />
</extension>
</plugin>

3 Save and close plugin.xml.

Modify the original plug-in’s descriptor file, so that it is no longer the default
encryption plug-in.

1 Open:

SACTUATE_HOME/BRDPro/eclipse/plugins
/com.actuate.birt.model.defaultsecurity 11.0.1/plugin.xml

2 Change:
isDefault="true"
to:
isDefault="false"
3 Save and close plugin.xml.
Set the encryption type in the new plug-in to RSA.
1 Open:

SACTUATE HOME/BRDPro/eclipse/plugins
/com.actuate.birt.model.defaultsecurity 11.0.1 rsa
/encryption.properties

2 Change the encryption type to public encryption:
type=public encryption

3 Change the algorithm type to RSA:
algorithm=RSA

4 Copy the pre-generated private and public keys for RSA to the
symmetric-key and public-key properties. encryption.properties now looks
similar to the one in Listing 2-6.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 31

Listing 2-6 Modified encryption.properties file for the new encryption
plug-in

#message symmetric encryption , public encryption
type=public encryption

#private encryption: DES(default), DESede

#public encryption: RSA
algorithm=RSA

NONE , CBC , CFB , ECB(default) , OFB , PCBC
mode=ECB
#NoPadding , OAEP , PKCS5Padding(default) , SSL3Padding

padding=PKCS5Padding

#For key , support default key value for algorithm

#For DESede ,DES we only need to support private key
#private key value of DESede algorithm : 20b0020e918..
#private key value of DES algorithm: 527c23ea...

#for RSA algorithm , there is key pair. you should support
#private-public key pair

#private key value of RSA algorithm: 308202760201003....
#public key value of RSA algorithm: 30819£f300d0....
#private key

symmetric-key=308202760. ...

#public key

public-key=30819£300d0.....

5 GSave and close encryption.properties.

6 To test the new default RSA encryption, open a BIRT Report Designer and
create a new report design. Create a data source and type the password.

7 View the XML source of the report design file. Locate the data source
definition code. The encryptionlD is rsa, as shown in Listing 2-7.

Listing 2-7 Data source definition, showing the encryption ID

<data-sourcess>
<oda-data-source extensionID="org.eclipse.birt.report.

data.oda.jdbc" name="Data Source" id="6">

<text-property name="displayName"></text-propertys>

<property name="odaDriverClass">
com.mysqgl.jdbc.Driver

</propertys>

<property name="odaURL">
jdbc:mysqgl://192.168.218.225:3306/classicmodels

</propertys>

<property name="odaUser">root</property>

<encrypted-property name="odaPassword" encryptionID="rsa">
36582dc88.....

</encrypted-property>

32 Actuate BIRT Java Components Developer Guide

</oda-data-source>
</data-sources>

8 Create a data set and a simple report design. Preview the report to validate
that BIRT connects successfully to the database server using the encrypted
password. Before trying to connect to the data source the report engine
decrypts the password stored in the report design using the default RSA
encryption. The engine sends the decrypted value to the database server.

Generating encryption keys

The default encryption plug-in provides classes that can be used to generate
different encryption keys. The classes’ names are SymmetricKeyGenerator and
PublicKeyPairGenerator. SymmetricKeyGenerator generates private keys, which
are also known as symmetric keys. PublicKeyPairGenerator generates public
keys. Both classes require acdefaultsecurity.jar in the classpath.

Both classes take two parameters, the encryption algorithm and the output file,
where the generated encrypted key is written. The encryption algorithm is a
required parameter. The output file is an optional parameter. If you do not
provide the second parameter, the output file is named key.properties and is
saved in the current folder. The encryption algorithm values are shown in

Table 2-6.

Table 2-6 Key generation classes and parameters

Class name

Encryption
algorithm parameter

com.actute.birt. model.defaultsecurity.api.

keygenerator.SymmetricKeyGenerator

com.actute.birt.model.defaultsecurity.api.

keygenerator.SymmetricKeyGenerator

com.actute.birt. model.defaultsecurity.api.

keygenerator.PublicKeyPairGenerator

des

desede

rsa

How to generate a symmetric encryption key

Run the main function of SymmetricKeyGenerator.

1 To navigate to the default security folder, open a command prompt window

and type:

cd C:\Program Files\Actuatell\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity 11.0.1

2 To generate the key, as shown in Figure 2-2, type:

java -cp acdefaultsecurity.jar

com.actuate.birt.model.defaultsecurity.api.keygenerator.

SymmetricKeyGenerator des

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 33

ecurity_2.2.2>java —cp acdefaultsecurity.jar com.actuate.birt.model.defaultsecur
ity.api.keygenerator.SymmetricKeyGenerator des
Generator symmetric key successfully?

C:vProgram Files“Actuatell“BRDPro“eclipsesplugins com.actuate.hirt.model.defaults
ecurity_2.2.2>

Figure 2-2 Symmetric key generation
encr_cmd_gen.png

3 The key is generated and saved in the file, key.properties. The content of the
file looks like the following:

#Key Generator
#Wed Nov 18 16:17:06 PST 2008
symmetric-key=73c76d5..

4 Copy the key from the generated key file to encryption.properties file.

How to generate a public key with RSA encryption

Run the main function of PublicPairGenerator.

1 To navigate to the default security folder, open a command prompt window
and type:

cd C:\Program Files\Actuatell\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity 11.0.1

2 In the command prompt window, type:

java -cp acdefaultsecurity.jar
com.actuate.birt.model.defaultsecurity.api.keygenerator.
PublicPairGenerator rsa

The class generates a pair of keys saved in the key.properties file such as the
following example:

#Key Generator

#Wed Nov 18 15:58:31 PST 2008
public-key=30819£300.....
symmetric-key=3082027502010......

3 Copy the key from the generated key file to the encryption.properties file.

Deploying custom emitters

Actuate supports using custom emitters to export BIRT reports to custom
formats. The custom emitters in BIRT are implemented as plug-ins and packaged

34 Actuate BIRT Java Components Developer Guide

as JAR files. To make them available to Actuate Java Components, copy the
emitters to <context-root>/WEB-INF/platform/plugins folder. Every time you
deploy a custom emitter, you need to restart the product or the product service.
This ensures the emitter JAR file is added to the classpath and the product can
discover the new rendering format.

The following products support custom emitters:
m Actuate BIRT Studio
m Actuate BIRT Report Designer
m Actuate BIRT Report Designer Professional
m Actuate Java Components:
m Actuate BIRT Viewer Component
m Actuate BIRT Interactive Viewer Component
m Actuate BIRT Studio Component
m Actuate BIRT Deployment Kit

Rendering in custom formats

After deploying the custom emitter you can see the new rendering formats
displayed along with built-in emitters in the following places:

m Preview report in Web Viewer in BIRT Report Designer and BIRT Report
Designer Professional.

m Export Content dialog of Actuate BIRT Viewer and Actuate BIRT Interactive
Viewer.

The following examples show the deployment and usage of a custom CSV
emitter. The emitter allows rendering a report as a comma separated file. The
custom format type is MyCSV and the JAR file name is
org.eclipse.birt.report.engine.emitter.csv,jar.

How to deploy and use a custom emitter in BIRT Report Designers

The assumption in this example is that the Actuate BIRT designers are installed in
C:\Program Files\ Actuatell folder on Windows.

1 Copy org.eclipse.birt.report.engine.emitter.csvjar to:
C:\Program Files\Actuatell\MyClasses\eclipse\plugins

2 Open a BIRT report in BIRT Report Designer or BIRT Report Designer
Professional.

3 Preview the report in Web Viewer.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component 35

4 The new MYCSV format appears in the list of formats as shown in Figure 2-3.

i 1 View Report in \web Yiewer

i 3 View Report as DOC

U 4 View Report as HTML

h §View Report as FDF

i} EView Report as POSTSCRIPT
U T View Report as PPT

) 8 View Repart as ¥LS

Figure 2-3 List of available formats in Web Viewer

Emitt-brpro-web-viewer.png

5 Select the MYCSV option. A file download dialog box appears as shown on
Figure 2-4. Select Save to save the file. The default file name is iv.mycsv. You
have an option to rename the file when saving it. The report content is
exported to the new format.

Do you want to zave this file. or find a program online to open
it?

Mame: iv.mycsy
Type: Unknown File Type
From: localhost

Find | {Bave I Cancel

| "-I ‘While files fram the Intemnet can be uzeful, zame files can patentially
g harm your computer. [F you do not trust the source, do not find a
~ program to open thiz file or save this file. 'What's the risk?

Figure 2-4 Open/Save exported content
Emitt-save-export.png
How to deploy and use a custom emitter in Actuate Java Components

The assumption in this example is that the Java Components are deployed to
Apache Tomcat 6.0, and are installed in C:\Program Files\ Apache Software
Foundation\Tomcat 6.0 folder on Windows.

1 Copy org.eclipse.birt.report.engine.emitter.csvjar to:

C:\Program Files\Apache Software Foundation\Tomcat 6.0\webapps
\ActuateJavaComponent \WEB-INF\platform\plugins

2 Restart Apache Tomcat from Start>Settings>Control Panel>-Administrative
Tools>Services as shown in Figure 2-5.

36 Actuate BIRT Java Components Developer Guide

Q

File Action View

Help

JS[=] b

A EIEREE I

., Services {Local)

MName =

3«, Apache Tomcal
o dpplication Experie, .,
% Application Tdentity

£, Application Layer G...
£ ASP.MET Shate Ser. .,

f+ Background Intelig, ..
‘. Base Filkering Engine

Lo BitLocker Drive Enc,..
Extended 4, Standard

“.:. Application Informa. ..

‘., Application Manage. ..

Apache Ta...
Processes ..,
Determines...
Fadilitates ...

Provides s...

Processesi..

Provides s...

TransfersF...,
The Base F...
BDESYC ho...

Status

Started

Started

Started
Started

Startup Tvpe
Mariual
Mariual
Manual
Mariual
Mariual
Mariual
Marual
Autarnatic (0.
Automatic
Mariual

Local Service
Lacal System
Local Service
Lacal System
Metwork 5.,
Lacal System
Local Service
Local Svstem

Figure 2-5

Emitt-service

3 Open a BIRT report in Actuate BIRT Viewer or Interactive Viewer.

Restarting the Apache Tomcat Service

s-jc.png

4 Select Export Content from the viewer menu.

5 The new MyCSV format shows up in the Export Formats, as shown in

Figure 2-6.
Export Content x
Export Format: My ZSY i
~ Page Settings
Page range
Chart DPI 152
Figure 2-6

Export Content in Actuate BIRT Viewers

Emitt-iv-export-content.png

6 Choose OK. A file download dialog box appears as shown on Figure 2-4.

Select Save to save the file.

Chapter 2, Deploying Actuate BIRT reports using an Actuate Java Component

37

38 Actuate BIRT Java Components Developer Guide

Creating a custom Java
Component web
application
This chapter contains the following topics:
m Java Component web application structure and contents
m Configuring a custom Java Component web application

m Customizing a Java Component web application

m Modifying global style elements

Chapter 3, Creating a custom Java Component web application 39

Java Component web application structure and
contents

Java Component generates web pages using a set of default JSPs then sends the
web pages to a web browser. Actuate Java Component JSPs use cascading style
sheets, JavaScript, and custom tags to generate dynamic web page content. The
JavaScript and tags provide access to other JSPs, JavaBeans, and Java classes.

The Java Component web application organizes these interoperating components
into a Model-View-Controller (MVC) architecture. To operate a web application,
the MVC components perform the following functions:

m Model contains the logic for sending requests to and processing responses
from the repository. This component is the data model for Java Component.

m View contains the pages that display data prepared by actions. This
component is the presentation portion of Java Component.

m Controller contains the servlets that implement actions. This component is the
program control logic for Java Component and manages actions initiated from
the browser.

The controller maps actions, designated by URLs with the .do extension, to an
actionServlet. The actionServlet is configured with action paths specified in
<WAR file root>\WEB-INF\struts-config.xml.

Typically, an action path leads to a JSP with parameters as a web resource.
Actuate Java Component file and directory names are case-sensitive. The first
time you use a JSP, your web server compiles it into a servlet. Servlets are
compiled Java programs or JSPs that run as part of a network service such as a
web server. After compiling a JSP into a servlet, a web server can fulfill
subsequent requests quickly, provided that the JSP source does not change
between requests.

Users make requests to view the contents of a repository, run and view reports,
and so on. Each JSP processes any URL parameters by passing them to JSP tags.

You specify the user’s file system repository location. To specify the locale and
time zone to which to connect, use parameter values in an Actuate Java
Component request within a URL or by specifying the desired values in the login
form. For example, the following URL specifies the en_US locale for U.S. English,
and the Pacific standard time for the timezone parameter:

http://localhost:8080/ContextRoot/login.do
?locale=en US&timezone=PST

40 Actuate BIRT Java Components Developer Guide

Understanding Java Component directory structure

The Java Server Pages (JSPs) that implement Actuate Java Component URIs are
grouped by function into directories under the context root. The context root is
the web directory in which an Actuate Java Component web application resides,
which is the web archive (.war) file’s name. When the web archive (.war) file is
extracted, the context root for Java Component is the root directory of the web
archive (.war) file. The Java Component context root name in the web or
application server’s configuration file is the name of the web archive (.war) file as
set by the Java jar utility. Figure 3-1 shows the Java Component directory

structure.

<Context root>

birtAdapter

L]

bizRD

channels

I
I

(9]
(7]
(]

channels

common

—{ activePortal

',

o
c
o
@
<
I}
2
@
i

birt

filesfolders

1

4{ common

ion

(o]
C
0
=
o
3
N
2
o

1
=
&
=]
2
7]

images

iportal

examples

jsapi

<

. = =0
@]
ko]

—

logs
META-INF
newrequest
options
requests
resources

viewer

portlets

Figure 3-1

4{ WEB-INF Hr

epository

images

private

viewer

U

filesfolders
jobs
newrequest
options
parameters
query
sample

skins

Actuate Java Component directory structure

templates

Actuate Java Component URIs convey user requests to an application server.

Chapter 3, Creating a custom Java Component web application

41

Pages that support folder navigation and document viewing reside in the
<context root>\iportal\activePortal directory. Within this directory, pages that
support report viewing reside in the viewer directory, pages that serve as
templates for other pages reside in the templates directory, and so on. Some
directory names exist directly under the iportal directory and also under the
<context root>\iportal\activeportal \ private subdirectory. Customize the JSPs
under the private subdirectory. Table 3-1 lists and describes the general context

root directories.

Table 3-1 <Context root> directories
Directory Contents
This directory ajclanding jsp, the default page for accessing all Actuate
Java Component functionality, and supporting material.
birtAdapter Pages that support BIRT Viewer.
bizRD Pages that support BIRT Studio.
channels Support for channels.
css Actuate Java Component cascading style sheet (.css) files.
downloads Downloaded files.
filesfolders Pages that support working with files and folders.
help Help files.
images Images for Actuate Java Component web pages, such as
buttons, icons, lines, and bullets.
iportal The Java Component application.
iv The Interactive Viewer application.
js JavaScript files that control specific web page elements such
as search, toolbar, and table of contents.
META-INF The Java Component manifest file.
newrequest Pages that support requests.
options Options-specific pages, such as channels, notification, and
options update pages.
requests Pages in this directory provide backward compatibility for
custom web applications referencing these pages by URL.
Use the action paths and the private\jobs directory for new
customization projects.
resources Support for localization and backward compatibility.
viewer Pages that support report viewing.
WEB-INF Files that manage session information such as current user

login, roles, and volume.

42 Actuate BIRT Java Components Developer Guide

Table 3-2 lists and describes the iportal directories.

Table 3-2 <Context root>/iportal directories

Directory Contents

activePortal Pages that support login and authentication and directories
for the remaining pages for folder navigation and document
usage

birt Libraries that support BIRT reports, BIRT Studio, and
Interactive Viewer and pages that support BIRT reports

common Common elements included in all reporting web pages,
such as banner and side menu elements

examples Java Servlet examples

jsapi JavaScript pages to support the JavaScript API
demonstration page

portlets Actuate JSR-168 portlets

Table 3-3 lists and describes the <context root>\iportal\activePortal directories.

Table 3-3 <Context root>/iportal/activePortal directories
Directory Contents
This directory Pages that support login and authentication and directories
for the remaining folder and document pages for the Java
Component application.
common Common elements included in all reporting web pages,
such as banner and side menu elements.
dtd Document type definitions.
errors Error pages.
images Images for reporting web pages, such as buttons, icons,
lines, and arrows.
private Most Java Component folders and documents web pages.
Users cannot directly access pages in this directory using
URLs. These pages are customizable.
private Pages that support channels. Channels have no relevancy in
\channels the Deployment Kit.
private Common elements included in all reporting web pages,
\common such as banner and side menu elements.
private Pages that support viewing Actuate Analytics Option cubes.
\cubeviewer The cube viewer has no relevancy in the Deployment Kit.

(continues)

Chapter 3, Creating a custom Java Component web application 43

Table 3-3 <Context root>/iportal/activePortal directories (continued)
Directory Contents
private Pages that support customization of skins.
\customization
private Self-diagnostic utility page.
\diagnosis
private Pages that support working with files and folders.
\filesfolders
private\jobs Pages that support requests such as completed requests,
successful submission, and details pages by redirecting.
private Pages that support new requests, such as parameter
\newrequest processing, scheduling, and job status pages.
private\options Options-specific pages, such as channels, notification, and
options update pages.
private Pages that support table parameters.
\parameters
private\query Pages that support Actuate Query functionality. Queries
have no relevancy in the Deployment Kit.
private\sample = Example custom requester page.
private\skins Skins definitions.
private Jakarta Struts template pages that simplify customization by
\templates handling common web page structure and functionality for
many pages.
viewer Pages that support report viewing. The viewer has no

relevancy in the Deployment Kit. The BIRT Viewer is a
separate application and is not in the viewer directory.

Actuate recommends that you group Java Component applications in the home
directory of an Actuate distribution to make them easier to locate. Place the

context root in whatever location your application requires. To ensure that the JSP
engine locates your Java Component application’s context root, always use the jar
utility to generate the web archive (.war) file after licensing or customization.

Building a custom Java Component context root

An Actuate Java Component web application resides in a context root. You

specify the Java Component context root by naming the WAR file. For example, if
your web archive (.war) file were named ActuateJavaComponent.war and you
deployed it on an Apache Tomcat web server, the URL to access the application is:

http://<web servers:<ports>/ActuatedJavaComponent/

44 Actuate BIRT Java Components Developer Guide

Apply a similar process to setup other application servers and servlet engines. By
configuring the context root, the application server will route requests from the
user’s browser for Java Component web content to the JSPs in the context root.

You can create several Actuate Java Component context roots. Each context root
can contain a web reporting application that uses a different design. For example,
you can create different web reporting applications for particular language
groups or departments.

How to create a new context root

In the following example, you create a custom reporting web application for
MyCorp’s Marketing Communications group. You want your Marketing
Communications users to use the following URI prefix to access their custom
application:

http://MyCorp:8900/marcom

For example, to access their application’s login page they would choose a web
page hyperlink with the following URI:

http://MyCorp:8900/marcom/login.do

1 Extract the contents of the Java Component WAR or EAR file into a temporary
directory.

On a Windows server, open a command window and type the following
commands, replacing the E: DVD drive letter with the path of your Java
Component WAR file:

cd C:\Temp\jc
copy E:\ActuateJavaComponent.war
jar -xf ActuateJavaComponent.war

The Java Component files appear in the temporary directory. Leave the
command window open.

On a LINUX or UNIX server, type the following commands, replacing the
DVD drive name with the path of your Java Component WAR file:

cd /temp/jc
cp /dev/dsk/cd/ActuatedJavaComponent.war
jar -xf ActuateJavaComponent.war

The Actuate Java Component files appear in the temporary directory.

2 Use the jar utility to create a marcom.war file. Type the following command:

jar -cf ../marcom.war *

This command creates marcomt.war in the parent directory. This new Java
Component WAR file now has the context root marcom.

3 Deploy the marcom.war file to the application server or servlet engine on the
MyCorp host as an application. Set the service port to 8900.

Chapter 3, Creating a custom Java Component web application 45

4 Restart your application server or JSP engine. For example, to restart Apache
Tomcat on a Windows XP system, perform the following steps:

1 From the Windows Start menu, choose All Programs>Administrative
Tools>Services.

2 On Services, select Apache Tomcat service.
3 From the menu, choose Action>Restart.
4 Close Services.

After you stop and restart the server, your Marketing Communications users can
access the Java Component web application called marcom. The application looks
like the default Actuate Java Component application because you have not
customized its appearance.

Modifying existing content or creating new content

You can modify the content of an existing page or create new pages to link to your
custom web application. Typically, a web page has a simple JSP that specifies the
template to use and another JSP to use as the content element. For example, the
following code specifies that the content element uses the JSP code in

<context root>\iportal\activePortal\ private \newrequest \newrequestpage.jsp:

<template:put name="content" content="/iportal/activePortal
/private/newrequest/newrequestpage.jsp" />

The content JSP contains the code that creates the page-specific content and
functionality. This JSP contains code that places page-specific text, graphics, links,
and other functionality on the page. You can use HTML code, JSP code, JSP
built-in tags, Jakarta Struts tags, Actuate servlets, Actuate custom tags, Actuate
JavaBeans, CSS, and JavaScript methods to obtain data and present information
on the page. For information about how to use these features, see “Customizing a
Java Component web application” later in this chapter.

The default Actuate Java Component pages use HTML tables to provide
formatting for each page. The tables are often nested. Individual files include
other files that define elements, such as the <TABLE> declaration. As you modify
the pages to suit your needs, verify that the Actuate Java Component pages for
tasks, such as logging in, listing folders and files, and viewing and requesting
reports appear correctly in your web browser.

When using relative hyperlinks in your HTML code, ensure that any files to
which you refer are available to Actuate Java Component. Java Component
resolves relative hyperlinks from the context root. For example, in the standard
Java Component installation, the following code refers to an images directory at
the same level as the Java Component context root directory:

46 Actuate BIRT Java Components Developer Guide

All Actuate Java Component requests require action paths to have certain names.
Similarly, the action paths require JSP files to have certain names and to reside in
a particular directory under the context root. Do not rename the default files
provided with Java Component without making the corresponding change to
struts-config.xml. If you do not change the file name consistently in all places,
Java Component cannot locate your custom files.

Activating a new web application

To activate the changes you make in the Java Component configuration files,
content pages, or by creating a new context root, you must restart the web server
that runs Java Component.

How to restart a web service on a Windows XP system

1 From the Windows Start menu, choose All Programs>Administrative
Tools>Services.

On Services, select Application Server or servlet container service.
From the menu, choose Action>Restart.

Close Services.

Configuring a custom Java Component web application

Java Component’s configuration determines many of its essential methods.
Configuring your web application customizes how it operates internally, as well
as having an effect on the user’s experience.

Customize specific pages and operations using the Actuate Java Component web
pages, as described in “Customizing a Java Component web application,” later in
this chapter.

Perform cosmetic customization tasks using the Actuate Java Component style
sheets, as described in “Modifying global style elements,” later in this chapter.

Customizing Java Component configuration

You set configuration parameters for the Java Component application to tune
performance and to control service and application execution.

You configure the Java Component application by changing configuration file
contents, such as web.xml. To understand the common configuration files and
how each of their entries affect Java Component, see Chapter 4, “Actuate Java
Component configuration.”

The following section describes the customization procedure using the text editor.

Chapter 3, Creating a custom Java Component web application 47

How to customize Java Component configuration parameters

Use the following procedure to customize configuration parameters for Java
Component. In this procedure, it assumed that web.xml is the configuration file.

1 Extract the contents of the Actuate Java Component WAR or EAR file into a
temporary directory.

Make a backup copy of web.xml.

Using a text editor that supports UTF-8 encoding, edit web.xml to change
parameter values. Parameter definitions use the following format:

<param-name><keyword></param-name>
<param—value><value></param—value>

where
m <keyword> is the name of the parameter.
m <value> is the parameter value.

Do not enclose the keyword and value within quotes, and use no spaces
between <param-name>, the keyword or value, and </param-name>. For
example, the definition for the default locale parameter is:

<param-name>DEFAULT LOCALE</param-name>
<param-value>en US</param-valuex>

Save web.xml.

Recompress your Java Components WAR file using the Java jar utility and
redeploy it to the application server or servlet engine as an application.

6 Restart the application server or servlet engine that runs Java Component.

How to set a default Java Component locale and time zone

The default locale and timezone for Java Components are set when you install it.
To change the default settings, you modify the values of the DEFAULT_LOCALE
and DEFAULT_TIMEZONE configuration parameters.

1 Extract the contents of the Actuate Java component WAR or EAR file into a
temporary directory.

2 Using a UTF-8 compliant code editor, open the web.xml configuration file.

3 Navigate to the lines that define DEFAULT_LOCALE, similar to the following
code:

<param-name>DEFAULT_LOCALE</param-name>
<param-value>en US</param-value>

Change the current locale id, en_US in the above example, to the desired locale
id in param-value. Valid locale id strings are listed in <context root>
\WEB-INF\localemap.xml.

48 Actuate BIRT Java Components Developer Guide

4 Navigate to the lines that define DEFAULT_TIMEZONE, similar to the
following code:

<param-name>DEFAULT TIMEZONE</param-names>
<param-value>America/Los_Angeles</param-values

Change the current time zone id, Pacific Standard Time in the above example,
to the desired default time-zone in param-value. Valid time zone id strings are
listed in <context root>\WEB-INF\TimeZones.xml.

Save web.xml.

Recompress your Actuate Java Component WAR or EARfile using the Java jar
utility and redeploy it to the application server or servlet engine as an
application.

7 Restart the application server or servlet engine that runs Java Component.

Customizing requester pages

When a user chooses to run a report, a requester page appears. Using the
requester page, a user chooses values for the report’s parameters, if there are any.
The user can also select execution options, such as the desired output format. You
can create or modify requester pages for your custom web application. The
following list provides a summary of the techniques for customizing requester

pages:

m Create a new JSP form for the user to specify the desired report parameter
values and then use these values to construct the appropriate Actuate Java
Component URI to execute the report.

Actuate recommends this approach. It supports full control of the requester
page design while using existing functionality for the execution of the report.

m Modify the existing requester page files.

This approach is best for minor changes, such as hiding one of the many
execution options that the page supports.

m Create a new requester page and an Action class to provide processing of the
page and execution of the report.
This approach provides full control of the requester page design and the
processing of the report. Creating an Action class requires an understanding of
Java and Jakarta Struts.

Customizing a Java Component web application

Actuate Java Component supports customization of the landing page,
<context root>\landing.jsp, and the appearance of the pages in My Documents,
BIRT Studio, and the Interactive Viewer for BIRT reports and business reports.

Chapter 3, Creating a custom Java Component web application 49

You use knowledge of the following standard languages and frameworks to
customize a Java Component web application manually:

m Cascading style sheet (.css) files
CSS files define fonts, colors, and other visual design attributes of a Java
Component web application. For information about modifying style sheets,
see “Modifying global style elements,” later in this chapter.

s Hypertext markup language (HTML)

HTML handles links and the presentation of text and graphics in web pages.
Java Component incorporates HTML code in its JavaServer pages.

m Jakarta Struts Framework

Jakarta Struts Framework is an open source framework for building web
applications. Based on standard technologies, Struts enables the Java
Component Model-View-Controller design. For more information about
Struts, access the following URL:

http://jakarta.apache.org/struts

m Java
Java Component uses Java classes to provide functionality. You can create
your own Java classes for your custom web application. For more information
on the Java Component Java classes, see Chapter 9, “Actuate Java Component
JavaBeans.”

m JavaScript
JavaScript is an interpreted object-oriented language that facilitates
embedding executable content in web pages. It provides strong tools for
interacting with web browsers.

m JavaServer Pages
The JavaServer Pages (JSP) extension of the Java Servlet API facilitates the
separation of page design from business logic. JSPs are a platform-
independent solution. Java Component web pages are defined primarily by
JSPs. For more information about the Actuate JavaServer Pages, see Chapter 5,
“Actuate Java Component URIs.”

Actuate recommends that you use the skin manager to customize as much as
possible and then handle any remaining customization tasks manually.

Viewing modifications to a custom web application

After making changes to your Java Component web application, you need to
view the changes. Caching in the browser or your application server can interfere
with seeing the changes you have made. After changing a Java Component
application, complete these general tasks in order:

m Save any files involved in the change.

50 Actuate BIRT Java Components Developer Guide

m Refresh the browser page.

m If you do not see changes you made in a JSP or XML file, complete the
following tasks in order:

= Shut down the JSP engine.

m Clear the JSP engine’s cache or work directory to ensure that the JSP engine
picks up your changes.

m Restart the JSP engine.

m If you do not see changes you made in a cascading style sheet file or a
JavaScript file, clear the web browser’s cache, then refresh the page.

Your changes appear in the web browser.

Locating existing pages and linking in new pages

Actuate Java Component controls web page navigation with Jakarta Struts action
paths. An action path is a uniform resource identifier (URI) called directly by Java
Component or by a user to access the Java Component functionality.

<context root>\WEB-INF\struts-config.xml contains the action path
specifications.

An action path can specify a JSP to use to gather input. The action path uses the
results of an Action class to determine the next action path to perform or the next
JSP to display. Typically, an action path forwards the user to one action path or
JSP if the execution succeeds and a different action path or JSP if the execution
causes an error. In the following code sample, if the AcGetFolderltemsAction
JavaBean returns success, the next JSP to display is <context root>\iportal
\activePortal\private \filesfolders\filefolderlist.jsp:

<!-- Process getfolderitems -->
<action
attribute="filelListActionForm"
name="fileListActionForm"
path="/getfolderitems"
scope="request"
type="com.actuate.activeportal.actions.AcGetFolderItemsAction"
validate="false">
<forward name="success"
path="/iportal/activePortal/private/filesfolders
/filefolderlist.jsp" />
</action>

In the preceding example, the path for an error result uses the definition in the
global forwards section of struts-config.xml as a default value:

<forward name="error"
path="/iportal/activePortal/private/common/errors
/errorpage.jsp"/>

Chapter 3, Creating a custom Java Component web application 51

If the JavaBean returns another result, such as viewroi, you can include a forward
for that result, as shown in the following example:

<forward name="viewroi"
path="/iportal/activePortal/viewer/viewframeset.jsp"
redirect="true" />

To locate an existing page, navigate to that page and examine the URI in the
address field of your browser. If the URI contains a JSP name, go to that file. If the
URI contains an action path, search struts-config.xml for that action path without
the .do extension, or look up the action path in Chapter 5, “Actuate Java
Component URIs.”

