One User Experience

Programming with Actuate
Foundation Classes

This documentation has been created for software version 11.0.5.

It is also valid for subsequent software versions as long as no new document version is shipped
with the product or is published at https:/ /knowledge.opentext.com.

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Tel: +1-519-888-7111

Toll Free Canada/USA: 1-800-499-6544 International: +800-4996-5440
Fax: +1-519-888-0677

Support: https:/ /support.opentext.com

For more information, visit https:/ /www.opentext.com

Copyright © 2017 Actuate. All Rights Reserved.
Trademarks owned by Actuate

“OpenText” is a trademark of Open Text.

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in
this publication. However, Open Text Corporation and its affiliates accept no responsibility and
offer no warranty whether expressed or implied, for the accuracy of this publication.

Document No. 170215-2-130321 February 15, 2017

https://knowledge.opentext.com
https://support.opentext.com
https://www.opentext.com

Contents

About Programming with Actuate Foundation Classes Xi
Part 1
Working with Actuate Foundation Classes
Chapter 1
Understanding Actuate Foundation Classes 3
About the Actuate Foundation Class architecture 4
About the core protocol 4
About class protocols 5
About abstract base classes 6
About concrete Classesttt e 6
Understanding the AFC by functional category .. 6
About report structureclasses 7
About report structure abstract baseclasseso oo oo 7
About report structure concrete classes i 7
About page layoutclasses 7
About page layout abstract baseclasses i 8
About page layout concreteclasses oo oo 8
About control Classes 9
About control abstractbase classes i 10
About control concrete classes 10
About conNection ClasSesottt e 10
About connection abstractbase classes i i 10
About connection concrete classes e 10
About collection Classesttt 11
About collection abstractbase classest 12
About collection concrete Classesoiiii it 12
About data stream classest e 12
About data stream abstractbase classes i 12
About data stream concrete classes i e 12
About EXCel Classest e e 13
About Excel abstractbase classes e 14
About Excel concrete classes 14
About the VISitor Classot e 14
Chapter 2
Working with aclass e 15
ADOUL ClaSSES . .ottt e 16

About class declaration 16

Understanding class relationships 17
Aboutinheritance 18
About references 18
ADOUL SCOPE . . oottt 19

Understanding class scope naming conventionscooeeunon.. 20
About the default scope of aclassinareportdesign 20
About the default scope of aclassinalibrary 21

Getting information about classes inareport 22
Getting information about a specificclasso oL 22
Getting information about all classesinareport 24

Working with a class variable 24
About the functional categories of variables oo oo oo 25
Defining properties 27

About function properties 28

About miscellaneous properties 31
Using aparameter 32
Using aregular variable 32
About variable visibility 33
Creatingavariable 35
Editinga variable 36
Deleting a variable 37

Working withamethod 37
About methods you canoverride 39
About methods youcancall 40
About privatemethods 40
About user-defined methods i 40
Creatingamethod 40
Namingamethod 41
Editingamethod 42
Deletingamethod 43
Overloadingamethod 43

Chapter 3

Working with an object 45

About objects and object reference variables 46

Creating an object 46
Declaring an object reference variable 46

Declaring an object reference variable as a specificclass 47
Declaring an object reference variable as AnyClass type 47
Using Actuate Basic to createanobject 47

Using an object reference variable 47

Working with a simple variable 48

ii

Working with an object reference variable 48

Referring to an object’s variables and methods 49
Referencing amethod of aclass i 50
Referencing a method in a superclasst 50
Referencing a method using a classname 50
Resolving an ambiguous method call 51
Assigning an object to an object reference variable o oL 52
Setting an object reference variable to Nothing 53
Passing an object reference to a procedure il 53
Getting information aboutanobject.......... oo oL 53
Testing an object reference using the Is operator 54
Testing for Nothing 54
Comparing object reference variableso oo 54
About object lifetime 55
About transient objects 55
About persistent objects 55
About pinned objects 56
Chapter 4
Actuate Foundation Class library 57
Summary of classesand methods 60
Report structure classes and methods 61
AcComPonent 61
AcReportComponent 61
ACREPOIt o 64
ACSECHION ... oo 66
AcConditionalSection 68
AcDataSection 68
AcGroupSection 69
AcParallelSection 70
ACRepOrtSection 70
AcSequentialSection 71
Page layout classes and methods 71
AcBaseFrame e 71
AcBasePage 72
ACPage .. 73
ACSUDPAge 74
AcDataFrame 74
AcFrame 74
ACFIOW . 76
AcLinearFlow 77
AcTopDowWnFIow 78
AcPagelist o 78

iii

AcLeftRightPagelist 79

AcSimplePagelist 79
AcTitleBodyPageList 79
Control classesand methods i 80
AcVisualComponent 80
AcCoONtrOl .. 83
AcCCroSStab ..o 84
ACDIawing 84
ACCart .. 85
AcImageControl 89
AcLIneControl e e 89
AcRectangleControl 89
AcTextualControl e 20
AcBrowserScriptingControl 90
AcDataControl e 920
AcCurrencyControl 90
AcDateTImeCOoNtIolo 20
AcDoubleControl e 91
AcDynamicTextControl 91
AcIntegerControl 92
AcTextCOoNtIolo e 92
AcLabelControl 93
AcPageNumberControl 93
ACCartAXIS . oot 93
AcChartCategory 99
AcChartGridLine 100
AcChartLayer 101
AcChartPoint 110
AcChartPointStyle 112
AcChartSeriesStyle 113
ACCartSeriesttt 114
AcChartTrendline 115
AcDrawingPlane 117
AcDrawingChartPlane 117
AcDrawingSVGPlane 117
Connection classesand methods it 118
AcCONNECHON e 118
AcCDBCONNECHON . ..o 118
AcCDB2CONNEeCction e 119
AcCMSSQLCONNECHION .ttt ettt e ettt et e e 119
AcOdaConnectionitiii i e 119
AcODBCCONNECHON ...t e 119
AcOracleConnectionttt e 119

iv

ACDB CUISOT . .ot e 119

AcDBStatement e e 121
Collection classes and methods i e 122
ACCOllECtiON .ottt 122
ACBTrEE . .o 122
AcOrderedCollectioncouiri e 123
ACLISt o 124
AcSingleList 124
AcODJeCtAITaYt 124
ACStaticINdeXo 125
ACTEerator . ..o 125
Data stream classesand methods i 126
AcDataAdapter 126
AcDataFilter 127
AcMultipleInputFilter 128
AcSingleInputFilter 128
AcDataRowBuffer 128
AcDataROWSOIter . . . 129
AcCDataSourCe 129
AcDatabaseSouUICeo\ttt 129
AcExternalDataSource 130
AcOdaSOoUICe . .. oo 130
AcQUErySOUICE oo 131
AcSqlQuerySource 131
AcTextQuerySource 132
AcStoredProcedureSOUrCeot it e 132
AcDataRoOW e 132
Excel classesand methods i 133
AcExcelObject 133
ACEXCELADPD . .. 133
AcExcelRange 133
ACEXCEICell ... 135
ACEXCelColumn 135
ACEXCEIROW . . ot 135
ACEXCeIWOrkbooK e 136
AcExcelWorksheet e 136
Visitor classand methods 137
ACVISIEOr ... e 137
Chapter 5
Understanding report generationiiiiiunnnnn.. 139
Understanding the report generation process ..., 140
Generating areport 141

Adding startup and cleanup code 141

Starting the build process 142
Creating content i 143
Understanding how the core protocol creates content 143
Understanding how a component reference creates content 144
Understanding how a report section creates content 145
Understanding how a group section creates content 146
Understanding how a frame createscontent 146
Understanding how a control creates content 147
Understanding page creation 148
Determining the page on which a frame appears 148
About page liststyles 149
About pagelistevents 150
Part 2
Actuate Foundation Class Reference
Chapter 6
AFRC datatypPes ... 153
About the AFC datatypes 154
About AFC aliased types i 154
About AFC structures 154
About AFC enums i 154
AFCdatatypes 154
ACAULOSPLIt 155
AcBrowserClipping 155
AcChartAxisLabelPlacement 155
AcChartAxisLetter 156
AcChartAxisPlacement 156
AcChartBarShape 157
AcChartComparisonOperator i 157
AcChartDefaultMarkerSettings 158
AcChartLayerType oo 158
AcChartLegendPlacement 158
AcChartMarkerShape 159
AcChartMissingPoints 160
AcChartPieExplode 160
AcChartPointHighlight 161
AcChartPointLabelPlacement 161
AcChartPointLabelSource 162
AcChartSeriesPlacement 164
AcChartStatus 164

vi

AcChartTickCalculation e 165

AcChartTickPlacement i i 165
AcChartType . ..o oo 166
ACCOlOT .. 167
AcControlValueType 169
AcCrosstabBorderStyle 169
AcCrosstabTotalColumnPlacement i i i 170
AcCrosstabTotalRowPlacement i 170
AcCrosstabValueLayout 170
AcDataGroupingMode 171
AcDataGroupingUnit 171
AcDatalype 172
ACDIY . 173
AcDrawingBorderStyle 173
AcDrawingFillPattern 174
AcDrawingFillStyle 178
AcDrawinglinePen ool 179
AcDrawingLineStyle 179
AcDrawingTextOrientation il 180
AcDrawingTextStyle 180
AcExcelBorder 181
AcExcelBorderType 181
AcExcelHorizontal Alignment 182
AcExcelVertical Alignment 182
AcFlowPlacement 182
ACFONt . 183
AcGroupOnType 183
AcHorizontalPosition 184
AcHorizontalSize 185
AclmageEmbedType 186
AclayoutOrientation ool 186
AcLInePen 186
AcLineStyle 187
AcMargins 187
AcMonth ... 188
AcPageHeaderOptions 188
AcPageNumberStyle 188
AcPercentage 189
ACPOINt .. 189
AcRectangle 190
AcSearchType 190
ACSIZE . . o 191
AcSortingOptions 191

vii

AcTextClipStyle oo 191

AcTexXtEOrmaAt e e e 192
AcTextJustify o 192
AcTextPlacementttt 193
AcTextVerticalPlacementt e e 193
ACTOCNOAETYPE .. oot e 194
ACTWIPS . oo 194
AcVerticalPoSIitionot 195
AcCVerticalSizeo 196
AcWordWrapStyle 196
ACKMLITPE ..ottt 197
Chapter 7

AFC ClasSes ... 199
Class ACBaseFrameitiiii ittt ittt ittt eeeeeeeeneaeesesaneneasesenannnnns 200
Class AcBasePageoouiuiiiiiiiiiiiiiii ittt ittt 209
Class AcBrowserScriptingControl ittt 212
Class ACBTIee .. iiiti ittt ittt teeeeeneeeeeeeeneneeseseaeneaseseseaensaseannnns 215
Class ACCAIt .. iiiiiiiit ittt it titeteneneeeeeeneneeeeeeaeneeseseaeasasaseannnns 220
Class ACCNAItAXIS « vt vttt ittt ittt eeeeeeeeneeeeeeseaeaseseseneneasesenanennns 261
Class AcChartCategorycouiieiiiiiiiiiiiiiiiiiiiiiiiiiteterriinneeennnnns 310
Class AcChartGridLinecuiitititininineeeeneneneeeeeenenseseaeaeesesaannans 314
Class AcChartLayerouiiiiiiiiiiiiiiiiiiiiiieiiiiiiieternnneneeennnnns 319
Class AcCCRartPointottt ittt ittt ittt ettt e eeeeeeaeneesesaneneasesenannnnns 403
Class AcChartPointStyle i i i i i 418
Class ACCartSeries . ..o vttt ittt it ttitineneeeeeeneneeeeeeeenenseseseaensaseannnns 431
Class AcChartSeriesStylettt ittt 443
Class AcChartTrendlinettt ittt it ittt e eeeeenenseeeoaaensasaannnns 452
Class ACCollectionttt ittt it ittt eneeneeeeeeeeaeneeeeseneneasesenanennns 462
Class ACCOMPONENE ..ottt ettt ittt eeineeenneeenneennseennssenneeennens 466
Class AcConditionalSectionccitiiiiiiiitinin ittt tneneneeneaeeeenanennns 469
Class ACCONNECHON ...t ititintn e ttteteneneneeeeneneeeeeeaeneaseseseaensaseannnns 472
Class ACCONtIOl ittt ittt ittt ittt teteeeeeeeeeeneaeaseseneneneasesenannnnns 474
Class ACCrosstab oiiii ittt ittt ittt ettt ieteeeeeneneeseeaneneasesenannnnns 480
Class AcCurrencyControl ittt 484
Class AcDataAdapteroouu ittt ittt ittt ittt eiine e eenneeannnes 486
Class AcDatabaseSoUICe ... v vttt ittt ittt ettt eeeeeneeneneeeesaneneasesenanennns 497
Class AcDataControluitiiiititiitnineeeeneneeeeeeeenenseseseaensaseannnns 501
Class AcDataFilterttt ittt ittt it ieteteeeneneeeeeeneneasesenannnnns 506
Class AcDataFrame it ittt ittt ittt teeeeeneeeeeeneaeaseseneneneasesenannnnns 507
Class ACDataROW .. .iititiiititinteteeeneeeeeeeeneneeeeaeaeneaseseseaensaseannnns 509
Class AcDataRoOWB UL eriiiiiiii it ittt ittt teeeneneneeeeaensannannnns 516
Class ACDataROWS O T ... v ittt ittt it tneeeeneneeeeeeeeneaseseneaeesaneananns 518

viii

Class AcCDataS ection . oot i ittt ittt ittt ittt teeeeenenaenneeneeneeaeenaennenns 521

Class ACD ataSoUICe .. utit it ittt it teteteneeeeeeeeneeeeeeoeneeseseaeneneasnnnns 529
Class AcDateTimeControlcouuiititiiin ittt teteneneneeeeneneeeeoeneneaennans 531
Class ACDBCONNECHON . ..o ittt it iittienieeeeeeeneneeeeeeneeseseneneneannnnns 533
Class ACDB2CONNECHONititite it e e eneeeeoeaeneeeeneneneasesenansasnns 537
Class ACD B CUISOT . . o ittt ittt ittt it eeeeaeneneeseneaeaeeseneneaeaseseneasasnns 540
Class AcDBStatementoiititiiiiit ittt itineneeeeneeeeeenenenseseneasnsnns 550
Class AcDoubleControlciuiiiiiiiit ittt teteneeeeeeneneneeeanenensnnans 562
Class ACDIaWINg ..o ittt i ittt ittt ittt 564
Class AcDrawingChartPlanecoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin, 574
Class AcDrawingPlanettt 576
Class AcDrawingSVGPIanec.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnns 580
Class AcDynamicTextControlottt 582
Class ACEXCELAPD .. uuunntiiiiiiiiiiiiiiiiii ittt iiiiiiiiiisaeenaaaaanns 590
Class ACEXCeIC eIl ..ottt ittt it ittt teieeeeeneneeeeseneeseseneneneenennns 593
Class ACEXCelCOlUMN . ..ttt ittt ittt ittt ittt ieeeneneneesenenenensenenensnnnns 594
Class ACEXCelObject ...ttt 596
Class ACEXCEIRANEGE ... uuuuniiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiinnninannnns 597
Class ACEXCEIROW .. vtittt ittt ittt ittt ieteeeneneeeeneaeaeesesenenensesenensnnnns 606
Class ACEXCeIWOTKDOOKiititiiiiii ittt ittt iteteteeeeeneneneesenenennnns 608
Class ACEXCeIWOrKSheetoviiitiiii ittt it ittt ittt teeenenensesenensnnnnns 611
Class ACExternalDataSotrce vvv ittt ittt ittt ie it teeeeeneeseneneneesenensnnnns 614
Class ACFIOW . iiiiiiii ittt ittt ittt teeneneeeeseneneesesenenensesenenennennns 616
Class ACFIame ... oiiiiit ittt ittt ieteeeneneneeeeneneneseseseneeseseseaensenennns 624
Class ACGIoupSectionuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiniiiennnnaannnns 631
Class AcImageControlc.uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaas 637
Class AcIntegerControlcoiuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiinnnnnannnns 641
Class ACTEeralor . ..o vii ittt it i ittt tee e teteeeneneneesenenenseseneneanennns 643
Class AcLabelControloiiitiiiii ittt ittt it teteeeeeeeeneneneneenenensnenns 648
Class AcLeftRightPageListcoiiannnn, 650
Class ACLINearF oWi.iiiiiiiit it ittt ittt teteneneeeeeeneeeeseneneneenannns 652
Class AcLIineControlt ittt it ittt ietneeeeneneeeeeenenseseseneneanennns 656
Class ACLISt .. vttt ittt ittt i ittt ittt e neeeenenensesenenensnsesenensnnnns 658
Class ACMSSQLCONNECION ..o ttentiet ettt taeeeeeeeeeesenseeeenesaasaesnnnsns 660
Class AcMultipleInputFilter ..ottt 663
Class ACODJECEAITAY .. uuniiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiniiaannnns 667
Class AcOdaConnectionuititttieinineneeeeneeeeeeneneeeesenenensesenensnenns 670
Class ACOdaSOUICE . v vt ittt ittt ittt teteneneeeesenensesesenenseseseneneenennns 672
Class ACODBCCONNECHON .« vv vttt it ttteiieineeeeneneneeeeseneeeesenenensesennns 680
Class AcOracleConNectionuuitintnenieneneneeeeneneeeeseneneeseseneneasenens 684
Class AcOrderedCollectioncvvittniniieeeneneeeeneneneeeenenaneenennoaananns 687
Class ACPage ...ttt ittt i e 691
Class AcPageList ...ttt 698

ix

Class AcPageNumberControl ...ttt 706

Class AcParallelSectiont i i ittt 711
Class ACQUETYSOUICE outtiii ittt iiiiiiee e eriiiieeeternnnnnneeennnnns 714
Class AcRectangleControl i it e 717
Class ACREPOIt ..ttt ittt ittt ittt ittt ittt ennneeenneeannnes 720
Class AcReportComponentuuitiui it tiiieeinineeenneeenneeenneeeneeennens 736
Class ACRePOItSectionoovi ittt ittt ittt ittt ineeenneeannnes 758
Class ACSeCtionttt i it i i e et e 767
Class AcSequentialSectioncoviiuiiiiiiiiiiiiiiniiiiieiiineenneeenneennnes 779
Class AcSimplePageListuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaeas 783
Class AcSingleInputFiltert 784
Class AcSIngleListttt 788
Class ACSQIQUETIYSOUICEuuuuniiiiiiiiiiiiiiiiiiiiiiiiiiiiaennaaannns 789
Class AcStaticIndeXcouiiiiiiiiiiiiiiiiiiiiii ittt iiiiiieeeeeenanns 791
Class AcStoredProcedureSourcec.oouiieiiiieiiiieieeeseeneennnnnnns 793
Class ACSUDPAgE . ..ottt e 797
Class AcTextControlttt iiiiiiiet e ininaeeeeenns 799
Class AcTextQUerySOUICeuuuuuinuiiiiiiiiiiiiiiiiininsnennessaannnns 801
Class AcTextualControl ...t ittt eenns 803
Class AcTitleBodyPageListuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiianns 805
Class ACTOpPDOWNFIOWuuui ittt ittt iiiiaaaas 806
Class ACVISItOT ...ttt i ittt ittt iiiiiieee e enanns 809
Class AcVisualComponentoouuitiiiiiiiiiiiiiiiiiiiiiiiiireeeeeeennnnns 826
INdeX .. 851

Programming with Actuate Foundation Classes provides information about using the
Actuate Foundation Classes, their variables, properties, and methods.

Programming with Actuate Foundation Classes includes the following chapters:

About Programming with Actuate Foundation Classes. This chapter provides an
overview of this guide.

Part 1. Working with Actuate Foundation Classes. This part describes and
provides information about Actuate Foundation Classes, working with the
inheritance hierarchy, and document generation.

Chapter 1. Understanding Actuate Foundation Classes. This chapter describes the
Actuate Foundation Class architecture and provides an overview of Actuate
Foundation Classes by functional category.

Chapter 2. Working with a class. This chapter provides information about
declaring and working with Actuate Foundation Classes.

Chapter 3. Working with an object. This chapter provides information about
working with objects and object reference variables.

Chapter 4. Actuate Foundation Class library. This chapter shows an overview of
the inheritance hierarchy and a summary of classes and methods.

Chapter 5. Understanding report generation. This chapter provides information
about document generation and the content-creation process.

Part 2. Actuate Foundation Class Reference. This part provides lists of the AFC
data types and the AFC classes.

Chapter 6. AFC data types. This chapter lists the AFC data types.

About Programming with Actuate Foundation Classes xi

m Chapter 7. AFC classes. This chapter contains an alphabetical listing of the
classes. Each class description includes a variables and properties summary
followed by an alphabetical listing of the methods.

xii Programming with Actuate Foundation Classes

One

Working with
Actuate Foundation Classes

Understanding Actuate
Foundation Classes

This chapter contains the following topics:
m About the Actuate Foundation Class architecture

m Understanding the AFC by functional category

Chapter 1, Understanding Actuate Foundation Classes 3

About the Actuate Foundation Class architecture

The Actuate Foundation Class (AFC) library, afc.rol, contains the classes that form
the framework on which report developers build Actuate reports. Each
foundation class serves a distinct purpose, such as creating a data source
connection, building a currency control, or creating a page layout.

The foundation classes are written in Actuate Basic, an object-oriented
programming language modeled after Microsoft Visual Basic Version 3. Actuate
Basic is the programming language used to access the AFC library. For
information about the data types, statements, and functions that Actuate Basic
uses for report development tasks, see Programming with Actuate Basic. Actuate
Basic is an interpreted language. The set of processes that interprets the language
is called the Factory. For more information about the Factory, see Chapter 5,
“Understanding report generation.”

About the core protocol

Despite differences in their functionality, the foundation classes share a core
protocol, which provides the logic for the tasks that are common to all report
components. This core protocol gives the foundation classes a uniformity that
makes the AFC library easy to understand and use. The core protocol consists of
methods that come from two foundation classes. Accompaniment is the base class
from which all other classes in the library descend. AcReportComponent is the
base class for all reports, sections, frames, controls, page lists, flows, and pages.
Figure 1-1 shows the methods that compose the core protocol.

New()

j

Start() u

j

Build() or
BuildFromRow()
J] ——From AcReportComponent

From AcComponent

| OnRow() ‘

| Finish() ’—
Figure 1-1 AFC core protocol

Table 1-1 describes the core methods. For more information about these methods,
see “AcComponent” and “AcReportComponent” in Chapter 7, “AFC classes.”

4 Programming with Actuate Foundation Classes

Table 1-1 AFC core methods

Core method Description

New() Provides the logic for constructing a new object.

Start() Provides the logic for preparing an object for the
build process.

Build() Provide the logic for creating the contents of

and container objects such as reports or frames. Use

BuildFromRow/() Build() for components that do not process data

urdrromiow rows. Use BuildFromRow() for components that

process data rows.

OnRow/() Assigns to a data control the value from the
expression in the control’s ValueExp property.

Finish() Provides the logic for completing an object.

About class protocols

Each class adapts the core protocol to meet the needs of the class. The higher a
class is in the AFC hierarchy, the more general is its class protocol. You build the
features that differentiate classes on top of the core protocol. Each successive
generation of classes contains increasingly specialized versions of the core
protocol. The class protocol builds on methods from the core protocol, adding
methods that address the main task of the class and dropping core methods the
class protocol does not need.

Figure 1-2 shows the protocols for three classes, AcSection, AcDataAdapter, and
AcFlow. Although these classes support very different functionality, each class
protocol derives from the core protocol.

Class protocol for Class protocol for Class protocol for
AcSection AcDataAdapter AcFlow
New() ‘ New() | | Start() |
Start() ‘ Start() | ‘ AddFrame() |
Build() or | Fetch() | Finish()
BuildFromRow() J]
J’ ‘ Finish() |
Finish()
Figure 1-2 Protocols for AcSection, AcDataAdapter, and AcFlow

Chapter 1, Understanding Actuate Foundation Classes 5

e.Report Designer Professional supports the creation of reports without the need
to understand the class protocols. To create custom components that require
programming or to change or extend the AFC architecture, you must understand
class protocols.

About abstract base classes

An abstract base class defines the protocol governing the behavior of its
subclasses. Subclasses refine and build on this protocol. Many methods in an
abstract base class are empty. By subclassing a base class, you add the necessary
implementation details.

Never instantiate an abstract base class. In general, derive a class only from a
subclass of an abstract base class. If you subclass directly from an abstract class,
you must add functionality to your subclass. Most often, however, the
functionality you want to add already exists in a subclass.

About concrete classes

A concrete class defines the specific implementations of an abstract base class. A
concrete class inherits and extends behavior from an abstract base class.
Components in e.Report Designer Professional’s Toolbox correspond to concrete
classes.

You can instantiate a concrete class. You also can subclass a concrete class to
modify or extend the functionality of the original class.

Understanding the AFC by functional category

The Actuate Foundation Classes are divided into the following functional
categories:

m Report structure classes
m Page layout classes

m Control classes

m Connection classes

m Collection classes

m Data stream classes

m Excel classes

m A visitor class

The following sections provide an overview of the abstract and concrete classes in
each category, their purpose, and their position in the class hierarchy.

6 Programming with Actuate Foundation Classes

About report structure classes

Report structure classes form the backbone of a report. They define the general
structural characteristics of objects, the logic for creating objects, and the way
objects work together.

When you create a new report in e.Report Designer Professional, you create a
subclass of AcReport. AcReport, in turn, is a subclass of AcReportComponent, as
shown in Figure 1-3.

|AcComponent I

L‘AcReportComponent I

AcReport I
AcSection I
% AcConditionalSection I
—{ AcDataSection I
AcGroupSection I
AcReportSection I
% AcParallelSection I
—{ AcSequentialSection I
Figure 1-3 Class hierarchy for report structure classes

About report structure abstract base classes

AcComponent is the root class from which all other reporting objects descend.
AcReportComponent is the base class for all components of a report. AcReport is
the container for all other objects in a report. AcSection is the abstract base class
for all sections. AcDataSection is the abstract base class that defines the logic a
section uses to process a group of data rows. Do not derive from these classes.

About report structure concrete classes

Use the AcConditionalSection, AcGroupSection, AcParallelSection,
AcReportSection, and AcSequentialSection concrete classes to organize data in a
report.

About page layout classes

The page layout classes manage the creation and display of a report page. The
classes that control page layout are shown in Figure 1-4.

Chapter 1, Understanding Actuate Foundation Classes 7

- |AcBaseFrame I

4{ AcBasePage I

E AcPage I

AcSubPage I

é —{ AcDataFrame I

L{ AcFrame I

. AcFlow I

L{AcLinearFIow I

\—‘ AcTopDownFlow I

L {AcPageList I

—| AcLeftRightPageList I

—|AcSimpIePageList I

4| AcTitleBodyPageList I

Figure 1-4 Classes that control page layout

About page layout abstract base classes

AcBaseFrame is the abstract base class that defines the core logic common to
pages and frames. AcBasePage is the abstract base class that defines the logic for
instantiating the contents of pages. AcDataFrame is the abstract base class that
defines the logic for how frames work with data rows. AcFlow is the abstract base
class that defines the logic for placing frames in a flow, the printable area of a
page. AcPageList is an abstract base class that instantiates and holds the pages for
a report. Do not derive from these classes.

About page layout concrete classes

Use AcSubPage and AcPage to design page styles. Use AcTopDownFlow to
determine the placement of report objects on the page. The AcSimplePagelList,

8 Programming with Actuate Foundation Classes

AcLeftRightPageList, and AcTitleBodyPageList classes represent specific page
designs.

AcFrame is a container for controls. In a report design, a frame and its contents
are typically associated with one or more data rows. For example, if a data row
contains name, address, and telephone data, the report design includes a frame
that contains three data controls for the data. In e.Report Designer Professional,
each time you drag a frame from a toolbox and drop it in the report design, you
instantiate a subclass of AcFrame.

About control classes

Control classes include data controls, cross tabulations, charts, and static
graphical objects, as shown in Figure 1-5.

- {AcControI I ‘AcChartAxis
—{ AcCrosstab I ‘AcChartCategory
_| AcDrawing I ‘ AcChartGridLine
|_{ AcChart I |AcChartLayer
—| AclmageControl I ‘ AcChartPoint
- ‘ AcChartPointStyle
—| AcLineControl I |ACChartseries
4‘ AcRectangleControl I ‘AcchartTrendnne
_| AcTextualControl I ‘AcDrawingChartPIane
—{ AcBrowserScriptingControl ‘AcDrawingPlane I

—{ AcDataControl |AcDrawingSVGPIane I

4{ AcCurrencyControl

4{ AcDoubleControl

4{ AcDynamicTextControl

—{ AclntegerControl

—{ AcTextControl

|
|
|
4{ AcDateTimeControl I
|
|
I
|

—I AcLabelControl I

~| AcPageNumberControl I

Figure 1-5 Control classes

Chapter 1, Understanding Actuate Foundation Classes

9

About control abstract base classes

AcControl is the abstract base class that defines the core characteristics of all
controls. AcCrosstab is the class you use in a report design to display data in rows
and columns. AcDataControl is the base class for controls that display data from
data rows. Derive from these classes only to create a custom control.

