One User Experience

Designing BIRT Information Objects

This documentation has been created for software version 11.0.5.

It is also valid for subsequent software versions as long as no new document version is shipped
with the product or is published at https:/ /knowledge.opentext.com.

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Tel: +1-519-888-7111

Toll Free Canada/USA: 1-800-499-6544 International: +800-4996-5440
Fax: +1-519-888-0677

Support: https:/ /support.opentext.com

For more information, visit https:/ /www.opentext.com

Copyright © 2017 Actuate. All Rights Reserved.
Trademarks owned by Actuate

“OpenText” is a trademark of Open Text.

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in
this publication. However, Open Text Corporation and its affiliates accept no responsibility and
offer no warranty whether expressed or implied, for the accuracy of this publication.

Document No. 170215-2-731301 February 15, 2017

https://knowledge.opentext.com
https://support.opentext.com
https://www.opentext.com

Contents

About Designing BIRT Information Objects......................... IX
Part 1
Creating information objects using Information Object Designer
Chapter 1
Introducing Information Object Designer 3
About information objects 4
About Information Object Designer i 4
About the Information Object Designer environment 5
Displaying hidden messages 6
Chapter 2
Creating projects, data connection definitions,and maps 9
Creating an Actuate BIRT projectl 10
Propagating column and parameter renaming and deletion 10
Creating a data connection definition 11
Creating a data connection definition for a database 12
Creating a data connection definition for an ODA datasource 15
About connection properties 17
About the IANAAppCodePage property L. 24
About Informix database connections oo ol 27
Specifying a production databaseschema 28
Encrypting and decrypting data source connection property values 28
Understanding the encryption extension point plug-in 28
Extending the encryption extension point plug-in....................... 30
Troubleshooting an encryption extension 39
Externalizing data source connection property values 39
About the data source connection configuration file 40
Externalizing connection property values for a preconfigured connection type 41
Externalizing connection property values for a configurable connection type 43
Externalizing connection property values for an ODA connection type 44
Creatingmaps 45
Creating a map of a database tableor viewo ool 45
Updating a map of a databasetableorviewo o oL 48
Creating a map of anative SQL query 51
Creating a map of a stored procedureresultset 54

Creating a map of an ODA data source query resultset 60

Chapter 3

Creating information objects 65
Creating an information object 66
Creating a graphical information objectquery 67
Using the expressionbuilder 67
Choosing maps and information objects 68
Defining output columns 69
Creating and displaying column categories 71
Setting column properties e 74
About column property inheritance 80
Creating a filter for use in queries on an informationobject 82
Specifying ajoin o 85
AbOoutjoins o 85
Optimizing joins 87
Usingjoinalgorithms 88
Improving the selectivity of ajoin 90
Creating a Cartesian join i 91
Filtering data 92
Creating a filter condition 92
Creating multiple filter conditions il 100
Prompting for filter values 103
Grouping data 104
Creatinga GROUP BY clause 105
Removing a column from the GROUP BY clauseooiiiiiinna., 107
Filtering on an aggregatecolumn i 108
Defining parameters 110
Specifying a parameter’s prompt properties oL 111
Setting parameter properties 114
Setting source parameters 116
Synchronizing source parametersot 117
Creating a textual informationobject i 118
Displaying outputcolumns 120
Displaying parameters i 121
Displaying and testing information objectoutputo oLl 121
Displaying a data SOUICE qUETYttt 122
Understanding query execution plan operators 124
Understanding node operators i 125
Augment ... 125

BOX 125
CallExecutionUnit i 125
DependentJoin 125

DU . 125
Materialize 126

ii

MergeJoino 126

MoOVe .. 126
MultiAugment ... 126
NSt . 126
NestedLoopJoin o 127
Project ... 127
Select ... o 127
SOt L 127
UniOon ... o 127
Understanding leaf operators i 127
FakeData 127
FakeFileData 127
IteratorAsLeaf 127
NOOD oo 128
O A 128
SortedOuterUnion 128
SO 128
Storing a query plan with an informationobject oo oo 128
Saving an information object’s query plan ool 129
Saving query plans for source and dependent information objects 130
Deleting an information object’s query plan oL 131
Localizing an information object i 131
Chapter 4
Caching information objects 137
About information object caching 138
Creating a cache connection definition 138
Creating a cache object 139
Refreshing the data rowsinacachetable 140
Database-specific limitations i 141
Chapter 5
Building and publishing aproject 147
Building a project 148
Propagating column and parameter property values 148
Publishing a project 148
Publishing information object filesas resources 150
Publishing information object files as non-resources 153
Downloading files from an Encyclopedia volume 154
Chapter 6
Assessing the impact of projectchanges 157
About project dependencies 158

iii

Searching for data connection definitions, maps, and columns 158

Displaying the project model diagram i 160
Assessing the impact of a change on files in an Encyclopedia volume 163
Downloading files from an Encyclopediavolume 163
Determining the dependencies between projectfiles 164
Generating animpactreport 165
Chapter 7
Actuate SQL reference e 167
About Actuate SQL 168
Differences between Actuate SQL and ANSISQL-92 168
Limitations compared to ANSISQL-92 168
Extensions to ANSI SOQL-02 i e 169
Database limitations 172
FILTERS statement in report designers i, 172
Actuate SQL syntax 173
Actuate SQL grammar 174
Using white space characters i 178
Using keywords 178
Using comments 179
Specifying maps and information objects in Actuate SQL queries 180
Using identifiers in Actuate SQL 180
Using column aliases in Actuate SQL i 180
Specifying parameter values 180
Using subqueries in Actuate SQL 182
Using derived tables in Actuate SQL 182
Data types and data typecasting i 183
Facets 183
Casting rules i 184
String comparison and ordering 185
Functions and operators 185
Comparison operators: =, <>, >=,>, <=, < ...ttt 185
Range test operator: BETWEEN 186
Comparison operator: IN 186
Arithmetic operators: +, -, %, / 187
Numeric functions 187
FLOOR, CEILING, MOD 188
ROUND ..o 188
POWER . 189
Null test operators: is [mot] null 189
Logical operators: and, or, NOt e 190
String functions and operators 190
Case conversion functions: UPPER, LOWER 190

iv

Concatenation Operator: | |utiieinit e 191

Length function: CHAR_LENGTH 191
LIKE Operator e 191
Substring functions: LEFT, RIGHT, SUBSTRING 192
Trimming functions: LTRIM, RTRIM, TRIM 193
Search function: POSITION 194
Timestamp functions 194
CURRENT_TIMESTAMP e 195
CURRENT_DATE e 195
DATEADD . .. 195
DATEDIFE 196
DATEPART .. 197
DATESERIAL ... 197
Aggregate functions: COUNT, MIN, MAX, SUM, AVG 198
System function: CURRENT_USER 199
Providing query optimizationhints oo ool 199
Indicating that a table in a joinis optional L 199
Using the OPTIONAL keyword with a computed field 201
Using the OPTIONAL keyword with parentheses () 202
Using the OPTIONAL keyword with aggregate functions 203
Specifying the cardinality of ajoin oL 204
Using pragmastotuneaquery i 205
Disabling cost-based optimization L 205
Disabling indexing 207
Specifying a threshold value forindexing 208
Part 2
Configuring database types
Chapter 8
Understanding databasetypes 211
About database types 212
About connection types 212
About mappings 213
About preconfigured database types L 214
DB2 data type mapping and issues L 215
Informix data type mapping andissues oL 216
Oracle data type mapping and issues o ool 217
SQL Server data type mapping andissues o oo 219
Sybase data type mapping andissues oo oo ool 220
About configurable database types 222
Working with XML files 224

Chapter 9

Configuring connection types ...t 227
About configuring connection types 228
JDBC driver requirements and installation il 228
JDBC driver requirements 229
Installinga JDBC driver 230
Working with datasources.xml 230
Configuring connection types: ConnectionTypeselement 230
ConnectionType child element: JDBCDriver 231
ConnectionString element e 232
ConnectionType child element: CatalogFilter 233
ConnectionType child element: ConnectionParams 233
Configuring database types: DatabaseTypeselement 234
Chapter 10
Mapping datatypes 237
About data type mapping 238
DataTypeMapperelement 239
MaxSize attribute 240
DataType child element: Aliases i 241
Chapter 11
Mapping functions and operatorsc ... 243
About mapping functions and operators oL 244
About ODBC escape SeqUeNCesc.uiiiieiiiiiiieae i, 244
Disabling the default mapping for a function 246
Differences between Actuate SQL functions and database functions 246
About Generic_ODBC mappings.xml L 246
Syntax for mapping functions and operatorsol 247
Mapping functions and operators: FunctionMapping element 248
About function templates 249
Example: Mapping the POWER function 249
Example: Mapping the DATEDIFF function with date partyyyy 250
Example: Disabling the POSITION function 251
Mapping Boolean operators: BooleanOpMapperelement 251
Example: Mapping the NOT operator 252
Mapping comparison operators: ComparisonOpMapper element 252
Example: Mapping the <>operator L 252
Mapping arithmetic operators: ArithOpMapperelement 253
Example: Mapping the negation operator 253
Mapping numeric functions: NumericFuncMapper element 254
Example: Mapping the POWER function 254
Mapping string functions: BasicStringFuncMapperelement 255

vi

Example: Mapping the CHAR_LENGTH function 255

Mapping substring functions: SubStringFuncMapper element 255
Example: Mapping the POSITION function.................. 256
Mapping the LIKE operator: LikeOpMapper element 256
Example: Mapping the LIKE operator 257
Example: Changing the escape character 258
Example: Disabling the LIKE operator 258
Example: Specifying additional special characters 258
Mapping DATEPART functions: DatePartMapperelement 258
Example: Mapping the DATEPART functions 259
Mapping date subtraction functions: DateDiffMapper element 259
Examples: Mapping the DATEDIFF function with date partyyyy 260
Mapping date addition functions: DateAddMapper element 261
Example: Mapping the DATEADD functions 261
Mapping date serialization functions: DateSerialMapper element 262
Example: Disabling the DATESERIAL functions 262
Mapping NULL functions: NullFuncMapperelement 262
Example: Disabling the CAST (NULL AS . ..) functions 263
Mapping conditional functions: CondFuncMapperelement 264
Example: Mapping the CASE statement 264
Mapping aggregate functions: AggrFuncMapperelement........................... 264
Example: Mapping the AVG functionl 265
Mapping multi-row Boolean operators: MultiRowBoolFuncMapper element 265
Mapping cast functions: CastFuncMapperelement 266
Example: Mapping the CAST functions 267
Using operators inamapping i 268
Symbolic operators require parentheses o o oo 268
Negative sign must be followed by aspace 268
Less than (<) and greater than (>) symbols must beescaped 268
Example: Mapping the not-equal-to operator 269
Example: Mapping the CONCAT function 269
Example: Mapping the DATEDIFF function 269
Example: Mapping the CHAR_LENGTH function 269
Example: Mapping the negativesign (-) L 270
Using initialization statements 270
Example: Specifying the behavior of concatenation with NULL 270
Chapter 12
Mapping literals and clauses i 271
Mapping literals: LiteralMapperelement il 272
Template format for VARCHAR literals 272
Template format for TIMESTAMP literals o 272
Example: Mapping VARCHAR and TIMESTAMP literals 272

vii

Mapping clauses 272

Mapping the ORDER BY clause: OrderByClauseMapper element 273
UseSelectltemIndexes attribute i 273
PushComplexExprs attribute 273

Mapping the GROUP BY clause: GroupByClauseMapper element 273
UseSelectltemIndexes attribute i 274
PushComplexExprs attribute 274

Chapter 13
Working with collations and byte-based strings 275
Working with collations 276

About Integration service collations i il 276

About database collations i 277

About collation implementations i il 278

Specifying the Integration service and database collations 279

Working with byte-based strings 279
INdeX .. 281

viii

Designing BIRT Information Objects provides information about using Information
Object Designer to create information objects and publish them to an Actuate
BIRT iServer Encyclopedia volume. This manual also describes how to configure
a database type for use with Information Object Designer.

Designing BIRT Information Objects includes the following chapters:

About Designing BIRT Information Objects. This chapter provides an overview
of this guide.

Part 1. Creating information objects using Information Object Designer. This part
explains how to create information objects using Information Object Designer.

Chapter 1. Introducing Information Object Designer. This chapter defines the term
information object and describes the Information Object Designer user
interface.

Chapter 2. Creating projects, data connection definitions, and maps. This chapter
describes how to create a project, data connection definitions, and maps prior
to creating information objects.

Chapter 3. Creating information objects. This chapter describes how to create
information objects.

Chapter 4. Caching information objects. This chapter describes how to cache
information objects to improve performance and reduce the load on
production databases.

Chapter 5. Building and publishing a project. This chapter describes how to build
and publish an Actuate BIRT project to an Encyclopedia volume.

Chapter 6. Assessing the impact of project changes. This chapter describes how to
assess the impact of a change to a file, column, or parameter on other files in
an Actuate BIRT project.

About Designing BIRT Information Objects ix

m Chapter 7. Actuate SQL reference. This chapter describes the differences between
Actuate SQL and ANSI SQL-92.

m Part 2. Configuring database types. This part explains how to configure a
database type for use with Information Object Designer.

m Chapter 8. Understanding database types. This chapter defines the term database
type, describes the preconfigured database types, and gives an overview of
database type configuration.

m Chapter 9. Configuring connection types. This chapter gives the requirements for
JDBC drivers and describes how to configure a connection type.

m Chapter 10. Mapping data types. This chapter explains how database data types
are mapped to Actuate SQL data types at design time.

m Chapter 11. Mapping functions and operators. This chapter explains how to map
Actuate SQL functions and operators to their database equivalents.

m Chapter 12. Mapping literals and clauses. This chapter explains how to map
Actuate SQL string and timestamp literals and GROUP BY and ORDER BY
clauses to their database equivalents.

m Chapter 13. Working with collations and byte-based strings. This chapter explains
how to choose Integration service and database collations and how to work
with a database that processes strings by byte.

x Designing BIRT Information Objects

One

Creating information objects using
Information Object Designer

Introducing Information
Object Designer

This chapter contains the following topics:

m About information objects

= About Information Object Designer

m About the Information Object Designer environment

m Displaying hidden messages

Chapter 1, Introducing Information Object Designer 3

About information objects

Like a view in a relational database, an information object is a named SQL query.
An information object can retrieve data using;:

m Database tables and views

m Stored procedures

m ODA data sources, including Web Services and XML

m Other information objects

An information object can retrieve data from more than one data source.

Report developers use information objects when they access data with BIRT
Designer Professional, Actuate e.Report Designer Professional, or Actuate BIRT
Spreadsheet Designer. Business users use information objects when they access
data with BIRT Studio or Actuate Query.

About Information Object Designer

Information Object Designer enables you to create information objects. Before
you can create an information object with Information Object Designer, you must:

m Create data connection definitions for the data sources.
m Create maps:
m Create maps to represent database tables and views.

m Create external procedures and maps to represent stored procedures and
ODA data source queries and their result sets.

Do not use the following characters in resource names in Information Object
Designer:

m < (less than)
m > (greater than)
m ' (single quote)

m " (double quote)

4 Designing BIRT Information Objects

About the Information Object Designer environment

Information Object Designer is built on the Eclipse integrated development
environment. For information about perspectives and other Eclipse features, see
the Workbench User Guide in the online help.

Information Object Designer is available as the IO Design perspective in BIRT
Designer Professional or as a standalone application used with e.Report Designer
Professional or BIRT Spreadsheet Designer. Standalone Information Object
Designer installs with e.Report Designer Professional. If you are using BIRT
Spreadsheet Designer, you must install Information Object Designer separately.

The default IO Design perspective appears as shown in Figure 1-1.

Navigator view

Query definition view

File Edit Mavicdte Search Project Run Window Help

1= a6l G

[@@] L

Y« Plugrin Devel. .. E 2y

3 My ServerProfile

SELECT CLASSICMODELS_Customers. customerNumber AS

TS Mavigator 53 = <fg> ~ = 0 || & *yInformationCbjectiob 53 I =0
EIE? IMyProject ﬂ @ |] | 'B_ﬁ
= 10 Designs —
= B MyProject il
HB Data Sources] Select Al [® select Al
El-[= MyDakabase [l customerbumber A ordertiumber
@ _MyDatabas [customertame Oorderbate
[]"'% CLASSIEMO! [eontactLastiame Orequiredbate
[l cLassIcMol) -
O contactFirstMame Oshippedbats
& cLassicMol
: Ophone Ostatus
B cLassicmol
[addressLinel O comments
arderiiun X
productt JaddressLinez O customertumber
quankity Dcwty
priceEac state
orderLine postalcode _
-figy cLasstcrol Oleountry
[]---% CLASSICMOI [saleshepEmployestiumber _ILI
- cLassiomor || 4 | E
-l cLassicMol Columns |
El+[= Infarmation Objects
E-F8F MyInfarmationO Specify output columns: I Distinct values only |
B ——
g customerNur J S/rce column of ... | Mame | Default Analysis T... | P.|
- c:'st”“er o CLASSICMODELS... customerbumber Dimension i3
= st CLASSICMODELS. .. | customerhlame Dimension pe3
- E] ordertiumbe A nzEreMARE S| cate Nirmarcion ik |
-] quantityords ”CDIumns] Column Cakegaries | Jains | Filters | Group By | Hawing ‘ Parameters |
-4 } paramstaty/
=
2 project - EL Froblems SOL Preview 23 l Data Preview | D"E Query Proﬁler| m|
4] | v =
= Refresh | Edit SQL | —
[iserver Explover 53] i]
WITH (paramstate Warchar
Ea] Servers (p)

E
“I

<

J=<>

|

Figure 1-1

The default 10 Design perspective

— iServer

Explorer
view

SQL preview
view

Chapter 1, Introducing Information Object Designer 5

The IO Design perspective displays the following views:

= Navigator view

The Navigator view displays the contents of your projects. A project consists
of data connection definitions, external procedures, maps, information objects,
cache connection definitions, cache objects, and report designs.

m Query definition view
You create the information object’s SQL query, either graphically or textually,
in the query definition view.

m Properties view

The properties view displays the properties of the selected item, for example a
table or column. The example in Figure 1-1 does not include Properties view.

To toggle the display of properties in categories, choose Show Categories.

m Problems view
The problems view displays error messages.

m SQL Preview view
The SQL Preview view displays the information object’s SQL query.

m Data Preview view
The Data Preview view displays map or information object output.

m Query Profiler view
The Query Profiler view displays the query execution plan.

m iServer Explorer view
The iServer Explorer view displays your iServer profiles.

Displaying hidden messages

In Information Object Designer, many dialogs contain a Do not show this
message again checkbox. For example, Figure 1-2 shows the Reminder message
for the New Maps dialog. If you check the checkbox, the message does not appear
again.

5

A& Map {.sma) files For data source MyDatabase are in the f10
0' Designs/IMyProject/Data Sources/MyDatabase/ Folder, Double-click a map
— name ta view and edit map column names. Make sure that the map uses the
correct column names before creating an information object fram the map.

Figure 1-2 Reminder message for New Maps dialog

¥ Do nat shaw this message again

6 Designing BIRT Information Objects

To display the message again, you must remove it from the Hidden Messages list,

shown in Figure 1-3.

Itype Filter kext

Hidden Messages

I [=] b3
e -

[General

[=]- Actuate BIRT Project
idden Messages
nFarmation Ohjects

- Ank

[+ Data Management
[+ Help

[#- Install{Update

[Java

[#- Plug-in Development
[#- Report Design

[#- Run/Debug

‘You hawve chosen to hide the follawing messages. Remave them from this list to see them again.

Mok_Again

Remove |
Remaove All |

: LZ\:‘;tinn Restore Defaults | Apply |
® Cancel |
Figure 1-3 Hidden Messages

How to display a hidden message

1 Choose Window—>Preferences.

2 In Preferences, choose Actuate BIRT Project>Hidden Messages.

3 Select the appropriate message key. Hover the mouse over a message key to

display the message.
4 Choose Remove. Choose OK.

Chapter 1, Introducing Information Object Designer

7

8 Designing BIRT Information Objects

Creating projects,
data connection definitions,
and maps

This chapter contains the following topics:

m Creating an Actuate BIRT project

m Propagating column and parameter renaming and deletion

m Creating a data connection definition

m Encrypting and decrypting data source connection property values
m Externalizing data source connection property values

m Creating maps

Chapter 2, Creating projects, data connection definitions, and maps 9

Creating an Actuate BIRT project

An Actuate BIRT project is a container for data connection definitions, external
procedures, maps, information objects, cache connection definitions, cache
objects, and report designs. Figure 2-1 shows the project folder and .project file in
Navigator. The .project file is automatically created when you create a project. It
contains a description of the project, including the project name, build command,
and nature.

T Mavigaktor &9 | = dfp ~ =08
=z [EE8E———Project folder

“o- M| . project

Figure 2-1 Project folder with .project file

How to create an Actuate BIRT project

1 Choose File>New—>Actuate BIRT Project.

2 In New Project—Actuate BIRT Project, as shown in Figure 2-2:
m In Project name, type the name of the project.

m If you do not want to create the project in the default location, deselect Use
default location and type or browse to a different location.

m Choose Finish.
The project appears in Navigator.

= I8 [=] B3
Actuate BIRT project

Specify a project name and location. @

Project name: | MyProject

V' Use deFault location

Lacation; | CiiUserst AdministratorworkspaceMyPraoject Browse...
Figure 2-2 Specifying a project’s name and location

Propagating column and parameter renaming and
deletion

By default, when you rename a column or parameter in a source map or
information object, the name change is propagated to any dependent information
objects as long as the column name in the dependent information object is not

10 Designing BIRT Information Objects

modified. Column names that appear in expressions, including computed
column and filter expressions, are also updated. Information Object Designer
does not check for column name duplication in a dependent information object.
When you compile the information object, column name duplication is reported
as an error.

By default, when you delete a column or parameter in a source map or
information object, the deletion is not propagated to dependent information
objects. If you override this behavior, the deletion is propagated to any dependent
information objects as long as the column name in the dependent information
object is not modified. Filters on a deleted column are deleted. Computed
columns and filter expressions that contain the column name are not deleted.

To override the default behavior, choose Window>Preferences>Actuate BIRT
Project>Information Objects and make the appropriate selections. Figure 2-3
shows the default settings for column and parameter renaming and deletion.

* (=1
Jevpe fiker tesxt Information Objects R

[+ General

[=]- Actuate BIRT Project
Hidden Messages Diata Preview Timeout {seconds): | 300

& irformation Objects

i Perspectives

|»

General settings For Information Objects

™ Show categories in graphical editor by default

- Publish ’i;r?:;;agate column and parameter renaming throughout the projeck
- At — Default
- Diata Management ™ Propagate column and parameter deletion throughout the project propag ation
= Help settings

- InstallfUpdate

H- Java

#- Java EE

+|- Java Persistence
|- Javascript

+|- Model Yalidation

[
[
[
[
[
[
[
[
[
[+

-+ Plug-in Development LI Restore Defaults | Apply |
Figure 2-3 Default propagation settings

Creating a data connection definition

A data connection definition defines the connection properties for a data source.
Connection properties include connection type, security policy, user name, and
password. The first time you create a data connection definition for a project,
Information Object Designer creates the I0 Designs folder hierarchy in the project
folder. For example, for the project MyProject, Information Object Designer
creates the folder hierarchy /1O Designs/MyProject/Data Sources. The folder
hierarchy contains the MyProject subfolder because all information object files are
published to the IO Designs subfolder in the Encyclopedia volume’s Resources
folder using the same relative path used in the workspace, and the project name is
required to distinguish one project’s information object files from another’s.

Chapter 2, Creating projects, data connection definitions, and maps 11

Information Object Designer then creates a subfolder in the project’s Data Sources
folder to contain the data connection definition file. For example, if you create a
data connection definition for the database MyDatabase, Information Object
Designer creates the subfolder MyDatabase and the data connection definition
file _MyDatabase.dcd, as shown in Figure 2-4.

A data connection definition file name has a .dcd extension. Data connection
definition file names are not case-sensitive.

5 Mavigator £3 - & ¥ =0

=2 MyProject
E| = 10 Designs
Ew MyProject
: El-(= Data
Bl

B MyDatabase.ded | Data connection
- X] project definition file

Figure 2-4 Data connection definition file and 10 Designs folder hierarchy

Creating a data connection definition for a database

Information Object Designer uses an ODBC or JDBC driver to connect to a
database. The preconfigured database types are:

s DB2
m Informix
m MySQL Enterprise
m Oracle
m PostgreSQL
m SQL Server
m Sybase
How to create a data connection definition for a database
1 In Navigator, select the appropriate project.
2 Choose File>New=>Data Connection Definition.
3 In New Data Connection Definition:
m In Name, type the name of the database.
m In Type, choose a type from the drop-down list.

m In Description, type a description for the database.

m To retrieve the connection property values from the data source connection
configuration file at run time, type the configuration key in Configuration
key.

12 Designing BIRT Information Objects

Figure 2-5 shows an example of creating a data connection definition for a
SQL Server database.

o J8i[=1ES
Data Connection Definition i
Create a data connection definition, 1

Mame: I MyDatabase
Type: |50l Server znos [
Description: | Customer data j

Configuration key: I

':?:I Cancel
Figure 2-5 Creating a data connection definition for a database

Choose Finish.

The IO Designs folder hierarchy and data connection definition file name
appear in Navigator, and Data source connection properties appears.
Connection property values stored in the data source connection
configuration file are not displayed.

In Data source connection properties:

If you did not provide a configuration key earlier, you may provide one
now.

In Credentials, choose Proxy or Passthrough.

If you choose Proxy, Information Object Designer connects to the database
using the user name and password you specify in Data source connection
properties. If you choose Passthrough, Information Object Designer
connects to the database using the user name and password you specify in
User Information. For information about using proxy and passthrough
security in an Encyclopedia volume, see Managing an Encyclopedia Volume.

If you chose Proxy, type the user name and password for the database user.

In Port, type the number of the port that Information Object Designer uses
to connect to the database server.

Provide values for the remaining properties.
The remaining properties are specific to the connection type.

Figure 2-6 shows an example of specifying the connection properties for a
SQL Server database data connection definition.

Chapter 2, Creating projects, data connection definitions, and maps 13

Data source connection properties

Type: | 0L Server 2005

Description: Customer data d
| |

Configuration key: |

Credentials: Ipmxy j

User name: | MyDatabaselser

Passward: | Akttt

Server: I MyDatabaseServer

Database: | Classictodels

Park: | 1433

Schema (optional): I ClassicMaodels.dbo Browse... |
Test Connection |

Map tables | Map stored procedures | Create SOL map |

Figure 2-6 Specifying data source connection properties for a database
data connection definition

m Choose Test Connection to test the connection to the database.

If you chose Passthrough in Credentials, type the database user name and
password in User Information and choose Finish, as shown in Figure 2-7.

= i [=] B3
User information [="¢]
Specify data source connection properties

User name: | MyDatabaselser

Password: | Ak
@:I Cancel
Figure 2-7 Providing user information to connect to the database

If Information Object Designer connects to the database, a confirmation
message appears. Choose OK.

= Choose one of the following:
o Map tables, to create maps of database tables and views
o Map stored procedures, to create a map of a stored procedure result set

o Create SQL map, to create a map of a query written in the database’s
native SQL

14 Designing BIRT Information Objects

Creating a data connection definition for an ODA data
source

Information Object Designer uses an Open Data Access (ODA) driver to connect
to an ODA data source. The preconfigured ODA data source types are:

ActuateOne for e.Reports
BIRT document

Flat file

POJO

Static

Web services

XML

How to create a data connection definition for an ODA data source

1 In Navigator, select the appropriate project.

2 Choose File>New—>Data Connection Definition.

3 In New Data Connection Definition:

m In Name, type the name of the ODA data source.
m In Type, choose a type from the drop-down list.
m In Description, type a description for the ODA data source.

m To retrieve the connection property values from the data source connection
configuration file at run time, type the configuration key in Configuration
key.

Figure 2-8 shows an example of creating an ODA data source connection
definition.

* B
Data Connection Definition i
Create a data connection definition. i

Marme: | MyODADataSource
Type: IFIat File Data Source j
Diescription: Flat file data ﬂ

Configuration key: |

oy

Figure 2-8 Creating an ODA data source connection definition

Chapter 2, Creating projects, data connection definitions, and maps 15

m Choose Finish.

The data connection definition file name appears in Navigator, and Data

source connection properties appears.

4 In Data source connection properties:

m If you did not provide a configuration key earlier, you may provide one

now.

Figure 2-9 shows an example of beginning to specify the connection

properties for an ODA data source connection definition.

Data source connection properties

Type! I org.edipse.datatools, connectivity .oda. flatfile

Description: Flat file data

Configuration key: |

Data Source Propetties |
Test Connection |
Map tables |

Figure 2-9
connection definition

m Choose Data Source Properties.

» In the data source connection properties dialog:

o Provide values for the data source connection properties.

Specifying connection properties for an ODA data source

Figure 2-10 shows an example of specifying the properties for a flat file

data source.
- I8 [=] S
Define Folder or a File URI

Select a Folder that contains the Flat files,

% Select home folder: | [=1}

Browse... |

Erowse... | =

" Enter file URT: |

Select charset: IUTF-E

Select flatfile style:

Ll L«

Jcav

¥ Use first line as column name indicator,
[~ Use second line as data bype indicator,

™ Use trailing null calumns.

Test Connection

@:‘ Cancel |
Figure 2-10

16 Designing BIRT Information Objects

Specifying connection properties for a flat file data source

a Choose Test Connection to test the connection to the data source.

If Information Object Designer connects to the data source, a
confirmation message appears. Choose OK.

a Choose Finish.

m Choose Map tables to create a map of an ODA data source query result set.

About connection properties

Table 2-1 lists the preconfigured connection types, connection properties, and a
description of each property.

Table 2-1 Properties for preconfigured connection types

Connection type Property Description

ActuateOne for Password User’s Encyclopedia volume password.
e.Reports Data
Source

See Using Actuate
BIRT Designer
Professional.

Server URL URL for the BIRT iServer that manages the
Encyclopedia volume in which the ROI file
resides, for example,
http:/ /MyServer:8000.

Use Trusted Choose Yes to use a trusted connection. As

Connection you edit the data source and the data set, a
trusted connection uses the same session
to communicate with the iServer. Using a
trusted connection improves performance.

Choose No to use a non-trusted
connection. A non-trusted connection uses
the specified credentials to log in to the
iServer for each communication.

User Encyclopedia volume user name.

Volume Name of the Encyclopedia volume in
which the ROI file resides.

(continues)

Chapter 2, Creating projects, data connection definitions, and maps 17

Table 2-1 Properties for preconfigured connection types (continued)

Connection type Property

Description

BIRT Report Report

Document Data document

Source path

See Using Actuate

BIRT Designer

Professional.

DB2 Collection
Database
TANAApp-
CodePage
Password
Port
Server
User name

Flat File Data Folder

Source

See BIRT: A Field

Guide.
Charset

18 Designing BIRT Information Objects

Path to the report document to use as a
data source. The path must be an absolute
path to a location on the iServer computer.

Similar to schema. Used only with z/OS
and OS/400 operating systems.

Name of database.

For a description of IANAAppCodePage
values, see “About the
IANAAppCodePage property,” later in
this chapter.

A password used to connect to your DB2
database.

The port number that is assigned to the
DB2 DRDA listener process on the server
host machine. Specify this port’s numeric
address or its name. If you specify a port
name, the database driver must find this
name in the SERVICES file on the Actuate
BIRT iServer computer. Port is optional.

The IP address of the machine where the
catalog tables are stored. Specify the
address using the machine’s numeric
address (for example, 123.456.78.90) or
specify its name. If you specify a name, the
database driver must find this name in the
HOSTS file on the Actuate BIRT iServer
computer or in a DNS server.

The login ID used to connect to your DB2
database. For DB2 on UNIX, the User
name is your UNIX user ID.

The UNC path for the folder in which the
file resides, for example \\MyComputer
\MyFolder. The folder must reside on a
Windows computer and must be shared.

Character set used to encode the file.

Table 2-1

Properties for preconfigured connection types (continued)

Connection type

Property

Description

Flat File Data
Source (continued)

Informix

MySQL Enterprise

Flatfile style

Database

Host

TANAApp-
CodePage

Password
Port

Service
User name

Database

Password

Port

CSV, SSV, PSV, or TSV for a file that uses
comma-separated values, semicolon-
separated values, pipe-separated values,
or tab-separated values, respectively.

Used to filter catalogs. For example, if you
set this property to MyCatalog, the
connection recognizes only those catalogs
whose name begins with MyCatalog. If
you want the connection to recognize all
catalogs, do not provide a value for this
property.

The name of the machine on which the
Informix database resides.

For a description of IANAAppCodePage
values, see “About the
IANAAppCodePage property,” later in
this chapter.

A password.
The port number of the server listener.

The name of the server running the
Informix database.

Your user name as specified on the
Informix server.

Used to filter catalogs. For example, if you
set this property to MyCatalog, the
connection recognizes only those catalogs
whose name begins with MyCatalog. If
you want the connection to recognize all
catalogs, do not provide a value for this
property.
The password for the MySQL Enterprise
login account specified by the User name
property.
Port number (optional).

(continues)

Chapter 2, Creating projects, data connection definitions, and maps 19

Table 2-1 Properties for preconfigured connection types (continued)

Connection type Property

Description

MySQL Enterprise Server
(continued)

User name

Oracle Password

Port

Server

SID

TNS names
file

TNS server
name

20 Designing BIRT Information Objects

The network address of the server running
MySQL Enterprise. This is required and
can be an IP address, for example,
199.226.224.34. If your network supports
named servers, you can specify an address
using the server name, for example,
SSserver.

To specify a named instance of MySQL
Enterprise, use the format server_name
\instance_name. If only a server name is
specified with no instance name, the
database driver connects to the server and
uses the default named instance on the
server.

A valid MySQL Enterprise login account.

The password that the database driver
uses to connect to your Oracle database.

Identifies the port number of your Oracle
listener. The default value is 1521. Check

with your database administrator for the

correct number.

Identifies the Oracle server to which you
want to connect. If your network supports
named servers, you can specify a server
name, such as Oracleserver. Otherwise,
specify an IP address, such as
199.226.224.34.

The Oracle System Identifier that refers to
the instance of the Oracle database
software running on the server.

Name of the TNS names file, for example,
tnsnames.ora. This file must be accessible
from the computer running the Integration
service. Used only when the Server name
property is not set.

Name of the entry in the TNS names file
that contains the configuration
information describing the database
server. Used only when the Server name
property is not set.

Table 2-1 Properties for preconfigured connection types (continued)

Connection type Property

Description

Oracle (continued) User name

POJO Data Source Runtime

See Using Actuate properties
BIRT Designer
Professional.

Design time
properties

PostgreSQL Database

Password

Port

Server

User name

The user name that the database driver
uses to connect to your Oracle database.

Shared location of custom POJO data set
classes.

Shared location of custom POJO data set
classes.

Used to filter catalogs. For example, if you
set this property to MyCatalog, the
connection recognizes only those catalogs
whose name begins with MyCatalog. If
you want the connection to recognize all
catalogs, do not provide a value for this
property.

The password for the PostgreSQL login
account specified by the User name

property.
Port number (optional).

The network address of the server running
PostgreSQL. This is required and can be an
IP address, for example, 199.226.224.34. If
your network supports named servers,
you can specify an address using the
server name, for example, SSserver. To
specify a named instance of PostgreSQL,
use the format server_name
\instance_name. If only a server name is
specified with no instance name, the
database driver connects to the server and
uses the default named instance on the
server.

A valid PostgreSQL login account.
(continues)

Chapter 2, Creating projects, data connection definitions, and maps 21

Table 2-1 Properties for preconfigured connection types (continued)

Connection type Property

Description

SQL Server Database

Password

Port

Server

User name

Static Data Source

See Using Actuate
BIRT Designer
Professional.

Sybase Charset

22 Designing BIRT Information Objects

Used to filter catalogs. For example, if you
set this property to MyCatalog, the
connection recognizes only those catalogs
whose name begins with MyCatalog. If
you want the connection to recognize all
catalogs, do not provide a value for this
property. If you are running multiple
instances of SQL Server, precede the
database name with the instance name, for
example MylInstance/MyDatabase.

The password for the SQL Server login
account specified by the User name
property.

Port number (optional).

The network address of the server running
SQL Server. This is required and can be an
IP address, for example, 199.226.224.34. If
your network supports named servers,
you can specify an address using the
server name, for example, SSserver.

To specify a named instance of SQL Server,
use the format server_name\instance
_name. If only a server name is specified
with no instance name, the database driver
connects to the server and uses the default
named instance on the server.

A valid SQL Server login account.

Create a data set by typing values in the
data set editor. Use a static data source to
create sample data for testing purposes.

The name of a character set. This character
set must be installed on the Sybase server.
The default is the setting on the Sybase
server. For the Integration service to return
Unicode data, this property must be set to
UTEFS. Refer to the Sybase server
documentation for a list of valid character
set names.

Table 2-1

Properties for preconfigured connection types (continued)

Connection type

Property

Description

Sybase (continued)

Web Services Data
Source

See BIRT: A Field
Guide.

XML Data Source

See BIRT: A Field
Guide.

Chapter 2, Creating projects, data connection definitions, and maps

Database

IANAApp-
CodePage

Password
Port

Server

User name

WSDL
descriptor

SOAP end
point

Custom
driver class

Driver class
path

URL of the
XML source

Used to filter catalogs. For example, if you
set this property to MyCatalog, the
connection recognizes only those catalogs
whose name begins with MyCatalog. If
you want the connection to recognize all
catalogs, do not provide a value for this
property.

For a description of IANAAppCodePage
values, see “About the
IANAAppCodePage property,” later in
this chapter.

A case-sensitive password.
Port number.

AnIP address, for example, 199.226.224.34.
If your network supports named servers,
you can specify the address using the
server name, for example, Sybaseserver.

The login ID used to connect to your
Sybase database. This ID is case-sensitive.

The path or URL for the Web Services
Description Language file. A well-formed
WSDL file defines the available services
and, typically, the SOAP end point URL.

SOAP end point URL. Omit this value if
the end point is defined in the WSDL file,
or if you are using a custom connection
class that does not require an end point
URL.

The fully qualified class name. Create and
use a custom driver if, for example, the
web service does not provide a WSDL file.

A semicolon-separated list of JAR files and
directories to search for the custom driver
class.

The path or URL for the file that contains
XML data.

(continues)

23

Table 2-1 Properties for preconfigured connection types (continued)

Connection type Property Description

XML Data Source URL of the = The path or URL for the file that contains a
(continued) XML schema description of the XML file’s data structure

(optional).
Encoding for Encoding for the XML file and schema.
the XML Use the default value, Auto, if you want
source and the data source to detect the encoding for
schema the XML file or schema.

About the IANAAppCodePage property

If the database character set is not Unicode and the Actuate BIRT iServer is
running on a UNIX platform, you must set the IANAAppCodePage property. The
value of IANAAppCodePage must match the database character encoding and
the system locale. If you do not set IANAAppCodePage, the database driver
searches for a value in the system information file (odbc.ini), first in the Data
Source section and then in the ODBC section. If the database driver does not find
a value in odbc.ini, it sets IANAAppCodePage to 4 (ISO 8859-1 Latin-1).

Table 2-2 lists values for IANAAppCodePage and the corresponding character

encodings.

Table 2-2 IANAAppCodePage values for character encoding
IANAAppCodePage value Character encoding
3 US_ASCII
4 1SO_8859_1
5 ISO_8859_2
6 ISO_8859_3
7 ISO_8859_4
8 ISO_8859_5
9 ISO_8859_6
10 ISO_8859_7
11 ISO_8859_8
12 ISO_8859_9
13 ISO_8859_10
16 JIS_Encoding
17 Shift_JIS
18 EUC_JP

24 Designing BIRT Information Objects

Table 2-2 IANAAppCodePage values for character encoding (continued)

IANAAppCodePage value Character encoding
30 ISO_646_IRV
36 KS_C_5601

37 ISO_2022_KR
38 EUC_KR

39 1SO_2022_JP
40 1SO_2022_JP_2
57 GB_2312_80
104 ISO_2022_CN
105 ISO_2022_CN_EXT
109 ISO_8859_13
110 ISO_8859_14
111 ISO_8859_15
113 GBK

2004 HP_ROMANS
2009 IBM850

2010 IBM852

2011 IBM437

2013 IBM862

2024 Windows_932
2025 GB2312

2026 Bigh

2027 macintosh
2028 IBM037

2030 IBM273

2033 IBM277

2034 IBM278

2035 IBM280

2037 IBM284

2038 IBM285

2039 IBM290

(continues)

Chapter 2, Creating projects, data connection definitions, and maps 25

Table 2-2 IANAAppCodePage values for character encoding (continued)

IANAAppCodePage value Character encoding
2040 IBM297
2041 IBM420
2043 IBM424
2044 IBM500
2045 IBM851
2046 IBM855
2047 IBM857
2048 IBM860
2049 IBM861
2050 IBM863
2051 IBM864
2052 IBM865
2053 IBM868
2054 IBM869
2055 IBM870
2056 IBM871
2062 IBM918
2063 IBM1026
2084 KOI8_R
2085 HZ_GB_2312
2086 IBM866
2087 IBM775
2089 IBMO00858
2091 IBM01140
2092 IBM01141
2093 IBM01142
2094 IBM01143
2095 IBM01144
2096 IBM01145
2097 IBM01146
2098 IBM01147

26 Designing BIRT Information Objects

Table 2-2 IANAAppCodePage values for character encoding (continued)

IANAAppCodePage value Character encoding
2099 IBM01148

2100 IBM01149

2102 IBM1047

2250 WINDOWS_1250
2251 WINDOWS_1251
2252 WINDOWS_1252
2253 WINDOWS_1253
2254 WINDOWS_1254
2255 WINDOWS_1255
2256 WINDOWS_1256
2257 WINDOWS_1257
2258 WINDOWS_1258
2259 TIS_620

About Informix database connections

Set the DELIMIDENT environment variable to y before starting the Actuate BIRT
iServer.

The Integration service cannot communicate with an Informix database if the
database character set is Unicode.

If the iServer is running on a Windows platform, the computer’s application code
page must match the DB_LOCALE of the Informix server. For example, if the
database character encoding is Japanese (Shift JIS), the application code page of
the computer on which the iServer is running must be Japanese (Shift JIS). In
other words, you must set CLIENT_LOCALE to ja_]P.sjis-s.

If the iServer is running on a UNIX platform, you must provide a value for the
IANAAppCodePage property. If you do not set IANAAppCodePage, the
database driver searches for a value in the system information file (odbc.ini), first
in the Data Source section and then in the ODBC section. If the database driver
does not find a value in odbc.ini, it sets IANAAppCodePage to 4 (ISO 8859-1
Latin-1).

Chapter 2, Creating projects, data connection definitions, and maps 27

Specifying a production database schema

You can provide the name of the production database schema in a data
connection definition. Provide the name of the production database schema in the
following cases:

m The development database and the production database are identical except
for the schema name.

m You plan to use the iServer administrator dashboard reports, so you must
provide the schema name for the PostgreSQL database.

On the Data source connection properties page, in Schema (optional), type the
schema name in the form MyCatalog.MySchema or browse for the schema. The
schema name is applied to maps of database tables and views at runtime,
overriding the schema name stored in the maps.

The schema name is not applied to maps of native SQL queries or to maps of
stored procedure result sets. The schema name in these maps must be edited
manually before you publish the project to the production volume.

Do not provide a schema name if the maps in your project use more than one
database schema.

Encrypting and decrypting data source connection
property values

You can encrypt and decrypt certain data source connection property values, for
example password, using your own encryption and decryption algorithms. You
implement encryption and decryption algorithms using an Eclipse-based OSGi
extensions framework.

Understanding the encryption extension point plug-in

The encryption extension point plug-in is installed with the following products in
the specified locations:

m BIRT Designer Professional in <Actuatell_HOME>\BRDPro\eclipse
\plugins\com.actuate.ais.encryption_<version>

m Information Object Designer in <Actuatell_HOME>\IOD\plugins
\com.actuate.ais.encryption_<version>

Do not install Information Object Designer over an existing installation of
Information Object Designer; uninstall the older version of Information Object
Designer first or install Information Object Designer in a different location.

m BIRT iServer in $Actuatell/iServer/Jar/BIRT/platform/plugins
/com.actuate.ais.encryption_<version>

28 Designing BIRT Information Objects

The directory com.actuate.ais.encryption contains the following items:

m The file plugin.xml

m The file encryption jar

m The directory schema, which contains the file EncryptionProviderID.exsd

To extend the encryption extension point plug-in, you must implement both the
encrypt and decrypt methods in the IEncryptionProvider interface, shown in
Listing 2-1.

Listing 2-1 The IEncryptionProvider interface

package com.actuate.ais.encryption;

/**
* This interface specifies a couple of functions that need to
* be implemented in any encryption provider implementation
*/

public interface IEncryptionProvider {

/**

* Encrypt function that takes in a string value to be
encrypted. The return value is an encrypted text obtained
after applying the implementation specific encryption
algorithm.

@param value
@return

/
public String encrypt (String value) ;

/**

* Decrypt function that takes in an encrypted text string.

* %k X F X X *

* The return value is the plain text obtained after applying
* the implementation decryption algorithm.

*

* @param value

* @return

*/

public String decrypt (String value) ;
}
The extension JAR file must be installed in one of the following locations:

m <Actuatell_HOME>\BRDPro\eclipse\plugins if you are using the IO design
perspective in BIRT Designer Professional

m <Actuatell_HOME>\IOD\plugins if you are using the standalone
Information Object Designer that installs with e.Report Designer Professional

Chapter 2, Creating projects, data connection definitions, and maps 29

The extension JAR file must also be installed in $Actuatell/iServer/Jar/BIRT
/platform/plugins on the BIRT iServer platform.

The rest of this topic uses Information Object Designer to refer to both the IO
design perspective in BIRT Designer Professional and standalone Information
Object Designer.

When Information Object Designer is launched, it detects the encryption
extension point plug-in. This plug-in is used for all connection types, for example
Oracle and DB2. When the data modeler enters connection property values such
as username, password, host name, and port on the Data source connection
properties page, Information Object Designer determines if the property is tagged
as masked. If so, the value entered for that property is passed to the encrypt
method. The encrypt method returns the String value you programmed it to
return, and this return value is stored in the data connection definition (.dcd) file.
The encrypt method is called only when the value of a masked property is
modified. When an information object is executed in Information Object Designer
or on iServer, the values of the connection properties that are tagged as masked
are read from the DCD file and passed to the decrypt method. The decrypt
method returns the String value you programmed it to return.

You can have the encrypt method return an encrypted version of the string that a
data modeler enters on the Data source connection properties page. This
encrypted value is then stored in the DCD file and passed to the decrypt method
when an information object is executed.

You can also program the encrypt and decrypt methods to implement lookup
mechanisms to retrieve the actual property values, such as the username and
password, from an external LDAP source. The values that the data modeler enters
on the Data source connection properties page serve as tokens to identify the
actual values. This approach can handle multiple data sources.

For example, the encrypt method can simply return any string value the data
modeler provides without modification, and this token is stored in the DCD file.
So, if a data modeler enters the password for an Oracle connection definition as
Password_OracleDevelopment, the encrypt method returns
Password_OracleDevelopment, and Password_OracleDevelopment is stored in
the DCD file. When the decrypt method receives Password_OracleDevelopment,
the decrypt method logic uses this token to query an external data source or to
search a local encrypted file to retrieve the actual password.

Extending the encryption extension point plug-in

To extend the encryption extension point plug-in, you must perform the
following tasks:

m Make the encryption extension point plug-in available to Eclipse.

m Create a plug-in project.

30 Designing BIRT Information Objects

Include any required JAR files in the plug-in JAR file.
Select an extension point.
Create the plug-in class.

Implement both the encrypt and decrypt methods in the IEncryptionProvider
interface.

Package the plug-in.
Deploy the plug-in.

Set the Type attribute for the appropriate connection parameters to masked.

Detailed instructions for each task are provided in the following topics.

How to make the encryption extension point plug-in available to Eclipse

Copy com.actuate.ais.encryption_<version> from one of the locations where it
resides to eclipse\ plugins.

How to create a plug-in project

1
2
3

In Eclipse, choose File>New—>Project.
In New Project—Select a wizard, select Plug-in Project. Choose Next.

In New Plug-in Project—Plug-in Project, in Project name, type the name of the
project, as shown in Figure 2-11. Choose Next.

o . v
Plug-in Project i -
Create a new plug-in project

Project name: I Iy Encryption Impl

¥ Use default location
Lacation: I Y UsershAdministratoriworkspace My Encryption Impl Browse. . |

~Project Settings

¥ Create a Java projeck

Source Folder: I sro

Output Folder: I bin

i~ Target Flatform
This plug-in is targeted to run with:

& Eclipse version: |3.? 'I
© an 035G framework: IEquinnx ¥

~Warking sets

™ Add project to working sets

“Warking sets: j Seleck, ., |

@:‘ < Back I ek > I Finish | Cancel |
Figure 2-11 Typing the name of the project

Chapter 2, Creating projects, data connection definitions, and maps 31

4 In New Plug-in Project—Content, do the following, as shown in Figure 2-12.
Then, choose Finish.

m InID, type the name of the identifier for the plug-in and the package name
for the encryption provider class.

= In Version, type the version number for the code.
» In Name (optional), type a descriptive name for the plug-in.
m In Provider (optional), type the name of the extension’s provider.

m Select Generate an activator, a Java class that controls the plug-in’s life
cycle.

m In Activator, type the full name of the Activator class. The package for the
class should be the same as for ID.

= Deselect This plug-in will make contributions to the UL

-
Content p— l .
Enter the data required to generate the plug-in,

[~ Propetties
I0: | com. example myencryptionextension
Wersion: | 1.0.0
Tame: | My AIS Encryprion Extension
Provider: | My company name

Execution Environment: IJavaSE-l B j Environments. .,

- Options

¥ Generate an ackivator, a Java class that conkrols the plug-n's lfe cycle

Ackivator: Icom.example‘myencryptinnextension.Activator
™ This phug-in will make contributions o the LT

™ Enable APT analysis

—Rich Client Application

‘Would you like ta create a rich client application? " ¥es (¢ Mo
o)
'\?,‘ < Back | Mext > | Finish I Cancel |

Figure 2-12 New Plug-in Project—Content
5 Confirm that you want to display the plug-in perspective.

32 Designing BIRT Information Objects

How to include required JAR files in the plug-in JAR file
1 In the plug-in perspective, choose Dependencies.
2 In Required Plug-ins, choose Add.

3 In Plug-in Selection, select com.actuate.ais.encryption (version), as shown in

Figure 2-13. Choose OK.

If com.actuate.ais.encryption is not visible, type encryption in Select a Plug-in

to filter the list.

Select a Plug-in:

Iencryption

Matching items:

E:D‘cnm‘actuate.ais.encryptinn (11.0.5.+20120725)

com, actuate, ais.encryption

oy

Figure 2-13 Specifying the required plug-in

com.actuate.ais.encryption appears in Required Plug-ins, as shown in

Figure 2-14.
Required Plug-ins az
Specify the list of plug-ins required for the operation of this plug-in.
?ﬁj‘.::org.eclipse.core.runtime Add...
b com, actuate. ais. encryption (11.0,4)
Tokal: 2

Figure 2-14 Required Plug-ins
How to select an extension point
1 Choose Extensions.
2 In All Extensions, choose Add.

3 In New Extension—Extension Point Selection—Extension Points, select
com.actuate.ais.encryption.EncryptionProviderID, as shown in Figure 2-15.

Choose Finish.

Chapter 2, Creating projects, data connection definitions, and maps

33

Extension Point Selection

-
Create a new EncryptionProvider extension, ‘J

Extension Points | Extension Wizards

Extension Paint Fiter: |

b |com. act . Enc onP &
=i arg.eclipse.core.contenttype. content Types
= org.eclipse.core. runtime adapters

=i org.edlipse. core. runtime. applications

=i org.eclipse.core. runtime. content Types

=i org.eclipse.core.runtime preferences

=i org.eclipse.core. runtime. products

=i org.eclipse, equinax, preferences, preferences

¥ Show only esxtension points From the required plug-ins

Extension Point Descriphion: EncryptionProvider

This extension point helps define a way for customers to use their own custam built

encryption algarithm for encryptingidecrypting connection parameters that are marked
for encryption

Available templates For encryptionprovider:

'C?) = Back | Next = | Finish I Cancel |
Figure 2-15

Selecting com.actuate.ais.encryption.EncryptionProviderID
4 In All Extensions, expand the

com.actuate.ais.encryption.EncryptionProviderID node and select the child
entry, as shown in Figure 2-16.

All Extensions =
4
Define extensions for this plug-in in the Following section,

Itype filter bext
[El-4== com.actuate. ais.encryption. Encryption Add
: |%] My Encryption Impl.EncryptionExte

Remave

K M
Figure 2-16 Selecting the child entry

5 In Extension Element Details, modify the id, name, and class as shown in
Figure 2-17.

Note the name of the Java class, EncryptionProvider.

34 Designing BIRT Information Objects

6

Extension Element Details

Set the properties of "EncryptionExtension”. Required Fields are dencked by

g

id*: | com. example, myencryptionextension, EncryptionExkension

name*: | com.example. myencryptionextension . EncryptionExtension

class*: Iaxamp\e.myencryptinnextension.Encryptionprovider Browse...

Figure 2-17 Setting the properties of the extension element

Choose File>-Save to save the plugin.xml file.

How to create the plug-in class

1

In Extension Element Details, choose the underlined class link to create the
plug-in class.

On Java Class, shown in Figure 2-18, check that the class name matches the
name you provided in Extension Element Details. Choose Finish.

Java Class — g [l ;

Create a new Java dass, i’

Source folder; |com‘example.myencryptionextension;‘src Browse, . |
Package: Icom‘example.myencryptionaxtansion Browse. .. |
r Enclosing type: | Browse, . |
Mame: I EncryptionProvider
Modifiers: * public " default € private ¢ protected

™ abstract [final I | static
Superclass: | Browse. .. |
Inkerfares: [1] com. actuate. encryption, IEncryptionProvider add. ..

!

Remave

Which method stubs waould you like ta create?
I~ public skatic void mainfStringl] args)
™ Constructors from superclass
¥ Irherited abstract methods
Do you want ko add comments? {Configure templates and default valus here)

I_ Generate comments

Pt

Figure 2-18 Checking the class name

Eclipse creates a stub class, shown in Figure 2-19, that contains the encrypt
and decrypt methods.

Chapter 2, Creating projects, data connection definitions, and maps

35

1+ com.example. myencryptionextension I [J) *EncryptionFrovider java &5

package cem.example.myencryptionesctension;

import com.actuate.ais.encryption.IEncryptionProvider;

public class EncryptionProvider implements IEncryptionProvider {

@override

public String decryptiString arg@){
i futo-generated method stub
return null;

¥

[@override
= public String encryptistring argd) {
v i Auto-generated method stub

return null;
¥
I

Figure 2-19 Stub class

How to implement the encrypt and decrypt methods

The code in Listing 2-2 implements AES 128-bit encryption. Test the encryption
and decryption code in Eclipse. The Activator class, created by Eclipse, must exist
in the plug-in.

Listing 2-2 Implementing the encrypt and decrypt methods

package com.example.myencryptionextension;

import javax.crypto.Cipher;

import javax.crypto.spec.SecretKeySpec;

import sun.misc.BASE64Decoder;

import sun.misc.BASE64Encoder;

import com.actuate.ais.encryption.IEncryptionProvider;

public class EncryptionProvider implements IEncryptionProvider {

private final byte[] key = {—Ox6A, 0x6D, 0x49, -0x05, 0x79,
0x38, 0x48, -0x0C, Ox6A, 0x19, O0x46, O0Ox1lE, -0x09, -0x5E,
-0x2F, 0x17};

private Cipher getCipher (int mode) {

Cipher cipher = null;

SecretKeySpec keyspec = new SecretKeySpec (key, "AES");

try {
cipher = Cipher.getInstance ("AES/ECB/PKCS5Padding") ;
cipher.init (mode, keyspec);

} catch (Exception ex) {}

return cipher;

}

@Override
public String decrypt (String encryptedString)

36 Designing BIRT Information Objects

}

String decryptedString = null;

try {
if (encryptedString == null) return null;
if ("".equals(encryptedString)) return "";

byte[] encryptedBytes = new
BASE64Decoder () .decodeBuffer (encryptedString) ;
Cipher cipher = getCipher (Cipher.DECRYPT MODE) ;
byte[] raw = cipher.doFinal (encryptedBytes) ;
decryptedString = new String(raw) ;
} catch (Exception ex) {}

return decryptedString;

}

@Override
public String encrypt (String plainText) {

String encryptedString = null;

try {
if (plainText == null) return null;
if ("".equals(plainText)) return "";

Cipher cipher = getCipher (Cipher.ENCRYPT MODE) ;
byte[] raw = cipher.doFinal (plainText.getBytes()) ;
encryptedString = new BASE64Encoder () .encode (raw) ;

} catch (Exception ex) {}

return encryptedString;

How to package the plug-in

1
2

Open plugin.xml.
Choose Overview.

In Exporting, shown in Figure 2-20, choose Export Wizard.

Exporting

To package and export the plug-in:
1. Organize the plug-in using the Organize Manifests Wizard
2. Externalize the strings within the plug-in using the Externalize Strings
Wizard
3. Specify what needs ko be packaged in the deployable plug-in on the
Build Configuration page
4. Export the plug-in in a format suitable for deployment using the
Export Wizard

Figure 2-20 Choosing Export Wizard

Chapter 2, Creating projects, data connection definitions, and maps

37

4 In Destination, type or browse to the directory in which to save the plug-in
library, as shown in Figure 2-21. Choose Finish. The plug-in is packaged in a
JAR file in /plugins in the directory you specify.

Deployahle plug-ins and fragments #J:J 4
Export the selected projects into a form suitable for deploving in an Edlipse product 1 ﬂ.i«-] .

Available Plug-ins and Fragments:

== com, exxample. myencryptionextension (1.0,0) Select Al |
Deselect Al |
“Working Set... |

1 of 1 selected,

Drestination |Opt|ons I JAR. Signing

+ Directory:

| ciiprojectsimyencryptionextension j Browse. ., |

" rchive file:

I j Browse. . |

" Install inko hosk. Repositary:

I j Browse. . |

o

Figure 2-21 Specifying the directory in which to save the plug-in library

How to deploy the plug-in

1 Place the plug-in JAR file in $Actuatell/iServer/Jar/BIRT/platform/plugins.
If you are using an iServer cluster, repeat this step for each iServer in the
cluster.

2 Do one of the following:

m If you are using the IO design perspective in BIRT Designer Professional,
place the plug-in JAR file in <Actuatell_HOME>\BRDPro\eclipse
\plugins.

m If you are using standalone Information Object Designer, place the plug-in
JAR file in <Actuatell_HOME>\IOD\plugins.