To add a new web page to Java Component, you change the navigation in
struts-config.xml so that all navigation for your web application remains in a
single location. You can change an existing input page or forward page
specification in an action path to your new page, or you can create a new action
path that forwards to your page. If you create a new action path, you can change
another action path to forward to your new path or you can modify or create links
on web pages to specify your new action path. The following action path always
navigates to welcome.jsp when another action path, link, or URL invokes it:

<!-- Process welcome -->

<action path="/welcome"
forward="/iportal/activePortal/private/welcome.jsp"
name="welcome" >

</action>\

For more information on action paths and Jakarta Struts, access the following
URL:

http://jakarta.apache.org/struts

Obtaining information about the user and the session

Typically, new Actuate Java Component web pages need access to session
information. Your application server and Java Component store information
about the session that you can use in your web pages. You can obtain the
serverURL, volume, and other information from your application server, as
shown in the following example. The volume parameter returns the name of the
machine that hosts the application server and the serverURL parameter returns
an empty string.

String volume = request.getParameter ("volume") ;
String serverURL = request.getParameter ("serverurl") ;
String userId = request.getParameter ("userid");
String password = request.getParameter ("password") ;
String roxReport = request.getParameter ("report") ;

52 Actuate BIRT Java Components Developer Guide

You also can obtain the context root path from your application server, as shown
in the following code:

String contextRoot = request.getContextPath() ;

Actuate Java Component stores a wide variety of information about the session in
UserInfoBean. To access UserInfoBean, place the following line of code near the
top of your JSP:

<jsp:useBean id="UserInfoBean"
class="com.actuate.activeportal .beans.UserInfoBean"
scope="session"/>

After this line, you can access information in the JavaBean by the appropriate get
method. The most important method for new pages is the getlportalid() method.
This method retrieves the user’s authentication ID with the server. This ID is
based on the user name only.

To write generic code, you need to determine whether your application is
running. Java Component includes a utility class, iPortalRepository, that provides
this information. To access this class in your JSP, place the following code at the
head of your JSP:

<%@ page
import="com.actuate.iportal.session.iPortalRepository"

o°

>
You can then use code similar to the following line to check the repository type:

boolean isEnterprise =
iPortalRepository.REPOSITORY ENCYCLOPEDIA.equalsIgnoreCase (
UserInfoBean.getRepositoryType()) ;

You can then use the authentication ID and the repository type to access the
server with JSP custom Actuate tags and calls to Java Component beans, as
shown in the following examples:

String authenticationID = UserInfoBean.getIportalid() ;
String folderPath = UserInfoBean.getCurrentfolder() ;
jobDetailURL += StaticFuncs.encode (UserInfoBean.getUserid()) ;
com.actuate.reportcast.utils.AcLocale acLocale =
UserInfoBean.getAcLocale () ;
TimeZone timeZone = UserInfoBean.getTimezone () ;
boolean isEnterprise =
iPortalRepository.REPOSITORY ENCYCLOPEDIA.equalsIgnoreCase (
UserInfoBean.getRepositoryType()) ;
String serverURL =
(isEnterprise | UserInfoBean.getServerurl() | "");
String userVolume =
(isEnterprise | UserInfoBean.getVolume() | "");

Chapter 3, Creating a custom Java Component web application 53

Customizing accessible files and page structure
using templates

Actuate Java Component uses Jakarta Struts templates to simplify JSP code and
customization. Java Component templates handle overall page organization,
access to Jakarta Struts custom tag libraries, and access to common CSS and
JavaScript files. The login page and landing page do not use a template. Table 3-4
describes the Java Component templates.

Table 3-4 Actuate Java Component Struts templates

Template Method

simpletemplate.jsp Used for errors, confirmations, and other simple pages
querytemplate.jsp Used by most Actuate Query pages

template.jsp Used by all other pages except the login page

Each Actuate Java Component skin has its own version of these templates in
<context root>\iportal\activePortal \ private \skins\ <skin name>\templates.
The set of templates in <context root>\iportal\activePortal\templates sets up
several JavaBeans and then accesses the template of the same name for the user’s
selected skin. Typically, customization only involves templates in <context root>
\iportal\activePortal\ private \skins\ <skin name>\templates.

Specifying a template and template elements

To use a template and template elements, a page uses the Jakarta Struts custom
template tags, described in Table 3-5.

Table 3-5 Struts template tags

Template tag Method

template:insert Specifies the template to use

template:put Specifies the text or file to use for a template element
such as the name, banner, side menu, or content
elements

The Actuate Java Component template element that is displayed depends on the
skin. A skin is assigned by changing the DEFAULT_WORKGROUP_SKIN
parameter in web.xml. Table 3-6 lists the DEFAULT_WORKGROUP_SKIN values
that correspond to the templates for each of the default skins.

Table 3-6 Valid DEFAULT_WORKGROUP_SKIN values
Skin Value
Classic classic

54 Actuate BIRT Java Components Developer Guide

Table 3-6 Valid DEFAULT_WORKGROUP_SKIN values

Skin Value
Tabbed tabbed
Tree View treeview

The custom template tags define the JSPs to use for the template and the custom
elements that the template specifies to build the user interface. For example, the
template:insert tag in the following code specifies the use of template.jsp. The
first template:put tag accesses the localized string for the title of the page. The
remaining template:put tags specify that the template use banner, side menu, and
content elements using the files specified in each tag.

Table 3-7 lists the Java Component templates and the pages that use them.

Table 3-7 Templates for JSPs

Template JSPs in iportal\activePortal \ private

querytemplate.jsp query \create.jsp
query \execute.jsp

simpletemplate.jsp common \errors \errorpage.jsp
customization \fileupload.jsp
newrequest\newrequest2.jsp
query \confirmation.jsp
query \fileexists.jsp
query\runconfirmation.jsp

template.jsp customization \skinedit.jsp

customization\skinmanager.jsp
filesfolders\deletefilestatus.jsp
filesfolders\createfolder.jsp
filesfolders\filedetail.jsp
filesfolders\filefolderlist.jsp
filesfolders\search\filefolderlist.jsp
newrequest\newrequest.jsp
newrequest\submitjobstatus.jsp
options\options.jsp

Changing a template

Make changes to all pages that use a particular template by changing only the
template. Add or remove lines in the template that make cascading style sheets,
JavaScript files, and other resources accessible to all pages that use the template.
Customize the overall structure of all pages that use a template by moving,
resizing, or removing the HTML, JSP, and Jakarta Struts code describing the
layout of the web pages that use the template.

Chapter 3, Creating a custom Java Component web application

55

For example, the innerTable of <context root>\iportal\activePortal\private
\skins\treeview \templates\template.jsp specifies various HTML commands
and embedded Jakarta Struts tags that populate the content frame. The inner
banner with the breadcrumb is in the top row. The second row contains the
content page.

<table class="innerTable" border="0" cellspacing="0"
cellpadding="0">

<% if (!"false".equalsIgnoreCase (showBreadCrumb)) { %>
<tr>

<td class="allBreadcrumbs">

<jsp:include page="<%= breadcrumb %>" flush="true" >

<jsp:param name="fromDashboard" value="<%= fromDashboard %>" />
<jsp:param name="showBanner" value="<%= showBanner $%>" />
<jsp:param name="showSideBar" value="<%= showSideBar %>" />

o

<jsp:param name="showBreadCrumb" value="<%= showBreadCrumb %>"
/>
</jsp:include>
</td>

</tr>

<% } %>

<tr>
<td class="fileFolderListContent" valign="top">
<divs>
<template:get name="content" flush="true"/>
</div>
</td>

</tr>

</table>

The breadcrumb, or navigation trail, is a link or set of links. On a document page,
the breadcrumb displays the repository and any folders and pages you access.
Use any of these items as a link to return to that level. For a jobs or channels page,
the breadcrumb supports direct access to a document page.

To implement the expandable tree, a frameset in <context root>\iportal
\activePortal\private\skins\treeview \ templates\template.jsp specifies the
sidebar and content frames using HTML and embedded Jakarta Struts tags that
define the content.

<FRAMESET cols="20%,80%" border="1"
onload="1if (typeof (bodyOnload) != 'undefined') bodyOnload() ;">
<FRAME src="<html:rewrite page="<%= sidebar %>"/>"
name="<%=htmlSideFrameName%>"
id="<%=htmlSideFrameId%>"
scrolling="auto"

/>

56 Actuate BIRT Java Components Developer Guide

<FRAME src="<html:rewrite href="<%= contentURL %>" />"
name="main"
scrolling="auto"
/>
</FRAMESET>

Modifying global style elements

Although JSPs can use HTML to set colors, fonts, and other stylistic elements
directly, the JSPs also use cascading style sheets (CSS), templates, and shared
images to control the global styles of a Java Component web application. To
modify the appearance of the entire Java Component web application, change
global style elements.

Global styles can change more than the appearance of Actuate Java Component.
For example, to view search results with HKSCS characters in an English locale,
change the .searchresultlink style’s font from Arial to MingLiU_HKSCS. This
style change only affects the search results.

Understanding style definition files

Additional style definitions for each provided skin come from <context root>
\iportal\activePortal\ private\skins\ <skin name>\css\skinstyles.css. Add more
styles to this file if you want the style definitions to take effect for only a
particular skin. Java Component’s JSP typically link these styles in the following
order:

m <context root>\css\allstyles.css

<LINK href="<html:rewrite page="/css/allstyles.css"/>"
type="text/css" rel="stylesheet">

m <context root>\iportal\activePortal\ private\skins\ <skin name>\css
\skinstyles.css

<LINK
href="<ap:skinResource resource="/css/skinstyles.css" />"
type="text/css" rel="stylesheet" >

m Style specifications from the customization web pages

<STYLE>
<bean:write
name="UserInfoBean" property="skinConfig.cssCode" />
</STYLE>

If a style is defined in more than one of these files, the JSP engine uses the
definition in the last file that contains the style. Thus the settings you specify in
the customization web pages override any other CSS files.

Chapter 3, Creating a custom Java Component web application 57

allstyles.css contains additional style definitions for the Actuate Java Component
application. Modify allstyles.css to change any style definitions that are not
handled within the customization web pages or the <context root>\iportal
\activePortal\ private\skins\ <skinname>\css \skinstyles.css file. Changes to a
style in allstyles.css affects all Java Component skins except the parameters page
unless the customization web pages or a skin’s skinstyles.css file override it. To
customize the parameter component, modify the style definitions in the
<context root>\css\parameter.css file.

How to test and modify styles depending on the browser type
1 Near the top of your JSP, link in the allstyles.css style sheet.

<LINK href="<html:rewrite page="/css/allstyles.css"/>"
type="text/css" rel="stylesheet" >

2 After this line, link in the style sheet located in the current skin’s css directory.

<LINK
href="<ap:skinResource resource="/css/skinstyles.css" />"
type="text/css" rel="stylesheet" >

3 Use the Jakarta Struts bean:write custom tag to generate and include the style
definitions for all styles defined through skin customization pages in Actuate
Java Component.

<STYLE>
<bean:write
name="UserInfoBean" property="skinConfig.cssCode" />
</STYLE>

4 If the skin customization styles contain any settings that do not work in a
specific browser, you can override them individually.

Specifying colors and fonts

Specify fonts and colors for styles in the customization web pages or in the
cascading style sheets. Specify the color in any of the following ways:

m Using a color name such as navy, yellow, or teal, as shown in the following
example:

color: Yellow;

m Using hexadecimal notation to set the amount of red, green, and blue to use in
the color.

#FFFFOO

m Using decimal notation to set the amount of red, green, and blue to use in the
color. In the customization web pages, fill in the value for red, green, and blue
in the corresponding fields. In a CSS file, use a call to the rgb() method, as
shown in the following example:

color: rgb (156, 207, 255);

58 Actuate BIRT Java Components Developer Guide

How to change the font style of a single item

To change Actuate Java Component pages to display the user, system name, and
volume in 12-point italic Comic Sans MS font:

1 Extract the contents of the Actuate Java Component WAR or EAR file into a
temporary directory.

In a text editor, open <context root>\css\allstyles.css.
Locate the following string:
bannerTextArea

There are two instances of the string bannerTextArea. The first is part of the
definition for all the banner styles. This definition sets the banner styles’
common attributes. The second instance sets the attributes for bannerTextArea
only and looks like the following text:

.bannerTextArea (
color: white;
font-size: 10pt;
text-align: left;
white-space: nowrap;

}

4 Modify the code that follows the bannerTextArea definition to change the font
as shown in the following code:

.bannerTextArea {
color: white;
font-family: Comic Sans MS;
font-size: 1lpt;
font-style: italic;
text-align: left;
white-space: nowrap;

}
Save and close the CSS file.

Recompress your Actuate Java Component WAR or EAR file using the Java jar
utility and redeploy it to the application server or servlet engine as an
application.

Restart the application server or servlet engine that runs Java Component.

Refresh your web browser to view the changes. Figure 3-2 shows the new
appearance of the banner.

! |
'7 ACTUATE. r: Evafuation @® @ E

Figure 3-2 Appearance of customized Java Component banner

Chapter 3, Creating a custom Java Component web application 59

Customizing page styles for BIRT Studio

To customize BIRT Studio pages, use the files in <context root>\bizRD\styles.
This directory includes the following customizable CSS files:

m accordion.css defines styles for the report design area of the page, which
displays the Available Data, Report Template Items, and other selectable tree
views.

m dialog.css defines styles for dialog boxes that have shared characteristics,
including the dialog boxes for template selection, file browsing, calculations,
parameters, and so on.

m dialogbase.css defines the style of dialog containers, such as the button style,
the Close icon style, and so on.

m title.css defines styles for the title bar of BusinessReport Studio pages.
m toolbar.css defines styles for the toolbar.

= wrcontextmenu.css defines the styles for BusinessReport Studio context
menus.

Another file in this directory, webreporting.css, is not customizable.

For more information about using cascading style sheets, access the following
URL:

http://www.w3.org/Style/CSS/

Modifying images

To use your own graphics, replace the default Java Component images. Java
Component pages use images for the company logo in the banners, on the side
menu, and for the background. Some pages use additional images that are related
to their content. You can also add new images to pages.

Certain images are most easily changed by customizing a skin. You can customize
the company logo and the My Folder icon for all skins. In addition, you can
customize the open and closed folder icons and volume icon for a skin that is
cloned from the Tree View skin. These and all other images that you can
customize reside in <context root>\iportal\activePortal\ private \skins

\<skin name>\images. Update these images by using the skin customization
pages to use new graphic files instead of changing the supplied graphic files.
Customizing the images described in Table 3-8 affects most Java Component web

pages.
Table 3-8 Images in Java Component skins

Skins Default image file Description

All logo.gif Specifies the company logo to use in the

banners

60 Actuate BIRT Java Components Developer Guide

Table 3-8 Images in Java Component skins

Skins Default image file Description
All homefoldericon.gif ~ Specifies the image to use beside the My
Folder link

Treeview closedfoldericon.gif Specifies the image to use to indicate a
unexpanded folder in the hierarchical view of
the volume and folders

Treeview foldericon.gif Specifies the image to use to indicate an
expanded folder in the hierarchical view of
the volume and folders

Treeview volume_icon.gif Specifies the image to use to indicate a
volume in the hierarchical view of the
volume and folders

An additional image of interest is <context root>\iportal\activePortal \private
\skins\ <skin name>\images\background.gif. This image is used by the classic
skin and its clones to provide the background for every page. This image is one
pixel high and 1280 pixels long, and is copied as necessary to fill the page. You
change the contents of this image file directly to modify the background of a
classic skin clone.

All other images reside in <context root>\iportal\activePortal\images. This
set of images provides the features on the side menu in the classic skin and
the tree in the Tree View. Update these feature images by changing the
corresponding feature definition in the <context root>\iportal \WEB-INF
\functionality-level.config file.

Other images are referenced by hard-coded path and file names in JSP and
JavaScript files, such as the icons in <context root>\iportal\activePortal\private
\filesfolders\views\categories.jsp. For example, categories.jsp specifies the
location and file name, <context root>\iportal\activePortal \images
\detailicon.gif, a magnifying glass icon that is used to obtain more details about a
document or other item in a list. When you change the location or replace an
image with a new file, you must update the JavaScript and JSP files that use them.
Alternatively, make a backup copy of the original image and then reuse the
original name for your new image. By reusing the original name, you do not need
to make any changes in the JSP and JavaScript files using the image.

How to replace the detail icon with your own icon

Actuate Java Component uses a magnifying glass icon to display more
information about files, channels, and jobs. For example, <context root>\iportal
\activePortal\private\jobs\completedjob.jsp contains the following code using
this image:

Chapter 3, Creating a custom Java Component web application 61

<img src="<html:rewrite
page="/iportal/activePortal/images/detailicon.gif"/>"
border="0" align="middle"
alt="<bean:message bundle="iportalResources"
key="TTIP_JOB DETAIL"/>"
title="<bean:message bundle="iportalResources"
key="TTIP_JOB DETAIL" />" >

1 Extract the contents of the Java Component WAR file into a temporary
directory.

2 Create your new details image in <context root>\iportal\activePortal
\images. The default Actuate Java Component icon, detailicon.gif, is 12 pixels
by 13 pixels. During development, use a new name, such as
new_detailicon.gif.

3 Rename the existing details image, <context root>\iportal\activePortal
\images\detailicon.gif, to another file name, such as detailicon_original.gif.

Rename your new details image to detailicon.gif.

Recompress your WAR file using the Java jar utility and redeploy it to the
application server or servlet engine as an application.

6 Close your browser, re-open Java Component, and log in. The new detail icon
appears in all places that Actuate Java Component had displayed the
magnifying glass icon. In Figure 3-3, the default detailicon.gif image has been
replaced by an image of a multicolored question mark.

|
'7 ACTUATE. Licensed for: Evaluation | ER @ @ E‘
| B &
Documents

workgroup @

Filter: On | Off View: ICategories 'l
Folders

|=) Home S Puhlic

Figure 3-3 Customized skin with modified detail icon

If you want to replace only some instances of detailicon.gif, search the files in the
context root for all files that use that image. Then replace that file name with your
image’s file name in only some of the files. For example, you could use the default
magnifying glass in most places but change <context root>\iportal\activePortal

\private\common\breadcrumb.jsp to use your own image.

Follow similar procedures to customize other images in Actuate Java Component
pages that are not specified in the skin manager or in <context root>\WEB-INF
\functionality-level.config.

62 Actuate BIRT Java Components Developer Guide

Two

Actuate Java Component Reference

Actuate Java Component
configuration

This chapter contains the following topics:

m About Actuate Java Component configuration

m Configuring Java Component web applications

m Configuring the Actuate Java Component repository
m Configuring the BIRT Viewer and Interactive Viewer
m Configuring BIRT Studio

m Configuring BIRT Data Analyzer

Chapter 4, Actuate Java Component configuration

65

About Actuate Java Component configuration

The Java Component applications are configured using files in the context root’s
\WEB-INF directory. For example, the web.xml configuration file for your
context root is located in the following directory:

<context roots>\WEB-INF\web.xml

Table 4-1 lists the configuration files discussed in this chapter.

Table 4-1 Actuate Java Component configuration files
File Features Description
erni_config.xml BIRT Studio Configures BIRT Studio functionality

functionality-level.config Information Console Configures the Deployment Kit user
interface using functionality roles

iv_config.xml BIRT Viewer Configures BIRT Viewer and Interactive
Viewer user interface

localemap.xml All Configures languages and locales

TimeZones.xml All Configures time zones

web.xml All Configures features of the Deployment

Kit, including security, networking,
caching, labeling and storage

Configuring Java Component web applications

Java Components provide the ability to organize, run, and view reports. You
configure the user interface, logging, and caching for a Java Component using
web.xml.

Configuring the Java Component using web.xml

Web.xml contains parameters that control Deployment Kit features. Table 4-2
describes the configuration parameters for the Information Console application.

Table 4-2 Actuate Java Component web.xml parameters

Parameter name Description

AUTOSUGGEST_DELAY Configure the delay before the parameters page opens an
automatic suggestion tooltip for a parameter. The value is
measure in milliseconds, and the default value is 500.

66 Actuate BIRT Java Components Developer Guide

Table 4-2 Actuate Java Component web.xml parameters (continued)

Parameter name

Description

AUTOSUGGEST_LIST_
SIZE

CACHE_CONTROL

COOKIE_DOMAIN

Specifies the number of autosuggest entries to display. By
default, display everything.

Specifies how a web browser caches information using one of
the following values:

m NO-CACHE indicates that the browser does not cache
information and forwards all requests to the server. With
NO-CACHE, the back and forward buttons in a browser do
not always produce expected results, because choosing
these buttons always reloads the page from the server.

If multiple users access Java Component from the same
machine, they can view the same cached data. Setting
CACHE_CONTROL to NO-CACHE prevents different
users viewing data cached by the browser.

m NO-STORE indicates that information is cached but not
archived. Reports in Excel format do not render reliably
when using this setting.

m PRIVATE indicates that the information is for a single user
and that only a private cache can cache this information. A
proxy server does not cache a page with this setting.

m PUBLIC indicates that information may be cached, even if it
would normally be non-cacheable or cacheable only within
an unshared cache.

m Unset (no value) is the default value. The browser uses its
own default setting when there is no CACHE_CONTROL
value.

Caching information reduces the number of server requests
that the browser must make and the frequency of expired page
messages. Caching increases security risks because of the
availability of information in the cache. For additional
information about cache control, see the HTTP /1.1
specifications.

Specifies the host name of the server setting the cookie. The
cookie is only sent to hosts in the specified domain of that host.
The value must be the same domain the client accesses. Actuate
Java Component automatically sets this parameter. For
example, if the client accesses http:/ /www.actuate.com
/iportal/login.do, the domain name is actuate.com.

(continues)

Chapter 4, Actuate Java Component configuration 67

Table 4-2

Actuate Java Component web.xml parameters (continued)

Parameter name

Description

COOKIE_ENABLED

COOKIE_SECURE

DEFAULT_LOCALE

DEFAULT_COLUMN_
PAGE_BREAK_INTERVAL

DEFAULT_PAGE_BREAK _
INTERVAL

DEFAULT_ROW_PAGE_
BREAK_INTERVAL

DEFAULT_TIMEZONE

ENABLE_CLIENT_SIDE_
REDIRECT

ENABLE_DEBUG _
LOGGING

ENABLE_ERROR_
LOGGING

Indicates whether to use cookies to store information between
user logins. The default value is true. If false, Java Component
does not use cookies. Without cookies, many Java Component
features are unavailable or do not persist across sessions. For
example, without cookies, user name, language, and time zone
settings always use their default values when a new browser
session begins.

Indicates whether to access and write cookies securely. If true,
cookies are only written if a secure connection, such as HTTPS,
is established. The default value is false, which enables cookies
for all connection types.

Specifies the default locale. Actuate Java Component sets this
parameter value during installation. The locale map is
<context root>\WEB-INF\localemap.xml.

Specifies the number of columns to display on one page when
viewing a cross tab. Must be a non-negative number. Default
value is 10.

Specifies the number of rows to display in one page when
viewing a report. If set to 0, there are no page breaks.

Specifies the number of rows to display on one page when
viewing a cross tab. Must be a non-negative number. Default
value is 40.

Specifies the default time zone. Actuate Java Component sets
this parameter value during installation. The time zone map is
<context root>\WEB-INF\TimeZones.xml.

Specifies whether URL redirection is done on the client side or
the server side. Set the value to true for client side redirection.
The default value is false. For more information about URL
redirection, see “Using proxy servers with Actuate Java
Component,” in Chapter 1, “Introducing Actuate Java
Components.”

Indicates whether to record debugging messages in a log file
called Debug.log. Set the value to true to enable debug
messages in the log file. The default value is false.

Indicates whether to log errors. This parameter’s default value
is true, which enables error logging. If you set this parameter to
true, Java Component creates two error log files:

s Admin.log records general errors.
m Soapfault.log records communication errors.

68 Actuate BIRT Java Components Developer Guide

Table 4-2

Actuate Java Component web.xml parameters (continued)

Parameter name

Description

ENABLE_JUL_LOG

ERROR_LOG_FILE_
ROLLOVER

EXECUTE_REPORT_
WAIT_TIME

FILES_DEFAULT_VIEW

FORCED_GC_INTERVAL

INSTALL_MODE

JUL_LOG_CONSOLE_
LEVEL

JUL_LOG_FILE_COUNT

Indicates whether to log Actuate Java Component activity. This
parameter’s default value is true, which enables logging. If you
set this parameter to true, Java Component creates log files
named reportService.<Service number>.<System name>.<Java
Component start up time stamp>.<File number>.log.

Specifies the time period to wait before starting a new log file.
Options are Daily, Monthly, Weekly, and Yearly. The default
value is Monthly.

Specifies the time to wait, in seconds, for a report to execute.
This parameter’s default value is 20 seconds. For more
information about the wait time parameter, see “execute report
page,” in Chapter 5, “Actuate Java Component URIs.”

Specifies the default view for the files and folders list using one
of the following values:

m Categories, the default, displays files organized in rows by

type.

m Detail displays files organized in rows by name.
m List displays files organized in columns with small icons.
m Icon displays files organized in columns with large icons.

Indicates the length in seconds of the interval that the Java
Component application waits between forced garbage
collections. To disable garbage collection, set this parameter to
0, the default value. If you use this parameter, 600 seconds is
the recommended value. Use this parameter when tuning
application server performance. If the value is too low, the
application server performs garbage collection too frequently,
slowing your system. If you set the value to high, you waste
memory. If disabled, the application server controls garbage
collection.

Indicates whether Java Component is installed with iServer.
The value is set when Actuate Java Component is installed. Do
not change this setting.

The level of Actuate Java Component activity to log to the
console. Valid values are OFF, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, in order of the number of
messages to log. The default value is OFF.

Specifies the number of log files for a particular time stamp, if
the value of ENABLE_JUL_LOG is true.

(continues)

Chapter 4, Actuate Java Component configuration 69

Table 4-2 Actuate Java Component web.xml parameters (continued)

Parameter name

Description

JUL_LOG_FILE_LEVEL

JUL_LOG_FILE_SIZE_KB

LOG_FILE_LOCATION

LOGIN_TIMEOUT

MAX_BACKUP_ERROR_
LOGS

MAX_LIST_SIZE

PRELOAD_ENGINE_LIST

PROGRESSIVE_REFRESH

PROGRESSIVE_
VIEWING_ENABLED

The level of Actuate Java Component activity to log in a file.

Valid values are OFF, SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, FINEST, in order of the number of messages to
log. The default value is WARNING.

The maximum size, in kilobytes, for an Actuate Java
Component activity log file. When a log file reaches this size,
Java Component creates a new log file and increments its file
number. If the log file number reaches the value of
JUL_LOG_FILE_COUNT, Java Component resets the file
number to 0 and overwrites the first log file for the time stamp.

Indicates which directory contains the log files. If the value is
not an absolute directory path name, Actuate Java Component
locates the directory in the Java Component home directory.
The default value is logs in the Java Component home
directory.

Specifies the number of seconds to wait before a session times
out. The minimum login timeout is 300 seconds. The maximum
value is equivalent to java.lang.Long. Its default value is

1200 seconds.

Specifies the maximum number of backup error log files to
keep. The default value is 10.

Limits the number of items returned when getting folder items,
jobs, job notices, scheduled jobs, and channels to reduce
network traffic. The default value is 150.

List of engines that will be loaded when application starts up.
Allowed values are "birt" and "ess". Use a comma to separate
the names if there are more than one. Engines that are not in the
list will be loaded upon request. The default value is birt.

Controls the interval, in seconds, at which an Actuate report
refreshes itself when running a progressive report. The report
refresh time starts after the navigation bar loads. The report
refreshes first after 15 seconds, then after 60 seconds, and then
after the PROGRESSIVE_REFRESH interval. If the value is less
than 60, Actuate Java Component uses 60 seconds. This
parameter’s default value is 1800 seconds.

Specifies whether a paginated report starts to display in the
browser as soon as the first page has been generated. Valid
values are true and false. The default value is true.

70 Actuate BIRT Java Components Developer Guide

Table 4-2 Actuate Java Component web.xml parameters (continued)

Parameter name

Description

PROXY_BASEURL

SECURITY_ADAPTER _
CLASS

SESSION_DEFAULT_
PARAMETER_VALUE_ID

sessionTimeout

TRANSIENT_STORE_
MAX_SIZE_KB

TRANSIENT_STORE_
PATH

TRANSIENT_STORE _
TIMEOUT_MIN

VIEW_XLS_IN_
REQUESTER

Indicates a proxy server’s URL if the network uses one between
Java Components and the client. The default value is blank,
which indicates that the network does not use a proxy server.

Specifies the fully qualified class of the security manager that
controls access to Actuate Java Component functionality for
single sign-on. The default value is no name.

Specifies the name of the object that stores the HTTP session-
level report parameters. This object is an instance of the
com.actuate.parameter.SessionLevelParameter class, which is
extensible. The default value is SessionDefaultParameterValue.

The number of milliseconds the web service Ajax Proxy
maintains an idle session. The default value is 5000.

Limits the amount of disk space that Actuate Java Component
uses for temporary files. The default value is 102400, which is
100 MB.

Path to Actuate Java Component transient files. The default
value is set when Java Component is installed. When
deploying more than one context root, set a unique path for
each.