About control concrete classes

Use the AcCurrencyControl, AcDateTimeControl, AcDoubleControl,
AcDynamicTextControl, AcIntegerControl, and AcTextControl classes to display
various types of data from a data row. Use AcLabelControl to display static text.
Use AcPageNumberControl to display a page number.

UseAcImageControl, AcLineControl, and AcRectangleControl as drawing
elements that give a report visual interest.

Use AcChart, AcChartAxis, AcChartCategory, AcChartLayer, AcChartPoint,
AcChartPointStyle, and AcChartSeries to display data in various standard chart
formats, such as pie charts and bar charts. Use AcDrawingChartPlane,
AcDrawingPlane, and AcDrawingSVGPlane to work with chart drawings.

Use AcDrawing to create a custom illustration using SVG code.

Use AcBrowserScriptingControl to add web functionality to a report.
AcBrowserScriptingControl appears only in a DHTML report.

About connection classes

Connection classes provide communication links for an Actuate report. Figure 1-6
shows the types of connections a report can use. Each connection type is a
subclass of AcDBConnection.

About connection abstract base classes

AcConnection is the abstract base class that defines the core protocol for all
connection components. AcDBConnection is the base class that defines the basic
protocol for establishing database connections. Do not derive directly from these
classes.

About connection concrete classes

To connect to a data source, use the AcDB2Connection, AcMSSQLConnection,
AcOdaConnection, AcODBCConnection, AcOracleConnection, and
AcProgressSQL92Connection concrete classes.

AcDBStatement and AcDBCursor provide the Actuate Basic interface for working
with a SQL statement or cursor. The AFC framework creates and uses instances of
these classes when a report accesses a SQL database.

10 Programming with Actuate Foundation Classes

. |AcConnection I ‘AcDBCursor I ‘AcDBStatement

L{AcDBConnection I

~| AcDB2Connection

4 AcMSSQLConnection

—I AcOdaConnection

~| AcODBCConnection

~| AcOracleConnection

—I AcProgressSQL92Connection

Figure 1-6 Connection classes

About collection classes

Collection classes, shown in Figure 1-7, define the way e.Report Designer
Professional stores objects and accesses them in a linked list. For example, a frame
uses lists to manage the controls within the frame. To work with report content in
a list, such as controls in a frame or flows on a page, create a collection class and
an iterator class to access the contents.

AcCollection I
AcBTree I
AcOrderedCollection I

—| AcList I

|—‘AcSingleList I

—| AcObjectArray I

_| AcStaticIndex I
|Aclterator I
Figure 1-7 Collection classes

Chapter 1, Understanding Actuate Foundation Classes 11

About collection abstract base classes

AcCollection is the abstract base class for the Actuate collection classes.
AcOrderedCollection is the abstract base class for the Actuate ordered collection
classes. AcList class is an abstract class that defines the list interface. Aclterator is
the base class for all iterators.

About collection concrete classes

Use AcSingleList to process ordered lists, stacks, and queues. Use AcObjectArray
to create a resizable array of objects. Use AcStaticIndex to implement a multi-
layer, n-way tree to provide fast indexing into a large collection of data. Use
AcBTree to create a list of objects sorted by one object’s attributes.

About data stream classes

The data stream classes get and process data, create data rows, and send data
rows to the report. Figure 1-8 shows the principal data stream classes.

About data stream abstract base classes
AcDataRow is the abstract base class for user-defined data rows.

AcDataAdapter is the abstract base class that defines the logic of classes that form
a data stream. Do not derive from AcDataAdapter.

AcDataSource is a base class that defines how data sources retrieve data from an
input source and create data rows. AcDatabaseSource is an abstract base class for
data sources that retrieve data from databases. AcExternalDataSource is an
abstract base class for generic data source objects that use a command to retrieve a
single result set through an associated connection.

AcQuerySource is an abstract base class for query data sources. AcQuerySource
uses a Select statement to retrieve data from a database.

AcDataFilter is the abstract base class for all data filter classes.

About data stream concrete classes

AcDataRowBuffer, AcDataRowSorter, AcSingleInputFilter, and
AcMultipleInputFilter are data filters.

AcSqlQuerySource is a data source that you use to retrieve data from a SQL
database. AcStoredProcedureSource creates a data source for a stored procedure
that uses data rows. AcTextQuerySource creates a data source for a SELECT
statement that a report developer provides.

12 Programming with Actuate Foundation Classes

—| AcDataFilter I

AcMultiplelnputFilter

AcSinglelnputFilter I

|—{AcDataRowBuffer I

L‘AcDataRowSorter I

% AcDataSource I

L‘ AcDatabaseSource I

I—‘ AcExternalDataSource I

L{AcOdaSource I

—{ AcQuerySource I

AcSqlQuerySource

AcTextQuerySource I

4| AcStoredProcedureSource

Figure 1-8 Data stream classes

About Excel classes

Actuate’s Excel classes, shown in Figure 1-9, support creating and managing the
Excel workbooks, worksheets, ranges, rows, columns, and cells.

Chapter 1, Understanding Actuate Foundation Classes 13

| AcExcelObject I

—|AcExceIApp I
AcExcelRange
AcExcelCell

AcExcelColumn
AcExcelRow

—'AcExceIWorkbook |

—|AcExceIWOrksheet I

Figure 1-9 Excel classes

About Excel abstract base classes

AcExcelObject is the abstract base class from which all other Excel classes
descend. AcExcelApp is the base class for all instances of classes you use to
generate and work with Excel files. AcExcelRange class is the base class for
AcExcelCell, AcExcelColumn, and AcExcelRow. Do not derive from these classes.

About Excel concrete classes

AcExcelCell, AcExcelColumn, AcExcelRow, AcExcelWorkbook, and
AcExcelWorksheet are concrete classes for working with Excel files.

About the visitor class

Use AcVisitor to create a utility to visit and perform an action on a report object.
AcVisitor provides the means to visit each type of report component. Figure 1-10
shows the visitor class.

AcVisitor

Figure 1-10 The visitor class

14 Programming with Actuate Foundation Classes

Working with a class

This chapter contains the following topics:

About classes
About class declaration

Understanding class relationships

Getting information about classes in a report

Working with a class variable

Working with a method

Chapter 2, Working with a class

15

About classes

A class is a specification, or template, for creating an object in a report design. A
class contains variables and methods that define the attributes and behavior for
objects of the class. Report components, such as report sections, frames, and
controls, are instances of classes. This chapter introduces the concepts that you
use to declare and work with Actuate Foundation Classes.

Actuate Foundation Classes are written in Actuate Basic. You instantiate a class in
Actuate Basic differently from Java or C++. To instantiate a declared class in
Actuate Basic, use an object reference variable with a statement or function such
as Set, NewInstance, or NewPersistentInstance. An object reference variable
allocates memory for an object. You can instantiate the object using the Actuate
Foundation Classes or your own code.

In e.Report Designer Professional, the design environment accomplishes many
programming tasks for you, such as generating class declaration code for each
component in a report design.

About class declaration

Actuate Basic code defines the structure and behavior of the Actuate Foundation
Classes. e.Report Designer Professional creates Actuate Basic code for the classes
that correspond to components of a report design. To write a custom class for a
report design, declare the class using the Class statement. The Class statement
uses the following syntax:

Class <subclass name> Subclass Of <superclass name>
[<variable declarations>]
[<nested class declarationss>]
[<method declarations>]

End Class

where
m <variable declarations> declare variables associated with the class.
m <nested class declarations> declare classes nested in the current class.

m <method declarations> consist of subroutines and methods associated with
the class.

The following example shows a class declaration in an Actuate Basic source (.bas)
file. e.Report Designer Professional generates this file when you compile a report
object design (.rod) file. The example creates a class called ReportTitle. It is a

16 Programming with Actuate Foundation Classes

subclass of AcFrame. The class defines the label and a line control that are located
within the frame.

Class ReportTitle Subclass Of AcFrame

Class LabelControl Subclass Of AcLabelControl

Sub SetProperties()
Super: :SetProperties()
Font.Bold = True
Font.Color = Navy
Font.Italic = True
Font.Size = 18
Position.X 3551
Position.Y = 120
Size.Height = 459
Size.Width = 2257

Text = "Customers"
TextPlacement .Horizontal = TextAlignCenter
End Sub
End Class

Class LineControl Subclass Of AcLineControl
Sub SetProperties()
Super: :SetProperties()
EndPogition.X = 9360
EndPosgition.Y = 60
LineStyle.Color = Navy
LineStyle.Width = 60
Position.X = 0
Position.Y = 60
End Sub
End Class

End Class

Understanding class relationships

AFC classes co-exist to perform a variety of tasks. You must understand class
relationships to:

Create, modify, or delete a class, a variable, or a method.
Refer to a class, a variable, or a method.

Manage class modifications to avoid unexpected effects in related classes or
classes that refer to the modified class.

Chapter 2, Working with a class 17

Table 2-1 summarizes the principal concepts that govern class relationships.

Table 2-1 Terminology for expressing class relationships
Relationship Description
Inheritance A mechanism whereby one class is defined as a

special case of a more general class. The special case
is called a derived class or subclass. The general
class is called a base or superclass.

Reference A means of accessing an object directly from
another object. A reference is not a subclass or a new
instance of another class. For example, when
ObjectA of ClassA refers to ObjectB of ClassB in
code, ObjectA has access to the public components
of ObjectB, including methods and variables.

Scope Determines the visibility of classes, static variables,
and methods and how you refer to those items in
code.

About inheritance

In the AFC class hierarchy, inheritance supports maintaining a standard interface
for a report. It also supports code reusability. The classes at the top of the
hierarchy typically contain empty method declarations or methods with a few
lines of general instructions. These methods enforce a protocol for creating a
report. A class lower in the hierarchy adds implementation details to the higher-
level method. When you derive a class from an Actuate Foundation Class, the
subclass inherits the protocol.

The superclass serves as the baseline for the appearance and behavior of the
subclass. Typically, a subclass augments or redefines the behavior and structure
of its superclass. When you customize the subclass, the customization does not
affect the superclass.

Figure 2-1 shows the AcComponent abstract base class and the principal
subclasses that inherit from AcComponent.

About references

A method or object in one class can refer to a method or object in another class.
When you refer to an object, you make that object available to the calling class. A
reference is a link to another class, not a subclass or a new instance of another
class. For example, in class AcExcelWorksheet, the following method returns a
reference to an object of the class AcExcelRow:

Function GetRow(row As Integer) As AcExcelRow

18 Programming with Actuate Foundation Classes

AcComponent

| AcConnection I | AcDataAdapter I |AcReportComponent| | AcDataRow I

| AcDBConnection I

‘ AcDataSource I |AcDataFiIter I

[[I |
‘AcVisuaIComponentI ‘ AcSection I | AcReport I | AcPagelist I

AcFlow

Figure 2-1

H AcBaseFrame || AcControl I

Principal subclasses that inherit from AcComponent

References support creating an object once and using it in multiple contexts. A
calling class cannot modify the original class.

In e.Report Designer Professional, you create a reference when you drag a
component from a library and drop it in a report design. If you change the
component in the report design, you create a subclass of the component and the
original component in the library does not change. Conversely, if you change the
original component, all references to that component inherit the changes.

About scope

Scope defines the part of a report in which a symbol exists or is visible. A symbol
is the name of a class, a method, a variable, or a constant. Scope determines how
you access a class, how you create a reference to a class, when you instantiate a
class, when you initialize a variable, and so on.

You can declare a class in either global or class scope. A class has global scope if
you do not declare it within another class. A component in a library has global
scope. A class has class scope if you declare it within another class. A class with
class scope is called a nested class. For example, a control in a frame usually is a
nested class, scoped to the frame that contains the control. You cannot move the
base class into the scope of a nested class.

The following example shows the scope and inheritance of the SalesDetail class,
which is a subclass of AcReport. In addition, the example shows two nested

Chapter 2, Working with a class 19

classes that have class scope, OfficeTitleFrame and CustomerTitleFrame. Both
classes are subclasses of AcFrame.

Class SalesDetail Subclass Of AcReport

Class OfficeTitleFrame Subclass Of AcFrame

End Class

Class CustomerTitleFrame Subclass Of AcFrame

End Class

End Class

Understanding class scope naming conventions

Using the scope-resolution operator (::), you can refer to any name of a class or
static variable, even if it is not visible in the current scope, and build a path to the
innermost scope. For example, the following class names refer to nested classes:

CustomerFrame: :AddressControl
SalesRepFrame: : AddressControl

This naming convention is similar to specifying a path in a URL using a slash (/).
This convention uses the following rules:

m The class names in one scope are independent of class names in another scope.
Just as you can have two files with the same name if they are in different
directories, you can have two classes with the same name if they are in
different scopes.

m To refer to a class in a different scope, use a qualified name. This convention is
analogous to accessing a file in a different directory. For example, to write code
for CustomerFrame that references AddressControl in SalesRepFrame, use the
full name, SalesRepFrame::AddressControl.

m To refer to a class in the same scope, use only the class name. This convention
is similar to specifying a file in the current directory. For example, if
CustomerFrame contains two nested controls, CustomerNameControl and
CustomerAddressControl, use the class name, CustomerAddressControl, to
write code for a method in CustomerNameControl that refers to
CustomerAddressControl. The qualified name is not necessary because both
controls are in the same frame.

About the default scope of a class in a report design

In Actuate Basic, every class introduces its own default scope. Actuate Basic
applies the following rules to set default class scope when you place a component
in a report design:

20 Programming with Actuate Foundation Classes

The report has global scope.
All other classes except controls take the report’s scope.

A control takes the scope of its container, typically a frame.

Setting a default scope provides two key benefits:

Simplified naming conventions

Nesting a control within a frame supports managing control names. Because a
control has class scope, it does not require a unique name. Actuate Basic
supports an unlimited number of nesting levels.

Reusability

Nesting a class within the report object makes it possible to reuse the class in
another report design without a naming conflict. For example, you can place a
frame called CustomerFrame in a report design. In the same report, you can
use another frame called CustomerFrame from a different report design or a
library without changing the name of either frame. e.Report Designer
Professional recognizes one frame as <Reportl>::CustomerFrame and the
other as <Report2>:CustomerFrame.

Table 2-2 summarizes the default class scope for several types of report classes.

Table 2-2 Default scopes for report classes

Type of class Default scope
Report Global
Section Report

Page list Report

Page Report

Flow Report
Connection Report

Data source Report

Data filter Report

Frame Report
Control Frame class or page class

About the default scope of a class in a library

Because a class in a library is available for any report design, the class has global
scope. If you publish a class that has report scope to a library, e.Report Designer
Professional changes the scope to global scope in both the library and the report
design.

Chapter 2, Working with a class 21

Getting information about classes in areport

e.Report Designer Professional provides various ways to get information about a
class. For example, you can use Project Browser to view all the classes available to
a report. You also can use the Properties window to view information about a
specific class. For more information about using these tools, see Developing
Reports using e.Report Designer Professional.

Getting information about a specific class

To view information about a class, use the Properties window, which is shown in

Figure 2-2.
Properties page
Methods page
Variables page
Class page
oy e pede S ax
Properties IMethodsl Varables | Class |
T =FEEE&ndX
[l AnalysisType Anahzefssutomatic =
) BackgroundColor Transparent
[BalloonHelp
[+ Border
) ConditionalFormatting «Ohject=
) DisplayMame Text Control
Dynamic Size & Position
[* Font
[Format
[#] Linking
[# Margins
[Objectvariable =l
Figure 2-2 Properties window

In the Properties window, you can access the following class information:
m Properties

The Properties page displays properties of the class and their values. To view
the properties of a class, click the class in the report design. The Properties

page for the class appears. On this page, you can modify property settings and
designate some properties as parameters.

The properties that are visible on the page depend on the filtering option you
select. You can view expert properties, only advanced properties, only the

most commonly used properties, or only the properties you have overridden
or defined.

22 Programming with Actuate Foundation Classes

m Methods

The Methods page displays methods of the class. On this page, you can create
new methods, edit or override methods, and delete methods to which you
have access.

The methods that are visible on the page depend on the filtering option you
select. You can view the callable methods, only the overridable methods, only
the most commonly used methods, or only the methods you have overridden
or defined.

Variables

The Variables page displays the variables of the class. Using this page, you can
create and edit variables, view the data type of a variable, filter variables, and
delete variables.

The variables that appear on the page depend on the selected filtering option.
You can view local variables, local and public variables, or all variables.

Class

The Class page displays general information about the class, such as its
superclass and scope, a path to the library that contains the class, a description
of the class, and whether the class is public or private. Figure 2-3 shows the
Class page.

Prupertiesl Melhudsl Wariables Class |

Clagz nhame:; ITthCDntmI

Component’s class name

Super class: [AcTenCantiol = Component’s superclass
Scops! SalesDetsi Scope of the class
Librany Library that contains the component
Diescription: [# Private If checked, the class is not available
=l outside its scope

————Can include information such as
overridden methods, properties,
variables, or intended behavior for
the class

=
4 3

Figure 2-3

The check box labeled Private indicates whether a class remains private, which
means that the class is not available outside its current scope. A private class
does not appear in the Libraries window. The Private check box applies only
to classes with global scope.

Class page

The default setting of a component you add to a frame, a page, or a section is
private. The default setting of other classes is public.

Chapter 2, Working with a class 23

Getting information about all classes in areport

For a list of all classes available to a report or to confirm a change you make using
the Class page, open Project Browser.

How to view all classes available to a report

1 Ine.Report Designer Professional, choose View>Project Browser. Project
appears.

2 Choose Filter. Browser Options appears, as shown in Figure 2-4.

fu

— Twpes filer
[V Classes
™ Type dliases Cancel

[~ Stuctures Defaults

didfl),

 Members filter Help

™ Functions
[~ ‘ariables
[~ Constarts

r Misc. filter
[~ AFC symbok:
™ Inkerited symbols

Figure 2-4 Browser Options dialog box

3 Select Classes. Choose OK. Project appears, as shown in Figure 2-5.

; Incluces
--D Symbols

Figure 2-5 Project window
Expand Includes and Symbols.

Expand the subclass of AcReport. Project displays the Actuate Foundation
Class subclasses available to the report, as shown in Figure 2-6. If the report
includes libraries, the libraries and their classes also appear in Project.

Working with a class variable

A class variable defines the state and the unique attributes of an object. Most
properties, such as background color, font, position, and size, are variables. The
scope of a variable is within the class in which you declare the variable. The
variable type determines how Actuate Basic stores the variable.

24 Programming with Actuate Foundation Classes

Projeckt

T X
= 8 Teecassron Deson)

--D Includes
E-E3 symbols Symbols

E-m Class MewReportapp Subclass Of sacRepot — —— Subclass of AcReport
-~ Class DataRow Subclass OF AzDataRow
@ Class DataSource Subclass Of AcSglQuery Source
{0 Class Flow Subclass OF ScTopDown Flow
1 Class Frame Subclass Of AFrame
0.9 Class Double Control Subclass OF & DoubleControl
B Class Page Subckass OF AcPage — Classes available to the
[#] Class PageMumber Subclass Of AcPagehumber Control AcReport subclass
Clazs ReportTitle Subclass Of AzLabelControl
E] Class RunDate Subclass Of AcDeteTime Control
@ Clazs Report Subclass OF AzReport Section
[D Clazz SimplePagelist Subclass Of AcSimplePageLlist -

Figure 2-6 Project window listing the available classes
Actuate Basic supports two types of class variables:

m Instance

An instance variable applies to a particular instance of a class. Actuate Basic
stores one copy of the variable in each instance. Use an instance variable if
each instance of a class must have a different value, such as when several text
controls each must be of a different size.

Declare an instance variable using the Dim statement, as shown in the
following example:

Dim Size As AcSize

m Static

A static variable applies to all instances of a class and its subclasses. Actuate
Basic stores one copy of the variable for all instances of the class and its
subclasses. Use a static variable if all instances of a class must share the same
data, such as when you create a counter to track the number of times report
developers instantiate a particular class.

Declare a static variable using the Static statement, as shown in the following
example:

Static InstanceCount As Integer

About the functional categories of variables

The AFC framework organizes variables into the functional categories that are
described in Table 2-3.

Chapter 2, Working with a class 25

Table 2-3 Functional categories of variables

Variable type Description

Parameter Stores values the user supplies to specify the data to
display in the report. Requester prompts for these values
before report generation begins. A parameter is a static
variable.

Property Defines the attributes of an object. For example, a control
has property variables such as BackgroundColor, Font,
Size, and Position that define its appearance. You supply
initial values for a property variable at design time. Only
an instance variable can be a property. The properties of a
subclass reflect property changes you make to the
superclass.

Regular Stores values that a report requires. For example, the
PageNumber variable of any subclass of AcPage stores
the current page number, which e.Report Designer
Professional updates continuously as the report
generates. This type of variable ensures that each page
displays the correct page number.

How to filter the functional types of variables to display

1 Inany view that displays classes, select the class for which you want to see the
variable. Properties appears.

Choose Variables. Variables appears.

3 Choose Filter. Variable Filtering appears, as shown in Figure 2-7.

“ X
Kind of wariable
W
v

V¥ Property variables

Cancel |
Figure 2-7 Variable Filtering dialog box

4 Select the types of variables you want to see. Choose OK.

How to display sets of variables

The Variables page displays the class variables. The default setting for Variables is
to display all public, inherited, and locally declared variables in all functional

types.

1 Inany view that displays classes, select the class for which you want to see the
variables. The Properties window appears.

26 Programming with Actuate Foundation Classes

2 Choose Variables. The Variables page appears.
3 Select one of the options that are shown in Figure 2-8.

Displays only local variables
Displays local and public variables

Displays all variables

TextCopy/ol /éror Zvties A
F'rr,.aarti'sl MW Ahods Variables |C\ass I
“FlET|adgX
[Alignment Integer 2|l-— A variable declared in the class
[BackgroundColor AcCalar appears in black text
O Border AcLineStle
O Container AcReportComponent
T Contentoffset AcOffzet -— An inherited variable
[Diatatvalue String appears in gray text
D Font AcFont
O ForeePageHeightTaFit Boaolean
[ForceFageiidthToFit Boolean LI

Figure 2-8 Display options

Defining properties

The properties of an object uniquely identify the object’s appearance and position
in the report, as well as the data the object displays and other information. The
AFC framework defines the following three types of properties:

m Property variables

Most properties are variables, so you can work with a property variable in the
same way as you work with any other variable. In e Report Designer
Professional, a property variable appears on both the Properties page and the
Variables page. The name of the property variable is the same on both pages.
For example, the BackgroundColor property for a component corresponds to
the BackgroundColor variable for the same component. The Position property
maps to the Position variable for the same component.

m Function properties

The framework designates certain properties as function properties. Function
properties are not variables. During the build process, the framework uses a
property value that the report developer sets on the Properties page to
generate a method. The code in the generated method sets the value of an
associated variable, if there is one. Every function property has a generated
method. Not all function properties have an associated variable.

Chapter 2, Working with a class 27

m Miscellaneous properties
A third group of properties, known as miscellaneous properties, do not have a
generated method. Miscellaneous properties can have an associated variable.
The mapping between a miscellaneous property and its associated variable is
not necessarily intuitive. For example, the Key property of a group section
maps to the KeyColumnName variable.

About function properties

Table 2-4 lists function properties by class. The table also shows the generated
method for each property and the associated variable, if any.

28 Programming with Actuate Foundation Classes

Table 2-4 Function properties
Class Function property Generated method Variable
AcBasePage BalanceFlows BalanceFlows() Not applicable
CanlIncreaseWidth CanIncreaseWidth() Not applicable
AcBrowserScripting BrowserCode BrowserCode() Not applicable
Control
Selectable Selectable() Not applicable
AcControl Format Format() Not applicable
Searchable Searchable() Not applicable
Selectable Selectable() Not applicable
ValueType ValueType() Not applicable
AcCurrencyControl ~ Format Format() Not applicable
Searchable Searchable() Not applicable
SearchTag SetSearchTag() SearchTag
Selectable Selectable() Not applicable
ValueType ValueType() Not applicable
AcDataControl Format Format() Not applicable
Searchable Searchable() Not applicable
Selectable Selectable() Not applicable
AcDateTimeControl ~ Format Format() Not applicable
Searchable Searchable() Not applicable
SearchTag SetSearchTag() SearchTag
Selectable Selectable() Not applicable
ValueType ValueType() Not applicable
AcFrame AutoSplitVertical AutoSplitVertical() Not applicable

Table 2-4

Function properties (continued)

Class Function property Generated method Variable
AcFrame (continued) CanIncreaseHeight! —CanIncreaseHeight() Not applicable
CanlIncreaseWidth CanIncreaseWidth() Not applicable
CanMoveLeft CanMoveLeft() Not applicable
CanMoveUp CanMoveUp() Not applicable
CanReduceHeight CanReduceHeight() Not applicable
CanReduceWidth CanReduceWidth() Not applicable
CustomDHTML CustomDHTML Not applicable
Footer Footer()
CustomDHTML CustomDHTML Not applicable
Header Header()
MaximumHeight MaximumHeight() Not applicable
MaximumWidth MaximumWidth() Not applicable
MinimumHeight MinimumHeight() Not applicable
MinimumWidth MinimumWidth() Not applicable
NoSplitBottom NoSplitBottom() Not applicable
NoSplitTop NoSplitTop() Not applicable
PageBreakAfter PageBreakAfter() Not applicable
PageBreakBefore PageBreakBefore() Not applicable
SplitMarginBottom SplitMarginBottom() Not applicable
SplitMarginTop SplitMarginTop() Not applicable
VerticalPosition VerticalPosition() Not applicable
VerticalSize VerticalSize() Not applicable
AcGroupSection GroupOn GroupOn() Not applicable
Grouplnterval Grouplnterval() Not applicable
AcImageControl Searchable Searchable() Not applicable
SearchTag SetSearchTag() SearchTag
Selectable Selectable() Not applicable
AcLineControl IsFrameDecoration =~ IsFrameDecoration() Not applicable
Selectable Selectable() Not applicable
VerticalSize VerticalSize() Not applicable
AcPage CanlncreaseHeight ~ CanlIncreaseHeight() Not applicable

Chapter 2, Working with a class

(continues)

29

Table 2-4

Function properties (continued)

Class Function property Generated method Variable
AcPage (continued) CanlncreaseWidth CanIncreaseWidth() Not applicable
CanReduceHeight CanReduceHeight() Not applicable
CanReduceWidth CanReduceWidth() Not applicable
MaximumHeight MaximumHeight() Not applicable
MaximumWidth MaximumWidth() Not applicable
MinimumHeight MinimumHeight() Not applicable
MinimumWidth MinimumWidth() Not applicable
SplitMarginBottom SplitMarginBottom() Not applicable
SplitMarginLeft SplitMarginLeft() Not applicable
SplitMarginRight SplitMarginRight() Not applicable
SplitMarginTop SplitMarginTop() Not applicable
AcPageNumber Format Format() Not applicable
Control
PageNumberType PageNumberType() Not applicable
Searchable Searchable() Not applicable
SearchTag SetSearchTag() SearchTag
Selectable Selectable() Not applicable
AcRectangleControl HorizontalSize HorizontalSize() Not applicable
AcRectangleControl IsFrameDecoration = IsFrameDecoration() Not applicable
Selectable Selectable() Not applicable
VerticalSize VerticalSize() Not applicable
AcSection SearchValueExp SetSearchValue() SearchValue
PageBreakAfter PageBreakAfter() Not applicable
PageBreakBefore PageBreakBefore() Not applicable
PageBreakBetween PageBreakBetween() Not applicable
AcVisualComponent AnalysisType AnalysisType() Not applicable
CanlIncreaseHeight ~ CanlIncreaseHeight() Not applicable
CanlncreaseWidth CanIncreaseWidth() Not applicable
CanMoveLeft CanMoveLeft() Not applicable
CanMoveUp CanMoveUp() Not applicable
CanReduceHeight CanReduceHeight() Not applicable
CanReduceWidth CanReduceWidth() Not applicable

30 Programming with Actuate Foundation Classes

Table 2-4

Function properties (continued)

Class Function property Generated method Variable

AcVisualComponent HorizontalPosition =~ HorizontalPosition() Not applicable

(continued)
HorizontalSize HorizontalSize() Not applicable
MaximumHeight MaximumHeight() Not applicable
MaximumWidth MaximumWidth() Not applicable
MinimumHeight MinimumHeight() Not applicable
MinimumWidth MinimumWidth() Not applicable
TocValueExp SetTocEntry() TocEntry
Searchable Searchable() Not applicable
SearchAlias SearchAlias() Not applicable
Selectable Selectable() Not applicable
VerticalPosition VerticalPosition() Not applicable
VerticalSize VerticalSize() Not applicable

1. Properties in the Dynamic Size and Position group, such as CanIncreaseHeight,

CanIncreaseWidth, CanMoveUp, and so on, apply to frames, pages, and data controls.