3 Restart iServer and BIRT Designer Professional or Information Object
Designer for the plug-in to take effect.

How to set the Type attribute to masked

Set the Type attribute for an encrypted connection property to masked in the
appropriate ConnectionParam element in <Actuatell_HOME>\BRDPro

38 Designing BIRT Information Objects

\eclipse\plugins\com.actuate.ais.embeddable_<version>\Config
\aisconfigfiles\etc\intsrvrsources.xml and $AC_SERVER_HOME/ etc
/intsrvrsources.xml, or <Actuatell_HOME>\BRDPro\eclipse\plugins
\com.actuate.ais.embeddable_<version>\Config\aisconfigfiles
\etc\data_integration\datasources.xml and $AC_SERVER_HOME/ etc
/data_integration/datasources.xml. For example, in the following code, the Type
attribute for the password property is set to masked:

<ConnectionParams>
<ConnectionParam Name="username"
Display="User name"
Type="string">
</ConnectionParam>
<ConnectionParam Name="password"
Display="Password"
Type="masked" >
</ConnectionParams>

</ConnectionParams>

Troubleshooting an encryption extension

Plug-in loading errors are logged in the Information Object Designer log file. To
display the log file, do one of the following:

m If you are using the IO design perspective in BIRT Designer Professional,
choose Help>About Actuate BIRT Designer Professional>-Installation
Details>Configuration>View Error Log.

m If you are using standalone Information Object Designer, choose Help>About
Information Object Designer>Installation Details>Configuration>View
Error Log.

On the Actuate iServer platform, plug-in loading errors are logged in $Actuatell
\Jar\BIRT\platform\configuration on Windows platforms and in $Actuatell
/iServer/jar/BIRT /platform/configuration on UNIX platforms.

Alternatively, decorate the Activator.start() and Activator.stop() methods with
System.out statements to ensure that the plug-in is loaded. When the plug-in is
loaded, debug statements appear on the console.

Externalizing data source connection property values

You can externalize data source connection property values rather than embed
them in the data connection definition (.dcd) file. If you externalize data source
connection property values, you can move a project from one environment to
another, for example, from a development environment to a test environment,

Chapter 2, Creating projects, data connection definitions, and maps 39

without modifying the .dcd file. There are two ways to externalize data source
connection property values:

m Passthrough security
To enable passthrough security:

m Set the .dcd file’s Credentials property to Passthrough.

m Using Management Console, set the data source connection property
values.

For more information about setting data source connection property values
using passthrough security, see Managing an Encyclopedia Volume.

m The data source connection configuration file

Data source connection property values specified using passthrough security take
precedence over data source connection property values in the data source
connection configuration file. ODA connections do not support passthrough
security.

About the data source connection configuration file

You can use the iServer data source connection configuration file to externalize
data source connection property values. This file is also used by BIRT report
designs, BIRT spreadsheet designs, e.report executables, and Actuate Analytics
cube profiles. A set of connection property values appears in a ConnectOptions
element in the configuration file’s Runtime element, for example:

<Runtime>

<ConnectOptions Type="My DB2 Connection'>
<Property PropName="server">My DB2 Server</Propertys>
<Property PropName="database">My DB2 Database</Propertys>
<Property PropName="username">My DB2 User</Propertys
<Property PropName="password">My DB2 Password</Propertys>
<Property PropName="port">50000</Property>
<Property PropName="appcodepage">3</Property>
</ConnectOptions>

</Runtime>

The password is not encrypted.

You can create an entry for a new set of connection property values or add
connection property values to an existing entry. For information about creating a
ConnectOptions element, see one of the following topics:

m Externalizing connection property values for a preconfigured connection type

m Externalizing connection property values for a configurable connection type

40 Designing BIRT Information Objects

m Externalizing connection property values for an ODA connection type

In each case, you must first locate the file in which the connection properties are
specified.
The configuration key specified in the .dcd file must match the Type attribute for

the ConnectOptions element. In Figure 2-22, the configuration key matches the
Type attribute in the ConnectOptions element above.

= IST=TES

Data Connection Definition =
Create a data connection definition, 1

Mame: | My_DBZ_Database
Type: =L =l
Diescription: | ﬂ
=
Configuration key: | My_DBZ_Connection e Configuration key

must match Type

@:, Cancel | attribute

Figure 2-22 Specifying a configuration key

To locate the data source connection configuration file, check the setting of
Configuration file for database connections using Configuration Console. For
more information about this configuration variable, see Configuring BIRT iServer.

Externalizing connection property values for a
preconfigured connection type

The connection properties for the following connection types are specified in the
files <Actuatell_HOME>\BRDPro\eclipse\plugins
\com.actuate.ais.embeddable_<version>\Config\aisconfigfiles\etc
\intsrvrsources.xml and $AC_SERVER_HOME/ etc/intsrvrsources.xml:

= DB2

m Informix

m MySQL Enterprise

m Oracle

m PostgreSQL

m SQL Server

m Sybase

For example, the connection properties for the DB2 connection type are:

m server

Chapter 2, Creating projects, data connection definitions, and maps 41

m database

m username

m password

m port

m appcodepage

The connection properties are specified as follows:

<ConnectionType Name="DB2">

<ConnectionParams>
<ConnectionParam Name="server"
Display="Server"
Type="string"
ValueIsCaseSensitive="false" />
<ConnectionParam Name="database"
Display="Database"Type="string"
ValueIsCaseSensitive="false" />
<ConnectionParam Name="username"
Display="User name"
Type="string" />
<ConnectionParam Name="password"
Display="Password"
Type="masked" />
<ConnectionParam Name="port"
Display="Port"
Type="integer"
Optional="true"
DefaultValue="50000" />
<ConnectionParam Name="appcodepage"
Display="IANAAppCodePage"
Type="integer"
Optional="true"
DefaultvValue="" />
</ConnectionParamss>
</ConnectionType>

To externalize the connection property values for a DB2 connection, add a
ConnectOptions element to the data source connection configuration file’s
Runtime element, for example:

<Runtime>
<ConnectOptions Type="My DB2 Connection"s>
<Property PropName="server">My DB2 Server</Propertys>

<Property PropName="database">My DB2 Database</Propertys>
<Property PropName="username">My DB2 User</Propertys>

42 Designing BIRT Information Objects

<Property PropName="password">My DB2 Password</Propertys>

<Property PropName="port">50000</Property>

<Property PropName="appcodepage">3</Property>
</ConnectOptions>

</Runtime>

The property names listed in the ConnectOptions element must match the
connection parameter names listed in the ConnectionParams element in
intsrvrsources.xml. The match is case-sensitive.

Externalizing connection property values for a
configurable connection type

In addition to the preconfigured connection types in intsrvrsources.xml, you can
specify the connection properties for other connection types in the files
<Actuatell_HOME>\BRDPro\eclipse\plugins
\com.actuate.ais.embeddable_<version>\Config\aisconfigfiles\etc
\data_integration\datasources.xml and $AC_SERVER_HOME/etc
/data_integration/datasources.xml, for example:

<ConnectionType Name="My Database">
<ConnectionParams>
<ConnectionParam Name="database"
Display="Database"
Type="string"
ValueIsCaseSensitive="false" />
<ConnectionParam Name="username"
Display="User name"
Type="string" />
<ConnectionParam Name="password"
Display="Password"
Type="masked" />
</ConnectionParamss>
</ConnectionType>

To externalize the connection property values for a configurable connection type,
add a ConnectOptions element to the data source connection configuration file’s
Runtime element, for example:

<Runtime>
<ConnectOptions Type="My Database Connection">
<Property PropName="database">My Database</Propertys>
<Property PropName="username">My Database User</Property>

<Property PropName="password">My Database Password</Propertys>
</ConnectOptions>

</Runtime>

Chapter 2, Creating projects, data connection definitions, and maps 43

The property names listed in the ConnectOptions element must match the
connection parameter names listed in the ConnectionParams element in
datasources.xml. The match is case-sensitive.

Externalizing connection property values for an ODA
connection type

The connection properties for an ODA connection type are specified in the
plugin.xml file for the appropriate Eclipse plug-in. For example, the connection
properties for the XML connection type are specified in the plugin.xml file
bundled in org.eclipse.birt.report.data.oda.xml_xxxx.jar. This JAR file is located
in $Actuatell /Jar/BIRT/platform/plugins. To extract plugin.xml, type:

jar xvf org.eclipse.birt.report.data.oda.xml xxxx.jar plugin.xml
The JDK must be in your path.

The connection properties for the XML connection type, FILELIST and
SCHEMAFILELIST, are specified as follows:

<properties>
<propertyGroup
defaultDisplayName="Connection Properties"
name="connectionProperties">
<property
type="string"
defaultDisplayName="%datasource.property.xmlFile"
canInherit="true"
name="FILELIST"/>
<property
type="string"
defaultDisplayName="%datasource.property.schemaFile"
canInherit="true"
name="SCHEMAFILELIST" />
</propertyGroup>
</properties>

To externalize the connection property values for an XML connection, add a
ConnectOptions element to the data source connection configuration file’s
Runtime element, for example:

<Runtime>
<ConnectOptions Type="My XML Connection's
<Property PropName="FILELIST">My XML File</Propertys>
<Property PropName="SCHEMAFILELIST">My XML Schema</Propertys>

</ConnectOptions>

</Runtime>

44 Designing BIRT Information Objects

The property names listed in the ConnectOptions element must match the
property names listed in the properties element in plugin.xml. The match is
case-sensitive.

Creating maps
A map represents one of the following:
m A database table
m A database view
m A query written in the database’s native SQL
m A result set from a stored procedure
m A result set from an ODA data source query
A map file name has an .sma extension. Map file names are not case-sensitive.

You can create column categories for maps of database tables and views. For
other map types, build an information object from the map using the graphical
information object editor and create column categories for the information object.

Creating a map of a database table or view

When you create a map of a database table or view, Information Object Designer
places the map file in the same folder as the data connection definition (.dcd) file
for the database. For example, Figure 2-23 shows that if you create a map of the
table MyTable in the database MyDatabase, Information Object Designer places
the file MyTable.sma in the folder MyDatabase.

TS Mavigator S’Gl - & Y 5 0

El = My Project
E(= 10 Designs
== MyProject
H E|t7 Data Sources
= MyDatabase

a _ MyDatabase dcd
i & MyTable, sma
e[y .project

——Map file

Figure 2-23 Location of a map file for a database table or view

How to create a map of a database table or view
1 In Navigator, select the appropriate project.
2 Choose File>New~>Map.

Chapter 2, Creating projects, data connection definitions, and maps 45

3 In New Maps—Data Source:

m Select the appropriate data source.

m Select Create maps by selecting database tables, as shown in Figure 2-24.

=
Data Source

Select a data source For the maps,

10 x|

s

Data sources:

% Create maps by selecting database tables
" Create maps by selecting stored procedures

© Create a map by entering the native query string

@:l < Back I Mext = I Finish | Cancel |
Figure 2-24 Creating maps by selecting database tables

Choose Next.
4 In New Maps—Maps:

m In Catalog, select the appropriate catalog.

= In Filter:

o Todisplay tables and views from a particular schema, type the first few
characters of the schema name in Schema name prefix, for example,
dbo. Do not append an asterisk, for example, dbo*. This filter is

case-sensitive.

o To display only tables and views whose names begin with a particular
string, type the string in Table/View name prefix, for example, ac. Do
not append an asterisk, for example, ac*. This filter is case-sensitive.

o Select Show tables only, Show views only, or Show all.

o Choose Apply filter.

= Move the appropriate tables and views from Available to Selected, as

shown in Figure 2-25.

46 Designing BIRT Information Objects

EETT) EEE]

Maps j
Apply a filker to display tables and views, Then select kables and views to create maps. ii

Data source MyDatabase

Catalog: ICIassicMndeIs ﬂ
Available Selecked
=7 CLASSICMODELS E dbo.Customers
Eﬂg dbo . | % dbo.Employees
: D Customers [dbo Offices
El Employees % dbo.CrderDetails
|:| Offices il @I dbo.Crders
|:| CQrderDetails % dbo.Payments
[E orders i dbo.Products
[E rayments < |
[Products
[
Filker
Schema name prefiz: | & Show tables only
Table/Yiew name prefix: | " Show views orly

Apply Filker | " Shaw all

@:l < Back [iExk = | Finish I Cancel
o
Figure 2-25 Selecting tables
Choose Finish.

A reminder appears. Choose OK.

The map file names appear in Navigator. If you created only one map, Output
Columns appears.

5 If you created more than one map, double-click the first map file name in
Navigator to display Output Columns.

6 In Output Columns:

m Deselect the columns you want to exclude from the map.

m To rename a column, type the new name in Name.

Decide on column names before you build an information object from the
map. Changing a column name after you build an information object
results in a compiler error in the information object.

m To create a filter on a column, set the column’s Filter property to Predefined
and choose Prompt editor to specify the filter’s prompt properties.
Figure 2-26 shows Output Columns and the location of the Prompt editor
button for the first column.

Chapter 2, Creating projects, data connection definitions, and maps 47

Output Columns
Specify output columns: Shaw map properties |

| Saource column | Tarme | Diata bype | Default Anakysis Type | Prompt editor |
customerMumber customerMumber Inkeger Dirmension Q.)
cuskarnetManme cuskarmettarne Varchar Dirmension Q;
contactLastMame conkactLastMame Warchar Dimension A —— Choose
contactFirsthams conkackFirstMarne Varchar Dirmension Q) Prompt editor
phone phone Warchar Dimension (3 .
addressLinel addressLinel ‘archar Dimensian ik to SpeCIfy
addressLinez addressLinez varchar Dimension A" | prompt
ciky ciky Warchar Dimension ("3 LI properties
stake stake Varchar Dirmension Q)
pastalCode postalCode Warchar Dirmensian i
country country Varchar Dirmension Q.)
salesRepEmployes... | salesRepEmployee... | Integer Measure A58
creditLimit creditLimit Double Measure L
Default Analytics |

Figure 2-26 Map columns

m To define other column properties, select the column and define the
properties in Properties.

m To specify the default analysis type for a column, choose Default Analytics.
m To create column categories, choose Column Categories.
m To change the order of the columns, use Move up and Move down.

7 Repeat the previous two steps for the remaining maps, if any.

Updating a map of a database table or view
In a database, a table or view can change in the following ways:
m A column is renamed.

m A column’s data type changes.

m A column is added to the table or view.

m A column is dropped from the table or view.

Information Object Designer can detect these changes and update the map of the
table or view. You can update a single map, or update several maps at once.

Map column name and data type changes are propagated to dependent
information objects if the information object column uses the default name. If the
name change would result in a duplicate information object column name, a
suffix is added, for example creditLimit_1. A column name is updated in the
following tabs in the graphical information object editor if it does not appear in
an expression:

m Columns

m Column Categories

48 Designing BIRT Information Objects

m Joins
m Filters
m Group By

A column name in an expression, for example SUM(quantityOrdered *
priceEach), is not updated. If the information object column name has been
modified, changes are not propagated.

A column that is added to a map is also added to dependent information objects
as a source column. The column is not added to the information object’s SELECT
clause. In other words, the column appears in the upper pane of the graphical
information object editor, but it is unchecked.

A column that is dropped from a map is not dropped from dependent
information objects by default. You must indicate that the column should be
dropped. Because this action cannot be undone, back up the project before
proceeding.

Map changes are also propagated to dependent cache objects.

How to update a map

1 In Navigator, right-click the map file name and choose Information
Objects>Update Map.

2 In Database Changes:

» To display the data type for a dropped or added column, hover the cursor
over the column name in Dropped Columns or Added Columns.

m For renamed columns, drag the old column name from Dropped Columns
to Old Column Name. Then drag the new column name from Added
Columns to New Column Name. For columns whose data type has
changed, the Old Column Name may be the same as the New Column
Name. To remove a renamed column pair, choose Remove.

In Figure 2-27, the name of the customerID column has changed to

customerNumber. The data type of the creditLimit column has changed
from Decimal to Double.

m To remove dropped columns from dependent information objects, select
Propagate dropped column changes to dependent files. If the warning
shown in Figure 2-28 appears, choose OK.

Chapter 2, Creating projects, data connection definitions, and maps 49

= J[=] B3

Select the columns that have been renamed For My Project/IO Designs/MyProjectiData
Sources/MyDatabase/dbo, Customers,sma

Dropped Columns: Added Columns:

I creditRank I salesRepEmolovestumber
¥ Propagate dropped column changes to dependent files

Renamned or Modified Colurns:

©ld Column Mame | Mew Column Name |
customerIl customerMumber
creditLimit credicLimit

Remove: |

A renamed column appears as a drapped column using the old name and an added column using the new name.
To indicate that a column has been renamed, drag a Dropped Column From its list into the table under OId Column
MName. Then drag the corresponding Added Column From its list into the table under Mews Column Mame. This will
allows IOD ta update the project with the renamed column correctly.

@) = Back | Next = | Finish I Cancel

Figure 2-27 Map column changes

@ Propagating diopped columns from dependent files cannot be undone. Pleaze
I\\ /,I ensure that all ciitical files are backed up before proceeding.

W Do not show this message again

Figure 2-28 Dropped column propagation warning
Choose Next.

3 Because these changes cannot be undone, review them carefully. If the changes

are acceptable, choose Finish. If not, choose Back and make the necessary
corrections. Figure 2-29 shows a summary of changes for the Customers map
and its dependent information object, MyInformationObject.

A description of all the changes that will be made ta this project is available below. These changes cannot
be undone after the operation completes.

AMyProject/Data 5owcesMyD atabase/dbo. Customers.sma: Zl
Added Columns:
salesR epEmployeet umber

Dropped Columns.
creditRank

Renamed Columing:
customenD =» customertumber
#MyProject lnfarmation ObjectsMylnformationDObject iob. customer D will be updated.
creditlimit => creditLimit
#MyProject/lnfarmation Objects/MylnfarmationObject iob. creditLimit wil be updated.

Affected dependent files:
AduProject/Information Objects/Mulnfarmation0 bject. iob

-
[} >
Copy to clipboard |
@:l < Back I Mext » | Finizh | Cancel |

Figure 2-29 Summary of changes for Customers and MylnformationObject

50 Designing BIRT Information Objects

How to update several maps at once

1 In Navigator, right-click the folder that contains the maps or any of its parent

folders and choose Information Objects>Update Maps.

2 In Database Changes, select the maps to update, as shown in Figure 2-30. To

select all the maps in a folder, select the folder. To have Information Object
Designer automatically detect which maps need updating, choose Auto
Detect. The Auto Detect operation may take a few moments. Choose Next.

- Ji[=] B

Select the SMAs to remap. Use the auto detect button bo automatically determine which SMAs need to be remapped.

= MyDatabase

% dbo, Customers, SMA
% dbo.Employees. SMA
[dbo.Offices. 5Ma

% dbo. OrderDetails. SMA
% dbo. Orders. SMa

: % dbo.PraductLines, SMa
=0 % dbo. Products, 5Ma

Auko Detect

@:‘ = Bach | Mexk = | Finish | Cancel |

Figure 2-30 Selecting maps to update

3 For each map that needs updating, make the necessary changes and
choose Next.

4 Review your changes carefully. If they are acceptable, choose Finish.

Creating a map of a native SQL query

You can map a query written in the database’s native SQL. When writing the
query, observe the following rules:

m Write the query using only the database’s native SQL; do not use Actuate SQL

functions or syntax.

m Do not include an ORDER BY clause in the query. Including an ORDER BY

clause adversely affects the performance of information objects built from the

map.

m Use unnamed parameters. An unnamed parameter is represented by a
question mark (?). Do not use named parameters, for example, :BeginDate.

If the query uses a parameter, it may be necessary to cast the parameter to the

appropriate data type. For example, if the query queries an Oracle database, you
must use the CAST or RPAD functions to ensure that the data type and length for
a string parameter match the data type and length for the corresponding column

Chapter 2, Creating projects, data connection definitions, and maps

51

if the column is of type CHAR or NCHAR. For example, in the following queries
the category column is of type CHAR(12):

SELECT orderID FROM items WHERE category = CAST (? AS
CHAR (12))

SELECT orderID FROM items WHERE category = RPAD (?, 12)

How to create a map of a native SQL query
1 In Navigator, select the appropriate project.
2 Choose File>-New>Map.
3 In Data Source:
m Select the appropriate data source.

= Select Create a map by entering the native query string, as shown in
Figure 2-31.

Choose Next. Map appears.

o J5J=1

Data Source - j
Select a data source for the maps.

Data sources:

L] voatabos: |

" Create maps by selecting database tables
' Create maps by selecting stored procedures
¥ Create a map by entering the native guery string

@) = Back I Mext = I Firisfi | Cancel |

Figure 2-31 Creating a map by entering a native query string

4 Type a map name, as shown in Figure 2-32.

& J[=] B3

Map : j
Create a new map resource

Map name:

[MyscLMap

@) < Back | TExs = | Finish I Cancel |
Figure 2-32 Specifying a map name

Choose Finish. The map file name appears in Navigator.

5 In the textual query editor:

m In the upper pane, type or paste the native SQL query.

52 Designing BIRT Information Objects

In the lower pane, choose Describe Query.
The query’s output columns appear.

To rename a column, type the new name in Output column.

Decide on column names before you build an information object from this
map. Changing a column name after you build an information object
results in a compiler error in the information object.

If necessary, choose the correct data type from the Data type drop-down
list.
The Actuate SQL data type must be compatible with the native SQL data

type.

To create a filter on a column, set the column’s Filter property to Predefined
and specify the filter’s prompt properties. Figure 2-33 shows Columns and
the location of the Prompt editor button for the first column.

To define other column properties, select the column and define the
properties in Properties.

a8 7MyDatabase.dcd|%CLF\SSICMODELS.Cust... [%MySQLMap.sma 53

SELECT AcTestDB,dbo. customers . customianne ;I
FROM AcTestDB.dbo, customers
WHERE AcTestDE.dbo. customers. creditrank LIKE ?

4 o

Columns

Describe Query Show map properties

| Source namel Output columnl Data t_ppel Prrompt editor

customMame customMame Warchar

Choose Prompt
editor to specify
prompt properties

Cnlumns] Parameters ‘

Figure 2-33 A native SQL query and corresponding Columns page

Choose Parameters.
The query’s parameters appear.

To rename a parameter, type the new name in Parameter.

Information Object Designer assigns a default name to a parameter based
on its position in the query, for example, param_1.

If necessary, choose the correct data type from the Data type drop-down
list.

The Actuate SQL data type must be compatible with the native SQL data
type.

In Default value, type the parameter’s default value.

Do not create an expression.

Chapter 2, Creating projects, data connection definitions, and maps 53

m To specify the parameter’s prompt properties, choose Prompt editor.
Figure 2-34 shows Parameters and the location of the Prompt editor button
for the first parameter.

To define other parameter properties, select the parameter and define the
properties in Properties.

a _MyDatabase.dcd|%CLASSICMODELS.Cust... [%MySQLMap.sma 53

SELECT AcTestDB,dbo. customers, customMane ;I

FROM AcTestDB.dbo. customers

WHERE AcTestDE,dbo,customers. creditrank LIKE ? _ILI
F

Kl

Parameters

Describe Queny |
F'Dsit\onl Palamatell D ata lypel Default va\ual Prompt editor

1 param_1 Warchar &' 1 N T S— Choose Prompt
editor to specify
prompt properties

Columns [ParametarsJ

Figure 2-34 A native SQL query and corresponding Parameters page

Creating a map of a stored procedure result set

When you create a map of a stored procedure result set, Information Object
Designer creates a subfolder in the folder that contains the data connection
definition (.dcd) file for the database. The subfolder contains an .epr file as well as
the .sma file. The .epr file specifies:

m The statement that calls the stored procedure

m The stored procedure’s input and input/output parameter values and data
types
m The stored procedure’s output parameters

The stored procedure’s input and input/output parameters are associated with
the result set map. In other words, when you build an information object from the
result set map, these parameters are source parameters. The parameter values
provided by a result set map user must yield the same result set metadata as the
parameter values you provide when you create the map. In other words, the
result set map must have the same columns and data types at run time as it does
at design time.

The names of the subfolder and the .epr file are derived from the name of the
stored procedure. For example, you are working with a stored procedure called
MyStoredProcedure in a database called MyDatabase. As shown in Figure 2-35, if
you create a map of a result set called MyResultSet, Information Object Designer
places the files MyResultSet.sma and _MyStoredProcedure.epr in a subfolder of
MyDatabase called MyStoredProcedure.

54 Designing BIRT Information Objects

T Mavigakor &3 — 4;5 ¥ =08
E- MyProject

(= Data Sources

| EF(= MyDatabase

: =+ MyStoredProcedure
I |8 _MyStoredrrocedure.epr ——.epr file
! ! % MyResultSet.sma Map file
@ _MyDatabase.dcd
=12 Information Objecks

Figure 2-35 Location of the .epr file and map file for a stored procedure

If you create another result set map for MyStoredProcedure, Information Object
Designer creates a subfolder called MyStoredProcedure_1 and an .epr file called
_MyStoredProcedure_1.epr. If you create a third result set map for
MyStoredProcedure, Information Object Designer creates a subfolder called
MyStoredProcedure_2 and an .epr file called _MyStoredProcedure_2.epr, and
SO on.

Information Object Designer does not distinguish between stored procedures that
have the same name but different parameters (overloaded stored procedures).
DB2 and Informix databases support overloaded stored procedures. To work
with overloaded stored procedures, rename each stored procedure so that it has a
unique name. If you cannot rename a stored procedure, create another stored
procedure with a unique name that calls this stored procedure.

If you are working with a stored procedure in a Sybase database that has an
output parameter, change the output parameter to an input/output parameter
and provide a dummy value in Parameters For Stored Procedure.

How to create a map of a stored procedure result set
1 In Navigator, select the appropriate project.
2 Choose File>New~>Map.
3 In Data Source:
m Select the appropriate data source.
m Select Create maps by selecting stored procedures, as shown in Figure 2-36.

=

Data Source e j
Select a data source For the maps. LL

Data sources:

ST

" Create maps by selecting database tables
% Create maps by selecting stored procedures
" Create a map by entering the native guery string

o
\‘?,' = Back I Next = I Finiishi | Cancel |

Figure 2-36 Creating a map by selecting a stored procedure
Choose Next.

Chapter 2, Creating projects, data connection definitions, and maps 55

4 In Maps:
m In Catalog, select the appropriate catalog.
» In Filter:

o To display stored procedures from a particular schema, type the first
few characters of the schema name in Schema name prefix, for example,
dbo. Do not append an asterisk, for example, dbo*. This filter is
case-sensitive.

o Todisplay only stored procedures whose names begin with a particular
string, type the string in Stored procedure name prefix, for example, ac.
Do not append an asterisk, for example, ac*. This filter is case-sensitive.

o Choose Apply filter.

= Move the appropriate stored procedure name from Available to Selected.
Parameters For Stored Procedure appears.

m In Parameters For Stored Procedure:

o In Statement, shown in Figure 2-37, correct the syntax if it is incorrect.

If you are using a configurable database type, check your JDBC driver
documentation for the correct syntax.

Statement:

I { 7 = cal EIITESTDE, dbo,5P_CUSTOMERS_CORDERS; 107, 73 F

Figure 2-37 Correcting the syntax

o In Parameters, for the stored procedure’s input and input/output
parameters:

o If necessary, choose the correct data type for each parameter from
the Data type drop-down list. The Actuate SQL data type must be
compatible with the native SQL data type.

o If necessary, choose the correct parameter mode for each parameter
from the Parameter mode drop-down list.

o Type the values, as shown in Figure 2-38.

[~Parameters:
Mame Data Type Parameter Mode Value
@RETURN_VALUE [foiessr = [ourn =
@CITY IVarchar j IInput j IN\"C
@TOTAL ORDERS [irteger =] [inpur =

Figure 2-38 Specifying parameter values for a stored procedure

56 Designing BIRT Information Objects

Choose OK. The name of the stored procedure appears in Selected, as
shown in Figure 2-39.

& S [=1 B3

Maps j
Apply a filter o display stored procedures, Then select stored procedures to create maps. ii

Data source MyDatabase

Catalog: |ENTESTDE =l
Available Selected
=82 ExmesToe ﬂ {3 dbo,5P_CUSTOMERS_ORDERS
=82 dbo

-4} ACSP_SALESDETAIL

} AP_ACRND1_DECIMALL_GT > |

} SP_CUSTOMER
¥ SP_CUSTOMERS_ORDERS = |

¥ dt_addtosourcecantral

i 3 dt_addtosourcecantral_u -
<] | 3

 Filker

schema name prefi; |db0

Stored procedure name prefix |

Apply Filker |

@) <gack [mets || Foeh || cancel |
Figure 2-39 Result of specifying input parameters for a stored procedure
Choose Next.
5 InMaps:

= Move the appropriate result set from Available to Selected.
Result Set Name appears.

= In Name, type the name of the result set, as shown in Figure 2-40.

MName: | MyResulkSet

Ok | Cancel |

Figure 2-40 Naming the stored procedure’s result set

Choose OK. The result set name appears in Selected. The result set columns
appear in Data column preview, as shown in Figure 2-41.

Chapter 2, Creating projects, data connection definitions, and maps 57

= I [=] ES

Maps : j
Select and name a map to use as the result set, ii

#Available Selected

B

Data calumn preview Rename |

CUSTID
CONTACT_LAST
CONTACT_FIRST
CUSTOMNAME
PHOME

ADDRESS

cImy

STATE
POSTALCODE
CREDITRAMNK
PURCHASEFRECQUENCY
PLRCHASEVOLLME
REPID

Resultsetl

@j < Back | ek = | Finish | Cancel |

Figure 2-41 Viewing the list of result set columns
Choose Finish. A reminder appears. Choose OK.
The .epr and .sma file names appear in Navigator.

6 In Output Columns:

m Torename a column, type the new name in Name.

Decide on column names before you build an information object from this
map. Changing a column name after you build an information object
results in a compiler error in the information object.

m If necessary, choose the correct data type from the Data type drop-down
list.
The Actuate SQL data type must be compatible with the native SQL data
type.

m To create a filter on a column, set the column’s Filter property to Predefined
and choose Prompt editor to specify the filter’s prompt properties.
Figure 2-42 shows Output Columns and the location of the Prompt editor
button for the first column.

To define other column properties, select the column and define the
properties in Properties.

58 Designing BIRT Information Objects

Dutput Columns
Specify output calumns: Show map properties |
| Source column | Mame | Data bype | Default 4nalysis T... | Prampt editor |
customertumber customerMurmber Integer Dimension %7—Ch003e Prompt
custormettame custornerflamne ‘Warchar Dirmension Q) editor to Specify
contactLastMarne contactLastMarme ‘archar Dirmension L‘& M
contactFirstMNarne contactFirsthame Varchar Dirmension Qp prompt propertles
phone phone Varchar Dimension A58
addressLinel addresslinel Varchar Dimension i,
addressLineZ addressLinez ‘archar Dimension 3
rity city ‘archar Dimension %
state state Yarchar Dimension ik
postalCode postalCode Yarchar Dimension ik
country country ‘Warchar Dirmension Q)
salesRepEmployes... | salesRepEmployes... | Integer Measure Uk
creditLimit creditLimit Double Measure Lk

Figure 2-42 Columns created by the selected result set of a stored procedure

How to modify an .epr file for a stored procedure
1 In Navigator, double-click the appropriate .epr file.

2 In General:

= In Query text, correct the syntax if it is incorrect.

If you are using a configurable database type, check your JDBC driver
documentation for the correct syntax.

m In Description, type a description for the stored procedure, as shown in

Figure 2-43.
General
Query bexk:
{? = call EIITESTDE dbo. 5P _CUSTOMERS _ORDERS; 1(7, ik AI
H
Description:
Customners and orders :I
| |
Figure 2-43 Providing a description of a stored procedure

3 Choose Parameters.
The stored procedure’s parameters appear.

4 In Parameters:

m Torename a parameter, type the new name in Parameter.

Information Object Designer assigns a default name to a parameter based
on its position in the statement, for example param_1.

Chapter 2, Creating projects, data connection definitions, and maps 59

m If necessary, choose the correct Actuate SQL data type from the Data type
drop-down list.

The Actuate SQL data type must be compatible with the native SQL data
type.

m In Default value, type the parameter’s default value.

Do not create an expression. You cannot type a default value for an output
parameter.

m To specify the parameter’s prompt properties, choose Prompt editor.
Figure 2-44 shows the Parameters pane and the location of the Prompt
editor button for the first column.

Parameters
I Parameter | Data bype | Default value | Prompt editor |
param_0 Integer .
param_1 yarchar e G — Choose_ Prompt editor
param_2 Integer 1 o to specify prompt
properties
Figure 2-44 Specifying prompt properties for a stored procedure’s
parameters

To define other parameter properties, select the parameter and define the
properties in Properties.

Creating a map of an ODA data source query result
set

When you create a map of an ODA data source query result set, Information
Object Designer creates a subfolder in the folder that contains the data connection
definition (.dcd) file for the ODA data source. The subfolder contains an .epr file
as well as the .sma file. The .epr file specifies:

m The ODA data source query
m The query’s input and input/output parameter values and data types
m The query’s output parameters

The result set map represents the first result set returned by the ODA data source
query. The query’s input and input/output parameters are associated with the
result set map. In other words, when you build an information object from the
result set map, these parameters are source parameters. The parameter values
provided by a result set map user must yield the same result set metadata as the
parameter values you provide when you create the map. In other words, the
result set map must have the same columns and data types at run time as it does
at design time.

60 Designing BIRT Information Objects

The names of the subfolder and the .epr file are derived from the name you
provide for the query. For example, you are working with an ODA data source
called MyODADataSource. As shown in Figure 2-45, if you create a map of a
query result set called MyResultSet, Information Object Designer places the files
MyResultSet.sma and _MyODADataSourceQuery.epr in a subfolder of
MyODADataSource called MyODADataSourceQuery.

"o Mavigatar 23] — <‘===(> ¥ =08

=] bﬁ IMyProject
E‘B Data Sources
. B MyODADataSOUrCeQUEry

L & _IyODADataSourceuery epr
‘ % MyResultSet. sma

i @ _MyODADataSource.ded
== Information Objects

Figure 2-45 Location of the .epr file and map file for an ODA data source

—.epr file
— Map file

How to create a map of an ODA data source query result set

1 In Data source connection properties, choose Map tables.
2 InMaps:
» In Name, type a name for the ODA data source query.

m In Type, select a data set type from the drop-down list, as shown in
Figure 2-46.

Choose Next. The ODA data source query builder appears. For example,
for a flat file data source, Select Columns appears.

=i I [=1 B3

=

Maps : j
Select a name and a type For this map E_’

Marne IMyODADataSourceQuery

Type |Flat Filz Diata Set |

@:J = Back I Next = I Frimish | Cancel |

Figure 2-46 Selecting a data set type for a map on an ODA data source

3 In the ODA data source query builder, build a query. The procedure for
building a query varies by the type of ODA data source. For flat file data
sources, you select columns, as shown in Figure 2-47.

Chapter 2, Creating projects, data connection definitions, and maps 61

& =1of x|
Select Columns
Select the file and the columns for the data sst
Select file: |CUSTOMERS cav j File filtes: I*.csv j
Mame | Original Mame | Type
F CUsTID CUSTID String
CONTACT_LAST COMTACT_LAST String
CONTACT_FIRST COMTACT_FIRST String
= CUSTOMNAME CUSTOMMAME String
PHOME PHOME String
3 || ADDRESS ADDRESS String
CITY CITY String
STATE STATE String
¥ || POSTALCODE POSTALCODE String
CREDITRAME. CREDITRANE. String
PURCHASEFREGL... | PURCHASEFREQL... | Sting
PURCHASEVOLUME | PURCHASEWOLUME | Sting
REFID REFID
] -
(7] ¢ Back | Nest > | Finish I Cancel |

Figure 2-47
Choose Finish. A reminder appears. Choose OK.

Selecting columns from a flat file data source

The .epr and .sma file names appear in Navigator.

4 In Output Columns:

= To rename a column, type the new name in Name.

Decide on column names before you build an information object from this
map. Changing a column name after you build an information object
results in a compiler error in the information object.

To create a filter on a column, set the column’s Filter property to Predefined

and choose Prompt editor to specify the filter’s prompt properties.
Figure 2-48 shows the Output Columns pane for a map using an ODA data

source.
Output Columns
Specify output columns: Show map properties |
| Source column | Mame | Data bype | Default Analysis T... | Prampt editor |
customethumber customnerhurnber Integer Dirmension Uk ————Choose Prompt
customerMame customerMame Varchar Dimension é editor to Specify
contactLastName contactLastMame Warchar Dirnension :
rompt properties

contactFirstNarns contactFirsthams Varchar Dirmension Q) p p p p
phone phone ‘archar Dimension 3

addressLinel addressLinel ‘archar Dimension ik

addressLinez addressLinez ‘archar Dimension ik

city city ‘Warchar Dirmension Q)

skake state ‘archar Dirmension L‘&

postalCade postalCode Varchar Dirmension Lk

counkry country Varchar Dirmension Q‘,;

salesRepEmployes... | salesRepEmployes... | Integer Measure i,

creditLimit creditLimit Double Measure =3

Figure 2-48

Viewing the output columns for a map using an ODA data

source

62 Designing BIRT Information Objects

To define other column properties, select the column and define the
properties in Properties.

How to modify an .epr file for an ODA data source query
1 In Navigator, double-click the appropriate .epr file.
2 In General:

» To modify the query in Query text, choose Query Builder.

» In Description, type a description for the query.
Figure 2-49 shows General with a description of the query and the Query
Builder button.

Choose Query Builder
to modify the query

A

General

Cluery text

select "CUSTID", "CONTACT_LAST", "CONTACT_FIRST", "CUSTOMMAME", "PHONE", " ;I
ADDRESS", "CITY™, "STATE", "POSTALCODE", "CREDITRAME", "PUHCHASEFHEQUENEY", "
PURCHASEYOLUME", "REPID" from CUSTOMERS.csv : {"CUSTID","CUSTID" STRING;"
COMTACT_LasT", CDNTACT LAST" STRING"COMTACT_FIRST","COMTACT _FIRST" STRING"
CUSTDMNAME “CUSTOMMAME" STRING:'FHONE ", PHONE" STRING: ADDRESS", ADDHESS
*STRINGCITY CITY" STRINGSTATE" "STATE" STRING: 'POSTALCODE" P
STRING:CREDITRANK" ' CREDITRANK” STRING: PUHEHASEFHEQUENDK !
PUHCHASEFHEQUENCY STRING"PURCHASEYDLUME" "PURCHASEVOLUME" STRING "

REFID"REFID" STRINGY ;I
Description:
I Flat file quen ;I

Figure 2-49 Choosing Query Builder to modify the query
3 Choose Parameters.
The query’s parameters appear.

4 In Parameters:

m Torename a parameter, type the new name in Parameter.

Information Object Designer assigns a default name to a parameter based
on its position in the query, for example param_1.C

m If necessary, choose the correct data type from the Data type drop-down
list.

m In Default value, type the parameter’s default value.

Do not create an expression. You cannot type a default value for an output
parameter.

m To specify the parameter’s prompt properties, choose Prompt editor.
Figure 2-50 shows the Parameters pane for a map using an ODA data
source.

Chapter 2, Creating projects, data connection definitions, and maps 63

Parameters

I Parameter | Data bype | Default value | Prompt editor |
patarm_0 Inkeger
param_1 Varchar MY C i
param_2 Integer 1 %

— Choose Prompt editor
to specify prompt

properties

Figure 2-50 Specifying prompt properties for an ODA data source query’s

parameters

To define other parameter properties, select the parameter and define the

properties in Properties.

5 Choose Data Set Properties.

The data set properties appear, if the data set has any. Figure 2-51 shows the

Data Set Properties pane.

Data Set Properties

I FProperty | Walue

Figure 2-51 Data Set Properties pane

6 In Value, type values for the data set properties.

64 Designing BIRT Information Objects

Creating
Information objects

This chapter contains the following topics:

Creating an information object

Creating a graphical information object query
Creating a textual information object

Displaying and testing information object output
Displaying a data source query

Understanding query execution plan operators
Storing a query plan with an information object

Localizing an information object

Chapter 3, Creating information objects

65

Creating an information object

You build an information object from maps or other information objects.
Information Object Designer places an information object file in the project’s
Information Objects folder, as shown in Figure 3-1. An information object file
name has an .iob extension. Information object file names are not case-sensitive.

T Mavigator E4 = S |

= MyProject
E‘Eb IO Designs

{ = MyProject
: E% [raka Sources
=] (= Information Cbjects

; [#-[8 MyInformationCbject.iob——— [Nformation ObjeCt file
o [H] L profect
Figure 3-1 Default location for an information object file

How to create an information object

1
2

In Navigator, select the appropriate project.
Choose File>New~>Information Object.

In New Information Object, accept the default location or deselect Use Default
Location and type the path or select a folder.

In File name, type a name for the information object file, as shown in
Figure 3-2. Do not use a name that contains only numbers, for example, 123.

o =] S
Information Ohject |
Specify the name and location for a new information object. == I

Enter or select the parent Folder:
V' Use Default Lacation

| IMyProject IO Designs MyProject/Information Objects

fir
B3 MyProject
B~ 10 Designs
El-(= MyProject
; Data Sources
i 2 Information Ohjecks

File name: I MyInfarmationObject.iob

™ Editin SGL text editar

Y

Figure 3-2 Specifying the name and location for a new information object

66 Designing BIRT Information Objects

5 To type or paste an Actuate SQL query instead of creating it graphically, select
Edit in SQL text editor.

6 Choose Finish.

The information object file name appears in Navigator, and the graphical or
textual information object editor appears.

7 Specify the query for the information object graphically, or using the SQL text
editor.

Creating a graphical information object query

In the graphical information object editor, perform the following tasks:
m Choose maps and information objects.

m Specify output columns.

m Specify column categories.

m Specify joins.

m Specify filters.

m Specify the GROUP BY clause.

m Specify the HAVING clause.

m Specify parameters.

Using the expression builder

Many of the steps to create an information object query involve specifying a
column or an expression.

When designing a query, you can use Actuate SQL expressions to specify filters or
joins, create aggregate data, and so on. For example, you can type expressions,
such as officelD = 101 to specify that the data returned by the query must have
101 in the officelD column.

You can type these expressions in either the graphical editor or the textual editor.
In the textual editor, you type the expressions as part of the SQL SELECT
statement. In the graphical query editor, you can type the expressions or use
Expression Builder to develop expressions.

Expression Builder helps you create expressions by providing a graphical
interface with selections for the available parts of an expression. In Expression
Builder, you can build the expressions graphically by selecting constants,
operators, functions, column names and so on from a list.

Chapter 3, Creating information objects 67

You can use Expression Builder to create Actuate SQL expressions on the
following tabs in the graphical information object editor:

s Columns

m Joins

m Filters

= Having

m Parameters

Figure 3-3 shows Expression Builder. You can drag items from the left pane to the
right pane or insert items by choosing the appropriate icon. If you select a
function in the left pane, the function signature appears in the bottom pane.

Function signature

o [=] B3
Create an expression by dragging columns into the builder, choosic 4 operataors, and kyping values,
+ | - | ! | * |_\|JI = | > | < | <>| Al‘\ll:l DHlNDTl LIKE| [| 1 | CounliSuvr{MaleinlAuglj
- Constants Cast(dbo cushdmers.custID AS WARCHAR{2@)) ;I

(= Conditions

(£ Operators
El-(= Functions

. EH-(= Agoregate
B Cast
: j_\ Cast
(2= DateTime
Eb Numeric

== Informatidn Objects

CAST(Expression X AS DataType)
CAST(Expression ¥ A5 YARCHARINY n = length (INTEGER)
CAST(Expression ¥ AS DECIMAL(p, s)) p = precision {INTEGER), s = scale (INTEGER)

_ILLI;IL

Figure 3-3 Using Expression Builder to create expressions

Choosing maps and information objects

The first step in specifying the query for an information object is to choose the
maps and information objects used by the query.

How to choose maps and information objects

1 In Navigator, expand the project node and folders to see the maps and
information objects.

2 Drag the appropriate maps or information objects from Navigator to the
upper pane of the graphical information object editor. The columns available
in each map or information object appear, as shown in Figure 3-4.

68 Designing BIRT Information Objects

el select all Bl select Al el select all
B customertiumber B ordertiumber [ordermiurber
Bl customertame B orderDate M productCode
[contactLastMame M requiredDate [quantityordered
[contactFirsthame B shippedDate B priceEach
B phone Bl status [orderLinerumber
[l addressLinel B comments
[addressLinez [customertiumber
city
state
[postalcode
country
[salesrepEmplayestumber
B creditLimit
Figure 3-4 Columns available in each selected map or information object

How to open a source map or information object in an editor

If a project contains a large number of maps and information objects, it may be
difficult to locate an information object’s sources in Navigator. Instead, you can
open a source map or information object directly from the graphical information
object editor by clicking the button in the source’s upper right corner, as shown in
Figure 3-5.

_— _
[iifienatenosiealil —;— Click here to open

M select Al source in editor
[l customerMumber

[customertame
cnntactLastName
contactFirstName

[l phane

[addressLinel

[addressline?

city

state

[postalCode

cnuntry

[salesrepEmployestumber
[l creditLimit

Figure 3-5 Opening a source information object in an editor

Defining output columns

To define the output columns for an information object, use the Columns page.
For example, you can create the following SQL fragment:

SELECT ename AS employee,
FROM Employees

(salary * 12) AS annual_ comp

How to define output columns

1 In the graphical information object editor, choose Columns.

Chapter 3, Creating information objects 69

2 In the upper pane, select the columns that you want to include and deselect
the columns that you want to exclude from the query. To select all columns,
select Select All at the top of the listing for that map or information object. By
default, all columns in an information object are included in the query. The
columns that you select appear in Columns.

3 In Columns:

m To return only distinct rows, select Distinct values only. Some queries
return duplicate rows. In a group of duplicate rows, each selected column
contains the same value for all the rows in the group. If you want the query
to return only one row for each group of duplicate rows, select Distinct
values only. This setting affects only rows in which all column values
match. The query still returns rows in which only some of the column
values match. If the Analysis Type property is set to Dimension or
Attribute for all columns in an information object, the DISTINCT keyword
is automatically included in the query generated in BIRT Studio when the
information object is used as a data source.

= To change a column alias, type the new alias in Name. Decide on column
aliases before you build another information object from this information
object. Changing a column alias after you build a dependent information
object results in a compiler error in the dependent information object. If a
column alias contains a special character, such as a period (.) or a space,
enclose the alias in double quotation marks (). Do not use column aliases
that are identical except for case. For example, do not use both status and
STATUS as column aliases.

| = To enter an expression, select the source column, and type the expression
or choose Ellipsis, as shown in Figure 3-6. Choosing Ellipsis opens
Expression Builder.

Choose Ellipsis to
create an expression

Columns

Specify output columns: ™ Distinct values onky

Prompt editor =
customerhumber 3. Choose Prompt editor
CLASSICMODELS Customers.cu... | customerbame to specify prompt

CLASSICMODELS_Customers.co... | contactLastMName L

Source column o expression
ustomertumber J5.2 [

: properties

CLASSICMODELS_Custorners.co... | contactFirstMarme Q)
CLASSICMODELS_Custarmers.ph... | phone Uk [—
CLASSICMODELS_Custorners.ad... | addressLinel Lk ;I
CLASSICMODELS_Custarmers.ad... | addressLine2 A58
CLASSICMODELS Custorners, city ity Q) j
CLASSICMODELS Customers.state | state %
CLASSICMODELS_Customers.po... | postalCode ik -

‘ ¢l

Remaove | Remaove Al | Localization |

Figure 3-6 Defining output columns

70 Designing BIRT Information Objects

m To create a filter on a column, set the column’s Filter property to
Predefined, and choose Prompt editor to specify the filter’s prompt

properties.

m To change the order of the columns, use the up and down arrows. If the
information object uses column categories, you must reorder the columns
in Column Categories.

4 To define column properties, such as the display name, select the column in
Columns, and define the properties in Properties.

How to delete output columns

To delete an output column, select the column in Columns, and choose Remove.
To delete all output columns, choose Remove All

Creating and displaying column categories

If an information object has a large number of output columns, it is difficult for a
user to locate a particular column. To help the user locate columns, you can
organize them into categories. For example, for an information object that returns
customer data, you can create a Customer address category that contains the
columns StreetAddress, City, State, and PostalCode.

Creating column categories

Use the Column Categories page to create column categories. In Figure 3-7,
Column Categories lists a category with two columns.

How to create a column category or subcategory
1 In the graphical information object editor, choose Column Categories.

2 On Column Categories, right-click the Root node or a category name and
choose Create.

3 On New Category, type the category or subcategory name and press Enter.
You can provide a description for the category or subcategory in the Properties
view.

4 Drag-and-drop columns into the category or subcategory. Figure 3-7 shows
the result of creating a Contact name category and moving the contact_first
and contact_last columns into the category.

Chapter 3, Creating information objects 71

Column Categories

=) Roat
=1 Customer name
:l contackLastMarne
i contactFirstMame
] custamerMumber
:| customerMarne
] phone
- E] saleskepErnployeenumber
- creditLimit
-[E] addresslinel
~[E] addresslinez
] city
-] state
E] postalcods
:| country

Figure 3-7 Result of moving two columns into a new category

How to rename, move, or remove a category or subcategory

Table 3-1 explains how to work with categories, subcategories, and columns on
Column Categories.

Table 3-1 Using Column Categories

To perform this task... Do the following...

Rename a category or Right-click the category or subcategory name and
subcategory. choose Rename.

Move a category or Drag-and-drop the category or subcategory in the
subcategory. target location.

Remove a category or Right-click the category or subcategory name and
subcategory. choose Remove>Category only.

Remove a category or Right-click the category or subcategory name and
subcategory and its choose Remove~>Category and subcategories.
subcategories.

Remove all categories Right-click the Root node and choose

and subcategories. Remove>Category and subcategories.

Move a column. Drag-and-drop the column in the target location.

Reordering columns in Column Categories also
reorders the columns in Columns.

Displaying column categories

The column categories that you create for an information object appear in
Information Object Designer, Information Object Query Builder, and BIRT
Studio. Column categories do not appear in Actuate Query.

72 Designing BIRT Information Objects

In Information Object Designer, column categories appear in the Navigator view
and the expression builder. Column categories do not appear in the upper pane of
the graphical information object editor. To display column categories in the upper
pane of the graphical information object editor, select Toggle categories view in
the upper right corner of the information object, as shown in Figure 3-8. The
information object on the left does not display column categories. The
information object on the right displays the Customer address category.

Click here to display
/column categories

| =E]
[select Al [select Al
[addressLine1 B (3 Customer address
e addressLinez E addresslinel
el ity ET addressLinez
[state Ecity
[postalCode E state
el country ElpostalCode
[customerhiumber 5] country
customerName :l customertumber
[contactL astiame [E] customeridame
cUntactFirstName [E] contactLastName
[phone [E] contactFirsthame
[s alesRepEmployeehiumnber [E] phone
5] creditLimit [E] salesRepEmplovesturnber
[E] creditLimit
Figure 3-8 Information object with and without categories displayed

If you want column categories to display by default, choose
Window>Preferences>Actuate BIRT Project>Information Objects and select
Show categories in graphical editor by default, as shown in Figure 3-9.

Column categories do not appear in the expression builder or the upper pane of
the graphical information object editor for the information object in which they
are defined. Column categories appear for information objects built from this
source information object, in other words, for its dependent information objects.

In the Information Object Query Builder, column categories appear in iServer
Explorer, the upper pane of Query Design, and the expression builder.

In BIRT Studio, column categories appear in the Available Data pane.

Categories that do not contain columns appear in the Navigator view in
Information Object Designer, but not in the Information Object Query Builder or
BIRT Studio.

Chapter 3, Creating information objects 73

Select to show categories
in graphical information
object editor by default

BEE
[tvpe Fier text Informatioy/ Objects ERASEE A ¢
General General /ttings For Information Object
£ Actuate BIRT Praject eneral Ztkings For Information Objects
- Hidden Messages Diat/Preview Timeout {seconds): I 300
- Information Objects ¥ show cateqories in graphical editor by default
o Perspechives .
" Publish A
ant ¥ Propagate column and parameter renaming throughout the project:
- A
Data Management ™ Propagate column and parameter deletion throughout the project
Help
InstallfUpdate
Java
Java EE

Java Persistence
JavaScripk

Modzl Validation
Plug-in Development
Report Design
Run/Debug

Server

Team
Walidation
‘eb
xwh:f serees Restore Defaults | Apply |
'f?:' Cancel
Figure 3-9 Showing categories by default

Setting column properties

You set most column properties in the Properties view. You set default values for
analytics properties in the Define Default Column Analytics wizard.

Setting column properties in the Properties view

Table 3-2 lists column properties visible in the Properties view and a description
of each property.

Table 3-2 Column properties visible in the Properties view

Column property Canset? Description

Aggregate Type Yes, in Default aggregate function for a column in a
Define dashboard or BIRT Studio summary table, for
Default example SUM.
Column
Analytics
wizard
Category Path No Path for column category and subcategories.
Conceal Value Notused Not used.

74 Designing BIRT Information Objects

Table 3-2 Column properties visible in the Properties view (continued)

Column property Canset? Description

Data Type No Actuate SQL data type. If the data type is
unknown, choose the Compile 1O button.

Default Value Yes, in Default value for a predefined filter on the

Prompt column in Actuate Query or a dynamic filter
editor on the column in Information Object Query
Builder.

Description Yes Description of the column that appears when
the column is selected in Actuate Query.

Description Key Yes Key for Description property in localization
properties file.

Display Control Yes, in Control type for a predefined filter on this

Type Prompt column in Actuate Query or a dynamic filter

editor on this column in Information Object Query
Builder. The available values are: text box,
read-only drop-down list, editable drop-
down list, or radio buttons.

Display Format Yes Format to apply to column values in BIRT
Studio or Actuate Query output. To specify
the display format, use an Actuate Basic
format pattern or format keyword, such as
Short date.

Display Length Yes Number of characters to allow for display of
column values in report output.

Display Name Yes Display name for the column in BIRT Studio
or Actuate Query. If the column is a group
key, this property value is the group label in
Actuate Query output.

Display Name Key Yes Key for Display Name property in
localization properties file.

Do Not Prompt Notused Not used.

Expression Yes,onthe Expression for a computed field.

Columns
tab
Filter Yes To create a predefined filter on the column in

Actuate Query or a dynamic filter on the
column in Information Object Query Builder,
set to Predefined. To enable a user to create a
custom filter on this column in

(continues)

Chapter 3, Creating information objects 75

Table 3-2

Column properties visible in the Properties view (continued)

Column property Canset? Description

Filter (continued) Yes Actuate Query or a dynamic filter on this
column in Information Object Query Builder,
set to Optional. To prevent filtering on this
column, set to Disabled.

Has Null Yes If column contains NULLS, set to True.
Otherwise, set to False.

Heading Yes The heading for the column in BIRT Studio or
Actuate Query output.

Heading Key Yes Key for Heading property in localization
properties file.

Help Text Yes Balloon help for the column in BIRT Studio
or Actuate Query.

Help Text Key Yes Key for Help Text property in localization
properties file.

Horizontal Yes Horizontal alignment of column values in

Alignment BIRT Studio or Actuate Query output. The
available values are: left, right, or center.

Indexed No Indicates whether the column is indexed in
the data source. True indicates that the
column is indexed. False indicates that it is
not indexed.

Name Yes,onthe The alias for the column in the information

Columns object query.
tab

Required Notused Not used.

Text Format Yes The text format in Actuate Query output. The
available values are: plain, HTML, or RTE.
This property is used only for columns that
have the VARCHAR data type.

Word Wrap Yes To display text on multiple lines in BIRT

Studio (with fixed width layout preference)
or Actuate Query output if the length of the
text exceeds the width of the column, set to
True. To truncate the text, set to False. This
property is used only for columns that have
the VARCHAR data type, and it is enforced
only in the detail frame. It is not enforced in
before and after frames.

76 Designing BIRT Information Objects

Setting default values for analytics properties

You can use an information object as a data source in a summary table in a
dashboard or a BIRT Studio report. To create a summary table, users select a
table’s auto-summarize feature, then select the data set column or columns whose
data to group and aggregate. Because the grouping and aggregating are
performed automatically, you must set default values for the analytics properties
for each column. The analytics properties provide the appropriate context for
these tasks. For example, it makes sense to group sales data by region or product
line, but not by revenue. Conversely, it makes sense to aggregate revenue values,
but not region or product line values.

To provide the appropriate information to generate a summary table, set each
column’s analysis type property to one of the following values:

m Dimension

The dimension analysis type supports the grouping of data in the column. For
example, to display revenue by region, set the region column as a dimension.

m Attribute

An attribute describes the items associated with a dimension. For a product
dimension, for example, attributes might include color, size, and price. When
you set a column as an attribute, you must also specify the dimension column
of which it is an attribute. The summary table cannot group data in an
attribute column.

m Measure

The measure analysis type supports the aggregation of values in the column.
For example, to calculate revenue totals, set the revenue column as a measure.
The summary table cannot group data in a measure column.

If you do not set default values for the analysis type property, the following
default values are used:

m If the column contains numeric values or the data type is unknown, the
default is measure.

m If the column contains data of type TIMESTAMP, VARCHAR, or BOOLEAN,
the default is dimension.

m If the column is a primary key, a foreign key, or an indexed column in the
database, the default is dimension regardless of the column’s data type.

Sometimes, the default values do not provide usable data for a summary table, so
you should assign an analysis type for every column in an information object.
One problem is that the default analysis type for columns that contain numeric
values is measure. In some cases, however, users want to group on numeric
values. For example, for a report that shows order numbers and order totals,
users want to group on order number, but data in measure columns cannot be
grouped.

Chapter 3, Creating information objects 77

If analysis type is set to Dimension or Attribute for all columns in an information
object, the DISTINCT keyword is included in the query generated in BIRT Studio
when the information object is used as a data source.

Use the Define Default Column Analytics wizard to specify default values for the
following analytics properties for information object columns:

m For each output column, specify the analysis type: dimension, measure, or
attribute.

m For each attribute column, specify the dimension of which it is an attribute.
m For each measure column, specify the aggregate function.

How to specify default values for analytics properties

1 Open the information object or map in the graphical or textual editor.

2 Choose Columns or Output Columns.

3 Choose Default Analytics, as shown in Figure 3-10.

Default Analytics
button
Columns
Specify output columns: [Distinct values only
| Source column or expression | Mame | Def Al Analysis Type | Prompt editor
CLASSICMODELS _Custorers. customerhlumber customerhumber Amension @.}
CLASSICMODELS _Customers, customerMarne cuskametMarne Dirnension L|3'>
CLASSICMODELS _Custorners,contactLastMNarne contactLastMarne Dirnension Q;
CLASSICMODELS _Custorners, conkackFirstNarne conkactFirstMarne Dirnension Q)
CLASSICMODELS_Customers. phone phone Dimension (S
CLASSICMODELS_Customers, addressLing 1 addressLing/ Dimension (3
CLASSICMODELS_Customers, addressLine? addresgdnez Dimension ik ;I
CLASSICMODELS _Custorners. city ity Dirnension @{)
CLASSICMODELS _Custorners.skake o/ake Dirnension @.} j
CLASSICMODELS _Customers, postalCade postalCods Dimensian ik
CLASSICMODELS _Custorners, country country Dirnension Q;
CLASSICMODELS _Customers.salesRepEmployveyAu... | salesRepEmplayesMumber | Measure (S
CLASSICMODELS _Customers. creditLimit creditLimit Measure %
Remove | Remove All | Lacalization | Default Analytics |

Figure 3-10 Default Analytics button in Columns

4 In the first page of the Define Default Column Analytics wizard, specify the
analysis type for each column, as shown in Figure 3-11. Choose Next.