Specifies, in minutes, how long to retain Actuate Java
Component transient files. The default value is 40, which is
40 minutes.

Indicates that a spreadsheet report in Excel format always
opens in the same browser as Java Component. The default
value is false, indicating that excel documents open in a
separate window.

Configuring Java Component functionality levels with
functionality-level.config

A functionality level defines which Java Component user interface features are
visible. For example, by default every functionality level shows About and Help
links on the Java Component banner. The Intermediate, Advanced, and
Administrator levels add a Search link to the banner, as shown in Figure 4-1.

Chapter 4, Actuate Java Component configuration 71

— All levels All levels

|
Licensed for: Evaluation | E& @ @ E‘

::; waorkgroup

Documents |

workgroup o,

Figure 4-1 The banner as it appears for a user at the Administrator functionality
level

[Gifs\FuncLevelLinks.png]

Actuate Java Component provides four functionality levels by default. The
default level is Intermediate. To change the functionality level, change the value
of the DEFAULT_WORKGROUP_FUNCTIONALITY_ROLE parameter in the
web.xml configuration file. See “Configuring the Actuate Java Component
repository,” later in this chapter, for more information. You customize a
functionality level by creating or modifying entries in the following file:

<context root>\WEB-INF\functionality-level.config
You can modify the built-in levels but you cannot delete them.
The following example shows the definition of the Basic functionality level:

<Level>
<Name>Basic</Name>
<Role>All</Role>
<FeatureID>Jobs</FeaturelID>
<FeatureID>Documents</FeatureID>
<FeatureID>Channels</FeatureID>
<SubfeatureIDs>DeleteFile</SubfeatureID>
<SubfeaturelD>InteractiveViewing</SubfeatureID>
<AnalyticsExperiencelLevel>Novice</AnalyticsExperienceLevel >
<AnalyticsExperiencelLevel>Standard</AnalyticsExperiencelevels>
<AnalyticsExperiencelevel>Advanced</AnalyticsExperiencelLevels>
</Level>

Every functionality level entry in the configuration file must have the five
components shown in the following sections.

Name
Use a unique alphanumeric string for the functionality level name, enclosed
within the <Name> and </Name> tags, such as <Name>Intermediate</Name>.

Role

The Role component defines the BIRT Viewer role assigned to the functionality
level. The role is defined in the role tags in iv_config.xml. The default roles
included for iv_config.xml are:

72 Actuate BIRT Java Components Developer Guide

n All

m Active Portal Intermediate
m Active Portal Advanced

m Active Portal Administrator

Both the BIRT Viewer role and the functionality level must exist before you can
assign the functionality level to a role. Enclose the security role name within
<Role> and </Role> tags, such as <Role>Active Portal Intermediate</Role>.

Features
There are five features, which are described in Table 4-3.

Table 4-3 Features of functionality levels

Feature Description

Channels Provides access to channels. Channels are not relevant
for Java Components.

Customization Provides access to skin customization.

Documents Provides access to files and folders.

Jobs Supports submitting and accessing jobs. Jobs are not

relevant for Java Components.

Mobile Provides access to BIRT mobile viewing. Mobile is not
relevant for Java Components.

Search Provides access to file and folder search. Search is not
relevant for Java Components.

Enclose the feature within <FeatureIlD> and </FeaturelD> tags. When you omit a
feature from a functionality level, the corresponding side menu or banner item is
not visible to anyone using that functionality level. For example, the Search
feature is not available to the Basic functionality level, so the Search link does not
appear in the banner for a user at the Basic functionality level.

Chapter 4, Actuate Java Component configuration 73

Features

Functionality-level.config defines the features that are available to Java
Component users as well as functionality levels. The following example shows
the Documents feature definition from functionality-level.config:

<Feature>
<ID>Documents</ID>
<Labelkey>SBAR DOCUMENTS</Labelkey>
<Link>/getfolderitems.do</Link>
<SmallIcon>/iportal/activePortal/images/
filesfoldersiconléxl6.gif
</SmallIcon>
<Largelcons>/iportal/activePortal/images/filesfoldersicon.gif
</Largelcon>

</Feature>

The ID identifies the feature for Java Component. The label key appears on the
side menu for Documents, Jobs, and Channels, or in the banner for Search and
Customization. The link specifies the action that is executed for the feature. The
small and large icons represent the feature in the side menu. Only the side menu
features use the small and large icons.

Although you can customize the labels and links of all five features, do not
change the <ID> or <Labelkey> tag values. Java Component uses these tags to
identify the features and perform resource management. The Labelkey provides
the resource to use for the feature’s text label.

Changing the Link tag’s value specifies a different action to execute. Changing
the icon files changes the side menu’s appearance. The small icons are used by the
Tree View skin and are 16x16 pixels. The large icons are used by the Classic skin
and are 32x32 pixels. The Tabbed skin does not use icons. Link and icon file
names are relative to <context root>.

Subfeatures
A subfeature corresponds to an action you can perform using the Java
Component user interface. Table 4-4 describes the subfeatures.

Table 4-4 Subfeatures of the features described in Table 4-3
Feature Subfeature Description

Channels SubscribeChannel Subscribing to channels.
Documents AddFile Uploading files.

Documents CreateFolder Creating folders.
Documents DeleteFile Deleting files.

Documents DeleteFolder Deleting folders.
Documents DownloadFile Downloading files.

74 Actuate BIRT Java Components Developer Guide

Table 4-4 Subfeatures of the features described in Table 4-3

Feature Subfeature Description
Documents ~ShareFile Sharing files.
Jobs JobPriority Setting job priority, up to the user’s

maximum job priority. Jobs are not relevant
for Java Components.

Jobs SelfNotification E-mail notification for successful jobs. Jobs
WithAttachment are not relevant for Java Components.
None AdvancedData Used in BIRT Studio.
None Dashboard Viewing and editing dashboards and
BusinessUser gadgets. Dashboards are not relevant for
Java Components.
None Dashboard Creating and configuring gadgets and
Developer dashboards. Dashboards are not relevant for
Java Components.
None InteractiveViewing Using BIRT Interactive Viewer.
None ShareDashboard Sharing dashboards. Requires either

DashboardBusinessUser or
DashboardDeveloper. Dashboards are not
relevant for Java Components.

Specify one subfeature to a line and enclose each subfeature within
<SubfeaturelD> and </SubfeaturelD> tags. Each subfeature is associated with a
feature. You cannot include a subfeature in a functionality level if its
corresponding feature is not available to that functionality level.

Analytics experience levels
Analytics experience levels are not relevant for Java Components.

Configuring Java Component locale using
localemap.xml

Open <context root>\WEB-INF\localemap.xml to see a listing of the available
locales in Java Component. Add locales to this file by following the exact format
of the existing locales. To see each locale defined in the file, search for one of the
following strings:

<Locale
or:

<DisplayName>

Chapter 4, Actuate Java Component configuration 75

Searching for <Locale places the mouse pointer on the line with the ID for the
locale. Searching for <DisplayName> places the mouse pointer on the line with
the descriptive name for the locale.

In general, the locale names have the following syntax:
<language> <country>

For example, ar_EG is Arabic (Egypt). When a single language is spoken in
multiple countries, the language remains the same and the country can have
several values. For example, en_US is the locale for English (United States) while
en_AU is the locale for English (Australia). en_BZ is the locale for English (Belize).
Some countries can have several locales, one for each language. For example,
Canada has both en_CA for English (Canada) and fr_CA for French (Canada).

You specify a default locale for a custom web application in <context root>
\WEB-INF\web.xml.

Configuring Java Component locales using
TimeZones.xml

Open <context root>\WEB-INF\TimeZones.xml to see a listing of the available
time zones in Java Component. Add time zones to this file by following the exact
format of the existing time zones. To see each time zone in the file, search for the
following string:

<TimeZone
or:
<DisplayName>

Searching for <TimeZone places the mouse pointer on the line with the ID for the
time zone. Searching for <DisplayName> places the mouse pointer on the line
with the descriptive name for the time zone.

Some time zone names have short abbreviations for the ID. All time zone names
have a full descriptive ID, such as Samoa Standard Time or Greenwich Standard
Time. The DisplayName provides the relative time from Greenwich Standard
Time and one or more locations that the time zone includes.

You specify a default time zone for a custom web application in <context root>
\WEB-INF\web.xml.

Configuring the Actuate Java Component repository

Actuate Java Component provides the ability to organize, run, and view reports
in a repository. You configure the security and repository for the Java Component
using parameters in web.xml. The Java Component repository operates as a

76 Actuate BIRT Java Components Developer Guide

standalone or workgroup entity on the file system. Table 4-5 describes the
configuration parameters for the Deployment Kit.

Table 4-5

Actuate Java Component web.xml parameters

Parameter name

Description

DEFAULT_WORKGROUP_
FUNCTIONALITY_ROLE

DEFAULT_WORKGROUP_

SKIN

REPOSITORY_CACHE_

TIMEOUT_SEC

STANDALONE_
ACCESS_MANAGER

STANDALONE_

ALLOW_ANONYMOUS

STANDALONE_
ANONYMOUS_
USERNAME

STANDALONE_
HOME_FOLDER

STANDALONE_
PUBLIC_FOLDER

STANDALONE_
REPOSITORY_CLASS

STANDALONE_
REPOSITORY_FILE_
AUTHENTICATION

STANDALONE_
REPOSITORY_PATH

Specifies the functionality role for all users. The default value is
Active Portal Intermediate.

Specifies the skin for all users. The default value is Tree View.

Specifies how long a repository cache is valid. When the cache
becomes invalid, any user actions refresh the cache for the
duration. The default value is 900 seconds.

Specifies the class of the security manager that controls access
to Java Component functionality. The default value is
com.actuate.iportal.repository.jar.localfs.Local AccessManager.

Specifies whether access to Java Component functionality
requires a user name. Valid values are true and false. The
default value is true.

If the value of the STANDALONE_ALLOW_ANONYMOUS
parameter is true, this parameter specifies the user name that
denotes unauthenticated access to the Java Component
application. The default value is anonymous.

Specifies the root folder for users’ individual home folders in a
repository. This folder is a subfolder of the repository root
folder. The default value is /home.

Specifies the root folder for public documents in a repository.
This folder is a subfolder of the repository root folder. The
default value is /public.

Specifies the class that provides repository functionality to an
Java Component application. The default value is
com.actuate.iportal.repository.jcr.fs.FileSystemRepository.

Specifies whether authentication controls access to Java
Component functionality. Valid values are true and false. If the
value is false, when an unknown user attempts to log in, the
Java Component accepts the attempt and creates a home
directory for the user. If the value is true, the Java Component
uses the class defined by
STANDALONE_ACCESS_MANAGER to validate the login
attempt. The default value is false.

Path to the repository for Actuate Java Component files. The
default value is set when Java Component is installed.

Chapter 4, Actuate Java Component configuration 77

Configuring the BIRT Viewer and Interactive Viewer

The BIRT Viewer provides the ability to view a BIRT report. The Interactive
Viewer supports modifying many aspects of the report’s layout and formatting.
These viewers are available as Java Components. Parameters in web.xml

configure these viewers. For information on those configuration parameters, see
Working with Actuate BIRT Viewers.

Configuring BIRT Studio

BIRT Studio is a report design tool that you use to design BIRT reports. This
designer is available as a Java Component. Parameters in web.xml configure it.
For information on those configuration parameters, see Using BIRT Studio - Java
Component Edition.

Configuring BIRT Data Analyzer

The BIRT Data Analyzer extends the functionality of BIRT Interactive Viewer to
perform analytics on a cross tab. You can configure performance enhancements
for the Data Analyzer in web.xml. For information on those configuration
parameters, see Using BIRT Data Analyzer.

78 Actuate BIRT Java Components Developer Guide

Actuate Java Component
URIs

This chapter contains the following topics:

m Actuate Java Component URIs overview

m Actuate Java Component URIs quick reference
m Common URI parameters

m Java Component Struts actions

m Actuate Java Component URIs reference

m Actuate BIRT Viewer URIs reference

Chapter 5, Actuate Java Component URIs

79

Actuate Java Component URIs overview

This chapter describes Actuate Java Component URIs. Java Component JSPs
manage content. The following sections provide quick reference tables and
detailed reference information about Actuate Java Component URIs. An Actuate
Java Component URI is a directive to Actuate Java Component to perform an
action, such as showing a list of files, rather than change the appearance of the
application.

Java Component pages use the .do extension for the Struts action mapping to a
page. The complete page name appears as part of the reference material. Actuate
Java Component page and folder names are case-sensitive.

Actuate Java Component URIs quick reference

Table 5-1 lists the Actuate Java Component URIs. For more information about the

Java Component directory structure, see “Understanding Java Component
directory structure” in Chapter 3, “Creating a custom Java Component web

application.”

Table 5-1

Actuate Java Component URI pages

Actuate Java
Component page

Description

about page
authenticate page

banner page
browse file page

browse page

delete file status page
detail page

drop page

error page

execute report page
executereport page
getfiledetails page

Displays information about Actuate Java Component.

Performs authentication and maintains user, cluster,
and volume information.

Displays a banner at the top of each Actuate Java
Component page.

Provides file and folder browsing functionality for the
submit request pages.

See browse file page.

Displays whether a file was successfully deleted.
Supports error handling and presenting object details.
Supports deleting files or cancelling running jobs.

Retrieves an error message from the exception or the
request and displays it.

Submits a run report job request to the server.
See execute report page.
See file or folder detail page.

80 Actuate BIRT Java Components Developer Guide

Table 5-1

Actuate Java Component URI pages

Actuate Java
Component page

Description

getfolderitems page
home page

license page
login banner page

login page
logout page

page not found page
parameters page

viewer page for
Actuate BIRT reports

See file and folder index page.

Provides the link from the My Folder button to the
Actuate Java Component home page.

Displays information about Actuate Java Component
version and licensing.

Provides the banner for the Actuate Java Component
login page.
Logs into the reporting web application.

Logs the user out of the current session and clears all
user settings, such as filters.

Displays an error message when a JSP is unavailable in
Java Component.

Presents a list of the request parameters.

Displays Actuate BIRT documents along with the
toolbar.

Common URI parameters

All Actuate Java Component URIs have the parameters shown in Table 5-2. String
values that are too long are truncated for all parameters. The web browser that
you use determines the length of parameters. The common URI parameters
support Actuate Java Component authentication using cookies.

Table 5-2 Common Actuate Java Component URI parameters

URI parameter Description

forceLogin True to force a login, false to display the login page.
The default is false. The login operation is described in
“Understanding the authentication process” in
Chapter 8, “Using Actuate Java Component security.”

iPortallD The unique authentication ID assigned to the user

upon successful login. Use this parameter in
conjunction with the userID parameter to ensure that
a user’s personalized settings appear in the Java
Component pages.

(continues)

Chapter 5, Actuate Java Component URIs 81

Table 5-2 Common Actuate Java Component URI parameters (continued)

URI parameter Description

locale The current user’s locale, such as U.S. English (en-US).
Java Component locale names have the form nn_CC.
nn is the language abbreviation and CC is the country
code in both formats.

password The password associated with the userID.

serverURL Contains the URI that accesses the Actuate web
application, such as http:/ /Services:8000.

timezone The current user’s time zone.

userID The user’s unique identifier, required to log in to the
repository. Use this parameter in conjunction with the
iPortallD parameter to ensure that a user’s
personalized settings appear in the Java Component
pages.

volume The volume to which the user is connected.

The following Java Component URI shows most of the common URI parameters

in use:

http://localhost:8080/iportal/getfolderitems.do
?folder=/Training&locale=en AU&userID=Mike
&password=pwl23&serverURL=http://Seamore:8000
&timeZone=Australia/Perth

This URI lists the contents of the Training folder on the application server named
Seamore at port 8000. The locale is set to Australian English and the time zone is
Australia/Perth (GMT plus eight hours). The user is Mike and the password is
pw123. Note that the password is shown in plain text, as entered. If entered on a
JSP or in a web form, it would be detected and encrypted.

Java Component Struts actions

The following tables summarize the global forwards and actions defined in

struts-config.xml.

Table 5-3 lists the global forwards defined in struts-config.xml.

Table 5-3 Actuate Java Component global forwards
Action Forward

authexpired /login.do

browsefile /browsefile.do

82 Actuate BIRT Java Components Developer Guide

Table 5-3

Actuate Java Component global forwards

Action Forward

error /private/common/errors/errorpage.jsp
executedocument /executedocument.do

executereport /executereport.do

goto /private/common/goto.jsp

login /login.do

logout /logout.do

skinerror /private/common/errors/error.jsp
viewpage /servlet/ViewPage

viewsoi /viewsoi.do

Table 5-4 lists the action, input JSP, and forward name and path defined in
struts-config.xml.

Table 5-4 Actuate Java Component actions

Action

Input JSP Forward name path

/browsefile

/cancelreport

/deletefile

/executedocument

/iportal/activePortal ~name=success
/private/newrequest path=/iportal/activePortal/private
/browse.jsp /newrequest/browse.jsp

name=Succeeded
path=/iportal/activePortal/viewer
/ closewindow.jsp

name=Failed
path=/iportal/activePortal/viewer
/ closewindow.jsp?status=failed

name=InActive
path=/iportal/activePortal/viewer
/ closewindow.jsp?status=inactive

name=success
path=/iportal/activePortal/private
/filesfolders/deletefilestatus.jsp
name=confirm
path=/iportal/activePortal/private
/filesfolders/confirm.jsp
name=success
path=/executereport.do

(continues)

Chapter 5, Actuate Java Component URIs 83

Table 5-4 Actuate Java Component actions (continued)

Action

Input JSP

Forward name path

/executereport

/ getfiledetails

/ getfolderitems

/ getportletfolderitems

/iPortalLogin

/iv

/login

/logout

/private/newrequest
/newrequest.jsp

/iportal/login.jsp

/iportal/activePortal
/private/newrequest
/newrequest.jsp

/iportal/activePortal
/private/login.jsp

name=viewbirt

path=/iv

name=viewreport
path=/servlet/DownloadFile

name=viewroi
path=/viewer/viewframeset.jsp

name=viewxlsreport
path=/servlet

name=wait
path=/iportal/activePortal/private
/newrequest/waitforexecution.jsp

name=success
path=/iportal/activePortal/private
/filesfolders/filedetail.jsp

name=success
path=/iportal/activePortal /private
/filesfolders/filefolderlist.jsp

name=success
path=/iportal/portlets/filefolderlist
/filefolderlistportlet.jsp

name=iPortalLoginForm
path=/iportal/login.jsp
name=landing
path=/landing.jsp
name=iv

path=/iv
name=viewbirt
path=/iv
name=loginform
path=/iportal/activePortal / private
/login.jsp

name=success
path=/getfolderitems.do
name=landing
path=/landing.jsp
name=login
path/login.do

84 Actuate BIRT Java Components Developer Guide

Table 5-4 Actuate Java Component actions (continued)

Action Input JSP Forward name path
/submitjob /iportal/activePortal ~name=createquery
/private/newrequest path=/query/create.do
/newrequest.jsp name=query
path=/query/submit.do
name=success
path=/iportal/activePortal /private
/newrequest/submitjobstatus.jsp
name=viewreport
path=/servlet/DownloadFile
name=viewroi
path=/iportal/activePortal/viewer
/viewframeset.jsp
name=viewxlsreport
path=/servlet
/tableList /iportal/activePortal name=close
/private/parameters path=/iportal/activePortal/private
/table /parameters/table/close.jsp
/tableparametersjsp pname=tableRowEditor
path=/iportal/activePortal /private
/parameters/table/roweditor.jsp
/treebrowser name=success
path=/iportal/activePortal /private
/filesfolders/treebrowser.jsp
/viewsoi /iportal/activePortal ~name=viewxlsreport
/private/newrequest path=/servlet
/newrequest.jsp
/waitforreport /iportal/activePortal ~name=success
execution /private/newrequest path=/iportal/activePortal/viewer
/waitforexecution.jsp /viewreport.jsp

name=fail
path=/iportal/activePortal/viewer
/ closewindow.jsp

Actuate Java Component URIs reference

This section provides the detailed reference for Actuate Java Component URIs. In
the definitions, <context root> represents the name of your Actuate Java

Component context root.

Chapter 5, Actuate Java Component URIs

85

Table 5-5 lists the topics this chapter covers and the file names discussed in each
topic. All pages are under the Java Component context root.

Table 5-5 Actuate Java Component pages
Topic Java Component file
about page iportal\activePortal \ private\options\about.jsp

authenticate page
banner page
browse file page

delete file status page

detail page

m error detail page

m file or folder detail
page

drop page

m file or folder drop
page

error page

execute report page

home page

index page
m file and folder
index page

license page

list page

m file and folder list
page

login banner page

iportal\activePortal\authenticate.jsp
iportal\activePortal\ private\common\banner.jsp
browsefile.do

iportal\activePortal\ private\query \browse.jsp

iportal\activePortal\private \filesfolders
\deletefilestatus.jsp

iportal\activePortal\errors\detail jsp
getfiledetails.do

iportal\activePortal\ private\filesfolders
\filedetail jsp

deletefile.do

errors\error.jsp

iportal\activePortal \ private \common\errors
\error.jsp

executereport.do

iportal\activePortal \private\common
\breadcrumb.jsp

getfolderitems.do

iportal\activePortal\ private \filesfolders
\filefolderlist.jsp

iportal\activePortal\ private\options\license.jsp

getfolderitems.do

iportal\activePortal\private \filesfolders
\filefolderlist.jsp

iportal\activePortal\ private\login_banner.jsp

86 Actuate BIRT Java Components Developer Guide

about page

Table 5-5 Actuate Java Component pages

Topic Java Component file

login page login.do
iportal\activePortal \ private\login.jsp

logout page logout.do

page not found page iportal\activePortal\errors\pagenotfound.jsp

parameters page iportal\activePortal\ private \newrequest
\parameters.jsp

viewer page for IVServlet

Actuate BIRT Reports

about page

Displays the about page, containing information about Actuate Java Component.
Called when the user chooses the About tab on the Options page.

The default about page for Java Component is similar to Figure 5-1.

(o | &4
Options : About

About License

Actuate Java Component version: 11

Volume profile; workagroup

Licensed for: Trial

ISP server: Apache Tomcat/6.0.29

Current language: English

Current time zone: America/Los_Angeles

Copyright: ©1995-2010 Actuate Corporation
Figure 5-1 Java Component about page

[Gifs\iPAbout_JSP.png]

Name <context root>\iportal\activePortal\private\options\about.jsp
Parameters The about page uses the common URI parameters.

Used by iportal\activePortal\private\options\optionspage.jsp

Chapter 5, Actuate Java Component URIs 87

authenticate page

authenticate page

Name
Parameters

Used by

Performs user authentication and maintains the user, cluster, and volume
information authentication data during the user’s session. Pages that require
validation of user credentials before permitting access to folders or files use

the authenticate page. In Java Component, only pages for the DHTML Viewer use
the authenticate page. The remaining Java Component pages use the Struts
framework for authentication.

<context root>\iportal\activePortal\authenticate.jsp
The authenticate page uses the common URI parameters.

iportal\activePortal \errors\error.jsp
iportal\activePortal \viewer\closewindow.jsp
iportal\activePortal \viewer\print.jsp
iportal\activePortal \viewer\requestsearch.jsp
iportal\activePortal \viewer\saveas.jsp
iportal\activePortal \viewer\searchframe.jsp
iportal\activePortal\viewer\searchreport.jsp
iportal\activePortal \viewer\searchtoolbar.jsp
iportal\activePortal \viewer\viewdefault.jsp
iportal\activePortal \viewer\viewframeset.jsp
iportal\activePortal\viewer \viewnavigation.jsp
iportal\activePortal \viewer\viewreport.jsp
iportal\activePortal \viewer \viewtoc.jsp
iportal\activePortal \ private \newrequest\waitforexecution.jsp

banner page

Name
Used by

Provides the banner that appears across the top of all Actuate Java Component
web pages. The default banner displays the Actuate logo, user name, cluster
name, and volume name, and provides links for Logout, Options, and Help. The
banner page obtains the user name, cluster name, and volume name from
variables maintained by the authenticate page.

<context root>\iportal\activePortal\private\common\banner.jsp

iportal\activePortal\ private\login.jsp

iportal\activePortal \ private\channels\channelnoticelist.jsp
iportal\activePortal\ private\channels\channeloperationstatus.jsp
iportal\activePortal\ private \filesfolders\ deletefilestatus.jsp
iportal\activePortal\ private \filesfolders\filedetail jsp
iportal\activePortal\ private\filesfolders\filefolderlist.jsp
iportal\activePortal\ private \jobs\getjobdetails.jsp

88 Actuate BIRT Java Components Developer Guide

browse file page

iportal\activePortal\private \jobs\joboperationstatus.jsp
iportal\activePortal\private \jobs\selectjobs.jsp
iportal\activePortal\ private \newrequest\newrequest.jsp
iportal\activePortal\ private \newrequest\newrequest2.jsp
iportal\activePortal\ private \newrequest\submitjobstatus.jsp
iportal\activePortal \ private\options\options.jsp
iportal\activePortal\ private\query \create.jsp
iportal\activePortal\ private\query \execute.jsp

browse file page

Name

Parameters

Used by

Contains file and folder browsing functionality used by other submit request
pages.
<context root>\browsefile.do

<context root>\iportal\activePortal\private\query\browse.jsp

workingFolder is the name of the folder for which to display contents in the
folder browser window. The browse file page also uses the common URI
parameters.

iportal\activePortal\ private \newrequest\browse.jsp
iportal\activePortal\ private\query \browse.jsp

delete file status page

Summarizes the result of a deletion performed by the drop page and indicates
whether a file was successfully deleted. The delete file status page includes
authenticate to obtain user session data. Java Component performs the deletion
as part of an action and then forwards to the delete file status page.

Name <context root>\iportal\activePortal\private\filesfolders\deletefilestatus.jsp
Used by Not applicable
detail page

Displays detailed information about Repository objects. There are two detail
pages:
<context root>\iportal\activePortal \errors

<context root>\iportal\activePortal \filesfolders

Chapter 5, Actuate Java Component URIs 89

detail page

error detail page
Provides a template error page that can be embedded in another page.
Name <context root>\iportal\activePortal\errors\detail.jsp

Used by iportal\activePortal\private\common\errors\error.jsp
iportal\activePortal\viewer \ print.jsp
iportal\activePortal \viewer\saveas.jsp
iportal\activePortal \viewer\searchframe.jsp
iportal\activePortal\viewer\viewdefault.jsp
iportal\activePortal \viewer\viewtoc.jsp

file or folder detail page

Displays detailed information about the selected viewable folder or file. Users
request file details by choosing the magnifying glass icon to the right of files listed
on the folder page, or folder details by choosing the magnifying glass icon to the
right of the folder name in the breadcrumb. Users can request another viewable
document or delete the current file or folder from the file or folder detail page.
filedetail jsp uses the HTML code in <context root>\iportal\activePortal
\private\filesfolders\filedetailcontent.jsp to display the information.

The default detail page for the Home folder is similar to Figure 5-2.

workgroup > Home = Detail

General

Name: Home
Type: Folder
Location: !
Description:
Created: 9/7/2010 10:48 AM
Created by:
Figure 5-2 Home folder detail page

Name <context root>\getfiledetails.do

<context root>\iportal\activePortal\private\filesfolders\filedetail.jsp

90 Actuate BIRT Java Components Developer Guide

drop page

Parameters Table 5-6 describes the parameters for the file or folder detail page. The file or
folder detail page also uses the common URI parameters.

Table 5-6 File or folder detail URI parameters
URI parameter Description
name The full path name of the repository object for which

to show details. This parameter is ignored if objectID is
also specified.

objectID The repository object’s unique identifier.

version The repository object’s version number. The default is
the latest version.

Used by Not applicable

drop page

Deletes one or more files or folders.

file or folder drop page

Deletes the specified file or folder. The file or folder drop page includes the
authenticate page to obtain user session data.

Name <context root>\deletefile.do

Parameters Table 5-7 describes the parameters for the file or folder drop page. The file or
folder drop page also uses the common URI parameters.

Table 5-7 File or folder drop URI parameters

URI parameter Description

ID The unique identifier of the repository object to delete.
name The full path name of the repository object to delete.

Multiple name parameters, to delete more than one file
or folder at a time, are allowed. This parameter is
ignored if ID is also specified.

redirect URI to which to redirect the job deletion page. The
default redirect page is processedaction_status.

Used by Not applicable

Chapter 5, Actuate Java Component URIs 91

error page

error page

Displays the specified error message. Java Component uses two pages. All Java
Component code uses <context root>\iportal\activePortal\ private\common
\errors\error.jsp.

Name <context root>\iportal\activePortal\errors\error.jsp

<context root>\iportal\activePortal\private\common\errors\error.jsp

Used by iportal\activePortal\private\login.jsp
iportal\activePortal\ private \common\ closewindow.jsp
iportal\activePortal \ private \common\sidebar.jsp
iportal\activePortal\ private \common \errors\errorpage.jsp
iportal\activePortal \ private\options\options.jsp
iportal\activePortal\ private\query \create.jsp
iportal\activePortal\ private\query\execute.jsp
iportal\activePortal\ private \templates\template.jsp
iportal\activePortal\viewer \closewindow.jsp
iportal\activePortal\viewer \ print.jsp
iportal\activePortal \viewer \saveas.jsp
iportal\activePortal \viewer\searchframe.jsp
iportal\activePortal \viewer\searchreport.jsp
iportal\activePortal \viewer\viewframeset.jsp

execute report page

Submits a run report job request.

When executing a report job or query, a Cancel button appears after a specified
wait time passes. To change the time, set the EXECUTE_REPORT_WAIT_TIME
configuration parameter in the appropriate Actuate Java Component
configuration file.