About miscellaneous properties

Table 2-5 shows miscellaneous properties by class, along with the variable

associated with the property, if any.

Table 2-5 Miscellaneous properties

Class Miscellaneous property Variable

AcBaseFrame SearchValueExp SearchValue

AcConditional IfExp Not applicable

Section

AcCrosstab LabelMultipleValues Not applicable
ValuePlacement Not applicable

AcDataControl SampleValue' Not applicable
ValueExp Not applicable

AcGroupSection Key KeyColumnName

AcImageControl FileNameExp Not applicable

Chapter 2, Working with a class

(continues)

31

Table 2-5 Miscellaneous properties (continued)

Class Miscellaneous property Variable
AcOdaSource DriverName Not applicable
OdalnterfaceName Not applicable
AcReport TocValueExp Not applicable
Component
AcReportSection ~ OrderBy Not applicable
AcSection GrantExp Not applicable
SearchValueExp SearchValue
AcVisual LinkExp Not applicable
Component
ObjectVariable Not applicable

1. SampleValue also applies to the AcBrowserScriptingControl and
AcPageNumberControl classes

Using a parameter

To gather values when a report runs, specify a variable as a parameter. A report
typically uses parameters to filter the data to retrieve and display. For example, a
query can retrieve all customer records from a Customer table. Parameters
support specifying additional filter conditions when a report user runs the report,
such as retrieving only records for customers in Japan or only records in a specific
date range. You can also create a parameter to set properties such as the font and
color of an object when a report user runs the report.

You can create a parameter using the Properties page, Query Editor or Textual
Query Editor, or Parameter Editor.

A variable you specify as a parameter appears on the Variables page. It also
appears in Requester when a report user runs a report that uses parameters, as
shown in Figure 2-9.

For more information about parameters and how to create them, see Developing
Reports using e.Report Designer Professional.

Using a regular variable

To store values that e.Report Designer Professional uses when generating a
report, use a regular variable. For example, a frame uses the Container variable to
store a reference to its container object. You typically create a regular variable to
store values that methods need. For example, if you write a method that sets

32 Programming with Actuate Foundation Classes

alternating rows to different colors, you can use a regular variable to store the
current row number.

To create a regular variable, choose New on the Variables page.

| Customer Parameters
A Credit Rank | j B
A Customer Name | ﬂ
A& Purchase Frequency I ﬂ
A Purchase Yolume I ﬂ
| Dffice Parameters
& City [S
& State I j —Ifa report uses parameters,
Requester prompts for the

| Order Parameters parameters during report

A Forecast Order Date | j generation
A& Forecast Ship Date | ﬂ
A Order D I ﬂ
A Status I ﬂ A
]
* - Required parameter (cannot be blank)
[~ Do not prompt for parameter valugs
Defauilt | OK | Cancel | Save As |
Figure 2-9 Requester showing parameters

About variable visibility

The visibility of a variable determines how, when, and where you can view and
use the variable. A property appears on the Properties page and its associated
variable, if any, on the Variables pages. A private variable appears only on the
Variables page. The visibility you can assign to a variable depends on whether it
is an instance variable or a static variable. For example, only a static variable can
be a parameter.

Table 2-6 describes the variable visibility settings and shows the type of variable
to which each setting applies.

Table 2-6 Variable visibility settings

Visibility setting Description Applies to

Private Appears on the Variables page for the Instance and
class in which it is declared. static variables

Private visibility affects only where the
(continues)

Chapter 2, Working with a class 33

Table 2-6

Variable visibility settings (continued)

Visibility setting

Description

Applies to

Private
(continued)

Parameter

Public

variable is visible. A private variable is
available to the class and its subclasses.
In Actuate Basic code, you access a
Private variable in the same way as a
Public variable.

Appears in Requester when a user runs a
report that uses parameters. The user
can type or select a value to set
additional run-specific filter conditions.

Appears on the Variables page for the
class in which it is declared and its
subclasses.

Instance and
static variables

Static variable of
scalar data type

Instance and
static variables

How to view the visibility setting for a variable

1 Inany view that displays classes, such as Report Structure or Layout, select
the class for which you want to view a variable. The Properties window

appears.

2
3

Choose Variables. The Variables page appears.

Choose Edit. Class Variable appears, as shown in Figure 2-10.

a X
Hame: IAIigntnl
Tupe: |Inlege| d Browse, . |
I Extemally defined data typs
Starags
% |nstance [per object]
" Stalic: [shared by all ohjects]
Visibilly: [Putic == Visibility setting
Lolumn: I
oK I Cancel | Help |
Figure 2-10 Class Variable dialog box showing the visibility setting

Class Variable displays information about the variable. The visibility setting
appears in the lower portion of the window.

34 Programming with Actuate Foundation Classes

Creating a variable

To create a variable in a report design, use the Variables page of a component. On
the Variables page, you can set the data type of the variable and indicate whether
the variable is private to its class or public. You can also show whether the
variable uses an externally defined data type, meaning a data type from outside
the Actuate Foundation Classes, and whether the variable is an instance variable,
available only to a specific object, or a static variable, available to all classes in the
report.

Use the Properties page to create an instance variable that is a property. When
you create a property, its name appears on both the Variables page and the
Properties page.

How to create a variable

1 Inany view that displays classes, such as Report Structure or Layout, select
the class to which you want to add a variable. The Properties window appears.

Choose Variables. The Variables page appears.
3 Choose New. Class Variable appears, as shown in Figure 2-11.

Type the variable or array name

Hame: I
Type: [Variant | Browse.. i—— Select the data type of the variable

™ Extemally defined data tpe

Starage

& |nstance [per ohject]

" Static [shared by all objects]

Vieibility: =]

Define.. |—— Select the visibility of the variable

LColumn: I

ak. I Cancel | Help |

Figure 2-11 Class Variable dialog box for creating a class variable
4 Type the variable name.

You can also type the name of an array, such as ProductArray(10) or
MultiArray(1 To 3, 1 To 3, 1 To 3).

5 Select or type the data type of the variable. The default value is Variant. You
can use any of the following as data types:

Chapter 2, Working with a class 35

= An Actuate Basic data type, such as Integer, Boolean, Double, or String
= A custom data type
= An Actuate Foundation Class data type, such as AcColor or AcFont
m The name of any declared class
6 If this data type is a custom data type, select Externally Defined Data Type.
Select either Instance or Static.
Select the visibility of the variable. Choose OK.
The variable appears on the Variables page.

How to set the value of a property variable programmatically

You can programmatically set the values of a property variable at design time in
an overridable method, as shown in the following example:

Sub Start()
Super::Start()
Font.Size = 22
Font .FaceName = "Arial"

End Sub

Editing a variable

Use the Variables page to modify the data type of the variable or access the Class
Variable page to make other modifications. You can modify only a variable
scoped to a class. You cannot modify an inherited variable. Inherited variables
appear in gray on the Variables page.

How to edit a variable

1 Inany view that displays classes, such as Report Structure or Layout, select
the class that contains the variable to edit. The Properties window appears.

Choose Variables. The Variables page appears.

3 Select the variable to edit. Choose Edit. Class Variable appears, as shown in
Figure 2-12.

4 Modify the variable. Choose OK.

To revert a variable to its previous definition immediately after making a change,
choose Edit>Undo. This command works only if you do not perform another
task after editing the variable.

36 Programming with Actuate Foundation Classes

Deleting a variable

Use the Variables page to delete a variable. You can delete only a variable scoped
to a class. You cannot delete an inherited variable. Inherited variables appear in
gray on the Variables page. For a property variable, if you delete the variable, you
also delete the property.

5 S

Mame: IAIignment

Tuvpe: IInteger j Browse... |

I Extemally defined data typs

Storage

% |nstance (per ohiect]

¢ Static [shared by all objects]

Wisibity: [Public =] Defire.. |

LCalumn: I

QK I Cancel | Help |

Figure 2-12 Class Variable dialog box for editing a class variable

How to delete a variable

1 Inany view that displays a class, select the class that contains the variable you
want to delete. The Properties window appears.

2 Choose Variables. The Variables page appears.
| 3 Select the variable to delete. Choose Delete.

To recover a variable immediately after you delete it, choose Edit>Undo.

Working with a method

A method specifies the actions an object performs. A method is a procedure you
define within a class declaration. Most predefined methods in the Actuate
Foundation Classes support generating a report.

You can create a new method to add functionality to a class. You can also create a
method if the functionality you need does not exist in a predefined method. If the
functionality you require is an extension or a version of an existing method, you
can override the method.

Chapter 2, Working with a class 37

Actuate Foundation Classes support the following categories of predefined
methods:

m Methods you can override
m Methods you can call
m User-defined methods

How to select the set of methods to display

In e.Report Designer Professional, the Methods page provides filters that support
viewing methods in each category. The default display setting for Methods shows
inherited and locally declared overridable methods.

1 Inany view that displays classes, select the class for which you want to
display methods. The Properties window appears.

Choose Methods. The Methods page appears.
Select one of the options that are shown in Figure 2-13.

Displays only local methods
Displays most commonly used methods
Displays methods you can override

Displays methods you can call

DificetieyZ =y apy e =]

Prap Aties/Meinds i Warishles | Class I
—TEE|F e X
Function AftetotdddedT oFlow(] As Badlean -
Sub Build(]
Function BuldFromPaw] row e AcD ataFow] Az AcBuildStatus
Function BuldPageHeader| | Az Baolean
Function CanSpanCells] | Az Boolean
Function CreateHtmiT ables&utomatically] | As Boolean
Sub Delete] |
Sub Finish{]
S ub FinishConnection| connection Az AcConnection |
S ub FinizhFlow]]
Sub FinishPage| page s AcPage)
Sub GeneratekhL| visitor Az AckMLD atavisitor |
Function GetComponentaCL[] As Shing
Function GetFulltCL[Az Sting
Function GetGroupk.ey(| A Y ariant
Function Getlnterealyaluel value Az Variant) Az Wariant
Function Getkealue ow be AchataFow | A Variant ;I

Figure 2-13 Methods page

38 Programming with Actuate Foundation Classes

About methods you can override

An overridable method supports customizing parts of the report generation or
report viewing process. For example, the methods that are part of a class protocol,
such as New(), Start(), Build(), Fetch(), Finish(), are overridable.

When overriding a method, use the following guidelines:

Overriding a callable method can adversely impact the report generation
process.

Understand how the method works and the context in which it runs.
Decide whether you are replacing or extending the inherited method.

m To extend the code, you must call the original method in the superclass, as

shown in the following example:

Function Start() As Boolean
Start = Super::Start()

' Your new code
End Function

Depending on the method and what you want to accomplish, you can call
the superclass method before, within, or after your code.

To replace the code, do not call the method in the ancestor class. You must
ensure that the replacement code performs all the necessary tasks that the
original method performs.

How to override a method

1

3
4

In any view that displays classes, such as Report Structure or Layout, select
the class containing the method you want to override. The Properties window
appears.

Choose Methods. The Methods page appears.
Select the method to override.

Choose Override. The method editor appears in Layout, as shown in

Figure 2-14.
}ﬁ Layout = (& l]lﬁceﬁmup::NewPage| 4k x
Function NewPage(| As AcPage

Set NewPage = Super::NewPage(|

End Function

Figure 2-14 The method editor
Add code to the method.

Chapter 2, Working with a class 39

To retain and augment the method’s default behavior, keep the Super
statement. To replace the method’s default behavior, remove the Super
statement.

6 Close the method editor by choosing the X in the upper right corner of Layout.

About methods you can call

A callable method typically provides a defined service or information about an
object. You should not override these methods. For example, a data adapter class
provides methods such as SeekTo(), SeekBy(), SeekToEnd(), and Rewind() that
you can call to access and navigate through data. Report component classes
provide methods such as IsContainer(), IsLeaf(), IsVisual(), and HasContents()
that you can call to get information about an object. Page list classes define
methods such as GetPageCount(), GetContents(), GetCurrentPage(), and
GetFirstPage() that you can call to get a value your code requires.

If you cannot find a predefined method for a task, create a new method.

About private methods

The AFC framework calls private methods to perform internal tasks. Do not
override a private method. Actuate does not support overridden private
methods. If your report design contains an overridden private method, e.Report
Designer Professional displays a warning message when you compile or run the
report.

About user-defined methods

To add functionality that does not exist in a predefined method, create a new
method for a class. If the functionality to add is an extension of an existing
method, consider overriding the existing method instead.

Creating a method

Actuate Basic imposes no restrictions on what you can do with a method you
create. A method can significantly affect the behavior of an object. Design, code,
and test methods carefully. When creating a method, use the following
guidelines:

m Confirm that creating a method is a better choice than overriding an existing
method. If you plan to use the method in a variety of contexts, creating a
method is the better choice.

m Minimize conditions you impose on other programmers who use the method.
For example, be aware of the complexities that arise from creating the
following kinds of methods:

m Methods a user must call to use the component

40 Programming with Actuate Foundation Classes

m Methods that must execute in a strict order

m Methods that put the component into a state that could invalidate another
method or event
If you cannot avoid such conditions, write code that manages incorrect use of
your methods. For example, if calling a method puts the component into a
state that renders another method invalid, program the other method to test
the state before executing its main code. At a minimum, display a warning
message and a cancellation option if an error occurs. Use code comments to
describe any special requirements or preconditions.

How to create a method

1

7

In any view that displays classes, select the class to which to add a new
method. The Properties window appears.

Choose Methods. The Methods page appears.
Choose New. Add Method appears, as shown in Figure 2-15.

Specify the method name

M ame: I_— 0K . s .
Specify the method'’s return type, if needed
Type: Ii Cancel
Help
Figure 2-15 Add Method dialog box
Type a name for the method.

Specify a return data type for the method, if necessary. Choose OK.

The method name appears on the Methods page as a locally defined method.
At the same time, the method editor appears in Layout, displaying the method
declaration.

Write code for the method.
Close the method editor by choosing the X in the upper right corner of Layout.

Naming a method

The name of a method must follow the naming conventions for any other object
in Actuate Basic, such as a class or a variable.

When naming a method, use the following guidelines:

Begin a method name with a verb.
For example, GetHorizontalPosition is clearer than XPosition, which sounds
like a property.

Chapter 2, Working with a class 41

m Use unambiguous descriptive names that reflect the method’s purpose.

For example, a name such as ReadDataRow is more informative than
DoDataRow.

For more information about Actuate Basic naming conventions, see Programming
with Actuate Basic.

You can use duplicate method names within a report if the methods are
overloaded or in different scopes.

Editing a method

You can edit only a method you create or an overridden method. You cannot edit
an inherited method.

How to edit a method

1 Inany view that displays classes, such as Report Structure or Layout, select
the class containing the method to edit. The Properties window appears.

2 Choose Methods. The Methods page appears.

Methods displays inherited and locally defined methods. To narrow or
expand the list of methods that appears, change the filtering options.

3 Select the method to edit. Choose Edit. The method editor appears in Layout,
as shown in Figure 2-16.

}W_a}lout @ l][ﬁceﬁmup::l]nﬂnw| q X

Sub OnPow(row As AcDataRow
Dim currentRow As ConditionslExampleDataRow

|»

Set currentRow = row
Select Case currentRow.offices _officelD
Case 1
Set ContentsFrame = New Persistent BostonFrame

Case 2
Set ContentsFrame = New Persistent NewYorkFrame

Case 3
Set ContentsFreme = New Persistent PhiladelphiaFrame

End 3elect

Super::COnRow(row

End Sub

Ll

Figure 2-16 The method editor
4 Modify the code as necessary.

5 To close the method editor, choose the X in the upper right corner of Layout.

42 Programming with Actuate Foundation Classes

Deleting a method

You can delete only a method you create or a method that you have overridden.
You cannot delete an inherited method.

How to delete a method

1 Inany view that displays classes, select the class containing the method to
delete. The Properties window appears.

2 Choose Methods. The Methods page appears.

Methods displays inherited and locally defined methods. To narrow or
expand the list of methods that appears, change the filtering options.

3 Select the method you want to delete. Choose Delete.

To recover a method immediately after deleting it, choose Edit>Undo. This
command works only if you do not perform another task after deleting the
method.

Overloading a method

Overloading a method means creating multiple methods in the same class, with
the same name but different argument lists. The compiler selects the appropriate
version of the method based on the arguments you use to call the method.
Overloading supports varying the number and data types of a method’s
arguments. In the following example, StrConcat() is an overloaded method:

Function StrConcat(strl As String, str2 As String) As String
Function StrConcat(strl As String, str2 As String, concatenator
As String) As String

The first method is the standard call that concatenates strings using a comma
character. To get the comma character, this function calls the second function
using the same strl and str2 arguments, along with a comma (",") as the third
argument.

myFirstString = StrConcat (myName, myProperty, ", ")
The output of this method is similar to the following example:
CustomerName, Address

You can use the second function if you want to concatenate strings using a
different character or set of characters, such as two hyphens to simulate an
em-dash, as shown in the following example:

mySecondString = StrConcat (myName, myProperty, "- - ")
The output of this method is similar to the following example:

DataSource - - DriverName

Chapter 2, Working with a class 43

44 Programming with Actuate Foundation Classes

Working with an object

This chapter contains the following topics:

m About objects and object reference variables
m Creating an object

m Using an object reference variable

m About object lifetime

Chapter 3, Working with an object 45

About objects and object reference variables

An object is an instance of a class. Every component in a report design is an
object, including frames, controls, and sections. In e.Report Designer Professional,
you set the properties of an object when you design the object. Later, you can
modify an object’s properties for a specific report. For example, you can display
negative numbers in red and positive numbers in black. To do so, declare and use
variables that refer to objects.

A variable that is a pointer to an object is called an object reference variable. An
object reference variable refers to an object that can have different property values
from the original class definition.

This chapter describes how to create an object and use an object reference
variable. For more information about variables and all other information about
Actuate Basic, see Programming with Actuate Basic.

Creating an object

To create an object, first declare an object reference variable. Then, take one of the
following steps:

m Create the object using the New or New Persistent keywords.

m Access an existing object by calling a method that returns an object of the
appropriate class.

The following sections describe these steps in detail.

Declaring an object reference variable

You declare an object reference variable the same way you declare other variables,
except that you assign the class or AnyClass type as the variable type. Declare an
object reference variable using one of the following statements:

s Dim

s ReDim

m Static

m Global

The object reference declaration uses the following syntax:

{Dim | ReDim | Static | Global} <variable name> As {<class>
AnyClass}

46 Programming with Actuate Foundation Classes

The following sections describe how to declare an object reference variable as a
specific class and as type AnyClass.

Declaring an object reference variable as a specific class

You typically declare an object reference variable as a specific class. You can
specify an Actuate Foundation Class, its subclass, or a custom class. To declare an
object as a specific class, use the Class statement. For example, to create an object
reference variable of type AcLabelControl, use a declaration similar to the
following statement. This object reference variable can refer to any object of the
AcLabelControl class or its subclasses.

Dim MyLabelControl As AcLabelControl

Declaring an object reference variable as AnyClass type

If you do not know an object’s class, declare the object reference variable for that
object as AnyClass using the following syntax:

Dim handle As AnyClass

Using Actuate Basic to create an object

Declaring an object reference variable does not create the object. The object does
not exist in memory until you instantiate the class. To create the object, use the
New or New Persistent keyword using the Set statement. Set...New and
Set...New Persistent use the following syntax for creating an object:

Set <variable name> = New [Persistent] <class> [(<argument list>)]

Set...New and Set...New Persistent create a new object of <class> and store the
reference to the object in <variable name>. The following example creates a label
and stores the reference to the label in the MyLabel object reference variable:

Set MyLabel = New AcLabelControl

Use Set...New Persistent to keep the object until the user deletes the report. When
e.Report Designer Professional generates the report objects that users view and
use, it creates persistent objects by default.

Using an object reference variable

After you create an object or obtain the handle to an existing object, you can work
with it using an object reference variable. More than one object reference variable
can refer to the same object. You can call the object’s methods or access the
object’s member variables. You can also work with the object reference variable
itself. For example, you can pass an object reference variable to a procedure, make
the variable refer to another object, compare an object reference variable, and test
it. The following sections describe how to perform these tasks.

Chapter 3, Working with an object 47

When working with an object, it is important to understand the difference
between a simple variable, such as an integer or string variable, and an object
reference variable. When you use a simple variable, you manipulate a value
directly. If you assign the value of one simple variable to another, you copy the
value. Subsequent changes to the original variable do not affect the copy. When
you use an object reference variable, a change to the original object affects all
references to the object. The following sections describe how changes to variable
values affect simple and object reference variables.

Working with a simple variable

A simple variable contains a value. For example, the SearchTag variable for a
report section contains a character string. The RowNumber variable for a data
row contains an integer. When you assign one variable to another, you copy the
contents of the first variable to the second. Subsequent changes to the contents of
the original variable have no effect on the second variable, as shown in the
following example:

Dim Variablel, Variable2 As Integer
Variablel = 7

Variable2 = Variablel 'Variable2 contains the value 7
Variablel = 77

Print Variablel 'Prints 77

Print Variable2 'Prints 7

Working with an object reference variable

As with a simple variable, an object reference variable contains a value. The value
of an object reference variable is the reference to, or address of, an object. The
object reference variable does not contain the object itself. You can assign an
object reference variable to an object or to another object reference variable. When
you assign one object reference variable to another, you do not copy the object.
Instead, you create a second reference to the same object.

The following example creates a label and sets its text property. The object
reference variable LabelControll refers to the label.

' Declare an object reference variable
Dim LabelControll As AcLabelControl

' Create the object

Set LabelControll = New AcLabelControl

' Set the Text property of the label
LabelControll.Text = "Annual Sales Report"

Figure 3-1 shows the result of the preceding example.

48 Programming with Actuate Foundation Classes

Font Default

LabelControll I— | Size | Default

Object reference variable Text | Annual Sales Report
Label object
Figure 3-1 Setting the text property for a label using an object reference variable

The following example assigns another object reference variable, LabelControl2,
to the first object reference variable, LabelControl1:

Dim LabelControl2 As AcLabelControl
Set LabelControl2 = LabelControll

LabelControl2.Text = "Monthly Sales Report"
Print LabelControl2.Text 'Prints "Monthly Sales Report"
Print LabelControll.Text 'Prints "Monthly Sales Report"

Figure 3-2 shows the result of the preceding example.

Font Default

LabelControll ———

Size Default

LabelControl2 i~

Text | Annual Sales Report

Object reference variables

Label object
Figure 3-2 Using multiple object reference variables

Referring to an object’s variables and methods

To change, store, or retrieve an object’s values, you refer to its instance variables
and methods using dot notation, as shown in the following example:

<object reference variable>.<variables>
<object reference variables>.<method>

The dot instructs Actuate Basic to access an instance variable or method in an
object. For example, to refer to a variable or method in a label control, specify the
object reference variable, followed by a dot, followed by the variable or method
name, as shown in the following example:

MyLabel .BackgroundColor
MyLabel .Build()

To change the background color of the label, assign a value to one of its variables,
as shown in the following example:

Chapter 3, Working with an object 49

MyLabel .BackgroundColor = Yellow

If an object contains an object reference variable that points to another object, as
shown in Figure 3-3, you can use dot notation to build a path of references.

Object reference var:
Container CanMoveUp
BackgroundColor Position
myLabel -
BorderStyle Build()
Object reference variable
ObjectA ObjectB
Figure 3-3 Using dot notation to build a path of references for an object

reference variable
Using Figure 3-3, you can build the following path:

myLabel.Container.CanMoveUp

Referencing a method of a class

You typically reference an object’s methods to execute a task on the object.
Sometimes, however, you must reference a method defined in a superclass. For
example, if you override a method but must still perform its original task, you can
call the method in the superclass.

Referencing a method in a superclass

When you reference a method in a superclass, e.Report Designer Professional first
searches the superclass of the current class, then continues up the hierarchy until
it finds the method. You typically use this technique to augment the functionality
of an overridden method. Referencing a method in a superclass executes the
original code and the code you add. Referencing a method in a superclass has the
following advantages:

m Because you do not hard code a class name, your code is more reusable.
= You do not have to know the name of the superclass.
To call a method in a superclass, use the following syntax:

Super: :<method>

Referencing a method using a class name

You can specify the class containing the method you want to call. If you specify a
class name, Actuate Basic searches only the class you specify. Specify a class name
if you modified the method in each successively derived class and you must call a

50 Programming with Actuate Foundation Classes

specific version of the class. To specify a class containing the method, use the
following syntax:

<class names>: :<methods>

For example, ClassC derives from ClassB and ClassB derives from ClassA. Each
class has its own version of the Build() method. To write code for MyLabel, a
subclass of ClassC, and use ClassA’s Build() method, use the following
statement:

MyLabel.ClassA: :Build

To write code for MyLabel without using ClassA’s Build() method, use the
following statement:

MyLabel .Build

In the preceding example, if MyLabel’s Build() method does not contain
overridden code, the Build() method calls Super::Build(), which is the Build()
method of ClassC.

Resolving an ambiguous method call

Inheritance can result in two methods with the same name that execute different
tasks because they are in different scopes. When a report contains duplicate
method names, you must qualify the method name when you call the method.
Otherwise, Actuate Basic resolves an ambiguous method call by searching within
the current instance first, then searching within the global scope. In the following
examples, DerivedClass derives from BaseClass. BaseClass defines methods X
and Y. DerivedClass defines its own version of method Y. When you call Y() from
X() within MyObject, an instance of DerivedClass, Actuate Basic calls the
DerivedClass version of Y().

Class BaseClass

Sub X
Y()

End Sub
Sub Y

Beep

End Sub

End Class

Class DerivedClass Subclass of BaseClass
'DerivedClass inherits method X and redefines method Y

Chapter 3, Working with an object 51

Sub Y
Super::Y
MsgBox "This operation is invalid"
End Sub
End Class

Dim MyObject As DerivedClass
Set MyObject = New DerivedClass

X() 'X() calls DerivedClass’ version of Y()
MyObject.Y 'Refers to Y() in DerivedClass
MyObject.BaseClass::Y 'Refers explicitly to Y() in BaseClass

Assigning an object to an object reference variable

To assign an object reference variable to an object, use the Set statement, as shown
in the following example:

Set <object reference variable> = <object expression>

Do not use Let to assign an object reference variable to an object. Let, which takes
the form x =y, assigns one simple variable to another. Because object reference
variables do not contain actual values, using Let as shown in the following
example results in an error:

Dim x As AcLabelControl
Dim y As AcLabelControl

Let x = New AcLabelControl
y = X 'Compilation error—Invalid assignment

You can assign an object to an object reference variable if the object is of the same
type as the object reference variable or of a type that derives from the type of the
object reference variable.

As shown in the following example, you can assign Controll to Control2 because
you declare both variables as AcControl:

Dim Controll As AcControl
Dim Control2 As AcControl

Set Controll = New AcControl
Set Control2 = Controll

As shown in the following example, although you declare Controll and Control2
as different types, you can assign Controll to Control2 because AcTextControl
derives from class AcControl:

Dim Controll As AcTextControl
Dim Control2 As AcControl

52 Programming with Actuate Foundation Classes

Set Controll = New AcTextControl
Set Control2 = Controll

You cannot assign an object to an object reference variable of an unrelated class or
a parent class. For example, you cannot assign a report object to a control object
reference variable.

The following example results in a run-time error because AcControl does not
derive from AcTextControl:

Dim Controll As AcTextControl

Dim Control2 As AcControl

SetControl2 = New AcControl

SetControll = Control2 'Runtime error—Illegal handle conversion

Setting an object reference variable to Nothing

When an object reference variable does not refer to an object, it has the special
value, Nothing. This value has a similar purpose as the special value Null has for
a simple variable. An object reference variable cannot hold the value Null. When
you declare an object reference variable, it is initially set to Nothing. You can
assign Nothing to any object reference variable using Set, as shown in the
following example:

Set MyControl = Nothing

Passing an object reference to a procedure

As with other variables, you can pass an object reference to a procedure as a
parameter and return it as a return value. The following examples show when to
pass an object reference to a procedure as a parameter. The procedure in the
following example receives a reference to an object, AnyControl, as a parameter
and sizes it:

Sub SizeObject (AnyControl As AcControl)
AnyControl.Size.Width = 5000 'Twips
AnyControl.Size.Height = 1000 'Twips

End Sub

The function in the following example creates a label and returns a reference to it:
Function NewLabel() As MyLabelControl

Set NewLabel = New MyLabelControl
End Function

Getting information about an object

Table 3-1 lists the Actuate Basic functions that you can use to get information
about an object.