78 Designing BIRT Information Objects

= =

Use this wizard to define analytics properties For output columns. For each output column choose whether it is
adimension, atktribute, or measure.

I Column Mame: | Data Type | Analysis Type |
customerMumber Inkeger Dirmension
customertame Warchar Attribute
contackLastiarne Varchar Attribute
contackFirsthame Varchar Attribute
phane ‘Warchar Attribute
addressLinel Warchar Attribute
addressLineZ Warchar Attribute
city Varchar Attribute
shate Warchar Attribute
postalCode ‘archar Attribute
counkry ‘archar Attribute

Integer Measure
creditLimit Diouble Measure

(2]

= Back | Mext = | Finish I

Canicel |

Figure 3-11

Specifying the analysis type for information object columns

5 In the second page of the Define Default Column Analytics wizard, specify the
dimension with which an attribute is associated, as shown in Figure 3-12.

Choose Next.

Link attributes to corresponding dimension columns{aptional).

JI[=] E

[attribute

| attribute of |

cuskomerMame
contactLastMame

contactFirsthlame
phone
addressLinel
addressLine?

ity

state

postalCode

- counkry

customertumber

customertumber
customertumber

()

< Back | Mesxt = | Finish I

Cancel |

Figure 3-12

Specifying the dimensions with which attributes are associated

6 In the third page of the Define Default Column Analytics wizard, specify the
aggregate function for measure columns, as shown in Figure 3-13. You can
choose a function from the drop-down list or type the name of a function.

Choose Finish.

Chapter 3, Creating information objects

79

= =(ofx]

Assign each measure a default aggregate Function.

Default Aggregate Funckion

creditLimic Double

@j < Back | TExs = | Finish I Cancel |

Figure 3-13 Specifying the aggregate function for creditLimit

About column property inheritance

When you build an information object, its output columns inherit property values
from the parent maps or information objects. For example, if you use an
information object called IO1 to build another information object called 102, 102’s
output columns inherit property values from the corresponding columns in I01.
If a column property value in IO1 changes, the change is propagated to 102. For
example, if the horizontal alignment for IO1.column01 changes from left to right
and column01 is an output column in 102, the horizontal alignment for
102.column(01 also changes from left to right. Changes to a map or information
object’s Name property are not propagated, however. In Figure 3-14, many of the
column’s property values are inherited from the parent map.

=l Properties £2 l B 2% - ¥ =8

Propert | Valug ﬂ

[Display
Category Path I
Display Format a,
Display Length 10 —
Display Name a,
Heading a, .)
Help Text % Horizontal alignment
Horzontal lgrment R lft is inherited from the
Texk Format Ay, Flain
Ward Wrap Oy False ;I parent map

Figure 3-14 Inheritance of property values

If you change a property value for an output column, that property value is no
longer inherited from the parent map or information object. For example, if you
change the horizontal alignment for I02.column01 to center and the horizontal
alignment for IO1.column01 later changes to left, the change is not propagated to
102.column01. In Figure 3-15, the column’s horizontal alignment is not inherited
from the parent map.

80 Designing BIRT Information Objects

=l Properties 23 l ,E + = ¥ =0

Properk: | walue =]

[l Display
Category Path !
Display Format %
Display Length % 10 —
Display Marne %
Heading % . X
Help Text Y% ST Horizontal alignment
Harizontal Alignment 94 center is not inherited from
Texk Format Ay, Flain
Word Wrap 9y, False LI the parent map

Figure 3-15 Changing property value inheritance

Choosing Reset for the appropriate property in Properties, as shown in

Figure 3-16, or in Prompt editor resets the property’s value to the inherited value.
Any future changes to the property’s value in the parent map or information
object are propagated.

| Properties £2 l s BE T TO

Propert | Value :I

[=] Display
Category Path I
Display Format %
Display Length % 10 —
Display Mame %
Heading Yy
Help Text o ,———Choose Reset
Harizantal Alignment ! to reset value to
Text Format Ay, Plain inherited I
Word Wrap 9y, False: | inherited value

Figure 3-16 Resetting a property’s value

Values for the following column properties are inherited from the parent map or
information object unless the values in the parent map or information object are
blank:

m Description

m Display Name
m Heading

m Help Text

If the values in the parent map or information object are blank, the inheritance
rules for these properties are as follows:

m If you do not set the Display Name property, the Display Name property takes
the value of the column’s Name property.

m If you do not set the Heading property, the Heading property takes the value
of the column’s Display Name property.

m If you do not set the Description property, the Description property takes the
value of the column’s Heading property.

Chapter 3, Creating information objects 81

m If you do not set the Help Text property, the Help Text property takes the value
of the column’s Description property.

In other words, if you do not set any of these properties and the values in the
parent map or information object are blank, they all take the value of the column’s
Name property. In this case, propagation of these properties occurs at run time.

Creating a filter for use in queries on an information
object

A predefined filter restricts the data returned by a query built from an
information object. Set a column’s Filter property to Predefined to create a
predefined filter on the column. Actuate Query lists this filter as a predefined
filter that users can set. In report designers, the filter is listed as a dynamic filter in
Information Object Query Builder and becomes an ad hoc parameter in the report
design. For more information about Actuate Query, see Working with Actuate
Query. For more information about Information Object Query Builder, see Using
Actuate BIRT Designer Professional or Using Information Object Query Builder with
BIRT Designer Professional.

Use Prompt editor to specify the filter’s display control type, list of values, and
default value. You create a list of values by specifying the values or by typing an
Actuate SQL query that retrieves the values. You can specify the filter values as
well as the values displayed to the user. If you type a query, the query must meet
the following requirements:

m The query must retrieve one or two columns from an information object or
map, for example:

SELECT DISTINCT custID, customName
FROM "MyInformationObject.iob"
ORDER BY 2

The first column contains the filter values and must be of string data type. The
second column contains the values displayed to the user. The information
object or map must reside in the same volume as the IOB from which the user
launches Actuate Query. If you use a relative path to reference the information
object or map, Actuate Query interprets the path as relative to the IOB from
which the user launches Actuate Query. If the information object or map
defines a parameter, you must provide a value for the parameter, for example:

SELECT DISTINCT custID, customName
FROM "MyInformationObject.iob" ['CA']
ORDER BY 2

m The query must not contain a WITH clause.

82 Designing BIRT Information Objects

The filter values are interpreted as QBE expressions. Certain characters, for
example, the comma (,) and the pipe sign (|), are interpreted as operators in a
QBE expression. For example, the QBE expression:

16M x 1 Dynamic Ram, 3.3 volts
is interpreted as:

WHERE description LIKE 'lé6M x 1 Dynamic Ram$'
OR description LIKE '3.3 volts%'

If you want these characters to be interpreted literally, enclose the strings in four
single quotation marks (") as shown in the following Actuate SQL queries:

= To match a string exactly:

SELECT '''' || description || ''"'
FROM "MyInformationObject.iob"

m To match a string using the LIKE operator:

SELECT '''' || description || '%'''
FROM "MyInformationObject.iob"

| | is the concatenation operator.

The values returned by the query appear when a user specifies a value for the ad
hoc parameter in Actuate Query. The values do not appear, however, when a
report developer specifies a value for the ad hoc parameter when running a
report in a report designer.

For more information about QBE expressions, see Using Information Console.
How to create a filter for use in queries on an information object

1 Select the appropriate column in Columns.

2 In Properties, set Filter to Predefined.

3 In the row for that filter, choose Prompt editor.

4 On Prompt editor, complete the following tasks:

m In Show as, select the display control type. The choices available and
appearance of the page depend on the display control type you select.

m If you use a display control type other than Text box, you can specify a list
of values for the user to choose by typing the values and, optionally, the
display names, as shown in Figure 3-17. Alternatively, you can select from
a list of database values by choosing Select Values.

Chapter 3, Creating information objects 83

&l

Specify the prompt properties for this parameter. Prompt properties specify the behavior and appearance of filkers that
appear on requester pages Far reports using this information object, Users can specify values For these filkers ka limit the
data in a report.,

i~ Show as

& Text box ™ Dynamic lisk of values
& Drop-down list iread only) I~ | Auto suggest
" Cambo box (edicable) Stark Auta suggest after | 1 'I character(s)

" Radio buttons

~Yalues

Default value: g

j Select Yalues 'l

Value | Display name |
Califarnia
Massachusetts d
New York .
Pennsylvania —
Remove | Remowve All | Sort Alphabetically |
Reset | Ok | Canicel |

Figure 3-17 Typing values and display names for a filter

Select from a
list of database
values

Type values
and display
names

To create an Actuate SQL query that retrieves the values, select Dynamic list of

values, as shown in Figure 3-18, and do one of the following:
m Type the query.

= Choose Generate Query.

Choosing Generate Query creates a query that retrieves the distinct values
from the column for which you are creating a filter, as well as display
names. If the information object used in the query has parameters, you

must provide parameter values.

m In Default value, specify the default value. The default value can be a QBE

expression.

If you select Combo box (editable), Dynamic list of values, and Auto suggest, a
drop-down list appears after the information object user types the number of
characters specified in Start Auto suggest after N character(s). The list contains
values that begin with the characters the user typed. For example, if the user
typed 'Atel and N=4, the list contains the value 'Atelier graphique'. In this
case, the query that retrieves the values must select two columns, a value

column and a display name column.
Choose OK.

84 Designing BIRT Information Objects

Select Dynamic
list of values

Specify the prompt propetties for this parameter. Prar/t properties specify the behavior and
appearance of filkers that appear on requester pags4 For reports using this infarmation abject. Users
can specify values for these filkers to limit the dab4’in a report,

i~ Show as
& Text box ¥ Dynamic list of values
& Drop-down list iread only) = | Buto suggest
" Cambo box (edicable) Start Aute suggest after I 1 Vl characker{sy

" Radio buttons

i~ Yalues

Default value: Intelier graphique

The following Actuate SQL statement will be used ko retrieve the list of values at execution time.
SELECT DISTIWCT "'''||customerName||*""", CAST ("'""||customern =
0| | »

Mote: The Actuate SOL query should retrieve one or bwo columns with appropriate tvpes and

cannot contain & WITH clause, The first column is the Parameter Yalue Column, The second

Generats Query | Choose
Generate Query

Reset | oK | Caniel |

Figure 3-18 Creating an Actuate SQL query to generate values for a filter

Specifying a join

To define the joins for an information object, use the Joins page. For example, you
can create the following SQL fragment:

FROM Customers INNER JOIN Orders ON (Customers.custID =
Orders.custID)
About joins

A join specifies how to combine data from two maps or information objects. The
maps or information objects do not have to be based on the same data source. A
join consists of one or more conditions that must all be true. In the resulting SQL
SELECT statement, join conditions are linked with AND.

A join can consist of multiple conditions in the following form:
columnA = columnB

A join can have only one condition that uses an operator other than equality (=)
or an expression, for example:

columnA < columnB

Information Object Designer does not support right outer joins or full outer joins.

Chapter 3, Creating information objects 85

How to define a join condition

1 In the graphical information object editor, choose Joins.

2 In the upper pane, drag the join column from the first information object or
map, and drop it on the join column in the second information object or map.

The upper pane shows the join condition, like the one in Figure 3-19, and the
join columns and operator are listed in the lower pane.

Equality operator

[l select al A selt al

custlD B ArecastOrdeil ate
contact_last %) shipBuDate
contact_first farecastShipDate
custorManne statuz

phone issue

address askByDate

city custD

state categaony
postalcode

creditrank.

purchaseFrequency

purchaseVolume

replDr

Figure 3-19 Joined columns from two information objects or maps
3 In the lower pane, select the row that describes the new join condition.

If necessary, select a different join condition operator from the drop-down list.
By default, Information Object Designer uses the equality operator (=) to relate
two columns.

[5 Tochangeacolumn name to an expression, select the column name, and type
the expression, or choose Ellipsis to display the expression builder, as shown
in Figure 3-20.

If the join has a condition that uses an operator other than equality (=) or an
expression, the upper pane marks the join line with the symbol that appears in
Figure 3-21.

6 If the join consists of more than one condition, repeat this procedure for the
other conditions.

7 Choose one of the following join types:
= Innerjoin
m Left outer join

8 Optimize the join.

86 Designing BIRT Information Objects

Choose Ellipsis to
create an expression

Select a join
condition operator

Joins

Select join: Idhn_Cusmmers <---= dbo_Orders j Delete |
Select join bype: IIHHEr Jain vl

Define join using columns and expressions:

| Cprator | dbo_oOrders
..]= dbo_Orders, custID

Figure 3-20 Defining a join

Join uses an operator other than
equality (=) or an expression

S/ —

Bl select all A select all

custlD farecastOrderD ate
contact_last shipByD ate
contact_first farecastShipD ate
customMame statuz

phone issue

address azkByDate

city custD

state categony
postalcode

creditrank.

purchaseFrequency

purchaseVolume

replD

Figure 3-21 A join condition that uses an expression or an operator other than
equality

How to delete a join condition

To delete a join condition, select the join condition in the upper pane of the
graphical information object editor and press Delete.

Optimizing joins

You can improve a query’s performance by optimizing the joins. To optimize a
join, use the CARDINALITY and OPTIONAL keywords in the Actuate SQL
query. To optimize a join, you can specify the cardinality of the join. Specifying
the cardinality of the join adds the CARDINALITY keyword to the Actuate SQL
query.

You can also specify whether a table in a join is optional. Specifying that an

information object is optional adds the OPTIONAL keyword to the Actuate SQL
query. If you indicate that a table is optional and none of its columns appear in

Chapter 3, Creating information objects 87

the query created by a report developer or business user (except in a join
condition), the table is dropped from the optimized query.

If the maps or information objects are based on different data sources, there are
two additional ways to optimize a join:

m Use ajoin algorithm.
m Use map and join column properties.

Figure 3-22 shows how to specify the cardinality of an information object or map
in a join, whether an information object is optional, and how to specify a join
algorithm in Joins.

— Applies CARDINALITY

Specify relationship: For each value in dbo_Custamers, the number of values in dbo_Orders is: ID ar mare 'l keyWor‘d
For each value in dba_Orders, the number of values in dba_Customers is: Il vl
Specify join algorithm: IDapendent 'l Specifies join algorithm
Specify query trimming hint: dbo_Customers <---> dbo_Orders Apphes OPTIONAL
optional [I keyword

Figure 3-22 Optimizing a join

Using join algorithms

When you join maps or information objects that are built from different data
sources, the Actuate SQL compiler chooses a join algorithm. If you have a good
understanding of the size and distribution of the data, however, you can specify
the join algorithm. Choosing the correct join algorithm can significantly reduce
information object query execution time. Actuate SQL supports three join
algorithms:

m Dependent
= Merge
m Nested Loop

When you join maps or information objects that are built from the same data
source, specifying a join algorithm has no effect. The join is processed by the data
source.

About dependent joins

A dependent join is processed in the following way:

m The left side of the join statement is executed, retrieving all the results. The
results are then processed one at a time (pipelined).

m For each left side result, the right side of the join is executed, parameterized by
the values provided by the current left side row.

88 Designing BIRT Information Objects

A dependent join is advantageous when the cardinality of the left side is small,
and the selectivity of the join criteria is both high and can be delegated to the data
source. When the cardinality of the left side is high, a dependent join is relatively
slow because it repeatedly executes the right side of the join.

Dependent joins can be used for any join criteria, although only join expressions
that can be delegated to the right side’s data source result in improved selectivity
performance.

About merge joins
A merge join is processed in the following way:

m The left side of the join statement is executed, retrieving all the results sorted
by the left side data source. The results are then processed one at a time
(pipelined).

m The right side of the join statement is executed, retrieving all the results sorted
by the right side data source. The results are then processed one at a time
(pipelined).

A merge join can only be used with an equijoin. A merge join has much lower
memory requirements than a nested loop join and can be much faster. A merge
join is especially efficient if the data sources sort the rows.

About nested loop joins
A nested loop join is processed in the following way:

m The left side of the join statement is executed, retrieving all the results. The
results are then processed one at a time (pipelined).

m The right side of the join statement is executed. The results are materialized in
memory. For each row on the left side, the materialized results are scanned to
find matches for the join criteria.

A nested loop join is advantageous when the cardinality of the right side is small.
A nested loop join performs well when the join expression cannot be delegated to
the data source. A nested loop join can be used for any join criteria, not just an
equijoin.

A nested loop join is a poor choice when the cardinality of the right side is large
or unknown, because it may encounter memory limitations. Increasing the
memory available to the Integration service removes this limitation. The
Integration service parameter Max memory per query specifies the maximum
amount of memory to use for an Integration service query. For more information
about this parameter, see Configuring BIRT iServer.

Chapter 3, Creating information objects 89

How to specify a join algorithm

In Joins, select the appropriate join and choose one of the following from the
Specify join algorithm drop-down list shown in Figure 3-23:

m Dependent
m Merge
m Nested loop

Specify join algarithrn: IDependent ﬂ

Difault

Dependent

Figure 3-23 Specifying the join algorithm

Improving the selectivity of a join

When you join maps that are based on different data sources, you can optimize
the join by providing values for map and join column properties. Providing
values for these properties improves the selectivity of the join. You should
provide values for:

m The maps’ Cardinality property
Cardinality specifies the number of rows returned by the map, or gives an
approximation based on the possible parameter values.

m The following join column properties:

= Distinct Values Count
Distinct Values Count specifies the number of distinct column values.

m Max Value
Max Value specifies the maximum column value.

= Min Value
Min Value specifies the minimum column value.

Max Value and Min Value are not used for columns of character data type.
When providing values for Max Value and Min Value, use the appropriate
format. For example, if the column is of type TIMESTAMP, Max Value must be
in the following format:

TIMESTAMP '2001-02-03 12:11:10"'

You should also provide values for these properties for a column used in a
WHERE clause.

How to provide a value for the Cardinality property

1 In Navigator, double-click one of the maps in the join.

90 Designing BIRT Information Objects

2 On Output Columns, choose Show map properties, as shown in Figure 3-24.

Choose Show map properties

DOutput Columns
Spedfy output columns: Shaw map properties |
| Source column | [ame | Data type | Default Analysis Type | Prompt editor |
custameriumber cuskomertumber Inteqger Dimension Ao
custornetManme custarmertarne Warchar Dirmension Q)
contactLastMarne contackLastMarne Warchar Dirmension Q>
contactFirsthame conkactFirstMarne Varchar Dirmension Q.)
phone phone Varchar Dimensian A58
addresslinel addressLinel Varchar Dimensian L
addressLineZ addressLine2 Warchar Dimension (3 ;I
city ity varchar Dimension ik =l
state state varchar Dimension A"
postalCode postalCode Warchar Dimensian ik
country counkry Warchar Dirmension Q>
salesRepEmployes... | salesRepEmployee... | Integer Measure ik
creditLimit creditLimit Double Measure A58
Default Analytics |

Figure 3-24 Choosing Show map properties
3 In Properties, type a value for Cardinality.
4 Repeat this procedure for the other map.

How to provide values for join column properties

1 In Output Columns, select the join column.
2 In Properties, type values for:

m Distinct Values Count

= Max Value

= Min Value

3 Repeat this procedure for the join column in the other map.

Creating a Cartesian join

By default, an information object user cannot create a query with two information
objects, for example a Customers information object and an Orders information
object, without explicitly joining the information objects. The absence of an
explicit join is called a Cartesian join. Cartesian joins can consume database
resources and return very large result sets. In some cases, however, it is acceptable
to create a Cartesian join. For example, a map of a single-row system information
table does not have to be joined to another map or information object. If it is
acceptable for a map or information object to be used in a Cartesian join, set
Allow this Source to be used in Cartesian Joins to True. To display this property
for a map, choose Show map properties as shown in Figure 3-24. To display this
property for an information object, click in the white space in the upper pane of
the query editor as shown in Figure 3-63.

Chapter 3, Creating information objects 91

Filtering data

If an information object returns more data rows than you need, you can restrict
the number of data rows by using a filter. For example, rather than list all
customer sales, you can create a filter to select only the sales data for a particular
week or only the sales data for a particular region.

Filtering data helps you work effectively with large amounts of data. It enables
you to find the necessary pieces of information to answer specific business
questions, such as which sales representatives generated the top ten sales
accounts, which products generated the highest profit in the last quarter, which
customers have not made a purchase in the past 90 days, and so on.

Filtering data can also have a positive effect on processing speed. Limiting the
number of data rows can reduce the load on the databases because the
information object does not need to return all the rows every time it is run.

Creating a filter condition

When you create a filter, you define a condition that specifies which data rows to
return. A filter condition is an If expression that must evaluate to true in order for
a data row to be returned. For example:

If the order total is greater than 10000
If the sales office is San Francisco
If the order date is between 4/1/2008 and 6/30/2008

Filter conditions are appended to the information object’s WHERE clause, for
example:

WHERE OrderTotal > 10000 AND SalesOffice LIKE 'San Francisco%' AND
OrderDate BETWEEN TIMESTAMP '2008-04-01 00:00:00' AND TIMESTAMP
'2008-06-30 00:00:00"

Figure 3-25 shows an example of a condition defined in Filter Conditions.

The column to The comparison The value to
evaluate operator compare to
Z 7 =

Filter by: Walue:

CLASSICMODELS_Customers, creditLimit ¥ | ...||>= | [too00 =l | Select\-‘aluel
o _|

Figure 3-25 Filter Conditions displaying a filter condition

As Figure 3-25 shows, Filter Conditions helps you define the condition by
breaking it down into the following parts:

m The column to evaluate, such as credit limit.

92 Designing BIRT Information Objects

m The comparison operator that specifies the type of comparison test, such as >
(greater than).

m The value to which all values in the column are compared, such as 10000.

Table 3-3 lists the operators you can use when you create expressions for filter

conditions.
Table 3-3 Operators in filter condition expressions
Operator Use to Example
BETWEEN Test if a column value is between Profit BETWEEN 1000 AND 2000
two specified values.
= (Equal to) Test if a column value is equal toa CreditLimit = 100000

> (Greater than)
>= (Greater than
or equal to)

IN

ISNOT NULL

ISNULL

< (Less than)

<= (Less than or
equal to)

LIKE

NOT BETWEEN
<> (Not equal to)

NOT IN

NOT LIKE

specified value.

Test if a column value is greater
than a specified value.

Test if a column value is greater
than or equal to a specified value.

Test if a column value is in the
specified set of values.

Test if a column value is not a null
value. A null value means that no
value is supplied.

Test if a column value is a null
value.

Test if a column value is less than a
specified value.

Test if a column value is less than
or equal to a specified value.

Test if a column value matches a
string pattern.

Test if a column value is not
between two specified values.

Test if a column value is not equal
to a specified value.

Test if a column value is not in the
specified set of values.

Test if a column value does not
match a string pattern.

Total > 5000

Total >= 5000

Country IN (USA', 'Canada’,
'Mexico')

CreditLimit IS NOT NULL
CreditLimit IS NULL

Total < 5000

Total <= 5000

ProductName LIKE 'Ford%'
Profit NOT BETWEEN 1000 AND
2000

CreditLimit <> 100000

Country NOT IN ('USA', 'Canada’,

'Mexico')
ProductName NOT LIKE 'Ford%'

Chapter 3, Creating information objects

93

How to create a filter condition

1 In the graphical information object editor, choose Filters.
2 In Filters, choose New.

3 In Filter Conditions, in Filter by, do one of the following:

m Select a column from the drop-down list. The drop-down list contains the
non-aggregate columns that you defined on the Columns page. To create a
filter for an aggregate column, use the Having page.

m Type an expression.
| m Choose Ellipsis to create an expression.

4 Select the comparison test, or operator, to apply to the selected column or
expression. Depending on the operator you select, Filter Conditions displays
one or two additional fields, or a completed filter condition.

5 If you selected an operator that requires a comparison value, specify the value
in one of the following ways:

= Type the value or expression.

m If you selected a column in Filter by, choose Select Value to select from a list
of values. Figure 3-26 shows the selection of Boston from a list of possible
sales office values.

Filter text: |

The choices above represent a preview of walues from the database. Enter a
Filker walue to refine the results based an a prefix match.

Add Cancel |

Figure 3-26 Select Value showing the list of values in the selected column

Select one or more values,

m Select a parameter or column from the drop-down list. You create
parameters on the Parameters page.

| m Choose Ellipsis to create an expression.
Figure 3-27 shows the completed filter condition.

= Ji[=] B3

Filker by: Yalue:

ICLASSICMODELS_OFFices.city =l ...||LIKE =l I'Boston%' | EI Selact Valuel
[s]4 | Cancel |

Figure 3-27 Filter Conditions displaying a completed filter condition

94 Designing BIRT Information Objects

Choose OK. The filter condition appears in Filters as shown in Figure 3-28.

Filters

Column filters:

CLASSICMODELS Offices.ciky LIKE 'Boston%:

T Edit Delete
And ar Mot

6)

Y

Figure 3-28 Filters page displaying a filter condition

6 Display the Actuate SQL query. Verify that the filter condition is appended to
the WHERE clause and that the syntax is correct, for example:

WHERE SalesOffice LIKE 'Boston%'
How to create a filter condition using Actuate SQL
1 In the graphical information object editor, choose Filters.
2 In Filters, complete the following tasks:

m Click in the text box.

m Type the filter condition using Actuate SQL, as shown in Figure 3-29. If a
table or column identifier contains a special character, such as a space,
enclose the identifier in double quotation marks (").

Add the Following Actuate SQL expression to the WHERE clause. This is automatically
aukomatically added to the Filker expression above using the AND operatar,

dbo_customers.creditrank LIKE 'A% d

H
Figure 3-29 Using Actuate SQL to create a filter condition

Selecting multiple values for a filter condition

So far, the filter examples specify one comparison value. Sometimes you need to
view more data, for example, sales details for several sales offices, not for only
one office. To select more than one comparison value, select the IN operator,
choose Select Values, then select the values. To select multiple values, press Ctrl as
you select each value. To select contiguous values, select the first value, press
Shift, and select the last value. This action selects the first and last values and all
the values in between.

Figure 3-30 shows the selection of London and Paris from a list of sales office
values.

Chapter 3, Creating information objects 95

3 IS [=1 B3

=

Filker by: Values:
ICLASSICMODELS_OFFices.city =l ...||1N | "Londor’ add

Edit
Remowve
Select Valugs

Ok | Cancel |

Figure 3-30 Filter Conditions showing the selection of multiple comparison values

Excluding data

You use comparison operators, such as = (equal to), > (greater than), or

< (less than), to evaluate the filter condition to determine which data to include.
Sometimes it is more efficient to specify a condition that excludes a small set of
data. For example, you need sales data for all countries except USA. Instead of
selecting all the available countries and listing them in the filter condition, simply
use the NOT LIKE operator. Similarly, use NOT BETWEEN to exclude data in a
specific range, and <> (not equal to) to exclude data that equals a particular
value.

For example, the following filter condition excludes orders with amounts
between 1000 and 5000:

OrderAmount NOT BETWEEN 1000 AND 5000

The filter condition in the next example excludes products with codes that start
with MS:

ProductCode NOT LIKE 'MS%'

Filtering empty or blank values

Sometimes, rows display nothing for a particular column. For example, suppose a
customer database table contains an e-mail field. Some customers, however, do
not supply an e-mail address. In this case, the e-mail field might contain an empty
value or a blank value. An empty value, also called a null value, means no value
is supplied. A blank value is entered as " (two single quotes without spaces) in the
database table field. Blank values apply to string fields only. Null values apply to
all data types.

You can create a filter to exclude data rows where a particular column has null or
blank values. You use different operators to filter null and blank values.

When filtering to exclude null values, use the IS NOT NULL operator. If you want
to view only rows that have null values in a particular column, use IS NULL. For
example, the following filter condition excludes customer data where the e-mail
column contains null values:

email IS NOT NULL

96 Designing BIRT Information Objects

The following filter condition displays only rows where the e-mail column
contains null values:

email IS NULL

When filtering blank values, use the NOT LIKE operator with " (two single
quotes without spaces) as the operand. For example, to exclude rows with blank
values in an e-mail column, specify the following filter condition:

email NOT LIKE ''

Conversely, to display only rows where the e-mail column contains blank values,
create the following condition:

email LIKE ''

In a report, you cannot distinguish between an empty value and a blank value in
a string column. Both appear as missing values. If you want to filter all missing
values whether they are null or blank, specify both filter conditions as follows:

email IS NOT NULL AND email NOT LIKE ''

Specifying a date as a comparison value

When you create a filter condition that compares the date-and-time values in a
column to a specific date, the date value you supply must be in the following
format regardless of your locale:

TIMESTAMP '2008-04-01 12:34:56"

Do not use locale-dependent formats such as 4,/1,/2008.

Specifying a number as a comparison value

When you create a filter condition that compares the numeric values in a column
to a specific number, use a period (.) as the decimal separator regardless of your
locale, for example:

123456.78

Do not use a comma (,).

Comparing to a string pattern

For a column that contains string data, you can create a filter condition that
compares each value to a string pattern instead of to a specific value. For
example, to display only customers whose names start with M, use the LIKE
operator and specify the string pattern, M%, as shown in the following filter
condition:

Customer LIKE 'M%'

You can also use the % character to ensure that the string pattern in the filter
condition matches the string in the column even if the string in the column has
trailing spaces. For example, use the filter condition:

Chapter 3, Creating information objects 97

Country LIKE 'USA%'

instead of the filter condition:

Country = 'USA'

The filter condition Country LIKE 'USA%' matches the following values:
'USA'

'usa !

'USA '

The filter condition Country = 'USA" matches only one value:
'USA'
You can use the following special characters in a string pattern:

m % matches zero or more characters. For example, %ace% matches any value
that contains the string ace, such as Ace Corporation, Facebook, Kennedy
Space Center, and MySpace.

m _ matches exactly one character. For example, t_n matches tan, ten, tin, and
ton. It does not match teen or tn.

To match the percent sign (%) or the underscore character (_) in a string, precede
those characters with a backslash character (\). For example, to match S_10, use
the following string pattern:

S_10
To match 50%, use the following string pattern:
50\%

Comparing to a value in another column

Use a filter condition to compare the values in one column with the values of
another column. For example, in a report that displays products, sale prices, and
MSRP (Manufacturer Suggested Retail Price), you can create a filter condition to
compare the sale price and MSRP of each product, and display only rows where
the sale price is greater than MSRP.

How to compare to a value in another column

1 In the graphical information object editor, choose Filters.

In Filters, choose New.

In Filter Conditions, in Filter by, select a column from the drop-down list.

Select the comparison test, or operator, to apply to the selected column.

g b~ W N

In Value, select a column from the drop-down list.

Figure 3-31 shows an example of a filter condition that compares the values in
the priceEach column with the values in the MSRP column.

98 Designing BIRT Information Objects

& JI[=] ES

Filker by Value:

ICLASSICMODELS_OrderDetai\s‘priceEachj |> j ICLF\SSICMODELS_Products.MSRP j | SelectVaIuel
o |

Figure 3-31 Comparing the values in priceEach with the values in MSRP
Choose OK.

Using an expression in afilter condition

An expression is any combination of Actuate SQL constants, operators, functions,
and information object columns. When you create a filter condition, you can use
an expression in Filter by, Value, or both. You create an expression in the
expression builder.

For example, in an information object that returns customer and order data, you
want to see which orders shipped less than three days before the customer
required them. You can use the DATEDIFF function to calculate the difference
between the ship date and the required date:

DATEDIFF('d', shippedDate, requiredDate) < 3
Figure 3-32 shows this condition in Filter Conditions.

Expression Click to open Expression Builder

FEF
Filter bry: Walue:

[Datedif(d, CLASSICMODELS_Crders.ship | I|< ERE =l | Select alu
OK Cancel |

Figure 3-32 Filter Conditions with expression in Filter by

In an information object that returns order data, you want to see which orders
were placed today. You can use the CURRENT_DATE function to return today’s
date:

orderDate = CURRENT DATE()

Figure 3-33 shows this condition in Filter Conditions.

Expression
=[alx]
Filter by: alue:
ICLASSICMODELS_Orders.orderDate j _||= j ICurrent_date() j _I Select Valuel
concel_|
Figure 3-33 Filter Conditions with expression in Value

Chapter 3, Creating information objects 99

In an information object that returns employee data, you want the information
object to return only data for the user who is currently logged in to the
Encyclopedia volume. You can use the LEFT function and the concatenation
operator (| |) to construct the employee’s user name, and the CURRENT_USER
function to return the name of the user who is currently logged in:

LEFT (firstName, 1) || lastName = CURRENT USER()

Figure 3-34 shows this condition in Filter Conditions.

Expressions

ZS o] x|
Filter by: alue:

ILeFt(CLASSICMODELS_EmpIUyeBs.firstNaj D |= j ICurrEnt_user() j | Select Yalug |
0Ok | Cancel

Figure 3-34 Filter Conditions with expressions in Filter by and Value

Creating multiple filter conditions

When you create a filter, you can define one or more filter conditions. Each
condition you add narrows the scope of data further. For example, you can create
a filter that returns rows where the customer’s credit rank is either A or B and
whose open orders total between $250,000 and $500,000. Each condition adds
complexity to the filter. Design and test filters with multiple conditions carefully.
If you create too many filter conditions, the information object returns no data.

Adding a condition

You use the Filters page, shown in Figure 3-28, to create one or more filter
conditions. To create a filter condition, you choose New and complete the Filter
Conditions dialog, shown in Figure 3-27. When you create multiple filter
conditions, Information Object Designer precedes the second and subsequent
conditions with the logical operator AND, for example:

SalesOffice LIKE 'San Francisco%' AND
ProductLine LIKE 'Vintage Cars%'

This filter returns only data rows that meet both conditions. Sometimes, you want
to create a filter to return data rows when either condition is true, or you want to
create a more complex filter. To accomplish either task, use the buttons on the
right side of the Filters page, shown in Figure 3-35.

If you create more than two filter conditions and you use different logical
operators, you can use the parentheses buttons to group conditions to determine
the order in which they are evaluated. Display the information object output to
verify the results.

100 Designing BIRT Information Objects

Filters Filter conditions

Colurmn Filkers:

CLASSICMODELS_Offices, city LIEE 'San Francisco'

AND CLASSICMODELS ProductLines. productLine LIKE YWinkage Cars%'

| Ede | Deletel
2 L Cer | T
&]] b¥] T Parentheses

Figure 3-35 Filters page displaying two conditions

Logical operators

Selecting a logical operator

As you add each filter condition, the logical operator AND is inserted between
each filter condition. You can change the operator to OR. The AND operator
means both filter conditions must be true for a data row to be included in the
information object output. The OR operator means only one condition has to be
true for a data row to be included. You can also add the NOT operator to either
the AND or OR operators to exclude a small set of data.

For example, the following filter conditions return only sales data for classic car
items sold by the San Francisco office:

SalesOffice LIKE 'San Francisco%' AND
ProductLine LIKE 'Classic Cars$%'

The following filter conditions return all sales data for the San Francisco and
Boston offices:

SalesOffice LIKE 'San Francisco%' OR SalesOffice LIKE 'Boston$%'

The following filter conditions return sales data for all product lines, except
classic cars, sold by the San Francisco office:

SalesOffice LIKE 'San Francisco%' AND
NOT (Product Line LIKE 'Classic Cars$%')

Specifying the evaluation order

Information Object Designer evaluates filter conditions in the order in which they
appear. You can change the order by selecting a filter condition in Filters, shown
in Figure 3-28, and moving it up or down using the arrow buttons. Filter
conditions that you type in the Actuate SQL text box, shown in Figure 3-29, are
preceded by AND and are evaluated last.

If you define more than two conditions, you can use parentheses to group
conditions. For example, A AND B OR C is evaluated in that order, so A and B
must be true or C must be true for a data row to be included. In A AND (B OR C),
B OR C is evaluated first, so A must be true and B or C must be true for a data row
to be included.

To illustrate the difference a pair of parentheses makes, compare the following
examples.

Chapter 3, Creating information objects 101

The following filter contains three conditions and none of the conditions are
grouped:

Country IN ('Australia', 'France',K 'USA') AND
SalesRepNumber = 1370 OR CreditLimit >= 100000

Figure 3-36 shows the first 10 data rows returned by the information object.
Although the filter specifies the countries Australia, France, and USA and sales
rep 1370, the data rows display data for other countries and sales reps. Without
any grouped conditions, the filter includes rows that meet either conditions 1 and
2 or just condition 3.

SGL Preview Data Preview &2 ID'{E Query Profiler | 3.0 Prob\ems‘ @ [l =
Show I 50 rows at & time
customerhlame | counkr | salesRepEmplayeshiumber | creditLimit -
Alpha Cognac France 1370 61100.0
Amica Models & Ca, Italy 1401 113000.0
Anna's Decorations, Lkd Australia 1611 107800.0 —
Atelier graphique France 1370 210000
Australian Collectars, Co, Australia 1611 117300.0
Auko Associés & Cie. France 1370 F7a00.0
AN Stares, Co, LK 1501 136800.0
Collectable Mini Designs Co. | USA 1166 105000.0
Corparate Gift Ideas Co. usa 1165 105000.0
Corrida Auto Replicas, Ltd | Spain 1702 104600.0 ﬂ
Row(s) 1 - 30
Figure 3-36 Results of a complex filter without parentheses grouping

The following filter contains the same three conditions, but this time the second
and third conditions are grouped:

Country IN ('Australia', 'France',K 'USA') AND
(SalesRepNumber = 1370 OR CreditLimit >= 100000)

Figure 3-37 shows the first 10 data rows returned by the information object. The
Country IN ('Australia’, 'France', 'USA') condition must be true, then either the
SalesRepNumber = 1370 condition or the CreditLimit >= 100000 condition is true.

SOL Preview Data Preview 28]n{ﬁ Query Profiler | 7.0 Prob\ems‘ @ [l =]
Show ISD— rows at a time

customerame | counktr | salesRepEmployeshiumber | creditLimit | -
Alpha Cognac France 1370 61100.0
Anna's Decorations, Lkd Australia 1611 107500.0
Atelier graphique France 1370 21000.0
Australian Callectors, Co. Australia 1611 117300.0
Auto Associés & Cie, France 1370 Fo00.0 =
Collectable Mini Designs Co, | USA 1166 105000,0
Corporate Gift Ideas Co, usa 1165 105000.0
Daedalus Designs Imports France 1370 §2900.0
Diecast Classics Inc. usa 1216 100600.0
Land of Tays Inc. usa 1323 114900.0 LI

Row(s) 1 - 18

Figure 3-37 Results of a complex filter with parentheses grouping

Changing a condition

You can change any of the conditions in Filters.

102 Designing BIRT Information Objects

How to change afilter condition
1 In Filters, shown in Figure 3-28, select the filter condition. Choose Edit.

2 In Filter Conditions, shown in Figure 3-27, modify the condition by changing
the values in Filter by, Condition, or Value. Choose OK.

Deleting a condition

To delete a filter condition, in Filters, select the condition. Then, choose Delete.
Verify that the remaining filter conditions still make sense.

Prompting for filter values

You can use a parameter to prompt an information object user for a filter value. A
parameter enables an information object user to restrict the data rows returned by
the information object without having to modify the WHERE clause. For
example, for an information object that returns sales data by sales office, instead
of creating a filter that returns data for a specific office, you can create a parameter
called param_SalesOffice to prompt the user to select an office. The WHERE
clause is modified as follows:

WHERE SalesOffice LIKE :param SalesOffice

You create parameters and define their prompt properties on the Parameters
page. Prompt properties include the parameter’s default value, a list of values for
the user to choose from, and whether the parameter is required or optional.
Parameters appear in the Value drop-down list in Filter Conditions with a

: (colon) preceding the parameter name, as shown in Figure 3-38.

Parameter name
preceded by a colon

o] x|

Filter by: Walue:

| cLassICMODELS _Offices.city =l ...||LIKE x| | param_salesoffice =l | Select\l'aluel
o |

Figure 3-38 Filter Conditions with a parameter in the Value field
Do not use a parameter in a filter condition with the IN operator, for example:
Country IN :param_Country

Actuate SQL parameters can only accept a single value, but the IN operator takes
multiple values. Instead, do one of the following for the appropriate column, for
example the Country column:

m Create a predefined filter. The predefined filter becomes a dynamic filter in the
Information Object Query Builder.

m Create a dynamic filter in the Information Object Query Builder.

m Create a report parameter using the Any Of operator in BIRT Studio.

Chapter 3, Creating information objects 103

Grouping data

A GROUP BY clause groups data by column value. For example, consider the
following information object:

SELECT orderNumber
FROM OrderDetails

The first 10 data rows returned by this information object are as follows:

orderNumber
10100
10100
10100
10100
10101
10101
10101
10101
10102
10102

Each order number appears more than once. For example, order number 10100
appears four times. If you add a GROUP BY clause to the information object, you
can group the data by order number so that each order number appears only
once:

SELECT orderNumber
FROM OrderDetails
GROUP BY orderNumber

The first 10 data rows returned by this information object are as follows:

orderNumber
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109

Typically, you use a GROUP BY clause to perform an aggregation. For example,
the following information object returns order numbers and order totals. The
Total column is an aggregate column. An aggregate column is a computed

104 Designing BIRT Information Objects

column that uses an aggregate function such as AVG, COUNT, MAX, MIN,
or SUM.

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

Figure 3-42 shows the first 10 data rows returned by the information object. The
data is grouped by order number and the total for each order appears.

Creating a GROUP BY clause

By default, Information Object Designer creates a GROUP BY clause
automatically. If you prefer, you can create a GROUP BY clause manually.

Creating a GROUP BY clause automatically

When an information object’s SELECT clause includes an aggregate column and
one or more non-aggregate columns, the non-aggregate columns must appear in
the GROUP BY clause. If the non-aggregate columns do not appear in the
GROUP BY clause, Information Object Designer displays an error message. For
example, consider the following information object:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails

When you attempt to compile the information object, the error message shown in
Figure 3-39 appears in the Problems view.

- =

I-’ v \'I An operation on the Actuate iServer failed

= Reawon:
Line &, Column 32: The column reference “'guantityOrdered" iz invalid becauze
it iz contained in an aggregate function and there iz na GROUP BY clause.
Sum[CLASSICMODELS_DrderDetails. quantityOrdered *
CLASSICMDDELS_ADrderDelaiIs.pliceEach] 145 Total

Details »» |

Figure 3-39 Information object requires a GROUP BY clause

To avoid this problem, Information Object Designer automatically creates a
GROUP BY clause:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

If more than one column appears in the GROUP BY clause, you can change the
order of the columns using the up and down arrows in Group By, as shown in
Figure 3-40.

Chapter 3, Creating information objects 105

Group By

W Use Automatic Grouping
Select columns to group:
Available Selected

5l <Computed:= orderhumber
Gl <oukput

/|
u

L

—Up and
down arrows

= show all Remaye Al |

Figure 3-40 Changing the order of GROUP BY columns

Creating a GROUP BY clause manually

If automatic grouping does not generate the desired SQL query, create the
GROUP BY clause manually. Create the GROUP BY clause manually if you want
to group on a column that does not appear in the SELECT clause, for example:

SELECT (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

How to create a GROUP BY clause manually
1 In the graphical information object editor, choose Group By.
2 In Group By, deselect Use Automatic Grouping.

3 In Available, expand the Computed and Output nodes to view the available
columns.

By default, Information Object Designer displays only output columns and
non-aggregate computed fields. To group on a column that is not an output
column, choose Show all.

[»] 4 InAvailable, select the appropriate column, and choose Select. This action
moves the column name to Selected, as shown in Figure 3-41.

Group By

[~ Use Automatic GErouping
Select columns to group:
Avvailable Selected

Bl <Computed:= CLASSICMODELS_OrderDetails.orderMumber
Bl <oukputs
= D CLASSICMODELS_OrderDe
E CLASSICMODELS_Orde _}I
1 CLASSICMODELS_Orde lI
E CLASSICMODELS_Orde
B CLASSICMODELS_Orde

N 13|
¥ show al Remove Al

Figure 3-41 Selecting a GROUP BY column

o B

106 Designing BIRT Information Objects

g

5 Repeat the previous step for each GROUP BY column.

6 To change the order of the GROUP BY columns, select a column in Selected,
and use the up or down arrow.

Removing a column from the GROUP BY clause

By default, Information Object Designer removes GROUP BY columns
automatically. If you disable automatic grouping, you must remove GROUP BY
columns manually.

Removing a GROUP BY column automatically

Information Object Designer automatically removes a column from the GROUP
BY clause when:

= You remove the column from the SELECT clause.
For example, consider the following information object:

SELECT orderNumber, productCode, (SUM(quantityOrdered *
priceEach)) AS Total

FROM OrderDetails

GROUP BY orderNumber, productCode

You remove the productCode column from the SELECT clause. Information
Object Designer automatically removes productCode from the GROUP BY
clause:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

= You manually add a column to the GROUP BY clause that does not appear in
the SELECT clause and then enable automatic grouping.

For example, consider the following information object:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber, productCode

The productCode column appears in the GROUP BY clause but not in the
SELECT clause. You enable automatic grouping. Information Object Designer
automatically removes productCode from the GROUP BY clause:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

Information Object Designer automatically removes the GROUP BY clause when:

= You remove all aggregate columns from the SELECT clause.

Chapter 3, Creating information objects 107

For example, consider the following information object:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

You remove the aggregate column SUM(quantityOrdered * priceEach) from
the SELECT clause. Information Object Designer automatically removes the
GROUP BY clause:

SELECT orderNumber
FROM OrderDetails

= You remove all non-aggregate columns from the SELECT clause.
For example, consider the following information object:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
GROUP BY orderNumber

You remove the orderNumber column from the SELECT clause. Information
Object Designer automatically removes the GROUP BY clause:

SELECT (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails
Removing a GROUP BY column manually

If you disable automatic grouping, you must remove GROUP BY columns
manually.

How to remove a GROUP BY column manually
1 In the graphical information object editor, choose Group By.
2 In Group By, complete one of the following tasks:

EI m Select the column in Selected, and choose Deselect.

m To remove all Group By columns, choose Remove All.

Filtering on an aggregate column

If an information object includes a GROUP BY clause, you can restrict the data
rows the information object returns by adding a HAVING clause. The HAVING
clause places a filter condition on one or more aggregate columns. An aggregate
column is a computed column that uses an aggregate function such as AVG,
COUNT, MAX, MIN, or SUM, for example SUM(quantityOrdered * priceEach).

For example, the following information object returns order numbers and order
totals. The Total column is an aggregate column. The data is grouped by order
number and no filter condition is placed on the Total column.

108 Designing BIRT Information Objects

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS
Total

FROM OrderDetails

GROUP BY orderNumber

Figure 3-42 shows the first 10 data rows returned by the information object.

You can add a HAVING clause to this information object to place a filter condition
on the Total column. The following information object returns only rows for
which the order total is greater than or equal to 50000:

SELECT orderNumber, (SUM(quantityOrdered * priceEach)) AS Total
FROM OrderDetails

GROUP BY orderNumber

HAVING SUM(quantityOrdered * priceEach) >= 50000

E.i'_ Problems | SGL Preview [Data Preview &8 l E"{E Query ProF\Ier| @ =
Show ISD— rows at a time
arderdumber | Total |
10100 10223.83
1010 10549.01
10102 5434.78
10103 50218.950000000004
10104 A0206.2
10105 53959 20933933399
10106 52151.81000000001
10107 22292.620000000003
10108 51001.219939933334
10109 2583314
Fow(z) 1-50

Figure 3-42 Data rows returned by information object with GROUP BY clause
Figure 3-43 shows the first 10 data rows returned by the information object.

The procedures for creating filter conditions for aggregate columns are identical
to the procedures for creating filter conditions for other columns, except that you
use the Having page instead of the Filters page. Filter conditions that you create
using the Filters page are evaluated before filter conditions that you create using
the Having page. In other words, filter conditions in the WHERE clause are
applied before filter conditions in the HAVING clause.

.. Problems | SOL Preview [Data Preview &3 IE‘{E Query Proﬁler| o e |
Shaw I 50 rows at a time:
orderumber | Total |
10103 50218.950000000004
10105 53959.20993399333
10106 52151.91000000001
10108 51001.219933933934
mzz H0824.653339333396
10126 57131.92
imz7 58841.35
10135 55E01.840000000004
10142 56052 56000000001
10145 5034274
Raow(z] 1-36

Figure 3-43 Data rows returned by information object with GROUP BY and
HAVING clauses

Chapter 3, Creating information objects 109

Defining parameters

An Actuate SQL parameter is a variable that is used in an information object. The
information object user provides a value for this variable in BIRT Studio, Actuate
Query, a report designer, or Information Object Designer.

For example, the following Actuate SQL query uses the parameters lastname and
firstname in the WHERE clause:

WITH (lastname VARCHAR, firstname VARCHAR)
SELECT lname, fname, address, city, state, zip
FROM customerstable

WHERE (lname = :lastname) AND (fname = :firstname)

If an Actuate SQL query defines a parameter in a WITH clause but does not use
the parameter, the query does not return any rows if no value is provided for the
parameter when the report runs. For example, the following query does not
return any rows if no values are provided for the lasthame and firstname
parameters when the report runs:

WITH (lastname VARCHAR, firstname VARCHAR)
SELECT lname, fname, address, city, state, zip
FROM customerstable

How to define a parameter
1 In the graphical information object editor, choose Parameters.
2 In Parameters, click the top empty line, and complete the following tasks:

m In Parameter, type the name of the parameter. If a parameter name contains
a special character, such as a period (.) or a space, enclose the name in
double quotation marks ().

» In Data type, select a data type from the drop-down list.
» In Default value, type the default value:

o If Default value is a string, enclose the string in single quotation marks,
as shown in the following example:

'New York City'
o If Default value is a timestamp, it must be of the following form:
TIMESTAMP '2001-02-03 12:11:10'

o If Default value is a number, use a period (.) as the decimal separator, as
shown in the following example:

123456.78
NULL is not a valid parameter value. You cannot use a QBE expression.

E m To change the order of the parameters, use the up or down arrow.

110 Designing BIRT Information Objects

m To use Prompt editor to specify the parameter’s prompt properties, choose
Prompt editor, as shown in Figure 3-44.

m To define other parameter properties, such as display name, select the
parameter in Parameters, and define the properties in Properties.

Parameters

Create a parameter by specifying a name, data type, and default value:

Parameter Default walue | Prompt editor

paramState

—— Choose Prompt editor
to specify prompt properties

‘archar

Ll

Remove | Remove Al | Localization |

Figure 3-44 Choosing Prompt editor to specify a parameter’s prompt
properties

How to delete a parameter
1 In the graphical information object editor, choose Parameters.
2 In Parameters, complete one of the following tasks:

m To delete an individual parameter, select the parameter, and choose
Remove.

m To delete all parameters, choose Remove All.

Specifying a parameter’s prompt properties

Use Prompt editor to specify a parameter’s prompt properties, including display
control type, list of values, and default value. You can specify the parameter
values and, if desired, a corresponding set of display values that the users choose.
You create a list of values by typing the values or by typing an Actuate SQL query
that retrieves the values.

The query must meet the following requirements:

m The query must retrieve one or two columns from an information object or
map, as shown in the following example:

SELECT DISTINCT custID, customName
FROM "MyInformationObject.iob"
ORDER BY 2

Chapter 3, Creating information objects 111

The first column contains the parameter values. The second column contains
the values that are displayed to the user. The information object or map must
reside in the same volume as the IOB from which the user launches Actuate
Query. If you use a relative path to reference the information object or map,
Actuate Query interprets the path as relative to the IOB from which the user
launches Actuate Query. If the information object or map defines a parameter,
you must provide a value for the parameter, as shown in the following

example:

SELECT DISTINCT custID, customName
FROM "MyInformationObject.iob" ['CA']
ORDER BY 2

m The first column’s data type must match the parameter’s data type.
m The query must not contain a WITH clause.

Information Object Designer does not validate the query. The values returned by
the query appear when a user specifies a value for the parameter in Actuate
Query or BIRT Studio. The values do not appear, however, when you specify a
value for the parameter in Information Object Designer or when a report
developer specifies a value for the parameter in a report designer.

How to specify a parameter’s prompt properties
1 Locate the appropriate parameter in Parameters and choose Prompt editor.

2 On Prompt editor, in Show as, select the method of prompting the user, as
shown in Figure 3-45. If you use a type of display other than a text box, you
can specify a list of values for the user to choose.

Show as
" Text box

' Drop-down lisk (read only)
" Combo box (editable)

" Radio buttans

Figure 3-45 Selecting the method of prompting the user

You can create a list of values by typing the values and, optionally, the display
names, as shown in Figure 3-46. If you do not provide display names, the
values are displayed to the user.

You can create an Actuate SQL query that retrieves the values or both the
values and the corresponding display names. If the query has two columns,
the values in the second column are used as the display names. To use a query
to create the list of values, select Dynamic list of values, as shown in

Figure 3-47, and type the query.

112 Designing BIRT Information Objects

———— Typevalues
Massachusetts and dlSpIay
New York names

Pennsylheania

Figure 3-46 Typing a list of values and display names

Select
Dynamic list
of values
SELECT DISTINCT custID, customName
FROM "MyInformationObject.ioh™ —Type Actuate
ORDER BY 2 SQL query

Figure 3-47 Specifying an Actuate SQL query to provide a dynamic list of
values

Chapter 3, Creating information objects 113

If you select Combo box (editable), Dynamic list of values, and Auto suggest, a
drop-down list appears after the information object user types the number of
characters specified in Start Auto suggest after N character(s). The list contains
values that begin with the characters the user typed. For example, if the user
typed 'Atel and N=4, the list contains the value 'Atelier graphique'. In this
case, the query that retrieves the values must select two columns, a value
column and a display name column.

In Default value, you specify the default value.

You also can specify values for the following additional properties:

m Conceal value

= Do not prompt

= Required

When you finish specifying the property values for the prompt, choose OK.

Setting parameter properties

Table 3-4 lists parameter properties and provides a description of each property.

Table 3-4 Parameter properties
Parameter property Can set? Description
Conceal Value Yes, in Visibility of the value that the user
Prompt provides for this parameter. To conceal the
editor value, set to True. To display the value, set

to False. This parameter property applies
only to parameters with the varchar data
type and the text box display type.

Data Type Yes, on the Parameter’s data type.
Parameters
tab

Default Value Yes, in Parameter’s default value. If a parameter
Prompt does not have a default value, and the
editor Required property is set to False, the

parameter takes one of the following
values if the user does not provide a value:

m 0 if the parameter is of type decimal,
double, or integer.

m Empty string if the parameter is in the
varchar data type.

m Current date and time if the parameter
is in the timestamp data type.

Description Notused Not used.

114 Designing BIRT Information Objects

Table 3-4 Parameter properties

Parameter property Can set? Description

Description Key Notused Not used.

Display Control Yes, in Control type for the parameter. The options

Type Prompt are text box, read-only drop-down list,
editor editable drop-down list, or radio buttons.

Display Format Notused Not used.

Display Length Notused Not used.

Display Name Yes Parameter prompt in BIRT Studio or

Actuate Query.

Display Name Key Yes Key for Display Name property in

localization properties file.

Do Not Prompt Yes, in Visibility of the parameter to the user. To
Prompt hide the parameter, set to True. To display
editor the parameter, set to False.

Heading Notused Not used.

Heading Key Notused Not used.

Help Text Notused Not used.

Help Text Key Notused Not used.

Horizontal Notused Not used.

Alignment

Name Yes, on the Parameter name.

Parameters
tab
Parameter Mode Yes Setting for parameters in stored procedures

and ODA data source queries to specify the
input or output type of the parameter. The
options are Input, Output,
InputAndOutput, or ReturnValue.
ReturnValue is used only for stored
procedures and is equivalent to Output.

Required Yes, in Indicator of whether the parameter is
Prompt required. To require a value for this
editor parameter, set to True. Otherwise, set to
False.
Size Yes The size of the parameter if the parameter

data type is varchar. Otherwise, not used.
Must be set if size is greater than 1300.

Chapter 3, Creating information objects 115

Setting source parameters

A source parameter is a parameter that is defined in a map or information object
from which you are building another information object.

You can set a source parameter to one of the following types of values:
m A single scalar value
m A local parameter in the information object that you are creating

You cannot set a source parameter to a column reference, such as
ORDERS.ORDERID, or an Actuate SQL expression.

When you set a source parameter to a local parameter, you can indicate that the
local parameter inherits the values of its prompt properties from the source
parameter. The available prompt properties are Conceal Value, Default Value,
Display Control Type, Do Not Prompt, and Required. If you specify that the local
parameter inherits its prompt property values from the source parameter, and
prompt property values for the source parameter change, the changes are
propagated to the local parameter. For example, if the display control type for the
source parameter changes from text box to read-only drop-down list, the display
control type for the local parameter also changes from text box to read-only
drop-down list.

If you change a prompt property value for a local parameter, its prompt property
values are no longer inherited from the source parameter. For example, if you
change the display control type for the local parameter to editable drop-down list,
and the display control type for the source parameter later changes to text box,
the change is not propagated to the local parameter. To reinstate inheritance,
choose Reset in Prompt editor. Choosing Reset returns all property values in the
local parameter to inherited values, and the local parameter inherits any future
changes to property values in the source parameter.

To set source parameters, use the Parameters page. To define a local parameter
and set a source parameter to the local parameter in one step, drag the source
parameter from Source parameter, and drop it in Parameter, as shown in
Figure 3-48.

How to set a source parameter
1 In the graphical information object editor, choose Parameters.
2 In Parameters, complete the following tasks:

m In Source parameter, select the appropriate parameter.

m In Value, complete one of the following tasks:

o Choose a parameter from the drop-down list. The drop-down list
contains the local parameters for the information object you are
building.

116 Designing BIRT Information Objects

Parameters

Create a parameter by specifying a name, data type, and default value:

Parameter | Data bype | Default value | Fr... |
paramss Varchar 'ca'
|
H
Remove | Remove nll Localization

Specify the value For eacl source parameter, A source parameter is a
parameter defined in an ir| "ormation object used by this information
object. To use a source pdrameter as a local parameter For this
information object, drag te source parameter to the Parameter
column,

| Source parameker ” Valug | Reset values I
MyInformationObjec... :paramState =
Figure 3-48

— Choose Reset

to resetvalue to
default value

Setting a source parameter for a new, local parameter

o Type a value, as shown in Figure 3-49:

o If Value is a string, enclose the string in single quotation marks, as
shown in the following example:

'New York City'

o If Value is a timestamp, it must be in the following form:

TIMESTAMP '2001-02-03 12:11:10"'

o If Value is a number, use a period (.) as the decimal separator, as
shown in the following example:

123456.78

o If Value is a parameter, precede the parameter name with a colon (:).