For reports that accept run-time parameters, you can set the parameter in the
URL by adding an ampersand (&), the parameter name, and an equal (=) sign,
followed by the parameter value in quotes. The following URL illustrates running
a BIRT report immediately with the Territory run-time parameter set to EMEA:

http://localhost:8080/iportal/executereport.do? requesttype=
immediate& executableName=%2fPublic%2fBIRT and BIRT Studio
Examples%2fSales by Territory.rptdesign&userid=Administrator
& saveOutput=false&Territory="EMEA"&invokeSubmit=true

92 Actuate BIRT Java Components Developer Guide

Name

Parameters

execute report page

The execute report page also accepts dynamic filter parameters for BIRT Reports
in the URL, but the value of the parameter must form a complete expression, such
as &Territory=([Territory] = "EMEA").

<context root>\executereport.do

Table 5-8 describes the parameters for the execute report page. The execute report
page also uses the common URI parameters.

Table 5-8 Execute Report URI parameters
URI parameter Description
__ageDays Use with __ageHours to determine how long output

objects exist before they are automatically deleted. Use
only if __archivePolicy is set to Age. __ageDays can be
any positive number.

__ageHours Use with __ageDays to determine how long output
objects exist before they are automatically deleted. Use
only if __archivePolicy is set to Age. __ageHours can
be any positive number.

__executableName The name of the executable file for this request.

invokeSubmit Controls whether the browser is redirected to the
parameter screen or whether the report job is run
immediately. If true, the report job is executed without
displaying the parameters. If false, the parameters are
displayed. False is the default.

__outputDocName The name and path of the resulting BIRT document.
This parameter is only usable for BIRT reports when
the BIRT_SAVE_REPORT_DOCUMENT_ENABLED
parameter is set to true in web.xml.

If the given path is absolute, then executereport saves
the report to that path. If the given path is relative,
then executereport saves the report to the path set in
the BIRT_SAVE_REPORT_DOCUMENT_PATH
web.xml parameter.

__priority Specifies the job submission priority. Values are High,
Medium, and Low.

__priorityValue Specifies a number ranging from 1 to 1000 and
corresponding to the job submission priority. Only
specify values allowed by your functionality level.

__progressive Indicates whether to display the report document after
it generates. If false, the report document displays
after it generates. If true, the report document displays
progressively, as it generates.

Chapter 5, Actuate Java Component URIs 93

home page

Used by

Table 5-8 Execute Report URI parameters

URI parameter Description

__serverURL Contains the URI that accesses the JSP engine, such as
http:/ /Services:8000.

__wait If "wait", Java Component waits for the report

generation to be completed before displaying it. If
"nowait", Java Component displays the first page right
away even if the report job is not completed.

For example, the following URL executes the Sales By Territory.rptdesign report
immediately with the Territory run-time parameter set to EMEA:

http://localhost:8080/iportal/executereport.do?
__requesttype=immediate& executableName=%2fPublic%2fBIRT and
BIRT Studio Examples$%$2fSales by Territory.rptdesign&
userid=anonymous& saveOutput=false&Territory="EMEA"&
invokeSubmit=true

The following parameter names are reserved for internal use only by the execute
report page:

m doframe
m inputfile
m jobType
= name

m selectTab

Not applicable

home page

Provides two sets of links. On the right side it provides a graphical and a text
shortcut link from the My Folder button to the current user’s Actuate Java
Component home folder. If the Java Component installation includes BIRT
Studio, there is another shortcut link, BusinessReport Studio, to the BIRT Studio.
On the left side, it provides the links and other text for the breadcrumb, or path
from the repository root to the current folder.

Users access their home page by choosing the My Folder link below the Actuate
Java Component page banner.

Figure 5-3 shows the default My Folder and breadcrumb links.

94 Actuate BIRT Java Components Developer Guide

Name
Used by

index page

Home link
BIRT Studio link

Breadcrumb links

workgroup Q,
Filter: ©n | OFff View: ICatEgUriEs 'I

Folders

Home 1 Public

Figure 5-3 My Folder and breadcrumb links
[Gifs\iPMyDoc.png]
<context root>\iportal\activePortal\private\common\breadcrumb.jsp

iportal\activePortal \ private\skins\tabbed \templates \mypagetemplate.jsp
iportal\activePortal \ private \skins\tabbed \ templates\ template.jsp
iportal\activePortal \ private\skins\classic\templates\template.jsp
iportal\activePortal\ private \skins\treeview \ templates\template.jsp

iIndex page

Name

Parameters

Provides the entry point and structure for the parts of Actuate Java Component
generated from multiple files.

file and folder index page

The default entry point to the Actuate Java Component web application. The file
and folder index page provides the entry point and structure to support the Files
and Folders functionality. The structure is a table that Actuate Java Component
uses to format and present files and folders data. Page content varies depending
on the Actuate Java Component directive.

The file and folder index page uses the banner page to provide the reporting web
page banner. filefolderlist.jsp uses the HTML code in <context root>\iportal
\activePortal\private \filesfolders \filefolderlistcontent.jsp to display files and
folders data.

<context root>\getfolderitems.do
<context root>\iportal\activePortal\private\filesfolders\filefolderlist.jsp

Table 5-9 describes the parameters for the file and folder index page. The file and
folder index page also uses the common URI parameters.

Chapter 5, Actuate Java Component URIs 95

license page

Table 5-9 File and folder index URI parameters
URI parameter Description
startUpMessage Specifies a message to appear when Actuate Java

Component calls this page.

subpage Specifies the content of the page. Possible values are:
m _list: include list
m _detail: include detail

Specifying any other value for subpage invokes the
page not found page.

license page

Displays the license page, containing information about Actuate Java Component
version and licensing. Called when the user chooses the License tab on the
Options page.

The default license page for Java Component is similar to Figure 5-4.

1 i
Options : About

About | License

Actuate Java Component version: i1

Volume profile: workgroup

Licensed for: Trial

ISP server: Apache Tomcat/6.0.29

Current language: English

Current time zone: America/Los_Angeles

Copyright: ©1295-2010 Actuate Corporation
Figure 5-4 Java Component license page

[Gifs\iPAbout_JSP.png]

Name <context root>\iportal\activePortal\private\options\license.jsp
Parameters The license page uses the common URI parameters.

Used by iportal\activePortal\private\options\optionspage.jsp

96 Actuate BIRT Java Components Developer Guide

list page

list page

Name

Parameters

Lists files in a container, such as a folder.

file and folder list page

Presents a list of objects that reside in the current working repository folder. Users
request folder listings by choosing links on the reporting web page. The file and
folder list page includes a filter section where users specify criteria for viewing
report documents.

When users access a repository for the first time, Actuate Java Component
displays their home folder, if they have one, or the top folder in the repository. All
files and folders in that folder that they have permission to view appear in the
Actuate Java Component listing page. Users can specify a filter to choose the
types of files to view.

<context root>\getfolderitems.do
<context root>\iportal\activePortal\private\filesfolders\filefolderlist.jsp

Table 5-10 describes the parameters for the file and folder list page. The file and
folder list page also uses the common URI parameters.

Table 5-10 File and folder list URI parameters
URI parameter Description
applyFilter If true, apply filter. If false, filter not applied. To use

the showDocument, showExecutables, and
showFolder parameters, applyFilter must be true.

filter The filter specifying the file and folder names to list.
Filter is a string. The default is "".

folder The folder for which to list the contents. Folder name
is a string. If no folder is specified, List uses the last
working folder known for the session if cookies are
enabled. If cookies are not enabled, List uses the user’s
home folder as specified in the user settings.

onlyLatest If true, show only the latest version of a file if multiple
versions exist. If false, show all versions of a file if
multiple versions exist. The default is false.

resetFilter Any non-null value for resetFilter causes the filter to
return to its original state. Users can reset the filter by
choosing the Default button on the listing page.

Chapter 5, Actuate Java Component URIs 97

login banner page

Table 5-10 File and folder list URI parameters (continued)
URI parameter Description
showDocument If true, show all viewable documents. If false, do not

show viewable documents. The default is true. To use
this parameter, applyFilter must be true.

showExecutables If true, show all report executables. If false, do not
show report executables. The default is true. To use
this parameter, applyFilter must be true.

showFolders If true, show all folders. If false, do not show folders.
The default is true. To use this parameter, applyFilter
must be true.

Used by Not applicable

login banner page

Displays the Actuate Java Component web application banner. Banner elements
include the company logo, system name, and help link.

Name <context root>\iportal\activePortal\private\login_banner.jsp

Used by iportal\activePortal\private\login.jsp

login page

Displays the Actuate Java Component login page for logging in to the Actuate
Java Component web application. The login page includes the login banner page
to display the Actuate Java Component application banner.

Name <context root>\login.do
<context root>\iportal\activePortal\private\login.jsp

Parameters Table 5-11 describes the parameters for the login page. The login page also uses
the common URI parameters.

Table 5-11 Login page URI parameters

URI parameter Description

loginPostback False to display the login page and true to display the
destination page instead of the login page if the login
is successful.

98 Actuate BIRT Java Components Developer Guide

logout page

Table 5-11 Login page URI parameters (continued)
URI parameter Description
targetPage Specify a relative URI to which login redirects the user
on successful login. The default is the file and folder
list page.
Used by Not applicable
logout page
Ends the user’s Actuate Java Component session. The logout page gathers the
user’s session information, clears it, and returns the user to the login page.
Name <context root>\logout.do
Parameters Table 5-12 describes the parameters for the logout page. The logout page also uses
the common URI parameters.
Table 5-12 Logout page URI parameters
URI parameter Description
daemonURL Contains the URI that accesses the Process
Management Daemon, such as http:/ /Server:8100.
user The name of the user to log out. Either user or the
common URI parameter authID must be specified. If
authlD is specified, user is ignored.
Used by Not applicable

page not found page

Name
Used by

Displays an error message when Actuate Java Component cannot find the page
that a user specifies. This page is a Java Component page only.

<context root>\iportal\activePortal\errors\pagenotfound.jsp
Not applicable

Chapter 5, Actuate Java Component URIs 99

parameters page

parameters page

Displays report job parameters. Parameters include the headline, output file
name, and report executable file name. Users access the parameters list by
choosing Parameters.

Parameters looks like Figure 5-5.

Parameters [

-l Sales Office and Sales Rep

Select Sales Office v B
Select Sales Rep ID |Tseng B -
*1 Required,
cancel
Figure 5-5 Parameters page
[Gifs\RunReport.png]

Name <context root>\iportal\activePortal\private\newrequest\parameters.jsp

Used by iportal\activePortal\private\newrequest\newrequestpage

Actuate BIRT Viewer URIs reference

To view and interact with Actuate BIRT reports, you use the Actuate BIRT servlet.
All BIRT Viewer options and varieties use the same URL. For detailed
information about the BIRT servlet URL, see Working with Actuate BIRT Viewers.

100 Actuate BIRT Java Components Developer Guide

Actuate Java Component
JavaScript

This chapter contains the following topics:
m Actuate Java Component JavaScript overview

m Actuate Java Component JavaScript reference

Chapter 6, Actuate Java Component JavaScript 101

Actuate Java Component JavaScript overview

This section describes the Actuate Java Component JavaScript files. Actuate Java
Component JavaScript files provide functionality and dynamic content to Actuate
Java Component web applications. Actuate Java Component JavaScript files
reside in <context root>\iportal\js.

Actuate Java Component JavaScript reference

Table 6-1 lists and describes the Actuate Java Component JavaScript files.

Table 6-1 Java Component JavaScript files

Name Description

allscripts.js Defines global variables, resources, and common
methods such as deleteFile and viewActiveRequests

array.js Contains functionality for handling arrays and array
elements

browsertype.js Determines the web browser in use and provides
functionality appropriate to the browser, such as
opening a file in a new window and capturing a
keystroke event

converter.js Provides character encoding

cookie.js Provides cookie functionality, including reading,
writing, and clearing browser cookies

drift.js Adjusts layers and window display for Java
Component

encoder.js Contains the encode and unencode methods

help.js Provides context-sensitive help functionality for Java
Component

layer.js Provides layer functionality, such as createLayer,
deleteLayer, getWidth, showLayer

popupmenujs Defines the methods for manipulating pop-up menus

report.js Provides the JavaScript components for report
viewing

resize.js Provides the JavaScript component for resizing a page
for Java Component

strutscommon.js Provides JavaScript components for using the Struts

framework with Java Component

102 Actuate BIRT Java Components Developer Guide

Actuate Java Component
servlets

This chapter contains the following topics:
m Java Component Java servlets overview
m Java Component Java servlets quick reference

m Java Component Java servlets reference

Chapter 7, Actuate Java Component serviets 103

Java Component Java servlets overview

Java servlets extend web server functionality. Java Component uses Java servlets
to manage binary content and to perform tasks such as uploading and
downloading binary files. Actuate provides an abstract framework of servlets
that provide common functionality to Java Component. You cannot modify the
Actuate Java servlets.

About the base servlet
All Actuate servlets derive from the base servlet:
com.actuate.reportcast.servlets.AcServlet

The base servlet has no URI parameters. It provides Actuate servlets with the
functionality for performing the following tasks:

m Parse and validate parameters specified in Java Component URI directives.

m Create XML API structures based on Actuate Java Component requests.

s Submit XML streams to the Actuate SOAP APL

m Handle responses from the Actuate SOAP AP]I, including detecting errors.

= Store constant session information, such as the name space and SOAP endpoint.
m Read from and write to cookies.

m Stream report data or errors to the web browser.

Invoking a servlet

You invoke servlets using the following syntax:
http://<servers>:<port>/<context roots>/servlet/<servlet alias>
where

m server is the name of the machine hosting the application server.

m port is the port on which the application server listens for requests.

m context root is the Java Component context root.

m servlet is a keyword indicating that a servlet follows.

m servlet alias is the name to which the servlet is mapped in the Java Component
installation’s web.xml file. A typical location for web.xml is
<context root>\WEB-INF\web.xml.

Servlet names are case-sensitive. Do not modify the servlets, their names, or their
mapping in web.xml.

104 Actuate BIRT Java Components Developer Guide

ExecuteReport serviet

Java Component Java servlets quick reference

Table 7-1 lists the Java Component Java servlets.

Table 7-1 Actuate Java Component servlets

Java Component
servlet Description

ExecuteReport servlet Submits a request to run a report

Interactive Viewer Displays an Actuate BIRT report document
servlet

Java Component Java servlets reference

This section provides the detailed reference for Java Component servlets.

ExecuteReport servlet

Name

URL
parameters

Submits a request to the web service to run a report job. The execute report servlet
is equivalent to do_executereport.jsp. This servlet supports executing spreadsheet
reports. Excel does not support executing reports using do_executereport.jsp.

com.actuate.reportcast.servlets.ExecuteReportServlet

Invoke the ExecuteReport servlet as:

http://<web server>:<port>/<context root>/servlet/<report executable>
where the report executable is the ROI or SOX report file to execute.

Table 7-2 lists and describes the parameters for the ExecuteReport servlet.

Table 7-2 ExecuteReport URI parameters
URI parameter Description
__ageDays Use with __ageHours to determine how long output

objects exist before they are deleted. Use only if
__archivePolicy is set to age. __ageDays can be any
positive number.

(continues)

Chapter 7, Actuate Java Component servliets 105

ExecuteReport servliet

Table 7-2 ExecuteReport URI parameters (continued)
URI parameter Description
__ageHours Use with __ageDays to determine how long output

__archiveBeforeDelete

__archivePolicy

__dateToDelete

__folder

__headline

__limit

__limitNumber

__outputName

__overwrite

__priority

objects exist before they are deleted. Use only if
__archivePolicy is set to age. __ageHours can be any
positive number.

Indicate whether to archive the output objects of the
current request before deleting them, according to
__archivePolicy’s setting. Set to true to archive objects
before deleting them. The default value is false.

This parameter has no effect if __archivePolicy is set
to folder.

The archive policy to implement for the objects
created as output for the current request. Values are
folder, age, and date. Set folder to use the archive
policy that is already set for the folders to which the
output is distributed. Set age to delete objects older
than a specific time period. Set date to delete objects
on a specific date.

The date on which to delete the output objects of the
current request. Use only if __archivePolicy is set to
date. __dateToDelete must be a date in a locale-

specific format. The default format is mm/dd/yyyy.

The path name of the folder that contains the report
executable.

A descriptive tag line for a report.

Appears on the Channel Contents page. Use the
character string %20 to represent spaces in the
headline string.

Indicate whether to limit the number of versions of
the output files for the current request. Set __limit to
limit to curtail the number of versions. Any other
value means that the number of versions is unlimited.

The number of versions to which to limit the output
files for the current request. Use only if __limit is set to
limit. __limitNumber can be any positive number.

Specifies a name for the report output.

If true, overwrite any existing output. If false, do not
overwrite existing output.

Specifies the job submission priority. Values are High,
Medium, and Low.

106 Actuate BIRT Java Components Developer Guide

Interactive Viewer serviet

Table 7-2 ExecuteReport URI parameters (continued)
URI parameter Description
__priorityValue Specifies a number corresponding to the job

submission priority.

__redirect Specifies a relative or absolute URL to go to after
do_executereport.jsp submits the report. The default
is Submittedjob_Status.jsp.

serverURL Contains the URL that accesses the JSP engine, such as
http:/ /Services:8080.
__timeToDelete Specifies a time at which to delete an archived report

document. Applies only to scheduled report jobs.

__versionName Contains a string value for the new version name of
this report. The value can include a date/time
expression enclosed in braces, {}, to ensure a unique
version name.

volume Contains a string value specifying the volume for this
report.
__wait If "wait", Java Component waits for the report

generation to be completed before displaying it. If
"nowait", Java Component displays the first page right
away even if the report is not completed.

Interactive Viewer servlet

Displays an Actuate BIRT report document with tools to affect the document and
design files. The viewer has two modes, standard and interactive.

The Standard Viewer displays the report with toolbar options to save, print, show
the TOC, and launch interactive mode, as shown in Figure 7-1.

s >

111
q4

ey Classic Models, Inc
2207 Bridgepointe Parkway

San Mateo, GA 94404 Customer Order Histo

Australian Collectors, Co.
(Contact: Peter Ferguson Sales Representative: Andy Fixter

Figure 7-1 Standard Viewer
[Gifs\ivstandard.png]

The Interactive Viewer displays the report with toolbar options to navigate the
report and provides context menus to edit and format report elements, as shown
in Figure 7-2.

Chapter 7, Actuate Java Component servliets 107

Interactive Viewer servliet

= 15]
classic Models, Inc £, [
k] 2207 Bridgepointe Parkway =
I8 gan Mateo, CA 94404 Customer Order HIStOI'y

Australian Collectors, Co.
Contact: Peter Ferguson Sales Representative: Andy Fixter

Figure 7-2 Interactive Viewer
[Gifs\ivinteractive.png]
The viewer supports the rptdocument file format.
Name com.actuate.iv.servlet.IVServlet
Invoke the Interactive Viewer servlet as:
http://<web server>:<port>/<context root>/iv

URI Table 7-3 lists and describes the URI parameters for the Interactive Viewer servlet.
parameters

Table 7-3 IV URI parameters

URI parameter Description

__bookmark Name of the element of a report to display instead of
the whole report file

__floatingfooter Boolean value to add a margin under the footer

_ format A format for the displayed report:

= pdf: Adobe pdf

xls: MS Excel

doc: MS Word

ppt: MS PowerPoint
ps: PostScript

html: HTML

flashchartsxml: display a Flash object for a fusion
chart

m flashgadgetsxml: display a Flash gadget for a
fusion chart

m reportlet: used together with __bookmark to show
a particular part/element of the report

__from_page_range The page range of a report to display

108 Actuate BIRT Java Components Developer Guide

Interactive Viewer serviet

Table 7-3 IV URI parameters
URI parameter Description
__from_page_style The page style to use for a report in pdf or ps formats

m auto: page size and content size remains the same
m actuateSize: change the page size to fit the content
m fitToWholePage: change the content size to fit the

page size

Used with the __format parameter
__imageid Name of the report file to display
__instanceid Name of the report file to display
__launchIV Boolean value that enables Interactivity
__locale Code for a locale
__page A number for a page to render
__report Name of the report file to display
_rtl Name of the report file to display
repositoryType The name of the object to download
serverURL Contains the URL that accesses JSP engine, such as

http:/ /ESL02835:8000

Chapter 7, Actuate Java Component servliets 109

Interactive Viewer servliet

110 Actuate BIRT Java Components Developer Guide

Actuate Java Component
JavaBeans

This chapter contains the following topics:
m Java Component JavaBeans overview
m Java Component JavaBeans package reference

m Java Component JavaBeans class reference

Chapter 9, Actuate Java Component JavaBeans 119

Java Component JavaBeans overview

This section describes the Java Component JavaBeans. Java Component
JavaBeans provide functionality, business logic, and dynamic content to Java
Component web applications. Java Component JavaBeans are in aciportal jar,
which resides in <context root>\WEB-INF\lib.

Java Component JavaBeans package reference

Table 9-1 lists and describes the Actuate packages used in Java Component.

Table 9-1 Java Component packages

Package Contents

com.actuate.activeportal JavaBeans that maintain information used by the Action
.beans classes.

com.actuate.activeportal JavaBeans derived from the Jakarta Struts

forms org.apache.struts.action. ActionForm object. These JavaBeans

store and validate the request parameters in HTTP requests.

com.actuate.activeportal list An interface, IContentList, that defines the behavior of lists
of items such as files and channels. Several classes in
com.actuate.activeportal.forms use this interface.

Java Component JavaBeans class reference

Documents

Table 9-2 lists and describes Java Component com.actuate.activeportal.forms
classes that support the Document pages.

Table 9-2 Document classes
Class Description
BrowseFileActionForm Supports browsing through the available files, including using

filters to search.

FileListActionForm Retrieves a list of folders or files. This ActionForm supports
setting filters specifying characteristics of objects. Stores the
most recent list of items.

120 Actuate BIRT Java Components Developer Guide

Table 9-2 Document classes

Class Description

GeneralFilterActionForm The base ActionForm for several other ActionForms. Provides
methods that handle filters. For example, you can request all
folders and only the most recent version of all executable files.

GetFileDetailsActionForm Stores the details of a file or folder. AcGetFileDetailsAction
gets the details and stores them in this JavaBean.

General

Table 9-3 describes the Java Component com.actuate.activeportal.beans class that
supports general functionality.

Table 9-3 General bean class
Class Description
LinkBean Generates an HTML link tag using the link, linkAttributes,

and text properties. By default, the link class is hyperlink.
After setting these properties, use the toString() method to
generate an HTML link tag in the following format:

<A HREF="1link" linkAttributesstext

Table 9-4 lists and describes Java Component com.actuate.activeportal.forms
classes that support general functionality.

Table 9-4 General forms classes
Class Description
BaseActionForm The base ActionForm for all other Java Component

ActionForms. Provides methods related to postback.

Jobs

Table 9-5 lists and describes Java Component com.actuate.activeportal.forms
classes that support jobs.

Table 9-5 Job classes

Class Description

JobActionForm The base ActionForm for QueryActionForm and
SubmitJobActionForm. Stores values used in submitting a job
or query, such as the document, parameters, and schedule.

SubmitJobActionForm Contains the information for submitting a job from the

requester page. This class extends JobActionForm.

Chapter 9, Actuate Java Component JavaBeans 121

122 Actuate BIRT Java Components Developer Guide

Using Actuate Java
Component security

This chapter contains the following topics:

m About Actuate Java Component security

m Protecting corporate data

m Understanding the authentication process

m Customizing Java Component authentication

m Creating a custom security adapter

Chapter 8, Using Actuate Java Component security 111

About Actuate Java Component security

A reporting web application is accessible to any user who has a web browser and
the URI for the application. This chapter discusses the Actuate Java Component
security features and how to use them to:

m Ensure that users access only those objects in the repository for which they
have permission.

m Protect sensitive reports.
The types of security you can provide for Actuate Java Component are:

m Default application server authentication. The Deployment Kit does not have
any security implemented automatically. The application server controls
access to the file system and web content.

m User authentication using the iPortal Security Extension (IPSE). Use IPSE to
customize and control the user login and authentication process. For details
about implementing custom user authentication, see “Customizing Java
Component authentication,” later in this chapter.

Protecting corporate data

An Actuate Java Component provides a structured content generation solution
for web applications. Deploying Actuate applications developed for the internet,
such as Java Component, requires planning for network security.

Internet applications support access to information within an organization from
outside that organization. Because the organization’s internal network is
connected to the internet, there is the risk of unauthorized access to the corporate
network and to the data that resides on that network.

Organizations use one or a combination of the technologies described in the
following sections to prevent unauthorized access to the corporate network and
protect authentication transactions from intrusion.

Protecting corporate data using firewalls

Typically companies use firewalls to prevent unauthorized access to corporate
networks and data. A firewall is a system or group of systems that restrict access
between two networks, such as an organization’s internal network and the
internet. Firewalls keep unauthorized users out. As a result, firewalls prevent
damage caused by malicious programs such as worms and viruses from
spreading to other parts of your network. At the same time, firewalls allow
legitimate business to tunnel through the firewall and be efficiently conducted on
your network.

112 Actuate BIRT Java Components Developer Guide

Firewalls can be used to restrict access between two internal networks, for
example, the accounting and engineering networks. Security teams configure
firewalls to allow traffic using specific protocols, such as HTTP, over specific
network addresses and ports. Be sure that your firewall allows access for the
Actuate Java Component ports.

Protecting corporate data using Network Address
Translation

Companies also use Network Address Translation (NAT). NAT routers and
software support private networks using unregistered, private IP (Internet
Protocol) addresses to connect to the internet.

Protecting corporate data using proxy servers

Proxy servers, specialized web servers or hardware that operate on or behind a
firewall, improve efficient use of network bandwidth and offer enhanced network
security. For more information about proxy servers and Actuate Java Component,
see Chapter 1, “Introducing Actuate Java Components.”

Understanding the authentication process

The authentication process involves the following steps, in this order:

m A user or client makes a request by choosing a link on an Actuate Java
Component page or by typing an Actuate Java Component URI in a web
browser. The Java Component application processes the request.

m If a custom security adapter parameter is set in the web.xml file, the Java
Component attempts to load the custom security adapter class. If the class
loads successfully, the following steps occur:

m The Java Component calls the custom security adapter’s authenticate()
method with the parameters that the browser sent.

m The authenticate() method performs the custom validation.

m The Java Component calls the getUserName(), getPassword(), and
getUserHomeFolder() methods to retrieve the user information the
Actuate web service requires.

= Optionally, the Java Component calls the getExtendedCredentials()
method. If this method returns null, there are no extended credentials to
send to the web service.

m The application server provides the necessary information to the access
manager.

Chapter 8, Using Actuate Java Component security 113

Customizing Java Component authentication

To customize Actuate Java Component authentication, complete the following
general tasks:

m Write a custom security class that extends an IPSE class, implementing all the
appropriate methods. Your class must be thread-safe and cannot depend on
any one thread handling a particular request.

m Compile, compress, and copy the new class to the lib directory for your Java
Component application. The lib directory for your Java Component
application resides on a path like this one:

<context root>\WEB-INF\lib

m Set the value of the parameter in the <context root>\WEB-INF\web.xml file
to the fully qualified name of your custom security class. A fully qualified
name contains both the package and class names. For single sign-on
authentication, set the SECURITY_ADAPTER_CLASS configuration
parameter value to the custom security class.

Creating a custom security adapter

The Java Component security adapter is designed so that other applications can
authenticate users and log into Java Component using a URL. When a URL
activates a custom Java Component security adapter, access is granted based on
the security adapter’s logic. A Java Component security adapter establishes an
additional layer of logic to the existing Java Component, as shown in Figure 8-1.

Authentication
required

Security

Generic
Authenticate() Deploni/tment
authentication
Figure 8-1 Java Component security model with an optional security adapter

The Java Component Login module creates a Properties object that contains the
values of configuration settings that correspond to the class’s public fields before

114 Actuate BIRT Java Components Developer Guide

calling the authenticate() method. These values are gathered from the entries in
the <context_root>\WEB-INF\web.xml configuration file.

To create a custom security adapter, perform the following steps:
m Ensure that your application can access the IPSE Java classes.
m Create a Java class that implements the custom security adapter class for IPSE.

m Compile, compress, and move the new class into the class libraries for the Java
Component.

m Set the Java Component configuration file web.xml to use the new class.

m Deploy the Custom Security Adapter.

Accessing the IPSE Java classes

The Java Component library, com.actuate.iportal.jar, contains the IPSE Java
classes. This library is located in the lib subdirectory in the Java Component
installation. The class, com.actuate.iportal.security.iPortalSecurity Adapter, in this
library provides the framework for custom authentication. A custom security
adapter providing an IPSE implementation extends this class.

Specifically, the JRE needs to access the following JAR files:

= <context root>\WEB-INF\lib\com.actuate.iportal jar

m <context root>\WEB-INF\lib\org.apache.xerces_<version>.jar
m <context root>\WEB-INF\lib\com.actuate.webcommon jar

Additionally, the JRE needs to access the following JAR files from the application
server:

m servlet-apijar
m jsp-apijar

For example, when deploying a Java Components application on Tomcat 6.0,
these JAR files are in the <Apache Installation Directory>/Tomcat 6.0/1ib
directory.