Chapter 3, Working with an object 53

Table 3-1 Actuate Basic functions for getting object information

Function Description

GetClassID() Returns the unique number that e.Report Designer
Professional automatically assigns to all objects. Objects of
the same class have the same ID number. Use GetClassID() to
determine whether two objects are of the same class without
the overhead of a string comparison.

GetClass Returns the name of the object’s class. Use GetClassName()

Name() when you need an object’s class before performing an
action.

IsKindOf() Tests whether an object is of a specified class or is derived

from a specified class. Returns True if the object is an
instance of the specified class or is an instance of a subclass
of the specified class. Otherwise, this function returns False.
Use IsKindOf{() to test whether an object is of a particular
class before performing an action.

Testing an object reference using the Is operator
Use the Is operator to perform the following tasks:

m Test whether an object reference variable does not refer to an object (Is
Nothing).

m Compare two object reference variables.

Testing for Nothing

Use Is with Nothing to see if an object reference variable does not refer to an
object. The procedure in the following example displays different messages
depending on whether an object reference variable is empty:

Sub TestContent (element As AcVisualComponent)
If element Is Nothing Then
MsgBox "The object reference variable is empty"
Else
MsgBox "The object reference variable is set™"
End If
End Sub

Comparing object reference variables

Use Is to compare two object reference variables and determine whether they
both refer to the same object. The function in the following example determines
whether AcControl is in a list of controls that make up the contents of a frame:

54 Programming with Actuate Foundation Classes

Function IsInFrame (frame As AcFrame, control As AcControl) As
Boolean
Dim element As AcVisualComponent
Dim iter As AcListIterator
Set iter = frame.ContentList.NewIterator()
Do While iter.HasMore()
Set element = iter.GetNext ()
If element Is control Then
IsInFrame = True
Exit Function
End If
Loop
IsInFrame = False
End Function

About object lifetime

The lifetime of an object depends on whether the object is transient or persistent.
The following sections describe transient, persistent, and pinned objects.

About transient objects

e.Report Designer Professional creates transient, or temporary, objects to perform
specialized tasks during report generation. e.Report Designer Professional
releases these objects from memory once the specialized tasks finish. Examples of
transient objects include data streams and connections.

e.Report Designer Professional releases a transient object from memory when the
last reference variable that refers to it is destroyed or is set to refer to another
object. e.Report Designer Professional keeps track of the reference count, which
increases each time a new object reference variable refers to the object. The
reference count decreases each time an object reference variable is:

m Set to Nothing
m Set to refer to another variable

m Destroyed because it is out of scope or because it is a variable of an object that
is destroyed

When the reference count is zero, e Report Designer Professional deletes the
object.

About persistent objects

The persistent objects that e.Report Designer Professional creates exist until you
delete the report file. All objects that appear in the report at view time are

Chapter 3, Working with an object 55

persistent, including data controls, graphical elements, sections, and page layout
components. Because the report object instance (.roi) file saves the report data and
structure, users can view the report at any time.

About pinned objects

During e.Report generation, Actuate Basic objects are locked into memory, or
pinned, until they are completely processed. Normally, pinned objects are
released from memory once they have been finalized. Incorrectly written code in
overridden methods can cause objects to remain pinned in memory indefinitely. If
large numbers of pinned objects accumulate in memory during generation of an
e.Report, that report will run more slowly and consume more system resources
than it should. In extreme cases, this can cause significant system performance
degradation.

When a report object instance (.roi) file is closed, all the objects in that file should
have been finalized and released from memory. If any objects are still pinned
when the ROI file is closed, there is a problem in the report design. e.Report
Designer Professional and iServer now provide information about objects that
remain pinned when an ROl file is closed. This information is in the form of a
warning message: “Warning <Number> objects were still pinned when the ROI
file was closed.” A list of the pinned objects follows the message. This message
does not indicate a defect or behavior change in the e.Reports runtime or Actuate
Foundation Classes; it has been added to warn you of faulty overridden method
code in your report designs.

If you do not correct the faulty code in an existing report which now causes the
new warning message to appear, that report will continue to run exactly as
before. However, Actuate strongly recommends that you correct the defective
code. Changes in usage patterns or data could cause the number of excess pinned
objects created by the report to rise to a level that causes problems. You should
not put a new report into production if it produces this warning message.

Understanding and resolving the causes of excess pinned objects requires in-
depth analysis of report designs, and could require substantial modifications to
those designs. This work is beyond the scope of services covered by your Actuate
Support agreement. If you are uncertain about how to resolve pinned object
issues, Actuate’s Professional Services team can review your report designs and
provide advice.

56 Programming with Actuate Foundation Classes

Actuate Foundation Class
library

This chapter covers the topic “Summary of classes and methods.”

Chapter 4, Actuate Foundation Class library 57

‘ AcComponent

u AcReportComponent

Report structure

L‘ AcVisualComponent

4{ AcReport
| AcSection
— AcConditionalSection |
— AcDataSection |
AcGroupSection |
AcReportSection |
H AcParallelSection |
—{ AcSequentialSection |
Excel
| AcExcelObject |
—{ AcExcelApp |

AcExcelRange
AcExcelCell

AcExcelColumn
AcExcelRow

—'AcExceIWorkbook I

—| AcExcelWorksheet I

58 Programming with Actuate

Page layout

—{ AcBaseFrame I

AcBasePage

AcPage

AcSubPage

AcDataFrame I

L|AcFrame I

AcLinearFlow

AcTopDownFlow
4| AcPagelList |

AcLeftRightPageList

AcSimplePagelList

Controls AclmageControl I
|AcControI -
AcLineControl I
—{ AcCrosstab I
AcRectangleControl I
—|AcDrawing I
AcTextualControl I

—|AcBrowserScriptingControI I

AcDataControl

~| AcCurrencyControl

~| AcDateTimeControl

—. AcDoubleControl

«) AclntegerControl

|
|
l
—|AchnamicTextContr0I I
|
|

«I AcTextControl

—{ AcLabelControl I

4{ AcPageNumberControl I

|AcChartAxis

| AcChartCategory

|AcChartGridLine

AcTitleBodyPageList

Drawing plane

|AcDrawingPIane I

| AcChartPoint

|
|
|
| AcChartLayer I
|
I

|AcChartP0intStyle

I—lAcChartSeriesSter I

AcDrawingChartPlane

AcSVGDrawingPlane

| AcChartSeries I

Foundation Classes

|AcChartTrendIine |

AcComponent I

Connection Data stream
AcConnection —{ AcDataAdapter I
|—‘AcDBConnection I 4{ AcDataFilter I
—{ AcDB2Connection I AcMultiplelnputFilter I
4| AcMSSQLConnection I AcSinglelnputFilter I
—{ AcOdaCConnection I |—{ AcDataRowBuffer I
—{ AcODBCConnection I L{ AcDataRowSorter I
—{ AcOracleConnection I 4| AcDataSource I
—{AcProgressSQL92Connection I L‘ AcDatabaseSource I
AcExternalDataSource I
|AcDBCursor I |AcDBStatement I —{ACQUGWSOUI’CG I
AcSqlQuerySource I
Collection
- AcTextQuerySource I
| AcCollection I
—‘AcStoredProcedureSource I
ﬂ AcBTree I
AcOrderedCollection I _{ AcDataRow I
AclList I
L‘AcSingIeList I Visitor
AcObjectArray I AcVisitor
AcStaticIndex I
Aclterator I

Chapter 4, Actuate Foundation Class library 59

Summary of classes and methods

The Actuate Foundation Class (AFC) library, afc.rol, contains classes and methods
that support building a wide range of custom reports. This chapter provides an
overview of the AFC library class by class, along with the methods for each class.
The classes and methods change from time to time as the product architecture
changes to meet customer needs.

This chapter groups classes into the following categories:
m Report structure

m Page layout

s Control

m Connection

m Collection

m Data stream

m Excel

m Visitor

Within each category, classes are arranged in tables according to the class
hierarchy. For example, the report structure class table begins with the root class,
AcComponent, and with AcReportComponent, the class that derives from
AcComponent.

The methods for a class appear in alphabetical order in each class table. These
methods are either callable or overridable. Callable methods provide useful
functionality, such as returning a reference to a component or identifying a
component as transient or persistent. You should not attempt to override callable
methods. Overridable methods are those you can modify to change class
functionality.

Some classes are appropriate for customizing a report and other classes are not.
For example, you should never instantiate the abstract base classes that define the
core protocol, the rules governing the use of a class.

In the tables in this chapter, inherited methods and methods that define the core
protocol typically appear only in a single class table. For example,
ApplyVisitor(), which applies to many subclasses of AcComponent, is defined
only in the AcComponent class. New(), which is part of the core protocol,
appears in the AcComponent class but not in classes that inherit from
AcComponent. Exceptions to this convention are methods whose functionality
substantially changes in a subclass. For example, the core method
BuildFromRow/() is defined once in the AcReportComponent class and again in
AcChart, where BuildFromRow() supports specialized functionality for charts.

60 Programming with Actuate Foundation Classes

Report structure classes and methods

Use report structure classes and methods to define the structural components of a
report, including the topmost container report object and the report sections.
AcComponent

AcComponent is the root class for report components. All structural components
derive from AcComponent. This class defines the mechanism for creating objects
within container objects. AcComponent methods are listed in Table 4-1.

Table 4-1 AcComponent methods
Method Classification Type Description
ApplyVisitor() Callable AcVisitor Starts visitor functions for a
component.
Delete() Overridable N/A Destructor.
IsPersistent() Callable Boolean Returns True if the component is
persistent. Returns False if the
component is transient.
New() Overridable N/A Constructor method for this class.
AcReportComponent
A subclass of AcComponent, AcReportComponent is the base class for all
sections, pages, frames, and controls. AcReportComponent defines the general
structural characteristics of all classes in which a report stores persistent objects.
AcReportComponent methods are listed in Table 4-2.

Table 4-2 AcReportComponent methods

Method Classification Type Description

Abandon() Callable N/A Removes a component that the
report no longer needs.

AddContent() Callable N/A Adds a new content component to
the current component.

Build() Overridable N/A Builds components that do not use
data rows. Container components
override this method.

BuildFromRow () Overridable AcBuild Builds components that use data

Status rows. Data container objects
override this method.

(continues)

Chapter 4, Actuate Foundation Class library 61

Table 4-2

AcReportComponent methods (continued)

Method Classification Type Description
DetachContent() Callable N/A A container object, such as a frame,
calls this method to detach one of
its content objects, such as a
control.
DetachFrom Callable N/A A content object, such as a control,
Container() calls this method to detach the
content object from its container,
such as a frame.
FindContainerBy Callable AcReport Returns a reference to this class in
Class() Component the structure hierarchy.
FindContentByClass() Callable AcVisual Returns a content component by
Component the component’s class name.
Derived classes override this
method to implement a specific
search method.
Finish() Overridable Prepares the component to be
written to the report object
instance (.roi) file. Called when a
component is finished building.
GenerateXML() Overridable N/A Generates XML for components
with custom XML.
GetComponentACL() Overridable String Returns the access control list
(ACL) for the component.
GetConnection() Callable Ac Returns the connection associated
Connection with this component.
GetContainer() Callable AcReport Returns a reference to the
container object for this
component.
GetContentCount() Callable Integer Returns the number of content
items in a component.
GetContentlterator() Callable Aclterator Returns an iterator over the
contents of this component.
GetContents() Callable AcOrdered Returns a handle to the collection
Collection of contents for this component.
GetDataStream() Callable AcData Returns the data stream associated
Adapter with this component.
GetFirstContent() Callable AcReport Gets the first content component.
Component

62 Programming with Actuate Foundation Classes

Table 4-2 AcReportComponent methods (continued)

Method Classification Type Description

GetFirstContent Callable AcFrame Gets the first content frame for a

Frame() component.

GetFlow() Callable AcFlow Returns a handle to the flow of this
component.

GetFullACL() Overridable String Returns the access control list

(ACL) for the component and each
of its containers in the report
structure hierarchy.

GetPage() Callable AcPage Returns the page that contains the
object.
GetPagelndex() Callable Integer Returns the page index of the page

that contains the object. The page
index identifies the position of the
page within the report, starting
with 1.

GetPageList() Callable AcPageList ~ Returns the page list associated
with the report that contains this
component.

GetReport() Callable AcReport Returns the report that contains
this component.

GetRowCount() Callable Integer Returns the number of rows that
this component has processed.

GetSearchTag() Overridable String Returns the value of the SearchTag
property.

GetTocEntry() Overridable String Returns the text of the

component’s table of contents
entry.

GetVisiblePagelndex() Callable Integer Returns the visible page number of
the page that contains the object.

GetXMLText() Overridable String Returns the value of a control that
has the XMLType property set to
XMLText.

HasContents() Callable Boolean Returns True if this component
contains at least one content
component.

IsContainer() Callable Boolean Returns True if this component can
hold content components.

(continues)

Chapter 4, Actuate Foundation Class library 63

Table 4-2 AcReportComponent methods (continued)

Method Classification Type Description

IsFlow() Callable Boolean Checks whether this component is
a flow.

IsFrame() Callable Boolean Checks whether the component is
a frame.

IsLeaf() Callable Boolean Returns True if this component
cannot contain a content
component.

IsPage() Callable Boolean Returns True if this component is a
page.

IsSubpage() Callable Boolean Returns True if this component is a
subpage.

IsVisual() Callable Boolean Checks whether the component is
visual.

OnRow() Overridable N/A Displays values from a single row.
Called for each new row.

SetSearchTag() Overridable N/A Sets the value of the SearchTag

property. SearchTag uniquely
identifies a component when a
report design contains multiple
instances of the same component.

SetTocEntry() Overridable N/A Sets the name of the table of
contents entry for a component.

Start() Overridable N/A Prepares a component for build
operations. Called when a
component begins building.

AcReport

A subclass of AcReportComponent, AcReport is the root object in a report object
instance (.roi) file. Methods for this class determine whether the ROl is temporary,
how the report interacts with the viewing or printing environment, whether the
report uses page-level security, and how to set privileges for a burst report. Other
methods provide information about the report, such as the layout orientation, the
page list, and the locale to use for report generation, viewing, or printing.
AcReport methods are listed in Table 4-3.

64 Programming with Actuate Foundation Classes

Table 4-3

AcReport methods

Method Classification Type Description
GetContent() Callable AcReport Returns the component in the
Component Content slot of the root report
component.
GetCustomFormat() Overridable N/A Retrieves the generated Excel file
from the View process.
GetFactoryLocale() Overridable String Specifies the locale to use for
report generation.
GetGlobal DHTML Overridable String Returns the custom code from a
Code() browser scripting control and
makes it available to every
DHTML page the DHTML
converter generates.
GetLanguage() Callable String Returns the report’s language.
GetLayoutOrientation() Overridable AcLayout Returns the report’s layout
Orientation orientation, either right-to-left or
left-to-right.
GetPrintLocale() Overridable String Returns the locale to use for
printing a report on iServer.
GetReport() Overridable ~ AcReport Returns a reference to the root
report component.
GetUserACL() Overridable String Returns the access control list
(ACL) for the current user.
GetViewLocale() Overridable String Returns the locale to use for report
viewing.
HasPageSecurity() Callable Boolean Returns True if the report uses
page-level security.
NewContent() Overridable AcReport Creates a component in the
Component top-level Content slot.
NewPagelList() Overridable ~ AcPagelist Creates the page list for the report.
OnFinishPrint() Overridable N/A Override this method to perform
tasks after printing, such as
logging or sending a notification.
OnStartPrint() Overridable N/A Called at the start of a print

operation to perform custom tasks.

(continues)

Chapter 4, Actuate Foundation Class library 65

Table 4-3 AcReport methods (continued)

Method Classification Type Description

RoilsTemporary() Overridable Boolean Specifies whether to delete the
report object instance (.roi) file
after the report runs. The default
setting is True.

SetBurstReport Overridable N/A Sets privileges for a burst report.

Privileges() By default, the burst report has the
same privileges as the original
report.

SetGlobal DHTML Callable String Sets the custom code in a browser

Code() scripting control.

SetLayoutOrientation() Callable N/A Sets the report layout to either
right-to-left or left-to-right
orientation.

SetROIAging Overridable N/A Sets autoarchive rules for an ROI

Properties() file.

SuggestRoiName() Overridable String Called to suggest the ROI name for
this report. Useful for naming the
output of batch reports, for
example.

TocAddComponent() Callable AcTocNode Adds the report to the table of

Type contents.

XMLDataProlog() Overridable N/A Creates the XML prolog.

AcSection

A subclass of AcReportComponent, AcSection defines the characteristics of all
non-visual structural classes, including report sections, group sections, and
parallel and sequential sections. Derived classes represent different ways of
grouping data. AcSection methods are listed in Table 4-4.

Table 4-4 AcSection methods

Method Classification Type

Description

CommittedToFlow() Overridable

66 Programming with Actuate Foundation Classes

N/A

Called by the page list for each
section assigned to a flow. After
the section is committed to a flow,
you can override this method to
perform custom processing.

Table 4-4

AcSection methods (continued)

Method

Classification Type

Description

DeletePageFrame()

FinishConnection()

FinishFlow()

FinishPage()

GetCurrentRow()
GetSearchValue()

NewPage()

ObtainConnection()

PageBreakAfter()
PageBreakBefore()

SetSearchValue()

SetSecurity()

Callable

Overridable

Overridable

Overridable

Callable
Overridable

Overridable

Overridable

Overridable

Overridable

Overridable

Overridable

AcFrame

N/A

N/A

N/A

AcDataRow
String

AcPage

Ac
Connection

Boolean
Boolean

AcDataRow

AcDataRow

Called by a section to delete a
frame.

Closes the connection for this
section. Override this method if
you do not want the section to
close the connection.

Called at the end of each flow to
support cleanup tasks and other
custom functionality.

Called at the end of a new page to
support custom functionality.

Returns the current data row.

Returns the value of the
SearchValueExp property for the
section.

Determines which page type to use
in this section. Page types include
Letter, Legal, A4, A5, B4, B5, and
custom types.

Creates a connection for this
section. Override this method if
you want to use other than the
default mechanism to get a
connection.

Returns True if the PageBreak After
property is set.

Returns True if the property,
PageBreakBefore, is set.

Sets the search value for use in
searching a report, activating a
hyperlink, or generating a
reportlet from a report.

Sets the ACL for the section.
Override this method to build a
custom ACL for the section.

(continues)

Chapter 4, Actuate Foundation Class library 67

Table 4-4

AcSection methods (continued)

Method Classification Type Description

StartFlow() Overridable Boolean Called at the beginning of each
new flow to support custom
functionality.

StartPage() Overridable N/A Called at the beginning of each
new page to support custom
functionality.

StopAfterCurrent Callable N/A Stop processing after the current

Frame() frame is added to the page.

StopAfterCurrentRow() Callable N/A Stops processing after the current
data row is complete.

StopNow() Callable N/A Stops processing a data row
immediately.

TocAddComponent() Callable AcTocNode Adds the section to the table of

Type contents.
TocAddContents() Callable Boolean If True, adds the contents of the
section to the table of contents.

AcConditionalSection
AcConditionalSection is a subclass of AcSection. AcConditionalSection defines a
section that displays content based on a condition the report developer sets. For
example, a conditional section can display values greater than 500 in red text.
ConditionIsTrue() indicates whether the condition exists. The
AcConditionalSection method is described in Table 4-5.

Table 4-5 AcConditionalSection methods

Method Classification Type Description

ConditionIsTrue() Overridable = Boolean Returns the Boolean value that

indicates whether a condition for
displaying the section’s contents is
True

AcDataSection

AcDataSection is a subclass of AcSection. A data section is either a report section
or a group section. You can use the methods for AcDataSection to retrieve
components in the section, such as the page header or footer, or to instantiate a
component in the section’s Before, After, Content, PageFooter, or PageHeader
slot. AcDataSection methods are listed in Table 4-6.

68 Programming with Actuate Foundation Classes

Table 4-6

AcDataSection methods

Method Classification Type Description

GetAfter() Callable AcReport Returns the After component, if
Component any, for this data section.

GetBefore() Callable AcReport Returns the Before component, if
Component any, for this data section.

GetFirstPageFooter() Overridable ~ AcBase Returns the first page footer, if any,
Frame for this data section.

GetFirstPageHeader() Overridable AcBase Returns the first page header, if
Frame any, for this data section.

GetPageFooter() Callable AcBase Returns the current page footer, if
Frame any, for this page.

GetPageHeader() Callable AcBase Returns the current page header, if
Frame any, for this page.

NewAfter() Overridable ~ AcReport Instantiates a component in the
Component After slot.

NewBefore() Overridable ~ AcReport Instantiates a component in the
Component Before slot.

NewContent() Overridable AcReport Instantiates a component in the
Component Content slot.

NewPageFooter() Overridable ~ AcBase Instantiates a component in the
Frame PageFooter slot.

NewPageHeader() Overridable AcBase Instantiates a component in the
Frame PageHeader slot.

OnEmptyGroup() Overridable N/A Called if the section processes no

rows. Passes the information that
no row exists. Also supports
logging and other custom
functionality.

AcGroupSection

AcGroupSection is a subclass of AcDataSection. A group section defines a group
as a set of data rows that have the same key value, such as data rows with a state
field value of CA. A group section is an organizational tool that does not process
data rows. Use the public methods for this class to retrieve the group key value,
check whether the key value is still valid, and create a table of contents label for
the group section. AcGroupSection methods are listed in Table 4-7.

Chapter 4, Actuate Foundation Class library 69

Table 4-7 AcGroupSection methods

Method Classification Type Description

GetKeyString() Callable String Returns the key value for a group

IsSameKey() Overridable ~ Boolean Checks whether the group section
key has changed

AcParallelSection

AcParallelSection is a subclass of AcSection. A parallel section contains two or
more reports that appear side by side on a page in separate flows. When you
create a parallel section, you add multiple report sections to it and assign each
section to a separate flow. The AcParallelSection method is described in Table 4-8.

Table 4-8 AcParallelSection methods
Method Classification Type Description
AddReport() Callable N/A Adds a subreport to the Reports

slot of a parallel section

AcReportSection

AcReportSection is a subclass of AcDataSection. A report section opens a data
connection and retrieves rows from a data source. Use the public methods for
AcReportSection to locate, open, close, or create the data stream for the section.
You can also set the sorting key and create a label for the table of contents entry
for a report section. AcReportSection methods are listed in Table 4-9.

Table 4-9 AcReportSection methods

Method Classification Type Description

FinishDataStream() Overridable N/A Closes the data stream for this
report section.

NewDataStream() Overridable AcData Instantiates the component in the

Adapter DataStream slot of the report

section. Override this method to
customize the data adapter that
the report instantiates and opens.

ObtainDataStream() Overridable AcData Creates the data stream to use for

Adapter this report section. Override this
method to reuse an existing data
stream. This method does not also
open the data stream.

70 Programming with Actuate Foundation Classes

Table 4-9 AcReportSection methods
Method Classification Type Description
SetSortKey() Overridable N/A Sets the sort key for the data

StartDataStream()

Overridable

adapter. The default behavior for
this method sets the sort key to the
column specified in the Key
property for any group sections in
this report.

Opens the data stream.

AcSequentialSection

AcSequentialSection is a subclass of AcSection. A sequential section contains two
or more reports that run or print one after the other. The reports appear in the
same flow. AcSequentialSection methods are listed in Table 4-10.

Table 4-10 AcSequentialSection methods

Method Classification Type Description

NewContent() Overridable AcReport Instantiates one of the list of

Component contents for this section
SelectContent() Overridable Boolean Indicates whether to use a content
component as report output

StopAfterCurrent Callable N/A Stops the current section after the
Section() current nested section terminates

Table 4-11

Page layout classes and methods

Use page layout classes and methods to customize building frames, flows, pages,

and page lists.

AcBaseFrame

AcBaseFrame is a subclass of AcVisualComponent. AcBaseFrame defines the
general characteristics of frames and pages and the logic for instantiating the
content in frames and pages. AcBaseFrame methods are listed in Table 4-11.

AcBaseFrame methods

Method

Classification Type

Description

AddToAdjustSizeList()

Overridable N/A

Adds a component to its
container’s list of components to
resize.

(continues)

Chapter 4, Actuate Foundation Class library 71

Table 4-11 AcBaseFrame methods (continued)

Method Classification Type Description

BindToFlow() Overridable N/A Called when the framework adds a
frame to a flow on a page.

FindContentByClass Callable AcVisual Locates one of the frame’s content

ID() Component components using the class ID of
that component.

GetControl() Callable AcControl Locates a named control.

GetControlValue() Callable Variant Returns the value of a data control
within the frame.

GetPageNumber() Callable String Returns the formatted page
number for a page.

GetSearchValue() Overridable String Differentiates between subclasses
of a parent class when a user is
searching for values, activating a
hyperlink, or generating reportlet
content from a report.

IsDataFrame() Callable Boolean Indicates whether the component
is a data frame.

IsFooter() Callable Boolean Indicates whether the component
is a footer.

IsHeader() Callable Boolean Indicates whether the component
is a header.

MakeContents() Overridable N/A Creates the frame contents
dynamically when specific
conditions are present.

RebindToFlow() Overridable N/A The framework calls this method
for controls in a subpage when the
subpage’s BalanceFlows property
is True.

SearchAttributeName() Overridable String The name of an attribute on which

to base a search.

72 Programming with Actuate Foundation Classes

AcBasePage

A subclass of AcBaseFrame, AcBasePage is an abstract base class that defines the
logic for instantiating the contents of a page. AcBasePage methods are listed in

Table 4-12.

Table 4-12 AcBasePage methods

Method Classification Type Description

BalanceFlows() Overridable Boolean Implements the BalanceFlows
property. This property specifies
whether to redistribute the
contents of the page to make all
flows on the page the same height.
The default value is False.

GetFirstDataFrame() Callable AcFrame Retrieves the first data frame on a
page.
GetLastDataFrame() Callable AcFrame Retrieves the last data frame on a
page.
AcPage

AcPage is a subclass of AcBasePage that represents pages in a report. Use AcPage
methods to get information about a page, such as the page number, or to indicate
whether the page uses dynamic geometry. You also can indicate how to position
data from a dynamic text control when the data splits across multiple pages.
AcPage methods are listed in Table 4-13.

Table 4-13 AcPage methods

Method Classification Type Description

FormatPageNumber() Overridable String Returns the formatted page
number. Override this method if
your formatting requires writing

code.
GetVisiblePagelndex() Callable Integer Returns the index for visible pages.
SplitMarginBottom() Overridable AcTwips Implements the

SplitMarginBottom property.
When a dynamic text control can
split to fit on multiple pages,
SplitMarginBottom sets a blank
space between the bottom edge of
a page and its contents.

SplitMarginLeft() Overridable AcTwips Implements the SplitMarginLeft
property. When a dynamic text
control can split to fit on multiple
pages, SplitMarginLeft sets a blank
space between the left edge of a
page and its contents.

(continues)

Chapter 4, Actuate Foundation Class library 73

Table 4-13

AcPage methods (continued)

Method Classification Type Description
SplitMarginRight() Overridable AcTwips Implements the SplitMarginRight
property. When a dynamic text
control can split to fit on multiple
pages, SplitMarginRight sets a
blank space between the right edge
of a page and its contents.
SplitMarginTop() Overridable AcTwips Implements the SplitMarginTop
property. When a dynamic text
control can split to fit on multiple
pages, SplitMarginTop sets a blank
space between the top edge of a
page and its contents.
AcSubPage
AcSubpage is a subclass of AcBasePage. AcSubpage supports dynamically
switching from one column to two columns on the same page. There are no public
methods defined specifically for this class.
AcDataFrame
AcDataFrame is a subclass of AcBaseFrame. AcDataFrame is an abstract base
class that defines the logic for how frames work with data rows. There are no
public classes defined specifically for this class.
AcFrame
A subclass of AcDataFrame, AcFrame is the base class for frames in a report
design. The methods in this class support changing the size of the frame, creating
custom code for a web page, setting the relationship between a frame and a page,
splitting a frame across multiple pages, and so on. AcFrame methods are listed in
Table 4-14.
Table 4-14 AcFrame methods
Method Classification Type Description
AutoSplitVertical() Overridable ~ AcAutoSplit Returns the value of the

AutoSplitVertical property.
AutoSplitVertical specifies how the
Factory splits a frame or a dynamic
text control.

74 Programming with Actuate Foundation Classes

Table 4-14

AcFrame methods (continued)

Method

Classification Type

Description

CustomDHTML
Footer()

CustomDHTML
Header()
GetBorderOrigin()
GetBorderRect()

GetBorderSize()
NoSplitBottom()

NoSplitTop()

PageBreakAfter()

PageBreakBefore()

Overridable

Overridable

Callable

Callable

Callable
Overridable

Overridable

Callable

Callable

String
String
AcPoint
AcRectangle

AcSize
AcTwips

AcTwips

Boolean

Boolean

Supports custom browser code as
a footer in an HTML form.