Specify the value for each source parameter, A source parameter s &
parameter defined in an information object used by this information
object. To use a source parameter as a local parameter for this
information object, drag the source parameter ko the Parameter

column,

— Choose Reset
toresetvalue to
default value

| Source parameter | Yalue | Reset values I
MyInformationObjec. .. ‘MY Fs—p
Figure 3-49

Providing a value for a source parameter

Synchronizing source parameters

You must synchronize source parameters when parameters in a source map or
information object are added, removed, or reordered, or their data types or other
properties change. To synchronize source parameters, choose Compile IO in the
graphical information object editor, as shown in Figure 3-50. Synchronizing
source parameters refreshes the list of source parameters on the Parameters page.

Chapter 3, Creating information objects 117

8 MyInformationObject.iob 53 =0

% el s

Choose Compile 10
to synchronize

[select Al = source parameters
[customertiumber
[customertame
A contactLasthame
[contactFirsthamns
BAphone

[addressLinel

B addressLine2

N

4 | I~
infarmation object, drag the source parameter to the Parameter ;I
column,

| Source parameker | Valug | Reset values I
MyInformationObjec... | My F=) j
-

Columns | Column Categaries | Jains | Fileers | Group By |Having | Parameters |

Figure 3-50 Synchronizing source parameters

Creating a textual information object

Use the Actuate SQL text editor if either of the following conditions is true:

m The graphical information object editor does not generate the desired Actuate
SQL query, so you must edit the query. For example, if the query includes OR
or UNION, you must use the Actuate SQL text editor to edit the query.

m You want to type or paste an Actuate SQL query instead of creating it
graphically.

If you save a query in the Actuate SQL text editor, you cannot modify the query in
the graphical information object editor.

To display the Actuate SQL text editor, complete one of the following tasks:

m In the graphical information object editor, choose SQL editor, as shown in
Figure 3-51.

m In SQL Preview, choose Edit SQL.

m On New Information Object, select Edit in SQL text editor, as shown in
Figure 3-52.

118 Designing BIRT Information Objects

8 MyInformationObiject.iob 53

@ || B

[selact all

A custamerNumber
[l customerhame
cnntactLastName
contactFirstNama
Bphane

[l addressLinel

[addresslinez

I

4

Choose SQL editor
to edit the SQL query

information object, drag the source parameter to the Parameter

column,
| Reset values I
+

| Yalue
[T

| Source parametear
MyInformationObjec...

Calumns | Column Categories | Joins | Filters | Group By |Having | Parameters

1l=

=

Figure 3-51 Choosing SQL editor to edit an Actuate SQL query
= =10l |
Information Dbject
Specify the name and location for a new information object.

Name: IEd\tS OLInfarmation0 bject

Local directory
& Default

= Other IHMyProiactiInfDrmalion Objects

Browse...

[V Editin SOL text editor

Select Edit in SQL text editor
to type or paste the query

coca |

Figure 3-52

Choosing to provide the Actuate SQL query in the SQL text editor

You edit the query in the upper pane of the Actuate SQL text editor, as shown in
Figure 3-53. The lower pane displays output columns or parameters.

When you edit a query in the SQL text editor,
that are identical except for case. For example,
as column aliases.

Chapter 3, Creating information objects

do not use table and column aliases
do not use both status and STATUS

119

Edit SQL query

B MylnFormationCbject.ioh 53 =0
HWITH {paramstate Warchar) d

SELECT CLASSICMODELS Customers.customerHumber AS custemerNumber,

CLASSICMODELS Customers.customerName AS customerName, CLASSICMODELS Customers.contactLastName AS
contactLastlame, CLASSICMODELS Custemers.contactFirstName RS contactFirstMame,
CLASSICMODELS_Customers. phone AS phone, CLASSICMODELS Customers.addresslinel AS addressiinel,
CLASSICMODELS_Customers. addressLine? AS addressLine2, CLASSICMODELS_Customers.city AS city,
CLASSICMODELS_Customers.state AS state, CLASSICMODELS_Customers.postalCode AS postalCode,
CLASSICHODELS Customers.country AS country, CLASSICMODELS Customers.salesRepEmployesHumber AS
salesRepEmployeslumber, CLASSICMODELS Customers.creditlimit AS creditLimit

FROM "../Data Sources/MyDatabase/CLASSICMODELS. Customers.sma™ AS CLASSICMODELS_Customers

WHERE CLASSTCMODELS Customers.state LIKE :paramState -
|l ;IJ
-
Columns T
Describe Query | Localzation | Default Analytics |
| Qutput column | Data byvpe | Default Analysis Type | P.|‘
customertumber Integer Dimension ik
custornerflamne Warchar Dirnension @{)
contactLastMarme Warchar Dirnension @.}
contactFirsthame Varchar Dirnension L|3'>
phone varchar Dimension ik
addresslinel varchar Dimension (S
addressLinez Warchar Dimension (S
city Warchar Dimension ik
state Warchar Dimension ik —
postalCode Warchar Dimension ik [
country Warchar Dirnension @.} | LI

Cnlumns] Parameters |
Figure 3-53 Editing the SQL query in the Actuate SQL text editor
The following rules also apply:

m Do not include an ORDER BY clause in the query.

m Paths that do not begin with a forward slash (/) are relative to the IOB file, as
shown in the following example:

. ./Data Sources/MyDatabase/dbo.customers.sma

m Absolute paths must begin with a forward slash. Using absolute paths is not
recommended.

Figure 3-53 shows the Actuate SQL text editor.

Displaying output columns

In SQL Text Editor—Columns, to display the query’s output columns and the
data type for each column, choose Describe Query, as shown in Figure 3-54.

To create a filter on a column, set the column’s Filter property to Predefined, and
specify the filter’s prompt properties.

120 Designing BIRT Information Objects

To specify other column property values, select the column, and specify the
property values in Properties.

Choose Describe Query to display
the query’s output columns

Columns
Describe Query | Localization | Default Analytics |
| Oukput column | Data bype | Default Analysis Type | Prompt editor |

customethumber Irkeger Dimension i ——— Choose Pl’ompt editor
cuskarmeramne Yarchar Dimension Q) to Specify prompt
contactLastName Yarchar Dimension Q)
contackFirsthame ‘archar Dimension ho property values
phone ‘Yarchar Dimension A"
addressLinel Yarchar Dimension ik
addressLine2 Yarchar Dimensian i
ity Yarchar Dimension Q.)
stake Yarchar Dimension Q;
postalCade Yarchar Dimensian L
country Yarchar Dimension Q)
saleskepEmployeeNumber | Integer Measure ik
creditLimit Double Measure A"

Figure 3-54 Using Describe Query to display the query’s output columns

Displaying parameters

On SQL Text Editor—Parameters, choose Describe Query to display the query’s
parameters and the data type for each parameter. You can type a default value for
a parameter in Default value, as shown in Figure 3-55.

Choose Describe Query to
display the query’'s parameters

Parametery
Describe Query | Localization

Parameter Default value Prompt editor

paramstate varchar mmmmmms— ChOOSe Prompt editor to specify
the prompt property values

Figure 3-55 Using Describe Query to display the query’s parameters

You can choose Prompt editor to set the prompt property values.

Displaying and testing information object output

To preview output, you can display information object output in Data Preview.

Chapter 3, Creating information objects 121

How to display and test information object output
1 Choose Data Preview.

2 In Data Preview, choose Refresh. As shown in Figure 3-56, Parameter Values
appears if the information object defines parameters.

=

Specify parameter values:

e |

Figure 3-56 Specifying parameter values

3 On Parameter Values, type the parameter values. A parameter value must be a
single value, not a list of values. When you finish, choose OK, and information
object output appears, as shown in Figure 3-57.

Refresh
Previous Page
Next Page
S0L Preview [Data Preview 24 l D“E Query Profiler Ef._ Problems | E e =8
ShanSD rows at & time —Page Size list box
cuztlD | contact_last | contact_first | cuztomtame | phone | city | state =
156 Tam “Wwai Chung | Advanced Design Corp. 9145856707 | Mew Rochelle MY
m Hemandez | Maria Advanced Design Inc. 2125558433 | NYC MY
166 Fong Kawai Advanced Solutions Inc. 5185559644 | Albany MY
160 “fung Siu Lun CompuE ngineering 5185563942 | Albany MY
168 Chandler Leslie ComputdicroSystems Corp. 9145559081 | Sneadons Landing | MY
157 Barajas Jose Computer Engineering 9145557064 | Mew Rochelle MY
128 Avila M aria Computer MicraSystems Corp. | 9145858205 | white Plains MY
155 Cervantes | Jose Diesign Boards Ca. 9145557468 | Mew Rachelle MY
1158 Thompzon | Bill Design Solutions Corp. 2125883675 | NWC MY
153 Thompzon | Sue Design Systems 9145553870 | Mew Rochelle MY
161 Smith Stan Exozoft Corp. 9145567172 | Sneadons Landing | WY =
109 Frick Michael InfoEngineering 2125551500 | NYC MY
129 Young Julie InfoSpecialists 9145857265 | White Plaing MY
162 King Peter Signal MicroSystems 5185554154 | Albany MY
104 Kua Kee SigniSpecialists Corp. 2125551957 | NYC MY
T1I3 fu Kuai Technical Design Inc. 21 255IS?81 8 | NvC NY_ILI
4 »

Figure 3-57 Viewing the information object’s output

4 Use the scroll bars to view all columns and displayed rows. Use the Page Size
list box to change the number of rows displayed on each page. Use the Next
Page and Previous Page icons to navigate through the data preview one page
at a time.

Displaying a data source query

When the Actuate SQL compiler compiles an information object, the compiler
creates one query for each data source. The query is written in the data source’s

122 Designing BIRT Information Objects

native query language. You can display the query that is sent to a data source, as

well as the following information about the query:

m The number of rows in the query’s output

m The amount of time it takes to execute the query in milliseconds
m The name and path for the data connection definition file

How to display a data source query and information about the query
1 Choose Query Profiler.

2 In Query Profiler, choose Start.

3 On Parameter Values, type the parameter values, as shown in Figure 3-58.

Choose OK.

=

Specify parameter valugs:

|

Figure 3-58 Providing the parameter values

A schematic representation of the query execution plan appears in the upper

pane of Query Profiler.
4 Select a SQL or ODA node to display the data source query.

The data source query appears in the lower pane, as shown in Figure 3-59.

Select a SQL node to display
the data source query

Eq‘._ Problems | S0/ Preview | Diata Preview [D‘{E Query Profiler &3 I =0

Start [Stop J Cance| | Lt I'II]I]‘Z vl B |
—_—

saL

SELECT " leB""dbu""cuslumers” "cusl\D "AcTeleB 'dbo" "'customers"."contact_| Iasl" "AcTeleB” "dh ustomers'."" :I
cnntact f ! " ‘dbo" "'customers
' Maddres: i A i "postalcode’.

b TestDB". dbo" "cListome i ' i ! customers'."
purchaszet'olume" des orders”."
forecastCOrdeiD. tDE". dbo ‘orders". TestDE" "dbo" "orders". forecaslShlpD ‘AcTestDE" "dbo™'
orders”."status, ‘e TesiDB". dbo’ "orders™ Vizaue", " TestDE" "dba” "orders'. "askByDate" T estDE" e "arders" MoustlD", "
icTestDB" 'dbo". "orders”. "categony”, "AcT estDB"."dbo" "items". "itemcode", "AcTestDB". "dba". “items" "'description’”, "AcT estDE" "dbo
"' ikerns". "pricequate”, "AcTestDB" "dbo" "items""."quantity'’, "AcT estDB"."dbo" "tems"""categon”, "AcTestDB"."dba". "items" "order D"
FROM "&cTestDE" "dbo'" 'customers”, "AcTestDE" "dbo" "orders”, "AcTestDB". "dba". "ikems"
'WHERE CAST "AcTestDB" "dbo" "customers™."state” A5 NYVARCHAR[4000)] COLLATE Latind_General BIN = 7 AND UPPER[CAST(
"AcTestDB" "dba". "customers' oreditrank A5 NVARCHAR4000] | COLLATE Latind_General_BIN] LIKE MN'&%' COLLATE Latind

|_General_BIN ESCAPE '@ AND “AcTestDB" "dbo' "customers” "custl D" = "AcT estDB". "dbo" "orders”. "custD" AND “AcTestDE" "dbo
" Morders” oidei D" = "AcT estDB" "dba” tems" "orde D"
ORDER BY "4cTestDB" "dbo"."customers". "oustomi ame"" &5C LI

Figure 3-59 Displaying the data source query

Chapter 3, Creating information objects

123

5 Hover the cursor over the SQL or ODA node to display information about the
query. Figure 3-60 shows an example of the information displayed for a query.

saL

Input Tuples Exhausted o
Dutput Tuples 187 Number of OUtpUt rows
Cumulative Time 12340 — Query execution time
Exhaust Calls 0
Reset Calls 0
Pages Allocated 1] . L. .
Physical Store /MyProject/Data Sources/MyD atabase/_ MyDatabase.ded —— Connection definition file

Press F2 for focus.

Figure 3-60 Display of information about a query

Understanding query execution plan operators

If an information object retrieves data from only one data source, the query
execution plan consists of a single node: a SQL or ODA node that displays the
query sent to the data source. If an information object retrieves data from more
than one data source, the query execution plan consists of several nodes,
including the following:

= One SQL or ODA node for each data source query
m Nodes that represent the joins between data source queries

For example, the query execution plan in Figure 3-61 displays two SQL nodes and
a join node. The SQL nodes represent the native SQL queries that are sent to two
different databases. The join node indicates that the join uses the Nested Loop
join algorithm.

=
S0l
ML Jain

S0L

Figure 3-61 An execution plan for a query using a join of two SQL queries

You can experiment with different join algorithms and determine which one
performs best by doing the following;:

m Displaying the execution time for each node

m Calculating the total execution time for the information object by adding the
execution times for the individual nodes

124 Designing BIRT Information Objects

Understanding node operators

Node operators process the output of other operators to produce rows.

Augment

Augment adds the result of an expression as a new column to each row in the
target relation.

Box

Box appends a nested relation containing a single row whose columns are a
subset of the columns in the input row. The boxed columns are removed from the
input row. Both the inner and outer relations are projections of the input relation.
In other words, columns can be rearranged.

CallExecutionUnit

CallExecutionUnit executes the equivalent of a subroutine call. CallExecutionUnit
augments each incoming row with an iterator that iterates over the product of a
dependent execution unit. The dependent execution unit can be parameterized
with data from the input relation or from the calling execution unit. The
parameters are either scalar types or iterators over nested relations.

DependentJoin

DependentJoin joins an input relation with the product of a dependent execution
unit. The dependent execution unit can be parameterized with data from the
input relation or from the calling execution unit. The join itself is unconditional.
Because the dependent execution unit is parameterized, however, the contents of
the dependent relation can be different for every input row. The join is either
nesting or flat:

m Nesting

Each input row is augmented by a single iterator column that contains the
dependent execution unit’s output rows.

m Flat

Each input row is augmented by all the columns of the dependent execution
unit’s output rows.

Dup

Dup creates a second independent iterator over a materialized relation. In effect,
Dup duplicates the relation. The duplicated relation can come from any row in
the target path. It is possible to take a relation that is nested in an outer row and
nest a copy of it into every row in a deeper relation. The output row is a copy of
the input row with the additional iterator on the end.

Chapter 3, Creating information objects 125

Materialize

Materialize caches an entire relation, including its descendants in the executor’s
memory. [terators over the relation and its descendants can then be reset
repeatedly. This is necessary if the relation is duplicated or if the relation is to be
aggregated over as well as detailed. Materialize does not change any data.
Materialize simply accumulates rows from its input and does not release the rows
until they are no longer needed. For more information about controlling how a
relation is materialized, see Configuring BIRT iServer.

MergeJoin

MergeJoin performs an equijoin between left and right relations. Both relations
must be ordered by join condition. The join can be nesting or flat:

m Nesting

Each left-side row is augmented by a single iterator column that contains the
selected right-side rows.

m Flat

Each left-side row is augmented by all the columns of the selected right-side
rOWs.

Move

Move copies an iterator. The copied iterator can come from any row in the target
path. It is possible to take a relation that is nested in an outer row and nest a copy
of it into every row in a deeper relation. Unlike Dup, the copied iterator shares
state with the original one. It is illegal to iterate over one iterator in an inner loop
while maintaining the context of the other in an outer loop.

MultiAugment

MultiAugment augments a row with an iterator column. This iterator produces a
relation whose contents are the result of evaluating an expression. One row is
produced for each expression, and then the inner iterator is exhausted until the
outer iterator is advanced again. The operator has the effect of augmenting a row
with a sequence.

Nest

Nest groups adjacent rows that match an equality constraint. The group of rows is
then replaced by a single outer row with a nested relation containing the same
number of rows that were in the group. The columns in the input rows that are
projected into the inner relation are independent of the columns that are
compared to determine grouping.

126 Designing BIRT Information Objects

NestedLoopJoin

NestedLoop]oin joins two input relations by evaluating an expression for every
pair of rows. NestedLoopJoin materializes the right-side relation and then, for
every left-side row, iterates over all rows in the right-side materialization,
evaluating the expression each time. If the result of the expression is True, the
rows match.

Project

Project reorders or removes columns within a relation.

Select

Select removes rows from the target relation. For every input row, an expression
is evaluated. If the result of the expression is False, the row is rejected. When
Select is advanced, it advances its input iterator repeatedly until it finds a row
that is accepted. Then it passes that row on.

Sort

Sort sorts a relation using one or more sort keys. The relation is first materialized.

Union

Union combines the rows from two relations without eliminating any duplicates.
The left-side rows are output first, and then the right-side rows.

Understanding leaf operators

Leaf operators produce rows by communicating with a data source.

FakeData

FakeData generates a flat relation using synthesized data. FakeData is used for
testing.

FakeFileData

FakeFileData reproduces a flat relation stored in tab-delimited format in a text
file. FakeFileData is used for testing.

IteratorAsL eaf

IteratorAsLeaf is used in dependent execution units. IteratorAsLeaf takes an
iterator that is specified in the execution unit’s parameter list and treats the
iterator as a leaf operator. IteratorAsLeaf is used when a binary operator, for
example a join, is applied to sibling relations within the same containing relation.

Chapter 3, Creating information objects 127

NoOp

NoOp returns an empty relation. NoOp is used by the compiler to represent
queries when the compiler determines that there are no results.

ODA

For more information about the ODA operator, see “Displaying a data source
query,” earlier in this chapter.

SortedOuterUnion

SortedOuterUnion allows multiple SELECT statements to be evaluated by a data
source in a single round-trip.

SQL

For more information about the SQL operator, see “Displaying a data source
query,” earlier in this chapter.

Storing a query plan with an information object

An information object can be used as a data source in BIRT Studio. The
information object’s query plan is compiled the first time a BIRT Studio user
drags-and-drops a column from the Available Data pane to the report display
area. If the information object is built from a large number of maps or information
objects, the first drag-and-drop operation may take a long time. To avoid this
problem, you can store a precompiled query plan with the information object.

Storing a precompiled query plan with an information object increases the size of
the information object. For this reason, do not store a precompiled query plan
with an information object unless the first drag-and-drop operation in BIRT
Studio is unacceptably slow.

Store a precompiled query plan with an information object when either of the
following conditions is true:

m The information object is built from more than 100 tables consisting of more
than 1000 columns.

m The information object has more than four levels in its hierarchy.

If an information object query’s compile time is very large, it may be advisable to
store a precompiled query plan with the information object.

How to display an information object query’s compile time
1 Choose Query Profiler.
2 In Query Profiler, choose Start.

128 Designing BIRT Information Objects

3 On Parameter Values, type the parameter values, as shown in Figure 3-58.
Choose OK.

A schematic representation of the query execution plan appears in the upper
pane of Query Profiler, as well as Profiler Statistics such as compile time. In
Figure 3-62, Profiler Statistics displays a compile time of three seconds.

Profiler Statistics
Compile Time: 35
Execution Time : 31z

Figure 3-62 Profiler Statistics

Saving an information object’s query plan

To store a query plan with an information object, set the Use Precompiled Query
Plan at runtime property to True and save the information object. The
Precompiled query plan saved on property displays the date and time at which
the query plan is saved.

How to save an information object’s query plan

1 Open the information object in the graphical or textual query editor.
2 Click in the white space in the upper pane of the query editor.

Figure 3-63 shows the upper pane of the graphical information object query
editor.

B select all

custlD

cantact_last
cantact_first
customM ame
phone

address

(=11

slate

postalcode
credirank
puichaszeFrequency
purchaselolume ——Click in white space
1eplD

Figure 3-63 Upper pane of the graphical information object editor
3 In Properties, set Use Precompiled Query Plan at runtime to True.
4 Choose File>Save.

Chapter 3, Creating information objects 129

Saving query plans for source and dependent
information objects

To store query plans for a source information object and its dependent
information objects, set the Use Precompiled Query Plan at runtime property to
True for each information object and save the information objects. If you modify
the source information object, you can refresh the query plans in one step by
compiling the information objects.

How to refresh the query plans for source and dependent information objects

1 In Navigator, select the source information object.
2 Choose File>Information Objects>Compile IO and dependents.

If any of the information objects are open, the prompt shown in Figure 3-64
appears. Choose Yes.

-
@™% This action compiles the 10 and dependents, resalves unknown column data
|@' types and updates dependent parameters, The precompiled query plan will be

— updated if stored.
In order ta perform this action the Following files will need ko be closed. These
will be reopened after the action is complete :

IMyPraject/I0 DesignsMyProject/Information
Objects/MyInformationObject. iob

Do you wish to save any changes and procesd?

‘fes No |

Figure 3-64 File close prompt

The Progress dialog may appear, as shown in Figure 3-65. To run the compile
operation in the background, choose Run in Background.

BB Compile 10 and dependents

“%d) Compiling the selected [0 and its dependents. ..

(]

[abways tun in backaround

[Run in Background] [Cancel] [Details ==

Figure 3-65 Progress dialog

The progress indicator appears in the lower right corner of the IO design
perspective.

3 To display the Progress view, choose the progress indicator.

The Progress view, shown in Figure 3-66, displays the progress of the compile
operation.

130 Designing BIRT Information Objects

E’_ Problems | SQL Preview | Data Preview |“{E Query Profiler | 55 Progress 23 3& ¥ =08
14 Building workspace
r] =
Compiling #tyProject/Information Objects/Dependent! 0 iob

Figure 3-66 Progress view

Deleting an information object’s query plan

To delete an information object’s query plan, set Use Precompiled Query Plan at
runtime to False and save the information object.

Localizing an information object

If an information object is used in more than one locale, you should provide
translated strings for the following column and parameter properties:

m Description

m Display Name

m Heading

m Help Text

The translated strings are used when:

m The information object is used as a data source in a report design in BIRT
Studio, e.Report Designer Professional, or BIRT Spreadsheet Designer.

m A report with an information object data source is viewed in the Viewer or
Interactive Viewer.

For each locale, you create a properties file that contains a key and a translated
string for each column or parameter and property. For example, the following
entries contain keys and French strings for the customerNumber and
customerName columns:

customerNumber DescriptionKey="Numéro de client"
customerNumber DisplayNameKey="Numéro de client"
customerNumber HeadingKey="Numéro de client"
customerNumber HelpTextKey="Numéro de client"
customerName DescriptionKey="Nom du client"
customerName DisplayNameKey="Nom du client"
customerName HeadingKey="Nom du client"
customerName HelpTextKey="Nom du client"

Localization properties files reside in the project’s Localization folder. The file
name is constructed from the project name and the locale code. In Figure 3-67, the
Localization folder in the project MyLocalizedProject contains properties files for

Chapter 3, Creating information objects 131

Spanish and French. Localization properties files are shared among all
information objects in a project.

"o Mavigatar 23] — 4:5 ¥ =08
[E1-T=F My Project

(2= 10 Designs

E‘B Localization
: - MyLocalizedProject_es_ES.propetties
- MyLocalizedProject_fr_FR.properties
w2 project

7 Localization properties files

Figure 3-67 Localization properties files

The locale code consists of a two-letter language code, an underscore, and a
two-letter country code. For example, the locale code for French (France) is fr_FR.
Use the following URL to display a list of languages and the corresponding

ISO 639 language codes:

http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt

Use the following URL to display a list of countries and the corresponding
ISO 3166 country codes:

http://userpage.chemie. fu-berlin.de/diverse/doc/ISO 3166 .html

Localization properties files are published to the Encyclopedia volume’s resource
folder. When you publish localization properties files, the folder structure in the
project is preserved. For projects created with Release 11 Service Pack 3 and
earlier, localization properties files are published to the folder you specify in the
Publish Information Objects dialog. To determine whether localization properties
files are published as resources or not, select the appropriate project in Navigator
and choose File>Properties>Actuate BIRT, as shown in Figure 3-68.

- I [=]
[Ferpe Fieer et Actuate BIRT e
[#-Resource
- Actuate BIRT Current Translation Locale: I fr_FR 'l
- Builders
- Project Facets ¢~ publish Information Objects as Resources
- Project References
- Refactoring History Localization File I \LacalizationtMyProject_fr_FR.properties ml
[+ Report Design
- RunfDebug Settings & publish Information Ohjects as Non-Resources
SE“I:E' Localization File: | CriUsersiAdrinistratoriworkspacetMyProjectiLocalizatiom\MyProject_fr_FR.properties
- Task Tags
[Walidation
- Wik Tesck
© |

Figure 3-68 Publishing localization properties files as non-resources

132 Designing BIRT Information Objects

How to localize an information object

1

Choose the translation locale for the project.
1 Select the project in Navigator.
2 Choose File>Properties> Actuate BIRT.

3 In Current Translation Locale, choose the translation locale from the drop-
down list.

4 If the default location for the localization properties file is not correct,
browse to the correct location. The path is relative to the resources root.
Choose OK.

In Figure 3-69, the translation locale is French (France).

Translation locale is
French (France)

Itype filter bext Actuate BIRT - T

[#-Resource

[#]- Report Design

[Yalidation

- Actuate BIRT Current Translation Lacale: 'I

- Builders

- Project Facets " publish Information Cbjects as Resources
--Project References
- Refactoring Histary Lacalization File: I \LacalizationMyProject_Fr_FR.properties Browse... |

- RunjDebug Setkings ™ publish Information Objects as Mon-Resources

Sar\llar Lacalization File: I C:iUserstAdministratorworkspace\MyProjectiLocalization\MyProject_fr_FR.properties
-~ Task Tags

- WikiTesck

) |

Figure 3-69 Specifying the translation locale

2

Open the information object in the graphical or textual information object
editor.

Choose Columns or Parameters.

In Columns or Parameters, select the column or parameter whose properties
you want to localize.

In Figure 3-70, the customerName column is selected in the graphical
information object editor.

Choose Localization, as shown in Figure 3-70.

Chapter 3, Creating information objects 133

Columns

Specify output columns: ™ Distinct values arly
| Source column of expression | Marme -
CLASSICMODELS _Customers. custamerMumber customerMumber
il | JELS_Customers, custormerMarne cuskamerhame
CLASSICMODELS _Cuskomers, conbactLastMarme conkactLaskMarne
CLASSICMODELS _Cuskomers, conkactFirstMarne conkactFirskMarne
CLASSICMODELS _Customers.phone phone
CLASSICMODELS _Customers. addressLingl addressLinel ;I
CLASSICMODELS_Customers, addressLinez addressLinez
CLASSICMODELS_Customers, city city LI
CLASSICMODELS_Cuskomers.skate skate —
CLASSICMODELS _Customers. postalCode postalCade
CLASSICMODELS _Customers, country country
T ASSTCMODF 5 & |<I‘nmer<.<a|e<RenanlnveeNilmher <a|e<RRnan\nvF'L| . .
Y > Localization button

Remaove | Remaove Al | Lacalization | Default Analytics |

Figure 3-70 Localization button in Columns
6 In Localization, choose Browse for the appropriate key.

For example, to localize the Display Name property, choose the Browse button
to the right of the Display Name Text Key field.

7 In Select Key, in Quick Add:
1 In Key, type the translation key.
2 In Value, type the translation string.
3 Choose Add.

8 Select the Key-Value pair. Choose OK.

In Figure 3-71, the Key-Value pair customerName_DisplayNameKey-"Nom
du client" appears.

- x|

nerMame_Displayh ar Mo du client

«| [
r~ Quick Add

Key IcustomerName_DisplayNameKey Walue INom du client Add | Delete |

Quick Add will save the key to the curent resource file.

@:‘ Cancel |

Figure 3-71 Creating a Key-Value pair

134 Designing BIRT Information Objects

9 Repeat steps 6 through 8 for the remaining translation keys. Choose OK.
Figure 3-72 shows the translation keys for the customerName column.

&

The following propetties can be lacalized:

Display Mame Text Key |customneame_Displaph amek ey Browse... |
Heading Text Key |customedame_Headingk.ey Browse. .. |EI
Help Text Key |customet]ame_HelpT extl ey Browse. .. |E|
Description Text Key |customedame_Descriptionk.ey Browse... |E|

oK Cancel |

Figure 3-72 Translation keys for customerName

10 Repeat steps 4 through 9 for the remaining columns or parameters.
11 Test the localized information object with the appropriate locale. For example:
1 Log in to Information Console with the French (France) locale.

2 Use the localized information object as a data source in a report design in
BIRT Studio.

3 Verify that the French display name, help text, and heading appear.
How to modify a translation string
1 In Localization, shown in Figure 3-72, choose Browse for the appropriate key.
2 In Select Key, shown in Figure 3-71, select the appropriate Key-Value pair.
3 In Value, modify the translation string. Choose Add.
4 Select the Key-Value pair. Choose OK.
How to modify a translation key
1 In Localization, shown in Figure 3-72, choose Browse for the appropriate key.

2 In Select Key, shown in Figure 3-71, select the appropriate Key-Value pair.
Choose Delete.

3 In Key, modify the translation key. Choose Add.
4 Select the Key-Value pair. Choose OK.

How to disable localization for a column or parameter property

In Localization, shown in Figure 3-72, choose Reset for the appropriate key. The
information object displays the untranslated string for the column or parameter
property, for example Display Name, instead of the translated string.

Chapter 3, Creating information objects 135

How to restore localization for a column or parameter property
1 In Localization, shown in Figure 3-72, choose Browse for the appropriate key.

2 In Select Key, shown in Figure 3-71, select the appropriate Key-Value pair.
Choose OK.

136 Designing BIRT Information Objects

Caching information
objects

This chapter contains the following topics:
= About information object caching
m Creating a cache connection definition

m Creating a cache object

Chapter 4, Caching information objects 137

About information object caching

Certain information objects, for example an information object that aggregates
data over a very large number of rows, take a long time to return data rows and
place a heavy load on production databases. You can reduce information object
execution time as well as the load on production databases by caching the
information object. You cache the data rows returned by an information object in
a single table in the cache database. A cache database must be of one of the
following types:

s DB2
m Oracle
m SQL Server

Information object caching is managed by the Actuate BIRT iServer System
Caching service For more information about the Caching service, see Configuring
BIRT iServer.

You cannot cache an information object that has a parameter.
To cache an information object, you perform the following tasks:

m In Information Object Designer, create a cache connection definition. A cache
connection definition defines the connection properties for the cache database.

m In Information Object Designer, create a cache object. A cache object is
associated with a table in the cache database.

m In Management Console, activate the cache object. Activating the cache object
creates a cache table.

m In Management Console, populate the cache table by running a job for the
cache object. You should periodically refresh the data rows in the cache table.

This chapter explains how to perform the first and second tasks. For information
about the third and fourth tasks, see Managing an Encyclopedia Volume.

Creating a cache connection definition

A cache connection definition defines the connection properties for the cache
database. Information Object Designer creates a subfolder in the project’s Cache
Sources folder to contain a cache connection definition file. A cache connection
definition file name has a .dcd extension. Cache connection definition file names
are not case-sensitive.

For example, if you create a cache connection definition for the database
MyCacheDatabase, Information Object Designer creates the folders Cache

138 Designing BIRT Information Objects

Sources and MyCacheDatabase and the cache connection definition file
_MyCacheDatabase.dcd. As shown in Figure 4-1, the file _MyCacheDatabase.dcd
resides in MyCacheDatabase.

TT Mavigakor £3 = S |

EB My Project
=+ Cache Sources
[E[= MyCacheDatabase

: @ _MyCacheDatabase.ded ————— Cache connection
B-{5 Data Sources definition file
[Information Objects
B project
Figure 4-1 A cache connection definition file

The procedure for creating a cache connection definition is the same as the
procedure for creating a data connection definition, except that you must also
provide the names of the database catalog and schema in which you want to
create the cache table. The database user you specify for the cache connection
definition must have permissions to create, modify, and delete tables in the
schema.

Creating a cache object

A cache object is associated with a table in the cache database. Information Object
Designer places the cache object file in the same folder as the cache connection
definition (.dcd) file for the cache database. A cache object file name has a .icd
extension. Cache object file names are not case-sensitive.

For example, Figure 4-2 shows that if you create a cache object using the cache
connection definition _MyCacheDatabase.dcd, Information Object Designer
places the file MyCacheObject.icd in the folder MyCacheDatabase.

TS Mavigator 2@] - & Y =0

=B MyProject

E‘E% 10 Designs

| EE MyProject

i =] = Cache Sources
EE& _MyCacheDatabase
: @ _mycacheDatabase.ded
: (-8 MyCacheObject icd
Eb Data Sources

; [#-[= Information Objects

[project

Figure 4-2 A cache object file

— Cache object file

When you create a cache object, you can specify the following:

m The default name for the cache table and the names of the columns in the
cache table

m A primary key for the cache table

Chapter 4, Caching information objects 139

m Indexes for the cache table

m How to refresh the data rows in the cache table

Refreshing the data rows in a cache table

When you refresh the data rows in a cache table, you can recreate the cache table
or add only new rows to the cache table. If you choose to recreate the cache table,
you can specify Data Definition Language (DDL) statements that are executed
after the cache table is created. For example, you can use DDL statements to
perform the following tasks:

m Create a foreign key.

m Execute a stored procedure.

m Create a trigger on the cache table.
m Create a check constraint.

m Create a clustered index.

If you choose to add only new rows to the cache table, you must specify an
update column for the cached information object. The update column is typically
of type Integer or Timestamp. The Caching service uses the update column in
either of two ways:

m The Caching service compares the values in the update column to the
maximum value of the corresponding column in the cache table.

m The Caching service compares the values in the update column to a parameter
value.

In either case, rows for which the value of the update column is greater than or
equal to the comparison value are added to the cache table.

For example, you want to cache an information object called
MylInformationObject that lists bank transactions. MyInformationObject contains
the following query. The update column, TransactionlD, contains the transaction
IDs and is of type Integer.

SELECT Transactions.TransactionID, Transactions.Date,
Transactions.Amount
FROM Transactions.iob

If you choose to have the Caching service compare the values in the update
column to the maximum value of the corresponding column in the cache table,
MyCacheTable, the Caching service issues the following query and appends the
rows in the result set to the cache table:

SELECT Transactions.TransactionID, Transactions.Date,
Transactions.Amount
FROM Transactions.iob

140 Designing BIRT Information Objects

WHERE Transactions.TransactionID
>= MAX(MyCacheTable.TransactionID)

If you choose to have the Caching service compare the values in the update
column to a parameter value, you must create a map or information object similar
to the following information object. This information object must meet the
following requirements:

m The output columns for the information object must have the same data types
as the output columns for the cached information object
(MyInformationObject in this example).

m The update column data type must match the parameter data type.
m The FROM clause must not refer to cached maps or information objects.

WITH (MyParameter Integer)

SELECT Transactions.TransactionID, Transactions.Date,
Transactions.Amount

FROM Transactions.iob

WHERE Transactions.TransactionID >= :MyParameter

When the cache job runs, the Caching service passes the value of
MAX(MyCacheTable.TransactionID) to MyParameter and appends the rows in
the result set to the cache table.

Database-specific limitations

If you are using a DB2 cache database, take note of the following limitations:
m Table name size must not exceed 128 bytes.

m Column name size must not exceed 30 bytes.

m Anindex name must be unique within the database.

m You cannot use a semicolon as a SQL delimiter in a set of DDL statements. As
a result, you cannot type more than one DDL statement in the Post-cache
replacement DDL statements text box, shown in Figure 4-9.

m In a DDL statement, a table name must be of the form

"schema_name"."table_name".
If you are using an Oracle cache database, take note of the following limitations:
m Table and column identifiers must not exceed 30 characters.
m Anindex name must be unique within the database.

m By default, column names in SQL Server database tables contain double
quotes, for example "ACSPECIAL_CHAR". Oracle databases, however, do not
support column names that contain double quotes. For this reason, you cannot
cache an information object built from SQL Server database tables in an Oracle

Chapter 4, Caching information objects 141

142

database without removing the double quotes from the column names in the
cache table. If you attempt to do so, an error similar to the following appears:

Executing a SQL statement returned a database error.
[ActuateDD] [Oracle JDBC Driver] [Oracle]ORA-03001: unimplemented
feature
The statement executed was:
CREATE TABLE "CACHEDB GAL"."ACSPECIALCHARS SQL ch" (
"ACSPECIAL CHAR" nvarchar2 (20) NULL,
"ACSPECIAL#CHAR" nvarchar2 (20) NULL,
"ACSPECIALSCHAR" nvarchar2 (20) NULL,
"EMBED""QUOTE" nvarchar2 (5) NULL

)

How to create a cache object

1 Choose File>New—>Cache Object.

2 In Choose a Cache DCD, select the cache connection definition for the
appropriate cache database, as shown in Figure 4-3. Choose Next.

=
Choose a Cache DCD
Choose a Cache DCD ko be associated with the cache object

El= Cache Sources
- Er(= MyCacheDatabase

(- Data Sources
(= Infarmation Objects

@ = Back I Mexk = I Finiisti | Cancel |
Figure 4-3 Selecting a cache connection definition

3 In Choose an object to cache, select the map or information object you want to
cache, as shown in Figure 4-4. Choose Next.

= =

Choose an ohject to cache

Choose an I0B or SMA ta cache. The cached object cannot be assaciated with a
cache already and cannot hawve any parameters,

[E+[= IC Designs
== MyProject
712 Cache Sources
(= Data Sources
=] (= Information Cbjects

mzBl 1y Tnformati
® < Back | Next = | Firish I Cancel |
Figure 4-4 Selecting an information object

Designing BIRT Information Objects

4 In Choose a name, type a name for the cache object, as shown in Figure 4-5.
Choose Finish.
J8[=] S

Choose a name

Choose a name for the new cache object

Cache object name I MyCacheObject

‘C?:' < Back | Text = | Finish I Cancel |
Figure 4-5

5 In Columns:

Typing a name for the cache object

m In Default table name, type the default name for the cache table, as shown
in Figure 4-6. You can override the default when you activate the cache
object using Management Console.

m In Name, type the names for the columns in the cache table.

Columns
Diefaul table name: IMyEaCheTabIe
Specify columns:
| Source column | Mame | Data type | -
MylnfarmationObject. custormer... | custamerNumber Integer
MylnfarmationObject.custorner... | customerM ame “Warchar
tulnfarmation0 bject. contactL.. contactLast ame Warchar
MylnformationObject. contactFir... | contactFirstM ame “archar
MylnfarmationObject. phane phone Warchar
MylnfarmationObject. addressLi.. | addresslinel “Warchar
MulnformationObject. addressLi... | addressLine2 Warchar
MylnformationObject. city city “archar
MylnfarmationObject. state state Warchar
MylnfarmationObject.postalCode | postalCode “Warchar
tulnfarmation0bject. country county Warchar
MylnformationObject.salesFep... | salesRepEmployeeNumber Integer
MylnfarmationObject. creditLimit | creditLimit Double
MylnfarmationObject. orderMun... | orderMurnber Integer
tulnfarmation0 bject. orderD ate orderD ate Timestamp
MylnformationObject. requiredD... | requiredDate Timestamp
MylnfarmationObject. shippedD... | shippedDate Timestamp
MylnfarmationObject. status status Warchar —1
MulnformationObject.comments | comments Warchar
MylnformationObject. customer... | customerMumber_1 Integer ﬂ

Figure 4-6

m Choose Optimization.

6 In Optimization:

m To define a primary key, in Define primary key (optional):

o In Available Columns, select the appropriate column(s).

Specifying cache table and column names

o Choose > to move the column(s) to Columns in Primary Key, as shown

in Figure 4-7.

Chapter 4, Caching information objects

143

Define primary key [optional]

Awailable Columng Columnz i Primary Key
GUSOMEINAME ... customertumber
contactlasth ame j
contactFirsthame
phone j

addressLinel
addressLine2 j

Figure 4-7 Defining a primary key
m To define an index, in Define table indices (optional):
o Choose Add.
o In New Index, type a name for the index. Choose OK.
o In Available Columns, select the appropriate column(s).

a Choose > to move the column(s) to Columns in Index, as shown in

Figure 4-8.
r Define table indices [optional)
Add
Delete
Avaiable Columng Colurare in Index
creditLimit -
requiredD ate LI j
Figure 4-8 Defining an index

m Choose Updates.
7 In Updates:

m In Post-cache replacement DDL statements (optional), type the DDL
statements, as shown in Figure 4-9.

Autornatic Cache Replacement

Past-cache replacement DDL statements [optional):

I{ 7 = cal EITESTDE.dbo.5P_CUSTOMERS_ORDERS 1}

Figure 4-9 Typing DDL statements
m In Update column, choose an update column from the drop-down list.

m Choose Use column as filter or Use column as parameter into data source.
If you choose Use column as parameter into data source, browse to the
appropriate map or information object, as shown in Figure 4-10.

144 Designing BIRT Information Objects

Incremental updates
Mew recards will be appended to the table, while existing records will be unchanged.

Update column | orderMumber j

€ Use column as fiter

% Lse column as parameter into data source

|HMyPrDiact:’| nfarmation Objects/Cachelpdatel 0.iob

Figure 4-10 Specifying an incremental update method

You specify automatic cache replacement or incremental cache update when
you schedule the cache job using Management Console.

Chapter 4, Caching information objects 145

146 Designing BIRT Information Objects

Building and
publishing a project

This chapter contains the following topics:

Building a project
Propagating column and parameter property values
Publishing a project

Downloading files from an Encyclopedia volume

Chapter 5, Building and publishing a project 147

Building a project

Building a project compiles the resources in the project. By default, Information
Object Designer builds a project whenever you modify and save a resource. If you
disable automatic building, choose Project>Build Project to build a project.

Build error messages appear in Problems, as shown in Figure 5-1. To locate an
error, double-click the error message. To filter the error messages, choose View
Menu~>Show and select the appropriate menu item. For example, to show all
errors, choose View Menu>Show->All Errors.

Double-click to Choose View
locate the error Menu to filter
error messages

E_ Problems &2 SZL Preview | Diaka Preview | D‘{E Query ProFiIer| ¥ =0
2 errors, O warnings 4 others

Description = Resource Location

€ Enar retrieving column information fram the database. MpSOLMap.zma Unknow
@ Line 1, Calumn 22: Every SELECT item column refere MplnformationObjgctiob Line 1. Calumn 22

Figure 5-1 The Problems view

[If the description is truncated, select the error message and choose Ellipsis to
display the complete description.

For more information about building a project and displaying error and warning
messages, see the Workbench User Guide in the Information Object Designer online
help.

Propagating column and parameter property values

Before you publish a project, make sure the information objects in the project
inherit the correct column and parameter property values by selecting the project
in Navigator and choosing Project>Propagate Property Values. Propagation of
property values may take several minutes. A map’s or information object’s
column order and category order are not propagated to its dependent
information objects.

Publishing a project

When you are ready to test or deploy a project, you must publish the project to
the appropriate Encyclopedia volume. You specify the Encyclopedia volume by
selecting an iServer profile. The iServer profile specifies the iServer, port number,
volume, user name, and password.

148 Designing BIRT Information Objects

Report design files and information object files are published to different
locations:

m Report design files (RPTDESIGNSs) are published to the folder you specify in
the Publish to iServer dialog. When you publish report design files, you have
the option to preserve the folder structure in the project.

m Information object files such as DCDs, SMAs, and IOBs are published to the
Encyclopedia volume’s resource folder. When you publish information object
files, the folder structure in the project is preserved.

You can publish an entire project or individual files. You can replace the latest
version of a file or create a new version.

How to create an iServer profile

1 IniServer Explorer, right-click and choose New iServer Profile.

2 In New iServer Profile:

In Profile Type, choose iServer from the drop-down list.

In Profile name, type the name of the iServer profile, for example
MyServerProfile.

In iServer, type the name or IP address of the computer on which the
Actuate iServer Message Distribution Service is running.

In Port number, type the number of the port on which the Actuate iServer
Message Distribution Service listens for requests.

The port number appears in the Port for the Message distribution service
endpoint on the Server Configuration Templates—Properties—Message
Distribution Service—Process Management—Communication page of
Configuration Console. The default port number is 8000.

In Volume, choose the Encyclopedia volume in which you want to store
Actuate BIRT project files.

In User name, type your Encyclopedia volume user name. You type this
user name when you log in to Management Console.

In Password, type your Encyclopedia volume password. You type this
password when you log in to Management Console.

If you select Remember Password, Information Object Designer stores the
password in encrypted format in acserverprofile.xml. You are not required
to provide the password again when you next launch Information Object
Designer. Storing the password in this way may pose a security risk.

If you deselect Remember Password, Information Object Designer stores
the password in memory for the duration of the session. When you next
launch Information Object Designer, you must provide the password again

Chapter 5, Building and publishing a project 149

in order to connect to the iServer. Remember Password is selected by
default.

Figure 5-2 shows an example of an iServer profile.

= I8 [=] b3
iServer Profile

Specify a profile name and connection properties.

Profile Type: IlServer j

Profile name: I MyiServerProfile

iServer: | athiena

Port number: | 5000

Yolume: I MyWolume j
User name: | Myllser
Password: I i Remember Password: [V

@:I Cancel |

Figure 5-2 Specifying an iServer profile

m Choose Finish.

The profile appears in iServer Explorer, as shown in Figure 5-3.

A iserver Explorer 32 1 ~ =08

—iServer profile

{& Dashboard
B-{= Home
= public
[+{= Resources

Figure 5-3 The iServer Explorer view, showing an iServer profile

Publishing information object files as resources

Information object files must reside in a project’s Shared Resources folder. By
default, a project’s Shared Resources folder is the project folder. If the Shared
Resources folder is not the project folder, you must copy information object files
to the Shared Resources folder before publishing. To check the location of the
Shared Resources folder, choose Window—>Preferences>Report Design
>Resource.

150 Designing BIRT Information Objects

When you publish information object files to an Encyclopedia volume, the files
are published to the IO Designs folder in the Encyclopedia volume’s resource
folder. The resource folder’s default location is /Resources. You must have write
privilege on the resource folder.

How to copy information object files to the shared resources folder
1 In Navigator, select the appropriate project.

2 Choose File>Copy to Resources>Copy Information Objects to Shared
Resources Folder.

3 In Share Information Objects, shown in Figure 5-4, select the appropriate files
and folders. Choose Finish.

&l =] S
Share Information Objects

Copy Infarmation Object ta shared resources Falder.

aka Sources
= MyDatabase

@ _MyDatabase.ded
% dbo.Customers.sma
% dbo.Emplovess. SMA

% dbo.CrderDetails. SMA
% dbo.Qrders, SMA
% dbo.Payments.sma

=-[A = Information Ohjects
[T MyInfarmationObiect igb

@:I Cancel |

Figure 5-4 Copying information object files and folders to Shared Resources

How to publish information object files as resources
1 Choose File>Publish>Publish to iServer.

2 In Publish to iServer, in iServer profile, choose an iServer profile from the
drop-down list.

In Project, select the appropriate project from the drop-down list.
Select Publish Resources.

Select the appropriate files and folders, as shown in Figure 5-5.

Chapter 5, Building and publishing a project 151

¥ Publish Resources

‘[(= Resource Falder
. (= Data Sources

(= MyDatabase

.5 dbo, Cuskomers,sma
% dbo Employees.SMA
[dbo Ofices.5Ma
% dbo. OrderDetails, M
% dbo, Orders, SMA
% dbo,Payments.sma
% dbo. Products. SMA
@ _MyDatabase.dcd
(= Information Objects
B MylrfarmationObiect.ioh

Yersion: %' Replace the latest version W Copy permissions from last version

" Create a new version

Figure 5-5 Publishing information object files as resources

6 In Version:

1 Select Replace the latest version to replace the latest version of each file, or
Create a new version to create a new version of each file.

2 To copy permissions from the last version of each file, select Copy
permissions from last version. If you do not select Copy permissions from
last version, you must set the permissions for each file using Management
Console.

7 Choose Publish Files.

A confirmation dialog, shown in Figure 5-6, appears.

Tl Al items were published,

File Marne | Status

e | Users\ Administr atoriworkspacel\My ProjectiData So...] Published.
%C:\Users'(Administrator'l,workspace'l,My ProjectiData So...] Published.
%C:\Users'(Administrator'l,workspace'l,My ProjectiData So... [¥] Published.
%C:\Users'(Administratur'l,wurkspace'l,My ProjectiData So... | Published.
E C:\UsersiadministratorworkspaceiMy ProjectiData So... vl Published.
%C:IUsers1Administratnr1wnrkspace\,My ProjectiData So... v Published.
%C:\Users'(Administrator'l,workspace'l,My ProjectiData So... v Published.
FEC | Users\Administratorwarkspace\My ProjectiInforma,.,] Published.
%C:\Users'(Administrator'l,workspace'l,My ProjectiData So...] Published.

|

Figure 5-6 Publishing confirmation dialog

152 Designing BIRT Information Objects

8 In Publishing, choose OK.

9 In Publish to iServer, choose Close.

Publishing information object files as non-resources

For projects created with Release 11 Service Pack 4 and later, information object
files are published to the volume’s resource folder. For projects created with
Release 11 Service Pack 3 and earlier, information object files are published to the
folder you specify in the Publish Information Objects dialog. To determine
whether information object files are published as resources or not, select the
appropriate project in Navigator and choose File>Properties>Actuate BIRT, as

shown in Figure 5-7.

-

/

Itype filter bext

[-Resource

- fAckuate BIRT

- Builders

- Project Facets

- Project References
- Refactoring History
[#- Repart Design

- RunfDebug Settings
- Server

Actuate BIRT o - - -

Current Translation Locale: I fr_FR vl

¢~ publish Information Objects as Resources

Lacalization Fils: I \LacalizationtMyProject_fr_FR.properties BrOWsE. .. |

* publish Information Objects as Mon-Resources

Localization File: | Ci\UserstAdministratorworkspacetMyProjectiLocalization MyProject_fr_FR.propetties

- Task Tags
[+ validation
- ki Test
@) cocel_|
Figure 5-7 Publishing information object files as non-resources

How to publish information object files as non-resources

1 In Navigator, right-click the appropriate project and choose
File>Publish>Publish Information Objects.

2 In Publish Information Objects:

1 Select the project, a folder, or individual files.

2 IniServer profile, select a profile from the drop-down list.

3 In Publish location, browse for the appropriate folder or accept the default
folder, as shown in Figure 5-8.

4 If you want Information Object Designer to remember this location the next
time you publish a project, select Remember this location.

Chapter 5, Building and publishing a project 153

MyPro
Data Sources

= MyDatabase
tyDatabase ded
= dbo.Customers. sma
& dbo.OrderD etails. sma
dbo. Orders. sma

B[Intarmation Objects
tylnformationDbject. iob
“ourlnformationObject.iob

_ew | e |
MyHomeFolder /
[

o v
-
i
Figure 5-8 Selecting files and folders to publish

5 Choose Publish Files.

A confirmation dialog, shown in Figure 5-9, appears.

@ /MyProject/D ata Sources/MyD atabase!_MyDatabase dod | Published.
MyProject/Data Sources/MyD atabase/dbo. Customers. sma Published.

MyProject/D ata Sources/MyD atabase/dbo. OrderD etails. sma Published.
wProject/D ata Sources/MyD atabase/dbo. Orders. sma Published.

M pProject/Information Objects/Mplnformation0bject iob Published.
M yProject/Information Objects Y ourlnformationObjsct iob Published.

Figure 5-9 Publishing confirmation dialog
3 In Publishing, choose OK.
4 In Publish Information Objects, choose Close.

Downloading files from an Encyclopedia volume

You can download report design files and information object files from an
Encyclopedia volume to an Actuate BIRT project. For example, you can download

154 Designing BIRT Information Objects

the example files that install with iServer and examine them as a way to
familiarize yourself with BIRT Designer Professional. Report design files and
information object files are downloaded from different locations:

m Report design files (RPTDESIGNs) are downloaded from the folder in which
they reside in the Encyclopedia volume to the project folder you specify. When
you download report design files, you have the option to preserve the folder
structure in the Encyclopedia volume.

m Information object files such as DCDs, SMAs, and IOBs are downloaded from
the Encyclopedia volume’s resource folder to the project’s Shared Resources
folder. When you download information object files, the folder structure in the
resource folder is preserved.

To download a file from an Encyclopedia volume, you must have read privilege
on the file.

How to download information object files from an Encyclopedia volume

1 Choose File>Download>Download from iServer.

2 In Download from iServer, choose an iServer profile from the drop-down list.
3 In Download to project, select the appropriate project from the drop-down list.
4 Select Download Resources.
5

Select the appropriate files and folders, as shown in Figure 5-10.

V' Download Resources

EsoUrces
DE Data Sources
=] E Infarmation Objects

; "'-‘_ MyInformationObject.iob
- BIRTSamples. rptibrary

8 Classic Modsls.data

D_ Classic Models datadesian
& themes.rptibrary

- [J&& ThemesReportltems.rptlibrary

&5

Figure 5-10 Downloading information object files
6 Choose Download.

The files and folders you download appear in Navigator.

Chapter 5, Building and publishing a project 155

156 Designing BIRT Information Objects

Assessing the impact of
project changes

This chapter contains the following topics:

About project dependencies
Searching for data connection definitions, maps, and columns
Displaying the project model diagram

Assessing the impact of a change on files in an Encyclopedia volume

Chapter 6, Assessing the impact of project changes 157

About project dependencies

Most files in an Actuate BIRT project depend on other files in the project. For
example, the project model diagram on the left in Figure 6-4 shows the
dependencies between files in a very simple project consisting of a data
connection definition, a map, an information object, and a report design. A
change to a file impacts the files that depend on it. In our example, let’s assume
that a column’s data type changes in the database table from which the map is
built and you update the map. A change to the map obviously impacts the
information object and the report design. In a typical project, however, the impact
of a change is not so obvious, as most files depend on several other files and there
are several layers of information objects.

Information Object Designer provides tools to make it easier to assess the impact
of project changes. You can search for specific data connection definitions, maps,
and columns used in a project. You can then display a project model diagram and
use the search results to show the impact of a change to a file or column.

Figure 6-3 shows the search results for the paymentDate column in the project
shown on the left in Figure 6-4. The project model diagram on the right in

Figure 6-4 shows the impact of a change to the map.

To assess the impact of a change on files in an Encyclopedia volume such as
report designs created in BIRT Studio and dashboard designs, you must use
command-line scripts.

Searching for data connection definitions, maps, and
columns

You can search for data connection definitions, maps, and columns used in a
project.

How to search for a data connection definition, map, or column
1 Choose Search~>Database.
2 In Search—Database Search:

1 Do one of the following;:

o InDatabases, select a host name and type from the list. The list includes
only database hosts found in the current project, regardless of the scope
of the search.

o In Search for database host name or select from the list below, type the
name of the database host.

158 Designing BIRT Information Objects

a In Search for database host name or select from the list below, make a
selection from the drop-down list.

If you want to specify a table name and, optionally, a column name and
have not already done so, choose Refine.

In Refine Database:
In Catalog, select the appropriate catalog.
In Filter:

o Todisplay tables and views from a particular schema, type the first
few characters of the schema name in Schema name prefix, for
example, dbo. Do not append an asterisk, for example, dbo*. This
filter is case-sensitive.

o To display only tables and views whose names begin with a
particular string, type the string in Table/View name prefix, for
example, ac. Do not append an asterisk, for example, ac*. This filter
is case-sensitive.

o Select Show tables only, Show views only, or Show all.
o Choose Apply filter.

In Available, select a table or expand the appropriate table and select a
column. In Figure 6-1, the paymentDate column in the Payments table
is selected. Choose OK.

> 3
Data source MyDatabase

Catalog: ICIassicMndeIs j

Avallable
=BT ClassicMadels
=8 dko
-E5] Customers
H| D Employees
]El Offices
]|:| OrderDetails
]|:| Orders
[—]D Payments
ET customerhurber
i E] checkhumber

[
[
[
[

paymentDate

IZII---I:| Products

Filker

Schema name prefic: I & Show tables only

Table/Yiew name prefix: | " Show views anly
" Shaw al
@:I Cancel |
Figure 6-1 Selecting a database column to search for

Chapter 6, Assessing the impact of project changes 159

4 In Scope, specify the scope of the search. You can search the entire
workspace, the resources selected in Navigator, the projects that enclose
the selected resources, or predefined working sets. The Search dialog looks
similar to Figure 6-2. Choose Search.

- Ji[=] B3

v

- File Search %" Database Search |E‘|; Java Search I @ JavaScript Search I 7 plug-in Search |

Search for database host name or select fram the list below:

I athena:dbo.Payments:paymentDate j Refine. .. |

{Syntax: <HostMame =; <TableMame:=: <Columniame =)

Databases:

Host name | Type
athena SOL_Server_2005

[SCopE
* \Workspace " selected resources ¢ Enclosing projects

" working set: | Chaose. .. |

C‘?} Customize. .. | Cancel |

Figure 6-2 Searching for a database column

The search results appear in the Search view. If you searched only for a
database host, the DCD path and file name appear. If you also searched for
a table and a column, the SMA path and file name and column name
appear as well, as shown in Figure 6-3.

{j‘._ Problems ‘ = SQL Preview ‘ o1 Daka Preview |“‘[§Query ProF\Ier[Q"'Saarch £3 | dLqp ‘ 4 S& | T QDC:- e ~ =0

athena:dbo. Payments: payrentDate - 1 makch
=@ athena(ClassicMadels) - MyPro

Figure 6-3 Displaying database search results

Displaying the project model diagram

The Navigator, shown in Figure 3-1, shows the physical relationships between
project files and folders on disk. The Navigator does not show the logical
relationships between files in a project. To display the logical relationships, you
must use the project model diagram. The project model diagram shows, from top
to bottom:

m Report designs
m The top layer of information objects

= Any intermediate layers of information objects

160 Designing BIRT Information Objects

m The base layer of information objects
= Maps
m Data connection definitions

The project model diagram also shows data sets, data designs, report libraries,
cache connection definitions, cache objects, and external procedures. Downward-
pointing arrows show the dependencies between files.

For example, the project model diagram on the left in Figure 6-4 shows the
following dependencies:

m The report design MyReport.rptdesign is dependent on the information object
MyInformationObject.iob.

m MylInformationObject.iob is dependent on the map
ClassicModels.dbo.Payments.

m ClassicModels.dbo.Payments is dependent on the data connection definition
_MyDatabase.dcd.