Creating a custom security adapter class

Extend the iPortal security adapter class to customize authentication. The iPortal
security adapter requires access to the following libraries:

m javax.servlethttp.*
m com.actuate.iportal.security.iPortalSecurity Adapter

iPortalSecurity Adapter provides a set of empty methods. Extend this class and
override any of the methods to provide custom IPSE authentication. To establish a

Chapter 8, Using Actuate Java Component security 115

secure session with Information Console using a custom security adapter, the
following methods are required:

m A constructor
m authenticate()
m getPassword()
m getUserName()

The login module of the Java Component calls methods in the custom security
class to perform authentication and to retrieve login credentials. The
authenticate() method returns a boolean value to indicate whether the login
credentials provided are acceptable. The getter methods return the authenticated
credentials. Each user name and password must correspond to an authentic user
account. For example, to support a URL that authenticates using a single
parameter, code, override authenticate() to retrieve the parameter from the
HttpServletRequest and set the user name, password, and home folder as in the
following class:

import javax.servlet.http.*;
import com.actuate.iportal.security.iPortalSecurityAdapter;

public class SecurityCode extends
com.actuate.iportal.security.iPortalSecurityAdapter {
private String userName = null;
private String password = null;
public SecurityCode() {}

public boolean authenticate(
HttpServletRequest httpservletrequest) {
String param = httpservletrequest.getParameter ("code") ;
boolean secured = true;

if ("12345".equalsIgnoreCase(param)) {
userName = "userl";
password = "userl";

} else if ("abc".equalsIgnoreCase(param)) {
userName = "BasicUser";
password = "";

} else {

secured = false;

}

return secured;

}

public String getUserName() { return userName; }

public String getPassword() { return password; }

public String getUserHomeFolder () { return userName; }
public byte[] getExtendedCredentials() { return null; }
public boolean isEnterprise() { return false; }

116 Actuate BIRT Java Components Developer Guide

}

Users or pages attempting to authenticate a session with a Java Components
application that implements the security adapter above must use URL parameters
defined in the authenticate method. Because Java Components have no native
security, a custom adapter becomes the sole security module.

How to build the IPSE application

1 Compile the IPSE application. Use a command similar to this one in a console
window:

javac SecurityCode.java

2 Create a JAR file to contain the IPSE application. Use a command similar to
this one in a console window:

jar cvf SecurityCode.jar SecurityCode.class
3 Using Windows Explorer, copy SecurityCode jar to this directory:

<your application context root>\WEB-INF\lib

How to deploy the IPSE application

1 Using a UTF-8 compliant code editor, open the following file:
<your application context root>\WEB-INF\web.xml
Navigate to the parameter name SECURITY_ADAPTER_CLASS.

Change the param-value parameter of the SECURITY_ADAPTER_CLASS to
the fully qualified class name of your security manager class. Use an entry
similar to this one:

<param-name>SECURITY ADAPTER CLASS</param-names
<param-value>SecurityCode</param-value>

Save and close web.xml.

To have Actuate Java Component read the new security class from the
web.xml file, restart the application server or servlet container.

Understanding a security adapter class

Implement the security manager by writing a class that extends
com.actuate.iportal.security.iPortalSecurity Adapter. This class contains the
following methods.

authenticate()
Syntax boolean authenticate(javax.servlet.http.HttpServletRequest request)

Chapter 8, Using Actuate Java Component security 117

Description

Returns

Throws

Syntax
Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Required method that evaluates the current user’s security credentials. The Login
module calls authenticate() to validate the current user’s security credentials. If
authenticate() returns false, the user is redirected to the login page.

True for successful credential evaluation and false otherwise.

An AuthenticationException indicating the reason for the failure, if credential
evaluation is not successful.

getExtendedCredentials()
byte[] getExtendedCredentials()
Retrieves the current user’s extended security credentials.

A byte array representing any extended credentials for the iServer to use to
authenticate the user, or null if there are no extended credentials to evaluate.

getPassword()
String getPassword()

Required method that retrieves the current user’s password. The Login module
calls getPassword() and uses the password to establish a connection to the
application server and file system.

A string that is the password to use to establish the connection.

getUserHomeFolder()
String getUserHomeFolder()

Retrieves the current user’s home folder. The Login module calls
getUserHomeFolder() to access the user’s files.

A string that is the user’s home folder. It is null if there is no home folder for the
user.

getUserName()
String getUserName()

Retrieves the current user’s login name. The Login module calls getUserName()
to establish a connection to the application server and file system.

A string containing the user name that the application server recognizes.

isEnterprise()
boolean isEnterprise()

Evaluates whether the user connects to an Encyclopedia volume. The Login
module calls isEnterprise() to determine whether to use a repository on the file
system.

118 Actuate BIRT Java Components Developer Guide

Returns False.

Chapter 8, Using Actuate Java Component security 119

120 Actuate BIRT Java Components Developer Guide

Customizing Java
Component online help

This chapter contains the following topics:

About Actuate Java Component online help files
Using a custom help location

Creating a localized help collection
Customizing icons and the company logo

Changing help content

Chapter 10, Customizing Java Component online help 123

About Actuate Java Component online help files

Actuate provides online help for Java Components using the internet by default.
To customize online help for Java Components, extract the documentation from
ajc_doc.zip from the Actuate Localization and Online Documentation installation
into your decompressed WAR file. Switch the help location for Java Components
to local by configuring web.xml. Then, customize the online help as needed
before recompressing and deploying the Java Components application.

How to switch the help location for a Java Component

Use the following procedure to switch the help location of a Java Component.
Switching the help location is required for any of the customization tasks detailed
in this chapter.

1

8

Extract the contents of the Java Components WAR or EAR file into a
temporary directory.

Copy ajc_doc.zip from the Actuate Localization and Online Documentation
installation media. Extract the contents of ajc_doc.zip into the temporary
directory for the Java Component WAR file, which generates the help content
in the <temporary directory>\help directory.

Using a UTF-8 compliant code editor, open the web.xml configuration file.

Navigate to the lines that define DEFAULT_LOCALE, similar to the following
code:

<param-name>AC_DOC_ BASE</param-name>
<param-value>
http://www.actuate.com/documentation/R1l1l</param-value>

Change the AC_DOC_BASE value to local, as shown in the following code:

<param-name>AC_DOC_ BASE</param-name>
<param-values>local</param-value>

Save web.xml.

Recompress your WAR file using the Java jar utility and redeploy it to the
application server or servlet engine as an application.

Restart the application server or servlet engine that runs Java Component.

Online help customizations are not automatically applied to a new version of
Actuate Java Components. Because online help is comprised of many static
HTML files, all customizations must be reapplied when replacing Actuate Java
Components with a new version.

124 Actuate BIRT Java Components Developer Guide

Understanding the Java Component help directory
structure

The local Java Component help files are grouped into directories under the
context root for Java Component. The localized help directory under the context
root is the container for the help implementation.

Figure 10-1 illustrates the Java Component help directory structure.

‘ <context root>\ ‘

L‘ help\ <locale-specific
directories>

4{ analyzen H subsidiary document roots l
4{ birt\ H subsidiary document roots l
4{ brs\ H subsidiary document roots ‘

customizing-dk\
glossary\
images\

javascriptapi\

jsapi\
4{ query\ H subsidiary document roots ‘
—{ using-dk\ wwhdata is

|
—| wwhelp\ scripts ‘ java ‘
images ‘ common ‘

wwhelp.htm

Figure 10-1 Java Component help directory structure

Actuate uses JavaScript (.js) and HTML (.html) files to implement Java
Component help. The files that support top-level help styles and images reside in
the wwhelp directory. Files that support help content pages and help navigation
reside in a document root directory. A document root contains the help files for a
specific top-level help topic, such as birt or glossary.

Understanding a help collection

The wwhelp directory contains files that support grouping multiple document
roots into a collection. If you open the help using index.htm, the table of contents

Chapter 10, Customizing Java Component online help 125

frame displays the top-level help topics, as shown in Figure 10-2.
— Top-level help topic

e - | - L 8
u Actuate BIRT J Ci it i
b el S Using Actuate BIRT Java Components

eActuate BIRT Java Components Developer Guide
e Using Actuate JawvaSecript API

e Actuate Glossary Using Actuate BIRT Java Componentsincludes the following

sections:

Figure 10-2 Appearance of top-level help topics

A collection has a one-to-one correlation between each top-level help topic and a
document root. Each top-level help topic represents a complete book. Table 10-1
lists these applications and the directory containing the corresponding help

collection.

Table 10-1 Applications and help collection directories
Application Directory
Using Actuate BIRT Java Components using-dk
Actuate BIRT Java Component Developer’s Guide customizing-dk
Using Actuate JavaScript API javascriptapi
Actuate Glossary glossary

The help directory contains subdirectories that provide the help collections for
applications launched by Java Component. Table 10-2 lists each document root in
the Java Component Online help collection and its corresponding top-level help
topic.

Table 10-2 Top-level help topics

Help topic Document root
Actuate BIRT Viewer and Interactive Viewer birt

Actuate Query query

BIRT Data Analyzer analyzer

BIRT Studio brs

Understanding a document root

The content files for a top-level help topic reside in a corresponding document
root. For example, the using-dk document root contains DKusing-intro.2.1.html,
DKusing-intro.2.2.html, and so on. These files are the content files for the help.
Each document root also contains an index.html file. Opening this file displays
the topic and content files for the book.

126 Actuate BIRT Java Components Developer Guide

Within each document root is a wwhdata\common directory that contains the
JavaScript files that organize help content and that link the help files to the
application. Table 10-3 lists and describes the customizable <document root>

\wwhdata\common contents.

Table 10-3 Help content management files
File Purpose
files.js Lists the content files to be used and in what order
title.js Specifies the title for the browser window and the top-level
table of contents text
topics.js Designates the targets for context-sensitive help keys the

Java Component emits

Within each document root, a wwhdata\js directory contains JavaScript files that
organize the navigation frame. This frame includes the table of contents (TOC),
index, and search frames. Table 10-4 lists and describes the customizable

<document root>\wwhdata\js contents.

Table 10-4 Help navigation files

File Purpose

indexjs Organizes the index links and hierarchy

search.js Designates specific search values and priority

toc,js Specifies the table of contents frame hierarchy, linking

behavior, and text

Understanding context-sensitive help

The Java Component application links to its online help files using wwhelp.html
located in <context root>\help. Typically, the links that activate this context-
sensitive help are in the Java Component application, as shown in Figure 10-3.

;— Context-sensitive

'7 ACTUATE Licensed for: Evaluation I -
help link

workgroup

laf | 4

Documents

workgroup

Create Folder Filter: On | OFf View: ICategories 'I

Folders

= Home = public

Figure 10-3 Java Component help link for login page

Chapter 10, Customizing Java Component online help 127

These links in the Java Component emit a URL for the wwhelp.html file and
append two parameters to that URL, context and topic. The URL looks like
following example:

http://host:8080/ajcll/help/wwhelp.htm#context=UserConsole
&topic=Document_ list

where

m host is the name of the web server serving your online help.
m 8080 is the port number for the web and http service.

m /ajcll is the web application’s context root.

m /help/wwhelp.htm is the path to the help control file.

m context=UserConsole is the context parameter that specifies the document
root for the required help collection. This parameter’s value is the context for
Java Component help, UserConsole, and directs the request to the Java
Component help collection. The context value is determined by the Java
Component application.

m topic=Document_list is the topic parameter that locates the required help
page. This parameter’s value is the topic for viewing and navigating the
documents and folders page, Document_list, which is mapped to an anchor in
the DKmanaging-reports.3.07.html file. The topic value is determined by the
Java Component application.

Understanding locale support

Actuate provides help in US English. The documentation installer places this help
in <context root>\help. The installer creates directories for all available locales
within <context root>\help. The locale directory names are the locale code of the
form <ll_cc> where 1l is a language code and cc is a country code. The directory
names are all in lower-case letters. Each locale directory contains a wwhelp.htm
file and directories for each help collection listed in Table 10-2, as shown in
Figure 10-4 for the ac_is locale.

‘ <context root>\help\ ‘

birt\

brs\
ereports\

query\

wwhelp.htm

Figure 10-4 ac_is locale directory structure

128 Actuate BIRT Java Components Developer Guide

The wwhelp.htm files in each locale directory and its collection directories
redirect to the files directly in <context_root>\help. To support localized online
help, place localized files in the appropriate locale directory and modify the
wwhelp.htm files to not redirect to <context_root>\help.

Using a custom help location

You can use any help system hosted by a web server to provide online help for a
Java Component system. To make an external help system available to the Java
Component application, the wwhelp.html file must redirect help requests to that
external system. Any specific help target can link to any specific page.

To redirect help requests from Java Component to an alternate URL, edit or
replace the wwhelp.html file in <context root>\help. You can further specify
different targets using the context and topic parameters in the URLs emitted by
Java Component in help requests.

Customizing the help location with wwhelp.htm

Use the following procedure to create a wwhelp.htm file that redirects Java
Component context-sensitive help requests to another URL.

1 In a text editor, open a new document.
2 Write the required pieces of an HTML file, as shown in the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<html>

<head>

<script type="text/javascript" language="JavaScriptl.2">
<!l--

/[l -->
</script>
</head>
<body>
</body>
</html>

3 Within the script block, write the javascript method GetParameter to capture
URL parameters, as shown in the following code:

// get parameters from the URL
method GetParameter (name)

{

var regexS = "[\\?&] "+name+"=(["&#]*)";
var regex = new RegExp(regexS) ;
var results = regex.exec(window.location.href);

Chapter 10, Customizing Java Component online help 129

if (results == null)
return "";

else
return results[1];

}

4 As shown in the following code, create a method to perform the following
tasks:

m Operate the page.
m Use GetParameter to obtain the topic and context from the URL.
m Open a URL based upon the topic and context.

method LaunchHelp ()

// Get URL parameters
var context = GetParameter('context');
var topic = GetParameter('topic');

var baseURL = "http://myhelpserver/viewer/wwhelp.htm";

// Begin flow control using context
switch (context)
{
// map the "BIRTIV" context to an outside URL
case "BIRTIV"
self.location = baseURL + "?single=true&context=" +
context + "&topic=" + topic ;
break;

// map the "UserConsole" context to an outside URL
case "userconsole"

baseURL = "http://myhelpserver/ajcll/wwhelp.htm";
self.location = baseURL + "?single=true&context=" +
context + "&topic=" + topic ;
break;

//the default behavior
default
self.location = baseURL ;
}
1

The LaunchHelp() method gets the context and topic information from the
URL with two calls to GetParameter. The baseURL is set to the myhelpserver
application’s online help. The flow control switch statements activate specific
URLs depending upon the context. Because the myhelpserver application uses
the same context and topic variables as standard Java Component help, they
are used directly in constructing the URL when activating the self.location
methods.

130 Actuate BIRT Java Components Developer Guide

5 Replace the <body> tag with the body tag in the following line:
<body onLoad="LaunchHelp () ;">
The onLoad parameter activates LaunchHelp() when the page loads.
6 Save your file as wwhelp.htm in the <context root>\help directory.

Test your results by opening Java Component and selecting a help link. The
resulting page is from the custom application. For example, the help link on
the login page pictured in Figure 10-3 would link to http://myhelpserver
/ajcl1/help/wwhelp.htm?single=true&context=UserConsole&topic=
Document_list.

Creating a localized help collection

Actuate Java Component supports localizing help collections by placing localized
help files into the help directory for the appropriate locale. The <context_root>
\help directory contains several locale-specific help directories. For example, the
United States English help subdirectory is <context_root>\help\en_us. Other
help locale directories can be populated with localized help to provide help for
customers in other locales and in other languages. In order to maintain proper
help navigation and context-sensitive help links, localized help pages must have
the same name as the help pages provided by Actuate.

How to create a localized help collection

Use the following procedure to create a localized online help collection for Java
Component that maintains context-sensitive help requests and help navigation.

1 Copy the all of the non-locale-specific directories from <context_root>\help
into the appropriate locale-specific directory. For example, for the Italian
locale, copy the files into <context_root>\help\it_it.

Create localized versions of existing help files in a separate directory.

In the locale-specific directory, copy the localized versions of the help files
over the English files of the same name. The localized help can be accessed
using the following URL:

http://localhost:8700/ajcll/help/<locale-specific directorys>
/wwhelp.htm

For example, for the Italian locale-specific help, use the following URL:
http://localhost:8700/ajcll/help/it_it/wwhelp.htm

4 Test your results by opening Java Component, selecting the new locale on the
login page, and selecting a help link. The resulting page is from the custom
application. For example, the help link on the login page shown in Figure 10-3
would link to http:/ /localhost:8700/ /ajc11/ /help/it_it/wwhelp /wwhimpl

Chapter 10, Customizing Java Component online help 131

/common/html/wwhelp htm#href=using-dk
/DKmanaging-reports.3.02.html#229645&single=true.

How to make locale-specific online help the default help

Use the following procedure to make a locale-specific help collection the default
help for Java Component.

1 Open wwhelp.htm in the <context root>\help directory in a text editor. Find
the following line:

setTimeout ("location.replace (\"/wwhelp/wwhimpl/common/html
/switch.htm" + Parameters + "\");", 1);

Add the locale-specific directory to the URL string, as shown in the following
code:

setTimeout ("location.replace(\"/<locale-specific directory>
/wwhelp/wwhimpl/common/html/switch.htm" + Parameters +

N, 1)

For example, to set the Italian locale as the default locale for context-sensitive
help, change the line to the following one:

setTimeout ("location.replace (\"/it_it/wwhelp/wwhimpl/common
/html/switch.htm" + Parameters + "\");", 1);

Save and close wwhelp.htm.

Copy the all of the non-locale-specific directories from <context_root>\help
into each English locale-specific directory - en_au, en_bz, en_ca, en_gb, en_ie,
en_nz, en_us, and en_za. For example, for US English, copy the files into
<context_root>\help\en_us.

4 In each English locale-specific directory, open wwhelp.htm in a text editor.
Find the following line:

setTimeout ("location.replace (\"../wwhelp/wwhimpl/common/html
/switch.htm" + Parameters + "\")

Add the locale-specific directory to the URL string, as shown in the following
code:

setTimeout ("location.replace (\"/<locale-specific directory>
/wwhelp/wwhimpl/common/html/switch.htm" + Parameters +

N, 1)

For example, to set US English help to the en_us locale for context-sensitive
help, change the line to the following one:

setTimeout ("location.replace (\"/en us/wwhelp/wwhimpl/common
/html/switch.htm" + Parameters + "\");", 1);

5 Test your results by opening Java Component and selecting a help link. The
resulting page is from the custom application. For example, the help link on
the login page shown in Figure 10-3 would link to http:/ /localhost:8700

132 Actuate BIRT Java Components Developer Guide

/ajc1l/help/it_it/wwhelp/wwhimpl/common/html/wwhelp.htm
#href=using-dk/DKmanaging-reports.3.02.html#229645&single=true.

Then, test an English locale by selecting an English locale on the login page
and then selecting a help link. The resulting page is from the English locale
help. For example, the help link on the login page shown in Figure 10-3
would link to http:/ /localhost:8700/ajc11 /help /en_us/wwhelp
/wwhimpl/common/html/wwhelp . htm#href=using-dk
/DKmanaging-reports.3.02.html#229645&single=true for the US English
locale.

Customizing icons and the company logo

The online help pages organizes content into frames, as shown in Figure 10-5.

Navigation frame Control bar frame Content frame

m| Index H Search | [y > &

([using Actuate BIRT Java Components
@ Introducing Actuate Java Components

e Managing files and folders
@ Running jobs Using Actuate BIR T Java Components includes the following sections:

Using Actuate BIRT Java Components

@ Actuate BIRT Java Components Developer 5 |ntroducing Actuate Java Companents. This section explains online reporting
@ Using Actuate JavaScript API and how Actuate Java Components work.
eActuate Glossary

m Managing files and folders. This section explains how to access Deployment
Kits and manage files.

m Running jobs. This section provides information on generating and viewing
documents using Actuate Java Components.

Additional Links: Forums | Blogs | Support | Give Us Feedback | More... ﬁ Share

Copyright Actuate Corporation 2012 @D ACTUATE.

Figure 10-5 Help frames

To change the fonts, colors, and icons of your customized help, you change each
frame’s content or style file individually.

Changing the corporate logo

The corporate logo is displayed in the content frame based on the image tags in
the content pages. Figure 10-2 shows the title page for the help system. This page
contains a large logo image. Individual content pages contain a small logo in the
footer, as shown in Figure 10-5. To change this logo, change the image tag on
every content page.

Chapter 10, Customizing Java Component online help 133

Changing the corporate logo on the title page

Because this title page is not directly tied to any one document, the title page does
not reside in an individual document root. The path of the title page, default.htm,
is:

<context root>\help\wwhelp\wwhimpl\common\html\default.htm
Changing the image tag for the logo in this file changes the logo on the title page.

How to change the logo on the title page

Use the following procedure to change the company logo that is displayed on the
help title page in the content frame.

1 Copy your corporate logo image file into the <context root>\help\wwhelp
\images directory.

2 In a text editor, open the <context root>\help\wwhelp\wwhimpl\common
\html\default.htm file.

3 Locate the following block of code:

<!-- Table for floating ActuAtelogo -->
<Table Cols="1" Border="0" cellpadding="0" cellspacing="0"
height="80%" width="100%">
<tr>
<td height="300" valign="bottom" >
<P align="right">
<IMG Alt="Actuate Corporation"
src="../../../images/actuate_logo.gif"s

</P>
</td>
</tr>
</Table>

Change actuate_logo.gif to the name of your corporate logo image file.
Change the value of the Alt parameter to your company name.

6 Save and close default.htm.

Changing the logo in the help content pages

The footers in the content pages display the Actuate corporate logo by default. To
change the corporate logo displayed on a content page, you alter the HTML
markup to use a different logo. Actuate uses the corporate logo as a link to the
Actuate corporate web application. You can change this link so that the image is a
link to your corporate web application.

134 Actuate BIRT Java Components Developer Guide

How to change the corporate logo on a help content page

Use the following procedure to alter the corporate logo and corporate web
application link in a content page.

1 Copy your corporate logo image file into the <document root>\images
directory for the help topic content you wish to change. For example, to
change the logo in the Using Actuate BIRT Java Components help topic, the
document root is the <context root>\help\using-dk directory.

2 In a text editor, open the first content page file in the document root that you
wish to update. For example, the first content page in the Using Actuate BIRT
Java Components documentation is DKusing-intro.2.01.html.

3 Locate the following block of code:

<table align="right" border="0" cellspacing="0"
cellpadding="0">
<tr>
<td align="right" width="95%" >
<span style="font-size: 10px ;font-family: Arial,
Helvetica, sans-serif"s>

<img src="images/actuate logo_sm.gif" width="115"
height="22" border="0" alt="Actuate Corporation" />
<!--
info@actuate.com
-=>

</td>
<td width="5%" />
</tr>
</table>

4 Change http://www.actuate.com to the address of your corporate web
application.

Change actuate_logo_sm.gif to the name of your corporate logo image file.
Change the value of the Alt parameter to your company name.
Change the width and height attributes to display the logo image properly.

Save and close the content file.

© 00 ~N O O

Repeat steps 2 through 8 for each content file you need to change.

Changing icons

To change the icons for the controls in the navigation frame and the control bar
frame, replace the current image files with different ones. The icon images are
located in the <context root>\help\wwhelp\wwhimpl\common\images

Chapter 10, Customizing Java Component online help 135

directory. Replacing these image files changes the icons used for the control bar
and navigation frames. Table 10-5 lists and the describes the image files for the

icons.
Table 10-5 Help content management files
Image Filename Purpose Location
bkmark.gif Bookmark the current The control bar frame
page.
bkmarkx.gif The bookmark method = The control bar frame
is not available.
EL‘ doc.gif Open assingle fileinthe The navigation frame
table of contents.
email.gif E-mail a link to the The control bar frame
current page.
emailx.gif E-mailing a linkisnot ~ The control bar frame
available.
fc.gif Expand a help topic or The navigation frame
= sub-topic in the table of
contents.
fo.gif Collapse a help topicin The navigation frame

H B O

B [

frameset.gif

next.gif

nextx.gif

prev.gif

prevx.gif

the table of contents.

Open the control
frame.

Go to the next page.
There is no next page
available.

Go to the previous
page.

There is no previous
page available.

136 Actuate BIRT Java Components Developer Guide

The control bar frame

The control bar frame

The control bar frame

The control bar frame

The control bar frame

Table 10-5 Help content management files

Image Filename Purpose Location

print.gif Print the current page. The control bar frame

E printx.gif Printing is not The control bar frame
available for this page.

related.gif View related topics. The control bar frame

relatedx.gif The related topics The control bar frame

method is not
available.

sync.gif Synchronize the frames The control bar frame
so that the control

frame matches the
content frame.

I:I syncx.gif Synchronizing frames The control bar frame
is not available.

Changing the browser window title

To change the title displayed in the browser’s title bar when viewing online help,
alter the titlejs file for each document root. The browser’s title bar appears as
shown in Figure 10-6.

oD ao i enrs T T |
Figure 10-6 The browser title bar

How to change the text displayed in the browser’s title bar

Use the following procedure to change the text displayed in the browser’s title
bar when you access help.

1 Navigate to the <document root>\wwhdata\common directory for the help
topic you want to customize. For example, to change the text displayed in the
browser title bar when you open the Using Actuate BIRT Java Components
help topic, the <document root> is the <context root>\using-dk directory.

In a text editor, open title js.

Locate the line in the code that uses the return method. For the Using Actuate
BIRT Java Components help topic, it is the following line:

Chapter 10, Customizing Java Component online help 137

return "Using Actuate BIRT Java Components";

4 Change the quoted text value to the text you need to display in the browser
title bar.

5 Save and close title js.

Changing help content

Every piece of content in the Actuate Java Component help system is
customizable. The possible content changes fall into the following general
categories:

m Changing existing help content

m Adding or removing help topics

m Adding and removing content files
m Changing the table of contents

m Changing the index

Changing existing help content

You can modify any of the existing HTML pages of the Java Component help for
any help topic to change the information they contain. These HTML files contain
specific <a> tags used for internal navigation and context-sensitive help. In
general these tags must remain unchanged to maintain context-sensitive help and
internal navigation functionality. Table 10-6 lists the tags and their use.

Table 10-6 Help content reserved tags
Tag examples Purpose
 An anchor for a specific place in a file. This tag is
used by internal links and context-sensitive
links.
<a href="javascript: Internal link. This tag is an internal link to an
WWHClickedPopup anchor. In this example:
'('UserConsqle', m UserConsole is the context, a reserved help
Dngnirggrﬁg' i topic label.
;(21}31(7);2’9")'-" tm m DKgenerating-reports.4.02.html is the file
! that the link opens.

m #147349 is the text of the anchor tag that the
link accesses.

138 Actuate BIRT Java Components Developer Guide

How to modify the content of existing pages
Use the following procedure to change the help content.

1 Navigate to the document root directory for the help topic you want to
change. For example, to change the content of a page in the Using Actuate
BIRT Java Components help topic, the document root is the <context root>
\using-dk directory.

2 In a text editor, open the content page you need to change. For example, to
change the content of the Chapter 2 Managing folders and files page, open the
DKmanaging-reports.3.01.html file.

3 Modify the text, being careful not remove any <a> tags that provide internal
links and context-sensitive links.

4 Save and close the content file.

Adding or removing help topics

To add or remove help topics from the application help, you delete or create the
document root for that help topic. To prevent the navigation pane controls from
generating erroneous links to that help topic, you must also alter the help book
list, books.js, located in the <context root>\help\wwhelp\wwhimpl\common
\private directory. The books js file also controls the order in which the help
topics appear in the table of contents.

How to remove a help topic from the Java Component help system

Use the following procedure to remove a help topic from the Java Component
help system.

1 Navigate to the <context root>\help\wwhelp\wwhimpl\common\private
directory.

In a text editor, open the books js file.
Find the following code:

function WWHBookGroups Books (ParamTop)

{

ParamTop.fAddDirectory ("using-dk", null, null, null, null);
ParamTop.fAddDirectory ("customizing-dk", null, null, null,
null) ;

ParamTop.fAddDirectory ("javascriptapi", null, null, null,
null) ;

ParamTop.fAddDirectory("glossary", null, null, null, null);

}
Delete the line that adds the directory for the topic that you need to remove.

Save and close the books.js file.

Chapter 10, Customizing Java Component online help 139

6 In the file system, delete the document root for the topic that you removed in
step 4.

Adding and removing content files

Individual content files are added or removed from the document root for each
top-level help topic. To make the content file available for linking and viewing
from the help system, you must also alter the file list, files.js, located at
<document root>\wwhdata\common. The files.js file also controls the order of
the files in the array for reference by other files. For example, the content of files.js
for the using-dk document root looks like the following code:

function WWHBookData Files (P)

{

P.fA("Using Actuate BIRT Java Components", "about-dkreports.html");

P.fA("Introducing Actuate Java Component", "DKusing-
intro.2.01.html") ;

P.fA("Using Actuate Java Components", "DKusing-intro.2.02.html") ;

P.fA("About Actuate Deployment Kits", "DKusing-intro.2.03.html");

.}

This code establishes the following structure:

m Each file, about-dkreports.html, DKusing-intro.2.01.html, DKusing-
intro.2.02.html, and DKusing-intro.2.03.html, is available for linking and
display by Java Component help.

m The first file in the array is about-dkreports.html, which is referenced by the
array number 0. The second file in the array is DKusing-intro.2.01.html and is
referenced by the array number 1 and so on.

The order of the files in the array always begins with and proceeds from 0. The
file array is an internal mechanism that supports referencing these files by
number within the help topic.

How to add a content file to the Java Component help system

Use the following procedure to add a content file to the Java Component help
system.

1 Copy your content file into the document root directory for the help topic you
need to enhance. For example, to add a new file to the Using Actuate BIRT
Java Components help topic, the document root is the <context root>
\using-dk directory.

2 Navigate to the <document root>\wwhdata\common directory.

3 In a text editor, open the files,js file.

140 Actuate BIRT Java Components Developer Guide

4 Find the following code:

function WWHBookData Files(P)

{

P.fA("Using Actuate BIRT Java Components", "about-
dkreports.html") ;

P.fA("Introducing Actuate Java Components", "DKusing-
intro.2.01.html") ;

P.fA("Using Actuate Java Components", "DKusing-
intro.2.02.html") ;

5 Add aPfA(...); entry for the file to add, placing it where you need it to appear
in the file array relative to the other entries.

PfA(...); requires two parameters. The first is a string that describes the file.
The second is the name of the file. Both parameter values must individually be
within quotation marks and separated by a comma.

Change the parameter values for the other PfA(...) calls as needed.

7 Save and close files.js.

Changing the table of contents

Help topics are established in the table of contents by the title.js file in the
<document root>\wwhdata\js\ directory for each help topic. For example, the
titlejs file for the using-dk document root looks like the following code:

method WWHBookData Title()

{

}

This code indicates that the table of contents text for this help topic is Using
Actuate BIRT Java Components. Figure 10-7 shows the hierarchy produced by the
code above.