Supports custom browser code as
a header in an HTML form.

Returns the origin, or upper left
coordinates, of the border.

Returns the the rectangle that
defines the border.

Returns the size of the border.

Returns the value of the
NoSplitBottom property.
NoSplitBottom specifies the height
of the area that must not be split at
the bottom of the frame, or the
minimum height of the last
segment.

Returns the value of the
NoSplitTop property. NoSplitTop
specifies the height of the area that
must not be split at the top of the
frame, or the minimum height of
the first segment. Applies only to a
frame that contains at least one
dynamic text control that splits
across multiple pages.

Returns the value of a frame’s
PageBreakAfter property. If
PageBreakAfter is True, a new
page begins immediately after the
frame. Applies only to frames in
Before, Content, or After slots.

Returns the value of a frame’s
PageBreakBefore property. If
PageBreakBefore is True, the frame
appears at the top of a new page.
Applies only to frames in Before,
Content, or After slots.

(continues)

Chapter 4, Actuate Foundation Class library 75

Table 4-14 AcFrame methods (continued)

Method Classification Type

Description

SplitMarginBottom() Overridable AcTwips

SplitMarginTop() Overridable AcTwips

Returns the value of the
SplitMarginBottom property.
SplitMarginBottom specifies a
blank area between the bottom
edge of each segment, except the
last, and its contents. Applies only
to a frame that contains at least one
dynamic text control that splits
across multiple pages.

Returns the value of the
SplitMarginTop property.
SplitMarginTop specifies a blank
area between the top edge of each
segment, except the first, and its
contents. Applies only to a frame
that contains at least one dynamic
text control that splits across
multiple pages.

AcFlow

AcFlow is a subclass of AcVisualComponent. AcFlow defines the logic for placing
frames in a flow, adding components to a flow, making adjustments to the size of
a flow, and other tasks related to flows. AcFlow methods are listed in Table 4-15.

Table 4-15 AcFlow methods

Method Classification Type Description

AddFooter() Overridable Boolean Adds a footer frame to the flow.

AddFrame() Overridable N/A Adds a frame to the flow at the next
available position in the report.

AddHeader() Overridable Boolean Adds a header frame to the flow.

AddSubpage() Overridable Boolean Adds a subpage to the flow.

AdjustFooter() Overridable N/A Adjusts the space available for a
page footer within the flow.

CanFitFrame() Callable Boolean Checks whether the flow contains
enough space to accommodate a
specific frame.

CanFitHeight() Overridable Boolean Checks whether the flow can

76 Programming with Actuate Foundation Classes

contain a specific component.

Table 4-15 AcFlow methods

Method Classification Type

Description

GetFirstDataFrame() Callable
GetFreeSpace() Overridable
GetlnsideSize() Callable

GetLastDataFrame() Callable

IsEmpty() Overridable
ReleaseSpace() Overridable
ReserveSpace() Overridable
ResetSpace() Overridable

ResizeByConstrainedBy Callable
Contents()

ShiftFooterUp() Overridable

AcFrame

AcSize

AcSize

AcFrame

Boolean

N/A

N/A

N/A

N/A

N/A

Returns the first data frame
associated with the current flow.

Returns the unused space in the
flow.

Returns the size of the content
rectangle.

Returns the last data frame
associated with the current flow.

Indicates whether the flow contains
a data frame, such as a Content,
Before, or After frame.

Releases reserved space back to the
flow.

Reserves a part of the available
space within the flow.

Calls ResizeByConstrained() from
AcVisualComponent. Resets the
available space in a flow in
response to a change in the flow’s
contents.

Resets the amount of space in the
flow to zero.

Moves the footer up so the footer
appears immediately after the last
frame in the flow.

AcLinearFlow

A subclass of AcFlow, AcLinearFlow is the abstract base class for working with a
flow that fills in one direction, either from top to bottom or from left to right.
AcLinearFlow methods are listed in Table 4-16.

Table 4-16 AcLinearFlow methods

Method Classification Type

Description

GetFreeSpace() Callable

AcSize

Returns the unused space in the
flow

(continues)

Chapter 4, Actuate Foundation Class library 77

Table 4-16 AcLinearFlow methods (continued)

Method Classification Type Description

GetInsideOrigin() Callable AcPoint Gets the position of the inside area
of the flow, relative to the upper
left corner of the frame

GetlnsideRect() Callable AcRectangle Gets the rectangle that defines the
inside space of the flow, relative to
the upper left corner, or origin, of
the frame

GetlnsideSize() Callable AcSize Returns the size of the content
rectangle

AcTopDownFlow

A subclass of AcLinearFlow, AcTopDownFlow defines the logic for adding
frames to a flow that fills from top to bottom only. The AcTopDownFlow method
is described in Table 4-17.

Table 4-17 AcTopDownFlow methods

Method Classification Type Description

AdjustFooter() Callable AcFrame Adjusts the top of a page footer to
allow for size changes

AcPagelList

AcPagelList is a subclass of AcReportComponent that instantiates and holds the
pages for a report. AcPageList is an abstract class that defines the logic for
building pages and managing data display. AcPageList methods are listed in
Table 4-18.

Table 4-18 AcPageList methods

Method Classification Type Description

AddFrame() Callable N/A Adds a frame to a page list. Places
the frame in a flow on a page.

EjectPage() Callable N/A Finishes the currently active page.

GetCurrentFlow/() Callable AcFlow Returns the active flow on the
current page.

GetCurrentPage() Callable AcPage Returns the current page in the
page list.

GetCurrentPage Callable String Returns the ACL for the current

ACL() page in the page list.

78 Programming with Actuate Foundation Classes

Table 4-18

AcPagelList methods

Method Classification Type Description

GetEstimatedPage Overridable Integer Provides an estimate of the

Count() number of pages a report will
contain.

GetFirstPage() Callable AcPage Returns the first page in the page
list.

GetLastPage() Callable AcPage Returns the last page in the page
list.

GetPageCount() Callable Integer Returns the number of total pages
in the page list.

HasPageSecurity() Callable Boolean Indicates whether the page uses
page-level security.

NeedCheckpoint() Overridable Boolean Override this method to control
how frequently to flush persistent
objects to the report object instance
(.roi) file.

NeedHeight() Callable N/A Ensures that a specified amount of
vertical space is available in the
current flow, and if not, starts a
new flow.

NewPage() Overridable ~ AcPage An empty method that derived
classes override to instantiate a
new page.

UseAccelerated Overridable ~ Boolean Creates additional page

Checkpoints() checkpoints in the ROI file.

AcLeftRightPageList

AcLeftRightPagelList is a subclass of AcPageList. AcLeftRightPageList provides a
report format that has alternating left and right pages. There are no public

methods defined specifically for this class.

AcSimplePageList

AcSimplePageList is a subclass of AcPageList. AcSimplePageList provides a
report style in which all pages have the same layout. There are no public methods
defined specifically for this class.

AcTitleBodyPageList

AcTitleBodyPageList is a subclass of AcPageList. AcTitleBodyPageList provides a
report style in which the title page is different from the body pages.

Chapter 4, Actuate Foundation Class library

79

Control classes and methods

Use control classes and methods to manipulate the position and value of visual
controls.

AcVisualComponent

AcVisualComponent is a subclass of AcReportComponent. AcVisualComponent
is the base class that defines the characteristics of all visual classes, such as
frames, charts and other controls, pages, and flows. Derived classes display data
or graphical elements. AcVisualComponent methods are listed in Table 4-19.

Table 4-19 AcVisualComponent methods

Method Classification Type Description

AdjustHorizontal Overridable N/A Adjusts the width and horizontal

Geometry() position of the object relative to its
reference object

AdjustSize() Overridable N/A Changes the size of the component

AdjustVertical Overridable N/A Adjusts the height and vertical

Geometry() position of the object relative to its
reference object

CanlIncreaseHeight() Callable Boolean Implements the
CanlIncreaseHeight property

CanIncreaseWidth() Callable Boolean Implements the CanlncreaseWidth
property

CanMovelLeft() Callable Boolean Implements the CanMoveLeft
property

CanMoveUp() Callable Boolean Implements the CanMoveUp
property

CanReduceHeight() Callable Boolean Implements the CanReduceHeight
property

CanReduceWidth() Callable Boolean Implements the CanReduceWidth
property

CanSplitVertically() Overridable Boolean Determines whether an object can
split across multiple pages

ComputeLowestSplit() Callable Boolean Determines the lowest point at
which an object can split across
multiple pages

FindLowestSplit() Overridable Boolean Establishes the vertical point at

which the object can split

80 Programming with Actuate Foundation Classes

Table 4-19

AcVisualComponent methods (continued)

Method Classification Type Description
FindPageContainer Callable AcReport Returns a reference to this class in
ByClass() Component the page hierarchy
GetBottom() Callable Integer Returns the position of the bottom
of the component, in twips,
relative to the top of its container
frame
GetFirstSlave() Callable AcVisual Returns the handle to the object’s
Component first slave object
GetFrame() Callable AcFrame Returns a reference to the frame
containing the visual object
GetHeight() Callable Integer Returns the height of the
component
GetLastSlave() Callable AcVisual Returns the handle to the object’s
Component last slave object
GetLeft() Callable Integer Returns the position of the left
edge of the component
GetLinkTo() Callable String Returns the value of the hyperlink
expression in the LinkTo variable
GetMaster() Callable AcVisual Returns the handle to the object’s
Component master object
GetPageContainer() Callable AcVisual Returns the container in the page
Component hierarchy for the component
GetPixelSize() Callable AcSize Gets the size of the component in
pixels
GetRect() Callable AcRectangle Returns the coordinates of the
component relative to its frame
GetRight() Callable Integer Returns the position of the right
edge of the component
GetTop() Callable Integer Returns the position of the top of
the component
GetVisualComponent() Callable AcVisual Returns the current visual
Component component
GetWidth() Callable Integer Returns the width of the
component
HorizontalPosition() Callable AcHorizontal Implements the
Position HorizontalPosition property

(continues)

Chapter 4, Actuate Foundation Class library 81

Table 4-19 AcVisualComponent methods (continued)

Method

Classification Type

Description

HorizontalSize()
IsFirstSlave()
IsFrameDecoration()
IsLastSlave()
IsMaster()
IsNormal()
IsSlave()

IsVisible()
MaximumHeight()
MaximumWidth()
MinimumHeight()
MinimumWidth()
MoveBy()
MoveByConstrained()
MoveTo()

MoveToConstrained()
ResizeBy()

ResizeByConstrained()

82 Programming with Actuate Foundation Classes

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable
Callable

Callable

AcHorizontal
Size
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
N/A
N/A
N/A

N/A
N/A

N/A

Implements the HorizontalSize
property

Determines whether the object is
the first slave of the master object

Determines whether the object is a
frame decoration

Determines whether the object is
the last slave of the master object

Determines whether the object is a
master object

Returns True if the object is neither
a master nor a slave object

Determines whether the object is a
slave object

Determines whether the
component is visible to the user
Implements the MaximumHeight
property

Implements the MaximumWidth
property

Implements the MinimumHeight
property

Implements the MinimumWidth
property

Moves the component by the
amount given

Specifies the distance by which to
move the component

Moves the component to the
position given

Moves the component

Resizes a component by the
distances given

Specifies the amount by which to
resize the component

Table 4-19 AcVisualComponent methods (continued)

Method Classification Type Description
ResizeTo() Callable N/A Resizes a frame or control to the
given size
ResizeToConstrained() Callable N/A Resizes the component to the
given size
Searchable() Callable AcSearch Implements the Searchable
Type property
SearchAlias() Callable String Implements the SearchAlias
property
Selectable() Overridable Boolean Implements the Selectable
property
SplitVertically() Overridable N/A Splits visual components vertically
across pages
StatusText() Callable String Returns the value of GetLinkTo()
if there is a hyperlink
TargetWindowName() Callable String Implements the
TargetWindowName property
VerticalPosition() Callable AcVertical Returns the value of the
Position VerticalPosition property
VerticalSize() Callable AcVertical Implements the VerticalSize
Size property
AcControl

A subclass of AcVisualComponent, AcControl defines the general characteristics
of all controls. AcControl methods are listed in Table 4-20.

Table 4-20 AcControl methods

Method Classification Type Description

BalloonHelp() Overridable String Returns the text to display when a
user hovers the mouse pointer
over a control.

GetControlValue() Callable Variant Returns the value of another
control within the same frame.
GetText() Overridable String Formats the value of a data control
or label for display.
(continues)

Chapter 4, Actuate Foundation Class library 83

Table 4-20 AcControl methods (continued)

Method Classification Type Description

GetXMLText() Overridable String Returns the value of a control that
has the XMLType property set to
XMLText.

GetValue() Callable Variant Returns the value of the DataValue

variable for a data control.

IsSummary() Overridable Boolean Use IsSummary() to determine
whether the control processes a
single row or multiple rows.

PageNo() Callable Integer Returns the position of the page in
the report, starting from 1.

PageNo$() Callable String Returns the formatted page
number of the control as a string.
For example, to show the
formatted page number such as vi,
107, or 12-5 in a control, set the
value of the control to PageNo$.

SetDataValue() Callable N/A Sets the value for a data control
within the same frame.

AcCrosstab

AcCrosstab is a subclass of AcControl. Use AcCrosstab to display data in
spreadsheet format in an Actuate Basic report. AcCrosstab methods are listed in
Table 4-21.

Table 4-21 AcCrosstab methods

Method Classification Type Description

FinishBuilding() Overridable N/A Finishes building the data
collector. Creates and populates
the visual data structure.

AcDrawing

AcDrawing is a subclass of AcControl and the parent class of AcChart. Use this
class to display a drawing. AcDrawing methods are listed in Table 4-22.

Table 4-22 AcDrawing methods

Method Classification Type Description

AddDrawingPlane() Callable N/A Adds a drawing plane to he end of
a drawing’s list of drawing planes

84 Programming with Actuate Foundation Classes

Table 4-22 AcDrawing methods

Method

Classification Type

Description

GetAntialias() Callable Boolean Determines whether a drawing
will be rendered with antialiasing
GetBackgroundColor() Callable AcColor Returns the background color of a
drawing
GetDrawingPlane() Callable AcDrawing Returns a reference to the specified
Plane drawing plane within a drawing
GetNumberOfDrawing Callable Integer Determines the number of
Planes() drawing planes in a drawing
GetRenderIn24Bit Callable Boolean Determines whether a drawing
Color() will be rendered in 24-bit color
InsertDrawingPlane() Callable AcDrawing Inserts a drawing plane at a
Plane specific position within a
drawing’s list of drawing planes
RemoveDrawing Callable N/A Removes a drawing plane from a
Plane() drawing
RenderToFile() Callable N/A Renders a drawing into a file
SetAntialias() Callable N/A Specifies whether a drawing will
be rendered with antialiasing
SetRenderIn24Bit Callable N/A Specifies whether a drawing will
Color() be rendered in 24-bit color
AcChart

A subclass of AcDrawing, AcChart builds a data structure of objects that
represent the various elements of a chart, such as axes, categories, and points.
AcChart methods are listed in Table 4-23.

Table 4-23 AcChart methods
Method Classification Type Description
AdjustChart() Callable N/A Override this method to make final
adjustments to a chart after all its
automatic layout has been created.
BaseAndOverlayScales Callable Boolean Returns True if the base and
AreMatched() overlay y-axis scales of a chart are

forced to be identical.

(continues)

Chapter 4, Actuate Foundation Class library 85

Table 4-23

AcChart methods (continued)

Method Classification Type Description
BuildFromRow() Overridable N/A Override this method to
manipulate the raw data to be
displayed in a chart.
BuildSampleCategory = Callable N/A Generates sample data for a chart
ScaleData() whose x-axis is based on
categories.
BuildSampleValue Callable N/A Call this method to generate
ScaleData() sample data for a scatter chart.
ComputeMinMaxData Callable N/A Computes the minimum and
Values() maximum data values for each
layer of a chart and the chart as a
whole from the individual data
points.
ComputeScales() Callable N/A Computes the scales for all the
axes of a chart.
CustomizeAxes() Overridable N/A Override this method to change
the appearance of a chart’s axes.
CustomizeCategories Overridable N/A Override this method to adjust the
AndSeries() data displayed in a chart.
CustomizeChart() Overridable N/A Override this method to modify
the initial structure of a chart.
CustomizeLayers() Overridable N/A Override this method to modify
the appearance of the individual
layers of a chart.
CustomizeSeries Overridable N/A Override this method to modify
Styles() the appearance of individual series
or pie sectors in a chart.
DescribeLayout() Callable N/A Computes the layout of a chart
without rendering it.
DisableHyperchart() Callable N/A Call this method to disable
hyperchart links in a chart.
DisableOverlayLayer() Callable N/A Call this method to disable the
overlay layer of a chart.
DisableStudyLayers() Callable N/A Call this method to disable all
study layers of a chart.
DrawOnChart() Callable N/A Call this method to add drawing

86 Programming with Actuate Foundation Classes

elements to a chart.

Table 4-23 AcChart methods (continued)

Method Classification Type Description
EnableHyperchart() Callable N/A Call this method to enable
hyperchart links in a chart.
EnableOverlayLayer() Callable N/A Call this method to enable the
overlay layer of a chart.
EnableStudyLayers() Callable N/A Call this method to enable a
specified number of study layers
in a chart.
FlipAxes() Callable Boolean Returns True if a chart’s x-axis
displays vertically.
GetBaseLayer() Callable AcChart Returns a reference to the base
Layer layer of a chart.
GetBorderStyle() Callable AcDrawing Returns the style of the border
BorderStyle around a chart.
GetChartDrawing Callable AcDrawing Returns a reference to the drawing
Plane() ChartPlane plane of a chart.
GetFillStyle() Callable AcDrawing Returns the background fill style
FillStyle for a chart.
GetHyperchartLink() Overridable String Override this method to provide
the hyperlink URL for a given
layer, category, and series within a
chart.
GetLayer() Callable AcChart Returns a reference to a layer of a
Layer chart.
GetLegendBackground Callable AcColor Returns the background color of a
Color() chart’s legend.
GetLegendBorder Callable AcDrawing Returns the style of the border
Style() BorderStyle around a chart’s legend.
GetLegendFont() Callable AcFont Returns the font used for a chart’s
legend.
GetLegendPlacement() Callable AcChart Returns the placement of a chart’s
Legend legend relative to the chart.
Placement
GetNumberOfLayers() Callable Integer Returns the number of layers in a
chart.
GetNumberOfStudy Callable Integer Returns the number of study
Layers() layers in a chart.

(continues)

Chapter 4, Actuate Foundation Class library 87

Table 4-23

AcChart methods (continued)

Method Classification Type Description
GetOverlayLayer() Callable AcChart Returns a reference to the overlay
Layer layer of a chart.
GetStudyLayer() Callable AcChart Returns a reference to a study
Layer layer of a chart.
GetTitleStyle() Callable AcDrawing Returns the style of a chart’s title.
TextStyle
GetTitleText() Callable String Returns the text of a chart’s title.
HasOverlayLayer() Callable Boolean Returns True if a chart has an
overlay layer.
IsHyperchart() Callable Boolean Returns True if a chart has
hyperchart links.
IsThreeD() Callable Boolean Returns True if a chart will be

Localize()

MakeAxes()

MakeLayers()

SetBackgroundColor()
SetBorderStyle()
SetFillStyle()
SetFlipAxes()
SetLegendBackground

Color()

SetLegendBorder
Style()

SetLegendFont()

88 Programming with Actuate Foundation Classes

Overridable N/A

Callable N/A
Callable N/A
Callable N/A
Callable

Callable N/A
Callable N/A
Callable N/A
Callable N/A
Callable N/A

AcDrawing
BorderStyle

displayed with a
three-dimensional appearance.

Override this method to localize a
chart at view time.

Call this method to create the axes
of a chart that you are creating
dynamically.

Call this method to create the
layers of a chart that you are
creating dynamically.

Sets the background color of a
chart.

Sets the style of the border around
a chart.

Sets the background fill style for a
chart.

Specifies whether to display a
chart’s x-axis vertically.

Sets the background color of a
chart’s legend.

Sets the style of the border around
a chart’s legend.

Sets the font used for a chart’s
legend.

Table 4-23

AcChart methods (continued)

Method Classification Type

Description

SetLegendPlacement() Callable

SetMatchBaseAnd Callable
OverlayScales()

SetStatus() Callable
SetThreeD() Callable
SetTitleStyle() Callable
SetTitleText() Callable
StartEmpty() Callable
StartLayers() Callable

N/A

N/A

N/A

N/A

N/A

N/A
N/A

N/A

Sets the placement of a chart’s
legend.

Specifies whether to force the base
and overlay y-axis scales of a chart
to be identical.

Sets the status of a chart being
created dynamically.

Specifies whether to display a
chart with a three-dimensional
appearance.

Sets the style of a chart’s title text.
Sets a chart’s title text.

Call this method to initialize a
chart being created dynamically.

Call this method to initialize the
layers of a chart being created
dynamically.

AclmageControl

AcImageControl is a subclass of AcControl. Use AcImageControl to display a
static image or an image based on the contents of a data column. The
AcImageControl method is described in Table 4-24.

Table 4-24 AclmageControl methods
Method Classification Type Description
GetFileName() Overridable String Returns the file name for the image

to be displayed

AcLineControl

AcLineControl is a subclass of AcControl. AcLineControl provides the logic for
using a line graphic in a report. There are no public methods defined specifically

for this class.

AcRectangleControl

AcRectangleControl is a subclass of AcControl. There are no public methods
defined specifically for this class.

Chapter 4, Actuate Foundation Class library 89

AcTextualControl

AcTextualControl is a subclass of AcControl. There are no public methods
defined specifically for this class.

AcBrowserScriptingControl

A subclass of AcTextualControl, AcBrowserScriptingControl provides web
functionality for reports a user can view in DHTML. AcBrowserScriptingControl
methods are listed in Table 4-25.

Table 4-25 AcBrowserScriptingControl methods
Method Classification Type Description
BrowserCode() Callable String Retrieves the value of the
BrowserCode property
GetText() Callable String Retrieves the value of the
AlternateText property
AcDataControl
AcDataControl is a subclass of AcTextualControl. AcDataControl defines the
logic for setting the values of data controls, which display data obtained from the
input source. Do not derive directly from AcDataControl. AcDataControl
methods are listed in Table 4-26.
Table 4-26 AcDataControl methods
Method Classification Type Description
Format() Callable String Returns the format pattern
specified in the control’s Format
property
GetGroupKey() Callable Variant Returns the key for the group

section that contains the control

AcCurrencyControl

AcCurrencyControl is a subclass of AcDataControl. AcCurrencyControl stores
and displays a currency value. This class provides a greater level of precision than
AcDoubleControl and avoids rounding errors. There are no public methods
defined specifically for this class.

AcDateTimeControl

AcDateTimeControl is a subclass of AcDataControl. AcDateTimeControl stores
and displays a date or time numeric value. There are no public methods defined
specifically for this class.

90 Programming with Actuate Foundation Classes

AcDoubleControl

AcDoubleControl is a subclass of AcDataControl. AcDoubleControl stores and
displays a real number, a number that has a fractional part. There are no public
methods defined specifically for this class.

AcDynamicTextControl

AcDynamicTextControl is a subclass of AcDataControl. AcDynamicTextControl
provides the ability to display text blocks in which the text uses multiple
formatting styles. A dynamic text control also automatically adjusts its size and
the size of the frame that contains it to accommodate varying amounts of data.
AcDynamicTextControl methods are listed in Table 4-27.

Table 4-27 AcDynamicTextControl methods

Method Classification Type Description

AutoSplitVertical() Callable AcAutoSplit Returns the value of the
AutoSplitVertical property

BuildText() Overridable ~ Boolean Parses tagged text and populates

GetAvailableHeight() Overridable

GetAvailableWidth() Overridable

GetFixedWidthFont Overridable
FaceName()

GetPlainText() Overridable
GetTaggedText() Overridable
KeepTaggedText() Overridable
LineSpacing() Overridable

LineWidthPadding() Overridable

MinimumLineHeight() Overridable

AcTwips

AcTwips

String

String

String
Boolean
Double
AcPercentage

AcTwips

the internal data structure of the
control

Returns the height of the area in
which text can be placed within
the control

Returns the width of the area in
which text can be placed within
the control

Returns the name of the default
fixed-width font

Returns the value of the Plaintext
variable

Returns the value of the
TaggedText variable

Returns the value of the
KeepTaggedText property

Returns the value of the
LineSpacing property

Returns the value of the
LineWidthPadding property

Returns the value of the
MinimumLineHeight property

(continues)

Chapter 4, Actuate Foundation Class library 91

Table 4-27

AcDynamicTextControl methods (continued)

Method Classification Type Description
NoSplitBottomy() Callable AcTwips Returns the value of the
NoSplitBottom property
NoSplitTop() Callable AcTwips Returns the value of the
NoSplitTop property
ProcessText() Overridable N/A Creates the internal data structure
SetTaggedText() Overridable N/A Sets the TaggedText value
SpaceBetweenLines() Overridable AcTwips Returns the value of the
SpaceBetweenLines property
SpaceBetween Overridable AcTwips Returns the value of the
Paragraphs() SpaceBetweenParagraphs
property
SplitMarginBottom() Callable AcTwips Returns the value of the
SplitMarginBottom property
SplitMarginTop() Callable AcTwips Returns the value of the
SplitMarginTop property
TabPadding() Overridable ~ AcPercentage Returns the value of the
TabPadding property
TabSpacing() Overridable AcTwips Returns the value of the
TabSpacing property
TextFormat() Overridable AcText Returns the value of the
Format TextFormat property
WidowAndOrphan Overridable Boolean Returns the value of the
Control() WidowAndOrphanControl

property

AclntegerControl

AclntegerControl is a subclass of AcDataControl. AcIntegerControl stores and
displays whole numbers. There are no public methods defined specifically for

this class.

AcTextControl

AcTextualControl is a subclass of AcDataControl. AcTextControl displays string
data. Typically, this class displays one line from a table column, such as a name or
address, but it also can be used for multi-line text. There are no public methods
defined specifically for this class.

92 Programming with Actuate Foundation Classes

AcLabelControl

AcLabelControl is a subclass of AcTextualControl. AcLabelControl displays static
text labels. There are no public methods defined specifically for this class.

AcPageNumberControl

AcPageNumberControl is a subclass of AcTextualControl.
AcPageNumberControl calculates, formats, and displays the current page
number or the total number of pages in the report. AcPageNumberControl
methods are listed in Table 4-28.

Table 4-28 AcPageNumberControl methods

Method Classification Type Description

GetActualPageCount() Callable Integer Returns the total page count for
the report without considering
page security

GetActualPage Callable Integer Returns the current page number

Number() without considering page security

GetFormattedPage Callable String Returns the page number without

Number() considering page security, using
the format specified in the
PageNumberFormat property for
the page

GetVisiblePageCount() Callable Integer Returns the total page count for
the report considering page
security

GetVisiblePage Callable Integer Returns the current page number

Number() considering page security

PageN() Callable String Formats controls that have the
page number types ActualPageN
or VisiblePageN

PageNOfM() Callable String Formats controls that have the
page number types
ActualPageNofM or
VisiblePageNofM

PageNumberType() Callable AcPage Returns the value of the

NumberStyle PageNumberType property

AcChartAxis

AcChartAxis class represents a single axis within a chart layer. The methods of
this class change the appearance of a chart by changing a single axis. AcChartAxis
does not inherit from other classes. AcChartAxis methods are listed in Table 4-29.