The project model diagram can help you assess the impact of a change to a file,
column, or parameter by highlighting the impact path in red. For example, the
project model diagram on the right in Figure 6-4 shows the impact of a change to
ClassicModels.dbo.Payments. MyReport.rptdesign, MyInformationObject.iob,
ClassicModels.dbo.Payments, and the arrows connecting them are highlighted in
red to indicate that a change to the map impacts the information object and the
report design.

5| Report Designs\MyReport. rptdesign || Report DiesignsiMyRepaort. rptdesign
& MyInfarmationChject iob &7 MyInformationChject icb
Columns Columns
8] paymentDate E paymentDate
= amaount [amaount
Parameters Parameters
% ClassicModels dbo ,Payments [ClassicMadels .dbo Payments
Columns Columns
E paymentDate E paymentDate
5] amaunt T amaunt
Parameters Parameters
@ _MyDatabase.dcd @ _mMyDatabase.dcdd
Figure 6-4 Project model diagram with (right) and without (left) impact path

Chapter 6, Assessing the impact of project changes 161

You can display a report that lists the files impacted by a change to a file or
column. For example, Figure 6-5 shows a report that lists the files impacted by a
change to dbo.Payments.sma.

v 11 =l

3

Impact of /MyProject/|IO Designs/MyProject/Data
Sources/MyDatabase/dbo.Payments.sma

/MyProject/IC Designs/MyProject/Information Cbhjects/MyInformationCbject.iob
| /MyProject/Report Designs/MyReport.rptdesign

2 impacted files found. v|v|

Figure 6-5 Impact report for dbo.Payments.sma

How to display the project model diagram

In the Navigator view or the Search view, right-click and choose Show
Relationship Overview.

How to display a specific part of the project model diagram

In the Report Design perspective, in the Outline view, drag the gray box to the
part of the project model diagram you want to display.

How to reinstate the project model diagram’s initial layout

You can change the project model diagram’s layout by dragging the shapes in the
diagram to a new location. To reinstate the initial layout, right-click in the white
space and choose Arrange All

How to collapse or expand column and parameter lists

In the project model diagram, double-click the word Columns or the word
Parameters for the appropriate column or parameter list. To collapse or expand
both columns and parameters, right-click the map or information object file name
and choose Collapse or Expand.

How to display an impact path

In the Navigator view, the Search view, or the project model diagram, right-click a
file name, column name, or parameter name and choose Show Impact.

How to clear an impact path

In the white space in the project model diagram, right-click and choose Clear
Impact.

How to refresh the project model diagram

In the white space in the project model diagram, right-click and choose
Regenerate Diagram.

162 Designing BIRT Information Objects

How to display an impact report

In the Navigator view or the Search view, right-click a file name or column name
and choose Generate Impact Report.

How to open the editor associated with afile

In the project model diagram, right-click the file name and choose Open Editor.

Assessing the impact of a change on files in an
Encyclopedia volume

The project model diagram can help you assess the impact of a change within an
Actuate BIRT project. The project model diagram cannot, however, show the
impact of a change on files in an Encyclopedia volume such as report designs
created in BIRT Studio and dashboard designs. To assess the impact of a change
on files in an Encyclopedia volume, you must use the following command-line
scripts:

m encycDownload.bat
encycDownload.bat downloads files and folders from an Encyclopedia
volume to a project in the local file system.

m encycAnalyze.bat
encycAnalyze.bat determines the dependencies between files in the project.

m encycFind.bat

encycFind.bat assesses the impact of a change to a file, data set, column, or
parameter and generates an impact report.

These scripts reside in <Actuatell_HOME>\BRDPro\eclipse and are only
supported on platforms that support BIRT Designer Professional. Each script
takes several arguments. Paths and arguments that contain spaces must be
enclosed in quotation marks ().

Downloading files from an Encyclopedia volume

To download files and folders from an Encyclopedia volume to a project folder in
the local file system, run encycDownload.bat. You must run encycDownload.bat
in the workspace folder in which you want to create the project. You must re-run
encycDownload.bat whenever the contents of the Encyclopedia volume change.

To display the syntax for encycDownload.bat, open a Command Prompt window
and cd to <Actuatell_HOME>\BRDPro\eclipse. Then, type:

encycDownload.bat -help

Chapter 6, Assessing the impact of project changes 163

encycDownload.bat takes the following arguments:

m host
The host from which to download. The default is localhost.

m port
The port number to connect on. The default is 8000.

= volume
The Encyclopedia volume.

m location

The Encyclopedia volume folder from which to download. The default is the
root folder.

= login
The Encyclopedia volume user name.

m pass
The Encyclopedia volume user’s password. The default is no password.
m project
The name of the project to create. The default is DiagramProject.

For example, you open a Command Prompt window and cd to the workspace
folder in which you want to create the project. You then type:

"C:\Program Files (x86)\Actuatell\BRDPro\eclipse
\encycDownload.bat" -project MyProject -location "/"
-login MyUser -volume MyVolume -host MyServer -port 8000

encycDownload.bat does the following:

m Creates the project MyProject in the workspace folder

m Logs in to the Encyclopedia volume MyVolume as MyUser
m Downloads the contents of MyVolume to MyProject

Determining the dependencies between project files

Once you have downloaded the contents of an Encyclopedia volume to a project
folder, you must determine the dependencies between files in the project by
running encycAnalyze.bat. You must run encycAnalyze.bat in the workspace
folder in which you ran encycDownload.bat. You must re-run encycAnalyze.bat
whenever the contents of the project change.

To display the syntax for encycAnalyze.bat, open a Command Prompt window
and cd to <Actuatell_HOME>\BRDPro\eclipse. Then, type:

encycAnalyze.bat -help

164 Designing BIRT Information Objects

encycAnalyze.bat takes one argument, the project name. The default is
DiagramProject.

For example, you open a Command Prompt window and cd to the workspace
folder in which you ran encycDownload.bat. You then type:

"C:\Program Files (x86) \Actuatell\BRDPro\eclipse\encycAnalyze.bat"
-project MyProject

encycAnalyze.bat determines the dependencies between files in the project
MyProject.

Generating an impact report

Once you have determined the dependencies between files in a project, you can
run encycFind.bat to assess the impact of a change to a file, data set, column, or
parameter and generate an impact report. You must run encycFind.bat in the
workspace folder in which you ran encycAnalyze.bat. You can re-run
encycFind.bat any number of times.

To display the syntax for encycFind.bat, open a Command Prompt window and
cd to <Actuatell_HOME>\BRDPro\eclipse. Then, type:

encycFind.bat -help
encycFind.bat takes the following arguments:
m project
The name of the project to search. The default is DiagramProject.

m file

Path to the file whose change impact you want to assess. If you do not provide
a query argument, you must provide a file argument.

m entity (optional)
If you provide a file argument, you can also specify a data set, column, or
parameter. Names that contain spaces must be enclosed in quotation
marks ("). The entity type must be compatible with the file type. For example,
if the specified file is a report design, you can specify a data set or data set
column. To specify the data set MyDataSet, type:

-entity dataset:MyDataSet
To specify the First Name column in the data set MyDataSet, type:
-entity column:MyDataSet:"First Name"

If the specified file is a map or information object, you can specify a column or
parameter. To specify the First Name column, type:

-entity column:"First Name"

Chapter 6, Assessing the impact of project changes 165

To specify the p_MaxDate parameter, type:
-entity parameter:p MaxDate

m query
A database search string using the same syntax as in the Search—Database
Search dialog, <HostName>:<TableName>:<ColumnName>. Change impact
is assessed for the data connection definition, map, or column returned by the

search. If you do not provide a file argument, you must provide a query
argument.

m report

Name of the impact report. The default is impactResults.rptdocument. The
report is created in the workspace folder.

For example, you open a Command Prompt window and cd to the workspace
folder in which you ran encycAnalyze.bat. You then type:

"C:\Program Files (x86)\Actuatell\BRDPro\eclipse\encycFind.bat"
-project MyProject -file "/MyProject/IO Designs/MyProject/Data
Sources/MyDatabase/dbo.Payments.sma" -entity column:paymentDate
-report MyImpactReport.rptdocument

encycFind.bat does the following;:

m Assesses the impact of a change to the paymentDate column in the map
dbo.Payments.sma

m Generates an impact report called MylmpactReport.rptdocument in the
workspace folder

Alternatively, you can type the following command to achieve the same result:

"C:\Program Files (x86)\Actuatell\BRDPro\eclipse\encycFind.bat"
-project MyProject -query athena:dbo.Payments:paymentDate
-report MyImpactReport.rptdocument

To assess the impact of a change to the First Name column in the data set
MyDataSet, type:

"C:\Program Files (x86)\Actuatell\BRDPro\eclipse\encycFind.bat"
-project MyProject -file "/MyProject/Report Designs
/MyReport.rptdesign" -entity column:MyDataSet:"First Name"
-report MyImpactReport.rptdocument

166 Designing BIRT Information Objects

Actuate SQL reference

This chapter contains the following topics:

m About Actuate SQL

m Differences between Actuate SQL and ANSI SQL-92
m Actuate SQL syntax

m Data types and data type casting

m Functions and operators

m Providing query optimization hints

m Using pragmas to tune a query

Chapter 7, Actuate SQL reference 167

About Actuate SQL

An information object encapsulates an Actuate SQL query. You can create the
Actuate SQL query that defines an information object in Information Object
Designer by typing the Actuate SQL query in the textual query editor or by
specifying the desired query characteristics in the graphical query editor. If you
use the graphical query editor, you can view the resulting Actuate SQL query in
SQL Preview.

If you already have one or more existing information objects, you can access the
information object data by specifying a query on the information object using a
report designer’s Information Object Query Builder. You can create the query on
the information object by typing a Actuate SQL query in the textual query editor
or by specifying the desired query characteristics in a graphical query editor. If
you use the graphical query editor, you can view the resulting Actuate SQL query
in SQL Preview.

A query that defines an information object and a query on an information object
both use Actuate SQL. Actuate SQL is based on the ANSI SQL-92 standard. This
chapter describes the differences between Actuate SQL and ANSI SQL-92. This
chapter also describes the FILTERS statement that you can use when creating a
query from Information Object Query Builder in a report designer.

Differences between Actuate SQL and ANSI SQL-92

Actuate SQL is based on ANSI SQL-92. This section provides an overview of the
differences between Actuate SQL and ANSI SQL-92. This section also provides an
overview of the FILTERS statement that is available from report designers. Report
designers support using the FILTERS statement with Actuate SQL to dynamically
filter SELECT statements.

Limitations compared to ANSI SQL-92
Actuate SQL has the following limitations compared to ANSI SQL-92:
m Only the SELECT statement is supported.

m Data types are limited to integers, strings, timestamps, floating point numbers,
and decimals.

m Intersection and set difference operations are not available.
UNION and UNION DISTINCT are not supported. UNION ALL is
supported. To obtain the same results as a UNION DISTINCT operation,
perform a UNION ALL operation followed by a SELECT DISTINCT
operation. For example, IO3 performs a UNION ALL operation on 101
and 102:

168 Designing BIRT Information Objects

SELECT empNo, eName
FROM "IOl.iob" AS IO1
UNION ALL

SELECT empNo, eName
FROM "IO2.iob" AS IO2

To obtain distinct results from 103, create 104, which performs a SELECT
DISTINCT operation on 103:

SELECT DISTINCT empNo, eName
FROM "IO3.iob" AS IO3

m LIKE operator patterns and escape characters must be literal strings,
parameters, or expressions. The LIKE operator does not support column
references, subqueries, or aggregate functions, for example, MAX and AVG.

m Unnamed parameters are not supported.
m Some subqueries are not supported.

= Not all ANSI SQL-92 functions and operators are available.

Extensions to ANSI SQL-92
Actuate SQL has the following extensions to ANSI SQL-92:

m Parameterized queries with named parameters

A parameterized query starts with a WITH clause that specifies the names and
types of parameters that the query uses. The following example shows using
parameters to specify returning rows where salesTotal is within a range
specified by two parameters:

WITH (minTotal DECIMAL, maxTotal DECIMAL)

SELECT o.id, o.date

FROM "/sales/orders.sma" o

WHERE o.salesTotal BETWEEN :minTotal AND :maxTotal

A query with a parameterized SELECT statement is typed and is subject to the
same casting rules as a function call, except that parameter declarations
specify the maximum scale, precision, and length of parameter values. All
parameter values are required. A parameter value must be a literal, for
example 'abc’, NULL, a parameter reference, or an Actuate SQL expression. A
parameter value cannot be a column reference, for example,
ORDERS.ORDERID.

m Parameterized table, view, and query references
A parameterized table or view reference in a query enables specification of the
query without knowing the table or view until run time. At run time, the
values of the parameters specify the table. In the following example, the table
is specified by the IOB name and the team and position parameters:

Chapter 7, Actuate SQL reference 169

WITH(team VARCHAR, position VARCHAR, minGamesPlayed
INTEGER)

SELECT playername

FROM "/sports/baseball/japan/players.iob" [:team, :position]

WHERE GamesPlayed > :minGamesPlayed

Parameter passing is typed and is subject to the same casting rules as a
function call.

m Scalar subqueries

A scalar subquery is a query that returns a scalar value that is used in a second
query. For example, the following query returns a scalar value:

SELECT SUM(B.Quantity * B.UnitPrice)
FROM "Order Detail.sma" AS B

This second query uses the previous query as a scalar subquery, evaluating the
result of the scalar subquery and checking if the result is greater than 1000:

SELECT CustomerID
FROM "Customers.sma" C
LEFT OUTER JOIN
"Orders.sma" O
ON (C.CustomerID=0.CustomerID)
WHERE
(SELECT SUM (B.Quantity * B.UnitPrice)
FROM "Order Detail.sma" AS B
) > 1000

m Join control syntax specifying the join algorithm
In Actuate SQL, you can specify the algorithm to use for joins. There are three
join algorithms in Actuate SQL:

m Dependent join
A dependent join specifies obtaining all the results for the left side of the
join and then using each resulting row to process the right side of the join.
This algorithm is especially efficient when the left side of the join does not
return many rows and the data source of the right side can handle
evaluating the join criteria.

= Nested loop join

A nested loop join specifies obtaining and storing in memory all the results
for the right side of the join. Then, for each row resulting from the left side,
a nested loop join evaluates the right side results for matches to the join
criteria. This algorithm is especially efficient when the right side of the join
does not return many rows and the join expression cannot be delegated to
the data source of the right side.

170 Designing BIRT Information Objects

m Merge join
A merge join specifies obtaining the results for the right and left sides of the
join and comparing these results row by row. Merge joins are applicable
only for joins where the value on the left must be equal to the value on the
right. This algorithm uses less memory than a nested loop join. This
algorithm is especially efficient if the data sources sort the rows but
presorting is not required.

The following example shows a merge join in a simple SELECT statement:

SELECT customers.custid, customers.customname,
customers.city, salesreps.lastname, salesreps.email

FROM customers MERGE JOIN salesreps
ON customers.repid = salesreps.repid

The following example shows a dependent join in a parameterized SELECT
statement:

WITH (minRating INTEGER)
SELECT c.name, o.date, o.shippingStatus
FROM
"/uk/customers.sma" c
DEPENDENT JOIN
"/sales/orders.sma" o
ON c.id = o.custId
WHERE c.rating >= :minRating

You can also specify whether the join is an inner join or left outer join. The
following example shows a SELECT statement with a left outer join:

SELECT customers.custid, customers.contact last,
customers.contact first, salesreps.lastﬁéme,
salesreps.firstname

FROM salesreps LEFT OUTER JOIN customers

ON salesreps.firstname = customers.contact first

For information about inner and outer joins, see the SQL reference guide for
your database.

Pragmas to alter query semantics
Additional functions

The ability to have ORDER BY items other than SELECT items or aliases, for
example:

SELECT customers.contact first || ' ' ||
customers.contact last
"MOST_ VALUED CUSTOMERS"
FROM "/customers.sma" customers
WHERE customers.purchasevolume > 3
ORDER BY customers.purchasevolume DESC

Chapter 7, Actuate SQL reference 171

If an ORDER BY item is not a SELECT item or an alias, it must be a grouping
column if a GROUP BY clause is present. ORDER BY items must be SELECT
items if SELECT DISTINCT is specified.

Use ORDER BY only when creating a query in a report designer. Do not use
ORDER BY when you create an information object in Information Object
Designer.

m The ability to have GROUP BY items that are expressions, for example:

SELECT DATEPART ('yyyy', orders.shipbydate) "YEAR",
DATEPART ('m', orders.shipbydate) "MONTH",
COUNT (*) "NUM_ORDERS"

FROM "/orders.sma" orders

GROUP BY DATEPART ('yyyy', orders.shipbydate),
DATEPART ('m', orders.shipbydate)

To use an expression as a GROUP BY item, the expression must appear as a
SELECT item. Aggregate functions are not allowed in GROUP BY expressions
unless they are outer references from a subquery and the subquery is
contained in the HAVING clause of the parent query. Complex GROUP BY
expressions cannot be used in the HAVING clause of the query.

m The ability to use references to aliases

Database limitations

Because the Integration service delegates many of its operations to the databases,
these operations are affected by database limitations, such as the maximum
precision of decimal types or the treatment of zero-length strings.

FILTERS statement in report designers

In addition to Actuate SQL’s extensions to ANSI SQL-92, report designers
support using a FILTERS statement with Actuate SQL to dynamically filter
SELECT statements. A dynamically filtered SELECT statement enables the user to
specify additional filters in the WHERE clause or HAVING clause when running
a SELECT statement or a parameterized SELECT statement. The FILTERS
statement specifies one or more dynamic filters, their data types, and the
beginning of each filter. The user completes conditions using operators, constants,
and column names:

FILTERS (filterl Integer 'o.salesRepID' , filter2 Varchar
'o.territory = ')

WITH (minTotal Decimal, maxTotal Decimal)

SELECT o.1id, o.date

FROM "/sales/orders.sma" o

WHERE o.salesTotal BETWEEN :minTotal AND :maxTotal AND :?filterl
AND :?filter2

172 Designing BIRT Information Objects

Information Object Designer does not support use of the FILTERS statement.

Actuate SQL syntax

Actuate SQL syntax is similar to SQL-92 syntax. Actuate SQL has additional
syntax for naming tables and columns. Table 7-1 provides a description of the
typographical conventions used in describing Actuate SQL grammar.

Table 7-1 Typographical conventions used in describing Actuate SQL
grammar
Convention Used for...
NORMAL UPPERCASE Actuate SQL keywords.
ITALICIZED Tokens.
UPPERCASE
| (vertical bar) Separating syntax items. You choose one of the
items.
[] (brackets) Optional syntax items. Do not type the brackets.
{ } (braces) Required syntax items. Do not type the braces.
[,..n] Indicating that the preceding item can be repeated n

number of times. The item occurrences are
separated by commas.

[...n] Indicating that the preceding item can be repeated n
number of times. The item occurrences are
separated by blanks.

<label> The name for a block of syntax. This convention is

used to label syntax that can appear in more than
one place within a statement. Each location in which
the block of syntax can appear is shown with the
label enclosed in chevrons, for example <label>.

Table 7-2 lists the tokens used in the Actuate SQL grammar.

Table 7-2 Tokens used in describing the Actuate SQL grammar
Token Definition
IDENTIFIER A sequence of Unicode letters, digits, dollar signs,

and underscores combining characters and
extenders. The first character must be a letter.

(continues)

Chapter 7, Actuate SQL reference 173

Table 7-2 Tokens used in describing the Actuate SQL grammar (continued)

Token Definition

IDENTIFIER (continued) ~ Use double quotes to quote identifiers. To represent
a double quote within a quoted identifier, use two
double quotes. Quoted identifiers can include any
characters except carriage return or new line.

CHAR_LITERAL Any Unicode text between single quotes other than
carriage return or new line. To represent a single
quote, use two single quotes. Multiple consecutive
character literals are concatenated.

DECIMAL_LITERAL An integer literal followed by a decimal point and
an optional integer representing the fractional part.

Syntax: (INTEGER LITERAL .) |
(. INTEGER_LITERAL) | (INTEGER LITERAL.
[INTEGER _LITERAL])

DOUBLE_LITERAL A number of the form 1.2E+3. If the sign is omitted,
the default is positive.

Syntax: ((. INTEGER LITERAL) |
(INTEGER_LITERAL. [INTEGER_LITERAL]))
[(e|E) [-]|+] INTEGER LITERAL]

INTEGER_LITERAL One or more consecutive digits.

TIMESTAMP_STRING A literal string that is interpreted as a timestamp
value, such as '2002-03-31 13:56:02.7". Years are
4 digits. Seconds are 2 digits with an optional
fraction up to 3 digits. All other fields are 2 digits.
The space between the date and time sections is
required.

Format: 'yyyy-mm-dd hh:mm:ss.msec'

Actuate SQL grammar

The Actuate SQL grammar contains one statement. The syntax of this statement
is:

[<Pragma>] [..n] [<QueryParameterDeclaration>] <SelectStatements>

Report designers also use a FILTERS statement that incorporates Actuate SQL.
Information Object Designer does not support use of the FILTERS statement. The
syntax for the FILTERS statement is:

<FilterClause> <QueryParameterDeclaration> <SelectStatement>

Table 7-3 provides the syntax for the grammar parts used in these statements.

174 Designing BIRT Information Objects

Table 7-3

Syntax for the Actuate SQL grammar parts

Grammar part Syntax

AdditiveExpression <MultiplicativeExpression> {(+ | - | [])
<MultiplicativeExpression>} [...n]

AdHocParameter ‘?IDENTIFIER
Use AdHocParameter only in a FILTERS statement, which is
available only from a report designer. AdHocParameter cannot
be used in a WITH clause.

AggrExpression COUNT (([ALL | DISTINCT] <ValueExpression> | *))
| (AVG | MAX | MIN | SUM) ([ALL | DISTINCT]
<ValueExpression>)

AndExpression {<UnaryLogicalExpression>} [AND...n]

CardinalityType 11?2+

CaseExpression CASE [<ValueExpression>]
{<WhenClause>} [...n]
[ELSE <ValueExpression>]
END

CastExpression CAST((<ValueExpression> | NULL)
AS <ScalarDataType>)

ColumnAlias IDENTIFIER

CondExpr {<AndExpression>} [OR...n]

ConditionalPrimary (<CondExpr>) | <SimpleCondition> | <AdHocParameter>
Use AdHocParameter only in a FILTERS statement.

DataType <ScalarDataType>

ExplicitinnerOuterType LEFT [OUTER] | INNER

ExplicitjoinType MERGE | NL | DEPENDENT

ExpressionList {<ValueExpression>} [,...n]

FilterClause FILTERS(IDENTIFIER DataType 'ValueExpression' [,...n])
Use FILTERS only from a report designer.

FromClause {FROM <FromTableReference>} [,...n]

FromTableName IDENTIFIER [(<TableParameters>)] [[AS] IDENTIFIER]
If the identifier is not enclosed in quotes, it is interpreted as a
table. If the identifier is enclosed in quotes, it is interpreted as
an absolute or relative path in the Encyclopedia volume.

FromTableReference <JoinExpression> | (<JoinExpression>) | <FromTableName>

FunctionCallOrColumnRef

IDENTIFIER (([<ExpressionList>]) | [. IDENTIFIER])

(continues)

Chapter 7, Actuate SQL reference 175

Table 7-3 Syntax for the Actuate SQL grammar parts (continued)

Grammar part

Syntax

GroupByClause

HavingClause

JoinCondition

JoinElement

JoinExpression
JoinSpec

Length
MultiplicativeExpression
NamedParameter
OrderByClause

ParameterDeclaration
ParamPlaceholder
Pragma

Precision

PrimaryExpression

QueryParameterDeclaration

RelationalOperator

GROUP BY {<ValueExpression>} [,...n]
ValueExpression can be an expression as long as the
expression also appears as a SELECT item.

HAVING <CondExpr>

ON <CondExpr> [{CARDINALITY('<CardinalityType> -
<CardinalityType>")}]

(<JoinExpression>) | <FromTableName>

<JoinElement> {<JoinSpec><JoinElement> [<JoinCondition>]}

[...n]

[[[LEFT | RIGHT] OPTIONAL] <ExplicitinnerOuterType>]
[<ExplicitJoinType>] JOIN

INTEGER_LITERAL

<UnaryExpression> {(* | /) UnaryExpression} [...n]

: IDENTIFIER

ORDER BY {<ValueExpression> (ASC | DESC)? } [,...n]
ValueExpression is not limited to SELECT items or aliases. If
ValueExpression is not a SELECT item or an alias, it must be a
grouping column if a GroupByClause is present.

Use ORDER BY only when creating a query in a report
designer. Do not use ORDER BY when you create an
information object in Information Object Designer.
IDENTIFIER [<AS>] <Data Type>
<NamedParameter>

PRAGMA IDENTIFIER := CHAR_LITERAL
INTEGER_LITERAL

<FunctionCallOrColumnRef>
| <ParamPlaceholder>

| <UnsignedLiteral>

| <AggrExpression>

| (<ValueExpression>)

| <CastExpression>

WITH ({<ParameterDeclaration>} [,...n])
All parameters are required.

=|<>|<|<=]>|>=

176 Designing BIRT Information Objects

Table 7-3 Syntax for the Actuate SQL grammar parts (continued)

Grammar part

Syntax

ScalarDataType

Scale
Selectltem
SelectList

SelectStatement

SelectWithoutFrom
SelectWithoutOrder

SetClause

SignedLiteral

SimpleCondition

VARCHAR [(<Length>)]

| DECIMAL [(<Precision>, <Scale>)]
| INTEGER

| DOUBLE [<Precision>]

| TIMESTAMP

INTEGER_LITERAL

<ValueExpression> [[AS] <ColumnAlias>]
{<Selectitem>} [,...n]
(<SelectWithoutOrder> [<OrderByClause>])
| <SelectWithoutFrom>

SELECT <ValueSelectList>

(

(

SELECT [ALL | DISTINCT] <SelectList>
<FromClause>

[<WhereClause>]

[<GroupByClause>]

[<HavingClause>]

[<SetClause>]

)

(<SelectWithoutOrder>)

[<SetClause>]

UNION ALL

(<SelectWithoutOrder> | <SelectWithoutFrom>)
CHAR_LITERAL

[+] -]INTEGER_LITERAL

[+ | -]DOUBLE_LITERAL

[+ | -]DECIMAL_LITERAL

[TIMESTAMP TIMESTAMP_STRING

EXISTS <SubQuery>
| <SubQuery> <RelationalOperator> <ValueExpression>
| <ValueExpression>

(<RelationalOperator>

(
([ANY | ALL] <SubQuery>) | <ValueExpression>
)

(continues)

Chapter 7, Actuate SQL reference 177

Table 7-3 Syntax for the Actuate SQL grammar parts (continued)
Grammar part Syntax
SimpleCondition (continued) | IS [NOT] NULL

| INOT]

(

SubQuery
TableParameter

TableParameters
UnaryExpression
UnaryLogicalExpression

UnsignedLiteral

ValueExpression
ValueSelectItem
ValueSelectList
WhenClause
WhereClause

BETWEEN <ValueExpression> AND <ValueExpression>
| LIKE <ValueExpression> [ESCAPE <ValueExpression>]
| IN <SubQuery>

| IN (ExpressionList)

)

The escape character must evaluate to a single character other
than a single quote, a percent sign, or an underscore.

(<SelectWithoutOrder> [OPTION (SINGLE EXEC)])

(<SignedLiteral> | NULL | <ParameterReference> |
<ValueExpression>)

<TableParameter> [,...n]
[+ | -] <PrimaryExpression>
[NOT] <ConditionalPrimary>

CHAR_LITERAL
[INTEGER_LITERAL
[DOUBLE_LITERAL
IDECIMAL_LITERAL

[TIMESTAMP TIMESTAMP_STRING

<AdditiveExpression> | <CaseExpression>
<ValueExpression> [[AS] <ColumnAlias>]
{<ValueSelectlitem>} [,...n]

WHEN <ValueExpression> THEN <ValueExpression>
WHERE <CondExpr>

Using white space characters

White space characters include the space, tab, and new line characters. Multiple
white space characters are not significant outside of literal strings and quoted

identifiers.

Using keywords
The Actuate SQL keywords are shown in the following list:

178 Designing BIRT Information Objects

s ALL

= AND

m ANY

m AS

m ASC

m AVG

s BETWEEN
= BY

ms CARDINALITY

m CASE

m CAST

s COUNT

m DEC

= DECIMAL

s DEPENDENT

m DESC

m DISTINCT
s DOUBLE
m ELSE

s END

m ESCAPE

Actuate SQL keywords are not case-sensitive. To prevent incompatibility with

EXEC
EXISTS
FALSE
FILTERS
FROM
GROUP
HAVING
IN
INNER
INT
INTEGER
IS

JOIN
LEFT
LIKE
MAX
MERGE
MIN
NL
NOT
NULL

ON
OPTION
OPTIONAL
OR

ORDER
OUTER
PRAGMA
PRECISION
RIGHT
SELECT
SINGLE
SUM

THEN
TIMESTAMP
TRUE
UNION
VARCHAR
WHEN
WHERE
WITH

other versions of SQL, do not use SQL-92 keywords. If you use an identifier that
is also a keyword, place double quotes around the identifier.

Using comments

Precede a single-line comment with two hyphens. Enclose a multiline comment

with /*and */.

Chapter 7, Actuate SQL reference

179

Specifying maps and information objects in Actuate
SQL queries

In Information Object Designer, a map or information object name should be
qualified by its relative path in the Encyclopedia volume. The path is relative to
the IOB file. Use forward slashes to separate components of the path, for example:

. ./Data Sources/MyDatabase/dbo.customers.sma

In a query from a report designer, a map or information object name should be
qualified by its absolute path in the Encyclopedia volume. Use forward slashes to
separate components of the path, for example:

/MyProject/Data Sources/MyDatabase/dbo.customers.sma

Using identifiers in Actuate SQL

Identifiers include table and column names. Actuate SQL identifiers have the
same limitations as standard SQL identifiers. For example, you must enclose an
identifier in double quotes if it contains an illegal character such as a space or if it
is identical to a SQL-92 keyword. Unlike the SQL-92 standard, however, there is
no length limitation on Actuate SQL identifiers. Identifiers can contain Unicode
characters.

Using column aliases in Actuate SQL

When you use column aliases, the following rules apply:

m The column and alias names of the items in the first SELECT statement of a
UNION of statements are definitive.

m Within the items in a SELECT statement, you can use previously defined
aliases to create expressions, for example:

SELECT coll AS a, col2 AS b, a+b
m Only SELECT and ORDER BY can use aliases.
m You cannot use an alias in an aggregate expression, for example, MAX(a).

m You can use aliases defined in an outer SELECT statement in a nested SELECT
statement.

m You can use aliases from the items in the first SELECT statement in a set of
UNION statements in the ORDER BY clause of the query.

Specifying parameter values
A parameter value must be one of the following:
m A literal value, for example 'abc’ or 123

m The NULL literal value

180 Designing BIRT Information Objects

Examples

m A parameter reference

m An expression consisting of literal values, parameter references, and Actuate
SQL functions and operators

A parameter value cannot include column references, subqueries, or aggregate
functions.

MylInformationObject uses the parameters p1, p2, and p3. The following query
passes the parameter values :p1, -100, and 'abc’' to MyInformationObject. :p1
represents the value of parameter p1 provided by the user. -100 and 'abc’ are
literal values:

WITH (pl INTEGER, p2 INTEGER, p3 VARCHAR)
SELECT ..
FROM "MyInformationObject.iob" [:pl, -100, 'abc']

MylInformationObject uses the parameter p1l. The following query passes the
NULL literal value to MyInformationObject:

WITH (pl INTEGER)
SELECT ..
FROM "MyInformationObject.iob" [NULL]

MylInformationObject uses the parameter p1l. The following query passes the
NULL literal value, cast as integer data type, to MyInformationObject:

WITH (pl INTEGER)
SELECT ...
FROM "MyInformationObject.iob" [CAST (NULL AS INTEGER)]

MylInformationObject uses the parameter p1l. The following query passes the
expression :pl + 10 to MyInformationObject:

WITH (pl INTEGER)

SELECT .

FROM "MyInformationObject.iob" [:pl + 10]

MylInformationObject uses the parameters p1 and p2. The following query passes
the parameter reference :p1l and the expression :pl | | :p2 to
MylInformationObject:

WITH (pl VARCHAR, p2 VARCHAR)

SELECT .

FROM "MyInformationObject.iob" [:pl, :pl || :p2]

MylInformationObject uses the parameters p1 and p2. The following query passes
two expressions to MyInformationObject:

WITH (pl INTEGER, p2 INTEGER)
SELECT ..

FROM "MyInformationObject.iob" [:pl + 10, CASE WHEN :p2 > 100 THEN
100 ELSE 0 END]

Chapter 7, Actuate SQL reference 181

Using subqueries in Actuate SQL
Subqueries have the following limitations:

m Subqueries are supported in every clause except the FROM clause.
Specifically:

m Subqueries cannot be used in Actuate SQL parameters or JOIN conditions.

= Subqueries cannot constitute derived tables.

Derived tables are tables in a FROM clause that are the result of running a
subquery.

m Subqueries must be operands to the operators IN or EXISTS, or operands to a
comparison operator such as =, >, or >=ALL. Only one operand of the
comparison operator can be a subquery, not both.

= Only single-column subqueries are supported. In other words, each subquery
must have only one SELECT item.

m Subqueries cannot have more than one SELECT statement. In other words, set
operators such as UNION ALL are not allowed in subqueries.

Subqueries can use OPTION (SINGLE EXEC). The SINGLE EXEC option
improves the performance of a query when the query cannot be pushed to the
database. When the SINGLE EXEC option is specified, the non-correlated portion
of the subquery is executed once against the target database, while the correlated
portion is executed within the Integration service.

By default, a subquery from a different database is implemented using a
dependent join. Using the SINGLE EXEC option, a subquery can be executed
using a single dependent query instead of executing one dependent query for
each row of the outer query, for example:

SELECT DISTINCT CUSTOMERS.CUSTID AS "CUSTID",
ORDERS.ORDERID AS "ORDERID"

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

INNER JOIN "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS

ON CUSTOMERS.CUSTID = ORDERS.CUSTID

WHERE (SELECT count (ITEMS.PRICEQUOTE)

FROM "../Data Sources/YourDatabase/ITEMS.SMA" ITEMS
WHERE ORDERS.ORDERID = ITEMS.ORDERID
OPTION (SINGLE EXEC)) < 100

ORDER BY CUSTOMERS.CUSTID, ORDERS.ORDERID

Using derived tables in Actuate SQL

A derived table is a virtual table that is calculated on the fly from a SELECT
statement. A derived table can be used in a FROM clause, WHERE clause,
HAVING clause, or subquery, for example:

182 Designing BIRT Information Objects

SELECT ColumnO1l
FROM (Derived table)

A derived table can have parameters.

Data types and data type casting

Table 7-4 lists Actuate SQL data types and a description of each data type.

Table 7-4 Actuate SQL data types
Data type Description
String ("VARCHAR") A sequence of Unicode characters. You can specify

a maximum character length for the string. For
example, VARCHAR (30) represents strings with a
maximum length of 30 Unicode characters.

Integer number 32-bit two’s-complement arithmetic numbers.
("INTEGER")

Decimal number Fixed point numbers consisting of up to 100 digits.
("DECIMAL") You can specify a maximum scale and a maximum

precision using the syntax (precision, scale). For
example, DECIMAL (15, 4) represents decimals that
can have up to 15 digits in all and up to 4 digits
after the decimal point.

Floating point number 64-bit IEEE double precision floating point
("DOUBLE") numbers.

Timestamp A combined date and time (hour/minute/second).
("TIMESTAMP")

Facets

The precision, scale, and length associated with a database data type are called
facets. Facets are supported for the corresponding Actuate SQL data type.

An Actuate SQL expression that evaluates to a scalar value has facets. These
facets are determined by the Actuate SQL functions used in the expression and
the facets on the columns in the expression. You can specify facets for an Actuate
SQL expression by using a cast, for example:

CAST (EXPR AS DECIMAL (38, 8))
CAST (EXPR AS VARCHAR (25))

Parameters in Actuate SQL queries have facets. These facets determine the
maximum precision, scale, and length of parameter values. When no facets are
specified for a parameter or a cast expression, the defaults are used. The default

Chapter 7, Actuate SQL reference 183

precision and scale for the Actuate SQL DECIMAL data type are (20, 8). The
default length for the Actuate SQL VARCHAR data type is 50.

If the decimal value passed into a parameter or cast expression is too large for the
precision and scale, an error results. Actuate SQL truncates digits after the
decimal point to force the decimal value to fit within the precision and scale.

If the string or timestamp value passed into a string parameter, or into a cast
expression to VARCHAR, is too large for the string length specified, the string or
timestamp is truncated. If the string value passed into a cast expression to
DECIMAL is too large for the precision and scale specified, an error results.

By default, Actuate SQL has a decimal precision of 38. The decimal precision can
be set to a smaller or larger value up to 100. Results of calculations that exceed
this limit may have their precision and scale truncated. Calculations may also be
limited by the database. The same applies to operations on strings in the
database.

Casting rules
The following casting rules apply:

m Integers can be implicitly cast to decimals and doubles. For implicit casts to
decimals, the resulting decimals have a precision of 10 and a scale of 0.
Integers can be explicitly cast to these types, as well as to strings.

m Decimals can be implicitly cast to doubles. Decimals can be explicitly cast to
doubles, as well as to integers and strings. Conversion to integer type may
result in rounding or truncation of data.

m Doubles can be explicitly cast to strings, as well as to integers and decimals.
Conversion to decimal and integer types may result in rounding or truncation
of data.

m Timestamps can be explicitly cast to strings. Casting to other types is not
permitted.

m Strings can be implicitly or explicitly cast to timestamps. For explicit casting,
the strings must be of the form:

yyyy-MM-dd hh:mm:ss.fff
Strings can be explicitly cast to integers, decimals, and doubles.

m Because databases vary in their implementation, casts to strings do not have a
defined format. For example, the same value can be represented as 6E5, 60000,
or 60000.00.

m All types can be implicitly cast to the same type.
Table 7-5 summarizes the casting rules for Actuate SQL data types.

184 Designing BIRT Information Objects

Table 7-5

Casting rules for Actuate SQL types

To To To To To
INTEGER DECIMAL DOUBLE VARCHAR TIMESTAMP
From INTEGER Implicit Implicit Implicit Explicit Casting not
casting casting casting casting permitted
occurs occurs occurs required
From Explicit Implicit Implicit Explicit Casting not
DECIMAL casting casting casting casting permitted
required occurs occurs required
From Explicit Explicit Implicit Explicit Casting not
DOUBLE casting casting casting casting permitted
required required occurs required
From Explicit Explicit Explicit Implicit Implicit
VARCHAR casting casting casting casting casting occurs
required required required occurs
From Castingnot Castingnot Casting not Explicit Implicit
TIMESTAMP permitted permitted permitted casting casting occurs
required

String comparison and ordering

The Actuate BIRT iServer System Integration service compares and orders strings
according to the Unicode code point value of each character. For example,
Bright-Abbott is sorted before Brightman because the hyphen (-) has a Unicode
value of 45, while lowercase m has a Unicode value of 109. The expression:

'Kirsten' LIKE

ki

evaluates to False because uppercase K is different from lowercase k.

Although string comparison is case-sensitive by default, you can configure the
Integration service to do case-insensitive comparison and ordering.

Functions and operators

Actuate SQL supports several built-in operators and named functions. Functions
and operators are described in the following topics, grouped by related
functionality.

Comparison operators: =, <>, >=, > <=, <

Comparison operators are used to compare the value of two expressions,
returning True if the comparison succeeds, and False if it does not. The

Chapter 7, Actuate SQL reference 185

following rules apply to the use of comparison operators handled by the
Integration service:

m For numeric data types, the usual rules of arithmetic comparisons apply.

m For string comparisons, the shorter of the two strings is padded with space
characters to equal the length of the longer string before the comparison is
performed, as in SQL-92.

m Timestamps are compared using chronological order.

m An equality comparison between two floating point numbers does not return
an error.

For information about the Integration service, see Configuring BIRT iServer.
Comparison operations delegated to a remote data source may vary from the
rules for comparison operators handled by the Integration service.

Range test operator: BETWEEN

The BETWEEN operator tests a value to see if it occurs in a given range including
the endpoints. For example, the expression:

col BETWEEN 10 AND 20

evaluates to True if and only if the value of col is at least 10 but no more than 20.
Table 7-6 shows the result type for using BETWEEN for each operand data type.

Table 7-6 Result data types for using BETWEEN with various operand types

First operand type Second operand type = Third operand type Result type
Boolean Boolean Boolean Boolean
Integer Integer Integer Boolean
Decimal Decimal Decimal Boolean
Double Double Double Boolean
Varchar Varchar Varchar Boolean
Timestamp Timestamp Timestamp Boolean

The BETWEEN operator follows the same rules as the comparison operators.

Comparison operator: IN

The IN operator tests a row or scalar value to see if it occurs in a set of values. For
example, the expression:

column IN (1,3,5,7,9)

evaluates to True if and only if the value of columnis 1, 3,5, 7, or 9.

186 Designing BIRT Information Objects

Arithmetic operators: +, -, *, /

These operators implement addition, subtraction, multiplication, and division on
the supported numeric data types. For decimal data types, the result’s precision
and scale are shown in Table 7-7. d1 represents an operand expression with
precision p1 and scale s1, and d2 represents an operand expression with precision
p2 and scale s2. The result’s precision and scale may be truncated due to database
limitations.

Table 7-7 Precision and scale of arithmetic operation results

Operation Result’s precision Result’s scale
dl+d2 max(sl, s2) + max(pl-sl, p2-s2) + 1 max(sl, s2)

d1-d2 max(sl, s2) + max(pl-sl, p2-s2) + 1 max(sl, s2)

d1*d2 pl+p2+1 sl +s2

d1l /d2 pl-sl+s2+max(6,sl+p2+1) max(6, sl +p2 + 1)

Integer arithmetic operations are performed using 32-bit two’s-complement
semantics. Floating point operations are performed according to the IEEE double
precision standard.

These general rules apply to operations handled by the Integration service.
Operations delegated to remote data sources may vary in their semantics. For
information about the Integration service, see Configuring BIRT iServer.

Table 7-8 shows the result type of using arithmetic operators with each operand

type.

Table 7-8 Result data types for using arithmetic operators with various operand
types
Left operand type Right operand type Result type
Integer Integer Integer
Decimal Decimal Decimal
Double Double Double

Numeric functions

Actuate SQL supports the following numeric functions:
s FLOOR, CEILING, MOD

= ROUND

s POWER

Chapter 7, Actuate SQL reference 187

FLOOR, CEILING, MOD

FLOOR returns the largest integer not greater than the argument’s value. The
result is cast to the specified type:

Decimal FLOOR(value Decimal)
Double FLOOR(value Double)

Example The following code:
SELECT FLOOR (123.45), FLOOR(-123.45), FLOOR (0.0)
returns:
123,-124,0

CEILING returns the smallest integer not less than the argument’s value. The
result is cast to the specified type:

Decimal CEILING(value Decimal)
Double CEILING(value Double)

Example The following code:
SELECT CEILING(123.45), CEILING(-123.45), CEILING(0.0)
returns:
124,-123,0
MOD returns the remainder after division of two integers:
Integer MOD(vl Integer, v2 Integer)

Example The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE MOD (CUSTOMERS.CUSTID, 2) = 1
returns:

101,Signal Engineering
109, InfoEngineering
111,Advanced Design Inc.

For decimal data types, the result’s precision and scale for the FLOOR and
CEILING functions are (p + 1, s), where (p, s) are the precision and scale of the
operand.

ROUND

ROUND returns the number closest in value to the first argument, rounding
away from zero. The second argument specifies the precision, with positive
values indicating a position to the right of the decimal point, and negative values

188 Designing BIRT Information Objects

indicating a position to the left of the decimal point. All positions to the right of
the specified position are zero in the result:

Integer ROUND(value integer, precision integer)
Decimal ROUND (value Decimal, precision integer)
Double ROUND(value Double, precision integer)

Example The following code:
SELECT ROUND(123.4567, 2), ROUND(123.4567, -1)
returns:
123.46, 120

For decimal data types, the result’s precision and scale are (p + 1, s), where
(p, s) are the precision and scale of the operand.

POWER

POWER raises the left argument (base) to the power of the right argument
(exponent):

Integer POWER(base Integer, exponent Integer)
Decimal POWER (base Decimal, exponent Integer)
Double POWER(base Double, exponent Integer)

Example The following code:

SELECT CUSTOMERS.CUSTID, POWER (CUSTOMERS.CUSTID, 2)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns:

101,10201
102,10404
104,10816

For decimal data types, the result’s precision and scale are (P, s), where P is the
maximum precision in the database or the Integration service, and s is the scale of
the operand.

Null test operators: IS [NOT] NULL

These operators allow expressions to be tested for NULL values. For example, the
expression:

column IS NULL

evaluates to True if and only if column has the value NULL.

Chapter 7, Actuate SQL reference 189

Logical operators: AND, OR, NOT

These operators implement Boolean conjunction, disjunction, and negation,
respectively. AND and OR take two Boolean operands each, while NOT takes a
single operand. All return Boolean values.

For AND and OR, both operands may be evaluated even if one operand is
undefined, particularly in queries against multiple databases. For example, the
clause:

WHERE QUANTITY <> 0 AND TOTALCOST / QUANTITY > 50

may result in an error for rows where QUANTITY = 0.

String functions and operators

Actuate SQL supports the following string functions and operators:
m Case conversion functions: UPPER, LOWER

m Concatenation operator: | |

m Length function: CHAR_LENGTH

m LIKE operator

m Substring functions: LEFT, RIGHT, SUBSTRING

m Trimming functions: LTRIM, RTRIM, TRIM

m Search function: POSITION

Case conversion functions: UPPER, LOWER

These functions return a string formed by converting the characters in the
argument to uppercase or lowercase respectively, provided the character is
alphabetic:

Varchar UPPER(value Varchar)
Varchar LOWER (value Varchar)

Examples The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME,
UPPER (CUSTOMERS . CUSTOMNAME)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns:

101,Signal Engineering, SIGNAL ENGINEERING
109, InfoEngineering, INFOENGINEERING
111,Advanced Design Inc.,ADVANCED DESIGN INC.

190 Designing BIRT Information Objects

Example

The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME,
LOWER (CUSTOMERS . CUSTOMNAME)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns:

101,Signal Engineering, signal engineering
109, InfoEngineering, infoengineering
111,Advanced Design Inc.,advanced design inc.

Concatenation operator: ||

This operator concatenates two string values, returning a new string that contains
the characters from the left operand followed by the characters from the right
operand.

Length function: CHAR_LENGTH

This function computes the length of a string, returning an integer count of its
characters. Trailing spaces are significant:

Integer CHAR LENGTH(value Varchar)
The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CONTACT FIRST
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE CHAR_LENGTH(CUSTOMERS.CONTACT_FIRST) > 5

returns:

102, Leslie
109,Michael
116,William

LIKE operator
The LIKE operator is used in an expression such as:
column LIKE 'Mar%'

In this example, values of column, such as Mary or Martin, satisfy the test because
both start with Mar.

A LIKE operator pattern must be a literal string, for example, 'abc%', a parameter,
or an expression. The LIKE operator does not support column references,
subqueries, or aggregate expressions. Other examples include:

column LIKE :paramState
column LIKE CURRENT USER()

Chapter 7, Actuate SQL reference 191

The following rules apply:

m Literal pattern characters must match exactly. LIKE is case-sensitive.
m An underscore character (_) matches any single character.

m A percent character (%) matches zero or more characters.

Escape a literal underscore, percent, or backslash character with a backslash
character (\). Alternatively, use the following syntax:

test string LIKE pattern string ESCAPE escape character

The escape character must obey the same rules as the LIKE operator pattern.

Substring functions: LEFT, RIGHT, SUBSTRING
These functions transform a string by retrieving a subset of its characters.

LEFT and RIGHT return the leftmost or rightmost n characters, respectively. Each
takes the string as the first argument and the number of characters to retrieve as
the second argument:

Varchar LEFT(value Varchar, offset Integer)
Varchar RIGHT (value Varchar, offset Integer)

Specifying an offset that is less than zero results in an error. If the offset is greater
than the length of the string, these functions return the entire string.

SUBSTRING takes three arguments: the input string, the start position (one-based
offset from the left side), and the number of characters to retrieve. It returns the
substring located at this position:

Varchar SUBSTRING(input Varchar, start Integer, length Integer)
The following actions result in an error:
m Specifying a start position that is less than or equal to zero
m Specifying a length that is less than zero
Examples The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE LEFT (CUSTOMERS.CUSTOMNAME, 4) = 'Info'
returns:

109, InfoEngineering
117, InfoDesign
129, InfoSpecialists

192 Designing BIRT Information Objects

Examples

The following code:
SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE RIGHT (CUSTOMERS.CUSTOMNAME, 5) = 'Corp.'
returns:

104,SigniSpecialists Corp.
115,Design Solutions Corp.
118, Computer Systems Corp.

The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME,
SUBSTRING (CUSTOMERS.CUSTOMNAME, 2, 5)
FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS

returns:

101,Signal Engineering, ignal
102, Technical Specialists Co.,echni
104,SigniSpecialists Corp.,igniS

Trimming functions: LTRIM, RTRIM, TRIM

These functions strip space characters from a string. LTRIM strips only from the
left side, RTRIM only from the right side, and TRIM from both sides. In all cases
the result value is a string identical to the argument except for the possible
removal of space characters from either side. Other white space characters,
including tabs and newlines, are not removed by these functions:

Varchar LTRIM(value Varchar)
Varchar RTRIM(value Varchar)
Varchar TRIM(value Varchar)

The following code:

SELECT LTRIM(' Title '), 'Author
returns:

Title ,Author

The following code:

SELECT RTRIM(' Title '), 'Author’
returns:

Title,Author

Chapter 7, Actuate SQL reference 193

The following code:
SELECT TRIM(' Title '), 'Author!
returns:

Title,Author

Search function: POSITION

The POSITION function takes two arguments: a substring and a search string.
The POSITION function returns the position of the substring in the search string
as an integer or as 0 if the substring is not found. If the substring is the empty
string, the POSITION function returns 1. The POSITION function is
case-sensitive:

Integer POSITION(substring Varchar, searchstring Varchar)
Example The following code:

SELECT CUSTOMERS.CUSTID, CUSTOMERS.CUSTOMNAME

FROM "../Data Sources/MyDatabase/CUSTOMERS.SMA" CUSTOMERS
WHERE POSITION('Inc.', CUSTOMERS.CUSTOMNAME) > 0
returns:

106, Technical MicroSystems Inc.
111,Advanced Design Inc.
113, Technical Design Inc.

Timestamp functions

These functions perform operations on timestamp values:
s CURRENT_TIMESTAMP

m CURRENT_DATE

s DATEADD

s DATEDIFF

s DATEPART

m DATESERIAL

When using these functions, use the control strings listed in Table 7-9 to represent
units of time. The control string used in a function must be a literal string, not an
expression or a parameter.

194 Designing BIRT Information Objects

Example

Example

Table 7-9 Control strings for various units of time

Unit of time Control string

year
quarter
month

day

day of year
day of week
hour

minute

» 5 5 g < Qg .o g
3

second

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP returns a timestamp value for the current date and
time:

Timestamp CURRENT TIMESTAMP ()
The following code:

SELECT CURRENT TIMESTAMP ()
returns:

2004-10-27 14:49:23.0

CURRENT_DATE

CURRENT_DATE returns a timestamp value for the current date with the time
set to 00:00:00.0:

Timestamp CURRENT DATE ()
The following code:

SELECT CURRENT DATE ()
returns:

2004-10-27 00:00:00.0

DATEADD

DATEADD takes three arguments: a control string, an integer delta value, and a
timestamp value. It returns a timestamp that applies the delta value to the
specified part of the original timestamp. The operation carries if the sum of the
original field value and the delta is illegal:

Chapter 7, Actuate SQL reference 195

Timestamp DATEADD (control Varchar, delta Integer,
value Timestamp)

Example The following code:

SELECT ORDERS.ORDERID, ORDERS.SHIPBYDATE,
DATEADD ('d', 14, ORDERS.SHIPBYDATE) AS ExpectedDelivery
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS

returns:

1645,1995-05-22 00:00:00.0,1995-06-05 00:00:00.0
1340,1995-06-03 00:00:00.0,1995-06-17 00:00:00.0
1810,1995-04-12 00:00:00.0,1995-04-26 00:00:00.0

DATEDIFF

DATEDIFF takes three arguments: a control string, a start timestamp, and an end
timestamp. It returns the integer delta between the part of the two timestamps
specified by the control string. Components smaller than the control string are
ignored. Components larger than the control string contribute to the result:

Integer DATEDIFF (control Varchar, start Timestamp,
end Timestamp)

Examples The following code:

SELECT ORDERS.ORDERID, ORDERS.SHIPBYDATE, ORDERS.FORECASTSHIPDATE,
DATEDIFF('d', ORDERS.SHIPBYDATE, ORDERS.FORECASTSHIPDATE) AS

ShipDateDifference
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS
returns:

1645,1995-05-22 00:00:00.0,1995-06-02 00:00:00.0,11
1340,1995-06-03 00:00:00.0,1995-06-10 00:00:00.0,7
1810,1995-04-12 00:00:00.0,1995-04-27 00:00:00.0,15

The following expression:

DATEDIFF('d', CAST('2005-12-31 23:59:59.0' AS TIMESTAMP),
CAST('2006-01-01 00:00:00.0' AS TIMESTAMP))

returns 1. The control string d indicates that the difference is in days. The
difference between December 31, 2005 and January 1, 2006 is one day. The hours,
minutes, and seconds components are ignored.

The following expression:

DATEDIFF('m', CAST('2005-12-31 23:59:59.0' AS TIMESTAMP),
CAST('2006-01-01 00:00:00.0' AS TIMESTAMP))

196 Designing BIRT Information Objects

Example

Example

returns 1. The control string m indicates that the difference is in months. The
difference between December 31, 2005 and January 1, 2006 is one month. The day,
hours, minutes, and seconds components are ignored.

DATEPART

DATEPART takes two arguments: a control string and a timestamp. It returns the
part of the timestamp specified by the control string:

Integer DATEPART (control Varchar, value Timestamp)

The following code:

SELECT ORDERS.ORDERID, ORDERS.SHIPBYDATE

FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS
WHERE DATEPART ('m', ORDERS.SHIPBYDATE) = 5

returns:

1645,1995-05-22 00:00:00.0
1725,1995-05-10 00:00:00.0
1125,1995-05-03 00:00:00.0

DATESERIAL

DATESERIAL has two forms. The first form takes three arguments: a year value,
a month value, and a day value. It returns a timestamp for the date corresponding
to the specified year, month, and day with the time set to 00:00:00.0:

Timestamp DATESERIAL(year Integer, month Integer, day Integer)

The second form of DATESERIAL takes six arguments: values for the year,
month, day, hour, minute, and second. It returns the timestamp for the specified
values:

Timestamp DATESERIAL(year Integer, month Integer, day Integer,
hour Integer, minute Integer, second Integer)

The following code:

SELECT ORDERS.ORDERID, ORDERS.ASKBYDATE
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS
WHERE ORDERS.ASKBYDATE >= DATESERIAL (1995, 6, 15, 12, 59, 59)

returns:

1555,1995-06-28 00:00:00.0
1725,1995-06-23 00:00:00.0
1720,1995-06-17 00:00:00.0

Chapter 7, Actuate SQL reference 197

Aggregate functions: COUNT, MIN, MAX, SUM, AVG

These functions aggregate an entire column of values into a single scalar result.
For decimal data types:

m For the MIN, MAX, and AVG functions, the result’s precision and scale are the
same as the precision and scale of the operand.

m For the SUM function, the result’s precision and scale are (P, s), where P is the
maximum precision in the database or the Integration service, and s is the
scale of the operand.

The COUNT function reduces any argument type to a single integer representing
the number of non-NULL items. As in SQL-92, COUNT(*) counts the number of
rows in a table:

Integer COUNT (column)
Example The following code:

SELECT COUNT (ORDERS.ORDERID) AS NumberOfOrders
FROM "../Data Sources/MyDatabase/ORDERS.SMA" ORDERS

returns:
111

MIN and MAX accept any type and return the minimum or maximum value,
using the same rules that apply to comparison of individual items:

ColumnType MIN(column)
ColumnType MAX(column)

Examples The following code:

SELECT MIN(ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns:

2

The following code:

SELECT MAX (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns:

6203

SUM and AVG can be applied to any of the three numeric types and produce the
sum or average of all the numbers:

ColumnType SUM(column)
ColumnType AVG(column)

198 Designing BIRT Information Objects

Examples The following code:

SELECT SUM (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns:

606177

The following code:

SELECT AVG (ITEMS.QUANTITY)

FROM "../Data Sources/MyDatabase/ITEMS.SMA" ITEMS
returns:

319

System function: CURRENT_USER

CURRENT_USER returns a string containing the user name for the current
Encyclopedia volume user:

Varchar CURRENT USER ()

Example The following code:
SELECT CURRENT USER ()
returns:

userl

Providing query optimization hints

A report developer or business user uses an information object to create an
Actuate SQL query. When you create the information object, you can provide
hints that help to optimize the query. Specifically, you can:

m Indicate that a table in a join is optional.
m Specify the cardinality of a join.

For query optimization hints to take effect, you must create join conditions with
the ON clause, not the WHERE clause.

Indicating that a table in a join is optional

When you create an information object, you indicate that a table in a join is
optional using the OPTIONAL keyword. If you indicate that a table is optional
and none of its columns appear in the query created by a report developer or
business user (except in a join condition), the table is dropped from the optimized

query.

Chapter 7, Actuate SQL reference 199

The OPTIONAL keyword has no effect in queries created in the Information
Object Query Builder.

For example, consider the following information object CustomersOrders:

SELECT Customers.custid, Customers.customname,
Customers.contact last, Orders.orderid, Orders.custid,
Orders.amount, Oraers.shipbydate

FROM Customers.sma LEFT OPTIONAL INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

Now consider the following Actuate SQL query created by a report developer or
business user using CustomersOrders:

SELECT Orders.custid, Orders.orderid, Orders.amount
FROM CustomersOrders.iob
WHERE Orders.amount BETWEEN 10000 and 20000

Because no column from the Customers table appears in the query, and because
the join in CustomersOrders includes the LEFT OPTIONAL keywords, the
Customers table is dropped from the optimized query:

SELECT Orders.custid, Orders.orderid, Orders.amount
FROM Orders.sma
WHERE Orders.amount BETWEEN 10000 and 20000

Now consider another Actuate SQL query created by a report developer or
business user using CustomersOrders:

SELECT Customers.custid, Customers.contact last
FROM CustomersOrders.iob
WHERE Customers.city = 'NYC'

No column from the Orders table appears in the query. But because the Orders
table is not optional, it is not dropped from the query:

SELECT Customers.custid, Customers.contact last
FROM Customers.sma INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

WHERE Customers.city = 'NYC'

If you use the OPTIONAL keyword without the LEFT or RIGHT qualifier, it
applies to both tables in the join.