" oners I N

| Using Actuate BIRT Java Components — return "USing Actuate ...
[} Introducing Actuate Java Components
|=] Using Actuate Java Components
|=] About Actuate Deployment Kits
|1 Manaaging files and folders
eGetting started with Actuate Java Components
QUSing filters
?:JjSEtting your locale
|Z] How to set a locale
@Running jobs
eActuate BIRT Java Components Developer Guide
@ Using Actuate JavaScript AP
eActuatE Glos=zary

return "Using Actuate BIRT Java Components';

Figure 10-7 The help topic entry in the table of contents

Chapter 10, Customizing Java Component online help 141

The table of contents displays nested help topics as listed in the toc.js file located
in the <document root>\wwhdata\js directory. The toc s file also controls the
following items:

m The table of contents hierarchy
m The text that appears in the table of contents
m The file that opens when a user selects a table of contents entry

For example, part of table of contents entry for the Using Actuate BIRT Java
Components chapter in the toc.js file for the using-dk document root looks like
the following code:

var A=P.fN("Introducing Actuate Java Components",6"1");

var B=A.fN("Using Actuate Java Components",6"2");
B=A.fN("About Actuate Deployment Kits",6"3");
A=P.fN("Managing files and folders","4");

B=A.fN("Getting started with Actuate Java Components","5");
var C=B.fN("Navigating BIRT Deployment Kit","é");
C=B.fN("About the banner","7");

C=B.fN("About the side menu","8");

var D=C.fN("How to delete a file","15");
B=A.fN("Using filters","1l6");
C=B.fN("Enabling the filter option","17");

B=A.fN("Setting your locale","21");
C=B.fN("How to set a locale","21#661087") ;

This code establishes the following structure:

m The top-level entry, A, is file "1". File 1 is in position 1 of the internal file array
established by files.js. For example, in the using-dk document root, this file is
DKusing.

m Entries are created to reside in the next level under the top-level entry using
the variable B. Entries in the third level of the table of contents are created
using the variable C, and in the fourth level using the variable D. The entries
link to file or anchors within a file referenced by the internal file array number.
For example, "21#661087" links to the anchor in file "21"
of the file array, DKmanaging-reports.3.18.html.

m The text that appears in the table of contents for each entry is explicitly
defined. For example, the text for the top-level entry is "Using Actuate BIRT
Java Components".

Figure 10-8 shows the hierarchy produced by this code.

142 Actuate BIRT Java Components Developer Guide

oo I N

|,J_] Using Actuate BIRT Java Components

eActuate BIRT Java Components Developer Guide
@ Using Actuate JavaScript API
QActuatE Glossary

- A=P.fN("Introducing...

[Introducing Actuate Java Components
|Z] Using Actuate Java Components —————— B:A.fN("Using Actuate...
|=] About Actuate Deployment Kits

|1 Managing files and folders
eGetting started with Actuate Java Components
@ Using filters
MSEttlng your locale "

E]Howto setalocale ——————————— C=BfN(How to set...

e Running jobs

Figure 10-8 The table of contents hierarchy for using-dk

How to add a content file link to the table of contents hierarchy

Use the following procedure to add a content file link to the table of contents
hierarchy for the Java Component help system.

1

If you are linking to an anchor, navigate to the document root directory. Open
the content file that contains the anchor to which the table of contents will link.
Determine the value of the name attribute for the anchor. Then, close the
content file without saving it.

Navigate to the <document root>\wwhdata\common directory.

In a text editor, open the filesjs file and determine the internal file array
number for the content file, either that you opened in step 1 or that you are
linking to directly. Close files.js without saving it.

Navigate to the <document root>\wwhdata\js directory.
In a text editor, open the toc.js file.

Add an entry to toc.js for the table of contents entry using the following
format:

var B=A.fN("About business reporting using Actuate
products", "1#147349") ;

m var is a keyword that must precede the entry if B has not been defined as a
variable in this file prior to this line. Do not use var if B has already been
defined.

= Bis the table of contents hierarchy level of the new table of contents entry.

= A s the table of contents hierarchy level above the level of the new table of
contents entry.

m "About business reporting using Actuate Products" is the string to display
in the table of contents for this entry.

m 1is the array number of the target file established in step 3.

Chapter 10, Customizing Java Component online help 143

m #147349 is a number sign (#) followed by the value of the name attribute for
the anchor established in step 1, if it is applicable. Do not append any
additional characters to the array number of the target file if you are just
linking to the file and not to a marker.

7 Save and close toc.js.

Changing the index

The index displays keywords for help topics from individual content files. The
index js file located in the <document root>\wwhdata\js directory contains the
index entries. The index js file controls the following items:

m The index hierarchy
m The text that makes up the index entries
m The content to which the index entries link

For example, in the using-dk document root, the index entry for QBE expressions,
starting at the letter Q, looks like the following code:

A=P.fA("Q",null,null, "002") ;
B=A.fA("QBE expressions");
C=B.fA("creating",new Array ("31#481958","32#482151","33#482228")) ;
C=B.fA("defining ad hoc parameters for", new

Array ("31#481476","32#482106")) ;
C=B.fA("entering literal characters in",new

Array ("33#482364","344#481292")) ;
C=B.fA("formatting date values and",new Array("33#482248"));
C=B.fA("matching string values and", new

Array ("33#482288", "33#482372", "34#440077", "34#481319")) ;
C=B.fA("retrieving blank characters and",new Array ("34#481319")) ;
C=B.fA("retrieving null values and",new Array("33#482238"));
B=A.fA("query operators",new Array("31#481958"));

This code establishes the following structure:

m The top-level entry, A=PfA, is the label "Q". This entry links to the "002"
frame, which is the navigation frame.

m The first entry below "Q" is the "QBE expressions" entry. This entry is one level
down in the hierarchy, B=A fA, of the index for "Q". "QBE Expressions" is
merely a label and does not link to anything.

= On the next level down in the hierarchy, C=B.fA, has seven entries, one for
each of the sub-topics of QBE Expressions. Each entry has a label and an array
of links to topics that the user can choose.

Figure 10-9 shows the hierarchy produced by this code.

144 Actuate BIRT Java Components Developer Guide

| Contents |m| Search |

Default A B € D EFGHI1KLMNoOPH—A=PIAQ"...
RS T U V-W- X Y Z Symbols

QBE (defined)
QBE expressions B:A.fA("QBE expre...

creating
defining ad hoc parameters for C:B.fA("deﬁning ad hoc...
entering literal characters in
formatting date values and
matching string values and

Figure 10-9 The index hierarchy for using-dk

How to add a marker link to the index hierarchy

Use the following procedure to add a marker link to the index hierarchy of the
Java Component help system.

1

Navigate to the document root directory. Open the content file that contains
the anchor to which the index entry will link. Determine the value of the name
attribute for the anchor. Then, close the content file without saving it.

Navigate to the <document root>\wwhdata\common directory.

In a text editor, open the files js file and determine the internal file array
number for the content file that you opened in step 1. Close files.js without
saving it.

Navigate to the <document root>\wwhdata\js directory.
In a text editor, open the index js file.

Add an entry to index js for the index entry and anchor link using the
following format:

var B=A.fA("QBE expressions",new Array ("3#394929"));

m var is a keyword that must precede the entry if B has not been defined as a
variable in this file prior to this line. Do not use var if B has already been
defined.

m Bis the index hierarchy level of the new index entry.

m Ais the index hierarchy level above the level of the new index entry.
= "QBE expressions" is the string to display in the index for this entry.
m 3 is the array number of the target file established in step 3.

= #394929 is a number sign (#) followed by the value of the name attribute for
the anchor established in step 1.

To link the index entry to more than one marker, add each marker link to the
list within the new Array parameters. Enclose each anchor reference in

Chapter 10, Customizing Java Component online help 145

quotation marks. Delimit the anchor references with commas, shown in the
following example:

var B=A.fA("QBE expressions",
new Array ("3#394929", "3#394380", "3#394677")) ;

7 Save and close indexjs.

146 Actuate BIRT Java Components Developer Guide

Symbols

? (question mark) characters 21
& (ampersand) character 11

A

about page 80, 87
access manager. See security manager
access restrictions 112
accessing
application servers 53
cascading style sheets 54, 55
encryption plug-in 23
help content pages 125, 127
home page 94
Jakarta Struts templates 44, 54
JavaScript files 42, 54, 55, 102
JSP templates 42
login pages 81
ODA data sources 17
repository items 9, 14, 40, 73, 96
requester pages 49
resources 16, 55
session-specific information 52
tag libraries 54
web applications 45, 95
AcGetFileDetailsAction class 121
AcGetFolderltemsAction bean 51
AcServlet class 104
Action classes 49, 51, 120
action forms 120, 121
action paths 40, 47, 51, 52
ActionForm class 120
actions 40, 74, 80, 82
actionServlet component 40
activePortal directory 42,43
activity logs 69
actuate_logo_sm.gif 135
actuate_logo.gif 134
AddFile subfeature 74
adding
background images 61
context roots 44-46

Index

help topics 139
hyperlinks 121
locales 75
time zones 76
web pages 52
AdvancedData subfeature 74
ageDays parameter 92, 105
ageHours parameter 92, 106
allscripts.js 102
anonymous users 77
applications
accessing 45, 95
building UI for. See user interfaces
changing 46, 47, 50
configuring 47-49, 66
creating context root for 44—46
creating page-specific content for 46
customizing 45, 49-57
deploying 112
designing custom reporting 4, 40-47
determining state of 53
displaying information about 87, 95
encrypting data and 23, 29
getting session information for 52
grouping 44
linking help files to 127, 135, 139, 140
setting default locale for 68
setting default time zone for 68
setting global styles for 57-62
applyFilter parameter 97
archiveBeforeDelete parameter 106
archivePolicy parameter 106
array.js 102
authenticate method 114, 117
authenticate page 80, 87
authentication
accessing corporate networks and 112
accessing Java Component and 77, 113,
114
customizing 112, 114, 115
issuing URIs and 81
starting user sessions and 87, 113
authentication algorithms 23

Index

authentication IDs 53, 81

authexpired action 82
AUTOSUGGEST_DELAY parameter 66
AUTOSUGGEST_LIST_SIZE parameter 67

B

background images 61
backward compatibility 42
banner
adding features to 71,73
displaying 88, 97
replacing images in 60
banner labels 59
banner page 80, 88
banner styles 59
BaseActionForm class 121
Basic functionality level 72
beans 53, 54, 58, 120
beans package 120
binary files 104
BIRT Interactive Viewer. See Interactive
Viewer
BIRT Report Designer 29, 35
BIRT Report Designer Professional 35
BIRT report engine 24
BIRT reports 14,77, 78,99
See also reports
BIRT servlet 99
BIRT Studio 35, 49, 60, 66, 78, 94
BIRT Viewer 66,72,77,78,99
BIRT_RESOURCE_PATH parameter 15
BIT_SAVE_REPORT_DOCUMENT_
ENABLED parameter 93
block cipher encryption 25, 26
bookmark parameter 108
branding 60
breadcrumbs 56, 94
browse file page 80, 89
browsefile action 82, 83, 120
BrowseFileActionForm class 120
browsers. See web browsers
browsertype.js 102
browsing 89, 120
Bundle-SymbolicName property 27
BusinessReport Studio 60, 94

C

CACHE_CONTROL parameter 67
caching web pages 50, 67
cancelreport action 83
cascading style sheets
accessing 54, 55
customizing web pages and 50
linking to JSPs 57, 58
specifying color settings in 58
updating changes to 51
viewing changes to 59
case sensitivity 40, 80, 104
CBC encryption mode 26
CFB encryption mode 26
changing
action paths 52
actions 74
company logos 134-136
configuration files 47
encryption defaults 29
file names 47
font styles 59
functionality levels 72
global style elements 57
help indexes 144
help topics 138
icon files 74
icons 136
images 60-62
JSPs 51,55
locales 48
parameter values 48, 49
passwords 29
report designs 107
reporting applications 46, 47, 50
requester pages 49
servlets 104
style definitions 58
templates 55
time zones 48
web browser titles 137
web pages 46, 49, 55
channels 73
Channels feature 73
character encoding 11,12, 102
character sets 12,21, 22

148 Actuate BIRT Java Components Developer Guide

character strings. See strings
character substitutions 11
character tag 22
charts 108
ciphertext 23, 25,26
class names 114
class reference (JavaBeans) 120
classes
accessing repository functionality and 77
creating web pages and 9
customizing authentication and 114
customizing reporting functionality
and 50
encryption and 25, 28, 33
getting application state and 53
implementing security manager and 77,
117
clusters 6,7
code 53
colors 58
company logos 60, 133-136
compiling JSPs 40
composite fonts 22
composite-font element 22
configuration files 47, 66
See also configurations
configuration parameters 47, 66, 76,77,78
configurations
accessing functionality and 51, 71, 77
accessing repository items and 15,76
adding locales and 75
adding time zones and 76
authenticating users and 114, 115
changing 47
creating custom applications and 47-49,
66
customizing context root and 45
customizing features and 74
displaying reports and 18,77,78
displaying web pages and 8, 52
fonts 18,19, 21-23
initiating actions and 51, 82
invoking servlets and 104
publishing and 14, 15
renaming files and 47
running encryption plug-in and 25, 27, 28
setting up firewalls and 8, 112

updating images and 61
confirmation messages 54
connection parameters 40
connections

accessing private networks and 113

accessing repositories and 40, 118

timing out 70
content element 46
context menus 60, 102
context roots 4, 44, 45,53
context-sensitive help 102, 127
converter.js 102
COOKIE_DOMAIN parameter 67
COOKIE_ENABLED parameter 68
COOKIE_SECURE parameter 68
cookie.js 102
cookies 67,81, 102
country codes 75
CreateFolder subfeature 74
creating

action paths 51, 52

context roots 44-46

custom security adapters 115, 115-117

custom web applications 4, 4047

encryption keys 33, 34

help files 129,131, 132

help indexes 145

hyperlinks 121

requester pages 44, 49

URI parameters 11,12

WAR files 44, 45

web pages 4, 9-10, 40
credentials 87,117, 118
cross tabs 68
CSS files 50, 54, 57

See also cascading style sheets
currency symbols 22
custom emitters 34, 35, 36
custom security adapters 113, 114-118
custom tag libraries 54
Customization feature 73
customizing

applications 45, 49-57

authentication 112, 114, 115

configuration parameters 48

context roots 45

functionality levels 72

Index 149

customizing (continued)
images 60
Java Components 6,7, 114
JSPs 42,54,57
logins 112
online help 125-146
output formats 34
requester pages 44, 49
skins 73,74
web pages 46, 49, 55

D

daemonURL parameter 98

DashboardBusinessUser subfeature 74

DashboardDeveloper subfeature 74

dashboards 74

data 46, 104, 112

DataSourceEditorPage class 18

DataSourceWizardPage class 18

dateToDelete parameter 106

debugging log 68

decryption 23, 24

default authentication 112

default banner 88

default encryption 28, 29

default file names 47

default functionality level 72

default images 60

default locales 48, 68

default security roles 72

default settings 48

default skin 54, 76

default time zone 68

DEFAULT_COLUMN_PAGE_BREAK_
INTERVAL parameter 68

DEFAULT_LOCALE parameter 48, 68

DEFAULT_PAGE_BREAK_INTERVAL
parameter 68

DEFAULT_ROW_PAGE_BREAK_INTERVAL
parameter 68

DEFAULT_TIMEZONE parameter 48, 68

DEFAULT_WORKGROUP_
FUNCTIONALITY_ROLE parameter 76

DEFAULT_WORKGROUP_SKIN
parameter 76

delete file status page 80, 89

deletefile action 83

DeleteFile subfeature 74
DeleteFolder subfeature 74
deleting
files 89,91, 106
folders 91, 106
help topics 139
deploying
custom emitters 34, 35, 36
encryption plug-in 24, 27, 29
Java Components 4, 6,7
reports 5
web applications 112
des encryption parameter 33
desede encryption parameter 33
designing custom web applications 4, 40-47
designs
accessing resources for 15, 16
applying styles to 60
changing 107
changing encryption defaults and 29
controlling access to 15
defining context root and 45
deploying encryption plug-ins and 24
publishing 14
detail pages 80, 89
details icon 61
developing web pages 9, 46, 53
DHTML Viewer 88
diagnostic utility page 44
dialog boxes 60
directories 41, 125
directory names 40
directory paths. See paths
disk space 71
display names 75, 76
displaying
application pages 51
banners 88, 97
data 46
error messages 91
files and folders list 69
help topics 141, 143
locales 75
login page 98
report parameters 99
reports 10, 18, 42, 70,77, 78, 107
repository information 56

150 Actuate BIRT Java Components Developer Guide

search results 57
do directive 80
do_executereport.jsp 105
document classes 120
document files 77,90, 97, 108
documentation vii
Documents feature 73
Documents page 56, 120
domains 67
DownloadFile subfeature 74
driftjs 102
drivers 16
drop pages 80, 91

E

EAR files 4, 6,45
ECB encryption mode 26
editing. See changing
e-mail. See notifications
emitters 34, 35, 36
ENABLE_CLIENT_SIDE_REDIRECT
parameter 8, 68
ENABLE_DEBUG_LOGGING parameter 68
ENABLE_ERROR_LOGGING parameter 68
ENABLE_JUL_LOG parameter 69
encode method 12
encoderjs 12,102
encoding 11,12, 102
encryption 23, 25, 28, 29, 82
Encryption algorithm property 25
encryption algorithms 23, 25, 33
encryption classes 25
encryption keys 23, 25, 33
Encryption keys property 26
Encryption mode property 25
Encryption padding property 26
encryption plug-in
accessing 23
changing default encryption and 23
deploying 24, 27, 29
generating encryption keys and 33
instantiating 29
loading 24, 28
overview 25
encryption plug-in descriptor file 28
encryption plug-in ID 27

Encryption type property 25

encryptionHelper element 28

encryptionHelper extension point 28

encryptionID property 24

Encyclopedia volumes 82,107, 118

engines 70

erni_config.xml 66

error action 83

error detail page 89

error log files 68, 70

error messages 91, 99

error page 80, 91

ERROR_LOG_FILE_ROLLOVER
parameter 69

errors 51, 54, 68, 104

executable files 97

executableName parameter 92

execute report page 80, 92

EXECUTE_REPORT_WAIT_TIME
parameter 69

executedocument action 83

executereport action 83, 84

ExecuteReport servlet 105

experience levels 75

exporting reports 34

extended character sets 12

extension element 28

extensions 23

F

FeaturelD tag 73

features 73

file detail page 90

file drop page 91

file index page 95

file list page 96

file lists 69, 70, 120

file names 19, 40, 47, 61, 74, 106

file numbers 70

file system repositories 4, 76
See also repositories

FileListActionForm class 120

files
See also specific type
accessing 9, 14, 40, 73, 96
archiving 106, 107

Index

151

files (continued)
changing images and 61
changing Ul elements and 60
creating online help and 125
deleting 89,91, 106
filtering 96
getting information about 90, 121
linking to 46
renaming 47, 61
specifying as template 54
updating changes to 51
FILES_DEFAULT_VIEW parameter 69
files.js 127
FileSystemRepository class 77
filter action forms 121
filter parameter 97
firewalls 8, 112
Flash objects 108
floatingfooter parameter 108
folder detail page 90
folder drop page 91
folder icons 60
folder index page 95
folder list page 96
folder lists 69, 70, 120
folder names 80
folder parameter 97, 106
folders
accessing 9, 14, 40, 73, 96
archiving 106, 107
browsing contents 89
deleting 91, 106
getting home 118
linking to 94
navigating through 42
sharing resources and 17
specifying root 77
viewing information about 90, 121
font configuration files 18, 19, 21
font files 20, 22
font substitution 21
font-aliases element 21
font-mapping element 21
font-paths element 22
fonts 18, 20, 57, 58, 59
FORCED_GC_INTERVAL parameter 69
forceLogin parameter 81

format parameter 108
Format property 19
formats 108
formatting web pages 46
forms package 120
forward definitions 52, 82
from_page_range parameter 108
from_page_style parameter 109
functionality levels 71-75,76

See also features
functionality-level.config 61, 66, 72,73

G

gadgets 74,108
garbage collection 69
GeneralFilterActionForm class 121
generating encryption keys 33, 34
getApplResourceBaseURI method 17, 18
getContextPath method 53
getDesignResourceBaseURI method 17, 18
getExtendedCredentials method 118
getfiledetails action 84, 121
GetFileDetailsActionForm class 121
getfolderitems action 84
getHostResourceldentifiers method 18
getlportalid method 53
getPassword method 118
getportletfolderitems action 84
getUserHomeFolder method 118
getUserName method 118
global reporting solutions. See locales
goto action 83
graphical user interface (GUIs). See user
interfaces
graphs. See charts

H

headline parameter 106
help 102
help content pages
accessing 125,127
adding 141
changing company logos on 135-136
changing content in 138
removing 140
help directory 125

152 Actuate BIRT Java Components Developer Guide

help files 125,129, 131, 132
help indexes 144, 145

help keywords 144, 145

help links 131, 132, 133

help navigation pages 125, 136
help systems 129, 138

help topics 126, 139, 141
help.js 102

home directory 15

home folders 77,94, 118
home page 81, 94

hosts 52, 67

HTML code 46, 50, 57

HTML files 125

HTML pages 4

HTML tables 46, 56

HTTP transmissions 4, 71, 120
HTTPS transmissions 4
hyperlinks 46, 121

icon files 74, 136

icons 60, 61, 74, 136

IContentList interface 120

ID parameter 91

idle sessions 71

image files 60, 136

imageid parameter 109

images
adding background 61
changing 60-62
customizing 60
referencing 46, 61

img tag 134

index pages 95

index.htm file 126

index.js 127

Information Console 66
creating online help for 125-146

input 51

insert tag 54

INSTALL_MODE parameter 69

installing database drivers 16

instanceid parameter 109

Interactive Viewer 49, 77,107

Interactive Viewer servlet 107

InteractiveViewing subfeature 75
internationalization. See locales
invokeSubmit parameter 93

IP addresses 113

iportal directory 42,43

iPortal Security Extension (IPSE) 112, 114, 117
iPortalID parameter 81
iPortalLogin action 84
iPortalRepository class 53
iPortalSecurity Adapter class 117
isEnterprise method 118

iServer 69

iv action 84

iv_config.xml 66

J

Jakarta Struts. See Struts
Java classes. See classes
Java Component application
accessing functionality 51,71,77,102, 120
adding pages to 52
building UI for. See user interfaces
changing default settings for 48
configuring 47-49, 66
creating context root for 44, 45
creating custom output formats for 34, 35
customizing 6,7, 46, 49, 54, 114
deploying 4, 6,7
installing 69
licensing 4
logging in to 8, 98, 114
logging out of 98
overview 4,7,9,40, 41
renaming default files for 47
retrieving session information for 52
running multiple instances of 7, 44
setting up proxy servers for 8
viewing changes to 50
viewing locale information for 75
Java Component Java servlets reference 105
Java Component JavaBeans class
reference 120
Java Component JavaBeans package
reference 120
Java Component JavaScript reference 102
Java Component URIs reference 85

Index 153

Java Components 35, 36, 40

Java Server Pages. See JSPs

Java servlets reference 105
See also servlets

JavaBeans 53, 54, 58, 120

JavaBeans class reference 120

JavaBeans package reference 120

JavaScript API 43

JavaScript code 9, 50

JavaScript files 42, 51, 54, 55, 102
creating online help and 125, 127

JavaScript reference 102

JDBC drivers 16

job action forms 121

job classes 121

JobActionForm class 121

JobPriority subfeature 74

jobs
running 9, 73, 105
setting priorities for 93, 106, 107
submitting 121
viewing parameters for 99

Jobs feature 73

JSP engine 7, 44,107, 109

JSP file names 47

JSPs
accessing requester pages and 49
accessing session information and 53
changing 51, 55
compiling 40
creating web pages and 4, 9, 40, 46, 50
customizing 42, 54, 57
displaying 51
getting input from 51
implementing URIs and 41
linking style definitions in 58
locating specific 52
mapping actions to 80, 83
naming 80
referencing images in 61
running spreadsheet reports and 105
setting global styles with 57-62
specifying templates for 42, 54

JUL_LOG_CONSOLE_LEVEL parameter 69

JUL_LOG_FILE_COUNT parameter 69
JUL_LOG_FILE_LEVEL parameter 70
JUL_LOG_FILE_SIZE_KB parameter 70

K

key generator classes 25

L

label keys 74
Labelkey tag 74
landing page 42, 49, 54
language-specific reports. See locales
LaunchHelp method 131
launchlV parameter 109
layerjs 102
Level tag 72
libraries 43, 54
license page 81, 95
licenses 4
limit parameter 106
limitNumber parameter 106
Link tag 58,74, 121
LinkBean class 121
linking style definitions 57, 58
linking to files 46
linking to web pages 51, 56
links 7,71, 88, 94, 128
list package 120
list pages 96
lists 120
load balancing 6
loading
encryption plug-in 24, 28
font files 20,22
web pages 9, 10
LocalAccessManager class 77
locale IDs 75
locale names 75
locale parameter 82, 109
Locale property 19
localemap.xml 66
locales
accessing repositories for 40
rendering reports and 18
selecting 75
setting default 48, 68
setting global styles for 57
specifying current 82
localhost value 10
log file numbers 70

154 Actuate BIRT Java Components Developer Guide

log files 68, 69,70
LOG_FILE_LOCATION parameter 70
logging levels 70
login action 8, 83, 84
login banner page 81, 97
login forms 40
login information 68
Login module 114
login page 54, 81, 98
login_banner.jsp 97
LOGIN_TIMEOUT parameter 70
loginPostback parameter 98
logins
customizing 112
forcing 81
getting user names for 118
redirecting 98
validating 77
logos 60, 133-136
logout action 83, 84
logout page 81, 98

M

magnifying glass icon 61
mapping fonts 21, 22
MAX_BACKUP_ERROR_LOGS
parameter 70

MAX_LIST_SIZE parameter 70
memory 69
menus 60, 102

See also side menu
metadata 27
missing characters 21
mobile

accessing 73
Mobile attribute (features) 73
My Documents page 49
My Folder icon 60
My Folder link 94

N

name parameter 90, 91
names 47,74, 114
naming
functionality levels 72
JSPs 80

output files 106

WAR files 44
naming conventions 19, 40, 80, 104
NAT routers 113
networks 112, 113

O

OAEP encryption mode 26
objectID parameter 90
ODA data sources 16
ODA drivers 16,17
ODA_APP_CONTEXT_KEY_CONSUMER_

RESOURCE_IDS parameter 17
OFB encryption mode 26
online help 125-146
onlyLatest parameter 97
opening

help files 126

operating systems 18
output formats 18, 20, 34, 35, 108
outputDocName parameter 93
outputName parameter 106
overwrite parameter 106

P

package names 114

packages 120

page breaks 68

page names 80

page not found messages 95, 99

page not found page 81, 99

page parameter 109

page styles 109

parameter definitions 48

parameters
adding to URIs 11,12, 81
assigning values to 48, 49
configuring Java Component and 47, 66
connecting to repositories and 40, 76
displaying 99
generating encryption keys and 33
returning session information and 52
viewing reports and 77,78, 93

parameters list 99

parameters page 58, 66, 81,99

password parameter 82

Index 155

passwords 29, 82, 118
paths

context roots 4, 53

font files 22

home folders 94

image files 61

log files 70

repository 77

resources 14,15, 16

temporary files 71

title pages 134
PCBC encryption mode 26
PDF layout engine 20
performance 47, 69
PKCS5Padding encryption mode 26
Platform property 19
plug-in descriptor file 28
plugin element 28
plug-ins 16, 34
popupmenu.js 102
ports 8,113
preferences 81
PRELOAD_ENGINE_LIST parameter 70
priority parameter 93, 106
priorityValue parameter 93, 107
private-key encryptions 33
Process Management Daemon 98
progressive parameter 93
PROGRESSIVE_REFRESH parameter 70
PROGRESSIVE_VIEWING_ENABLED

parameter 70

protecting data 112
proxy servers 8,71, 113
PROXY_BASEURL parameter 71
public directory 15, 77
public-key encryptions 33, 34
PublicKeyPairGenerator class 33
publishing report files 14
publishing resources 15, 16
put tag 54

Q

query pages 54, 55
QueryActionForm class 121
question mark (?) characters 21

R

redirect attribute 8
redirect parameter 91, 107
redirection 8, 68,98
redirects 129
refreshes 70, 76
relative hyperlinks 46
renaming files 47, 61
rendering reports 18, 20, 35
report designs
accessing resources for 15, 16
applying styles to 60
changing 107
changing encryption defaults and 29
controlling access to 15
defining context root and 45
deploying encryption plug-ins and 24
publishing 14
report document files 77, 90, 97, 108
report emitters 34, 35, 36
report executable files 97
report files
See also specific type
accessing 9, 14, 40, 73, 96
archiving 106, 107
deleting 89, 91, 106
filtering 96
getting information about 90, 121
linking to 46
report libraries 43
__report parameter 109
report parameters 49, 99
report viewers 35, 77,78, 107
report.js 102
reporting applications. See applications
Reportlets 108
reports
deploying 5
displaying 10, 18, 42, 70, 77, 78, 107
exporting 34
filtering 96
rendering 18, 20, 35
running 24, 49, 69, 92, 105
repositories
See also Encyclopedia volumes
accessing items in 9, 14, 40, 73, 96