Chapter 4, Actuate Foundation Class library 93

Table 4-29

AcChartAxis methods

Method Classification Type Description
AddGridLine() Callable AcChartGrid Adds a grid line to the end of a
Line chart axis’s list of grid lines
ClearMajorTick Callable N/A Resets the major tick interval of a
Interval() chart axis to its default setting and
causes the axis to compute the
major tick interval automatically
ClearMaximumValue() Callable N/A Removes a fixed maximum value
from a chart axis
ClearMinimumValue() Callable N/A Removes a fixed minimum value
from a chart axis
ClearOtherAxisCrosses Callable N/A Removes a fixed axis crossing
At() point from a chart axis and causes
the axis to compute the axis
crossing point automatically
ComputeScale() Callable N/A Computes the scale for a chart axis
ForceMajorTickCount() Callable Boolean Returns True if the number of
major ticks on a chart axis is forced
to be a specific value
GetAxisLetter() Callable AcChartAxis Returns an axis letter value that
Letter indicates the chart axis letter
GetAxisLetterText() Callable String Returns a string that indicates the
chart axis letter
GetDataType() Callable AcDataType Returns the data type of the scale
of a chart axis
GetDefaultRange Callable Double Returns the ratio used to compute
Ratio() the range of a chart axis when all
the values plotted on the axis lie on
the axis’s origin
GetGridLine() Callable AcChartGrid Returns a reference to the specified
Line grid line within a chart axis
GetlnnerMarginRatio() Callable Double Returns the minimum ratio
between the inner margin on a
chart axis and the total range of
that axis
GetLabelFormat() Callable String Returns the format pattern used to

94 Programming with Actuate Foundation Classes

format labels on a chart axis

Table 4-29

AcChartAxis methods (continued)

Classification Type

Description

Method

GetLabelPlacement() Callable
GetLabelStyle() Callable
GetLabelText() Callable
GetLabelValue() Callable
GetLayer() Callable
GetLineStyle() Callable
GetMajorGridLine Callable
Style()

GetMajorTick Callable
Calculation()
GetMajorTickCount() Callable
GetMajorTickInterval() Callable
GetMajorTick Callable
Placement()

GetMaximumData Callable
Value()

GetMaximumTrendline Callable
Value()

GetMaximumValue() Callable
GetMinimumData Callable
Value()

AcChartAxis
Label
Placement

AcDrawing
TextStyle

String
Variant
AcChart

Layer

AcDrawing
LineStyle

AcDrawing
LineStyle

AcChartTick
Calculation

Integer

Double

AcChartTick
Placement
Variant
Variant

Variant

Variant

Returns the placement of labels on
a chart axis

Returns the style for labels on a
chart axis

Returns the formatted text of the
specified label on a chart axis

Returns the value of the specified
label on a chart axis

Returns a reference to the parent
chart layer of a chart axis

Returns the line style used to draw
a chart axis

Returns the line style used to draw
grid lines for the major ticks on a
chart axis

Returns the type of calculation
used to compute major ticks on a
chart axis

Returns the exact or maximum
number of major ticks on a chart
axis

Returns the exact or minimum

interval between major ticks on a
chart axis

Returns the placement of major
ticks on a chart axis

Returns the highest value plotted
against a chart axis

Returns the maximum y value of
all the trendlines in a chart axis

Returns the upper bound of a chart
axis

Returns the lowest value plotted
against a chart axis

(continues)

Chapter 4, Actuate Foundation Class library 95

Table 4-29

AcChartAxis methods (continued)

Classification Type

Description

Method

GetMinimumTrendline Callable
Value()

GetMinimumValue() Callable
GetMinorGridLine Callable
Style()

GetMinorTickCount() Callable
GetMinorTick Callable
Placement()

GetNoZeroRatio() Callable
GetNumberOf Callable
Gridlines()
GetNumberOfLabels() Callable
GetOriginValue() Callable
GetOtherAxisCrosses Callable
At()

GetOtherAxis Callable
Placement()
GetOuterMarginRatio() Callable
GetTitleStyle() Callable
GetTitleText() Callable
HasFixedMaximum() Callable
HasFixedMinimum() Callable

96 Programming with Actuate Foundation Classes

Variant
Variant

AcDrawing
LineStyle

Integer
AcChartTick

Placement
Double

Integer
Integer

Variant
Variant

AcChartAxis
Placement

Double

AcDrawing
TextStyle
String

Boolean

Boolean

Returns the minimum y value of
all the trendlines in a chart axis

Returns the lower bound of a chart
axis

Returns the line style used to draw
grid lines for the minor ticks on a
chart axis

Returns the number of minor ticks
between major ticks on a chart axis

Returns the placement of minor
ticks on a chart axis

Returns the minimum ratio
between the lowest and highest
values plotted on a chart axis that
will cause zero to be suppressed
on that axis

Returns the number of grid lines
on the chart axis

Returns the number of labels on a
chart axis

Returns the origin of a chart axis

Returns the value at which the
opposite axis crosses a chart axis

Returns the placement of the
opposite axis relative to a chart
axis

Returns the minimum ratio
between the outer margin on a
chart axis and the total range of
that axis

Returns the style of the title of a
chart axis

Returns the text of the title of a
chart axis

Returns True if a chart axis has a
fixed upper bound

Returns True if a chart axis has a
fixed lower bound

Table 4-29 AcChartAxis methods (continued)

Method

Classification Type

Description

IgnoreTrendlines()

InsertGridline()

IsCategoryScale()
IsValueScale()
IsXAxis()
IsYAxis()
IsZAxis()

PlotCategoriesBetween
Ticks()

ResetMajorTick
Interval()

SetDataType()

SetDefaultRangeRatio()

SetForceMajorTick
Count()

SetlgnoreTrendlines()

SetInnerMarginRatio()

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Boolean

AcChartGrid
Line

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

N/A

N/A

N/A

N/A

N/A

N/A

Determines whether trendlines
will be ignored when computing
the scale for a chart axis

Inserts a grid line at a specific
position within a chart axis’s list of
grid lines

Returns True if a chart axis is a
category scale axis

Returns True if a chart axis is a
value scale axis

Returns True if a chart axis is the
x-axis of its parent chart layer

Returns True if a chart axis is the
y-axis of its parent chart layer

Returns True if a chart axis is the
z-axis of its parent chart layer

Returns True if categories are
plotted between the ticks on a
chart axis

Resets the major tick interval of a
chart axis to its default

Sets the data type of the scale of a
chart axis

Sets the default ratio used to scale
a chart axis when all the values
plotted on the axis lie on the axis’s
origin

Specifies whether to force the
number of major ticks on a chart
axis to a specific value

Call this method to specify
whether trendlines will be ignored
when computing the scale for a
chart axis

Sets the minimum ratio between
the inner margin on a chart axis
and the total range of that axis

(continues)

Chapter 4, Actuate Foundation Class library 97

Table 4-29

AcChartAxis methods (continued)

Method Classification Type Description

SetLabelFormat() Callable N/A Sets the format pattern used to
format labels on a chart axis

SetLabelPlacement() Callable N/A Specifies the placement of labels
on a chart axis

SetLabelStyle() Callable N/A Sets the style for chart axis labels

SetLabelValue() Callable N/A Sets the value of the specified label
on a chart axis

SetLineStyle() Callable N/A Sets the line style used to draw a
chart axis

SetMajorGridLine Callable N/A Sets the line style used to draw

Style() grid lines for the major ticks on a
chart axis

SetMajorTick Callable N/A Specifies the type of calculation

Calculation() used to compute major ticks on a
chart axis

SetMajorTickCount() Callable N/A Sets the exact or maximum
number of major ticks on a chart
axis

SetMajorTickInterval() Callable N/A Sets the exact or minimum interval
between major ticks on a chart axis

SetMajorTick Callable N/A Specifies the placement of major

Placement() ticks on a chart axis

SetMaximumData Callable N/A Uses a specific value as if it were

Value() the highest value plotted against a
chart axis

SetMaximumValue() Callable N/A Sets a fixed upper bound on a
chart axis

SetMinimumData Callable N/A Uses a specific value as if it were

Value() the lowest value plotted against a
chart axis

SetMinimum Value() Callable N/A Sets a fixed lower bound on a chart
axis

SetMinorGridLine Callable N/A Sets the line style used to draw

Style() grid lines for the minor ticks on a
chart axis

SetMinorTickCount() Callable N/A Sets the number of minor ticks

98 Programming with Actuate Foundation Classes

between major ticks on a chart axis

Table 4-29 AcChartAxis methods (continued)

Method Classification Type Description

SetMinorTick Callable N/A Specifies the placement of minor
Placement() ticks on a chart axis
SetNoZeroRatio() Callable N/A Sets the minimum ratio between

the lowest and highest values
plotted on a chart axis that will
cause zero to be suppressed on

that axis
SetOtherAxisCrosses Callable N/A Sets the value at which the
At() opposite axis crosses an axis
SetOtherAxis Callable N/A Sets the opposite axis position
Placement() relative to a chart axis
SetOuterMarginRatio() Callable N/A Sets the minimum ratio between

the outer margin on a chart axis
and the total range of that axis

SetPlotCategories Callable N/A Specifies whether to plot
BetweenTicks() categories between the ticks on a
chart axis
SetTitleStyle() Callable N/A Sets the style of the title of a chart
axis
SetTitleText() Callable N/A Sets the text of the chart axis title
AcChartCategory

Use the AcChartCategory class to represent a single category within a chart layer.
Use the methods of this class to access and modify a chart layer’s categories.
AcChartCategory does not inherit from other classes. AcChartCategory methods
are listed in Table 4-30.

Table 4-30 AcChartCategory methods

Method Classification Type Description

GetIndex() Callable Integer Returns the index of a chart
category within its parent chart
layer’s list of categories

GetKeyValue() Callable Variant Returns the unique key value for a
chart category
GetLabelText() Callable String Returns the formatted label text for

a chart category

(continues)

Chapter 4, Actuate Foundation Class library 99

Table 4-30

AcChartCategory methods (continued)

Method Classification Type Description
GetLabelValue() Callable Variant Returns the label value for a chart
category
GetLayer() Callable AcChart Returns a reference to the parent
Layer chart layer of a chart category
SetKeyValue() Callable N/A Sets the unique key value for a
chart category
SetLabelValue() Callable N/A Sets the label value for a chart
category
AcChartGridLine
Use AcChartGridLine to represent a grid line in a chart. AcChartGridLine does
not inherit from other classes. AcChartGridLine methods are listed in Table 4-31.
Table 4-31 AcChartGridLine methods
Method Classification Type Description

DrawInFrontOfPoints() Callable

GetAxis() Callable
GetIndex() Callable
GetLabelText() Callable
GetLineStyle() Callable
GetValue() Callable
SetDrawInFrontOf Callable
Points()

SetLabel Text() Callable
SetLineStyle() Callable
SetValue() Callable

Boolean

AcChartAxis

Integer

String

AcDrawing
LineStyle

Variant

N/A

N/A
N/A
N/A

Determines whether a grid line is
drawn in front of the data points in
a chart.

Returns a reference to the parent
chart axis of a grid line.

Returns the index of a grid line
within its parent axis’s list of grid
lines.

Returns the label text for a grid
line.

Returns the line style used to draw
a grid line.

Returns the axis value at which a
grid line is drawn.

True causes a grid line to be drawn
in front of the data points. False
causes a grid line to be drawn
behind the data points.

Sets the label text for a grid line.
Sets the line style for a grid line.

Sets the axis value at which a grid
line is drawn.

100 Programming with Actuate Foundation Classes

AcChartLayer

Use the AcChartLayer class to represent a single chart layer. Use AcChartLayer’s
methods to access a chart’s layers and modify the appearance and functionality of
those layers. AcChartLayer does not inherit from other classes. AcChartLayer

methods are listed in Table 4-32.

Table 4-32 AcChartLayer methods
Method Classification Type Description
AddCategory() Callable AcChart Appends a new category to the
Category end of a chart layer’s list of
categories.
AddSeries() Callable AcChart Appends a new series to the end of
Series a chart layer’s list of series.
ChartTypelsStackable() Callable Boolean Returns True if a chart layer’s chart
type supports stacked series.
GetBarShape() Callable AcChartBar Returns the shape of bars in a
Shape three-dimensional bar chart layer.
GetBubbleSize() Callable Double Returns the size of the largest
bubble in the chart as a percentage
of the chart canvas size.
GetCategory() Callable AcChart Returns a reference to the specified
Category category in a chart layer.
GetCategoryGapRatio() Callable Double Returns the size of the gap
between categories in a bar chart
layer, relative to the width of a
single bar.
GetCategory Callable AcData Returns a reference to the data
Grouping() Grouping grouping definition used to control
how data are grouped into
categories in a chart.
GetCategoryLabel Callable String Returns the format pattern used to
Format() format category labels in a chart
layer.
GetChart() Callable AcChart Returns a reference to a chart
layer’s parent chart.
GetChartType() Callable AcChartType Returns the chart type of a chart

layer.

(continues)

Chapter 4, Actuate Foundation Class library 101

Table 4-32

AcChartLayer methods (continued)

Method Classification Type Description

GetDownBarBorder Callable AcDrawing Returns the style of the border

Style() Border around a down bar in a chart layer.

Style
GetDownBarFillStyle() Callable AcDrawing Returns the fill style for a down
FillStyle bar in a chart layer.
GetDropLineStyle() Callable AcDrawing Returns the line style used to draw
LineStyle drop lines in a chart layer.

GetHighLowLine Callable AcDrawing Returns the line style used to draw

Style() LineStyle high-low lines in a chart layer.

GetIndex() Callable Integer Returns the index of a chart layer
within its parent chart’s list of
layers.

GetLayerType() Callable AcChart Returns the chart layer type of a

LayerType chart layer.

GetLineWidth() Callable AcTwips Returns the default width of the
lines joining the points within each
series in a chart layer.

GetMarkerSize() Callable AcTwips Returns the default size of markers
within a chart layer.

GetMaximumData Callable Variant Returns the maximum x value of

XValue() all the points in a chart layer.

GetMaximumData Callable Variant Returns the maximum y value of

YValue() all the points in a chart layer.

GetMaximumNumber Callable Integer Returns the maximum number of

OfPoints() points permitted in a chart layer.

GetMaximumNumber Callable Integer Returns the maximum number of

OfPointsPerSeries() points permitted in a single series
in a chart layer.

GetMaximumNumber Callable Integer Returns the maximum number of

OfSeries() series permitted in a chart layer.

GetMaximumTrendline Callable Variant Returns the maximum y value of

YValue() all the trendlines in a chart layer.

GetMinimumData Callable Variant Returns the minimum x value of

XValue() all the points in a chart layer.

GetMinimumData Callable Variant Returns the minimum y value of

YValue() all the points in a chart layer.

102 Programming with Actuate Foundation Classes

Table 4-32

AcChartLayer methods (continued)

Method

Classification Type

Description

GetMinimumTrendline

YValue()
GetMissingPoints()

GetNumberOf
Categories()
GetNumberOfSeries()

GetPieCenter()

GetPieExplosion()

GetPieExplosion
Amount()

GetPieExplosion
TestOperator()

GetPieExplosion
TestValue()

GetPieRadius()

GetPlotAreaBorder
Style()

GetPlotAreaFillStyle()

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Variant

AcChart
Missing
Points

Integer
Integer

AcPoint

AcChartPie
Explode

Double

AcChart
Comparison
Operator

Variant

AcTwips

AcDrawing
BorderStyle

AcDrawing
FillStyle

Returns the minimum y value of
all the trendlines in a chart layer.

Returns the way that missing
points are plotted in a chart layer.

Returns the number of categories
in a chart layer.

Returns the number of series in a
chart layer.

Returns the position of the center
of a pie chart relative to the top left
corner of its parent chart’s chart
drawing plane.

Returns the circumstances in
which pie sectors will be exploded
in a pie chart layer.

Returns the amount that pie
sectors will be exploded in a pie
chart layer.

Returns the operator used to test
whether a pie sector will be
exploded in a pie chart layer.

Returns the value used to test
whether a pie sector will be
exploded in a pie chart layer.

Returns the radius of a pie chart.
You can use this method only for
two-dimensional pie charts.

Returns the style of the border
around a chart layer’s plot area.

Returns the background fill style
for a chart layer’s plot area.

(continues)

Chapter 4, Actuate Foundation Class library 103

Table 4-32

AcChartLayer methods (continued)

Classification Type

Description

Method

GetPlotAreaPosition() Callable
GetPlotAreaSize() Callable
GetPointBorderStyle() Callable
GetPointLabelFormat() Callable
GetPointLabelLine Callable
Style()

GetPointLabel Callable
Placement()
GetPointLabelSource() Callable
GetPointLabelStyle() Callable
GetSeries() Callable
GetSeriesGrouping() Callable

GetSeriesLabelFormat() Callable

GetSeriesOverlap

Ratio()

104 Programming with Actuate Foundation Classes

Callable

AcPoint

AcSize

AcDrawing
BorderStyle

String

AcDrawing
LineStyle

AcChart
PointLabel
Placement

AcChart
PointLabel
Source

AcDrawing
TextStyle

AcChart
Series

AcData
Grouping

String

Double

Returns the position of a chart
layer’s plot area relative to the top
left corner of its parent chart’s
chart drawing plane. You can use
this method only for
two-dimensional charts that are
not pie charts.

Returns the size of a chart layer’s
plot area. You can use this method
only for two-dimensional charts
that are not pie charts.

Returns the default style for the
borders around points in a chart
layer.

Returns the default format pattern
used to format point labels in a
chart layer.

Returns the line style used to draw
point label lines in a chart layer.

Returns the default placement of
point labels in a chart layer.

Returns the default source for
point label values in a chart layer.

Returns the default style for point
labels in a chart layer.

Returns a reference to the specified
series in a chart layer.

Returns a reference to the data
grouping definition used to control
how data are grouped into series
in a chart layer.

Returns the format pattern used to
format series labels in a chart layer.

Returns the amount that adjacent
series in a bar chart layer will
overlap, relative to the width of a
single bar.

Table 4-32 AcChartLayer methods (continued)

Method

Classification Type

Description

GetSeriesPlacement()

GetSeriesStyle()
GetStartAngle()

GetStudyHeightRatio()

GetThreeDBackWall
FillStyle()

GetThreeDFloorFill
Style()

GetThreeDSideWall
FillStyle()

GetUpBarBorderStyle()
GetUpBarFillStyle()
GetXAxis()

GetYAxis()
HasCategoryScale
XAxis()
HasValueScaleXAxis()

HasXAxis()

HasYAxis()

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

Callable

AcChart
Series
Placement

AcChart
SeriesStyle
AcAngle

Double

AcDrawing
FillStyle

AcDrawing
FillStyle

AcDrawing
FillStyle

AcDrawing

BorderStyle
AcDrawing

FillStyle
AcChartAxis
AcChartAxis
Boolean
Boolean

Boolean

Boolean

Returns the relative placement of
points for multiple series within a
category in a chart layer.

Returns a reference to the specified
series style in a chart layer.

Returns the angle at which the first
sector in a pie chart layer is drawn.

Returns the ratio of the height of a
study layer to the height of its
parent chart’s base layer.

Returns the background fill style
for a three-dimensional chart’s
back wall.

Returns the background fill style
for a three-dimensional chart’s
floor.

Returns the background fill style
for a three-dimensional chart’s
side wall.

Returns the style of the border
around an up bar in a chart layer.

Returns the fill style for a down
bar in a chart layer.

Returns a reference to a chart
layer’s x-axis.

Returns a reference to a chart
layer’s y-axis.

Returns True if a chart layer’s
x-axis is a category scale axis.

Returns True if a chart layer’s
x-axis is a value scale axis.

Returns True if a chart layer has an
X-axis.

Returns True if a chart layer has a
y-axis.

(continues)

Chapter 4, Actuate Foundation Class library 105

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description
InsertCategory() Callable AcChart Inserts a new category at a specific
Category position in a chart layer’s list of
categories.
InsertSeries() Callable AcChart Inserts a new series at a specific
Series position in a chart layer’s list of
series.
IsBaseLayer() Callable Boolean Returns True if a chart layer is the
base layer of its parent chart.
IsOverlayLayer() Callable Boolean Returns True if a chart layer is the
overlay layer of its parent chart.
IsStacked() Callable Boolean Returns True if the series in a chart
layer are stacked.
IsStudyLayer() Callable Boolean Returns True if a chart layer is a
study layer of its parent chart.
PieExplosionTestValue Callable Boolean Returns True if the pie explosion

IsPercentage()

PlotBarsAsLines() Callable Boolean
PlotLinesBetween Callable Boolean
Points()

PlotMarkersAtPoints() Callable Boolean
PlotUpDownBars() Callable Boolean
RemoveCategory() Callable N/A
RemoveSeries() Callable N/A

106 Programming with Actuate Foundation Classes

test value in a pie chart layer is
treated as a percentage of the total
pie.

Returns True if points in a bar

chart layer will be plotted as lines
instead of bars.

Returns True if the default setting
for series in a chart layer is that
lines will be drawn between the
points within each series.

Returns True if the default setting
for series within a chart layer is
that markers will be drawn at
points.

Returns True if up and down bars
will be drawn between points
within each category in a chart
layer.

Removes a category from a chart
layer.

Removes a series from a chart
layer.

Table 4-32

AcChartLayer methods (continued)

Method Classification Type Description
SetBarShape() Callable N/A Sets the shape of bars in a
three-dimensional bar chart layer.
SetBubbleSize() Callable N/A Sets the size of the largest bubble
in a bubble chart as a percentage of
the chart canvas size. Must be in
the range of MinimumBubbleSize
to MaximumBubbleSize.
SetCategoryGapRatio() Callable N/A Sets the size of the gap between
categories in a bar chart layer,
relative to the width of a single bar.
SetCategoryLabel Callable N/A Sets the format pattern used to
Format() format category labels in a chart
layer.
SetChartType() Callable N/A Sets the chart type of a chart layer.
SetDownBarBorder Callable N/A Sets the style of the border around
Style() down bars in a chart layer.
SetDownBarFillStyle() Callable N/A Sets the fill style for down bars in a
chart layer.
SetDropLineStyle() Callable N/A Sets the line style used to draw
drop lines in a chart layer.
SetHighLowLineStyle() Callable N/A Sets the line style used to draw
high-low lines in a chart layer.
SetLineWidth() Callable N/A Sets the default width of the lines
joining the points within each
series in a chart layer.
SetMarkerSize() Callable N/A Sets the default size for markers
within a chart layer.
SetMaximumNumber Callable N/A Sets the maximum number of
OfPoints() points permitted in a chart layer.
SetMaximumNumber Callable N/A Sets the maximum number of
OfPointsPerSeries() points permitted in a single series
in a chart layer.
SetMaximumNumber Callable N/A Sets the maximum number of
OfSeries() series permitted in a chart layer.
SetMissingPoints() Callable N/A Specifies how to plot missing

points in a chart layer.

(continues)

Chapter 4, Actuate Foundation Class library 107

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

SetPieExplosion() Callable N/A Specifies the circumstances in
which pie sectors are exploded in a
pie chart layer.

SetPieExplosion Callable N/A Sets the amount by which pie

Amount() sectors are exploded in a pie chart
layer.

SetPieExplosion Callable N/A Sets the operator used to test

TestOperator() whether a pie sector will be
exploded in a pie chart layer.

SetPieExplosion Callable N/A Sets the value used to test whether

TestValue() a pie sector will be exploded in a
pie chart layer.

SetPieExplosionTest Callable N/A Specifies whether the pie

ValuelsPercentage()

SetPlotAreaBackground Callable N/A
Color()

SetPlotAreaBorder Callable N/A
Style()

SetPlotAreaFillStyle() Callable N/A
SetPlotBarsAsLines() Callable N/A
SetPlotHighLowLines() Callable N/A
SetPlotLinesBetween Callable N/A
Points()

SetPlotMarkersAt Callable N/A
Points()

SetPlotUpDownBars() Callable N/A

108 Programming with Actuate Foundation Classes

explosion test value in a pie chart
layer is treated as a percentage of
the total pie.

Sets the background color of a
chart layer’s plot area.

Sets the style of the border around
a chart layer’s plot area.

Sets the background fill style for a
chart layer’s plot area.

Specifies whether to plot points in
a bar chart layer as lines instead of
bars.

Specifies whether to draw high-
low lines in a chart layer.

Specifies whether the default
setting for series in a chart layer is
to draw lines between the points
within each series.

Specifies whether the default
setting for series within a chart
layer is to draw markers at points.

Specifies whether to draw
up-and-down bars between points
within each category in a chart
layer.

Table 4-32

AcChartLayer methods (continued)

Description

Method Classification Type
SetPointBorderStyle() Callable N/A
SetPointLabelFormat() Callable N/A
SetPointLabelLine Callable N/A
Style()

SetPointLabel Callable N/A
Placement()

SetPointLabelSource() Callable N/A
SetPointLabelStyle() Callable N/A
SetSeriesLabelFormat() Callable N/A
SetSeriesOverlap Callable N/A
Ratio()

SetSeriesPlacement() Callable N/A
SetStartAngle() Callable N/A
SetStockHasClose() Callable N/A
SetStockHasOpen() Callable N/A
SetStudyHeightRatio() Callable N/A
SetThreeDFloorFill Callable N/A
Style()

SetThreeDWallFill Callable N/A
Style()

Sets the default style for the
borders around points in a chart
layer.

Sets the default format pattern
used to format point labels in a
chart layer.

Sets the line style used to draw
point label lines in a chart layer.

Sets the default placement of point
labels in a chart layer.

Sets the default source for point
label values in a chart layer.

Sets the default style for point
labels in a chart layer.

Sets the default format pattern
used to format series labels in a
chart layer.

Specifies the amount by which
adjacent series in a bar chart layer
overlap, relative to the width of a
single bar.

Sets the relative placement of
points for multiple series within a
category in a chart layer.

Sets the angle at which to draw the
first sector in a pie chart layer.

Specifies whether a stock chart
layer has a Close series.

Specifies whether a stock chart
layer has an Open series.

Sets the ratio of the height of a
study layer to the height of its
parent chart’s base layer.

Sets the background fill style for a
three-dimensional chart’s floor.

Sets the background fill style for a
three-dimensional chart’s walls.

(continues)

Chapter 4, Actuate Foundation Class library 109

Table 4-32

AcChartLayer methods (continued)

Method Classification Type Description
SetUpBarBorderStyle() Callable N/A Sets the style of the border around
down bars in a chart layer.
SetUpBarFillStyle() Callable N/A Sets the fill style for down bars in a
chart layer.
StockHasClose() Callable Boolean Returns True if a stock chart layer
has a Close series.
StockHasOpen() Callable Boolean Returns True if a stock chart layer
has an Open series.
AcChartPoint
AcChartPoint represents a single point within a chart series. Use the methods
of AcChartPoint to access and modify the appearance of a chart’s points.
AcChartPoint does not inherit from other classes. AcChartPoint methods are
listed in Table 4-33.
Table 4-33 AcChartPoint methods
Method Classification Type Description
AddCustomStyle() Callable AcChart Adds a custom style to a chart
PointStyle point.
ClearCustomLabel Callable N/A Removes a custom label format
Format() pattern from a chart point.
ClearCustomLabel Callable N/A Removes a custom label value
Value() from a chart point.
ClearValues() Callable N/A Makes a chart point into an empty
point.
ExplodeSlice() Callable Boolean Returns True if a chart point is a
pie chart sector that is exploded.
GetCategory() Callable AcChart Returns a reference to the chart
Category category corresponding to a chart
point.
GetCustomLabel Callable String Returns the custom format pattern
Format() that formats a chart point’s label.
GetCustomLabel Callable Variant Returns the custom value of a
Value() chart point’s label.
GetCustomStyle() Callable AcChart Returns a reference to the custom
PointStyle style for a chart point.

110 Programming with Actuate Foundation Classes

Table 4-33 AcChartPoint methods

Method Classification Type Description

GetIndex() Callable Integer Returns the index of a chart point
within its parent chart series’ list of
points.

GetLabelText() Callable String Returns the formatted text of a
chart point’s label.

GetSeries() Callable AcChart Returns a reference to the parent

Series chart series of a chart point.

GetXValue() Callable Variant Returns the x value of a chart
point.

GetYValue() Callable Variant Returns the y value of a chart
point.

GetZValue() Callable Variant Returns the z value of a chart

point. Currently, only bubble
charts support z values.

HasCustomLabel Callable Boolean Returns True if a chart point has a
Format() custom label format pattern.
HasCustomLabel Callable Boolean Returns True if a chart point has a
Value() custom label value.
HasCustomStyle() Callable Boolean Returns True if a chart point has a
custom style.
IsMissing() Callable Boolean Returns True if a chart point is
empty.
SetCustomLabel Callable N/A Adds a custom label format
Format() pattern to a chart point.
SetCustomLabelValue() Callable N/A Adds a custom label value to a
chart point.
SetExplodeSlice() Callable N/A Specifies whether a chart point
that is a pie sector is exploded.
SetValues() Callable N/A Sets the values of a chart point.
SetXValue() Callable N/A Sets the x value of a chart point.
SetYValue() Callable N/A Sets the y value of a chart point.
SetZValue() Callable Variant Sets the z value of a chart point.

Currently, only bubble charts
support z values.

Chapter 4, Actuate Foundation Class library 111

AcChartPointStyle

AcChartPointStyle represents a custom style for a single point within a chart
series. Use AcChartPointStyle’s methods to create, access, and modify a chart
point’s custom style. AcChartPointStyle does not inherit from other classes.
AcChartPointStyle methods are listed in Table 4-34.