The OPTIONAL keyword is ignored when it applies to:

m A table whose columns appear in the query created by a report developer or
business user, for example in the SELECT list or in the ORDER BY, GROUP BY,
HAVING, or WHERE clauses.

m The middle table in an information object, for example:

SELECT Customers.custid, Items.orderid, Items.itemcode,
Items.description

200 Designing BIRT Information Objects

FROM Customers RIGHT OPTIONAL INNER JOIN Orders

ON (Customers.custid = Orders.custid)

LEFT OPTIONAL INNER JOIN Items ON (Orders.orderid =
Items.orderid)

In this information object, Orders is the middle table.

An information object that uses the OPTIONAL keyword cannot be joined to
another information object. Therefore, an Actuate SQL query created by a report
developer or business user cannot include more than one information object if
that information object uses the OPTIONAL keyword.

Using the OPTIONAL keyword with a computed field

Do not define a computed field in an information object that contains the
OPTIONAL keyword. Instead, define the computed field in a lower level
information object.

For example, consider the information object MyInformationObject:

SELECT dbo CUSTOMERS.CUSTID AS CUSTID, dbo CUSTOMERS.CONTACT FIRST
AS CONTAbT_FIRST, dbo_CUSTOMERS.CONTACT:LAST AS CONTACT_LXST,
dbo CUSTOMERS.CITY AS CITY, dbo ORDERS.SHIPBYDATE AS
SHIPBYDATE, dbo ORDERS.FORECASTSHIPDATE AS FORECASTSHIPDATE,
dbo_CUSTOMERS.ABDRESS AS ADDRESS,

(dbo ITEMS.PRICEQUOTE * dbo ITEMS.QUANTITY) AS Total

FROM "dbo.CUSTOMERS.sma" AS dbo_ CUSTOMERS

OPTIONAL INNER JOIN "dbo.ORDERS.sma" AS dbo ORDERS

ON (dbo_ CUSTOMERS.CUSTID=dbo ORDERS.CUSTID)

OPTIONAL INNER JOIN "dbo.ITEMS.sma" AS dbo ITEMS

ON (dbo ORDERS.ORDERID=dbo ITEMS.ORDERID)

MylInformationObject defines the computed field Total and also contains the
OPTIONAL keyword.

Now consider the following Actuate SQL query created by a report developer or
business user using MyInformationObject:

SELECT MyInformationObject.CUSTID AS CUSTID,
MyInformationObject.CONTACT FIRST AS CONTACT FIRST,
MyInformationObject.CITY AS CITY,
MyInformationObject.CONTACT LAST AS CONTACT LAST

FROM "MyInformationObject.iob" AS MyInformationObject

The ORDERS and ITEMS tables are not dropped from the query even though the
OPTIONAL keyword is applied to both tables in MyInformationObject and the
SELECT clause does not contain columns from either table. The tables are not
dropped because in MyInformationObject the columns ITEMS.PRICEQUOTE
and ITEMS.QUANTITY are used in a computation outside the join condition.

To avoid this situation, define the computed field in a lower level information
object such as ITEMS.iob. MyInformationObject then contains the following

query:

Chapter 7, Actuate SQL reference 201

SELECT dbo_ CUSTOMERS.CUSTID AS CUSTID, dbo CUSTOMERS.CONTACT FIRST
AS CONTACT_FIRST, dbo CUSTOMERS.CONTACT LAST AS CONTACT_ LAST,
dbo CUSTOMERS.CITY AS CITY, dbo ORDERS.SHIPBYDATE AS
SHIEBYDATE, dbo_ORDERS.FORECASTEHIPDATE AS FORECASTSHIPDATE,
dbo CUSTOMERS.ADDRESS AS ADDRESS, ITEMS.Total AS Total

FROM "dbo.CUSTOMERS.sma" AS dbo_ CUSTOMERS

OPTIONAL INNER JOIN "dbo.ORDERS.sma" AS dbo ORDERS

ON (dbo CUSTOMERS.CUSTID=dbo ORDERS.CUSTID)

OPTIONAL INNER JOIN "ITEMS.iob" AS ITEMS

ON (dbo ORDERS.ORDERID=ITEMS.ORDERID)

Using the OPTIONAL keyword with parentheses ()

You can control the processing of the OPTIONAL keyword with parentheses. For
example, in the following query the tables CUSTOMERS and ORDERS can be
dropped:

SELECT ITEMS.ORDERID, ITEMS.PRICEQUOTE, ITEMS.QUANTITY

FROM "CUSTOMERS.sma" AS CUSTOMERS INNER JOIN "ORDERS.sma" AS
ORDERS ON (CUSTOMERS.CUSTID = ORDERS.CUSTID) LEFT OPTIONAL
INNER JOIN "ITEMS.sma" AS ITEMS ON
(ORDERS .ORDERID = ITEMS.ORDERID)

In the following query, however, only the ORDERS table can be dropped because
the join that includes the LEFT OPTIONAL keywords is enclosed in parentheses:

SELECT ITEMS.ORDERID, ITEMS.PRICEQUOTE, ITEMS.QUANTITY

FROM "CUSTOMERS.sma" AS CUSTOMERS INNER JOIN ("ORDERS.sma" AS
ORDERS LEFT OPTIONAL INNER JOIN "ITEMS.sma" AS ITEMS ON
(ORDERS.ORDERID = ITEMS.ORDERID)) ON
(CUSTOMERS.CUSTID = ORDERS.CUSTID)

In the following examples, A, B, C, and D are tables.
Consider the following query that includes the RIGHT OPTIONAL keywords:

A RIGHT OPTIONAL JOIN B RIGHT OPTIONAL JOIN C RIGHT OPTIONAL
JOIN D

The Actuate SQL compiler interprets this query as:

((A RIGHT OPTIONAL JOIN B) RIGHT OPTIONAL JOIN C)
RIGHT OPTIONAL JOIN D

Tables B, C, and D can be dropped from the query.

Consider the following query that includes the LEFT OPTIONAL keywords
without parentheses:

A LEFT OPTIONAL JOIN B LEFT OPTIONAL JOIN C LEFT OPTIONAL JOIN D
The Actuate SQL compiler interprets this query as:

((A LEFT OPTIONAL JOIN B) LEFT OPTIONAL JOIN C) LEFT OPTIONAL
JOIN D

202 Designing BIRT Information Objects

Tables A, B, and C can be dropped from the query. It is not possible, however, to
drop table C without dropping tables A and B, or to drop table B without
dropping table A, without using parentheses.

Consider the following query that includes the LEFT OPTIONAL keywords with
parentheses:

A LEFT OPTIONAL JOIN (B LEFT OPTIONAL JOIN (C LEFT OPTIONAL
JOIN D))

Table C can be dropped from the query without dropping tables A and B. Table B
can be dropped from the query without dropping table A.

Consider the following query that includes the OPTIONAL keyword without the
LEFT or RIGHT modifier:

A OPTIONAL JOIN B OPTIONAL JOIN C OPTIONAL JOIN D
The Actuate SQL compiler interprets this query as:
((A OPTIONAL JOIN B) OPTIONAL JOIN C) OPTIONAL JOIN D

Any table or set of tables can be dropped from the query.

Using the OPTIONAL keyword with aggregate functions

If a query created by a report developer or business user contains the function
COUNT(*), the OPTIONAL keyword, if it appears in the information object, is
ignored. If a query contains another aggregate function, for example SUM or
COUNT(column), the value returned by the aggregate function depends on
whether the information object includes the OPTIONAL keyword. For example,
consider the following Actuate SQL query created by a report developer or
business user using the CustomersOrders information object:

SELECT COUNT (Customers.custid) AS CustomerCount
FROM CustomersOrders.iob

In the first case, consider the following information object CustomersOrders,
which applies the OPTIONAL keyword to the Orders table:

SELECT Customers.custid, Customers.customname,
Customers.contact last, Orders.orderid, Orders.custid,
Orders.amount, Oraers.shipbydate

FROM Customers.sma RIGHT OPTIONAL INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

Because no column from the Orders table appears in the query and because the
join in CustomersOrders includes the RIGHT OPTIONAL keywords, the Orders
table is dropped from the optimized query:

SELECT COUNT (Customers.custid) AS CustomerCount
FROM Customers.sma

Chapter 7, Actuate SQL reference 203

In the second case, consider the following information object CustomersOrders,
which does not apply the OPTIONAL keyword to the Orders table:

SELECT Customers.custid, Customers.customname,
Customers.contact last, Orders.orderid, Orders.custid,
Orders.amount, Oraers.shipbydate

FROM Customers.sma INNER JOIN Orders.sma

ON (Customers.custid = Orders.custid)

In this case, the Orders table is not dropped from the query:

SELECT COUNT (Customers.custid) AS CustomerCount
FROM Customers.sma INNER JOIN Orders.sma
ON (Customers.custid = Orders.custid)

The value of CustomerCount depends on whether the OPTIONAL keyword is
applied to the Orders table in the CustomersOrders information object.
Specifying the cardinality of a join

You can specify the right-to-left and left-to-right cardinality of a join. Table 7-10
lists the cardinality types and a description of each type.

Table 7-10 Cardinality types

Cardinality type Description

1 One record in the first table matches one record in the
second table.

? One record in the first table matches zero or one record in
the second table.

* One record in the first table matches zero or more records in
the second table.

+ One record in the first table matches one or more records in
the second table.

The right-to-left cardinality type is followed by a hyphen (-), and then by the
left-to-right cardinality type. The cardinality type depends on the join column.

For example:

Customers JOIN Orders ON (Customers.custid = Orders.custid)
{CARDINALITY ('1-+')}

indicates that:
m One record in Orders matches one record in Customers.
m One record in Customers matches one or more records in Orders:

Customers JOIN Orders ON (Customers.custid = Orders.custid)
{CARDINALITY ('1-*')}

204 Designing BIRT Information Objects

indicates that:
m One record in Orders matches one record in Customers.
m One record in Customers matches zero or more records in Orders:

Customers JOIN Orders ON (Customers.custid = Orders.custid)
{CARDINALITY ('*-2")}

indicates that:
m One record in Orders matches zero or more records in Customers.

m One record in Customers matches zero or one record in Orders.

Using pragmas to tune a query

If an information object query joins maps or information objects that are based on
different data sources, you may be able to tune the query using the following
pragmas:

= EnableCBO
= applylndexing
m MinRowsForIndexing

These pragmas are described in the following topics.

Disabling cost-based optimization

If you provide values for the map and join column properties, the Actuate SQL
compiler uses these values to do cost-based query optimization. You can disable
cost-based optimization using the pragma EnableCBO.

For example, consider the following query based on SQL Server and Oracle
database tables:

SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))

AS Revenue

FROM
"/SQL_Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
"/SQL_Server/LINEITEM.SMA" LINEITEM,
"/SQL Server/SUPPLY.SMA" SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION

Chapter 7, Actuate SQL reference 205

WHERE

CUSTOMER.C CUSTKEY = ORDERS.O_CUSTKEY

AND LINEITEM.L ORDERKEY = ORDERS.O ORDERKEY

AND LINEITEM.L_ SUPPKEY = SUPPLY.S SUPPKEY

AND CUSTOMER.C _NATIONKEY = SUPPLY.S NATIONKEY

AND SUPPLY.S NATIONKEY = NATION.N NATIONKEY

AND NATION.N REGIONKEY = REGION.R REGIONKEY

AND REGION.R NAME = 'ASIA'

AND ORDERS.O ORDERDATE >= TIMESTAMP '1993-01-01 00:00:00"

AND ORDERS.O ORDERDATE < TIMESTAMP '1994-01-01 00:00:00"
GROUP BY

NATION.N NAME

If you provide values for the map and join column properties, part of the query
plan looks similar to Figure 7-1.

: . Merge Lineitem,
NLJoin Project Join SQL Supply
SQL | Customer SQL |Orders
Figure 7-1 Example of part of the query plan for which values for the map and

join column properties have been provided

To disable cost-based optimization for the query, set the pragma EnableCBO to
False:

PRAGMA "EnableCBO" := 'false'

SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))

AS Revenue - -

FROM
"/SQL_Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
"/SQL_Server/LINEITEM.SMA” LINEITEM,
"/SQL_Server/SUPPLY.SMA” SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION

WHERE

Now this part of the query plan looks similar to Figure 7-2.

206 Designing BIRT Information Objects

NLJoin Project NLJoin SQL | Customer

Lineitem,
SQL Supply SQL | Orders
Figure 7-2 Example of part of a query plan with cost-based optimization
disabled

Disabling cost-based optimization changes the join sequence and the join
algorithm. The Customer and Lineltem, Supply database subqueries switch
positions, and the merge join is replaced with a nested loop join.

If you create a query using an information object for which cost-based
optimization is disabled, cost-based optimization is disabled for the query as
well.

You can disable cost-based optimization for all information object queries by
setting the BIRT iServer configuration variable Enable cost based optimization to
False. For more information about BIRT iServer configuration variables, see
Configuring BIRT iServer.

Disabling indexing

By default, the Actuate SQL compiler creates indexes for rows that are
materialized in memory during query execution, for example the rows returned
when the right side of a nested loop join is executed. You can disable indexing
using the pragma applyIndexing.

For example, to disable indexing for a query, set the pragma applylndexing to
False:

PRAGMA "applyIndexing" := 'false'
SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))
AS Revenue h
FROM
"/SQL_Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
"/SQL Server/LINEITEM.SMA" LINEITEM,
"/SQL Server/SUPPLY.SMA" SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION
WHERE

Chapter 7, Actuate SQL reference 207

If you create a query using an information object for which indexing is disabled,
indexing is disabled for the query as well.

Specifying a threshold value for indexing

If cost-based optimization is enabled and you provide values for the map and join
column properties, the Actuate SQL compiler creates an index when 100 rows are
materialized in memory during query execution. You can change the number of

materialized rows that triggers indexing using the pragma MinRowsForIndexing.

If cost-based optimization is disabled, or you do not provide values for the map
and join column properties, an index is created for materialized rows if a suitable
column is available.

For example, to change the number of materialized rows that triggers indexing to
1000, set the pragma MinRowsForIndexing to 1000:

PRAGMA "MinRowsForIndexing" := '1000'

SELECT
NATION.N NAME,
SUM (LINEITEM.L EXTENDEDPRICE * (1 - LINEITEM.L DISCOUNT))

AS Revenue

FROM
"/SQL_Server/CUSTOMER.SMA" CUSTOMER,
"/Oracle/ORDERS.SMA" ORDERS,
"/SQL_Server/LINEITEM.SMA" LINEITEM,
"/SQL Server/SUPPLY.SMA" SUPPLY,
"/Oracle/NATION.SMA" NATION,
"/Oracle/REGION.SMA" REGION

WHERE

Specifying the number of materialized rows that triggers indexing for an
information object has no effect on queries that use the information object.

You can specify the number of materialized rows that triggers indexing for all
information object queries by setting the BIRT iServer configuration variable
Minimum rows to trigger creation of an index during materialize operation. For
more information about Actuate iServer configuration variables, see Configuring
BIRT iServer.

208 Designing BIRT Information Objects

Two

Configuring database types

Understanding database
types

This chapter contains the following topics:

About database types

About preconfigured database types

About configurable database types

Working with XML files

Chapter 8, Understanding database types

211

About database types

A database type refers to a connection type and a mapping. Several
preconfigured database types are available for use with Information Object
Designer. You can also configure your own database types. You choose a database
type when you create a data connection definition, as shown in Figure 8-1.

- o [=] B3
Data Connection Definition [¢
Create a data connection definition. i
Mame: | MyDatabase
Type: ISQL Server 2005 j ——— Database type
Description: I Customer data =
Configuration key: I

Figure 8-1 Choosing the database type for a data connection definition

About connection types

A connection type defines JDBC connection string syntax and connection
parameters, for example user name and password. You provide values for
connection parameters on the Data source connection properties page, as shown
in Figure 8-2.

Data source connection properties

Type: | 0L Server 2005

Description: Customer data d
| |

Configuration key: |

Credentials: Ipmxy j

User name: | MyDatabaselser

Passward: |

Server: I MyDatabaseServer

Database: | Classictodels

Port: | 1s33

Schema {optional): | ClassicModels. dbo Browse. .. |
Test Connection |

Map tables | Map stared procedures | Create SOL map |

Figure 8-2 Providing values for the data source connection properties

212 Designing BIRT Information Objects

About mappings

When the Integration service processes an Actuate SQL query, one of the
following occurs:

m The entire query is executed by the database.

m Parts of the query are executed by the database, while other parts of the query
are executed by the Integration service.

m The entire query is executed by the Integration service.

Figure 8-3 shows how the Integration service processes an Actuate SQL query
when parts of the query are executed by the database, while other parts of the
query are executed by the Integration service.

Integration Integration The database
service translates service sends] executes the
Actuate SQL the query query and returns
query into to the database results
database’s native
SQL
The Integration The Integration The Integration
service converts || service performs || service provides
the result set into any remaining results to the
an Actuate SQL operations on the Factory service
compliant result result set
set

Figure 8-3 Actuate SQL query processing

You optimize performance by having the database execute as much of the query
as possible. Mappings translate Actuate SQL into the database’s native SQL and
ensure that an Actuate SQL query returns the same results for every database
type. For example, a DB2 database and an Oracle database have identical
schemas. You create an Actuate SQL query using maps that represent tables from
one of these databases. The query returns the same results whether the maps
represent DB2 tables or Oracle tables.

Specifically, a mapping defines how to map Actuate SQL data types to a
database’s native SQL data types. A mapping also defines how to map the
following Actuate SQL constructs to the corresponding native SQL constructs:

m Functions and operators

m Parameters

Chapter 8, Understanding database types 213

m Literals

s GROUP BY and ORDER BY clauses

About preconfigured database types

Information Object Designer supports the following preconfigured database
types:
= DB2

m Informix

m MySQL Enterprise
m Oracle

m PostgreSQL

m SQL Server

m Sybase

The connection type configuration and mappings files for preconfigured database
types are located in the following iServer and BIRT Designer Professional
directories:

$SAC_SERVER_HOME/etc

<Actuatell HOME>\BRDPro\eclipse\plugins
\com.actuate.ais.embeddable <version>\Config\aisconfigfiles\etc

The connection type configuration for preconfigured database types resides in the
file intsrvrsources.xml. Do not modify this file.

The mapping for a preconfigured database type resides in the mappings.xml file
in the directory for that type. For example, Figure 8-4 shows the location of the
mappings.xml file for the SQL Server database type.

The following topics explain how data types for preconfigured database types are
mapped to Actuate SQL data types and vice versa. Some database data types
cannot be mapped to an Actuate SQL data type, for example binary types with
specially defined operations. These topics also discuss special considerations for
each database type.

214 Designing BIRT Information Objects

B = ete

B = data_integration

- = Base_Mappings
5| mappings.xml
DEZ2

~ [mappings.xml
Generic_ODBC

-~ =] mappings.xml
Informix

[= mappings.xml
MySaL

~ [mappings.xml
Oracle

~ [mappings.xml
= S0L_%erver i .

‘e B mappngs.ml ——— Mappings file for SQL Server

Sybase_ASE database type

: [mappings.xml
[Z] datasources.xml

— Connection type configuration file
for preconfigured database types

e 5] intervrsources sl

Figure 8-4 Location of the connection type configuration file and mappings files

for preconfigured database types

DB2 data type mapping and issues

The following DB2 functions convert DECIMAL values to the DOUBLE data
type. The corresponding Actuate SQL functions are implemented using these
native functions, and may therefore return slightly inaccurate values, especially
for calculations involving very large or very small numbers:

POWER ()
ROUND ()
FLOOR ()
CEILING ()

When a numeric type is cast to VARCHAR(n) and n is not large enough to
accommodate the string, Actuate SQL returns an error. DB2, however, truncates
the value without returning an error.

Table 8-1 shows how DB2 data types map to Actuate SQL data types.

Table 8-1 Mapping of DB2 data types to Actuate SQL data types
Compiled to
Actuate SQL. DB2 data
DB2 data type data type type DB2 data type limitations
BIGINT DECIMAL DECIMAL The maximum number of significant digits
(precision) for DB2 DECIMAL is 31.
CHAR VARCHAR VARCHAR DB2 VARCHAR has a maximum length of

32,672 characters.

(continues)

Chapter 8, Understanding database types 215

Table 8-1 Mapping of DB2 data types to Actuate SQL data types (continued)
Compiled to

Actuate SQL. DB2 data
DB2 data type data type type DB2 data type limitations
DATE TIMESTAMP DATETIME
DECIMAL DECIMAL DECIMAL The maximum number of significant digits

(precision) for DB2 DECIMAL is 31.

DOUBLE DOUBLE DOUBLE
INTEGER INTEGER INTEGER
REAL DOUBLE DOUBLE
SMALLINT INTEGER INTEGER
TIMESTAMP TIMESTAMP DATETIME
VARCHAR VARCHAR VARCHAR DB2 VARCHAR has a maximum length of

32,672 characters.

Informix data type mapping and issues
The NCHAR and NVARCHAR data types are not supported.

If a query contains a CASE statement that returns a string, Informix pads the
string with spaces so that its length matches the length of the longest string in the
CASE statement. For example, the following CASE statement returns 'O '

(O followed by two spaces), not 'O'. The string length matches the length of the
longest string in the CASE statement, 'N/A":

SELECT
CASE ORDERS.status

WHEN 'Open' Then 'O'
WHEN 'Closed' Then 'C'
WHEN 'In Evaluation' Then 'E'
ELSE 'N/A'
END

AS "Short Status",
ITEMS.quantity
FROM "../Data Sources/MyDatabase/ORDERS.sma" ORDERS
INNER JOIN "../Data Sources/MyDatabase/ITEMS.sma" ITEMS
ON ORDERS.orderid = ITEMS.orderid
WHERE ORDERS.orderid < 1120 OR ORDERS.orderid > 2000

ORDERS.orderid, ORDERS.custid,

Table 8-2 shows how Informix data types map to Actuate SQL data types.

216 Designing BIRT Information Objects

Table 8-2 Mapping of Informix data types to Actuate SQL data types
Compiled
Informix Actuate SQL to Informix
data type data type data type Informix data type limitations
CHAR VARCHAR VARCHAR Informix VARCHAR has a maximum length
of 254 characters.
CHARACTER VARCHAR VARCHAR InformixVARCHAR has a maximum length
VARYING of 254 characters.
DATE TIMESTAMP DATETIME
DATETIME TIMESTAMP DATETIME
DECIMAL DECIMAL DECIMAL The maximum number of significant digits
(precision) for Informix DECIMAL is 32.
FLOAT DOUBLE FLOAT InformixFLOAT is 4-byte, not 8-byte,
floating point. The maximum number of
significant digits (precision) is 16.
INTS8 DECIMAL DECIMAL The maximum number of significant digits
(precision) for InformixDECIMAL is 32.
INTEGER INTEGER INTEGER
MONEY DECIMAL DECIMAL The maximum number of significant digits
(precision) for InformixDECIMAL is 32.
SMALLFLOAT DOUBLE FLOAT InformixFLOAT is 4-byte, not 8-byte,
floating point. The maximum number of
significant digits (precision) is 16.
SMALLINT INTEGER INTEGER
VARCHAR VARCHAR VARCHAR InformixVARCHAR has a maximum length

of 254 characters.

Oracle data type mapping and issues

Oracle treats zero-length VARCHAR2 and NVARCHAR?2 values as NULL values.
Oracle also treats NULL VARCHAR?2 and NVARCHAR? values as zero-length
values. For this reason, Oracle queries may return different results than queries
against other databases, for example:

The CONCAT function, when concatenating a NULL value and a non-NULL
value, returns a non-NULL value because the NULL value is treated as an

empty string.

Comparisons with empty strings using the operators =, <, >, and <> never
evaluate to TRUE. For example, the expression:

'Hello' <> '!

Chapter 8, Understanding database types

217

does not evaluate to TRUE because Oracle treats " as a NULL value, and any
comparison with NULL evaluates to UNKNOWN, not TRUE.

Actuate SQL uses SQL-92 semantics to perform VARCHAR string comparisons.
In most cases, when a query is pushed to the database, the mappings.xml file
preserves SQL-92 semantics. For Oracle databases, however, using SQL-92
semantics results in poor performance. For this reason, a query that is pushed to
an Oracle database uses Oracle semantics to perform string comparisons. If you
are working solely with Oracle databases, string comparisons yield consistent
results. If you join a table in an Oracle database to a table in a database of another
type, string comparisons may yield inconsistent results because the query pushed
to the other database uses SQL-92 semantics. Moreover, if the query is not pushed
to the database, the Integration service uses SQL-92 semantics. If you want Oracle
databases to use SQL-92 semantics, you must use a different mappings.xml file.
Contact Actuate Support to obtain this file.

Table 8-3 shows how Oracle data types map to Actuate SQL data types. The
letters p and s represent precision and scale.

Table 8-3 Mapping of Oracle data types to Actuate SQL data types
Compiled to
Oracle Actuate SQL Oracle
data type data type data type Oracle data type limitations
CHAR VARCHAR NVARCHAR?2 Oracle NVARCHAR? has a maximum
length of 2000 bytes or characters.
DATE TIMESTAMP DATE Oracle versions earlier than 9i do not
(Oracle 8i) support the TIMESTAMP data type. For
TIMESTAMP those versions the milliseconds field of
(Oracle 9iand timestamp values is ignored in
later) comparisons and sorting.
FLOAT DOUBLE FLOAT Oracle FLOAT has a maximum precision
of 38 decimal digits.
NCHAR VARCHAR NVARCHAR2 Oracle NVARCHAR? has a maximum
length of 2000 bytes or characters.
NUMBER(p,s) INTEGERif INTEGER Oraclesupports only the NUMBER and
s=0 and p<=9 FLOAT data types for internal storage.
DECIMAL if DECIMAL INTEGER and DECIMAL data types are
s<>0 or p>9 provided to support queries written with
standard SQL types.
The maximum number of significant digits
(precision) for OracleDECIMAL is 38.
NVARCHAR2 VARCHAR NVARCHAR2 Oracle NVARCHAR? has a maximum
length of 2000 bytes or characters.
TIMESTAMP TIMESTAMP TIMESTAMP

218 Designing BIRT Information Objects

Table 8-3

Mapping of Oracle data types to Actuate SQL data types

Oracle
data type

Compiled to
Actuate SQL Oracle
data type data type Oracle data type limitations

VARCHAR?2

VARCHAR NVARCHAR2 Oracle NVARCHAR? has a maximum
length of 2000 bytes or characters.

Table 8-4

SQL Server data type mapping and issues

The behavior of the Actuate SQL DatePart(), DateAdd(), and DateDiff() functions
sometimes differs from the behavior of the corresponding
Transact-SQL functions.

If you want to use the Actuate collation UNICODE_BIN against a SQL Server
database that uses a collation other than unicode_bin, you must install the
SQL_Latin1l_General_Cp850_BIN2 collation. This installation requires HotFix
816039 from Microsoft. For information about HotFix 816039, go to:

http://support.microsoft.com/?1d=816039

Using parameters in a GROUP BY clause may result in a SQL Server database
error. For example, a query of the form:

SELECT CUSTID+? FROM CUSTOMERS
GROUP BY CUSTID+?

results in the following error:

[Microsoft][ODBC SQL Server Driver][SQL Server]Column
'EIITESTDB.dbo.CUSTOMERS.CUSTID' is invalid in the select list because it is
not contained in either an aggregate function or the GROUP BY clause

SQL Server considers the two parameters to be different since they are not named
parameters. The solution is to include a reference to the CUSTID column in the
GROUP BY clause.

Table 8-4 shows how Transact-SQL data types map to Actuate SQL data types.
Mapping of Transact-SQL data types to Actuate SQL data types

Compiled to

Transact-SQL Actuate SQL Transact-SQL

data type

data type data type Transact-SQL data type limitations

CHAR

VARCHAR NVARCHAR Transact-SQL NVARCHAR has a
maximum length of 4000 characters on
SQL Server.

(continues)

Chapter 8, Understanding database types 219

Table 8-4

Mapping of Transact-SQL data types to Actuate SQL data types (continued)

Compiled to

Transact-SQL Actuate SQL Transact-SQL

data type data type data type Transact-SQL data type limitations

DATETIME TIMESTAMP DATETIME Transact-SQL DATETIME stores values
from January 1, 1753. The accuracy of
dates is to one three-hundredths of a
second (3.33 milliseconds).

DECIMAL DECIMAL DECIMAL The maximum number of significant
digits (precision) for Transact-SQL
DECIMAL is 38.

FLOAT DOUBLE FLOAT

INT INTEGER INTEGER

MONEY DECIMAL DECIMAL The maximum number of significant
digits (precision) for Transact-SQL
DECIMAL is 38.

NCHAR VARCHAR NVARCHAR Transact-SQL NVARCHAR has a
maximum length of 4000 characters on
SQL Server.

NVARCHAR VARCHAR NVARCHAR Transact-SQL NVARCHAR has a
maximum length of 4000 characters on
SQL Server.

REAL DOUBLE FLOAT

SMALLDATE TIMESTAMP DATETIME Transact-SQL DATETIME stores values

TIME from January 1, 1753. The accuracy of
dates is to one three-hundredths of a
second (3.33 milliseconds).

SMALLINT INTEGER INTEGER

SMALLMONEY DECIMAL DECIMAL The maximum number of significant
digits (precision) for Transact-SQL
DECIMAL is 38.

TINYINT INTEGER INTEGER

VARCHAR VARCHAR NVARCHAR Transact-SQL NVARCHAR has a

maximum length of 4000 characters on
SQL Server.

Sybase data type mapping and issues

Sybase table and column names must not exceed 28 characters.

220 Designing BIRT Information Objects

When using Sybase, an expression in a WHERE clause can contain the power
function and a decimal value with up to five digits in the fractional part of the
value. The following WHERE clause shows this type of expression:

WHERE power (ACNULLDATATYPES.ACDECIMAL, 2)

> 1.12345

Do not use expressions in the WHERE clause that have a power function and a
decimal value with six or more digits in the fractional part of the value. For
example, the following WHERE clause causes an error:

WHERE power (ACNULLDATATYPES.ACDECIMAL, 2)

> 1.123456

Table 8-5 shows how Sybase data types map to Actuate SQL data types.

Table 8-5 Mapping of Sybase data types to Actuate SQL data types
Compiled to
Actuate SQL Sybase data

Sybase data type data type type Sybase data type limitations

CHAR VARCHAR NVARCHAR Sybase NVARCHAR has a
maximum length of 255
characters.

DATETIME TIMESTAMP DATETIME Sybase DATETIME stores values
from January 1, 1753. The accuracy
of dates is to one three-hundredths
of a second (3.33 milliseconds).

DECIMAL DECIMAL DECIMAL The maximum number of
significant digits (precision) for
Sybase DECIMAL is 38.

DOUBLE PRECISION DOUBLE FLOAT

FLOAT DOUBLE FLOAT

INT INTEGER INTEGER

MONEY DECIMAL DECIMAL The maximum number of
significant digits (precision) for
Transact-SQL DECIMAL is 38.

NCHAR VARCHAR NVARCHAR Sybase NVARCHAR has a
maximum length of 255
characters.

NVARCHAR VARCHAR NVARCHAR Sybase NVARCHAR has a
maximum length of 255
characters.

REAL DOUBLE FLOAT

(continues)

Chapter 8, Understanding database types 221

Table 8-5 Mapping of Sybase data types to Actuate SQL data types (continued)
Compiled to
Actuate SQL Sybase data
Sybase data type data type type Sybase data type limitations

SMALLDATETIME TIMESTAMP DATETIME Sybase DATETIME stores values

from January 1, 1753. The accuracy
of dates is to one three-hundredths
of a second (3.33 milliseconds).

SMALLINT INTEGER INTEGER

SMALLMONEY DECIMAL DECIMAL The maximum number of
significant digits (precision) for
Sybase DECIMAL is 38.

TINYINT INTEGER INTEGER

VARCHAR VARCHAR NVARCHAR Sybase NVARCHAR has a

maximum length of 255
characters.

About configurable database types

If Information Object Designer does not provide a preconfigured database type
for a database you want to use, you can configure your own database type. The
connection type configuration and mappings files for configurable database types
are located in the following iServer and BIRT Designer Professional directories:

SAC_SERVER _HOME/etc/data_ integration

<Actuatell HOME>\BRDPro\eclipse\plugins
\com.actuate.ais.embeddable <versions>\Config\aisconfigfiles
\etc\data_integration

The connection type configuration and mappings files for configurable database
types on the iServer and on the desktop must be identical.

You can use the default mappings file if both of the following statements are true:
m Your database implementation adheres closely to the SQL-92 standard.

m Your JDBC driver supports features that mask differences between databases,
such as ODBC escape sequences and Generic SQL type codes.

The default mappings file is located in the Generic_ODBC directory.

If your database differs significantly from the SQL-92 standard, you must create a
mappings file. For example, the configurable database type MySQL Enterprise 4.1
is installed with Actuate BIRT iServer. Figure 8-5 shows the location of the

222 Designing BIRT Information Objects

connection type configuration file for configurable database types and the
mappings file for MySQL Enterprise.

When you configure a database type, first test your queries with the default
mappings file. If any of your queries fail, you must create a mappings file for the
database type. The mappings file in the Base_Mappings directory contains the
default mapping as a reference.

ek
= (= data inkegration

- = Base_MWappings
; e £ mappings.xml
E| = DRz
[£ mappings.xml
- = Genetic_ODEC

"

e B mappngsaml —— Default

E| = InFarmmix mappmgs file

b 5] mappings.xml

Bl 2 MySoL . .

e] mappings.ml —Mapplngs file for
O Oracle | MySQL Enterprise
o [£] mappings.xm

BB SoL S database type

[£ mappings.xml
- = Sybase_ASE
L [mappings.xml

[2) datasources xml ——Connection type configuration file
B intervrsources i for configurable database types
Figure 8-5 Location of the connection type configuration file and the mappings

file for MySQL Enterprise

How to configure a database type

1

2

Configure a connection type for the database type using a ConnectionType
element in datasources.xml.

Configure the database type using a DatabaseType element in datasources.xml
Do not specify the DataSourceMapping attribute, for example:

<DatabaseTypes>
<DatabaseType Name="MyDatabaseType"
ConnectionType="MyConnectionType" />
</DatabaseTypes>

The Integration service and BIRT Designer Professional use the mappings.xml
file in the Generic_ODBC directory.

Restart the Integration service and BIRT Designer Professional to reload
database type configurations.

Test your queries.

If any of your queries fail, go to step 5.

Chapter 8, Understanding database types 223

Create a directory and a mappings file for the database type in
$AC_SERVER_HOME/etc/data_integration and <Actuatell_HOME>
\BRDPro\eclipse\plugins\com.actuate.ais.embeddable_<version>\Config
\aisconfigfiles\etc\data_integration.

Start the mappings file by making a copy of the mappings.xml file in the
Generic_ODBC directory.

Modify the DatabaseType element.

The DataSourceMapping attribute gives the name of the directory in which
the mappings file resides, for example:

<DatabaseTypes>
<DatabaseType Name="MyDatabaseType"
ConnectionType="MyConnectionType"
DataSourceMapping="MyDataSourceMapping" />
</DatabaseTypes>

Restart the Integration service and BIRT Designer Professional to reload
database type configurations.

Test your queries and modify the mappings file as necessary.

Working with XML files

When you configure a database type, you modify the datasources.xml file and
possibly create a mappings.xml file. When you work with XML, the following
characters require special treatment:

< (less than)
> (greater than)

" (double quotation mark)

Use the codes in Table 8-6 to represent these characters.

Table 8-6 XML codes for special characters
Special character XML code
< <
> >

" "

224 Designing BIRT Information Objects

In the following example, " represents the character ™

<Initializer>
SET SESSION sqgl mode="ANSI QUOTES&Quot;
</Initializers

Alternatively, you can use CDATA to escape an element value. XML parsers do
not interpret the string data inside CDATA. The following example uses < and >
but is acceptable because the element value is enclosed in [CDATA[]]:

<FunctionMapping FunctionName="NE">
<! [CDATA[SPO <> S$SP1 11>
</FunctionMapping>

Chapter 8, Understanding database types 225

226 Designing BIRT Information Objects

Configuring connection
types

This chapter contains the following topics:
m About configuring connection types
m JDBC driver requirements and installation

m Working with datasources.xml

Chapter 9, Configuring connection types 227

About configuring connection types

A connection type defines JDBC connection string syntax and connection
parameters, for example user name and password. You provide values for
connection parameters on the Data source connection properties page, as shown
in Figure 9-1.

Data Source connection properties

Type: | 5GL Server 2005

Description: Customer data ;I
H

Configuration key: |

Credentials: IPI’OXY j

User name: I MyDatabaselser

Password: | bk

Server: I MyDatabaseServer

Database: | Classictodels

Park: | 1433

achema (optional): [ClassicModels, dbo Browse... |
Test Connection |

IMap tables | Map stored procedures | Create SQL map |

Figure 9-1 Providing values for data source connection properties
To configure a connection type:

m Confirm that the database has a JDBC driver that meets the requirements
described in this chapter.

m Install the JDBC driver.
m Modify the datasources.xml file:
m Define the ConnectionType element.

m Define the ConnectionType attribute for the appropriate DatabaseType
elements.

JDBC driver requirements and installation

When you configure a connection type, you must specify the JDBC driver that the
connection uses. The Integration service uses a JDBC driver to retrieve a list of
database tables, views, or stored procedures when you create maps in

228 Designing BIRT Information Objects

Information Object Designer. For example, Figure 9-2 shows a list of tables in the
Available pane.

= J[=] B

Maps - j
Apply a filker ta display tables and views. Then select tables and views ta create maps. LL

Diata source MyDatabase

Catalog: IacTestDB j
Available Selected

= &:: acTestDE = Edbu.custumers

Eﬁg dbo %dbo.orders
= =
:| % AcSpecialChar @ dbn.ltems

j AcTestDatatypes
:| Ac_Pull_Datatypes
-[E5] Autojaini

-5 Autojninz

j Create

~[E5) FO101 (Address Book) = |

:| TestTable

:| acDataTypes cx |
~[E5] arlonghvaRTHAR _|LI

4 I I »

Filter

Schema name prefiz: | dbo & Show tables only

= Shaow views only
€ Show all

Tablefview name prefix: |

Apply Filker |

@:‘ < Back | fExk = | Finish | Cancel |

Figure 9-2 Selecting tables

The Integration service also uses a JDBC driver to execute Actuate SQL queries.

JDBC driver requirements

JDBC drivers must be JDBC 3.0 compatible. Specifically, the function
Driver.jdbcCompliant() must return TRUE, and
DatabaseMetadata.get]DBCMajorVersion() must return at least 3. Because the
iServer compiler is based on Java 1.5, JDBC drivers should be compatible with
JRE version 1.5 or earlier.

The JDBC driver must be able to retrieve a list of tables using the
DataBaseMetaData.getTables() method. Some tables returned by this method
may not be callable by the database user specified in the data connection
definition. Actuate SQL queries that use these tables may fail at query execution
time. For Information Object Designer to display only the tables that can be
selected, DataBaseMetaData.allTables AreSelectable() must return TRUE.

The JDBC driver must be able to retrieve a list of stored procedures using the
DataBaseMetaData.getProcedures() method. Some stored procedures returned by
this method may not be callable by the database user specified in the data
connection definition. Actuate SQL queries that use these stored procedures may
fail at query execution time. For Information Object Designer to display only the

Chapter 9, Configuring connection types 229

callable stored procedures, DataBaseMetaData.allProceduresAreCallable() must
return TRUE.

Installing a JDBC driver

You can store the JDBC driver anywhere in the iServer file system as long as the
iServer user can access it. You specify the absolute path to the driver when you
create the connection type. You can include the driver by name to ensure that no
other driver is loaded.

Working with datasources.xml

To configure a connection type, you must modify datasources.xml.
datasources.xml is located in the following directories:

SAC_SERVER HOME/etc/data_integration

<Actuatell HOME>\BRDPro\eclipse\plugins
\com.actuate.ais.embeddable <versions>\Config\aisconfigfiles
\etc\data integration

datasources.xml contains two main elements:

m ConnectionTypes
ConnectionTypes contains connection type configurations.

m DatabaseTypes
DatabaseTypes associates a connection type and a mapping with a database

type.

Configuring connection types: ConnectionTypes
element

The ConnectionTypes element has one or more child elements called
ConnectionType. Each ConnectionType element specifies how the Integration
service connects to a database. You define a name for each connection type using
the Name attribute.

The ConnectionType element has two child elements:
» JDBCDriver

m ConnectionParams

230 Designing BIRT Information Objects

Here is an example of a ConnectionTypes element:

<ConnectionTypes>
<ConnectionType Name="MySQL">
<JDBCDriver DriverName="com.mysqgl.jdbc.MySQLDriver">
<ConnectionStrings>
jdbc:mysqgl:mysqgl://%$server$:$port%;SID=%s1d%
</ConnectionString>
<ConnectionProperties>
<Property Name="Username">%username%</Property>
<Property Name="Password">%password%</Property>
</ConnectionProperties>
<LibraryPath>
<Location>/home/jsmith/bin/</Location>
<Location>/home/jsmith/mysqgl/bin/</Location>
</LibraryPath>
</JDBCDrivers>
<ConnectionParams>
<ConnectionParam Name="server"
Display="Server"
Type="String"
DefaultValue="end2243"
Optional="true"
ValueIsCaseSensitive="false">
</ConnectionParam>

</ConnectionParams>

</ConnectionType>
</ConnectionTypes>

ConnectionType child element: JDBCDriver

The JDBCDriver element contains information used to create JDBC connections.

This element has one attribute, DriverName, as shown in Table 9-1. The
JDBCDriver element has three child elements, ConnectionString,
ConnectionProperties, and LibraryPath, as shown in Table 9-2.

Table 9-1 Attribute of the JDBCDriver element
Attribute Description Required
DriverName Class name of the JDBC Yes

driver, for example
com.mysql.jdbc.
MySQLDriver.

Chapter 9, Configuring connection types

231

Table 9-2 Child elements of the JDBCDriver element

Element Description Required

ConnectionString JDBC connection string Yes
syntax. Do not include
user name and password.

Connection User name and password Yes

Properties properties.

LibraryPath Paths to search for Yes
libraries used by the

JDBC driver. Use a
separate Location element
for each path.

ConnectionString element
The JDBCDriver element has a ConnectionString child element, for example:

<ConnectionStrings>
DRIVER={MySQL 4.0} ;DB=%database%; PORT=%port%; IP=%server$
</ConnectionString>

The ConnectionString element provides a template for the JDBC connection
string. The parameters enclosed in percent signs (%), for example %server%, are
placeholders for the values you type on the Data source connection properties
page, shown in Figure 9-1, when you create a data connection definition. These
values are retrieved from the data connection definition (DCD) file when the
Integration service creates a connection.

You can exclude a portion of a connection string when no value is provided for a
connection parameter by enclosing it in double brackets ([[...]]). In the following
example, to exclude the IANAAppCodePage parameter from the connection
string when the value is left blank, define the ConnectionString element as
follows:

<ConnectionStrings
DRIVER={MySQL 4.3}; HOST=%server%; PORT=%port$%;
SID=%sid$%; [[IANAAppCodePage : CODEPAGE=%IANAAppCodePage%]]
</ConnectionString>

[[IANAAppCodePage : CODEPAGE=%IANAAppCodePage%]] is not included
in the connection string unless the IANAAppCodePage parameter is set.

To include the following literal characters in a ConnectionString element, precede
the character with a backslash (\):

 \

| 0/0

232 Designing BIRT Information Objects

[
=]

=+t

ConnectionType child element: CatalogFilter

The CatalogFilter element filters catalogs returned by the JDBC driver when
Information Object Designer displays a list of tables, views, or stored procedures
in the New Maps dialog. By default, all catalogs are returned. Like the template
for the JDBC connection string, the catalog filter can contain placeholders for the
values of connection parameters, for example:

<CatalogFilter>%database%</CatalogFilter>

ConnectionType child element: ConnectionParams

The ConnectionParams element defines the parameters that are used in the
ConnectionString element. The ConnectionParams element has a single child
element, ConnectionParam. Here is an example of a ConnectionParam element
that defines the server parameter:

<ConnectionParam Name="server"
Display="Server"
Type="String"
DefaultValue="end2243"
Optional="true"
ValueIsCaseSensitive="falsge">

</ConnectionParams>

One ConnectionParam element is required for each parameter. Each
ConnectionParam element has the attributes shown in Table 9-3.

Table 9-3 Attributes of the ConnectionParam element

Default
Attribute Description Required? value

Name Name of the connection Yes
parameter. This attribute is
case-insensitive.

Display Display name that appears ~ Yes
on the Data source
connection properties page
in Information Object
Designer.

(continues)

Chapter 9, Configuring connection types 233

Table 9-3 Attributes of the ConnectionParam element (continued)

Default
Attribute Description Required? value

Type Connection parameter type. Yes
Must be one of the following:

String
Boolean
Integer

Masked (Use for a string
whose value should be
hidden, such as a
password.)

DefaultValue Default value of the No
parameter.

Optional Specifies whether a No True
parameter is optional.

ValuelsCaseSensitive ~ Specifies whether the No True
parameter value is
case-sensitive. Used when
comparing two DCD files to
see if they are equivalent.

Configuring database types: DatabaseTypes element

The DatabaseTypes element has one or more child elements called DatabaseType.
Each DatabaseType element specifies the connection type and mapping for a
database type. Several database types can use the same connection type, provided
they use similar JDBC drivers, or the same mapping. For example, two different
versions of a MySQL Enterprise database can use the same connection type.

Here is an example of a DatabaseTypes element:

<DatabaseTypes>
<DatabaseType Name="MySQL4"
ConnectionType="MySQL"
DataSourceMapping="MySQL4" />
<DatabaseType Name="Ingres"
ConnectionType="Ingres"
DataSourceMapping="Ingres" />
</DatabaseTypes>

Each DatabaseType element has the attributes shown in Table 9-4.

234 Designing BIRT Information Objects

Table 9-4

Attributes of the DatabaseType element

Attribute

Description

Required?

Name

DisplayName

ConnectionType

DataSourceMapping

Name of the database type.

Display name for the database
type in the New Data Connection
Definition dialog in Information
Object Designer.

Name of the connection type to
use with this database type. The
connection type is configured
using the ConnectionType
element.

Directory where the
mappings.xml file is located. This
directory must be in the
$AC_SERVER_HOME/ etc
/data_integration and
<Actuatell HOME>\BRDPro
\eclipse\plugins
\com.actuate.ais.embeddable
_<version>\Config
\aisconfigfiles\etc
\data_integration directories.

Yes
No

Yes

No. If not specified,
the Integration
service uses the
mappings.xml file
in the
Generic_ODBC
directory.

If you set this
attribute to
No_Mappings, all
operations are
executed by the
Integration service
executor.

Chapter 9, Configuring connection types

235

236 Designing BIRT Information Objects

Mapping data types

This chapter contains the following topics:
m About data type mapping
m DataTypeMapper element

Chapter 10, Mapping data types 237

About data type mapping

When you create a map of a database table, a database view, or a stored
procedure result set, Information Object Designer assigns an Actuate SQL data
type to each column in the map. For example, Figure 10-1 shows the output
columns for a map of a SQL Server database table and the Actuate SQL data types
for each column.

&5 dbo. Orders.sMa 52

5 P

Output Columns

Specify output columns:

| Source column I Marne | Data bype
arderMumber arderMumber Integer
arderDate arderDate Timestamp
requiredDate requiredDate Timestamp
shippedDate shippedDate Timestamp

status status Warchar Actuate SQL
camments comments VarchAr
data type

customerMurber | customerMumber | Inkeger

Figure 10-1 Output columns and Actuate SQL data types for a map of a
database table

EEEEEERE

The Actuate SQL data type for a column is determined as follows:

m The JDBC driver provides the generic SQL data type for the column, for
example INTEGER, FLOAT, VARCHAR, or DATE.

m Based on the generic SQL data type, the Integration service chooses the best
Actuate SQL data type for the column.

For example, in Figure 10-2 a column in a SQL Server database table has FLOAT
data type. The JDBC driver provides the generic SQL data type FLOAT. The
Integration service then chooses the Actuate SQL data type DOUBLE.

SQL Server Generic SQL Actuate SQL
data type: JDBC driver data type: Integration service data type:
FLOAT FLOAT DOUBLE

Figure 10-2 Mapping a database data type to an Actuate SQL data type
Table 10-1 lists the generic SQL types supported by the Integration service.

238 Designing BIRT Information Objects

Table 10-1 Generic SQL types supported by the Integration service
Generic SQL Actuate SQL
type Facets Description type
BIT 1-bit integer, with value 1 or 0. INTEGER
TINYINT 8-bit integer. INTEGER
SMALLINT 16-bit integer. INTEGER
INTEGER 32-bit integer. INTEGER
BIGINT 64-bit integer. DECIMAL
FLOAT Size Floating point that can vary between DOUBLE
single and double binary precision,
depending on the value of size.
REAL Floating point (single binary precision). DOUBLE
DOUBLE Floating point (double binary DOUBLE
precision).
NUMERIC Size, decimals Decimal with scale decimals, and DECIMAL
precision that cannot exceed size.
DECIMAL Size, decimals Same as NUMERIC. DECIMAL
CHAR Size Fixed-width character, maximum VARCHAR
length is specified by size.
VARCHAR Size Variable-width character, maximum VARCHAR
length is specified by size.
LONG Size Long variable-width character. VARCHAR
VARCHAR Maximum length is specified by size.
The Integration service does not
support strings with a maximum length
of more than 64,000 characters.
DATE Date with no time component. TIMESTAMP
TIMESTAMP Date with time component, with or TIMESTAMP

without fractions-of-a-second field,
containing up to 3 digits.

DataTypeMapper element

If the JDBC driver does not provide a generic SQL data type for a column or the
JDBC driver provides an incorrect data type, use the DataTypeMapper element in
mappings.xml to map the column’s database data type to a generic SQL data

type. The DataTypeMapper element has one child element, DataTypes. The
DataTypes element has one child element, DataType.

Chapter 10, Mapping data types

239

For each database data type you want to map, you define a DataType element.
You should declare all VARCHAR and DECIMAL (or NUMERIC) data types
using the DataType element. If these data types are not declared, the Integration
service uses the ODBC escape sequences to convert these types. The escape
sequences cannot specify the string length, decimal precision, or decimal scale of
the result.

Each DataType element has the attributes shown in Table 10-2.

Table 10-2 Attributes of the DataType element
Attribute Description Required?
Name Name of the database data type, for example FLOAT, Yes
NUMBER, VARCHAR?2.
GenericSQLType Generic SQL type the data type corresponds to. Yes
MaxSize Maximum size (decimal precision or string length) for ~ No, but highly
the database data type. Applies only to CHAR, recommended.
VARCHAR, LONGVARCHAR, NUMERIC, and
DECIMAL types.

MaxSize attribute

For every database type, there is a maximum string length and a maximum
decimal precision (the maximum number of decimal digits in a DECIMAL value).
For example, for SQL Server 2000, NVARCHAR strings cannot exceed 4000
characters. When performing calculations involving strings and decimals, the
Integration service uses these maximum sizes to determine how big the result can
be. Strings and decimal digits may be truncated by the Integration service based
on these maximum values. Also, if the maximum assumed by the Integration
service is too large, the Integration service may create queries that the database
cannot accept.

You should specify the MaxSize attribute for CHAR, VARCHAR,
LONGVARCHAR, NUMERIC and DECIMAL types. Table 10-3 gives the default
values for the MaxSize attribute.

Table 10-3 Default values for the MaxSize attribute

Generic SQL type Default value of MaxSize attribute
CHAR, VARCHAR 255

LONGVARCHAR 64000

NUMERIC, DECIMAL 20

240 Designing BIRT Information Objects

The following example uses the MaxSize attribute to specify the maximum string
length for the database data type NVARCHAR and the maximum decimal
precision for the database data type DECIMAL:

<DataTypeMapper>
<DataTypes>
<DataType Name="NVARCHAR" GenericSQLType="VARCHAR"
MaxSize="1000" />
<DataType Name="DECIMAL" GenericSQLType="DECIMAL"
MaxSize="32" />
</DataTypes>
</DataTypeMapper>

DataType child element: Aliases

The database may have other names or aliases for a data type. For example, on
SQL Server INT is also called INTEGER. You must define the aliases so that the
Integration service can recognize the data type when the database column uses an
alias. To define aliases, use the Aliases element. The Aliases element has one child
element, Alias. Define each alias using the Alias element.

The following example assumes you have a database that has the following data
types: CHAR, VARCHAR, NVARCHAR, SMALLINT, INT, DECIMAL, FLOAT,
and DATETIME. The Integration service maps all of these to generic SQL data
types except NVARCHAR and FLOAT. For these data types, the Integration
service returns an error such as Type is not supported. The Integration service
returns an error because the JDBC driver does not provide the generic SQL type
for FLOAT or NVARCHAR. You must define a mapping for data types that the
JDBC driver cannot map.

Using your database documentation and the descriptions in Table 10-1, you select
generic SQL types for NVARCHAR and FLOAT. You also define an alias for
FLOAT:

<DataTypeMapper>
<DataTypes>
<DataType Name="NVARCHAR" GenericSQLType="VARCHAR" />
<DataType Name="FLOAT" GenericSQLType="DOUBLE">
<Aliases>
<Alias>DOUBLE</Alias>
</Aliases>
</DataType>
</DataTypes>
</DataTypeMapper >

Chapter 10, Mapping data types 241

242 Designing BIRT Information Objects

Mapping functions
and operators

This chapter contains the following topics:

= About mapping functions and operators

= Syntax for mapping functions and operators
m Using operators in a mapping

m Using initialization statements

Chapter 11, Mapping functions and operators 243

About mapping functions and operators

If an Actuate SQL query contains a function, the Integration service must convert
the function into a database function that returns the same results. To convert an
Actuate SQL function to a database function, the Integration service uses function
templates in a mappings.xml file. A function template contains a database
function that is substituted for the Actuate SQL function when the query is sent to
the database. The mappings.xml file in the Base_Mappings directory contains the
default function templates.

If your database is ODBC-compliant and the database function is exactly like an
Actuate SQL function, then the Integration service can perform the mapping for
you using ODBC escape sequences. Relational databases, however, frequently
differ in their implementation of SQL functions. Thus, when you configure a new
database type you must resolve discrepancies in function implementations.

If your database does not support a function used in an Actuate SQL query, then
you cannot map the function. The function must be performed by the Integration
service.

About ODBC escape sequences

ODBC escape sequences are a set of standard patterns that are recognized by both
ODBC and JDBC drivers. The sequences are used for creating SQL statements
that are platform-independent. When sent to a JDBC or ODBC driver, the driver
converts the escape sequences to SQL expressions that are recognized by the
database. An ODBC escape sequence is enclosed in braces and starts with FN,
which stands for function. An ODBC escape sequence has the following pattern:

{FN functionName (parameters) }

For example, the following query sent through a JDBC driver for SQL Server
converts the values from the column Name to uppercase:

SELECT {FN UCASE (Name)} FROM Customers
The JDBC driver translates the expression to:
SELECT UPPER (Name) FROM Customers

The Integration service uses ODBC escape sequences to map functions. However,
not all drivers implement all the ODBC escape sequences. In some cases, a
database has no equivalent of an escape sequence. When a driver does not have
an implementation for an escape sequence, the driver returns an error. When your
driver does not support an escape sequence, you must provide a function
mapping in mappings.xml. Additionally, when the escape sequence
implementation is incompatible with the Actuate SQL specification, you must
also edit mappings.xml.

244 Designing BIRT Information Objects

The following example demonstrates one possible transformation of an Actuate
SQL query into a database query, in this case SQL Server. The Integration service
reads the mappings.xml file for function mappings but may determine that it can
do some of the query operations more efficiently than the database. Thus, the
query that the Integration service sends to the database may not use all
mappings.

The following Actuate SQL query selects three columns from a single table,
TOPDEALS:

SELECT CUSTID, CUSTOMNAME, FLOOR (AMOUNT) AS AMOUNT
FROM "../TOPDEALS.sma" AS TOPDEALS
WHERE Upper (CUSTOMNAME) LIKE Upper ('DES$')

For the AMOUNT column, you use the FLOOR function to round down the
values returned. In the WHERE clause, you define a filter condition so that the
query only returns customers whose name starts with DES. With the exception of
the FROM clause, which refers to a map file, the query looks like a generic SQL

query.
To translate the query into a database query, the Integration service loads function
templates from the mappings.xml file for the database type. The Integration

service finds mappings for the Actuate SQL functions used in the query, as shown
in the following plan:

Actuate SQL: FLOOR(), ODBC Escape Sequence: {FN FLOOR (SPO) },
SQL Server SQL: FLOOR()

Actuate SQL: UPPER(),ODBC Escape Sequence: {FN UCASE ($PO0)},
SQL Server SQL: Upper ()

The Integration service determines an optimal query execution plan after parsing
the query and assessing the mappings. FLOOR() is not sent to the database.
Instead, the Integration service performs this operation on the returned data. The
following query is sent to the database:

SELECT CUSTID, CUSTOMNAME, AMOUNT
FROM TOPDEALS
WHERE UPPER(CUSTOMNAME) LIKE Upper ('DES%')

You can see the query sent to the database in the Information Object Designer
Query Profiler.

Once the database returns results, the Integration service uses the data type
mappings you defined in mappings.xml to convert the data in the result set to
Actuate SQL data types. Finally, the Integration service performs any remaining
operations, in this case the FLOOR function, before sending the data to the
Factory service to generate the report.

Chapter 11, Mapping functions and operators 245

Disabling the default mapping for a function

Your database may not support certain SQL-92 functions that are used by default
to implement Actuate SQL functions. You must disable the default mappings for
functions that are not supported. If you disable the mapping for a function, the
Integration service performs the function instead of the database.

For example, some databases do not have an implementation of the POSITION
function. The ODBC driver returns an error when the Integration service issues a
query containing the POSITION function to such a database. To prevent the
Integration service from encountering such errors, you should disable the
mapping for the POSITION function in the mappings.xml file.

Differences between Actuate SQL functions and
database functions

Your database’s implementation of certain SQL functions may differ slightly from
the Actuate SQL implementation of the same functions. For example, the Actuate
SQL function DATEPART (weekday) is used to find the weekday of a date. The
Actuate SQL function DATEPART(weekday) returns 0 for Sunday. On your
database, a similar function WEEKDAY may return 1 for Sunday. The JDBC
driver may hide this from the Integration service, but if it does not, a query would
return incorrect values for the weekday of each date. Thus, you need to edit
mappings.xml to define an appropriate substitute for the Actuate SQL function
DATEPART.

About Generic_ODBC mappings.xml

Most of the elements in the Generic_ODBC mappings.xml are for mapping
functions or operators. Functions and operators are implemented differently on
different databases. Thus, most of your work in configuring a new database type
involves mapping functions and operators. To map a function, you provide a
template that includes a database function that the Integration service uses when
rewriting a query.