156 Actuate BIRT Java Components Developer Guide

archiving items in 106, 107
configuring 76
connecting to 40, 118
displaying information about 56, 89
publishing to 14
returning type 53
REPOSITORY_CACHE_ TIMEOUT_SEC
parameter 76
repositoryType parameter 109
requester pages 44, 49
requests
initiating actions and 40, 47
limiting number of items returned 70
loading web pages and 9, 10
sending 10, 45
submitting 7,9, 92, 105
reserved parameters 93
resetFilter parameter 97
resize.js 102
resolve method 17
resource files 14
resource folders 17
resource identifiers 16, 17-18
Resourceldentifiers class 17
resources 9, 15, 16, 40, 55, 102
restarting application servers 46, 47
rgb method 58
roles 72,76
root folders 77
RSA encryption 29, 34
rsa parameter 33
rtl parameter 109
running
Java servlets 104
jobs 9,73,105
reports 24, 49, 69, 92, 105

S

Search feature 73

search results 57

search.js 127

security 11,23, 76,112
security adapter class 115
security adapters 113, 114-118
security extension 23

security manager 71,77,117

security roles 72,76
SECURITY_ADAPTER_CLASS
parameter 71,114
SelfNotificationWith Attachment
subfeature 74
sending requests 10, 45
servers
accessing 53
configuring context root for 45

deploying custom applications over 112

deploying Java Component over 4, 6, 7

extending functionality of 104
optimizing performance for 69
restarting 46,47

retrieving session information for 52

running multiple application instances

and 7,44
securing access to 112
sending requests to 10
setting up firewalls and 8, 112
serverURL parameter 52, 82, 93, 107, 109
servlet engines 45
servlet examples 43
servlet names 104
servlets 9, 40, 104-109
servlets reference 105
session information 52, 98
SESSION_DEFAULT_PARAMETER _
VALUE_ID parameter 71
sessions 68, 70
sessionTimeout parameter 71
ShareFile subfeature 74
showDocument parameter 97
showExecutables parameter 97
showFolders parameter 97
side menu 61, 73
single sign-on authentication 114
skin manager 50
skinerror action 83
skins
accessing templates for 54
adding background images to 61
applying style definitions to 57
changing images and 60
customizing 73,74
setting default 54, 76
viewing template elements and 54

Index

157

SOAP messages 4, 104
source code 53
special characters 11
spreadsheet reports 71, 105
SSL3Padding encryption mode 26
STANDALONE_
ANONYMOUS_USERNAME parameter 77
STANDALONE_ACCESS_MANAGER
parameter 77
STANDALONE_ALLOW_ANONYMOUS
parameter 77
STANDALONE_HOME_FOLDER
parameter 77
STANDALONE_PUBLIC_FOLDER
parameter 77
STANDALONE_REPOSITORY_CLASS
parameter 77
STANDALONE_REPOSITORY_FILE
AUTHENTICATION parameter 77
STANDALONE_REPOSITORY_PATH
parameter 14,77
Standard Viewer 107
startUpMessage parameter 95
strings 81
Struts action mapping 80, 82
Struts Framework 50, 52
Struts templates 44, 54
See also templates
strutscommon.js 102
struts-config.xml 51, 82
style definitions 57, 58
style sheets
accessing 54, 55
customizing web pages and 50
linking to JSPs 57, 58
specifying color settings in 58
updating changes to 51
viewing changes to 59
STYLE tag 58
styles 57-62
SubfeaturelD tag 75
subfeatures 74
submitjob action 85, 121
SubmitJobActionForm class 121
subpage parameter 95
SubscribeChannel subfeature 74
SymmetricKeyGenerator class 33

T

table of contents
accessing help topics and 139, 141
table parameters 44
TABLE tag 56
tableList action 85
tag libraries 54
tag lines 106
tags 9, 54
changing company logos and 134
changing help topics and 138
targetPage parameter 98
template element 54
template error pages 89
template files 44, 55
template tags 54
templates
accessing 44, 54
building JSPs and 42
changing 55
creating web pages and 46
customizing applications and 54-56
specifying 54
temporary files 71
temporary licenses 4
text 54,74, 137
text strings. See strings
third-party applications 6
time zones 48, 68, 76, 82
timeToDelete parameter 107
timezone parameter 82
TimeZones.xml 66
title bars 60
title pages 134
title.js 127, 137
titles 137
tmpdir property 6
tocjs 127
toolbars 60
topics.js 127
toString method 121
transient files 71
TRANSIENT_STORE_MAX_SIZE_KB
parameter 71
TRANSIENT_STORE_PATH parameter 71

158 Actuate BIRT Java Components Developer Guide

TRANSIENT_STORE_TIMEOUT_SEC
parameter 71

treebrowser action 85

truncated strings 81

trusted names 10

U

unauthorized users 77, 112

URIs
accessing reporting applications and 45
adding parameters to 11,12, 81
encoding characters and 11, 12
executing reports and 49
implementing 10, 41
loading servlets and 104
locating specific pages and 51, 52
overview 80
redirecting logins and 98
redirecting web pages and 8§, 91
submitting requests and 7, 10
viewing BIRT reports and 99

URISs reference 85

URLs
accessing Java Component and 4
activating security manager and 114
connecting to repositories and 40
getting absolute 17
initiating actions and 40
opening help files and 128, 129
redirecting web pages and 8, 68, 107
setting up firewalls and 8
viewing BIRT reports and 99

user authentication. See authentication

user credentials 117, 118

user IDs 82

user interfaces
accessing ODA data sources and 17
building 55, 60
enabling features for 71,73
enabling subfeatures for 74

user names 77, 118

user parameter 98

userID parameter 82

UserInfoBean class 53

UTF-8 encoding 12

Vv

variables 102
version parameter 90
versionName parameter 107
VIEW_XLS_IN_REQUESTER parameter 71
viewer page 81
viewer servlet 107
viewers 35,77,78,107
viewing
application pages 51
banners 88, 97
data 46
error messages 91
files and folders list 69
help topics 141, 143
locales 75
login page 98
report parameters 99
reports 10, 18, 42,70,77, 78,107
repository information 56
search results 57
viewpage action 83
viewsoi action 83, 85
volume icons 60
volume parameter 52, 82, 107
volumes. See Encyclopedia volumes

W

wait parameter 93, 107

waitforreportexecution action 85

WAR files 4, 6, 44, 45

web applications 50
See also applications

web browsers
changing style definitions and 58
changing title bar text for 137
changing web pages and 46, 50
determining current 102
encoding characters for 11, 12, 102
issuing URIs and 81
loading web pages for 9, 10
maintaining session state for 7
preserving login information for 68
redirecting 8, 68, 91, 98, 107

web pages
adding 52

Index 159

web pages (continued)
caching 50, 67
changing images for 60-62
creating banners for 88
customizing 46, 49, 55
developing 9, 46, 53
displaying 51
formatting 46
generating 4, 9-10, 40
linking to 51, 56
loading 9, 10
navigating through 51, 56
resizing 102
viewing changes to 50
web resources 9, 40, 55
web services 47
web.xml 66
webreporting.css 60
windows 102
workingFolder parameter 89
wwhelp directory 125
wwhelp.html file 129

X

XML files 51
XML pages 4, 104

160 Actuate BIRT Java Components Developer Guide

Palatino LT Std @ 10.0 pt 1
Myriad Pro Light @ 20.0 pt 1
Palatino LT Std @ 9.1 pt 2
Palatino LT Std @ 10.0 pt 2
Palatino LT Std @ 9.0 pt i
Helvetica@ 27.0 pt i
Helvetica@ 12.0 pt i
Palatino LT Std @ 12.5pt i
Helvetica@ 14.0 pt i
Palatino LT Std @ 10.0 pt i
Palatino LT Std @ 9.0 pt i
Palatino LT Std @ 10.0 pt ii
Palatino LT Std @ 12.5 pt ii
Helvetica@ 12.0 pt ii
Helvetica @ 14.0 pt ii
Palatino LT Std @ 9.0 pt iii
Palatino LT Std @ 10.0 pt iii
Palatino LT Std @ 12.5 pt iii
Helvetica @ 12.0 pt iii
Palatino LT Std @ 9.0 ptiv
Palatino LT Std @ 10.0 pt iv
Palatino LT Std @ 12.5 pt iv
Helvetica@ 12.0 ptiv
Palatino LT Std @ 9.0 pt v
Palatino LT Std @ 10.0 pt v
Helvetica@ 12.0 pt v
Palatino LT Std @ 9.0 pt vi
Helvetica @ 8.0 pt vii
Palatino LT Std @ 9.0 pt vii
Palatino LT Std @ 18.0 pt vii
Palatino LT Std @ 10.0 pt vii
ZapfDingbats @ 6.0 pt vii
Palatino LT Std @ 9.0 pt viii
Helvetica @ 8.0 pt viii
ZapfDingbats @ 6.0 pt viii
Palatino LT Std @ 10.0 pt viii
Helvetica@ 8.0 pt 1

Palatino LT Std @ 10.0 pt 1
Myriad Pro @ 40.0 pt 1
Myriad Pro @ 58.0 pt 1
Helvetica@ 4.0pt 1
PaatinoLT Std@ 7.0pt 1
Myriad Pro Light @ 20.0 pt 1
Helvetica @ 8.0 pt 2
Helvetica@ 8.0 pt 3
PalatinoLT Std @ 9.0 pt 3
Palatino LT Std @ 15.0 pt 3
Palatino LT Std @ 126.0 pt 3
Helvetica@ 4.0 pt 3
Helvetica@ 27.0 pt 3
Palatino LT Std @ 10.0 pt 3
ZapfDingbats @ 6.0 pt 3
Palatino LT Std @ 9.0pt 4
Helvetica@ 8.0 pt 4
Helvetica@ 16.0 pt 4
Palatino LT Std @ 10.0 pt 4
Courier Std @ 9.0 pt 4
ZapfDingbats @ 6.0 pt 4
Helvetica@ 14.0 pt 4
Helvetica@ 9.0 pt 4
Helvetica@ 10.0 pt 4
Helvetica@ 8.0 pt 5
Palatino LT Std @ 9.0pt 5
Helvetica@ 10.0 pt 5
Palatino LT Std @ 10.0 pt 5
ZapfDingbats @ 6.0 pt 5
Courier Std @9.0pt 5
Helvetica@ 14.0 pt 5
Palatino LT Std @ 9.0pt 6
Helvetica @ 8.0 pt 6
Palatino LT Std @ 10.0 pt 6
Helvetica@ 14.0 pt 6
Helvetica @ 8.5 pt 6
Helvetica@ 9.5pt 6

Helvetica@ 8.0 pt 7
Palatino LT Std @ 9.0 pt 7
Helvetica@ 14.0 pt 7
Palatino LT Std @ 10.0 pt 7
Helvetica@ 9.0 pt 7
Helvetica@ 10.0 pt 7
Helvetica@ 16.0 pt 7
Helvetica@ 8.5 pt 7
Helvetica@ 9.5pt 7
Palatino LT Std @ 9.0 pt 8
Helvetica@ 8.0 pt 8
Helvetica@ 14.0 pt 8
Palatino LT Std @ 10.0 pt 8
Courier Std @ 9.0pt 8
Helvetica@ 8.0 pt 9
Palatino LT Std @ 9.0 pt 9
Palatino LT Std @ 10.0 pt 9
Courier Std @ 9.0pt 9
Helvetica@ 14.0 pt 9
Palatino LT Std @ 9.0 pt 10
Helvetica@ 8.0 pt 10
Palatino LT Std @ 10.0 pt 10
ZapfDingbats @ 6.0 pt 10
Helvetica @ 14.0 pt 10
Helvetica@ 12.0 pt 10
Courier Std @ 9.0 pt 10
Helvetica@ 8.0 pt 11
Palatino LT Std @ 9.0 pt 11
Palatino LT Std @ 10.0 pt 11
ZapfDingbats @ 6.0 pt 11
Helvetica@ 12.0 pt 11
Courier Std @ 9.0 pt 11
Helvetica@ 9.5 pt 11
Univers 55 @ 9.0 pt 11
Palatino LT Std @ 9.0 pt 12
Helvetica@ 8.0 pt 12
Palatino LT Std @ 10.0 pt 12

Courier Std @ 9.0 pt 12
Helvetica @ 12.0 pt 12
Helvetica@ 8.0 pt 13
Palatino LT Std @ 9.0 pt 13
Palatino LT Std @ 15.0 pt 13
Palatino LT Std @ 126.0 pt 13
Helvetica@ 4.0 pt 13
Helvetica @ 27.0 pt 13
Palatino LT Std @ 10.0 pt 13
ZapfDingbats @ 6.0 pt 13
Palatino LT Std @ 9.0 pt 14
Helvetica@ 8.0 pt 14
Helvetica @ 16.0 pt 14
Palatino LT Std @ 10.0 pt 14
Helvetica@ 9.5 pt 14
Courier Std @ 9.0 pt 14
Helvetica@ 9.0 pt 14
Helvetica @ 8.0 pt 15
Palatino LT Std @ 9.0 pt 15
Helvetica @ 10.0 pt 15
Palatino LT Std @ 10.0 pt 15
Courier Std @ 9.0 pt 15
Helvetica @ 14.0 pt 15
Palatino LT Std @ 9.0 pt 16
Helvetica@ 8.0 pt 16
Palatino LT Std @ 10.0 pt 16
Courier Std @ 9.0 pt 16
Helvetica@ 9.0 pt 16
Helvetica @ 10.0 pt 16
Helvetica @ 14.0 pt 16
ZapfDingbats @ 6.0 pt 16
Helvetica@ 8.0 pt 17
Palatino LT Std @ 9.0 pt 17
Helvetica @ 12.0 pt 17
Palatino LT Std @ 10.0 pt 17
ZapfDingbats @ 6.0 pt 17
Helvetica @ 9.5 pt 17

Courier Std @ 9.0 pt 17
Courier Std @ 4.0 pt 17
Palatino LT Std @ 9.0 pt 18
Helvetica@ 8.0 pt 18
Palatino LT Std @ 10.0 pt 18
Courier Std @ 9.0 pt 18
ZapfDingbats @ 6.0 pt 18
Helvetica @ 16.0 pt 18
Helvetica@ 9.5 pt 18
Helvetica@ 8.0 pt 19
Palatino LT Std @ 9.0 pt 19
Helvetica @ 14.0 pt 19
Palatino LT Std @ 10.0 pt 19
Courier Std @ 9.0 pt 19
Helvetica@ 9.5 pt 19
Palatino LT Std @ 9.0 pt 20
Helvetica @ 8.0 pt 20
Palatino LT Std @ 10.0 pt 20
ZapfDingbats @ 6.0 pt 20
Courier Std @ 9.0 pt 20
Helvetica @ 14.0 pt 20
Helvetica@ 8.0 pt 21
Palatino LT Std @ 9.0 pt 21
Palatino LT Std @ 10.0 pt 21
ZapfDingbats @ 6.0 pt 21
Helvetica @ 14.0 pt 21
Courier Std @ 9.0 pt 21
Palatino LT Std @ 9.0 pt 22
Helvetica @ 8.0 pt 22
Helvetica @ 12.0 pt 22
Palatino LT Std @ 10.0 pt 22
Courier Std @ 9.0 pt 22
Helvetica @ 8.0 pt 23
Palatino LT Std @ 9.0 pt 23
Palatino LT Std @ 10.0 pt 23
Helvetica @ 16.0 pt 23
ZapfDingbats @ 6.0 pt 23

Helvetica @ 14.0 pt 23
Courier Std @ 9.0 pt 23
Palatino LT Std @ 9.0 pt 24
Helvetica@ 8.0 pt 24
Palatino LT Std @ 10.0 pt 24
Helvetica@ 9.5 pt 24
Helvetica@ 14.0 pt 24
Helvetica@ 9.0 pt 24
Helvetica @ 10.0 pt 24
Courier Std @ 9.0 pt 24
Helvetica @ 8.0 pt 25
Palatino LT Std @ 9.0 pt 25
Helvetica @ 14.0 pt 25
Palatino LT Std @ 10.0 pt 25
ZapfDingbats @ 6.0 pt 25
Helvetica@ 12.0 pt 25
Helvetica@ 9.5 pt 25
Palatino LT Std @ 9.0 pt 26
Helvetica @ 8.0 pt 26
ZapfDingbats @ 6.0 pt 26
Palatino LT Std @ 10.0 pt 26
Helvetica @ 9.5 pt 26
Courier Std @ 9.0 pt 26
Helvetica @ 8.0 pt 27
Palatino LT Std @ 9.0 pt 27
Courier Std @ 9.0 pt 27
Helvetica @ 12.0 pt 27
Palatino LT Std @ 10.0 pt 27
Helvetica @ 9.5 pt 27
Palatino LT Std @ 9.0 pt 28
Helvetica @ 8.0 pt 28
Courier Std @ 9.0 pt 28
Helvetica @ 12.0 pt 28
Palatino LT Std @ 10.0 pt 28
ZapfDingbats @ 6.0 pt 28
Helvetica @ 8.0 pt 29
Palatino LT Std @ 9.0 pt 29

Helvetica@ 9.5 pt 29
Courier Std @ 9.0 pt 29
Helvetica @ 14.0 pt 29
Palatino LT Std @ 10.0 pt 29
Helvetica@ 9.0 pt 29
Helvetica @ 10.0 pt 29
Palatino LT Std @ 9.0 pt 30
Helvetica @ 8.0 pt 30
Helvetica @ 10.0 pt 30
Palatino LT Std @ 10.0 pt 30
Courier Std @ 9.0 pt 30
Helvetica @ 9.5 pt 30
Helvetica @ 8.0 pt 31
Palatino LT Std @ 9.0 pt 31
Helvetica@ 9.5 pt 31
Courier Std @ 9.0 pt 31
Helvetica @ 10.0 pt 31
Palatino LT Std @ 10.0 pt 31
Palatino LT Std @ 9.0 pt 32
Helvetica @ 8.0 pt 32
Helvetica@ 9.5 pt 32
Courier Std @ 9.0 pt 32
Helvetica @ 10.0 pt 32
Palatino LT Std @ 10.0 pt 32
Helvetica @ 8.0 pt 33
Palatino LT Std @ 9.0 pt 33
Courier Std @ 9.0 pt 33
Helvetica @ 10.0 pt 33
Palatino LT Std @ 10.0 pt 33
Helvetica @ 14.0 pt 33
Helvetica@ 9.5 pt 33
Helvetica @ 9.0 pt 33
Palatino LT Std @ 9.0 pt 34
Helvetica@ 8.0 pt 34
Palatino LT Std @ 10.0 pt 34
Helvetica@ 9.5 pt 34
Helvetica @ 10.0 pt 34

Courier Std @ 9.0 pt 34
Helvetica@ 9.0 pt 34
Helvetica @ 16.0 pt 34
Helvetica@ 8.0 pt 35
Palatino LT Std @ 9.0 pt 35
Palatino LT Std @ 10.0 pt 35
ZapfDingbats @ 6.0 pt 35
Helvetica @ 16.0 pt 35
Helvetica @ 9.0 pt 35
Helvetica @ 10.0 pt 35
Courier Std @ 9.0 pt 35
Palatino LT Std @ 9.0 pt 36
Helvetica @ 8.0 pt 36
Palatino LT Std @ 10.0 pt 36
Helvetica @ 9.5 pt 36
Helvetica @ 10.0 pt 36
Helvetica @ 9.0 pt 36
Courier Std @ 9.0 pt 36
ZapfDingbats @ 10.0 pt 36
Helvetica @ 8.0 pt 37
Palatino LT Std @ 9.0 pt 37
Palatino LT Std @ 10.0 pt 37
Helvetica @ 9.5 pt 37
Helvetica @ 10.0 pt 37
Palatino LT Std @ 9.0 pt 38
Helvetica @ 8.0 pt 38
Helvetica @ 8.0 pt 39
Palatino LT Std @ 9.0 pt 39
Palatino LT Std @ 15.0 pt 39
Palatino LT Std @ 126.0 pt 39
Helvetica@ 4.0 pt 39
Helvetica @ 27.0 pt 39
Palatino LT Std @ 10.0 pt 39
ZapfDingbats @ 6.0 pt 39
Palatino LT Std @ 9.0 pt 40
Helvetica @ 8.0 pt 40
Helvetica @ 16.0 pt 40

Palatino LT Std @ 10.0 pt 40
ZapfDingbats @ 6.0 pt 40
Courier Std @ 9.0 pt 40
Helvetica@ 8.0 pt 41
Palatino LT Std @ 9.0 pt 41
Helvetica @ 14.0 pt 41
Palatino LT Std @ 10.0 pt 41
Helvetica@ 8.5 pt 41
Helvetica@ 9.5 pt 41
Palatino LT Std @ 9.0 pt 42
Helvetica @ 8.0 pt 42
Palatino LT Std @ 10.0 pt 42
Helvetica @ 9.5 pt 42
Helvetica @ 8.0 pt 43
Palatino LT Std @ 9.0 pt 43
Palatino LT Std @ 10.0 pt 43
Helvetica@ 9.5 pt 43
Palatino LT Std @ 9.0 pt 44
Helvetica@ 8.0 pt 44
Palatino LT Std @ 10.0 pt 44
Helvetica@ 14.0 pt 44
Courier Std @ 9.0 pt 44
Helvetica @ 8.0 pt 45
Palatino LT Std @ 9.0 pt 45
Palatino LT Std @ 10.0 pt 45
Helvetica@ 9.0 pt 45
Courier Std @ 9.0 pt 45
Helvetica @ 10.0 pt 45
ZapfDingbats @ 6.0 pt 45
Palatino LT Std @ 9.0 pt 46
Helvetica @ 8.0 pt 46
Helvetica @ 10.0 pt 46
Palatino LT Std @ 10.0 pt 46
ZapfDingbats @ 10.0 pt 46
Helvetica @ 14.0 pt 46
Courier @ 9.0 pt 46

Courier Std @ 9.0 pt 46

Helvetica @ 8.0 pt 47
Palatino LT Std @ 9.0 pt 47
Palatino LT Std @ 10.0 pt 47
Helvetica @ 14.0 pt 47
Helvetica @ 9.0 pt 47
Helvetica @ 10.0 pt 47
ZapfDingbats @ 10.0 pt 47
Helvetica @ 16.0 pt 47
Palatino LT Std @ 9.0 pt 48
Helvetica @ 8.0 pt 48
Helvetica @ 9.0 pt 48
Palatino LT Std @ 10.0 pt 48
Helvetica @ 10.0 pt 48
Courier Std @ 9.0 pt 48
ZapfDingbats @ 6.0 pt 48
Helvetica @ 8.0 pt 49
Palatino LT Std @ 9.0 pt 49
Helvetica @ 10.0 pt 49
Palatino LT Std @ 10.0 pt 49
Courier Std @ 9.0 pt 49
Helvetica @ 14.0 pt 49
ZapfDingbats @ 6.0 pt 49
Helvetica @ 16.0 pt 49
Palatino LT Std @ 9.0 pt 50
Helvetica @ 8.0 pt 50
Palatino LT Std @ 10.0 pt 50
ZapfDingbats @ 6.0 pt 50
Courier Std @ 9.0 pt 50
Helvetica @ 14.0 pt 50
Helvetica @ 8.0 pt 51
Palatino LT Std @ 9.0 pt 51
ZapfDingbats @ 6.0 pt 51
Palatino LT Std @ 10.0 pt 51
Helvetica@ 14.0 pt 51
Courier Std @ 9.0 pt 51
Palatino LT Std @ 9.0 pt 52
Helvetica @ 8.0 pt 52

Palatino LT Std @ 10.0 pt 52
Courier Std @ 9.0 pt 52
Helvetica @ 14.0 pt 52
Helvetica @ 8.0 pt 53
Palatino LT Std @ 9.0 pt 53
Palatino LT Std @ 10.0 pt 53
Courier Std @ 9.0 pt 53
Palatino LT Std @ 9.0 pt 54
Helvetica @ 8.0 pt 54
Helvetica @ 14.0 pt 54
Palatino LT Std @ 10.0 pt 54
Helvetica @ 9.5 pt 54
Helvetica @ 8.0 pt 55
Palatino LT Std @ 9.0 pt 55
Palatino LT Std @ 10.0 pt 55
Helvetica@ 9.5 pt 55
Helvetica @ 14.0 pt 55
Helvetica @ 12.0 pt 55
Palatino LT Std @ 9.0 pt 56
Helvetica @ 8.0 pt 56
Palatino LT Std @ 10.0 pt 56
Courier Std @ 9.0 pt 56
Helvetica @ 8.0 pt 57
Palatino LT Std @ 9.0 pt 57
Courier Std @ 9.0 pt 57
Helvetica @ 16.0 pt 57
Palatino LT Std @ 10.0 pt 57
Helvetica @ 14.0 pt 57
ZapfDingbats @ 6.0 pt 57
Palatino LT Std @ 9.0 pt 58
Helvetica @ 8.0 pt 58
Palatino LT Std @ 10.0 pt 58
Helvetica @ 9.0 pt 58
Helvetica @ 10.0 pt 58
Courier Std @ 9.0 pt 58
Helvetica @ 12.0 pt 58
ZapfDingbats @ 6.0 pt 58

Helvetica @ 8.0 pt 59
Palatino LT Std @ 9.0 pt 59
Helvetica @ 9.0 pt 59
Palatino LT Std @ 10.0 pt 59
Helvetica @ 10.0 pt 59
Courier Std @ 9.0 pt 59
Helvetica @ 9.5 pt 59
Palatino LT Std @ 9.0 pt 60
Helvetica @ 8.0 pt 60
Helvetica@ 12.0 pt 60
Palatino LT Std @ 10.0 pt 60
ZapfDingbats @ 6.0 pt 60
Courier Std @ 9.0 pt 60
Helvetica @ 14.0 pt 60
Helvetica @ 9.5 pt 60
Helvetica @ 8.0 pt 61
Palatino LT Std @ 9.0 pt 61
Palatino LT Std @ 10.0 pt 61
Helvetica @ 9.0 pt 61
Palatino LT Std @ 9.0 pt 62
Helvetica @ 8.0 pt 62
Courier Std @ 9.0 pt 62
Helvetica @ 10.0 pt 62
Palatino LT Std @ 10.0 pt 62
Helvetica @ 9.5 pt 62
Helvetica @ 8.0 pt 63
Palatino LT Std @ 10.0 pt 63
Myriad Pro @ 40.0 pt 63
Myriad Pro @ 58.0 pt 63
Helvetica @ 4.0 pt 63
Palatino LT Std @ 7.0 pt 63
Myriad Pro Light @ 20.0 pt 63
Helvetica @ 8.0 pt 64
Helvetica @ 8.0 pt 65
Palatino LT Std @ 9.0 pt 65
Palatino LT Std @ 15.0 pt 65
Palatino LT Std @ 126.0 pt 65

Helvetica @ 4.0 pt 65
Helvetica @ 27.0 pt 65
Palatino LT Std @ 10.0 pt 65
ZapfDingbats @ 6.0 pt 65
Palatino LT Std @ 9.0 pt 66
Helvetica @ 8.0 pt 66
Helvetica @ 16.0 pt 66
Palatino LT Std @ 10.0 pt 66
Courier Std @ 9.0 pt 66
Helvetica @ 9.5 pt 66
Helvetica @ 14.0 pt 66
Helvetica @ 8.0 pt 67
Palatino LT Std @ 9.0 pt 67
Palatino LT Std @ 10.0 pt 67
ZapfDingbats @ 6.0 pt 67
Palatino LT Std @ 9.0 pt 68
Helvetica @ 8.0 pt 68
Palatino LT Std @ 10.0 pt 68
ZapfDingbats @ 6.0 pt 68
Helvetica @ 8.0 pt 69
Palatino LT Std @ 9.0 pt 69
Palatino LT Std @ 10.0 pt 69
ZapfDingbats @ 6.0 pt 69
Palatino LT Std @ 9.0 pt 70
Helvetica@ 8.0 pt 70
Palatino LT Std @ 10.0 pt 70
Helvetica@ 8.0 pt 71
Palatino LT Std @ 9.0 pt 71
Palatino LT Std @ 10.0 pt 71
Helvetica @ 14.0 pt 71
Palatino LT Std @ 9.0 pt 72
Helvetica@ 8.0 pt 72
Palatino LT Std @ 10.0 pt 72
Helvetica@ 8.5 pt 72
Helvetica@ 9.5 pt 72
Courier Std @ 9.0 pt 72
Helvetica@ 9.0 pt 72

ZapfDingbats @ 6.0 pt 72
Helvetica@ 8.0 pt 73
PalatinoLT Std @ 9.0 pt 73
ZapfDingbats @ 6.0 pt 73
Palatino LT Std @ 10.0 pt 73
Helvetica@ 9.0 pt 73
Helvetica@ 9.5 pt 73
Courier Std @ 9.0 pt 73
Palatino LT Std @ 9.0 pt 74
Helvetica@ 8.0 pt 74
Palatino LT Std @ 10.0 pt 74
Helvetica@ 9.0 pt 74
Helvetica@ 9.5 pt 74
Helvetica@ 8.0 pt 75
PalatinoLT Std @ 9.0 pt 75
Helvetica@ 9.0 pt 75
Palatino LT Std @ 10.0 pt 75
Helvetica@ 14.0 pt 75
Courier Std @ 9.0 pt 75
Univers 55 @ 9.0 pt 75
Palatino LT Std @ 9.0 pt 76
Helvetica@ 8.0 pt 76
Palatino LT Std @ 10.0 pt 76
Helvetica @ 16.0 pt 76
Helvetica@ 9.5 pt 76
Helvetica@ 8.0 pt 77
Palatino LT Std @ 9.0 pt 77
Helvetica @ 16.0 pt 77
Palatino LT Std @ 10.0 pt 77
PalatinoLT Std @ 9.0 pt 78
Helvetica@ 8.0 pt 78
Helvetica@ 8.0 pt 79
Palatino LT Std @ 9.0 pt 79
Helvetica@ 9.0 pt 79
Palatino LT Std @ 15.0 pt 79
Palatino LT Std @ 126.0 pt 79
Helvetica @ 4.0 pt 79