Table 4-34 AcChartPointStyle methods
Method Classification Type Description
GetBorderStyle() Callable AcDrawing Returns the style of the border
BorderStyle around a chart point
GetFillStyle() Callable AcDrawing Returns the background fill style
FillStyle for a chart point
GetMarkerFillColor() Callable AcColor Returns the fill color of the marker
for a chart point
GetMarkerLineColor() Callable AcColor Returns the line color of the
marker for a chart point
GetMarkerShape() Callable AcChart Returns the shape of the marker
MarkerShape for a chart point
GetMarkerSize() Callable AcTwips Returns the size of the marker for a
chart point
GetPieExplosion Callable Double Returns the amount that a pie
Amount() sector chart point is exploded in a
pie chart layer
GetPointLabel Callable AcChart Returns the placement of the point
Placement() PointLabel label for a chart point
Placement
GetPointLabelStyle() Callable AcDrawing Returns the style of the point label
TextStyle for a chart point
SetBackgroundColor() Callable N/A Sets the background color for a
chart point
SetBorderStyle() Callable N/A Sets the style of the border around
a chart point
SetFillStyle() Callable N/A Sets the background fill style for a
chart point
SetMarkerFillColor() Callable N/A Sets the fill color of the marker for
a chart point
SetMarkerLineColor() Callable N/A Sets the line color of the marker for

112 Programming with Actuate Foundation Classes

a chart point

Table 4-34 AcChartPointStyle methods

Method Classification Type Description

SetMarkerShape() Callable N/A Sets the shape of the marker for a
chart point

SetMarkerSize() Callable N/A Sets the size of the marker for a
chart point.

SetPieExplosion Callable N/A Sets the amount that a pie sector

Amount() chart point is exploded in a pie
chart layer

SetPointLabel Callable N/A Sets the placement of the point

Placement() label for a chart point

SetPointLabelStyle() Callable N/A Sets the style of the point label for

a chart point

AcChartSeriesStyle

A subclass of AcChartPointStyle, AcChartSeriesStyle represents a custom style
for a chart series. AcChartSeriesStyle methods are listed in Table 4-35.

Table 4-35 AcChartSeriesStyle methods

Method Classification Type Description
GetLineStyle() Callable AcDrawing Returns the style of lines between
LineStyle points in a chart series
GetPointLabelFormat() Callable String Returns the format pattern used to
format point labels in a chart series
or a pie chart category
GetPointLabelSource() Callable AcChart Returns the source for point label
PointLabel values in a chart series or a pie
Source chart category
PlotBarsAsLines() Callable Boolean Returns True if points are plotted
as lines in a chart series
PlotLinesBetween Callable Boolean Returns True if lines are plotted
Points() between points in a chart series
PlotMarkersAtPoints() Callable Boolean Returns True if markers are drawn
by default at points in a chart
series
SetLineStyle() Callable AcDrawing Sets the style of lines between
LineStyle points in a chart series

(continues)

Chapter 4, Actuate Foundation Class library 113

Table 4-35 AcChartSeriesStyle methods (continued)

Method Classification Type Description
SetPlotBarsAsLines() Callable N/A Determines whether to plot points
as lines in a bar chart series
SetPlotLinesBetween Callable N/A Determines whether to plot lines
Points() between points in a chart series
SetPlotMarkersAt Callable N/A Determines whether to draw
Points() markers by default at points in a
chart series
SetPointLabelFormat() Callable N/A Sets the format pattern used to

format point labels in a chart series
or a pie chart category

SetPointLabelSource() Callable N/A Sets the source for point label
values in a chart series or a pie
chart category

AcChartSeries

AcChartSeries represents a single series within a chart layer. AcChartSeries
methods support accessing and modifying a chart layer’s series. AcChartSeries
does not inherit from other classes. AcChartSeries methods are listed in

Table 4-36.

Table 4-36 AcChartSeries methods

Method Classification Type Description
AddEmptyPoint() Callable AcChart Appends a new empty point to the
Point end of a chart series’ list of points
AddPoint() Callable AcChart Appends a new point to the end of
Point a chart series’ list of points
AddTrendline() Callable AcChart Adds a trendline to the end of a
Trendline chart series’ list of trendlines
GetIndex() Callable Integer Returns the index of a chart series
within its parent chart layer’s list
of series
GetKeyValue() Callable Variant Returns the unique key value for a
chart series
GetLabelText() Callable String Returns the formatted label text for
a chart series
GetLabelValue() Callable Variant Returns the label value for a chart
series

114 Programming with Actuate Foundation Classes

Table 4-36 AcChartSeries methods

Method Classification Type Description
GetLayer() Callable AcChart Returns a reference to the parent
Layer layer of a chart series
GetNumberOfPoints() Callable Integer Returns the number of points in a
chart series
GetNumberOf Callable Integer Returns the number of trendlines
Trendlines() in a chart series
GetPoint() Callable AcChart Returns a reference to a point in a
Point chart series
GetStyle() Callable AcChart Returns a reference to the series
SeriesStyle style corresponding to a chart
series
GetSumOfSliceValues() Callable Variant Returns the sum of the values of all
the sectors in a pie chart series
GetTrendline() Callable AcChart Returns a reference to a trendline
Trendline in a chart
InsertEmptyPoint() Callable AcChart Inserts a new empty point at a
Point specific position in a chart series’
list of points
InsertPoint() Callable AcChart Inserts a new point at a specific
Point position in a chart series’ list of
points
InsertTrendline() Callable AcChart Returns a reference to the specified
Point trendline for a chart series
RemovePoint() Callable N/A Removes a point from a chart
series
RemoveTrendline() Callable N/A Removes a trendline at a specific

position within a chart series’ list
of trendlines

SetKeyValue() Callable N/A Sets the unique key value for a
chart series.
SetLabelValue() Callable N/A Sets the chart series’ label value

AcChartTrendline

Use AcChartTrendline to represent a trendline in a chart. AcChartTrendline does
not inherit from other classes. AcChartTrendline methods are listed in Table 4-37.

Chapter 4, Actuate Foundation Class library 115

Table 4-37

AcChartTrendline methods

Method Classification Type Description
ClearIntercept() Callable N/A Clears the intercept value for a
trendline
GetEndYValue() Callable Variant Returns the y value of the end of a
trendline
GetIndex() Callable Integer Returns the index of a trendline
within its parent chart series’ list of
trendlines
GetIntercept() Callable Variant Returns the intercept value for a
trendline
GetLabelText() Callable String Returns the trendline’s label text
GetLineStyle() Callable AcDrawing Returns the line style used to draw
LineStyle a trendline
GetMaximumYValue() Callable Variant Returns the maximum y value of a
trendline
GetMinimumYValue() Callable Variant Returns the minimum y value of a
trendline
GetOrder() Callable Integer Returns the order of a polynomial
trendline
GetPeriod() Callable Integer Returns the period of a moving
average trendline
GetStartYValue() Callable Variant Returns the y value of the start of a
trendline
GetTrendlineType() Callable AcChart Returns a value that indicates how
Trendline a trendline is fitted to the points in
Type its parent series
HaslIntercept() Callable Boolean Determines whether a trendline
has an intercept value
SetIntercept() Callable N/A Sets the intercept value for a
trendline
SetLabel Text() Callable N/A Sets the label text for a trendline
SetLineStyle() Callable N/A Sets the line style used to draw a
trendline
SetOrder() Callable N/A Sets the order of a polynomial
trendline
SetPeriod() Callable N/A Sets the period for a moving

116 Programming with Actuate Foundation Classes

average trendline

Table 4-37 AcChartTrendline methods
Method Classification Type Description
SetTrendlineType() Callable N/A Defines how a trendline is fitted to
the points in its parent series
AcDrawingPlane
AcDrawingPlane represents a single drawing plane within a drawing.
AcDrawingPlane does not inherit from other classes. AcDrawingPlane methods
are listed in Table 4-38.
Table 4-38 AcDrawingPlane methods
Method Classification Type Description
GetDrawingPlane Callable AcDrawing Returns the type of a drawing
Type() PlaneType plane
IsHidden() Callable Boolean Determines whether a drawing
plane is hidden
SetHidden() Callable N/A Specifies whether a drawing plane
is hidden
SetPosition() Callable N/A Sets the position of a drawing
plane within its parent drawing
SetSize() Callable N/A Sets the size of a drawing plane
AcDrawingChartPlane
AcDrawingChartPlane is a subclass of AcDrawingPlane. Use this class to
represent a drawing plane for a chart within a drawing. There are no public
methods defined specifically for AcDrawingChartPlane.
AcDrawingSVGPlane
AcDrawingSVGPlane is a subclass of AcDrawingPlane. Use this class to represent
a drawing plane whose contents are defined using Scalable Vector Graphics
(SVG). AcDrawingSVGPlane methods are listed in Table 4-39.
Table 4-39 AcDrawingSVGPlane methods
Method Classification Type Description
GetSVG() Callable String Returns the SVG code for an SVG
drawing plane
SetSVG() Callable N/A Sets the SVG code for an SVG

drawing plane

Chapter 4, Actuate Foundation Class library 117

Connection classes and methods

Use connection classes and methods to connect to a data source.

AcConnection

AcConnection is a subclass of AcComponent. AcConnection defines the protocol
for connecting to and disconnecting from an input source. AcConnection
methods are listed in Table 4-40.

Table 4-40 AcConnection methods
Method Classification Type Description
Connect() Overridable Boolean Sets run-time properties and

Disconnect()

establishes a connection. An empty
method that derived classes
override to connect to a data
source.

Callable N/A Disconnects from a data source.
An empty method that derived
classes override.

IsConnected() Callable Boolean Determines whether a data source

RaiseError()

connection exists.

Callable N/A Produces an error message.

AcDBConnection

AcDBConnection is a subclass of AcConnection. AcDBConnection provides
methods for connecting to and disconnecting from a database and defining
error-handling methods when a connection fails. This class also provides the logic
for creating the database statement object required to execute a SQL statement.
AcDBConnection methods are listed in Table 4-41.

Table 4-41 AcDBConnection methods
Method Classification Type Description
GetGeneralError() Callable Integer Returns the general error code
GetGeneralErrorText() Callable String Returns the text of the general
error
GetSpecificError() Callable Integer Returns the specific error code
GetSpecificErrorText() Callable String Returns the text of the specific
error
Prepare() Callable AcDB Creates a database statement
Statement object for a SQL statement

118 Programming with Actuate Foundation Classes

AcDB2Connection

AcDB2Connection is a subclass of AcDBConnection. AcDB2Connection
establishes a connection to a DB2 database. There are no public methods defined
specifically for this class.

AcMSSQLConnection

AcMSSQLConnection is a subclass of AcDBConnection. AcMSSQLConnection
establishes a connection to a Microsoft SQL database. There are no public
methods defined specifically for this class.

AcOdaConnection

AcOdaConnection is a subclass of AcDBConnection. AcOdaConnection
establishes a connection to an Open Data Access (ODA) driver.
AcOdaConnection methods are listed in Table 4-42.

Table 4-42 AcOdaConnection methods

Method Classification Type Description

SetProperties() Overridable N/A Sets the value of a property
variable to the value the user sets

SetRuntimeProperties() Overridable N/A Calls SetConnectionProperty() to
assign a value to each run-time
property of the connection

AcODBCConnection

AcODBCConnection is a subclass of AcDBConnection. AcODBCConnection
establishes a connection to an ODBC database. There are no public methods
defined specifically for this class.

AcOracleConnection

AcOracleConnection is a subclass of AcDBConnection. AcOracleConnection
establishes a connection to an Oracle database. There are no public methods
defined specifically for this class.

AcDBCursor

AcDBCursor provides an Actuate Basic interface to a database cursor for a SQL
statement. A database cursor is an identifier associated with a set of rows.
SELECT statements that return more than one row of data require a database
cursor. Use this class to create a cursor when you write custom code to handle

Chapter 4, Actuate Foundation Class library 119

data retrieval from, for example, a stored procedure. AcDBCursor does not inherit
from other classes. AcDBCursor methods are listed in Table 4-43.

Table 4-43 AcDBCursor methods

Method Classification Type Description

BindColumny() Callable N/A Binds a database column to a data
row variable

BindParameter() Callable Boolean Assigns the specified value to a
cursor parameter

CloseCursor() Callable N/A Closes the cursor

DefineProcedurelnput Callable Boolean Defines an input parameter used

Parameter() by a stored procedure

DefineProcedureOutput Callable Boolean Defines an input and output

Parameter() parameter or an output only
parameter used by a stored
procedure

DefineProcedureReturn Callable Boolean Specifies the data type of a return

Parameter() value from a stored procedure

Delete() Overridable N/A Deletes the cursor object

Fetch() Callable Boolean Reads one row from the cursor

GetConnection() Callable AcDB Returns the connection against

Statement which the cursor operates

GetOutputParameter() Callable Variant Returns the value of a stored
procedure’s output parameter

GetProcedureStatus() Callable Integer Returns a value that indicates the
status of a stored procedure

GetStatement() Callable AcDB Returns the statement from which

Statement the cursor was created

IsOpen() Callable Boolean Determines whether the cursor is
open

New() Overridable N/A The class’ constructor method

OpenCursor() Callable Boolean Opens the cursor

SetProperty() Callable Boolean Sets a parameter property for a

stored procedure

StartNextSet() Callable Boolean Starts a new set of rows within a
stored procedure

120 Programming with Actuate Foundation Classes

AcDBStatement

AcDBStatement provides an Actuate Basic interface to a SQL statement.
AcDBStatement does not inherit from other classes. AcDBStatement methods are
listed in Table 4-44.

Table 4-44 AcDBStatement methods

Method Classification Type Description

AllocateCursor() Callable AcDBCursor Creates a cursor to read the rows
the statement returns

BindParameter() Callable Boolean Binds a statement parameter to a
variable

DefineProcedurelnput Callable Boolean Defines an input parameter used

Parameter() by a stored procedure

DefineProcedureOutput Callable Boolean Defines an input and output

Parameter() parameter or an output-only
parameter for a stored procedure

DefineProcedureReturn Callable Boolean Specifies the data type of a return

Parameter() value from a stored procedure

Delete() Callable N/A The destructor method

Execute() Callable Boolean Executes the SQL statement

GetOutputCount() Callable Integer Returns the number of columns in
the rows that the SQL statement
returns

GetOutputParameter() Callable Variant Returns an output parameter of a
stored procedure by name or
position

GetParameterCount() Callable Integer Returns the number of parameters
in the SQL statement

GetProcedureStatus() Callable Integer Returns the return value from a
stored procedure

GetStatementText() Callable String Returns the text of the SQL
statement previously passed to
Prepare()

OpenCursor() Callable AcDBCursor Creates and opens a cursor to use

for reading the rows that the
statement returns

Prepare() Callable Boolean Prepares a SQL statement

Chapter 4, Actuate Foundation Class library 121

Collection classes and methods

Use collection classes and methods to work with arrays.

AcCollection

AcCollection is the base class for collection classes. This class provides methods
common to all collections. AcCollection does not inherit from other classes.
AcCollection methods are listed in Table 4-45.

Table 4-45 AcCollection methods

Method Classification Type Description

Compare() Callable Variant Compares two objects in a
collection

Contains() Callable Boolean Determines whether an object
exists in the collection

Copy() Callable N/A Copies the contents of another
collection into the current
collection

FindByValue() Callable AnyClass Finds an object that has the same
value as the current object

GetCount() Callable Integer Returns the number of objects in
the collection

IsEmpty() Callable Boolean Determines whether the collection
is empty

Newlterator() Overridable Aclterator Creates an iterator for the
collection

Remove() Callable N/A Removes a specified item from the
collection

RemoveAll() Callable N/A Removes all contents from the
collection

AcBTree

AcBTree is a subclass of AcCollection. Use AcBTree to create a balanced-tree list of
objects sorted by one of the object’s properties. Table 4-46 lists AcBTree methods.

Table 4-46 AcBTree methods

Method Classification Type Description

Abandon() Overridable N/A Removes an object that the
balanced tree no longer needs and
recovers memory

122 Programming with Actuate Foundation Classes

Table 4-46

AcBTree methods

Method Classification Type Description
CompareKey() Overridable Integer Compares the values of two keys
CreateNode() Overridable N/A Adds a new node
Find() Callable AnyClass Finds the object with the given key
FindOrCreate() Callable AnyClass Locates an object that has a
specified key or creates the object if
an object with the specified key
does not exist in the collection
GetKey() Overridable Variant Returns the key for an object
Insert() Callable AnyClass Adds an object to the collection
New() Callable N/A Constructor method for this class
AcOrderedCollection
AcOrderedCollection is a subclass of AcCollection. AcOrderedCollection creates
a collection in which you control the order of the objects. Use
AcOrderedCollection methods to add and remove objects from the front or back
of a collection, to insert objects within a collection, and to copy the contents of one
collection into another collection. Table 4-47 lists AcOrderedCollection methods.
Table 4-47 AcOrderedCollection methods
Method Classification Type Description
AddToHead() Callable N/A Adds an object to the beginning of
the collection
AddToTail() Callable N/A Adds an object to the end of the
collection
GetAt() Callable AnyClass Returns the object at a specified
location in the collection
GetHead() Callable AnyClass Returns the first object in the
collection
GetIndex() Callable Integer Returns the position of an object in
the collection
GetTail() Callable AnyClass Returns the last object in the
collection
InsertAfter() Callable N/A Inserts an object after a specified

object in the collection

(continues)

Chapter 4, Actuate Foundation Class library 123

Table 4-47 AcOrderedCollection methods (continued)

Method Classification Type Description

InsertAt() Callable N/A Inserts a new object at a specific
location, moving the object
currently at that location and all
objects above it one higher

InsertBefore() Callable N/A Inserts an object before a specified
object in the collection

RemoveHead() Callable AnyClass Removes the first object in the
collection

RemoveTail() Callable AnyClass Removes the last object in the
collection

SetAt() Callable N/A Replaces an object at a specified

position with the specified object

AcList

AcList is a subclass of AcOrderedCollection. AcList is an abstract class that
defines the list interface. There are no public methods defined specifically for this
class.

AcSingleList

AcSingleList is a subclass of AcList. AcSingleList processes a singly-linked list.
There are no public methods defined specifically for this class.

AcObjectArray

AcObjectArray is a subclass of AcOrderedCollection. AcObjectArray creates a
resizable array of objects. AcObjectArray methods are listed in Table 4-48.

Table 4-48 AcObjectArray methods

Method Classification Type Description

RemoveAt() Callable AnyClass Removes the object at a specific
location in the array.

RemoveEmptyEntries() Callable N/A Removes slots that contain
Nothing. Resets the count by the
number of slots removed.

ResizeBy() Callable N/A Resizes the array by a specific
number of slots.
ResizeTo() Callable N/A Resets the size of the array to a

specific number of slots.

124 Programming with Actuate Foundation Classes

Table 4-48

AcObjectArray methods

Method Classification Type Description
SetGrowthIncrement() Callable N/A Sets the number of slots to add
each time the array expands.
AcStaticlndex
A subclass of AcOrderedCollection, AcStaticIndex implements a multi-layer tree
to provide fast indexing into a large collection of data. A static index pre-allocates
space rather than building the index dynamically. AcStaticIndex methods are
listed in Table 4-49.
Table 4-49 AcStaticlndex methods
Method Classification Type Description
AddLevel() Callable N/A Adds a level if necessary when
building a static index of a
particular size
New() Callable N/A Creates a new static index
Aclterator
Aclterator is the base class for all iterators. This class provides the methods
needed to iterate through a list. Aclterator does not inherit from other classes.
Aclterator methods are listed in Table 4-50.
Table 4-50 Aclterator methods
Method Classification Type Description
Copy() Callable Aclterator Copies this iterator. The copy has
the same state as this iterator.
Getltem() Callable AnyClass Returns the current item in the list.
GetNext() Callable AnyClass Returns the next item in the list.
GetPosition() Callable Integer Returns the current position of the
iterator.
HasMore() Callable Boolean Determines whether there are
more items in the list.
IsDone() Callable Boolean Determines whether there are no
more items in the list.
MoveNext() Callable N/A Moves the iterator to the next

position in the list.

(continues)

Chapter 4, Actuate Foundation Class library 125

Table 4-50

Aclterator methods (continued)

Method Classification Type Description

Restart() Callable N/A Positions the iterator using an
index.

SkipForwardTo() Callable N/A Moves the iterator to a specific
location ahead of the current
location in the list. Searches only
from the current position to the
end of the list.

SkipTo() Callable N/A Positions the iterator to a new
location in the list. If the location is
before the current position, the
iterator rewinds.

SkipToltem() Callable Boolean Skips to a specific object. Searches
the entire index for the object. If
the method does not find the
object, returns False and does not
change the position of the iterator.

Data stream classes and methods
Use data stream classes and methods to work with data rows, data sources, and
filters.
AcDataAdapter
AcDataAdapter is a subclass of AcComponent. AcDataAdapter is an abstract
base class that defines the logic of data-related classes, such as data sources and
data filters, that can combine to form a data stream. The data stream manages
data collection and processing tasks. The parts of a data stream are called data
adapters. AcDataAdapter methods are listed in Table 4-51.

Table 4-51 AcDataAdapter methods

Method Classification Type Description

AddRow() Callable N/A Adds a row to the data adapter

AddSortKey() Callable N/A Adds a dynamic sort key column

CanSeek() Overridable Boolean Returns True if the data adapter
supports random access

CanSortDynamically() Overridable = Boolean Determines whether the data

CloseConnection()

126 Programming with Actuate Foundation Classes

Overridable N/A

adapter supports dynamic
ordering

Closes the connection

Table 4-51

AcDataAdapter methods

Method Classification Type Description

Fetch() Overridable ~ AcDataRow Reads the row at the position
identified by GetPosition()

Finish() Overridable N/A Closes a data adapter

FlushBuffer() Callable N/A Flushes all buffered rows

FlushBufferTo() Overridable N/A Flushes all buffered rows up to the
row specified

GetConnection() Callable Ac Returns the connection associated

Connection with the data adapter

GetPosition() Callable Integer Returns the position of the next
row that will be fetched

IsStarted() Callable Boolean Returns True if the adapter is open

NewConnection() Overridable Ac Instantiates the connection

Connection specified in the data adapter’s

Connection slot

NewDataRow() Overridable =~ AcDataRow Instantiates a data row based on
the DataRow property

OpenConnection() Overridable Boolean Opens a connection

Rewind() Callable N/A Moves the fetch position to the
beginning of the input set

SeekBy() Callable N/A Moves the fetch position by a
given amount relative to the
current position

SeekTo() Overridable N/A Moves the fetch position to a given
location

SeekToEnd() Callable N/A Moves the fetch position to one
past the end of the input set

SetConnection() Callable N/A Provides a connection to use if the
data adapter does not have its own
connection

Start() Overridable Boolean Opens the data adapter

AcDataFilter

AcDataFilter is a subclass of AcDataAdapter. AcDataFilter is the base class for the
two general types of data filter classes, AcMultipleInputFilter and
AcSingleInputFilter. AcDataFilter defines the logic for processing data rows
retrieved from another data adapter. There are no public methods defined
specifically for this class.

Chapter 4, Actuate Foundation Class library

127

AcMultiplelnputFilter

A subclass of AcDataFilter, AcMultipleInputFilter is a base class for data filters.
AcMultipleInputFilter accepts input from multiple data adapters, processes the
data, and passes the data to the next data adapter or to the report.
AcMultipleInputFilter methods are listed in Table 4-52.

Table 4-52 AcMultiplelnputFilter methods

Method Classification Type Description
GetInputCount() Callable Integer Counts the number of data
adapters that provide input
NewInputAdapter() Overridable ~ AcData Instantiates the input adapters
Adapter specified in the Input slot

AcSinglelnputFilter

A subclass of AcDataFilter, AcSingleInputFilter is a data filter that accepts one
data adapter as its input and filters each data row. AcSingleInputFilter methods
are listed in Table 4-53.

Table 4-53 AcSinglelnputFilter methods

Method Classification Type Description

GetInput() Callable AcData Returns the input adapter for this
Adapter data filter

NewlInputAdapter() Overridable AcData Instantiates the input adapter
Adapter

SetInput() Callable N/A Specifies the input adapter for this

data filter
AcDataRowBuffer

A subclass of AcSingleInputFilter, AcDataRowBuffer is a data filter that converts
a sequential data stream into one which supports random access by buffering
data rows. AcDataRowBuffer methods are listed in Table 4-54.

Table 4-54 AcDataRowBuffer methods

Method Classification Type Description

AddRowToBulffer() Callable N/A Programmatically adds a row to
the data row buffer. Typically
called during a fetch, this method
can be called by the report to save
rows for later reuse.

128 Programming with Actuate Foundation Classes

Table 4-54

AcDataRowBuffer methods

Method Classification Type Description
GetBufferCount() Callable Integer Gets the number of rows currently
in the buffer.
GetBufferStart() Callable Integer Gets the position of the first row in
the buffer, relative to the beginning
of the input set. The first row is 1.
AcDataRowSorter
A subclass of AcDataRowBuffer, AcDataRowSorter is a data filter that reads and
stores data rows. AcDataRowSorter provides a framework for subclasses to
implement a sort algorithm. AcDataRowSorter methods are listed in Table 4-55.
Table 4-55 AcDataRowSorter methods
Method Classification Type Description
Compare() Overridable Integer A pure virtual method that must
be overridden to implement the
comparison logic
CompareKeys() Callable Integer Compares two strings or numbers
AcDataSource
AcDataSource, a subclass of AcDataAdapter, is the base class for data adapters
that read data from an input source. AcDataSource defines the logic for retrieving
data from an external source and creating a data row for each input record. The
AcDataSource method is described in Table 4-56.
Table 4-56 AcDataSource methods
Method Classification Type Description
HasFetchedLast() Callable Boolean Determines whether the data

source has fetched the last row

AcDatabaseSource

A subclass of AcDataSource, AcDatabaseSource is an abstract base class that
provides the standard logic for retrieving rows from a relational database cursor.
AcDatabaseSource methods are listed in Table 4-57.

Chapter 4, Actuate Foundation Class library 129

Table 4-57

AcDatabaseSource methods

Method Classification Type Description

BindDataRow() Overridable N/A Binds the data row to the cursor

BindStaticParameters() Overridable N/A Binds parameters to a statement

GetCursor() Callable AcDBCursor Gets the database cursor object
associated with this data source

GetDBConnection() Callable AcDB Gets the database connection

Connection against which to run this data

source

GetPrepared Callable AcDB Gets the statement on which to

Statement() Statement execute the cursor

OpenCursor() Callable N/A Opens a cursor on a statement

SetStatementProperty() Callable N/A Assigns a value to the specified

property

AcExternalDataSource

AcExternalDataSource is a subclass of AcDatabaseSource. AcExternalDataSource
is an abstract base class for generic data source objects that use a command to
retrieve a single result set through a connection. The AcExternalDataSource

method is described in Table 4-58.

Table 4-58 AcExternalDataSource methods
Method Classification Type Description
ObtainCommand() Overridable String Obtains the command that
retrieves the result set from the
database
AcOdaSource

AcOdaSource is a subclass of AcExternalDataSource. AcOdaSource creates an
object for an open data access (ODA) data source. AcOdaSource methods are

listed in Table 4-59.

Table 4-59 AcOdaSource methods

Method Classification Type Description

ClearSortKeys() Callable N/A Removes all previously assigned
dynamic sort keys.

Commit() Callable N/A Commits all outstanding

130 Programming with Actuate Foundation Classes

transactions on the specified ODA
connection.

Table 4-59 AcOdaSource methods

Method Classification Type Description

GetOutputParameter() Callable Variant Retrieves the output value of a
specified output parameter as the
parameter’s default Actuate data

type.
GetOutputParameterAs Callable Variant Retrieves the output value of a
Type() specified output parameter and
converts that value to the specified
Actuate data type.
GetOutputParameters() Overridable N/A Calls GetOutputParameter() to

retrieve the output value of each
defined output parameter.

Rollback() Callable N/A Applies only if the ODA driver
supports this feature. Rolls back all
outstanding transactions on the
specified ODA connection.

SetInputParameter() Callable N/A Assigns an input value to a
specified input parameter.
SetInputParameters() Overridable N/A Calls SetInputParameter() to
assign input values to each input
parameter.
SetRuntimeProperties() Overridable N/A Assigns a value to each public and
private run-time property.
SetStatement Overridable N/A Sets attributes on the prepared
Attributes() statement before executing the
statement or allocating a cursor.
StartNextSet() Callable Boolean Starts the next result set on the

allocated cursor if the result set is
not referenced by name.

AcQuerySource

A subclass of AcDatabaseSource, AcQuerySource is an abstract base class that
provides the core logic for a query data source you build using Query Editor or
Textual Query Editor. AcQuerySource methods are listed in Table 4-60.

AcSqglQuerySource

A subclass of AcQuerySource, AcSqlQuerySource creates a data source for a
SELECT statement provided by the report, using the parts of the statement in the
variables provided. AcSqlQuerySource assembles the variables to form the
statement. There are no public methods defined specifically for this class.

Chapter 4, Actuate Foundation Class library 131

Table 4-60

AcQuerySource methods

Method Classification Type Description

GetStatementText() Callable String Returns the text of the SELECT
statement for the query source.

ObtainSelect Overridable String Returns the SELECT statement of

Statement() the query source.