The Generic_ODBC mappings.xml file contains the following elements for
mapping functions and operators:

<DataSourceMappings>
<DataSourceMapper>

<BooleanOpMapper />
<ComparisonOpMapper />
<ArithOpMapper />
<NumericFuncMapper />
<BasicStringFuncMapper />
<SubStringFuncMapper />

246 Designing BIRT Information Objects

<LikeOpMapper />
<DatePartMapper />
<DateDiffMapper />
<DateAddMapper />
<NullFuncMapper />
<CondFuncMapper />
<MultiRowBoolFuncMapper />
<CastFuncMapper />

</DataSourceMapper >
</DataSourceMappings>

The Generic_ODBC mappings.xml file does not contain examples or the default
templates for mapping Actuate SQL functions and operators. The default
templates are listed in the mappings.xml file in the AC_SERVER_HOME/etc
/data_integration/Base_Mappings and <Actuatell_HOME>\BRDPro\eclipse
\plugins\com.actuate.ais.embeddable_<version>\Config\aisconfigfiles\etc
\data_integration\Base_Mappings directories. In subsequent topics, you can find
specific examples of how to map functions and operators.

Syntax for mapping functions and operators

Though it is possible to have the Integration service perform all Actuate SQL
operations, it is not recommended. Whenever possible, you should execute
functions and other operations on your database to optimize performance. Since
Actuate SQL supports many common functions, for each Actuate SQL function
there is usually an expression on the database that performs the same operation.

The goal of mapping a function is to specify a database function that provides the
correct result for an Actuate SQL function. Sometimes it is possible to find a
function on a database that behaves exactly like an Actuate SQL function. For
example, Actuate SQL has a SUBSTRING function that takes three operands: $P0
for the string to be evaluated, $P1 for the start position, and $P2 for the number of
characters to retrieve. Your database may have a function called SUBSTR that has
the same syntax and performs the same operation. Therefore, Actuate SQL’s
SUBSTRING ($P0, $P1, $P2) maps to SUBSTR ($P0, $P1, $P2) on the database.

In most cases, however, the mapping is not so straightforward. The syntax of the
database function is usually different from the Actuate SQL syntax. Perhaps the
SUBSTR function on the database does not specify the length of the substring as
the third operand. Instead the SUBSTR function specifies the end position of the
substring. For example, if the substring begins at position 3 and has 10 characters,
the value of the third operand is 12. To map the SUBSTRING function, you must
create an expression using the SUBSTR function that produces the same result, for
example SUBSTR ($P0, $P1, $P1 + $P2 - 1).

Chapter 11, Mapping functions and operators 247

The mappings.xml files for preconfigured database types contain many examples
of function mapping. Do not modify the mappings.xml file for a preconfigured
database type.

Mapping functions and operators: FunctionMapping
element

The Generic_ODBC mappings.xml file contains empty elements for functions and
operators. You customize function mappings by finding the appropriate element,
such as BooleanOpMapper or NumericFuncMapper, and adding a
FunctionMapping child element. The FunctionMapping element contains the
attributes listed in Table 11-1.

Table 11-1 Attributes of the FunctionMapping element

Attribute Description Required?

FunctionName Name of the Actuate SQL function. Yes.

OperandTypes Space-separated list of the Actuate No. If the function can have
SQL data types of the operands. The many different operand types
list can consist of the tokens (overloading), then the mapping

BOOLEAN, INTEGER, DECIMAL, applies to all versions of the
DOUBLE, VARCHAR, TIMESTAMP, function.

and TABLE. For DATEDIFF, DATEADD, and
DATEPART, use the DatePart
attribute instead.

DatePart Used only for DATEDIFF, DATEADD, Yes, for DATEDIFF, DATEADD,
and DATEPART. Specifies the date part and DATEPART. Not required
being mapped. Must be one of: for other functions.

= yyyy (year)
q (quarter)
m (month)

d (day)

h (hour)

n (minute)

s (second)

w (weekday)

y (day of year)

Disabled Whether the mapping is disabled. If set No. Default is False.
to True, then the expression is not sent
to the database. It is handled by the
Integration service.

248 Designing BIRT Information Objects

About function templates

You use the syntax shown in Table 11-2 to define function templates.

Table 11-2 Syntax used to define function templates
Syntax Represents
$Pn The (n+1)th operand. $P0 is the first operand, $P1 is the second

operand, $P2 is the third operand, and so on. An operand can be a
literal like 'Hello' or 6. An operand can also be a column on the
database or a parameter.

$R The database data type that the expression returns, for example
CAST $P0 AS $R.
$$ The dollar sign ($).

The Integration service calculates the return data type for a function. You cannot
calculate the return data type manually in a reliable manner. For example, when
mapping the CAST function, do not use CAST ($P0 AS NVARCHAR). Instead,
use CAST ($P0 AS $R). The Integration service determines the correct data type.
When you use the $R syntax, you must explicitly declare the name of the database
data type in the DataTypeMapper element, otherwise the ODBC name, for
example SQL_VARCHAR, is used.

To help you understand how to use function templates, three examples of
customized function mappings are given below.

Example: Mapping the POWER function

When you test your queries, you discover that the default mapping for the
Actuate SQL POWER function returns an error. The Integration service uses the
ODBC escape sequence {FN POWER ($P0, $P1)} as the default mapping.
However, your JDBC driver does not have an implementation for the escape
sequence and thus cannot rewrite the expression. Therefore, you must map the
POWER function.

After checking your database documentation, you determine that the database
has a function called POWER and that it takes two arguments. You compare this
to the Actuate SQL POWER prototypes:

Integer POWER(base Integer, exponent Integer)
Decimal POWER(base Decimal, exponent Integer)
Double POWER(base Double, exponent Integer)

You use the NumericFuncMapper element. Because there is no OperandTypes
attribute, the mapping applies to all versions of the POWER function:

Chapter 11, Mapping functions and operators 249

<NumericFuncMapper>
<FunctionMappings>

<FunctionMapping
FunctionName="POWER"> <!-- The Actuate SQL function -->
POWER (PO, SP1l) <!-- The database function -->

</FunctionMapping>
</FunctionMappings>
</NumericFuncMapper>

For another example, refer to the mappings.xml file for Oracle, which requires a
very different mapping for the POWER function. To map POWER, you use the
OperandTypes attribute and define three different mappings:

<NumericFuncMapper>
<FunctionMappings>

<FunctionMapping FunctionName="POWER"
OperandTypes="INTEGER INTEGER">
CAST(TRUNC (POWER(SPO, SP1)) AS SR)

</FunctionMapping>

<FunctionMapping FunctionName="POWER"
OperandTypes="DECIMAL INTEGER">
CAST (POWER($PO, $P1) AS SR)

</FunctionMapping>

<FunctionMapping FunctionName="POWER"
OperandTypes="DOUBLE INTEGER">
POWER($PO, $P1)

</FunctionMapping>

</FunctionMappings>
</NumericFuncMapper>

Example: Mapping the DATEDIFF function with date part yyyy

The Actuate SQL DATEDIFF function uses a prototype that enables you to
provide a date part such as yyyy. Thus, you can use the same function to do date
subtraction for years, months, days, etc.:

Integer datediff (datepart Varchar, start Timestamp, end
Timestamp)

When you test your queries you discover there is a problem with the default
mapping for the DATEDIFF function with date part yyyy. The driver is mapping
the DATEDIFF function to the YEARS_BETWEEN function on the database. The
query gives incorrect results because the year is consistently off by one.

250 Designing BIRT Information Objects

You can resolve the problem using the following mapping:

<DateDiffMappers>
<FunctionMappingss>
<FunctionMapping FunctionName="DATEDIFF" DatePart="yyyy">
YEARS BETWEEN ($P0O, $P1) - 1
</FunctionMapping>
</FunctionMappings>
</DateDiffMappers>

As another example, DB2 uses the following mapping for the DATEDIFF function
with date part yyyy:

<FunctionMapping FunctionName="DATEDIFF" DatePart="yyyy">
(YEAR($SP1) - YEAR (SPO))
</FunctionMapping>

Example: Disabling the POSITION function

You determine that your database does not support the POSITION function.
Therefore, you must disable the mapping of the POSITION function:

<SubStringFuncMapper>
<FunctionMappings>
<FunctionMapping FunctionName="POSITION"
Disabled="true" />
</FunctionMappings>
</SubStringFuncMapper>

Mapping Boolean operators: BooleanOpMapper
element
The BooleanOpMapper element is used for customizing the mappings of the

Boolean operators AND, OR, and NOT. Table 11-3 shows the default templates
for mapping Boolean operators.

Table 11-3 Default templates for mapping Boolean operators
Boolean
operator Operand data types Default template
AND <BOOLEAN>, <BOOLEAN> $P0 AND $P1
OR <BOOLEAN>, <BOOLEAN> $P0 OR $P1
NOT <BOOLEAN> NOT $P0

Chapter 11, Mapping functions and operators 251

Example: Mapping the NOT operator

You determine that the database sometimes returns errors when the argument of
the NOT operator is not enclosed in parentheses. To resolve this problem, you use
the following mapping:

<BooleanOpMapper>
<FunctionMappingss>
<FunctionMapping FunctionName="NOT">
NOT ($PO)
</FunctionMapping>
</FunctionMappings>
</BooleanOpMapper>

Mapping comparison operators:
ComparisonOpMapper element
The ComparisonOpMapper element is used for customizing the mappings of the

comparison operators listed in Table 11-4. The table also shows the default
template for each operator.

Table 11-4 Default templates for mapping comparison operators
Comparison Operand data Default
operator types template Remarks
= <INTEGER>, $P0 = $P1 Use EQ as the FunctionName
<INTEGER> for =.
> <DECIMAL>, $PO > $P1 Use GT as the FunctionName
<DECIMAL> for >.
< <DOUBLE>, $P0 < $P1 Use LT as the FunctionName
<DOUBLE> for <.
VARCHAR>,
>= ZV ARCH AR; $P0 >= $P1 }Jie>G_E as the FunctionName
<TIMESTAMP>, or= ,
<= <TIMESTAMP> $P0 <=5$P1 }Jse<LE as the FunctionName
or <=.
<> $P0 <> $P1 Use NE as the FunctionName
for <>.

Example: Mapping the <> operator

You change the mapping of the <> operator for VARCHAR because on your
database the comparison operator for strings is an exclamation point followed by
an equals sign (!=). You use NE as the FunctionName:

252 Designing BIRT Information Objects

<ComparisonOpMapper>
<FunctionMappings>
<FunctionMapping FunctionName="NE"
OperandTypes="VARCHAR VARCHAR">
SPO != S$SP1
</FunctionMapping>
</FunctionMappings>
</ComparisonOpMapper>

Mapping arithmetic operators: ArithOpMapper
element
The ArithOpMapper element is used for customizing the mappings of the

arithmetic operators listed in Table 11-5. The table also shows the default template
for each operator.

Table 11-5 Default templates for mapping arithmetic operators
Arithmetic Operand data Default
operator types template Remarks
+ <INTEGER>, ($P0 + $P1) Use ADD as the FunctionName
<INTEGER> for +.
- <DOUBLE>, ($P0 - $P1) Use SUB as the FunctionName
<DOUBLE> for -.
* <DECIMAL>, (¢p0 * $P1) Use MULT as the FunctionName
<DECIMAL> for *.
/ <INTEGER>, ($P0 / $P1) Use DIV as the FunctionName
<INTEGER> for /.
<DOUBLE>, ($P0 / $P1)
<DOUBLE>

<DECIMAL>, Generated by
<DECIMAL> thelntegration
service

- <INTEGER> - ($P0) Use NEG as the FunctionName
<DOUBLE> for -.
<DECIMAL>

Example: Mapping the negation operator

You change the mapping of the negation operator because your database uses a
different syntax. You use NEG as the FunctionName:

Chapter 11, Mapping functions and operators 253

<ArithOpMapper>
<FunctionMappings>
<FunctionMapping FunctionName="NEG">
NEGATE ($PO)
</FunctionMapping>
</FunctionMappings>
</ArithOpMapper>

Mapping numeric functions: NumericFuncMapper
element

The NumericFuncMapper element is used for customizing the mappings of the
numeric functions listed in Table 11-6. The table also shows the default template
for each function.

Table 11-6 Default templates for mapping numeric functions

Numeric

function Operand data types Default template

ROUND <DECIMAL>, <INTEGER> {FN ROUND (%P0, $P1)}
<DOUBLE>, <INTEGER>

FLOOR <DECIMAL> {FN FLOOR ($P0)}
<DOUBLE>

CEILING <DECIMAL> {FN CEILING ($P0)}
<DOUBLE>

POWER <INTEGER>, <INTEGER> {FN POWER ($P0, $P1)}
<DECIMAL>, <INTEGER> Generated by the Integration service
<DOUBLE>, <INTEGER> {FN POWER ($P0, $P1)}

MOD <INTEGER>, <INTEGER> {FN MOD ($P0, $P1)}

Example: Mapping the POWER function

The POWER function with DECIMAL and INTEGER operands does not give
accurate results on your database. To obtain more accurate results, you convert
the second operand to a decimal:

<NumericFuncMappers>
<FunctionMappingss>
<FunctionMapping FunctionName="POWER"
OperandTypes="DECIMAL INTEGER">
POWER ($SP0O, CAST (sP1 AS DECIMAL (10, 0))
</FunctionMapping>
</FunctionMappings>
</NumericFuncMapper>

254 Designing BIRT Information Objects

Mapping string functions: BasicStringFuncMapper
element

The BasicStringFuncMapper element is used for customizing the mappings of the
functions listed in Table 11-7. The table also shows the default template for each

function.

Table 11-7 Default templates for mapping string functions

String function Operand data types Default template

CHAR_LENGTH <VARCHAR>, {FN LENGTH ($P0)}
<INTEGER>

UPPER <VARCHAR> {FN UCASE ($P0)}

LOWER <VARCHAR> {FN LCASE ($P0)}

LTRIM <VARCHAR> {FN LTRIM ($P0)}

RTRIM <VARCHAR> {FN RTRIM ($P0)}

CONCAT <VARCHAR>, {FN CONCAT ($P0,
<VARCHAR> $P1)}

Example: Mapping the CHAR_LENGTH function

The Actuate SQL CHAR_LENGTH function returns the length of a string
including trailing spaces. The corresponding database function, however, ignores
trailing spaces. To resolve this discrepancy, the following mapping appends an
underscore (_) to the string, applies the database function LEN, and subtracts one:

<BasicStringFuncMappers>
<FunctionMappingss>
<FunctionMapping FunctionName="CHAR LENGTH">
LEN ($PO + ' ') -1
</FunctionMapping>
</FunctionMappings>
</BasicStringFuncMapper>

Mapping substring functions: SubStringFuncMapper
element

The SubStringFuncMapper element is used for customizing the mappings of the
functions listed in Table 11-8. The table also shows the default template for each
function.

Chapter 11, Mapping functions and operators 255

Table 11-8 Default templates for mapping substring functions

Substring

function Operand data types Default template

SUBSTRING <VARCHAR>, <INTEGER>, <INTEGER> {FN SUBSTRING ($P0, $P1, $P2)}
LEFT <VARCHAR>, <INTEGER> {EN LEFT ($P0, $P1)}

RIGHT <VARCHAR>, <INTEGER> {EN RIGHT ($P0, $P1)}
POSITION <VARCHAR>, <VARCHAR> {FN LOCATE (%P0, $P1)}

Example: Mapping the POSITION function

You must map the POSITION function because your driver does not implement
the escape sequence {FN LOCATE ($P0, $P1)}:

<SubStringFuncMapper>
<FunctionMappingss>
<FunctionMapping FunctionName="POSITION">
POSITION (sSPO, S$P1)
</FunctionMapping>
</FunctionMappings>
</SubStringFuncMapper>

Mapping the LIKE operator: LikeOpMapper element

The LikeOpMapper element is used for customizing the mapping of the LIKE
operator. The default template is $P0 LIKE $P1 ESCAPE '@'. $P1 is the pattern
against which to compare the string $P0. $P0 and $P1 are both of type
VARCHAR.

To map the LIKE operator, do the following:

m Determine whether the database has an equivalent for the LIKE operator. The
database equivalent must be able to support escaping special characters in the
pattern, for example through the ESCAPE clause. If no database equivalent
exists, disable the mapping by setting the Disabled attribute to true.

m Identify the character that the database uses for matching a single character.
For example, standard SQL uses the underscore (_). Set the SingleMatchChar
attribute to this character. If no such character exists, disable the mapping by
setting the Disabled attribute to true.

m Identify the character that the database uses for matching any number of
characters. For example, standard SQL uses the percent sign (%). Set the
GreedyMatchChar attribute to this character. If no such character exists,
disable the mapping by setting the Disabled attribute to true.

m Determine how special characters are escaped on the database. Typically, you
specify an escape character, for example backslash (\), using an ESCAPE

256 Designing BIRT Information Objects

clause in the LIKE template, for example $P0 LIKE $P1 ESCAPE '\'. You then
specify the EscapeTemplate attribute to show how to escape special characters.
For example, \$ indicates that the backslash precedes the special character.

m Identify any additional special characters that the database recognizes within
the pattern. For example, some databases allow pattern matching using the
square bracket syntax [a-z0-9]. In this case, the square brackets must be
escaped whenever the Integration service pushes queries to the database to
ensure that the database interprets these characters as literals.

The attributes used for customizing the LIKE operator mapping are listed in

Table 11-9.
Table 11-9

Attributes for customizing the LIKE operator mapping

Attribute name

Description

Required?

Disabled

SingleMatchChar

GreedyMatchChar

EscapeTemplate

AdditionalSpecialChars

Set to true to disable the
mapping for the LIKE operator.

Character used on the database
to match a single character.

Character used on the database
to match any number of
characters.

Template that shows how to
escape a special character on the
database. In the template, $
stands for the special character,
while $$ stands for the dollar
sign.

Any special characters other
than the single match character
and the greedy match character.
Additional special characters are
listed without spaces.

No. Default is false.

No. Default is underscore ().
For example, on the database
' rown' matches 'Brown' and
'Crown'.

No. Default is percent sign (%).
For example, on the database
'Hat%' matches 'Hatcher' and
'Hathaway'.

No. Default is @$. By default,
the characters used on the
database for single match and
greedy match are escaped by
prepending an @.

No. Default is at sign (@), the
default escape character.

Example: Mapping the LIKE operator

Your database has an equivalent for the LIKE operator called MATCH. The
MATCH operator uses the question mark (?) to match a single character and the
asterisk (*) to match any number of characters. The MATCH operator uses square
brackets to escape special characters, for example [?]:

Chapter 11, Mapping functions and operators

257

<LikeOpMapper SingleMatchChar="?"
GreedyMatchChar="*"
EscapeTemplate="[$]"
AdditionalSpecialChars="[]">
<FunctionMappingss>
<FunctionMapping FunctionName="LIKE">
MATCH ($SPO, $P1)
</FunctionMapping>
</FunctionMappings>
</LikeOpMapper>

Example: Changing the escape character

Your database supports the LIKE operator but errors occur when you use the
at sign (@) as the escape character, so you use the backslash (\) instead:

<LikeOpMapper
EscapeTemplate="\3"
AdditionalSpecialChars="\">
<FunctionMappingss>
<FunctionMapping FunctionName="LIKE">
$P0 LIKE $P1 ESCAPE '\'
</FunctionMapping>
</FunctionMappings>
</LikeOpMapper>

Example: Disabling the LIKE operator

Your database has no equivalent for the LIKE operator so you disable the
mapping. Disabling the mapping means that the Integration service processes
LIKE expressions, not the database:

<LikeOpMapper Disabled="true" />

Example: Specifying additional special characters

Your database supports the LIKE operator, but extends it to recognize patterns
such as [a-z0-9]. If the characters open square bracket ([), close square bracket (]),
and hyphen (-) appear in a string, they must be escaped so that the database
interprets them as literals instead of assigning special meaning to them:

<LikeOpMapper AdditionalSpecialChars="@[]-" />

Mapping DATEPART functions: DatePartMapper
element

DATEPART takes two arguments: a date part and a timestamp. It returns the part
of the timestamp specified by the date part:

Integer datepart(datepart Varchar, value Timestamp)

258 Designing BIRT Information Objects

The DatePartMapper element is used to customize the mappings for the date
parts listed in Table 11-10. The table also shows the default template for each date
part.

Table 11-10 Default templates for mapping date parts with the DATEPART

function
Date part Default template
yyyy (vear) (FN YEAR ($P0)}
q (quarter) {FN QUARTER ($P0)}
m (month) {FN MONTH ($P0)}
d (day) {FN DAYOFMONTH ($P0)}
h (hour) {FN HOUR ($P0)}
n (minute) {FN MINUTE ($P0)}
s (second) {FN SECOND ($P0)}
w (day of week) {FN DAYOFWEEK ($P0)}
y (day of year) {FN DAYOFYEAR ($P0)}

Example: Mapping the DATEPART functions

Your database has a different syntax for the DATEPART functions. You define
each part using a mapping:
<DatePartMapper>
<FunctionMappingss>
<FunctionMapping FunctionName="DATEPART"
DatePart="yyyy">
TO_NUMBER (TO_CHAR ($P0, 'YYYY'))
</FunctionMapping>

<FunctionMapping FunctionName="DATEPART"
DatePart="y">
TO NUMBER (TO_CHAR ($P0O, 'DDD'))
</FunctionMapping>
</FunctionMappings>
</DatePartMapper>

Mapping date subtraction functions: DateDiffMapper
element

DATEDIFF takes three arguments: a date part, a start timestamp, and an end
timestamp. It returns the integer delta between the part of the two timestamps
specified by the date part:

Chapter 11, Mapping functions and operators 259

Integer datediff (datepart Varchar, start Timestamp, end
Timestamp)

The DateDiffMapper element is used to customize the mappings for the date
parts listed in Table 11-11. The table also shows the default template for each date

part.
Table 11-11 Default templates for mapping date parts with the DATEDIFF
function
Date part Default template
yyyy (year) FN TIMESTAMPDIFF (SQL_TSI_YEAR, $P0, $P1)}
q (quarter) FN TIMESTAMPDIFF (SQL_TSI_QUARTER, $P0, $P1)}

{

{

m (month) {FN TIMESTAMPDIFF (SQL_TSL MONTH, $P0, $P1)}

d (day) {FN TIMESTAMPDIFF (SQL_TSL_DAY, $P0, $P1)}

h (hour) {FN TIMESTAMPDIFF (SQL_TSI_HOUR, $P0, $P1)}
{FN TIMESTAMPDIFF (SQL_TSI_MINUTE, $P0, $P1)}
{FN TIMESTAMPDIFF (SQL_TSI_SECOND, $P0, $P1)}
({FN TIMESTAMPDIFF (SQL_TSL_DAY, $P0, $P1)} / 7)
{FN TIMESTAMPDIFF (SQL_TSL_DAY, $P0, $P1)}

n (minute)

s (second)

w (day of week)
y (day of year)

Examples: Mapping the DATEDIFF function with date part yyyy

The following examples show different ways of mapping the DATEDIFF function
with date part yyyy.

Example 1

<FunctionMapping FunctionName="DATEDIFF"
DatePart="yyyy">
(YEAR(SP1) - YEAR (SPO))
</FunctionMapping>

Example 2

<FunctionMapping FunctionName="DATEDIFF"
DatePart="yyyy">
CAST (
TO _NUMBER(TO CHAR($P1, 'YYYY'))
TO NUMBER(TO CHAR($PO, 'YYYY'))
AS NUMBER (9)
)

</FunctionMapping>

260 Designing BIRT Information Objects

Example 3

<FunctionMapping FunctionName="DATEDIFF"
DatePart="yyyy">
DATEDIFF(year, PO, SP1)
</FunctionMapping>

Mapping date addition functions: DateAddMapper
element
DATEADD takes three arguments: a date part, an integer delta value, and a

timestamp value. It returns a timestamp that applies the delta value to the
specified part of the original timestamp:

Timestamp dateadd(datepart Varchar, delta Integer, value
Timestamp)

The DateAddMapper element is used to customize the mappings for the date
parts listed in Table 11-12. The table also shows the default template for each date
part.

Table 11-12 Default templates for mapping date parts with the DATEADD
function

Date part Default template
yyyy (year) {FN TIMESTAMPADD (SQL_TSI_ MONTH, $P0*12, $P1)}
q (quarter) {FN TIMESTAMPADD (SQL_TSI_ MONTH, $P0*3, $P1)}
m (month) {FN TIMESTAMPADD (SQL_TSI_MONTH, $P0, $P1)}
d (day) {FN TIMESTAMPADD (SQL_TSI_DAY, $P0, $P1)}
h (hour) {FN TIMESTAMPADD (SQL_TSI_HOUR, $P0, $P1)}

{

{

{

{

FN TIMESTAMPADD (SQL_TSI_MINUTE, $P0, $P1)}
FN TIMESTAMPADD (SQL_TSI_SECOND, $P0, $P1)}
FN TIMESTAMPADD (SQL_TSI_DAY, $P0, $P1)}
FN TIMESTAMPADD (SQL_TSI_DAY, $P0, $P1)}

n (minute)

s (second)

w (day of week)
y (day of year)

Example: Mapping the DATEADD functions

Your database has a different syntax for the DATEADD functions. You define
each part using a mapping:
<DateAddMapper>
<FunctionMappings>
<FunctionMapping FunctionName="DATEADD"
DatePart="yyyy">
($P1 + SPO YEARS)
</FunctionMapping>

Chapter 11, Mapping functions and operators 261

<FunctionMapping FunctionName="DATEADD"
DatePart="y">
($P1 + $PO DAYS)
</FunctionMapping>
</FunctionMappings>
</DateAddMapper>

Mapping date serialization functions:
DateSerialMapper element

DATESERIAL has two forms. The first form takes three arguments: a year value,
a month value, and a day value. It returns a timestamp for the date corresponding
to the specified year, month, and day with the time set to 00:00:00.0:

Timestamp dateserial (year Integer, month Integer,
day Integer)

The second form of dateserial takes six arguments: values for the year, month,
day, hour, minute, and second. It returns the timestamp for the specified values:

Timestamp dateserial(year Integer, month Integer, day Integer,
hour Integer, minute Integer, second Integer)

The DateSerialMapper element is used for customizing the mappings of the
DATESERIAL functions. The default templates are generated by the Integration
service. In most cases, it is not necessary to override them.

Example: Disabling the DATESERIAL functions

The DATESERIAL templates generated by the Integration service do not work, so
you disable the mappings for both versions of DATESERIAL:

<DateSerialMappers>
<FunctionMappingss>
<FunctionMapping FunctionName="DATESERIAL"
Disabled="true" />
</FunctionMappings>
</DateSerialMappers>

Mapping NULL functions: NullFuncMapper element

The NullFuncMapper element is used for customizing the mappings of the NULL
functions listed in Table 11-13. The table also shows the default template for each
function.

262 Designing BIRT Information Objects

Table 11-13 Default templates for mapping NULL functions

Operand data Default
NULL function types FunctionName template
ISNULL <INTEGER> Use IS_NULL as FunctionName for IS $P0 IS NULL
<DECIMAL> NULL.
<DOUBLE>
<VARCHAR>
<TIMESTAMP>
CAST (NULL AS Use CAST_NULL_AS_INTEGER as Generated by
INTEGER) FunctionName. the Integration
CAST (NULL AS Use CAST_NULL_AS_DECIMAL as S€TVice.
DECIMAL) FunctionName.
CAST (NULL AS Use CAST_NULL_AS_DOUBLE as
DOUBLE) FunctionName.
CAST (NULL AS Use CAST_NULL_AS_VARCHAR as
VARCHAR) FunctionName.
CAST (NULL AS Use CAST_NULL_AS_TIMESTAMP
TIMESTAMP) as FunctionName.

Example: Disabling the CAST (NULL AS .. .) functions

Your database does not support the NULL literal, so the CAST (NULL AS. . .)
functions must be disabled:

<NullFuncMapper>
<FunctionMappingss>
<FunctionMapping FunctionName="CAST NULL AS INTEGER"
Disabled="true" />
<FunctionMapping FunctionName="CAST NULL_AS DECIMAL"
Disabled="true" />
<FunctionMapping FunctionName="CAST NULL_AS DOUBLE"
Disabled="true" />
<FunctionMapping FunctionName="CAST NULL AS VARCHAR"
Disabled="true" />
<FunctionMapping FunctionName="CAST NULL_AS TIMESTAMP"
Disabled="true" />
</FunctionMappings>
</NullFuncMapper>

Chapter 11, Mapping functions and operators 263

Table 11-14

Mapping conditional functions: CondFuncMapper
element

The CondFuncMapper element has attributes that you use to customize CASE
statements. These attributes are listed in Table 11-14.

Attributes of the CondFuncMapper element

Attribute name Description Required?

CaseWhenString String to use instead of CASE WHEN No. Default is CASE WHEN.

WhenString
ThenString
ElseString
EndString

String to use instead of WHEN No. Default is WHEN.
String to use instead of THEN No. Default is THEN.
String to use instead of ELSE No. Default is ELSE.
String to use instead of END No. Default is END.

Example: Mapping the CASE statement

Your database uses a SWITCH statement instead of a CASE statement. SWITCH
is not standard SQL. The Actuate SQL CASE prototype is as follows:

CASE [<ValueExpressions>]
{<WhenClause>} [..n]
[ELSE <ValueExpressions]
END

The mapping for SWITCH is as follows:

<CondFuncMapper CaseWhenString="SWITCH ("

WhenString=",6"
ThenString=",6"
ElseString=", TRUE,"
EndString=")" />
This mapping produces a SWITCH statement such as:
SWITCH (
Country IN ('Canada', 'Mexico', 'USA'), 'North America',
Country IN ('Argentina', 'Brazil',6 'Venezuela'), 'South
America’',
Country IS NULL, ' (Not Known)',

TRUE, 'Rest of the world')

Mapping aggregate functions: AggrFuncMapper
element
The AggrFuncMapper element is used for customizing the mappings of the

aggregate functions listed in Table 11-15. The table also shows the default
template for each function.

264 Designing BIRT Information Objects

Table 11-15 Default templates for mapping aggregate functions
Aggregate
function Operand data types = Default template Remarks
SUM <INTEGER> SUM ($P0)
AVG <DECIMAL> AVG ($P0)
<DOUBLE> AVG (DISTINCT $P0)
MAX <INTEGER> MAX ($P0)
MIN <DECIMAL> MIN ($P0)
COUNT <DOUBLE> COUNT ($P0)
<VARCHAR>
<TIMESTAMP>
COUNT (*) COUNT (*) Use COUNT_ROWS as
the FunctionName for
COUNT (*).

Example: Mapping the AVG function

The default template for the AVG function does not return the correct result for
DECIMAL data types, so you use the following mapping:

<AggrFuncMapper>
<FunctionMappings>
<FunctionMapping FunctionName="AVG"
OperandTypes="DECIMAL" >
CAST (AVG($PO) AS $SR)
</FunctionMapping>
</FunctionMappings>
</AggrFuncMapper>

Mapping multi-row Boolean operators:
MultiRowBoolFuncMapper element
The MultiRowBoolFuncMapper element is used for customizing the mappings of

the multi-row Boolean operators listed in Table 11-16. The table also shows the
default template for each operator.

The = ANY and <> ANY operators are implemented using the IN and NOT IN
operators. The = ALL operators are implemented using the = ANY operators.

Chapter 11, Mapping functions and operators 265

Table 11-16

Default templates for mapping multi-row Boolean operators

Multi-row
Boolean
operator Operand data types Default template Remarks
EXISTS <TABLE> EXISTS $PO
IN <INTEGER>, <TABLE> $P0 IN $P1
NOT IN <DECIMAL>, <TABLE> $PONOTIN $P1 Use NOT_IN as FunctionName
<DOUBLE>, <TABLE> for NOT IN.
< ANY <VARCHAR>, <TABLE> $P0 < ANY $P1 Use LT_ANY as FunctionName
<TIMESTAMP>, for < ANY.
> ANY <TABLE> $P0 > ANY $P1 Use GT_ANY as FunctionName
for > ANY.
<= ANY $P0 <= ANY $P1 Use LE_ANY as FunctionName
for <= ANY.
>= ANY $P0 >= ANY $P1 Use GE_ANY as FunctionName
for >= ANY.
Mapping cast functions: CastFuncMapper element
The CastFuncMapper element is used for customizing the mappings of the cast
functions listed in Table 11-17. The Integration service generates the default
templates for the cast functions.
Table 11-17 Operand data types for the cast functions
Cast function Operand data types Remarks
CAST (AS INTEGER) <DECIMAL> Use CAST_AS_INTEGER as
<DOUBLE> FunctionName.
<VARCHAR>
CAST (AS DECIMAL) <INTEGER>, Use CAST_AS_DECIMAL as
<INTEGER>, FunctionName.
<INTEGER> The second and third operands are the
<DECIMAL>, decimal precision and scale, for example 20
<INTEGER>, and 8 in CAST (AS DECIMAL (20, 8)).
<INTEGER> Specify the default precision and scale
<DOUBLE>, using the iServer configuration variables
<INTEGER>, DefaultDecimalPrecision and
<INTEGER> DefaultDecimalScale.
<VARCHAR>,
<INTEGER>,
<INTEGER>

266 Designing BIRT Information Objects

Table 11-17 Operand data types for the cast functions

Cast function Operand data types Remarks

CAST (AS DOUBLE) <INTEGER> Use CAST_AS_DOUBLE as FunctionName.
<DECIMAL>
<VARCHAR>

CAST (AS VARCHAR) <INTEGER>, Use CAST_AS_VARCHAR as
<INTEGER> FunctionName.
<DECIMAL>, The second operand is the string length, for
<INTEGER> example 50 in CAST(AS VARCHAR (50)).
<DOUBLE>, Specify the default string length using the
<INTEGER> iServer configuration variable
<VARCHAR>, DefaultStringLength.
<INTEGER>
<TIMESTAMP>,
<INTEGER>

CAST (AS TIMESTAMP) <VARCHAR> Use CAST_AS_TIMESTAMP as

FunctionName.

Example: Mapping the CAST functions

The default templates generated by the Integration service are not compatible
with your database, so you change the mappings to use the CONVERT function.
$R represents the return data type:

<CastFuncMapper>
<FunctionMappings>
<FunctionMapping FunctionName="CAST AS INTEGER">
CONVERT (R, SPO)
</FunctionMapping>
<FunctionMapping FunctionName="CAST AS DECIMAL">
CONVERT (SR, S$PO)
</FunctionMapping>
<FunctionMapping FunctionName="CAST AS DOUBLE">
CONVERT (R, SPO)
</FunctionMapping>
<FunctionMapping FunctionName="CAST AS VARCHAR">
CONVERT (SR, S$PO)
</FunctionMapping>
<FunctionMapping FunctionName="CAST AS TIMESTAMP">
CONVERT (R, SPO)
</FunctionMapping>
</FunctionMappings>
</CastFuncMapper>

Chapter 11, Mapping functions and operators 267

Using operators in a mapping

When including operators in a mapping, use the following guidelines.

Symbolic operators require parentheses

To avoid problems with operator precedence on a database, all symbolic
operators must be enclosed in parentheses. For example, use parentheses around
an arithmetic expression, such as ($P0 + $P1). Do not use $P0 + $P1. The only
exception to this rule is operators that return Boolean values such as =, <, and >.

The operators NOT, AND, and OR should also be enclosed in parentheses. For
example, use ($P0 IS NULL AND $P1 IS NOT NULL), not $P0 IS NULL AND $P1
ISNOT NULL.

You also need parentheses in function mappings that use such operators,
regardless of whether you are mapping an Actuate SQL function or operator.

You do not need parentheses if the template already contains the equivalent of
parentheses, for example the parentheses of a function or the commas that
separate operands.

Negative sign must be followed by a space

When a mapping contains a negative sign (-) followed by an operand, place a
space after the negative sign. Two negative signs indicate a comment in SQL, so
-$P0 in a template would cause a problem when $P0 is a negative number such
as -1. This would translate to --1, and would be interpreted as a comment.

Less than (<) and greater than (>) symbols must be
escaped
When you create a function template that uses a less than (<) or greater than (>)

symbol, you must use CDATA to escape the symbol. For example, the default
mapping for the not-equal-to operator is the following:

<FunctionMapping FunctionName="NE">
<! [CDATA [SPO <> S$P1 11>
</FunctionMapping>

Alternatively, you can use &It; and > to represent the less than and greater than
symbols.

If you use a less than or greater than symbol without escaping it, the Integration
service returns an error because it cannot parse the mappings.xml file correctly.

268 Designing BIRT Information Objects

Example: Mapping the not-equal-to operator

The mapping for the not-equal-to operator returns a Boolean and does not
contain NOT, AND, or OR, so no parentheses are required:

<FunctionMapping FunctionName="NE">
SPO != sSP1
</FunctionMapping>

The mapping for the not-equal-to operator uses the function NEQ, which
contains parentheses. No additional parentheses are required:

<FunctionMapping FunctionName="NE">
NEQ (CASE WHEN $SPO IS NULL THEN ' ' ELSE SPO END,
CASE WHEN $P1 IS NULL THEN ' ' ELSE $P1 END)
</FunctionMapping>

The mapping for the not-equal-to operator uses the AND operator. You must
enclose it in parentheses:

<FunctionMapping FunctionName="NE">
($PO IS NOT NULL AND $P1 IS NOT NULL AND $PO <> $P1)
</FunctionMapping>

Example: Mapping the CONCAT function

The mapping for the CONCAT function uses symbols and returns a string, not a
Boolean. You must enclose it in parentheses:

<FunctionMapping FunctionName="CONCAT">
(SPO + S$P1)
</FunctionMapping>

Example: Mapping the DATEDIFF function

The mapping for the DATEDIFF function uses symbols and does not return
Boolean values. Parentheses are required:

<FunctionMapping FunctionName="DATEDIFF" DatePart="yyyy">
(YEAR (SP2) - YEAR ($P1))
</FunctionMapping>

Example: Mapping the CHAR_LENGTH function

In the following mapping, you do not need to place additional parentheses
around the argument of the LEN function:

<FunctionMapping FunctionName="CHAR LENGTH">

(LEN ($PO + ' ') - 1)

<!-- Note: No need for (LEN (($PO + ' ")) - 1) -->
</FunctionMapping>

Chapter 11, Mapping functions and operators 269

Example: Mapping the negative sign (-)

You must place a space after the negative sign to map the subtraction and
negation operators:

<FunctionMapping FunctionName="SUB">
($P0 - $P1)
<!-- Note: Not ($P0-$P1l) -->
</FunctionMapping>

<FunctionMapping FunctionName="NEG">
- SPO
<!-- Note: Not -$P0 -->
</FunctionMapping>

Using initialization statements

Initialization statements are SQL statements that are sent to the database before
executing an Integration service query. Initialization statements are defined by
the database and are usually of the form SET <variable > = <value> or

SET <variable> <value>. Initialization statements force the database to behave in
a way that is compatible with Actuate SQL. Initialization statements take effect
only for the session in which the query is executed, so they do not affect queries
that are not sent by the Integration service. The Integration service does not send
initialization statements when executing SQL stored procedures on the database.

Example: Specifying the behavior of concatenation
with NULL

By default, when a string is concatenated with a NULL string, your database
returns the original string. Actuate SQL, however, returns a NULL. You check
your database documentation and find that there is an initialization statement
that changes this behavior. You add the following code to your data source

mapping;:
<Initializerss>

<Initializer>SET CONCAT_NULL_ YIELDS NULL ON</Initializers>
</Initializerss>

270 Designing BIRT Information Objects

Mapping literals
and clauses

This chapter contains the following topics:
m Mapping literals: LiteralMapper element
m Mapping clauses

Chapter 12, Mapping literals and clauses 271

Mapping literals: LiteralMapper element

Literals in Actuate SQL are converted to expressions on the database. For
example, the Actuate SQL literal 'Hello' is translated into the expression N'Hello'
on the database if the database uses the N-syntax for string literals. You can
customize the literal mapping for each Actuate SQL data type using the
LiteralMapping element in mappings.xml.

Template format for VARCHAR literals

By default, Actuate SQL string literals are enclosed in single quotes and passed to
the database without modification. The template variable $V represents the string
and the single quotes. The default template for string literals is $V.

Template format for TIMESTAMP literals

TIMESTAMP $V represents an Actuate SQL timestamp literal, for example
TIMESTAMP 2001-02-03 12:11:10'. $V is the value of the timestamp, including the
single quotes. The default template for timestamp literals uses the ODBC escape
syntax {ts $V}.

Example: Mapping VARCHAR and TIMESTAMP literals

Your database uses the N-syntax for Unicode string literals. Also, your JDBC
driver does not support the ODBC escape syntax for timestamp literals. As in the
FunctionMapping element, $R represents the return data type of the expression:

<LiteralMappers>
<LiteralMappings>
<LiteralMapping DataTypeName="VARCHAR" >
<Template>NSV</Template>
</LiteralMapping>
<LiteralMapping DataTypeName="TIMESTAMP" >
<Template>CAST (SV AS $R)</Template>
</LiteralMapping>
</LiteralMappings>
</LiteralMapper>

Mapping clauses
You can customize the mappings for the ORDER BY and GROUP BY clauses.

272 Designing BIRT Information Objects

Mapping the ORDER BY clause:
OrderByClauseMapper element
To map the ORDER BY clause, use the OrderByClauseMapper element in

mappings.xml. The OrderByClauseMapper element has two attributes,
UseSelectltemIndexes and PushComplexExprs.

UseSelectltemIndexes attribute

Most databases support expressions in the ORDER BY clause of a query, for
example:

SELECT contact_last
FROM CUSTOMERS
ORDER BY city, contact last || ', ' || contact first

Some databases, however, do not. The SELECT clause must contain the
expression and the ORDER BY clause must reference the expression by index, for
example:

SELECT city, contact last || ', ' || contact first
FROM CUSTOMERS
ORDER BY 1, 2

If your database does not support expressions in the ORDER BY clause, set the
UseSelectItemIndexes attribute to true, for example:

<OrderByClauseMapper UseSelectItemIndexes="true" />

PushComplexExprs attribute

Some databases do not support ORDER BY expressions other than column
references. For such databases, an ORDER BY expression that is not a column
reference should not be sent to the database. For example, ORDER BY
contact_last should be sent to the database, but ORDER BY contact_last | | ',' | |
contact_first should not.

If your database does not support ORDER BY expressions other than column
references, set the PushComplexExprs attribute to false, for example:

<OrderByClauseMapper PushComplexExprs="false" />

Mapping the GROUP BY clause:
GroupByClauseMapper element

To map the GROUP BY clause, use the GroupByClauseMapper element in
mappings.xml. The GroupByClauseMapper element has two attributes,
UseSelectItemIndexes and PushComplexExprs.

Chapter 12, Mapping literals and clauses 273

UseSelectltemIndexes attribute

Most databases support expressions in the GROUP BY clause of a query, for
example:

SELECT contact_last
FROM CUSTOMERS
GROUP BY city, contact last || ', ' || contact first

Some databases, however, do not. The SELECT clause must contain the
expression and the GROUP BY clause must reference the expression by index, for
example:

SELECT city, contact last || ', ' || contact first
FROM CUSTOMERS
GROUP BY 1, 2

If your database does not support expressions in the GROUP BY clause, set the
UseSelectItemIndexes attribute to true, for example:

<GroupByClauseMapper UseSelectItemIndexes="true" />

PushComplexExprs attribute

Some databases do not support GROUP BY expressions other than column
references. For such databases, a GROUP BY expression that is not a column
reference should not be sent to the database. For example, GROUP BY
contact_last should be sent to the database, but GROUP BY contact_last | | ', ' | |
contact_first should not.

If your database does not support GROUP BY expressions other than column
references, set the PushComplexExprs attribute to false, for example:

<GroupByClauseMapper PushComplexExprs="false" />

274 Designing BIRT Information Objects

Working with collations
and byte-based strings

This chapter contains the following topics:
m Working with collations

m Working with byte-based strings

Chapter 13, Working with collations and byte-based strings 275

Working with collations

A collation is an algorithm for ordering strings. When an Actuate SQL query is
executed, the collation determines the result of sort and comparison operations,
including:

m The order of string items produced by the ORDER BY clause

m The grouping of string items produced by the GROUP BY clause

m The strings returned by SELECT DISTINCT

m The result of string comparison operations, for example 'abc' > 'ABC'

m The result returned by the MAX and MIN functions when used with strings
m The result of the LIKE and POSITION operators

m The result returned by the COUNT (DISTINCT) function when used with
strings

Databases support one or more collations. The database collation is usually
determined by the database locale. The Integration service, however, supports
only the Unicode and ASCII code-point collations, which order strings based on
the Unicode or ASCII numbers corresponding to each character. Together, the
database collation and the Integration service collation determine which
operations are sent to the database and which operations must be performed by
the Integration service.

About Integration service collations

The Integration service supports two collations: Unicode binary and ASCII
case-insensitive. The default collation is Unicode binary. The Integration service
collations are explained in Table 13-1.

Table 13-1 Integration service collations
Integration
service
collation Description Examples
Unicode_BIN Unicode code point order 'E' <'e', since E = U+0045 and e
(binary order). All = U+0065.
characters are different '0' < 'O’ (O with an umlaut),
from one another and are gjnce 0 = U+006F and O =
sorted by their Unicode U+00D6.
values. 'E' <[, since E = U+0045 and
[= U+005D.

276 Designing BIRT Information Objects

Table 13-1 Integration service collations

Integration
service
collation Description Examples
ASCII_CI ASCII code point order, 'E' = 'e' since case is not
with uppercase characters considered.
given the same value as Cannot sort O, since it is outside
lowercase characters. the ASCII range (U+00D6).
ASCII range is between U+0000
and U+007F.
'E'> T, since E = U+0065 and
[= U+005D.

Choose Unicode_BIN if either of the following statements is true:
= Your databases contain characters outside the ASCII range.
m Strings must be compared case-sensitively.

Choose ASCII_CI if your databases contain only ASCII characters and
case-insensitive sorting is required.

When the Integration service collation matches the database collation, all string
comparison and sort operations are sent to the database. When the Integration
service collation does not match the database collation, some or all string
comparison and sort operations must be performed by the Integration service.
For this reason, performance is optimized when the Integration service collation
matches the collation on as many of your databases as possible. For example, you
have five different databases, all of which contain only ASCII data, and either
case-insensitive or case-sensitive sorting is acceptable. You can choose either
ASCII_CI or UNICODE_BIN as the Integration service collation. However, if four
of the databases sort case-insensitively, while the fifth database sorts
case-sensitively, you should choose ASCII_CI so that performance suffers only
when the Integration service must compare and sort strings from the fifth
database.

About database collations

A database collation falls into one of the categories listed in Table 13-2. Refer to
your database documentation to determine the appropriate category for your
database collation.

Chapter 13, Working with collations and byte-based strings 277

Table 13-2 Database collations

Database
collation Description

unicode_bin Same as Integration service collation UNICODE_BIN.

ascii_ci Same as Integration service collation ASCII_CIL.

null_sensitive Does not correspond to either Integration service collation.
No two characters have the same value.

null Does not correspond to either Integration service collation.
More than one character can have the same value, for
example 'E' ="e".

About collation implem

entations

Together, the Integration service collation and the database collation determine
which operations are sent to the database and which operations must be
performed by the Integration service, as shown in Table 13-3. If the database
would not perform an operation in the same way as the Integration service, the
operation must be performed by the Integration service.

Table 13-3 Collation implementations

Integration

service Database

collation collation Collation implementation

UNICODE_BIN unicode_bin

UNICODE_BIN null_sensitive

UNICODE_BIN null

ASCII_CI ascii_ci

ASCII_CI null

All sort and comparison operations are sent
to the database.

GROUP BY and SELECT DISTINCT
operations, DISTINCT aggregations, LIKE,
POSITION, and string equality (=)
comparisons are sent to the database.
ORDER BY on strings, string comparisons
other than equality, MAX, MIN, etc. must be
performed by the Integration service.

All operations must be performed by the
Integration service.

All sort and comparison operations are sent
to the database.

All operations must be performed by the
Integration service.

278 Designing BIRT Information Objects

Specifying the Integration service and database
collations

You specify the Integration service and database collations using the
Configuration Console.

How to specify the Integration service and database collations

1 Choose Servers—Properties—Advanced—Integration Service—General Data
Source Information.

» In Default collation of ASQL strings, select the Integration service collation,
as shown in Figure 13-1.

m In Default collation of target database strings, select the database collation,

then choose OK.
Integration service collation
Database collation
& Ve ol
Servers = cdl02755 : Propesfes = Uegration Service = General Data Source Infarmation =
General Data Source nfornytion
Default collation of ASC) strings: |UNICODE_EI\N j TE
Default collation of target database strings: |unicode_bin j 1
Default ASQL decitmal precision |20 Digits 1]
Default ASQL decimal scale: |8 Digits 11 {2
Default ASQL string length: |50 Characters | [F] 23
Maximurm decimal precision across all databases: |38 Digits 1 & {7
Maximurm length of strings across all databases: |E4DDD Characters | [F] 23
haximum timeout in seconds for a JDBC driver connection.. |BD Digits 1= 5
B 52 These fields require server restart to take effect
(I These fields will take default value if left blank
(k| _cancel [+

Figure 13-1 Specifying the Integration service and database collations
2 Restart the Integration service.

Working with byte-based strings

ASCII and Latin 1 characters, for example the letter A, consist of one byte.
Chinese, Japanese, and Korean characters consist of two or more bytes. The
Integration service processes strings by character, not by byte. Some databases,

Chapter 13, Working with collations and byte-based strings 279

however, process strings by byte, not by character. If the database processes
strings by byte and contains multibyte characters, the following string operations
should not be sent to the database:

m SUBSTRING, LEFT, and RIGHT functions
m POSITION function

m CAST functions from VARCHAR to VARCHAR where the length is specified,
for example CAST (CUSTOMERS.CUSTOMNAME AS VARCHAR (50))

m Actuate SQL parameters specified using syntax such as
CAST (? AS VARCHAR (30))

For example, SUBSTRING (CUSTOMERS.CUSTOMNAME, 1, 7) should return
the first seven characters of the customer name, not the first seven bytes. If the
database processes strings by byte, the SUBSTRING operation should not be sent
to the database.