Helvetica@ 27.0 pt 79
Palatino LT Std @ 10.0 pt 79
ZapfDingbats @ 6.0 pt 79
Palatino LT Std @ 9.0 pt 80
Helvetica @ 8.0 pt 80
Helvetica @ 9.0 pt 80
Helvetica @ 16.0 pt 80
Palatino LT Std @ 10.0 pt 80
Helvetica @ 9.5 pt 80
Helvetica @ 8.0 pt 81
Palatino LT Std @ 9.0 pt 81
Helvetica@ 9.0 pt 81
Palatino LT Std @ 10.0 pt 81
Helvetica @ 16.0 pt 81
Helvetica@ 9.5 pt 81
Palatino LT Std @ 9.0 pt 82
Helvetica @ 8.0 pt 82
Helvetica @ 9.0 pt 82
Palatino LT Std @ 10.0 pt 82
Courier Std @ 9.0 pt 82
Helvetica @ 16.0 pt 82
Helvetica @ 9.5 pt 82
Helvetica @ 8.0 pt 83
Palatino LT Std @ 9.0 pt 83
Helvetica@ 9.0 pt 83
Palatino LT Std @ 10.0 pt 83
Helvetica @ 9.5 pt 83
Palatino LT Std @ 9.0 pt 84
Helvetica@ 8.0 pt 84
Helvetica @ 9.0 pt 84
Palatino LT Std @ 10.0 pt 84
Helvetica @ 8.0 pt 85
Palatino LT Std @ 9.0 pt 85
Helvetica@ 9.0 pt 85
Helvetica @ 16.0 pt 85
Palatino LT Std @ 10.0 pt 85
Palatino LT Std @ 9.0 pt 86

Helvetica @ 8.0 pt 86
Helvetica @ 9.0 pt 86
Palatino LT Std @ 10.0 pt 86
Helvetica @ 9.5 pt 86
ZapfDingbats @ 6.0 pt 86
Helvetica @ 8.0 pt 87
Palatino LT Std @ 9.0 pt 87
Helvetica @ 9.0 pt 87
Palatino LT Std @ 10.0 pt 87
Helvetica @ 16.0 pt 87
Helvetica @ 9.5 pt 87
Helvetica @ 10.0 pt 87
Palatino LT Std @ 9.0 pt 88
Helvetica @ 8.0 pt 88
Helvetica @ 9.0 pt 88
Palatino LT Std @ 10.0 pt 88
Helvetica @ 10.0 pt 88
Helvetica @ 16.0 pt 88
Helvetica @ 8.0 pt 89
Palatino LT Std @ 9.0 pt 89
Helvetica @ 9.0 pt 89
Palatino LT Std @ 10.0 pt 89
Helvetica @ 16.0 pt 89
Helvetica @ 10.0 pt 89
Helvetica @ 14.0 pt 89
Palatino LT Std @ 9.0 pt 90
Helvetica @ 8.0 pt 90
Helvetica@ 9.0 pt 90
Palatino LT Std @ 10.0 pt 90
Helvetica @ 14.0 pt 90
Helvetica@ 9.5 pt 90
Helvetica @ 10.0 pt 90
Helvetica@ 8.0 pt 91
Palatino LT Std @ 9.0 pt 91
Helvetica@ 9.0 pt 91
Helvetica @ 16.0 pt 91
Palatino LT Std @ 10.0 pt 91

Helvetica@ 14.0 pt 91
Helvetica @ 10.0 pt 91
Helvetica@ 9.5 pt 91
Palatino LT Std @ 9.0 pt 92
Helvetica @ 8.0 pt 92
Helvetica @ 9.0 pt 92
Palatino LT Std @ 10.0 pt 92
Helvetica @ 16.0 pt 92
Courier Std @ 9.0 pt 92
Helvetica @ 10.0 pt 92
Helvetica@ 9.5 pt 92
Helvetica @ 8.0 pt 93
Palatino LT Std @ 9.0 pt 93
Helvetica @ 9.0 pt 93
Palatino LT Std @ 10.0 pt 93
Courier Std @ 9.0 pt 93
ZapfDingbats @ 6.0 pt 93
Palatino LT Std @ 9.0 pt 94
Helvetica@ 8.0 pt 94
Helvetica@ 9.0 pt 94
ZapfDingbats @ 6.0 pt 94
Palatino LT Std @ 10.0 pt 94
Helvetica @ 16.0 pt 94
Helvetica @ 8.5 pt 94
Helvetica@ 9.5 pt 94
Helvetica @ 10.0 pt 94
Helvetica @ 8.0 pt 95
Palatino LT Std @ 9.0 pt 95
Helvetica@ 9.0 pt 95
Helvetica @ 16.0 pt 95
Palatino LT Std @ 10.0 pt 95
Helvetica @ 14.0 pt 95
Helvetica @ 10.0 pt 95
Helvetica@ 9.5 pt 95
ZapfDingbats @ 6.0 pt 95
Palatino LT Std @ 9.0 pt 96
Helvetica @ 8.0 pt 96

Helvetica @ 9.0 pt 96
Palatino LT Std @ 10.0 pt 96
Helvetica @ 9.5 pt 96
Helvetica @ 10.0 pt 96
Helvetica @ 16.0 pt 96
Helvetica @ 14.0 pt 96
Helvetica @ 8.0 pt 97
Palatino LT Std @ 9.0 pt 97
Helvetica @ 9.0 pt 97
Palatino LT Std @ 10.0 pt 97
Helvetica @ 9.5 pt 97
Helvetica @ 16.0 pt 97
Helvetica @ 10.0 pt 97
Palatino LT Std @ 9.0 pt 98
Helvetica @ 8.0 pt 98
Helvetica @ 9.0 pt 98
Helvetica @ 16.0 pt 98
Palatino LT Std @ 10.0 pt 98
Helvetica @ 10.0 pt 98
Helvetica@ 9.5 pt 98
Helvetica @ 8.0 pt 99
Palatino LT Std @ 9.0 pt 99
Helvetica @ 9.0 pt 99
Helvetica @ 16.0 pt 99
Palatino LT Std @ 10.0 pt 99
Helvetica @ 10.0 pt 99
Helvetica @ 9.5 pt 99
Palatino LT Std @ 9.0 pt 100
Helvetica @ 8.0 pt 100
Helvetica @ 9.0 pt 100
Helvetica @ 8.0 pt 101
Palatino LT Std @ 9.0 pt 101
Palatino LT Std @ 15.0 pt 101
Palatino LT Std @ 126.0 pt 101
Helvetica @ 4.0 pt 101
Helvetica@ 27.0 pt 101
Palatino LT Std @ 10.0 pt 101

ZapfDingbats @ 6.0 pt 101
Palatino LT Std @ 9.0 pt 102
Helvetica @ 8.0 pt 102
Helvetica @ 16.0 pt 102
Palatino LT Std @ 10.0 pt 102
Helvetica @ 9.5 pt 102
Helvetica @ 8.0 pt 103
Palatino LT Std @ 9.0 pt 103
Helvetica@ 9.0 pt 103
Palatino LT Std @ 15.0 pt 103
Palatino LT Std @ 126.0 pt 103
Helvetica @ 4.0 pt 103
Helvetica @ 27.0 pt 103
Palatino LT Std @ 10.0 pt 103
ZapfDingbats @ 6.0 pt 103
Palatino LT Std @ 9.0 pt 104
Helvetica @ 8.0 pt 104
Helvetica @ 9.0 pt 104
Helvetica @ 16.0 pt 104
Palatino LT Std @ 10.0 pt 104
Helvetica @ 14.0 pt 104
Courier Std @ 9.0 pt 104
ZapfDingbats @ 6.0 pt 104
Helvetica @ 8.0 pt 105
Palatino LT Std @ 9.0 pt 105
Helvetica @ 9.0 pt 105
Helvetica @ 16.0 pt 105
Palatino LT Std @ 10.0 pt 105
Helvetica @ 9.5 pt 105
Helvetica @ 10.0 pt 105
Palatino LT Std @ 9.0 pt 106
Helvetica @ 8.0 pt 106
Helvetica @ 9.0 pt 106
Palatino LT Std @ 10.0 pt 106
Helvetica @ 10.0 pt 106
Helvetica @ 8.0 pt 107
Palatino LT Std @ 9.0 pt 107

Helvetica @ 9.0 pt 107
Palatino LT Std @ 10.0 pt 107
Helvetica @ 10.0 pt 107
Helvetica @ 16.0 pt 107
Helvetica @ 9.5 pt 107
Palatino LT Std @ 9.0 pt 108
Helvetica @ 8.0 pt 108
Helvetica @ 9.0 pt 108
Palatino LT Std @ 10.0 pt 108
Helvetica @ 9.5 pt 108
Helvetica @ 10.0 pt 108
ZapfDingbats @ 6.0 pt 108
Helvetica @ 8.0 pt 109
Palatino LT Std @ 9.0 pt 109
Helvetica@ 9.0 pt 109
Palatino LT Std @ 10.0 pt 109
ZapfDingbats @ 6.0 pt 109
Palatino LT Std @ 9.0 pt 110
Helvetica@ 8.0 pt 110
Helvetica@ 9.0 pt 110
Helvetica @ 8.0 pt 111
Palatino LT Std @ 9.0 pt 111
Palatino LT Std @ 15.0 pt 111
Palatino LT Std @ 126.0 pt 111
Helvetica @ 4.0 pt 111
Helvetica@ 27.0 pt 111
Palatino LT Std @ 10.0 pt 111
ZapfDingbats @ 6.0 pt 111
Palatino LT Std @ 9.0 pt 112
Helvetica @ 8.0 pt 112
Helvetica @ 16.0 pt 112
Palatino LT Std @ 10.0 pt 112
Helvetica @ 9.5 pt 112
Helvetica @ 14.0 pt 112
Helvetica@ 8.0 pt 113
Palatino LT Std @ 9.0 pt 113
Palatino LT Std @ 10.0 pt 113

Helvetica @ 14.0 pt 113
Helvetica@ 9.5 pt 113
Courier Std @ 9.0 pt 113
Palatino LT Std @ 9.0 pt 114
Helvetica@ 8.0 pt 114
Helvetica@ 8.0 pt 115
Palatino LT Std @ 9.0 pt 115
Helvetica@ 9.0 pt 115
Palatino LT Std @ 15.0 pt 115
Palatino LT Std @ 126.0 pt 115
Helvetica@ 4.0 pt 115
Helvetica @ 27.0 pt 115
Palatino LT Std @ 10.0 pt 115
ZapfDingbats @ 6.0 pt 115
Palatino LT Std @ 9.0 pt 116
Helvetica @ 8.0 pt 116
Helvetica @ 9.0 pt 116
Helvetica @ 16.0 pt 116
Paatino LT Std @ 10.0 pt 116
ZapfDingbats @ 6.0 pt 116
Helvetica @ 14.0 pt 116
Helvetica @ 8.0 pt 117
Palatino LT Std @ 9.0 pt 117
Helvetica @ 9.0 pt 117
Palatino LT Std @ 10.0 pt 117
Helvetica@ 14.0 pt 117
Helvetica@ 16.0 pt 117
ZapfDingbats @ 6.0 pt 117
Palatino LT Std @ 9.0 pt 118
Helvetica @ 8.0 pt 118
Helvetica @ 9.0 pt 118
Helvetica@ 16.0 pt 118
Palatino LT Std @ 10.0 pt 118
ZapfDingbats @ 6.0 pt 118
Courier Std @ 9.0 pt 118
Helvetica @ 8.5 pt 118
Helvetica @ 9.5 pt 118

Helvetica @ 8.0 pt 119
Palatino LT Std @ 9.0 pt 119
Helvetica @ 9.0 pt 119
Palatino LT Std @ 10.0 pt 119
ZapfDingbats @ 6.0 pt 119
Helvetica @ 14.0 pt 119
Palatino LT Std @ 9.0 pt 120
Helvetica @ 8.0 pt 120
Helvetica @ 9.0 pt 120
ZapfDingbats @ 6.0 pt 120
Palatino LT Std @ 10.0 pt 120
Courier Std @ 9.0 pt 120
Courier Std @ 4.0 pt 120
Helvetica @ 8.0 pt 121
Palatino LT Std @ 9.0 pt 121
Helvetica @ 9.0 pt 121
Palatino LT Std @ 10.0 pt 121
Helvetica@ 10.0 pt 121
Courier Std @ 9.0 pt 121
Helvetica@ 14.0 pt 121
Helvetica@ 12.0 pt 121
Palatino LT Std @ 9.0 pt 122
Helvetica @ 8.0 pt 122
Helvetica @ 9.0 pt 122
Palatino LT Std @ 10.0 pt 122
Helvetica@ 12.0 pt 122
Helvetica @ 10.0 pt 122
Helvetica @ 8.0 pt 123
Palatino @ 9.0 pt 123

Palatino LT Std @ 15.0 pt 123
Palatino LT Std @ 126.0 pt 123
Helvetica @ 4.0 pt 123
Helvetica @ 27.0 pt 123
Palatino LT Std @ 10.0 pt 123
ZapfDingbats @ 6.0 pt 123
Palatino @ 9.0 pt 124
Helvetica @ 8.0 pt 124

Helvetica @ 16.0 pt 124
Palatino LT Std @ 10.0 pt 124
Helvetica@ 9.0 pt 124
Helvetica @ 10.0 pt 124
Courier Std @ 9.0 pt 124
Helvetica @ 14.0 pt 124
Helvetica @ 8.0 pt 125
Palatino @ 9.0 pt 125

Palatino LT Std @ 10.0 pt 125
Helvetica @ 8.5 pt 125
Helvetica@ 9.5 pt 125
Helvetica @ 14.0 pt 125
Palatino @ 9.0 pt 126
Helvetica @ 8.0 pt 126
Palatino LT Std @ 10.0 pt 126
Helvetica @ 8.5 pt 126
Helvetica @ 9.5 pt 126
Helvetica @ 14.0 pt 126
Helvetica @ 8.0 pt 127
Palatino @ 9.0 pt 127

Palatino LT Std @ 10.0 pt 127
Helvetica @ 9.5 pt 127
Helvetica @ 14.0 pt 127
Helvetica @ 8.5 pt 127
Palatino @ 9.0 pt 128
Helvetica @ 8.0 pt 128
Palatino LT Std @ 10.0 pt 128
Courier Std @ 9.0 pt 128
ZapfDingbats @ 6.0 pt 128
Helvetica @ 14.0 pt 128
Helvetica @ 8.5 pt 128
Helvetica @ 9.5 pt 128
Helvetica @ 8.0 pt 129
Palatino @ 9.0 pt 129

Palatino LT Std @ 10.0 pt 129
Helvetica @ 16.0 pt 129
Helvetica @ 9.0 pt 129

Helvetica @ 10.0 pt 129
Courier Std @ 9.0 pt 129
Palatino @ 9.0 pt 130
Helvetica @ 8.0 pt 130
Courier Std @ 9.0 pt 130
Helvetica @ 10.0 pt 130
Palatino LT Std @ 10.0 pt 130
ZapfDingbats @ 6.0 pt 130
Courier Std @ 4.0 pt 130
Helvetica @ 8.0 pt 131
Palatino @ 9.0 pt 131
Helvetica @ 10.0 pt 131
Palatino LT Std @ 10.0 pt 131
Courier Std @ 9.0 pt 131
Helvetica @ 16.0 pt 131
Helvetica @ 9.0 pt 131
Palatino @ 9.0 pt 132
Helvetica @ 8.0 pt 132
Palatino LT Std @ 10.0 pt 132
Helvetica @ 9.0 pt 132
Helvetica @ 10.0 pt 132
Courier Std @ 9.0 pt 132
Helvetica @ 8.0 pt 133
Palatino @ 9.0 pt 133
Helvetica @ 10.0 pt 133
Palatino LT Std @ 10.0 pt 133
Helvetica @ 16.0 pt 133
Helvetica @ 8.5 pt 133
Helvetica @ 9.5 pt 133
Helvetica @ 14.0 pt 133
Palatino @ 9.0 pt 134
Helvetica@ 8.0 pt 134
Helvetica @ 12.0 pt 134
Palatino LT Std @ 10.0 pt 134
Courier Std @ 9.0 pt 134
Helvetica@ 9.0 pt 134
Helvetica @ 10.0 pt 134

Helvetica @ 8.0 pt 135
Palatino @ 9.0 pt 135
Helvetica @ 9.0 pt 135
Palatino LT Std @ 10.0 pt 135
Helvetica @ 10.0 pt 135
Courier Std @ 9.0 pt 135
Helvetica @ 14.0 pt 135
Palatino @ 9.0 pt 136
Helvetica @ 8.0 pt 136
Palatino LT Std @ 10.0 pt 136
Times New Roman @ 12.0 pt 136
Helvetica @ 9.5 pt 136
Helvetica @ 8.0 pt 137
Palatino @ 9.0 pt 137
Helvetica @ 14.0 pt 137
Palatino LT Std @ 10.0 pt 137
Helvetica @ 9.5 pt 137
Helvetica @ 9.0 pt 137
Helvetica @ 10.0 pt 137
Palatino @ 9.0 pt 138
Helvetica @ 8.0 pt 138
Courier Std @ 9.0 pt 138
Helvetica @ 10.0 pt 138
Palatino LT Std @ 10.0 pt 138
Helvetica @ 16.0 pt 138
ZapfDingbats @ 6.0 pt 138
Helvetica @ 14.0 pt 138
Times New Roman @ 12.0 pt 138
Helvetica @ 9.5 pt 138
Helvetica @ 8.0 pt 139
Palatino @ 9.0 pt 139
Helvetica @ 9.0 pt 139
Palatino LT Std @ 10.0 pt 139
Helvetica @ 10.0 pt 139
Helvetica @ 14.0 pt 139
Courier Std @ 9.0 pt 139
Palatino @ 9.0 pt 140

Helvetica @ 8.0 pt 140
Helvetica @ 10.0 pt 140
Palatino LT Std @ 10.0 pt 140
Helvetica @ 14.0 pt 140
Courier Std @ 9.0 pt 140
ZapfDingbats @ 6.0 pt 140
Helvetica @ 9.0 pt 140
Helvetica @ 8.0 pt 141
Palatino @ 9.0 pt 141
Helvetica @ 10.0 pt 141
Palatino LT Std @ 10.0 pt 141
Courier Std @ 9.0 pt 141
Helvetica @ 14.0 pt 141
Helvetica @ 8.5 pt 141
Helvetica @ 9.5 pt 141
Palatino @ 9.0 pt 142
Helvetica @ 8.0 pt 142
Palatino LT Std @ 10.0 pt 142
ZapfDingbats @ 6.0 pt 142
Courier Std @ 9.0 pt 142
Palatino LT Std @ 9.0 pt 142
Helvetica @ 8.0 pt 143
Palatino @ 9.0 pt 143

Palatino LT Std @ 10.0 pt 143
Helvetica @ 8.5 pt 143
Helvetica @ 9.5 pt 143
Helvetica @ 9.0 pt 143
Helvetica @ 10.0 pt 143
Courier Std @ 9.0 pt 143
ZapfDingbats @ 6.0 pt 143
Palatino @ 9.0 pt 144
Helvetica@ 8.0 pt 144
ZapfDingbats @ 6.0 pt 144
Palatino LT Std @ 10.0 pt 144
Helvetica @ 10.0 pt 144
Helvetica @ 14.0 pt 144
Courier Std @ 9.0 pt 144

Helvetica @ 8.0 pt 145
Palatino @ 9.0 pt 145

Palatino LT Std @ 10.0 pt 145
Helvetica @ 8.5 pt 145
Helvetica@ 9.5 pt 145
Helvetica @ 9.0 pt 145
Helvetica @ 10.0 pt 145
Courier Std @ 9.0 pt 145
ZapfDingbats @ 6.0 pt 145
Palatino @ 9.0 pt 146
Helvetica @ 8.0 pt 146
Palatino LT Std @ 10.0 pt 146
Courier Std @ 9.0 pt 146
Helvetica @ 10.0 pt 146
Helvetica @ 8.0 pt 147
Palatino LT Std @ 9.0 pt 147
Helvetica @ 27.0 pt 147
Helvetica @ 15.0 pt 147
Palatino LT Std @ 10.0 pt 147
Palatino LT Std @ 9.0 pt 148
Helvetica @ 8.0 pt 148
Palatino LT Std @ 10.0 pt 148
Helvetica @ 15.0 pt 148
Helvetica @ 8.0 pt 149
Palatino LT Std @ 9.0 pt 149
Palatino LT Std @ 10.0 pt 149
Palatino LT Std @ 9.0 pt 150
Helvetica @ 8.0 pt 150
Palatino LT Std @ 10.0 pt 150
Helvetica @ 15.0 pt 150
Helvetica @ 8.0 pt 151
Palatino LT Std @ 9.0 pt 151
Palatino LT Std @ 10.0 pt 151
Helvetica @ 15.0 pt 151
Palatino LT Std @ 9.0 pt 152
Helvetica @ 8.0 pt 152
Palatino LT Std @ 10.0 pt 152

Helvetica @ 15.0 pt 152
Helvetica @ 8.0 pt 153
Palatino LT Std @ 9.0 pt 153
Palatino LT Std @ 10.0 pt 153
Helvetica @ 15.0 pt 153
Palatino LT Std @ 9.0 pt 154
Helvetica @ 8.0 pt 154
Palatino LT Std @ 10.0 pt 154
Helvetica @ 15.0 pt 154
Helvetica @ 8.0 pt 155
Palatino LT Std @ 9.0 pt 155
Palatino LT Std @ 10.0 pt 155
Helvetica @ 15.0 pt 155
Palatino LT Std @ 9.0 pt 156
Helvetica @ 8.0 pt 156
Palatino LT Std @ 10.0 pt 156
Helvetica @ 15.0 pt 156
Helvetica @ 8.0 pt 157
Palatino LT Std @ 9.0 pt 157
Palatino LT Std @ 10.0 pt 157
Helvetica @ 15.0 pt 157
Palatino LT Std @ 9.0 pt 158
Helvetica @ 8.0 pt 158
Palatino LT Std @ 10.0 pt 158
Helvetica @ 15.0 pt 158
Helvetica @ 8.0 pt 159
Palatino LT Std @ 9.0 pt 159
Palatino LT Std @ 10.0 pt 159
Helvetica @ 15.0 pt 159
Palatino LT Std @ 9.0 pt 160
Helvetica @ 8.0 pt 160
Palatino LT Std @ 10.0 pt 160
Helvetica @ 15.0 pt 160
Helvetica @ 8.0 pt 161

Times New Roman @ 12.0 pt 161

Helvetica @ 8.0 pt 162
Helvetica @ 8.0 pt 163

Palatino LT Std @ 10.0 pt 163
Helvetica @ 8.0 pt 164

Helvetica @ 8.0 pt 165

Palatino LT Std @ 10.0 pt 165
Helvetica @ 8.0 pt 166

Helvetica @ 8.0 pt 167

Times New Roman @ 12.0 pt 167
Helvetica @ 8.0 pt 168

Times New Roman @ 12.0 pt 168
Helvetica @ 8.0 pt 169

Times New Roman @ 12.0 pt 169
Helvetica@ 8.0 pt 170

Times New Roman @ 12.0 pt 170
Helvetica@ 8.0 pt 171

Times New Roman @ 12.0 pt 171
Helvetica @ 8.0 pt 172

Times New Roman @ 12.0 pt 172
Helvetica@ 8.0 pt 173

Times New Roman @ 12.0 pt 173
Helvetica@ 8.0 pt 174

Times New Roman @ 12.0 pt 174
Helvetica@ 8.0 pt 175

Times New Roman @ 12.0 pt 175
Helvetica@ 8.0 pt 176

Times New Roman @ 12.0 pt 176
Helvetica@ 8.0 pt 177

Times New Roman @ 12.0 pt 177
Helvetica@ 8.0 pt 178

Times New Roman @ 12.0 pt 178
Helvetica @ 8.0 pt 179

Times New Roman @ 12.0 pt 179
Helvetica @ 8.0 pt 180

Times New Roman @ 12.0 pt 180
Helvetica @ 8.0 pt 181

Times New Roman @ 12.0 pt 181
Helvetica @ 8.0 pt 182

Times New Roman @ 12.0 pt 182

Helvetica @ 8.0 pt 183
Times New Roman @ 12.0 pt 183
Helvetica @ 8.0 pt 184
Times New Roman @ 12.0 pt 184
Helvetica @ 8.0 pt 185
Times New Roman @ 12.0 pt 185
Helvetica @ 8.0 pt 186
Times New Roman @ 12.0 pt 186
Helvetica @ 8.0 pt 187
Times New Roman @ 12.0 pt 187
Helvetica @ 8.0 pt 188
Times New Roman @ 12.0 pt 188
Helvetica @ 8.0 pt 189
Times New Roman @ 12.0 pt 189
Helvetica @ 8.0 pt 190
Times New Roman @ 12.0 pt 190
Helvetica @ 8.0 pt 191
Times New Roman @ 12.0 pt 191
Helvetica @ 8.0 pt 192
Times New Roman @ 12.0 pt 192
Helvetica @ 8.0 pt 193
Times New Roman @ 12.0 pt 193
Helvetica @ 8.0 pt 194
Times New Roman @ 12.0 pt 194
Helvetica @ 8.0 pt 195
Times New Roman @ 12.0 pt 195
Helvetica @ 8.0 pt 196
Times New Roman @ 12.0 pt 196
Helvetica @ 8.0 pt 197
Times New Roman @ 12.0 pt 197
Helvetica @ 8.0 pt 198
Helvetica @ 8.0 pt 199
Times New Roman @ 12.0 pt 199
Helvetica @ 8.0 pt 200

	Contents
	About Actuate BIRT Java Components Developer Guide
	Customizing an Actuate Java Component
	Introducing Actuate Java Components
	About Actuate Java Components
	Licensing Java Components
	Setting up Actuate Java Component
	Customizing Java components for installation
	About using a cluster of application servers

	About Actuate Java Component architecture
	Using proxy servers with Actuate Java Component
	About Actuate Java Component pages
	Working with Actuate Java Component URIs
	About Actuate Java Component URIs
	Using a special character in a URI
	About UTF-8 encoding

	Deploying Actuate BIRT reports using an Actuate Java Component
	Publishing a BIRT report design to the Actuate Java Component
	Publishing a BIRT resource to an Actuate Java Component
	Installing a custom JDBC driver in an Actuate Java Component
	Installing custom ODA drivers and custom plug-ins in an Actuate Java Component
	Accessing BIRT report design and BIRT resources paths in custom ODA plug-ins
	Accessing resource identifiers in run-time ODA driver
	Accessing resource identifiers in design ODA driver

	Using fonts
	Understanding font configuration file levels and priorities
	Understanding how BIRT accesses a font
	Understanding the font configuration file structure
	<font-aliases> section
	<composite-font> section
	<font-paths> section

	Using BIRT encryption
	About the BIRT default encryption plug-in
	Deploying encryption plug-ins to Actuate Java Components
	About the components of the BIRT default encryption plug-in
	About acdefaultsecurity.jar
	About encryption.properties
	About META-INF/MANIFEST.MF
	About plugin.xml

	Deploying multiple encryption plug-ins
	Generating encryption keys

	Deploying custom emitters
	Rendering in custom formats

	Creating a custom Java Component web application
	Java Component web application structure and contents
	Understanding Java Component directory structure
	Building a custom Java Component context root
	Modifying existing content or creating new content
	Activating a new web application

	Configuring a custom Java Component web application
	Customizing Java Component configuration
	Customizing requester pages

	Customizing a Java Component web application
	Viewing modifications to a custom web application
	Locating existing pages and linking in new pages
	Obtaining information about the user and the session
	Customizing accessible files and page structure using templates
	Specifying a template and template elements
	Changing a template

	Modifying global style elements
	Understanding style definition files
	Specifying colors and fonts
	Customizing page styles for BIRT Studio

	Modifying images

	Actuate Java Component Reference
	Actuate Java Component configuration
	About Actuate Java Component configuration
	Configuring Java Component web applications
	Configuring the Java Component using web.xml
	Configuring Java Component functionality levels with functionality-level.config
	Configuring Java Component locale using localemap.xml
	Configuring Java Component locales using TimeZones.xml

	Configuring the Actuate Java Component repository
	Configuring the BIRT Viewer and Interactive Viewer
	Configuring BIRT Studio
	Configuring BIRT Data Analyzer

	Actuate Java Component URIs
	Actuate Java Component URIs overview
	Actuate Java Component URIs quick reference
	Common URI parameters
	Java Component Struts actions
	Actuate Java Component URIs reference
	about page
	authenticate page
	banner page
	browse file page
	delete file status page
	detail page
	drop page
	error page
	execute report page
	home page
	index page
	license page
	list page
	login banner page
	login page
	logout page
	page not found page
	parameters page
	Actuate BIRT Viewer URIs reference

	Actuate Java Component JavaScript
	Actuate Java Component JavaScript overview
	Actuate Java Component JavaScript reference

	Actuate Java Component servlets
	Java Component Java servlets overview
	About the base servlet
	Invoking a servlet

	Java Component Java servlets quick reference
	Java Component Java servlets reference
	ExecuteReport servlet
	Interactive Viewer servlet

	Actuate Java Component JavaBeans
	Java Component JavaBeans overview
	Java Component JavaBeans package reference
	Java Component JavaBeans class reference
	Documents
	General
	Jobs

	Using Actuate Java Component security
	About Actuate Java Component security
	Protecting corporate data
	Protecting corporate data using firewalls
	Protecting corporate data using Network Address Translation
	Protecting corporate data using proxy servers

	Understanding the authentication process
	Customizing Java Component authentication
	Creating a custom security adapter
	Accessing the IPSE Java classes
	Creating a custom security adapter class
	Understanding a security adapter class

	Customizing Java Component online help
	About Actuate Java Component online help files
	Understanding the Java Component help directory structure
	Understanding a help collection
	Understanding a document root
	Understanding context-sensitive help
	Understanding locale support

	Using a custom help location
	Creating a localized help collection
	Customizing icons and the company logo
	Changing the corporate logo
	Changing the corporate logo on the title page
	Changing the logo in the help content pages

	Changing icons
	Changing the browser window title

	Changing help content
	Changing existing help content
	Adding or removing help topics
	Adding and removing content files
	Changing the table of contents
	Changing the index

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