To indicate that string operations should not be sent to the database, set the
UseCharStringImplByDefault attribute to true for the database type in
mappings.xml, for example:

<DataSourceMapper Name="MyDatabaseTypeMapper"
UseCharStringImplByDefault="true">

</DataSourceMappers>

280 Designing BIRT Information Objects

Symbols

_ (underscore) character 98, 192, 257
, (comma) character 83

: (colon) character 103

!= operator 269

? (question mark) character 51, 257

. (period) character 97, 110

' (single quotation mark) character 96, 110,

174
(double quotation mark) character
cache databases and 141
column aliases and 70
Oracle string comparisons and 218
parameter names and 110
QBE expressions and 83
SQL identifiers and 174, 180
XML files and 224

"

() (parentheses) characters 101, 202, 268

[] (brackets) characters 232, 257
{} (curly brace) characters 244

@ (at-sign) character 257

* (asterisk) character 257

* operator 187, 253

/ (forward slash) character 120, 180
/ operator 187,253

\ (backslash) character 192, 258

\ (backslash) characters 98

> character code 224

< character code 224

" character code 224

% (percent) character 98,192, 232, 257
+ operator 187,253

< (less than) character 224, 268

< ANY operator 266

< operator 93, 252

<= ANY operator 266

<= operator 93,252

<> operator 93, 96, 252

= operator 85, 86, 93, 252

> (greater than) character 224, 268
> ANY operator 266

> operator 93,252

Index

>= ANY operator 266

>= operator 93,252

| (pipe sign) character 83
| | operator 191

—operator 187,253, 270
— (hyphen) character 185, 204

$ (dollar sign) character 257
$$ symbol 249

$Pn symbol 249

$R symbol 249

$V variable 272

A

absolute paths 120, 180, 230
accessing
information objects 69
maps 69
Prompt editor 112
SQL editor 118
acserverprofile.xml 149
Actuate Basic reports 40
Actuate Query 4, 168
Actuate SQL 168, 173, 247
See also SQL statements
Actuate SQL compiler 88, 122
Actuate SQL data types 183, 184, 238
See also SQL data types
Actuate SQL expressions. See SQL
expressions
Actuate SQL functions 185, 246, 247
See also SQL functions
Actuate SQL grammar 173, 174
Actuate SQL identifiers 173, 179, 180
Actuate SQL keywords 178
Actuate SQL parameters 110-111
ActuateOne for e.Reports 15

ActuateOne for e.Reports data sources 17

ad hoc parameters 82, 83

ADD operator 253

adding
aggregate functions 198
cache databases 138
column aliases 70

Index

281

adding (continued)

columns to queries 70, 180

configuration keys 12,13, 15, 16, 41

connection definitions 12, 15

connection properties 40

database types 222,234

DDL statements 144

filter conditions 92, 94, 95, 100

functions to expressions 68

functions to queries 169

iServer profiles 149

parameters to joins 125

parameters to queries 110, 125, 169, 181,

183

predefined filters 82

projects 10

tables to queries 87,169, 182
addition operator 187, 253
AdditionalSpecialChars attribute 257
AdditiveExpression declaration (SQL) 175
AdHocParameter declaration (SQL) 175
aggregate columns 94, 104, 108
aggregate expressions 175
aggregate functions 74, 169, 172, 198, 203, 264
Aggregate Type property 74
aggregation 104, 138
AggrExpression declaration (SQL) 175
AggrFuncMapper element 264
Alias element 241
aliases

column names and 70, 76

data types and 241

references to 172

SQL queries and 119, 180
Aliases element 241
alignment 76
Allow this Source to be used in Cartesian

Joins property 91

allProceduresAreCallable method 230
allTablesAreSelectable method 229
alternate names. See aliases
Analysis Type property 70
AND operator

Boolean values 190, 251

filter conditions 100, 101

join conditions 85

not-equal-to operator and 269

282 Designing BIRT Information Objects

operator precedence and 268
AndExpression declaration (SQL) 175
ANSI SQL 168, 169
applylndexing pragma 207
arguments. See parameters
arithmetic expressions 268
arithmetic operators 187, 253, 268
ArithOpMapper element 253

ASCII case-insensitive collation 276,277,278

ASCII characters 277,279
ASCII_CI collation 277

ascii_ci collation 278

asterisk (*) character 257

at-sign (@) character 257
Augment operator 125
automatic cache replacement 145
automatic grouping 107
averages 198

AVG function 198, 265

B

backslash (\) character 98, 192, 258
balloon help 76
BasicStringFuncMapper element 255
BETWEEN operator 93, 186
BIGINT data type 239
binary collation 276
binary types 214
BIRT Designer Professional 4, 5
BIRT documents 15
BIRT report document data sources 18
BIRT Studio 4, 73
BIT data type 239
blank values 81, 96
Boolean operators 251, 252, 265
Boolean values 190, 268
See also conditional expressions

BooleanOpMapper element 251
Box operator 125
brackets ([]) characters 232, 257
build error messages 148
Build Project command 148
Business Intelligence and Report Tools. See

BIRT
buttons 75
byte-based strings 279

C

cache connection definition files 138
cache connection definitions 138, 142
cache database 138, 139, 141
Cache Object command 142
cache object files 139
cache objects 138, 139, 142
Cache Sources folder 138
cache tables 138, 139, 140, 143
caching
data 126
information objects 138, 140, 141, 142
maps 142
Caching service 138, 140
calculated columns. See computed fields
calculations
date values and 99
DB2 data type mappings and 215
decimal values and 240
limitations for 184
queries and 187
string values and 240
CallExecutionUnit operator 125
cardinality (joins) 89, 90, 204
CARDINALITY keyword 87
Cardinality property 90, 91
CardinalityType declaration (SQL) 175
Cartesian joins 91
case conversions 190, 216
case sensitivity
Actuate SQL keywords 179
cache connection definition file names 138
cache object file names 139
connection definition file names 12
connection properties 43, 45
information object file names 66
map file names 45
map filters 46, 56, 159
string comparisons 185
CASE statements 175, 216, 264
CaseExpression declaration (SQL) 175
case-insensitive collation 276
case-insensitive comparisons 185
CaseWhenString attribute 264
cast expressions 183
CAST function 51, 183, 263, 266, 280

CAST statements 175
CAST_AS _DECIMAL function 266
CAST_AS _DOUBLE function 267
CAST_AS_INTEGER function 266
CAST_AS_TIMESTAMP function 267
CAST_AS_VARCHAR function 267
CastExpression declaration (SQL) 175
CastFuncMapper element 266
casting rules 184
CatalogFilter element 233
catalogs (maps) 46, 159, 233
categories. See column categories
category names 71
Category Path property 74
CDATA keyword 225, 268
CEILING function 188, 215, 254
changing

column aliases 70

column names 10, 47, 48

configuration files 214, 224, 244, 248

data types 48

filter conditions 102

maps 50

output column properties 80

parameter names 10, 53, 59, 63

parameter properties 116

project directories 10

resources 148

SQL statements 118, 119

tables 48

translation keys 135

translation strings 135

views 48
CHAR data type 52,239
CHAR_LENGTH function 191, 255, 269
CHAR_LITERAL token (SQL) 174
character conversions 190, 216
character data types 90
character encoding 24, 27
character patterns 83, 97, 191, 257, 258
character sets 18, 22, 24, 279
character strings. See strings
characters

blank values 96

column aliases and 70

database collation and 276

filter conditions and 95

Index

283

characters (continued)
LIKE operator and 256, 258
literal text and 174
MATCH operator and 257
ODBC escape sequences and 244
parameter names and 110
parameter values and 169
relative paths and 120
resource names and 4
SQL identifiers and 173
SQL statements and 83
string operations and 280
XML files and 224
Charset property 18,22
Choose a Cache DCD dialog box 142
CLIENT_LOCALE variable 27
code pages 24, 27
code points 185, 276, 277
code-point collations 276
collation 219, 276-279
Collection property 18
colon (:) character 103
column aliases 70, 76, 119, 180
column categories
creating maps and 45, 48
defining output columns and 71-72
displaying 72
Column Categories page 71,72
column descriptions 75
column headings 76
column name duplication 11
column names
See also column aliases; column headings
changing 10, 47, 48
converting to expressions 86
creating cache tables and 141
creating information objects and 47, 70, 76
displaying 75
entering in SQL statements 180
updating 48
ColumnAlias declaration (SQL) 175
columns
See also computed fields; output columns
adding to queries 70, 180
caching information objects and 140, 143
changing order of 105, 107
comparing values between 98

284 Designing BIRT Information Objects

defining joins and 85, 86, 90, 91
deleting 11,107, 108
filtering blank values in 97
filtering null values in 96
filtering on 47,71, 82, 94, 96
grouping on 105, 106
localizing information objects and 131,
133, 135, 136
locating 71
mapping to database 49, 238
prompting for values and 111, 112
propagating values for 148
referencing 169
renaming 10, 47, 48
retrieving type information for 238, 239,
241
returning subsets of 125
updating cache tables and 140, 144
viewing blank values in 97
viewing null values in 96
Columns page (graphical information object
editor) 69
Columns page (SQL editor) 120
comma (,) character 83
comments 179, 268
comparison operators 96, 185, 186, 252, 268
ComparisonOpMapper element 252
comparisons
collation and 276
date-and-time values 97
filter conditions 94
numeric values 97
range of values 96
string values 97, 185, 186, 217
values in expressions 185
values in multiple columns 95, 98
Compile IO and dependents command 130
Compile 1O button 75, 117
compiler 88,122,229
compiler errors 47, 70
compiling 130, 148
computed columns 11, 104
See also computed fields
computed fields 75, 106, 201
CONCAT function 217, 255, 269
concatenation 174,191, 217, 270
concatenation operator 191

Conceal Value property 74,114
CondExpr declaration (SQL) 175
CondFuncMapper element 264
conditional expressions 175, 178

See also Boolean values
ConditionalPrimary declaration (SQL) 175
configurable database types 222-224
Configuration Console 279
configuration files

accessing 41

changing 214, 224, 244, 248

connection properties in 12, 15, 40

connection types in 214, 222, 228, 230

database function mappings in 244, 246,

248

database types in 214, 222, 223, 224

externalized connections in 40, 41, 43, 44

JDBC drivers and 231

passthrough security and 40

SQL statement mappings in 273

string operations and 280
Configuration key property 12,15
configuration keys 12,13, 15, 16, 41
conjunction 190
connection definition files 12
connection definitions

See also connections

caching information objects and 138, 142

creating 11-28

database schemas and 28

moving projects and 39
connection parameter types 234
connection parameters 43,212, 228, 233
connection properties

See also connection definitions

cache database 138

data source configurations 11, 13, 40

DB2 databases 41

externalizing 39-45

iServer profiles 149

ODA data sources 15, 16, 44

ODBC databases 12

preconfigured connection types 17
connection strings 212, 228, 232
connection types

configuring 214, 222, 223, 228, 230

displaying 233

externalizing properties for 41, 43
listed 17
naming 230
overview 212
setting parameters for 212, 233
ConnectionParam element 233
ConnectionParams element 39, 42, 43, 230,
233
ConnectionProperties element 232
connections
accessing ODA data sources and 15
creating data source 15, 39, 40
creating database 12, 230
iServer 149
locating configuration files for 41
retrieving properties for 12, 15
setting character encodings for 24
setting parameters for. See connection
parameters
setting properties for. See connection
properties
setting run time 40
specifying port numbers for 13, 149
testing 14,17
ConnectionString element 232
ConnectionType attribute 235
ConnectionType element 42, 43, 223, 230
ConnectionTypes element 230, 231
ConnectOptions element 40, 42, 43, 44
control strings (units of time) 194
control type constants 115
control types
changing 116
defining local parameters and 116
defining output columns and 75
entering display names for 112
filtering data and 84
prompting for input and 83, 114, 115
CONVERT function 267
cost-based optimization (joins) 205-207, 208
COUNT function 198, 203, 265
COUNT_ROWS function 265
counting non-null values 198
country codes 132
Create SQL map option 14
creating
cache database 138, 139

Index 285

creating (continued)

cache objects 138, 139, 142

cache tables 138, 140, 143

column aliases 70

column categories 71

connection definitions 11-28

custom filters 75

data filters 82,92, 100

database types 234

function templates 249

information objects 4, 66-67

iServer profiles 149

joins 85-86, 91

list of values 82, 83, 111, 112

maps 45-64

parameterized queries 169, 183

projects 10

SQL queries. See queries

subqueries 182

textual queries 67, 118-120
Credentials property 13
cube profiles 40
curly brace ({ }) characters 244
CURRENT_DATE function 195
CURRENT_TIMESTAMP function 195
CURRENT_USER function 199
Custom Data Source Properties dialog box 16
custom data sources. See ODA data sources
Custom driver class property 23
customizing

aggregate functions 264

cast functions 266

data filters 75

null functions 262

numeric functions 254

query mappings 272-274

SQL operators 265

string functions 255

substring functions 255

D

dashboard reports 28

data
See also values
aggregating. See aggregation
aligning 76

286 Designing BIRT Information Objects

caching 126
creating joins and 85, 88, 90, 91, 205
filtering. See data filters; filtering data
grouping 104-108, 172
previewing 6,121
retrieving from
databases 92
information objects 4, 111, 128
multiple data sources 4, 124
simulating 127
Data Analyzer 77
Data Connection Definition command 12, 15
data connection definition files 12
Data Connection Definition page 12, 15
data connection definitions
caching information objects and 138, 142
creating 11-28
database schemas and 28
moving projects and 39
data cube profiles 40
Data Definition Language statements 140,
144
See also cache objects; cache tables
data filters
See also filtering data
adding to queries 83
building maps and 46, 53, 56, 58, 62, 159
comparing date-and-time values and 97
comparing numeric values and 97
comparing string patterns and 97
comparing values in multiple columns
and 98
creating 82,92, 100
customizing 75
defining output columns and 47,71, 75
disabling 76
excluding null or blank values and 96
excluding sets of values and 96, 101
prompting for 103
removing columns and 11
setting at run time 172
setting conditions for. See filter conditions
setting control type for 75
setting default values for 75, 84
setting evaluation order for 101
specifying parameters as 94
Data Integration (EII) Option 4

Data Preview view 6, 122
data rows. See rows
data sets
See also result sets
filtering 92, 96, 101
mapping to ODA data sources and 61, 64
Data source connection properties page
JDBC connections and 212, 228
ODA connections and 16, 61
ODBC connections and 13, 212, 228
Data Source page (New Maps) 46, 52, 55
data sources
See also specific type
accessing multiple 4
connecting to 12, 15, 39, 40
defining joins and 85, 88, 90, 91, 205
externalizing connection properties
for 39-45
locating configuration files for 41
querying remote 186, 187
retrieving data from 124
retrieving distinct values from 70
setting connection properties for 11, 13, 17
testing connections for 17
viewing queries for 123, 128
Data Type property 75,114
data types
accessing non-native 240
assigning to parameters 110, 114, 234
casting 169, 183, 184, 266
changing 48
creating SQL queries and 168, 183
displaying 49, 77,120, 121
filtering null values and 96
mapping 214, 238, 239, 241
mapping queries and 51, 53
mapping stored procedures and 56, 58, 60
mapping to
DB2 databases and 215
Informix databases and 216
ODA data sources and 60
Oracle databases and 217
SQL databases and 219
Sybase databases and 221
redefining aliases for 241
returning from function calls 249
setting join column properties and 90

supported 238
database collation 219, 276-279
database connection types. See connection
types
database drivers. See drivers
Database property 18,19, 21, 22,23
database schemas 28, 46, 56, 139, 159
database servers. See servers
database types
See also specific type
adding 222
applying default mappings and 222,223
configuring 214, 222, 223, 224, 280
creating 234
defining connection types for 228, 230
mapping functions for 246, 248
overview 212
running queries and 244
databases
See also data sources; specific type
caching data and 138, 139, 141
connecting to 12, 230, 234
creating queries for 172,182,183, 213
disabling function mappings for 246
externalizing connections for 41, 43
mapping literal strings for 272
mapping to data in 45-48, 213, 238
mapping to functions in 244, 247, 248
mapping to result sets from 51, 55
ordering strings in 276, 277, 278, 279
retrieving data from 92
running queries from 213, 247
setting character encodings for 24
testing connections for 14
undefined mappings and 240
DatabaseType element 223,234
DatabaseTypes element 230, 234
DataSourceMapping attribute 224, 235
datasources.xml 43,223, 224, 230
DataType declaration (SQL) 175
DataType element 240
DataTypeMapper element 239, 249
DataTypes element 239
DATE data type 239
date functions 258, 259, 261, 262
date stamps 194, 195, 258, 259, 261, 262
date values 97,99, 219, 250

Index 287

DATEADD function 195, 248, 261
DateAdd function 219
DateAddMapper element 261
DATEDIFF function 99, 196, 248, 259
DateDiff function 219
DATEDIFF function mappings 250, 260, 269
DateDiffMapper element 251, 260
DatePart attribute 248
DATEPART function 197, 248, 258, 259
DatePart function 219
DatePartMapper element 259
DATESERIAL function 197, 262
DateSerialMapper element 262
DB_LOCALE variable 27
DB2 data types 215
DB2 databases
caching information objects and 138, 141
connecting to 18, 214
creating queries for 213
externalizing connections for 41, 42
mapping to 215
renaming stored procedures for 55
setting character encodings for 24
.dcd files 12,138
See also connection definitions
DDL statements 140, 141, 144
See also cache objects; cache tables
DECIMAL data type 183, 184, 239, 240
See also decimal values
decimal precision 184, 240
decimal separators 97, 110
decimal values
aggregating data and 198
calculating data and 187
converting 215
creating SQL queries and 183, 184
mapping to data types and 221, 240
rounding 189
setting precision for 240
DECIMAL_LITERAL token (SQL) 174
Default Analytics button 78
Default collation of ASQL strings option 279
Default collation of target database strings
option 279
default directories. See directories
default function templates 244, 267
default mappings file 222

288 Designing BIRT Information Objects

default names 53, 59
Default Value property 75, 114
default values
connection parameters 234
data filters 75, 84
output parameters 60
overriding 11
run-time parameters 114
SQL parameters 110
DefaultDecimalPrecision configuration
variable 266
DefaultDecimalScale configuration
variable 266
DefaultStringLength configuration
variable 267
DefaultValue attribute 234
deleting
column categories 72
columns 11, 107, 108
filter conditions 103
join conditions 87
output columns 71
parameters 11, 111
query execution plans 131
DELIMIDENT variable 27
dependent joins 88, 125, 170
Dependentjoin operator 125
derived tables 182
Describe Query button 120, 121
Description Key property 75, 115
Description property 75, 81,114, 131
designs
building information objects and 5
creating queries and 172, 180
filtering data and 82,174
retrieving data for 4
developers 4
directory paths
column categories 74
connection type configurations 214, 222,
230
database type mappings 223, 224, 235
externalized connection properties 41, 43,
44
information objects 82, 180
JDBC drivers 230, 232
SQL function mappings 180, 244, 246

SQL queries 120

WSDL files 23

XML data sources 23
Disabled attribute 248, 256, 257
Disabled value 76
disjunction 190
Display attribute 233
Display Control Type property 75,115
Display Format property 75,115
Display Length property 75, 115
Display Name Key property 75, 115
Display Name property 75, 81, 115, 131
display names

connection types 233

control types 83, 112

output columns 75

parameter prompts 115
displaying

column categories 72

column names 75

data types 49, 77,120, 121

error messages 6, 148

information objects 68

maps 68

output columns 47, 53, 62, 120

parameters 121

SQL queries 123, 128

SQL statements 6, 123
DisplayName attribute 235
DISTINCT keyword 70,78, 172
Distinct Values Count property 90
Distinct values only option 70
DIV operator 253
division 187, 188
DNS servers 18
Do Not Prompt property 75, 115
Do not show this message again setting 6
documentation ix
documents 18

See also reports
dollar sign ($) character 257
DOUBLE data type 183, 184, 215, 239

See also double values
double quotation mark (") character

cache databases and 141

column aliases and 70

Oracle string comparisons and 218

parameter names and 110
QBE expressions and 83
SQL identifiers and 174, 180
XML files and 224
double values 183, 184, 186, 187, 215
DOUBLE_LITERAL token (SQL) 174
Driver class path property 23
DriverName attribute 231
drivers
configuring JDBC 231
connecting to data sources and 12, 15
connecting to databases and 18, 222, 228,
231
creating map files and 56, 238, 239, 241
customizing 23
installing JDBC 228, 230
installing non-Unicode characters and 24
naming 231
running platform-independent queries
and 244
specifying paths to 230, 232
drop-down lists 75, 84, 114
Dup operator 125
duplicate rows 70
dynamic filters 75, 82, 84, 172
Dynamic list of values option 84, 112

E

e.Analysis 77

e.Report Designer Professional 4

e.Spreadsheet Designer 4

Eclipse 28

Eclipse IDE 5

Eclipse plug-ins 44

Edit in SQL text editor option 67, 118

Edit SQL button 118

ELSE keyword 264

ElseString attribute 264

empty strings 217

empty values 96

Enable cost based optimization variable 207

EnableCBO pragma 205, 206

encoding 18, 24, 27

Encoding for XML source and schema
property 24

encryption extension point plug-in 28

Index 289

EncryptionProviderID.exsd 29
Encyclopedia volumes
accessing information objects in 180
publishing to 148, 153
specifying iServer profiles for 149
END keyword 264
EndString attribute 264
environments 39
.epr files
ODA data sources and 60, 63
stored procedures and 54, 59
EQ operator 252
Equal to operator 93
equality comparisons 186
equality operator 85, 86, 252
equijoins 89, 126
error messages 6, 148
errors
column aliases and 70
column names and 47
data type mappings and 219, 221, 241
escape sequences and 258
SQL operators and 268
SQL queries 184
unknown escape sequences and 244
unsupported functions and 246
escape characters 169, 178, 192, 258
ESCAPE clause 256
ESCAPE keyword 192
escape sequences 222,224, 240, 244
EscapeTemplate attribute 257
EXISTS operator 266
ExplicitinnerOuterType declaration
(SQL) 175
ExplicitfoinType declaration (SQL) 175
exponentiation 189
Expression Builder 67-68, 70
Expression property 75
ExpressionList declaration (SQL) 175
expressions
adding column names to 86
adding functions to 68
adding SQL operators to 268
changing column names and 11, 49
comparing values in 185
creating computed fields and 75
creating joins and 85, 86, 89

290 Designing BIRT Information Objects

creating queries and 67, 83, 183, 185
defining output columns and 70
filtering data and. See filter expressions
grouping data and 172
mapping literal strings and 272
matching character patterns and 191
setting default values and 53

external procedure object files
ODA data sources and 60, 63
stored procedures and 54, 59

external procedures 6

externalizing connection properties 3945

F

facets (defined) 183
FakeData operator 127
FakeFileData operator 127
false values. See Boolean values
file names 12,45, 66, 138, 139
filter conditions
adding 92, 94, 95, 100
aggregating data and 108, 109
changing 102
creating expressions for 99
defining multiple 100, 101
deleting 103
grouping 100, 101
including parameters in 103
prompting for 172
selecting multiple values for 95
Filter Conditions dialog box 92, 94, 103
filter expressions
changing column names in 11
comparison operators in 96, 97
empty or blank values in 96, 97
filter conditions and 92, 94, 99, 100
functions in 99
grouping conditions in 101
literal characters in 98
logical operators in 101
multiple values in 95, 98
Filter property 71,75, 76, 82, 83
filter specification. See filter expressions
FilterClause declaration (SQL) 174, 175
filtering data
at run time 103
in tables and views 46, 159

information objects and 82, 83, 92, 100, 108
filters
adding to queries 83
building maps and 46, 53, 56, 58, 62, 159
comparing date-and-time values and 97
comparing numeric values and 97
comparing string patterns and 97
comparing values in multiple columns
and 98
creating 82,92, 100
customizing 75
defining output columns and 47,71, 75
disabling 76
excluding null or blank values and 96
excluding sets of values and 96, 101
prompting for 103
removing columns and 11
setting at run time 172
setting conditions for. See filter conditions
setting control type for 75
setting default values for 75, 84
setting evaluation order for 101
specifying parameters as 94
Filters page (graphical information object
editor) 94, 95, 98, 100, 103
FILTERS statements 168,172, 174, 175
See also SQL statements
fixed point numbers 183
flat file data sources 15, 18, 61, 127
flat joins 125, 126
Flatfile style property 19
FLOAT data type 239
floating point numbers 183, 186, 187, 239
FLOOR function 188, 215, 245, 254
Folder property 18
folders
connecting to flat file data sources and 18
localizing information objects and 131
saving projects and 10
storing cache object files and 139
storing connection definitions and 11, 138
storing map files and 45, 54, 60
foreign keys 77
formats
join column properties 90
output columns 75, 76
forward slash (/) character 120, 180

fractional numbers 221
FROM clause 175
See also SQL statements
FromClause declaration (SQL) 175
FromTableName declaration (SQL) 175
FromTableReference declaration (SQL) 175
function mapping examples 249
function templates 244, 246, 247, 249, 267
FunctionCallOrColumnRef declaration
(SQL) 175
FunctionMapping element 248, 272
FunctionMappings element 251
FunctionName attribute 248
functions
aggregation and 104, 198, 203, 264
compatibility with 246
DB2 databases and 215
disabling default mappings for 246, 251
filtering data and 99
mapping 244, 246, 248
null values and 262
numeric data types and 187, 254
Oracle databases and 217
overloading 248
SQL databases and 219
SQL queries and 51, 68, 169, 183
string data types and 190, 255
substrings and 192, 194, 255
Sybase databases and 221
system information and 199
testing driver version and 229
timestamp values and 194
type casting and 266

G

GE operator 252

GE_ANY function 266

Generate Query button 84

Generic SQL type codes 222

Generic_ODBC mappings file 246, 248

GenericSQLType attribute 240

get]DBCMajorVersion method 229

getProcedures method 229

getTables method 229

graphical information object editor
accessing 67

Index 291

graphical information object editor
(continued)
categorizing output columns and 71
changing filter conditions with 103
creating joins and 85, 86
creating queries and 68, 118
defining output columns and 69
defining parameters with 110, 116
editing queries and 118
filtering data with 83, 94, 95, 98, 100, 101
grouping data with 106, 108
retrieving aggregate columns and 109
synchronizing parameters with 117
viewing column categories and 73
graphical queries 67, 168
See also queries
Greater Than operator 93
Greater Than or Equal to operator 93
GreedyMatchChar attribute 256, 257
GROUP BY clause
See also SQL statements
adding expressions to 172, 176
creating 104-108
deleting 107
filtering aggregate data and 108
mapping 273
removing columns from 107, 108
Group By page 106, 108
GroupByClause declaration (SQL) 176
GroupByClauseMapper element 273
grouping data 104-108, 172
grouping filter conditions 100, 101
groups
changing column order for 105, 107
disabling automatic grouping and 107
nesting rows and 126
returning distinct values for 70
returning from queries 172
viewing available columns for 106
> character code 224
GT operator 252
GT_ANY function 266

H

Has Null property 76
HAVING clause 108, 172,176
See also SQL statements

292 Designing BIRT Information Objects

Having page 109

HavingClause declaration (SQL) 176
Heading Key property 76, 115
Heading property 76, 81, 115, 131
Help Text Key property 76, 115

Help Text property 76, 81, 115, 131
Hidden Messages list 7

hidden parameters 115

hidden strings 234

hiding specific values 114

hints 199

Horizontal Alignment property 76, 115
Host property 19

HTML text format 76

hyphen (-) character 185, 204

IANAAppCodePage property 18,19, 23, 24,
232
IBM DB2 databases. See DB2 databases
Jdcd files 139
See also cache objects
IDENTIFIER token (SQL) 173
identifiers (SQL) 173,179, 180
IEncryptionProvider interface 29, 31
illegal characters 180
IN operator 93, 95, 103, 186, 266
incremental cache updates 145
indexed columns 77
Indexed property 76
indexes (cache tables) 144
indexes (SQL queries) 207, 208
Information Object command 66
information object data sources 128, 131
Information Object Designer
building projects and 148
caching information objects and 138, 142
creating queries and 172
duplicating column names and 11
filtering data and 100, 101, 173
grouping data and 105
overriding default values for 11
overview 4,5
previewing data and 122
prompting for input and 112
publishing projects with 151, 153
saving passwords for 149

viewing column categories and 73
viewing queries and 123, 124, 128
information object files 66
Information Object Project wizard. See New
Project wizard
Information Object Query Builder 73, 82, 200
information objects
accessing multiple data sources and 124
building from information objects 70, 80,
116
building from map files 45, 47, 51, 54, 60
building queries for 67, 68, 91, 118, 168
caching 138, 140, 141, 142
changing items in 10
creating 4, 66—67
defining computed fields and 201
defining joins for 85-86, 88, 90, 91, 205
defining optional tables for 199-204
defining output columns for 69-71
defining parameters for 110-117
deleting joins for 87
deleting query plans for 131
disabling indexing for 207
displaying output for 6, 121
displaying queries for 6
filtering data for 82, 83, 92, 100, 108
grouping data for 104-108
inheriting properties and 80-82, 148
localizing 131-136
naming 66
opening 69
overview 4
referencing 82, 180
renaming 80
retrieving data from 4, 112, 128
saving query plans for 128, 129, 130
selecting 68
testing 127
viewing 68
Information Objects folder 66
Informix data types 216
Informix databases
connecting to 19, 27, 214
externalizing connections for 41
mapping to 216
renaming stored procedures for 55
setting character encodings for 24

inheriting properties 80-82, 116, 148
initialization statements 270
inner joins 86,171
input 82, 83,103, 112
input parameters 54, 56, 60, 115
See also stored procedures
installation
character sets 22
JDBC drivers 228, 230
INTEGER data type 183, 184, 239
INTEGER_LITERAL token (SQL) 174
integers 174, 183, 184, 187, 239
Integration service
calculating data and 187
comparing values and 185
configuring database types and 223
connecting to Informix databases and 27
data type mappings and 238, 240, 241
database drivers and 228
defining joins and 89
mapping SQL functions and 244, 247, 249,
267
ordering strings and 276, 277, 278, 279
running queries and 172, 213, 240, 245
setting collation for 279
intersection operations 168
intsrvrsources.xml 41, 43,214
IO Design perspective 5, 6
.ob files 66
IP addresses 18, 23, 149
IS NOT NULL operator 93, 96, 189, 269
IS NULL function 263
IS NULL operator 93, 96, 189
iServer
accessing Informix databases and 27
connecting to 149
creating profiles for. See iServer profiles
installing drivers for 230
running on UNIX platforms 24
viewing error messages from 6
iServer Explorer view 6
iServer profiles 6, 149
iServer property 149
iServer volumes. See Encyclopedia volumes
IteratorAsLeaf operator 127
iterators 125,126, 127

Index 293

J

Java Runtime Environment 229
JDBC connection strings 212, 228
JDBC data sources 231, 232
JDBC drivers
See also drivers
connecting to databases and 12, 222, 228,
231
creating map files and 56, 238, 239, 241
creating SQL statements and 244
installing 228, 230
jdbcCompliant function 229
JDBCDriver element 230, 231, 232
join algorithms 88, 90, 170, 207
join control syntax 170
join operators 125,126, 127
join types 86
JoinCondition declaration (SQL) 176
JoinElement declaration (SQL) 176
JoinExpression declaration (SQL) 176
joins
accessing multiple data sources and 88,
205
building subqueries and 182
creating 85-86, 91
defining algorithms for 88, 90, 170
defining cardinality of 89, 90, 204
defining dependent 88, 125,170
disabling cost-based optimization for 205,
206
optimizing 87, 88, 90
removing conditions for 87
setting column properties for 90, 91
setting conditions for 85, 86, 89
specifying optional tables for 199
testing 124
Joins page 86, 90
JoinSpec declaration (SQL) 176
JRE compatibility 229

K
keywords (Actuate SQL) 178

L

language code 132

294 Designing BIRT Information Objects

LE operator 252

LE_ANY function 266

leaf operators (queries) 127

LEFT function 192, 256, 280

LEFT OPTIONAL keywords 202

LEN function 269

Length declaration (SQL) 176

length function 191

Less Than operator 93

Less Than or Equal to operator 93

LibraryPath element 232

LIKE expressions 258

LIKE operator
changing escape character for 258
customizing 256
disabling 257, 258
displaying blank values and 97
mapping to 256-258
matching characters and 93, 97, 257, 258
SQL queries and 83, 169, 191

LikeOpMapper element 256

lists
displaying at run time 82, 83, 111, 112
selecting values from 84, 95, 114

literal characters 83,98, 174, 177,192

literal integers 174, 176, 177

literal strings 169, 174, 272

LiteralMapper element 272

LiteralMapping element 272

local directory options 10

local parameters 116

locale code 132

locales
See also localizing information objects
byte-based strings and 279
character encoding and 24, 27
column properties and 75
database collation and 276
date-and-time filters and 97
numeric comparisons and 97
selecting 133

Localization button 133

Localization dialog box 134, 135, 136

Localization folder 131

localizing information objects 131-136

Location element 232

logical operators 100, 101, 190

logical values 190

login IDs 18, 23

LONG VARCHAR data type 239
LOWER function 190, 255

< character code 224

LT operator 252

LT_ANY function 266

LTRIM function 193, 255

M

Management Console
caching information objects and 138, 145
enabling passthrough security and 40
locating configuration files and 41
setting iServer profile properties for 149
Map command 45
map files
See also maps
configuring database types and 214, 222,
224
converting SQL functions and 244
naming 45, 52
setting default directories for 235
storing 45, 54, 60
Map page 52
Map stored procedures option 14
Map tables button 14, 17
mapping
data types 214, 238, 239, 241
database functions 244, 246, 248
database tables and views 45-48, 213, 238
literal strings 272
ODA result sets 17, 60-64
SQL functions 244, 246, 247
SQL operators 246, 247, 248, 268
SQL queries 51-54
stored procedures 54-60, 238
mapping examples (SQL functions) 249
mapping examples (SQL operators) 269270
mappings.xml 214, 224, 244
maps
accessing databases and 238
adding to projects 45, 52, 55
caching 142
changing 50
changing names in 10, 47

creating 45-64
defining joins for 86, 88, 90, 91, 205
displaying 68
inheriting property values and 80, 81
opening 69
referencing 82, 180
removing items from 11
renaming 80
retrieving data from 85, 112
retrieving type information for 238, 239,
241
running queries and 213
selecting 68
unsupported functions and 246
updating 48, 49, 51
viewing output for 6
Maps page 46, 56, 57, 61
masked property 30
masks 234
MATCH operator 257
matching character patterns 83, 97, 191, 257,
258
Materialize operator 126
mathematical operators 187
MAX function 198, 265
Max memory per query parameter 89
Max Value property 90
maximum values 198
MaxSize attribute 240
memory 89, 207
merge joins 89, 171
MergeJoin operator 126
Message Distribution Service 149
messages 6
metadata 54, 60, 229
Microsoft SQL databases. See SQL Server
databases
Microsoft Windows. See Windows systems
MIN function 198, 265
Min Value property 90
minimum values 198
MinRowsForIndexing pragma 208
missing values 97
MOD function 188, 254
Move operator 126
moving
column categories 72

Index 295

moving (continued)

output columns 48, 71, 72

project files 39
MULT operator 253
MultiAugment operator 126
multibyte characters 280
multiline comments (SQL) 179
multiplication 187
MultiplicativeExpression declaration

(SQL) 176

MultiRowBoolFuncMapper element 265
MySQL Enterprise database type 222
MySQL Enterprise databases 19, 41, 214
MySQL Enterprise login accounts 19
MySQL Enterprise named instances 20

N

Name attribute
ConnectionParam element 233
ConnectionType element 230
DatabaseType element 235
DataType element 240
Name property 76, 80, 115
named parameters 51
named servers 20, 23
NamedParameter declaration (SQL) 176
names
as SQL identifiers 180
changing 10
parameters and 53, 59
stored procedures and 55
naming
cache connection definition files 138
cache objects 139, 143
cache tables 143
connection types 230, 235
data connection definition files 12
database schemas 28
database types 235
external procedure object files 54, 61
information objects 66
iServer profiles 149
JDBC drivers 231
map files 45, 52
output columns 70
parameters 110, 115

296 Designing BIRT Information Objects

projects 10
queries 61
resources 4
result sets 57
naming restrictions 4
See also case sensitivity
native SQL data types 53, 60
Navigator view 6
NCHAR data type 52,216
NE operator 252
NEG operator 253
negation 190, 268, 270
negation operator 253, 270
negative (-) signs 268, 270
NEQ function 269
Nest operator 126
nested loop joins 89, 127, 170
NestedLoop]Join operator 127
nesting joins 125, 126
New Data Connection Definition wizard 12,
15
New Information Object wizard 66
New iServer Profile wizard 149
new line characters 178
New Maps wizard 46, 52, 55
New Project wizard 10
node operators (queries) 125
non-native data types 240
NoOp operator 128
NOT BETWEEN operator 93, 96
Not Equal to operator 93
NOT IN operator 93, 266
NOT LIKE operator 93, 96, 97
NOT operator 101, 190, 251, 252, 268
NOT_IN function 266
not-equal-to operator 269
null collation 278
NULL functions 262
NULL keyword 270
null test operators 189
null values
assigning to parameters 110
concatenating strings and 270
defining output columns and 76
filtering 96
mapping 217, 262, 263
testing for 189

null_sensitive collation 278
NullFuncMapper element 262
numbers

assigning to parameters 110, 117

calculating 187

comparing 97, 186

entering in SQL queries 174, 183

ordering 276

rounding 188

setting decimal precision for 240

setting default values for 110
NUMERIC data type 239, 240
numeric data types 184, 186, 215
numeric functions 187, 254
NumericFuncMapper element 249, 254
NVARCHAR data type 216, 240
NVARCHAR? data type 217

O

ODA connection types 44
ODA data source query builder 61
ODA data source types 15
ODA data sources
connecting to 15
creating queries for 61, 63
enabling passthrough security and 40
externalizing connections for 44
mapping result sets for 60-64
retrieving parameters from 115
ODA drivers 15
ODA nodes (Query Profiler) 124
ODA operator 128
ODBC connection strings 212, 228
ODBC databases 12, 244
ODBC drivers 12,222,244
ODBC escape sequences 222, 240, 244
odbc.ini 24
online documentation ix
open data sources. See ODA data sources
open database connectivity. See ODBC
opening
Expression Builder 70
graphical information object editor 67
information objects 69
maps 69
SQL editor 118

operands 248, 268
OperandTypes attribute 248, 249
operator mapping examples 269-270
operators
customizing 251, 252, 253, 256, 265
filter conditions 93, 94, 96, 100
join conditions 85, 86
mapping 246, 247, 248, 268
ODBC data sources 248
SQL queries 125, 169, 185
optimizing
joins 87, 88, 90
queries 87,89, 182, 199, 205
OPTION clause 182
See also SQL statements
Optional attribute 234
optional data filters 75
OPTIONAL keyword
aggregate functions and 203
computed fields and 201
joins and 87, 199, 200, 202
optional parameters 234
Optional value 76
OR keyword 118
OR operator 101, 190, 251, 268
Oracle data types 218
Oracle databases

caching information objects and 138, 141

connecting to 20, 214
creating queries for 213, 217
externalizing connections for 41
mapping to 51,217
ORDER BY clause 51,120, 171, 176, 273
See also SQL statements
OrderByClause declaration (SQL) 176
OrderByClauseMapper element 273
0OS5/400 operating systems 18
OSGi extensions framework 28
outer joins 85, 86, 171
output 6,76,121
See also result sets
output columns
categorizing 71-72
changing order of 48,71, 72
changing properties for 80
defining 69-71
deleting 71

Index

297

output columns (continued)
displaying categories 72
displaying data types for 120
displaying multi-line text in 76
excluding from map files 47
filtering 47,71,75
formatting values in 75,76
grouping data and 106
inheriting property values and 80, 81
naming 70
renaming 47, 53, 58, 62
setting display lengths for 75
setting properties for 48, 71, 74, 121
truncating textin 76
viewing 47,53, 62,120
Output Columns page 47, 58, 62
output parameters 54, 56, 60, 115
See also stored procedures
overloaded functions 248
overloaded stored procedures 55
overriding default values 11

P

Parameter Mode property 115
parameter passing conventions 170
Parameter Values dialog box 122,123, 129
ParameterDeclaration declaration (SQL) 176
parameterized queries

See also stored procedures

creating 169, 183

defining parameters for 110, 169

filtering data with 172

joining tables with 171

mapping to 51, 54, 60

renaming parameters for 53, 63
parameters

adding to joins 125

assigning data types to 110, 114

assigning values to 112, 114, 117, 122, 180

caching information objects and 138

changing properties for 116

defining connection 233

defining local 116

defining source 116-117

deleting 11, 111

displaying 121

298 Designing BIRT Information Objects

filtering data and 82, 94, 103
hiding 115
localizing information objects and 131,
133, 135, 136
mapping stored procedures and 54, 56, 59
mapping to ODA data sources and 60, 63
mapping to SQL databases and 219
mapping to SQL queries and 51, 53
naming 110, 115
optimizing queries and 89
prompting for 111, 112
propagating values for 148
querying information objects and 110, 125,
169, 181, 183
renaming 10, 53, 59, 63
setting default values for 110, 114
setting properties for 111, 114
specifying as required 115
synchronizing 117
viewing data types for 121
Parameters For Stored Procedure dialog
box 55, 56
Parameters page
defining parameters and 110, 116
defining prompts and 112
deleting parameters and 111
updating information on 117
Parameters page (SQL editor) 53,59, 63, 121
ParamPlaceholder declaration (SQL) 176
parentheses () characters 101, 202, 268
passthrough security 40
Passthrough value 13
Password property
ActuateOne for e.Reports data source
connections 17
database connections 18, 19, 20, 21, 22, 23
iServer profiles 149
passwords
database connections and 13, 18, 20, 23
iServer profiles and 149
MySQL Enterprise login accounts and 19
PostgreSQL login accounts and 21
run-time connections and 40
saving 149
SQL Server login accounts and 22
paths. See directory paths
pattern characters 192

pattern-matching operator 169
percent (%) character 98, 192, 232, 257
performance 92, 138, 213, 247, 277
loading e.reports and 17
period (.) character 97,110
perspectives 5
pick lists. See drop-down lists
pipe sign (|) character 83
plain text format 76
platform-independent queries 244
plugin.xml 44
plug-ins 44
POJO data sources 15, 21
Port number property 149
Port property
DB2 data connections 18
Informix data connections 19
MySQL Enterprise connections 19
ODBC data connections 13
Oracle data connections 20
PostgreSQL connections 21
SQL Server connections 22
Sybase data connections 23
ports 149
POSITION function 194, 246, 251, 256, 280
PostgreSQL databases 21, 28, 41, 214
PostgreSQL login accounts 21
PostgreSQL named instances 21
POWER function 189, 215, 249, 254
power function 221
Pragma declaration (SQL) 174, 176
pragmas 171, 205
precedence 268
precision 183, 184, 240
Precision declaration (SQL) 176
preconfigured connection types 17, 41
preconfigured database types 12,212,214,
248
preconfigured ODA data source types 15
predefined filters 75, 82
Predefined value 75, 82
previewing data 6,121
previewing output 6
primary keys 77, 143
PrimaryExpression declaration (SQL) 176
Problems view 6, 148
production databases 28, 138

Profile name property 149
profiles 6,10, 40, 149
programmers 4
Project command 10
Project operator 127
projects
adding map files to 45, 52, 55
compiling resources for 148
creating 10
moving 39
naming 10
publishing 148, 148-154
saving 10
testing 148
updating 148
viewing contents 6
Prompt editor 81, 82, 83, 111, 112
Prompt editor button 112
prompt properties 111, 112
prompting for input 82, 83, 103, 112
Propagate Property Values command 148
propagation settings 10
properties
connection types 17
data source connections 11, 13,17, 40
displaying 6
externalized connections 3945
information object parameters 114
inheriting 80-82, 116, 148
iServer profiles 149
joins and 90, 91
ODA data sets 64
ODA data sources 15, 16, 44
ODBC databases 12
output columns 48, 71, 74, 80, 121
parameters 111, 112, 114
propagating values for 148
resetting 81, 116
translated strings 131, 135
properties file 131
Properties view 6
Proxy value 13
Publish Files button 154
Publish Information Objects command 151,
153,155
Publish Information Objects dialog box 153
publish locations 153

Index 299

publishing projects 148, 148-154 selecting information objects for 68

publishing resources 149 selecting maps for 68
PushComplexExprs attribute 273, 274 sorting data with 171

specifying database collation for 276, 279
Q updating map files and 49

viewing execution plan for 6
viewing information about 123, 128
viewing parameters in 121
Query By Example. See QBE expressions
query definition view 6

QBE expressions 83

queries
See also SQL statements; subqueries
adding comments to 179
aggregating data and 105, 203

building expressions for 67,83,183,185 ~ query execution plans 124,128, 129,130, 131

building for query extenstlons S169 .
: : : uery operators. See operators
information objects M Query Brofiler view 6, 123, 124, 128
Oracle databases 217 QueryParameterDeclaration declaration
remote data sources 186, 187 (SQIT) 176
SQL Server databases 219 question mark (?) character 51, 257
Sybase databases 221 " character code 224

building function templates for 249 R

comparing strings and 185, 217

configuring database types and 223 radio buttons 75

converting case and 190, 216 range of values 96, 186

converting functions for 244, 245, 248 range test operator 186

creating 6, 67,118, 168, 244 REAL data type 239

customizing mappings for 272-274 records. See rows

disabling cost-based optimization for 205, references

206 aliases and 172

filtering data with 82, 84, 92, 108, 172 database views and 169

generating 84 information objects and 82, 180

grouping data with 104-108, 172 pattern-matching operator and 169

initializing 270 SQL queries and 169

limitations for 168,172, 182 table names and 169

mapping data types for 214, 238, 239, 241 relational databases 244

mapping literal strings for 272 See also databases

mapping to 17, 51-54, 60 RelationalOperator declaration (SQL) 176

naming 61 relative paths 82, 120, 180

not returning values 110 remainders 188

optimizing 87, 89, 182, 199, 205, 247 Remember Password option 149

ordering strings for 276,277,278, 279 remote data sources 186, 187

prompting for input and 111, 112, 115 removing. See deleting

restricting data returned by 82 renaming

retrieving data with 82 column categories 72

returning distinct values and 70 columns 10, 47, 48

returning duplicate rows and 70 information objects 80

running 213, 229, 240, 245 maps 80

saving 118 parameters 10, 53, 59, 63

300 Designing BIRT Information Objects

stored procedures 55
report designs
building information objects and 5
creating queries and 172, 180
filtering data and 82, 174
retrieving data for 4
Report document path property 18
report documents 18
reports 40, 131
Required property 76, 115
reserved words (Actuate SQL) 178
resource names 4
resources 148, 149
Result Set Name dialog box 57
result sets
categorizing columns in 71-72
changing column order in 71,72
changing output columns names 53, 58, 62
defining output columns for 69-71
displaying multi-line text in 76
filtering data for 47,71, 75
formatting text in 76
mapping to 17, 54, 55, 60, 61
naming 57
removing output columns in 71
returning distinct values for 70
returning from information objects 91, 170
truncating textin 76
viewing output columns in 47, 53, 62
RIGHT function 192, 256, 280
RIGHT OPTIONAL keywords 202, 203
ROUND function 188, 215, 254
TOWS
adding to cache tables 140
adding to joins 86
copying iterators for 126
excluding duplicate 70, 104
filtering blank values in 97
filtering null values in 96
grouping 126
resetting iterators for 126
restricting number returned 92, 100, 103,
108
retrieving from
information objects 138
queries 104, 125,126, 127
specifying threshold values for 208

viewing blank values in 97
viewing null values in 96
RPAD function 51
RTF text format 76
RTRIM function 193, 255
running queries 213, 229, 240, 245
run-time connections 12, 15, 40
Runtime element 40
run-time filters 172
run-time queries 169
run-time values 84, 111, 114

S

saving
connection definition files 11, 138
passwords 149
projects 10
queries 118
query execution plans 128, 129, 130
resources 148
scalar subqueries 170
scalar values 170, 183, 186
ScalarDataType declaration (SQL) 177
Scale declaration (SQL) 177
Schema (optional) property 28
Schema name prefix option 46, 56, 159
schemas 24, 28, 46, 56, 139, 159
search function 194
security 13, 40, 149
Select a wizard page 10
SELECT clause 105, 107
Select operator 127
SELECT statements 168, 169,171, 172
See also SQL statements
selection lists. See drop-down lists
Selectltem declaration (SQL) 177
SelectList declaration (SQL) 177
SelectStatement declaration (SQL) 177
SelectWithoutFrom declaration (SQL) 177
SelectWithoutOrder declaration (SQL) 177
separators (numbers) 97
serial values 197, 262
Server name property 20, 21, 22,23
server profiles. See iServer profiles
Server property 18
Server URL property 17

Index 301

servers 13,18
See also iServer
connecting to database 19, 23
Service property 19
set difference operations 168
SetClause declaration (SQL) 177
Show Categories icon 6
Show categories in graphical editor option 73
Show map properties button 91
SID property 20
SignedLiteral declaration (SQL) 177
SimpleCondition declaration (SQL) 177
SINGLE EXEC keywords 182
single quotation mark (') character 96, 110,
174
SingleMatchChar attribute 256, 257
Size property 115
.sma files 45
See also map files
SMALLINT data type 239
SOAP end point property 23
sort keys 127
sort operations 276
Sort operator 127
SortedOuterUnion operator 128
source columns 49
source parameters 54, 60, 116-117
space characters. See white space characters
special characters. See characters
SQL compiler 88,122
SQL conventions (Actuate) 173
SQL data types
casting rules for 184
DB2 databases and 215
Informix databases and 216
listed 183, 238
mapping to 214, 238, 239, 241
Oracle databases and 217
SQL databases and 219
Sybase databases and 221
SQL editor 118,119, 121
SQL editor icon 118
SQL expressions 67, 183, 185
SQL functions
See also functions
aggregation 198, 203, 264
compatibility with 246

302 Designing BIRT Information Objects

converting 244, 245
custom mappings for 248, 254, 255, 266
DB2 databases and 215
disabling default mappings for 246, 251
mapping 244, 246, 247, 249
null values and 262
numeric data types and 187
Oracle databases and 217
SQL databases and 219
string data types and 190
substrings and 192, 194
Sybase databases and 221
system information and 199
timestamp values and 194
SQL identifiers 173,179, 180
SQL keywords 178
SQL nodes (Query Profiler) 124
SQL operator 128
SQL operator mapping examples 269-270
SQL operators 185
See also operators
SQL parameters 110-111
SQL Preview page 118
SQL Preview view 6, 168
SQL Server databases
caching information objects and 138
connecting to 22,214
creating queries for 219
externalizing connections for 41
mapping to 219
SQL Server login accounts 22
SQL Server named instances 22
SQL statements
See also queries
adding
column names to 180
escape sequences to 244
functions to 68, 169
parameters to 110, 125, 169, 181, 183
table names to 180
displaying 6, 123
editing 118, 119
entering at run time 169
mapping GROUP BY clause for 273, 274
mapping ORDER BY clause for 273
referencing
aliases in 172

information objects in 180
parameters in 169
tables or views in 169
removing columns from 107-108
selecting columns for 70, 180
selecting tables for 87,169, 182, 199
setting dynamic filters in 172
setting filter conditions in 92, 95, 99
setting join conditions in 85, 86, 90, 170,
205
unassigned parameters and 110
SQL text editor. See SQL editor
SQL type codes 222
SQL-92 keywords 179, 180
SQL-92 specifications 246
square brackets ([]) characters. See brackets
characters
Start Auto suggest option 84, 114
static data sources 15, 22
Stored procedure name prefix option 56
stored procedures
changing map files for 59
changing parameter names for 59
filtering 56
mapping to 54-60, 238
renaming 55
retrieving list of 229
retrieving parameters from 115
string data types 183
string functions 190, 192, 193, 194, 255
string operators 190
strings
assigning to parameters 110, 117, 184
casting rules for 184
comparing 97, 185, 186, 217
concatenating 174, 191, 217, 270
converting case 190, 216
entering in SQL statements 183
filtering blank values in 96, 97
filtering data and 82
filtering tables and views and 46, 159
getting length of 191
localizing information objects and 131,
134,135
mapping literal 272
mapping to data types and 240

mapping to queries and 51
masking 234

matching characters in 83, 97, 191, 257, 258

maximum size for 240
missing values in 97
ordering 276, 279
padding 216
parsing 192
returning substrings in 192, 194
setting maximum length for 183
trimming white space in 193
XML parsers and 225
SUB operator 253
subcategories (output columns) 71, 72
subqueries
creating 169, 182
grouping data and 172
matching character patterns and 169
optimizing 182
returning scalar values and 170
SubQuery declaration (SQL) 178
subroutines 125
SUBSTR function 247
SUBSTRING function 192, 247, 256, 280
substring functions 192, 255
SubStringFuncMapper element 255
substrings 192, 194, 255
subtraction operator 187, 253, 270
SUM function 198, 203, 265
summary tables 74
summary values 198
See also aggregation
SWITCH statements 264
Sybase data types 221
Sybase databases
connecting to 22, 214
creating queries for 221
externalizing connections for 41
mapping to 55,220
setting character encodings for 24
Sybase named servers 23
symbolic operators 268
synchronizing source parameters 117
syntax (SQL) 173, 174
synthesized data 127
system information 199

Index

303

T

tab characters 178
tab-delimited formats 127
table aliases 119
table names 180
Table/View name prefix option 46, 159
TableParameter declaration (SQL) 178
TableParameters declaration (SQL) 178
tables
adding to queries 87,169, 182
cache database and. See cache tables
changing 48
filtering 46, 159
getting 229
joining 171
mapping to database 45-48, 61, 213, 238
specifying as optional 87, 199-204

templates (SQL functions) 244, 246, 247, 249,

267
testing
connections 14,17
for null values 189
for range of values 186
for set of values 186
information objects 127
joins 124
localized information objects 135
projects 148
text 76,174,192
text boxes 75
text file data sources 127
Text Format property 76
text strings. See strings
textual queries
building expressions for 67
creating 67, 118-120
displaying output columns for 120
displaying parameters for 121
saving 118
textual query editor 52, 67
See also SQL editor
THEN keyword 264
ThenString attribute 264
thousands separator 97
threshold values (SQL indexes) 208

304 Designing BIRT Information Objects

time stamps
as literal strings 272
assigning to parameters 117
comparing 186
mapping 258, 259, 261, 262
returning current 195
specifying default 110
SQL conventions for 174, 183, 184
time values 97, 194
TIMESTAMP data type 183, 184, 239
timestamp functions 194
TIMESTAMP keyword 272
TIMESTAMP_STRING token (SQL) 174
TINYINT data type 239
TNS names file property 20
TNS server name property 20
Toggle categories view icon 73
tokens (SQL grammar) 173
totals 108, 198
trailing spaces 97
Transact-SQL data types 219
Transact-SQL functions 219
translation keys 131, 134, 135, 136
translation strings 131, 134, 135
translations 131
TRIM function 193
true values. See Boolean values
truncation 76, 184, 240
trusted connections 17
Type attribute 41,234
type casting 169, 183, 184, 266
type declarations 175, 177
See also data types

U

UnaryExpression declaration (SQL) 178

UnaryLogicalExpression declaration
(SQL) 178

unassigned parameters 110

UNC paths 18

underscore (_) character 98, 192, 257

Unicode binary collation 219, 276, 277, 278

Unicode characters 276

Unicode data 22

Unicode strings 174, 183, 272

Unicode_BIN collation 276
See also Unicode binary collation
unicode_bin collation 278
UNION keyword 118
Union operator 127
UNION statements 168, 177
unique values 70, 90
See also DISTINCT keyword
UNIX systems 18, 24, 27
unknown data types 75
unnamed parameters 51, 169
UnsignedLiteral declaration (SQL) 178
update columns 140, 144
Update Map command 49
Update Maps command 51
updating
cache tables 140, 144
maps 48,49, 51
projects 148
UPPER function 190, 255
URL of the XML schema property 24
URL of the XML source property 23
URLs
localized information objects and 132
WSDL files 23
XML data streams 23
Use Precompiled Query Plan at runtime
property 129
Use Trusted Connection property 17
UseCharStringImplByDefault attribute 280
User name property 18,19, 20, 21, 22, 23, 149
user names
database connections and 13, 18, 19, 23
iServer profiles and 149
MySQL Enterprise login accounts and 20
PostgreSQL login accounts and 21
returning 199
SQL Server login accounts and 22
User property 17
UseSelectItemIndexes attribute 273, 274

Vv

ValueExpression declaration (SQL) 178
ValuelsCaseSensitive attribute 234
values

See also data

aggregating. See aggregation
assigning to parameters 110, 112, 117, 122,
180
comparing. See comparisons
counting non-null 198
creating list of 82, 83, 111, 112
filtering empty or blank 96, 97
filtering on multiple 95
filtering range of 96
hiding 114
inheritance and blank 81
mapping data types and 217, 221, 240
returning largest 188
returning smallest 188
rounding 188
selecting at run time 84, 111, 114
setting default 110, 114
testing for null 189
testing range of 186
testing sets of 186
ValueSelectItem declaration (SQL) 178
ValueSelectList declaration (SQL) 178
VARCHAR data type
as generic type 239
as literal strings 272
assigning to parameters 114, 115
casting numeric types to 215
declaring 240
defining output columns and 76
SQL queries and 183, 184
VARCHAR? data type 217
variables 110
variant strings 184, 272
variant types 217
See also NVARCHAR; VARCHAR data
types
viewing
column categories 72
column names 75
data types 49,77, 120, 121
error messages 6, 148
information objects 68
maps 68
output columns 47, 53, 62, 120
parameters 121
SQL queries 123,128
SQL statements 6, 123

Index 305

views wildcard characters 98, 257

changing 48 Windows systems 18, 27
filtering 46, 159 WITH clause 82,110, 169, 176
mapping to database 45-48, 213, 238 See also SQL statements
virtual tables 182 Word Wrap property 76
Volume property 17, 149 word wrapping 76
volumes. See Encyclopedia volumes WSDL descriptor property 23
W X
web services data sources 15,23 XML connection types 44
Web Services Description Language file 23 XML data source connections 15, 23, 24, 44
WHEN clause 178 XML data streams 23
WHEN keyword 264 XML elements 225
WhenClause declaration (SQL) 178 XML files 24,224
WhenString attribute 264 See also configuration files
WHERE clause 90, 92,172, 178, 221 XML parsers 225
See also SQL statements XML schemas 24
WhereClause declaration (SQL) 178
white space characters Z

in queries 174,178, 180

i 1
in strings 193 z/0OS operating systems 18

zero-length variants 217

306 Designing BIRT Information Objects

	Contents
	About Designing BIRT Information Objects
	Creating information objects using Information Object Designer
	Introducing Information Object Designer
	About information objects
	About Information Object Designer
	About the Information Object Designer environment
	Displaying hidden messages

	Creating projects, data connection definitions, and maps
	Creating an Actuate BIRT project
	Propagating column and parameter renaming and deletion
	Creating a data connection definition
	Creating a data connection definition for a database
	Creating a data connection definition for an ODA data source
	About connection properties
	About the IANAAppCodePage property
	About Informix database connections
	Specifying a production database schema

	Encrypting and decrypting data source connection property values
	Understanding the encryption extension point plug-in
	Extending the encryption extension point plug-in
	Troubleshooting an encryption extension

	Externalizing data source connection property values
	About the data source connection configuration file
	Externalizing connection property values for a preconfigured connection type
	Externalizing connection property values for a configurable connection type
	Externalizing connection property values for an ODA connection type

	Creating maps
	Creating a map of a database table or view
	Updating a map of a database table or view
	Creating a map of a native SQL query
	Creating a map of a stored procedure result set
	Creating a map of an ODA data source query result set

	Creating information objects
	Creating an information object
	Creating a graphical information object query
	Using the expression builder
	Choosing maps and information objects
	Defining output columns
	Creating and displaying column categories
	Setting column properties
	About column property inheritance

	Creating a filter for use in queries on an information object
	Specifying a join
	About joins
	Optimizing joins
	Using join algorithms
	Improving the selectivity of a join
	Creating a Cartesian join

	Filtering data
	Creating a filter condition
	Creating multiple filter conditions
	Prompting for filter values

	Grouping data
	Creating a GROUP BY clause
	Removing a column from the GROUP BY clause

	Filtering on an aggregate column
	Defining parameters
	Specifying a parameter’s prompt properties
	Setting parameter properties
	Setting source parameters
	Synchronizing source parameters

	Creating a textual information object
	Displaying output columns
	Displaying parameters

	Displaying and testing information object output
	Displaying a data source query
	Understanding query execution plan operators
	Understanding node operators
	Augment
	Box
	CallExecutionUnit
	DependentJoin
	Dup
	Materialize
	MergeJoin
	Move
	MultiAugment
	Nest
	NestedLoopJoin
	Project
	Select
	Sort
	Union

	Understanding leaf operators
	FakeData
	FakeFileData
	IteratorAsLeaf
	NoOp
	ODA
	SortedOuterUnion
	SQL

	Storing a query plan with an information object
	Saving an information object’s query plan
	Saving query plans for source and dependent information objects
	Deleting an information object’s query plan

	Localizing an information object

	Caching information objects
	About information object caching
	Creating a cache connection definition
	Creating a cache object
	Refreshing the data rows in a cache table
	Database-specific limitations

	Building and publishing a project
	Building a project
	Propagating column and parameter property values
	Publishing a project
	Publishing information object files as resources
	Publishing information object files as non-resources

	Downloading files from an Encyclopedia volume

	Assessing the impact of project changes
	About project dependencies
	Searching for data connection definitions, maps, and columns
	Displaying the project model diagram
	Assessing the impact of a change on files in an Encyclopedia volume
	Downloading files from an Encyclopedia volume
	Determining the dependencies between project files
	Generating an impact report

	Actuate SQL reference
	About Actuate SQL
	Differences between Actuate SQL and ANSI SQL-92
	Limitations compared to ANSI SQL-92
	Extensions to ANSI SQL-92
	Database limitations
	FILTERS statement in report designers

	Actuate SQL syntax
	Actuate SQL grammar
	Using white space characters
	Using keywords
	Using comments
	Specifying maps and information objects in Actuate SQL queries
	Using identifiers in Actuate SQL
	Using column aliases in Actuate SQL
	Specifying parameter values
	Using subqueries in Actuate SQL
	Using derived tables in Actuate SQL

	Data types and data type casting
	Facets
	Casting rules
	String comparison and ordering

	Functions and operators
	Comparison operators: =, <>, >=, >, <=, <
	Range test operator: BETWEEN
	Comparison operator: IN
	Arithmetic operators: +, -, *, /
	Numeric functions
	FLOOR, CEILING, MOD
	ROUND
	POWER

	Null test operators: is [not] null
	Logical operators: and, or, not
	String functions and operators
	Case conversion functions: UPPER, LOWER
	Concatenation operator: ||
	Length function: CHAR_LENGTH
	LIKE operator
	Substring functions: LEFT, RIGHT, SUBSTRING
	Trimming functions: LTRIM, RTRIM, TRIM
	Search function: POSITION

	Timestamp functions
	CURRENT_TIMESTAMP
	CURRENT_DATE
	DATEADD
	DATEDIFF
	DATEPART
	DATESERIAL

	Aggregate functions: COUNT, MIN, MAX, SUM, AVG
	System function: CURRENT_USER

	Providing query optimization hints
	Indicating that a table in a join is optional
	Using the OPTIONAL keyword with a computed field
	Using the OPTIONAL keyword with parentheses ()
	Using the OPTIONAL keyword with aggregate functions

	Specifying the cardinality of a join

	Using pragmas to tune a query
	Disabling cost-based optimization
	Disabling indexing
	Specifying a threshold value for indexing

	Configuring database types
	Understanding database types
	About database types
	About connection types
	About mappings

	About preconfigured database types
	DB2 data type mapping and issues
	Informix data type mapping and issues
	Oracle data type mapping and issues
	SQL Server data type mapping and issues
	Sybase data type mapping and issues

	About configurable database types
	Working with XML files

	Configuring connection types
	About configuring connection types
	JDBC driver requirements and installation
	JDBC driver requirements
	Installing a JDBC driver

	Working with datasources.xml
	Configuring connection types: ConnectionTypes element
	ConnectionType child element: JDBCDriver
	ConnectionString element
	ConnectionType child element: CatalogFilter
	ConnectionType child element: ConnectionParams

	Configuring database types: DatabaseTypes element

	Mapping data types
	About data type mapping
	DataTypeMapper element
	MaxSize attribute
	DataType child element: Aliases

	Mapping functions and operators
	About mapping functions and operators
	About ODBC escape sequences
	Disabling the default mapping for a function
	Differences between Actuate SQL functions and database functions
	About Generic_ODBC mappings.xml

	Syntax for mapping functions and operators
	Mapping functions and operators: FunctionMapping element
	About function templates
	Example: Mapping the POWER function
	Example: Mapping the DATEDIFF function with date part yyyy
	Example: Disabling the POSITION function

	Mapping Boolean operators: BooleanOpMapper element
	Example: Mapping the NOT operator

	Mapping comparison operators: ComparisonOpMapper element
	Example: Mapping the <> operator

	Mapping arithmetic operators: ArithOpMapper element
	Example: Mapping the negation operator

	Mapping numeric functions: NumericFuncMapper element
	Example: Mapping the POWER function

	Mapping string functions: BasicStringFuncMapper element
	Example: Mapping the CHAR_LENGTH function

	Mapping substring functions: SubStringFuncMapper element
	Example: Mapping the POSITION function

	Mapping the LIKE operator: LikeOpMapper element
	Example: Mapping the LIKE operator
	Example: Changing the escape character
	Example: Disabling the LIKE operator
	Example: Specifying additional special characters

	Mapping DATEPART functions: DatePartMapper element
	Example: Mapping the DATEPART functions

	Mapping date subtraction functions: DateDiffMapper element
	Examples: Mapping the DATEDIFF function with date part yyyy

	Mapping date addition functions: DateAddMapper element
	Example: Mapping the DATEADD functions

	Mapping date serialization functions: DateSerialMapper element
	Example: Disabling the DATESERIAL functions

	Mapping NULL functions: NullFuncMapper element
	Example: Disabling the CAST (NULL AS . . .) functions

	Mapping conditional functions: CondFuncMapper element
	Example: Mapping the CASE statement

	Mapping aggregate functions: AggrFuncMapper element
	Example: Mapping the AVG function

	Mapping multi-row Boolean operators: MultiRowBoolFuncMapper element
	Mapping cast functions: CastFuncMapper element
	Example: Mapping the CAST functions

	Using operators in a mapping
	Symbolic operators require parentheses
	Negative sign must be followed by a space
	Less than (<) and greater than (>) symbols must be escaped
	Example: Mapping the not-equal-to operator
	Example: Mapping the CONCAT function
	Example: Mapping the DATEDIFF function
	Example: Mapping the CHAR_LENGTH function
	Example: Mapping the negative sign (-)

	Using initialization statements
	Example: Specifying the behavior of concatenation with NULL

	Mapping literals and clauses
	Mapping literals: LiteralMapper element
	Template format for VARCHAR literals
	Template format for TIMESTAMP literals
	Example: Mapping VARCHAR and TIMESTAMP literals

	Mapping clauses
	Mapping the ORDER BY clause: OrderByClauseMapper element
	UseSelectItemIndexes attribute
	PushComplexExprs attribute

	Mapping the GROUP BY clause: GroupByClauseMapper element
	UseSelectItemIndexes attribute
	PushComplexExprs attribute

	Working with collations and byte-based strings
	Working with collations
	About Integration service collations
	About database collations
	About collation implementations
	Specifying the Integration service and database collations

	Working with byte-based strings

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