SetupAdHoc Overridable N/A The framework overrides this

Parameters()

method to call AcSqlQuerySource
::SetAdHocParameter() or
AcTextQuerySource::SetAdHoc
Condition() repeatedly until all ad
hoc parameters are processed.

AcTextQuerySource

A subclass of AcQuerySource, AcTextQuerySource is the class for writing textual
SQL SELECT statements using the Textual Query Editor. There are no public
methods defined specifically for this class.

AcStoredProcedureSource

A subclass of AcDatabaseSource, AcStoredProcedureSource is the base class for
creating stored procedure data sources. The AcStoredProcedureSource method is
described in Table 4-61.

Table 4-61 AcStoredProcedureSource methods
Method Classification Type Description
GetOutputParameters() Overridable N/A Gets the output parameters for the
stored procedure
AcDataRow
AcDataRow is a subclass of AcComponent. AcDataRow defines the
characteristics of a data row. A data row is a record structure that contains data
from a single record in a format that the report accepts. AcDataRow methods are
listed in Table 4-62.
Table 4-62 AcDataRow methods
Method Classification Type Description
GetValue() Callable Variant Gets the value of the specified

column or variable

132 Programming with Actuate Foundation Classes

Table 4-62

AcDataRow methods

Method Classification Type Description
OnRead() Overridable N/A Called after the associated data
adapter has written its output to
the data row
SetValue() Overridable Boolean Sets the value of the specified
column or variable
Excel classes and methods
Use Excel classes and methods to generate Excel files.
AcExcelObject
Classes derived from AcExcelObject create and manage the Excel workbooks,
worksheets, ranges, rows, columns, and cells you use in an Actuate report. There
are no public methods defined specifically for this class. AcExcelObject does not
inherit from other classes.
AcExcelApp
A subclass of AcExcelObject, AcExcelApp is the root class that contains all
instances of classes you use to generate and work with Excel files. AcExcelApp
methods are listed in Table 4-63.
Table 4-63 AcExcelApp methods
Method Classification Type Description
AddWorkbook() Callable AcExcel Adds a new Excel file
Workbook
DeleteWorkbook() Callable Integer Deletes a workbook
FindWorkbook() Callable AcExcel Finds a workbook
Workbook
New() Callable N/A Creates an Excel application
instance
SetFontScalingFactor() Callable Integer Specifies scaling factor to apply to
a font

AcExcelRange

A subclass of AcExcelObject, AcExcelRange is the base class for the AcExcelCell,
AcExcelColumn, and AcExcelRow classes. AcExcelRange methods are listed in
Table 4-64.

Chapter 4, Actuate Foundation Class library 133

Table 4-64 AcExcelRange methods

Method Classification Type Description
AddImage() Callable N/A Adds an image to an Excel file
DrawLine() Callable N/A Sets properties of a line in the
range
GetBackgroundColor() Callable AcColor Returns the background color
GetBorder() Callable AcExcel Returns the border
Border
GetFont() Callable AcFont Returns the font
GetHorizontal Callable AcExcel Returns the horizontal alignment
Alignment() Horizontal
Alignment
GetIndent() Callable Integer Returns the number of indent
characters
GetMergeCells() Callable Boolean Returns the setting of the merge
cells option
GetNumberFormat() Callable String Returns the string used for
formatting the numeric data
GetValue() Callable Variant Returns the contents of the range
GetValueAsDate() Callable Date Converts the contents of the range
into date format
GetVerticalAlignment() Callable AcExcel Returns the vertical alignment
Vertical
Alignment
GetWrapText() Callable Boolean Returns the setting of the wrap text
option
SetBackgroundColor() Callable N/A Sets the background color
SetBorder() Callable N/A Sets the border for one or more
sides of the range
SetBorderAround() Callable N/A Sets the border around the entire
range
SetFont() Callable N/A Sets the font
SetHorizontal Callable N/A Sets the horizontal alignment
Alignment()
SetIndent() Callable N/A Sets the number of characters for
the indent

134 Programming with Actuate Foundation Classes

Table 4-64

AcExcelRange methods

Method Classification Type Description

SetMergeCells() Callable N/A Turns the merge cells option on
and off

SetNumberFormat() Callable N/A Sets the format used for displaying
numeric data

SetValue() Callable Variant Sets the contents for the range

SetVerticalAlignment() Callable N/A Sets the vertical alignment for the
range

SetWrapText() Callable N/A Turns the wrap text option on and
off

AcExcelCell

A subclass of AcExcelRange, AcExcelCell represents a cell in a worksheet. There
are no public methods defined specifically for this class.

AcExcelColumn

A subclass of AcExcelRange, AcExcelColumn represents a column in a
worksheet. AcExcelColumn methods are listed in Table 4-65.

Table 4-65 AcExcelColumn methods

Method Classification Type Description

Autofit() Callable Integer Calculates the column width
expressed as an integer

GetColumnWidth() Callable Double Returns the column width in
number of characters that can be
displayed in a column

SetAutofitFont() Callable N/A Sets the font to use to calculate
column width

SetAutofitString() Callable N/A Sets the string to use to calculate
column width

SetColumnWidth() Callable N/A Sets the column width

AcExcelRow

A subclass of AcExcelRange, AcExcelRow represents a row in a workbook.
AcExcelRow methods are listed in Table 4-66.

Chapter 4, Actuate Foundation Class library 135

Table 4-66 AcExcelRow methods

Method Classification Type Description

GetRowHeight() Callable Double Returns the row height, in points

SetRowHeight() Callable N/A Sets the row height
AcExcelWorkbook

A subclass of AcExcelObject, AcExcelWorkbook adds, removes, and locates
worksheets in a workbook. You also use AcExcelWorkbook to save and get the
name of the workbook. AcExcelWorkbook methods are listed in Table 4-67.

Table 4-67 AcExcelWorkbook methods

Method Classification Type Description
AddWorksheet() Callable AcExcelWork Adds a worksheet to the
Sheet workbook
DeleteWorksheet() Callable Integer Deletes a worksheet from the
workbook
FindWorksheet() Callable AcExcelWork Finds a worksheet in the
Sheet workbook
GetFullName() Callable String Returns the name of the workbook
Save() Callable N/A Saves the workbook
SaveAs() Callable N/A Saves the workbook with the

specified file name

AcExcelWorksheet

A subclass of AcExcelObject, AcExcelWorksheet provides information about a
specific worksheet in a workbook. AcExcelWorksheet methods are listed in

Table 4-68.

Table 4-68 AcExcelWorksheet methods

Method Classification Type Description

Autofit() Callable Integer Adjusts the column width to fit the
contents

GetCell() Callable AcExcelCell Returns the handle to the cell to
access

GetColumn() Callable AcExcel Returns a handle to the column to

Column access
GetDisplayGridlines() Callable Boolean Returns the gridline settings
GetName() Callable String Returns the name of the worksheet

136 Programming with Actuate Foundation Classes

Table 4-68

AcExcelWorksheet methods

Method Classification Type Description
GetRange() Callable AcExcel Returns the handle to the cells to
Range access
GetRow/() Callable AcExcelRow Returns the handle to the row to
access
SetDisplayGridlines() Callable N/A Turns the gridlines on or off
SetName() Callable Integer Sets the name of the worksheet

Visitor class and methods

Use the AcVisitor class and methods to customize processing on a report

component.

AcVisitor

AcVisitor creates a utility to visit a report component and perform an action on
the component. AcVisitor does not inherit from other classes. AcVisitor methods

are listed in Table 4-69.

Table 4-69 AcVisitor methods

Method Classification Type Description

VisitBaseFrame() Overridable N/A Visits a base frame component

VisitBasePage() Overridable N/A Visits a base page component

VisitChart() Overridable N/A Visits a chart component

VisitComponent() Overridable N/A Visits components of a report

VisitConditional Overridable N/A Visits a conditional section

Section() component

VisitContents() Overridable N/A Visits the contents of a report’s data
hierarchy components

VisitControl() Overridable N/A Visits a control component

VisitCurrencyControl() Overridable = N/A Visits a currency control component

VisitDataControl() Overridable N/A Visits a data control component

VisitDataFrame() Overridable N/A Visits a data frame component

VisitDataSection() Overridable N/A Visits a data section component

VisitDateTimeControl() Overridable N/A Visits a date and time control

Chapter 4, Actuate Foundation Class library

component
(continues)

137

Table 4-69 AcVisitor methods (continued)

Method Classification Type Description

VisitDoubleControl() Overridable N/A Visits a double control component
VisitFlow() Overridable N/A Visits a flow component
VisitFrame() Overridable N/A Visits a frame component
VisitGroupSection() Overridable N/A Visits a group section component

Overridable N/A
Overridable N/A

VisitlmageControl() Visits an image control component

VisitIntegerControl() Visits an integer control component

VisitLabelControl() Overridable N/A Visits a label control component
VisitLeftRightPage Overridable N/A Visits a left-right page list component
List()

VisitLinearFlow()
VisitLineControl()

Overridable N/A
Overridable N/A

Visits a linear flow component

Visits a line control component

VisitPage() Overridable N/A Visits a page component
VisitPages() Overridable N/A Visits the contents of the report’s

page hierarchy components
VisitPageList() Overridable N/A Visits a page list component
VisitPageNumber Overridable N/A Visits a page number control
Control() component

VisitParallelSection() Overridable N/A
VisitRectangleControl() Overridable N/A

Visits a parallel section component

Visits a rectangle component

VisitReport()

VisitReport
Component()

Overridable
Overridable

N/A
N/A

Visits an AcReport component

Visits an AcReportComponent
component

VisitReportSection() Overridable N/A
VisitSection() Overridable N/A
VisitSequentialSection() Overridable N/A
Overridable N/A
Overridable N/A
Overridable N/A
Overridable N/A

Visits a report section component
Visits a section component

Visits a sequential section component
VisitSimplePageList() Visits a simple page list component
VisitSubpage()
VisitTextControl()
VisitTextualControl()

Visits a subpage component
Visits a text control component

Visits a textual control component

VisitTitleBodyPage Overridable N/A Visits a title and body page list
List()
VisitVisual Overridable N/A Visits a visual component

Component()

138 Programming with Actuate Foundation Classes

Understanding report
generation

This chapter contains the following topics:
m Understanding the report generation process
m Creating content

m Understanding page creation

Chapter 5, Understanding report generation 139

Understanding the report generation process

The Factory manages the processes that run an executable file and display or
print a file. Factory processes result in a report object instance (.roi) file, which
consists of persistent objects. The report developer can print the output or view
the file locally using e.Report Designer Professional’s View perspective. If you
publish the executable file to iServer, the report user views the output in DHTML
using a web browser and a tool such as Actuate Information Console. Figure 5-1
shows the Factory operations that occur during the build process and the file
types that result from those processes.

Design Gen%rate Comp|le Factory
code processes :
\ / View
v perspective

TSD % Printer

Running the executable file on
iServer produces an ROI available iServer
to Information Console users, who
view the output in DHTML over the

web
Actuate
Information
Console
V
Browser
DHTML
output)
Figure 5-1 Factory processes result in on-screen display or printed output

The process that results in a report instance begins when a data stream delivers a
data row to a section. The section creates its contents, which can be another
section or a frame and controls. The section then passes the frame to the page list,
which instantiates pages and flows as necessary. Figure 5-2 gives an overview of
this process.

140 Programming with Actuate Foundation Classes

Input Source

Data
$ 1. Deliversa 3. Passes
data row a frame
Data . .
stream | Section f———r Page list
2. Creates 4. Creates a
contents page as
needed
Frame Page
and and - ROI
control flow
Figure 5-2 Overview of the process of creating an ROI

The following sections describe how the Factory generates a report and the class
protocols that determine how objects in a report fit together.

Generating a report

When you build and run a report, Actuate software executes an internal method
called Factory(), which is specific to your file. Factory() performs the following
tasks:

m Creates a report object instance (.roi) file. The Factory uses either a default
name with the same root name as the report object design (.rod) file or the
name the user specifies when Requester prompts for the output file name.

m Creates a component relationship map. To show how components interact, the
component relationship map stores component reference information derived
from the report design’s structure.

m Instantiates the report as a subclass of AcReport.
m Calls the file’s Build() method to start the report-generation process.
m Closes the ROL

Adding startup and cleanup code

You can add code that runs before the Factory initiates the report-generation task
and after it generates the report. You do so by overriding the report’s Start() and
Finish() methods. Table 5-1 describes the use of the Start() and Finish() methods.

Chapter 5, Understanding report generation 141

Table 5-1 Using the Start() and Finish(') methods

Method Called ... Example of use

Start() After the Factory m Initialize a global variable.
instantiates the report, g Verify or adjust parameter values
before report generation a user entered.
begins

m Open alog file to track the
objects or the number of pages
the report creates.

If you override Start(), you must
call Super::Start() first.

Finish() After the report m Send a completion notice to the
generates, before the user.
ROI closes m Write statistics to a log file.

If you override Finish(), you must
call Super::Finish() after your code.

Starting the build process

One of the Factory’s first tasks is to instantiate the top-level report object. The
report object, a subclass of AcReport, is the object that contains all other
components of a report. AcReport establishes the report’s content and page
structures.

The content structure consists of objects that contain data. The page structure
consists of objects that determine how to display report content. Figure 5-3 shows
examples of the two structures.

Content structure Page structure

Report section Page list

‘ Group section I| Group section I Page ” Page I
—— —— ——1 ——
| Frame || Frame ” Frame ” Frame I | FIOWI ‘ Flow | ‘ Flow | | Flow |

| | |
| [[[
| Frame || Frame ” Frame ” Frame I

| Frame || Frame ” Frame ” Frame I

Figure 5-3 Overview of content structure and page structure

142 Programming with Actuate Foundation Classes

After instantiating the report class, the Factory calls the report’s Build() method,
which performs the following tasks:

m Calls NewPageList() to instantiate the page list the report design specifies.

m Calls NewContent() to instantiate the top-level component the report design
specifies. In a typical design, the top-level component is a report.

m Calls the top-level content’s Build() method to build report content.

Creating content

All report components that contain content, such as a section, a frame, or a
control, follow a protocol that determines how to build the content. The protocol
makes it possible to connect report components into a variety of configurations.
For example, the top-level Content component can be a report section, a
sequential section, or a frame. You can nest a report within a report, a section
within a report, a section within a section, a frame within a frame, and so on. The
configuration determines the order in which to create the components.

Understanding how the core protocol creates content

AcReportComponent is the abstract base class that defines the protocol for
creating report components and putting them together to form a report. Table 5-2
describes the methods of AcReportComponent that form the core content-
creation protocol for all persistent content objects.

Table 5-2 Methods that form the core content-creation protocol

Method Description

New() Initializes the object.

Start() Prepares the object for build operations. For example, a

report section’s Start() method instantiates the
connection and the data stream. The frame’s Start()
method instantiates the controls the frame contains.

Build() or Builds the object’s contents. For example, a report

BuildFromRow() section’s Build() method reads data rows from the data
stream, instantiates the contents, and passes the data
rows to them. The frame’s BuildFromRow() method
passes the data rows to the controls it contains.

Finish() Prepares the object to write to the report object instance
(.roi) file. For example, the report section’s Finish()
method closes the data stream and connection.

Chapter 5, Understanding report generation 143

Understanding how a component reference creates
content

A component reference defines the relationship among components in the
structure of the report design. When a component uses or contains another
component, the first component refers to the other component. For example, the
report object creates and refers to the report section contained immediately
within it. The references that develop between a container and its contents
determine the hierarchy of objects in the report structure. The hierarchy
determines which processes occur and the order in which those processes occur.
The components in a report follow a predefined set of component reference rules
that you cannot change.

The Slots property group of a component shows the references for the
component. For example, Figure 5-4 shows the Slots property group for a report

section.
Propeties IMethdsI Valiab\esl Class I
—==F|E&liadX
=l Slots |
[After RepoTaotals
[l Before RepoHTitle
[l Cannection DBConnection
[Content OfficeGroup
[DataStream DataSource
[PageFooter
[PageHeader RepaorPageHeader
[Subpage ;I
Figure 5-4 Slots property group

Every report section has all of these references available, even if the slots contain
no components.

It is possible for a container to have more than one component reference of the
same type. For example, a parallel or sequential section can have multiple
Content slots, and a frame can contain multiple components, all bearing the same
type of component reference. When there are multiple component references, you
can control the order in which the component references occur by using the up
and down arrows in the Report Structure toolbar. If the components you want to
move are references to library components, you must change the order in the
library. Figure 5-5 shows how the component reference relationships determine
how the Factory builds report contents.

Each component reference that a component supports has a corresponding
method. This method has a New prefix followed by the name of the reference. For
example, AcReportSection’s connection component reference has a
corresponding NewConnection() method and its data stream component
reference has a corresponding NewDataStream() method.

144 Programming with Actuate Foundation Classes

Structure Implementation

E-FR] ReportRoct Report:
5@ Content - Report Section
? Connection - ODEBC Connection
-fl) Datadtream - Data Source NeW()
I Cortertt - Frame

Build()—= Report section:

Cortert - Image Control Start()
i i Build()—= Frame:

[D P;;eList - Sirnple PageList Finish() New() Controls:

Start() iz New()

Start()

Build() —= Build()

Finish() —= Finish()

Figure 5-5 Overview of how report structure drives report generation

A container object uses the New<component_reference> methods to instantiate
its content. To conditionally instantiate a component, you can override the
New<component_reference> method. For example, if a report uses a different
connection depending on the data stream it uses, you can override
NewConnection() to write the conditional logic. To determine where to place
code to add custom processing, you must understand the key methods involved
in content creation and how each component implements the core
content-creation protocol. The following sections provide this information.

Understanding how a report section creates content

The report section retrieves data rows from the data stream and passes the rows
to its contents. The report section, a subclass of AcReportSection, is typically the
top-level content in a report design. Table 5-3 describes how the report section
implements the core content-creation protocol.

Table 5-3 Core methods that a report section uses to create
content

Method Task

Start() Instantiates the connection.

Instantiates the data stream.
Passes the connection to the data stream.
Sets the sort key.

Build() Opens the data stream.
Creates the Before and After frames.
Reads a row from the data stream.

(continues)

Chapter 5, Understanding report generation 145

Table 5-3 Core methods that a report section uses to create
content (continued)

Method Task

Build() (continued) Processes the row:

m If content already exists, the report verifies that the
content needs the row. The report passes the row to
the content if the content needs it.

m If content does not exist or if an existing component
rejects a row, the report instantiates new content and
passes the row to the new content.

Reads and processes rows until it retrieves all data rows.

Finish() Closes the data stream and connection.

Understanding how a group section creates content

A group section organizes data by grouping rows on a key field, such as grouping
customers by sales representative. A group section is typically the content of a
report section. A group section contains other group sections or frames.

Each group section uses a unique sort key to define a group of rows. Set the group
section’s sort key, typically the name of a table column, using the Key property.
Figure 5-6 shows typical sort keys for a report’s group sections.

Nested group sections in Sort key value in
the structure the Key property
=l Content - OfficeGroup — [OfﬂCES.OfﬁcelD]
Befare - OfficeT itleFrame
ﬂ Content - SalesRepGroup —_ [SaleSrepS.replD]
Before - SalesRepTitleFrame
EHE) Contert - CustomerGroup —— [customers.customName]

Befare - CustomerT itleFrame
PageHeader - CustomerPageHeader
=HE] Content - OrderGroup ————— [orders.orderID]

Before - OrderT tleFrame
PageHeader - OrdersPageHeader

Cortert - ltemFrame

Figure 5-6 Group sections and sort keys

The group section tests the key of each data row it receives. Rows using the same
key value belong in the same group section. A change in a key’s value between
rows indicates the end of one group section and the start of another. Table 5-4
describes how the group section implements the core content-creation protocol.

Understanding how a frame creates content

A frame typically contains controls that display data from a data row. A frame
gets data rows from its container object, typically a section, and passes those rows

146 Programming with Actuate Foundation Classes

to the controls. Table 5-5 describes how a frame implements the core content-
creation protocol.

Table 5-4 Core methods that a group section uses to create content
Method Task

Start() Initializes the group section.

BuildFromRow() Accepts a data row from its container object.

Processes the row:

m If the row is the first one, the group section
determines and stores the value of the sort key. The
group section also creates the Before and After
frames, passes the row to its content, and returns
ContinueBuilding. This return value indicates to the
container object that the group section needs the next
data row.

m If the row is not the first one, the section verifies that
the row’s key is the same as the stored key value. If
the keys match, the group section passes the row to
its content. If the keys do not match,
BuildFromRow() returns Rejected Row, indicating
the end of a group section.

Repeats these steps until it retrieves all data rows,
returning ContinueBuilding.

Finish() Finishes the group section.

Table 5-5 Core methods that a frame uses to create content

Method Task

Start() Instantiates and starts the frame’s contents in the order

in which they appear in the structure. The frame’s
contents can be other frames or controls.

BuildFromRow/() Passes data rows to the frame’s contents.
Finish() Calls each control’s Finish() method.

Understanding how a control creates content

A control typically displays a value from the data row it receives from its
container, a frame. A control does not contain other components. Table 5-6
describes how a control implements the core content-creation protocol.

Chapter 5, Understanding report generation 147

Table 5-6

Core methods that a control uses to create content

Method

Task

Start()

Typically, a control needs only the default logic.

BuildFromRow() Sets the control’s value using data from a data row:

Finish()

m If a control, such as a line or label control, does not
need the data row, BuildFromRow/() returns
FinishedBuilding.

m If a control needs only one row, BuildFromRow()
sets the value of the control and returns
FinishedBuilding.

m If a control is an aggregate control, it uses all data
rows. BuildFromRow() returns ContinueBuilding.

For an aggregate control, performs final calculations. For
other controls, Finish() does nothing.

Understanding page creation

The content-creation process drives the page-creation process. The two processes
occur concurrently. As each frame completes, the section that contains the frame
passes the frame to the page list. As each page begins or ends, the page list
notifies the section and the section generates a page header or footer.

Figure 5-7 shows how the content-creation and page-creation processes work

together.

Section

Creates
contents

Frame and
control

Passes
a frame
— —| Pagelist
L,
Sends
an event Creates a page
as needed
Page and
flow

Figure 5-7

Interaction of the content-creation and page-creation processes

Figure 5-8 shows the order in which headers and footers go into a report.

Determining the page on which a frame appears

A section passes a frame to the page list by calling the page list's AddFrame()
method. AddFrame() determines the page on which to place the frame by
checking the following conditions:

148 Programming with Actuate Foundation Classes

m If the frame’s PageBreakBefore property is True, AddFrame() finishes the
current page, if one exists, then starts a new page.

m If the frame’s PageBreakBefore property is False, AddFrame() adds the frame
to the page if it fits. If it does not fit, the page list starts a new page.

m If the frame does not fit on a new page, AddFrame() clips the frame to the
available space.

m After placing the frame on a page, AddFrame() checks the value of the
frame’s PageBreak After property. If PageBreakAfter is True, AddFrame()
finishes the current page. AddFrame() starts a new page when it gets the next
frame.

Page header for report —— 1
Sectionl page header | ——2
Section2 page header —3
Section2 page footer —3
Sectionl page footer | —2
Page footer for report —— 1
Figure 5-8 The order in which headers and footers are added to a page

About page list styles

There are three page list styles:

m AcSimplePageList, in which each page uses the same design

m AcLeftRightPageList, in which the right and left pages mirror each other

m AcTitleBodyPageList, in which the title page uses a different design from other
pages

A section can work on any style because a page list follows a standard protocol.

The protocol, defined in AcPageList, consists of the AddFrame() method. Before

instantiating a new page, the page list checks whether a section or frame sets a

page style in its NewPage() method. If a frame or section sets a page style, the

page list uses that style. Otherwise, the page list uses its default page style.

Chapter 5, Understanding report generation 149

About page list events

A page list sends a notice to a section when any of the following events occurs:
m StartFlow

m StartPage

m FinishFlow

m FinishPage

These events determine whether the framework places a header at the start of a
new flow or page, or a footer at the end of a flow or page.

150 Programming with Actuate Foundation Classes

Two

Actuate Foundation Class Reference

AFC data types

This chapter covers the topic “About the AFC data types.”

Chapter 6, AFC data types 153

About the AFC data types

Actuate products use two categories of data types, those provided by Actuate
Basic, and those that are defined specifically for use with Actuate Foundation
Classes (AFC). This chapter discusses the AFC data types. For information about
Actuate Basic data types, see Programming with Actuate Basic. AFC data types
include aliased types, structures, and enums.

About AFC aliased types

AFC defines aliases for some Actuate Basic data types. These aliases are
recognized and handled specially by e.Report Designer Professional. For
example, AcColor is an alias of Actuate Basic’s Integer data type, but e.Report
Designer Professional presents an AcColor property as a drop-down list of colors
with a custom color picker. Sections that follow describe the purpose and
behavior of each AFC aliased type.

About AFC structures

A structure is a data type that contains multiple named values, called members.
The members of a structure can be Visual Basic data types, such as Integer or
Boolean, or AFC data types. For example, AcDrawingLineStyle is a structure that
defines the format for a line. Its members, Color, Pen, and Width, define the line
color, the pattern of the line, and the line width, respectively. Structures can be
nested. In other words, structure members can be structures. e.Report Designer
Professional displays a structure property as an expandable group of values.
Sections that follow list the members for each AFC structure.

About AFC enums

An enum is a data type whose value is one of a set of named values. e.Report
Designer Professional displays an enum property as drop-down list of values. For
example, the value of a TrafficLightColor enum might be Red, Yellow, or Green.
Sections that follow list the values for each enum defined in AFC.

AFC data types
The following sections describe all the AFC data types.

154 Programming with Actuate Foundation Classes

AcAutoSplit

AcAutoSplit

AcAutoSplit is an enum that specifies how a component, such as a cross tab or
frame, splits into multiple flows. AcAutoSplit values are listed in Table 6-1.

Table 6-1 AcAutoSplit values
Constant Description
DefaultSplitting If the component is a frame that contains dynamically

sized content, such as a crosstab or dynamic text
control, or it is a dynamically sized control, it may be
split to maximize use of space within a flow.

DoNotSplit The component must not be split.

SplitIfPossible The component splits to maximize use of space within
a flow.

SplitlfNecessary The component splits only if it cannot fit as or within

the first non-decoration frame in a flow.

AcBrowserClipping

AcBrowserClipping is an enum that specifies how to clip text in a browser
scripting control when it is viewed in a web browser. AcBrowserClipping values
are listed in Table 6-2.

Table 6-2 AcBrowserClipping values
Constant Description
AutoScrollbar Display scrollbars when necessary to support viewing
text that does not fit in the control.
ClipToControlSize Clip text to fit within the control.
NoClipping Allow text to overflow the bounds of the control.
Scrollbar Always display scrollbars.

AcChartAxisLabelPlacement

AcChartAxisLabelPlacement is an enum that specifies the placement of the labels
on a chart axis. AcChartAxisLabelPlacement values are listed in Table 6-3.

Chapter 6, AFC data types 155

AcChartAxisLetter

Table 6-3 AcChartAxisLabelPlacement values
Constant Description
ChartAxisLabel Does not display the axis labels.
PlacementNone
ChartAxisLabel Places the axis label next to the axis.
PlacementNextToAxis
ChartAxisLabel If the axis is vertical, places the axis labels at the left of
PlacementLeftOr the chart. If the axis is horizontal, places the axis labels
Bottom at the bottom of the chart.
ChartAxisLabel If the axis is vertical, places the axis labels at the right
PlacementRightOrTop of the chart. If the axis is horizontal, places the axis

labels at the top of the chart.

AcChartAxisLetter

AcChartAxisLetter is an enum that specifies the type of a chart axis.
AcChartAxisLetter values are listed in Table 6-4.

Table 6-4 AcChartAxisLetter values
Constant Description
ChartAxisLetterX The axis is an x-axis.
ChartAxisLetterY The axis is a y-axis.
ChartAxisLetterZ The axis is a z-axis.

AcChartAxisPlacement

AcChartAxisPlacement is an enum that specifies the placement of a chart axis.
AcChartAxisPlacement values are listed in Table 6-5.

Table 6-5 AcChartAxisPlacement values
Constant Description
ChartAxisPlacement Places the chart axis automatically. If the opposite axis

Auto

includes zero, the axis crosses it at zero. If all the
values on the opposite axis are positive, the axis
crosses it at the lowest value. If all the values on the
opposite axis are negative, the axis crosses it at the
highest value.

156 Programming with Actuate Foundation Classes

AcChartBarShape

Table 6-5 AcChartAxisPlacement values

Constant Description

ChartAxisPlacement The chart axis crosses the opposite axis at a specified

Custom value.

ChartAxisPlacement If the axis is vertical, places it at the left of the chart. If

LeftOrBottom the axis is horizontal, places it at the bottom of the
chart.

ChartAxisPlacement If the axis is vertical, places it at the right of the chart.

RightOrTop If the axis is horizontal, places it at the top of the chart.

AcChartBarShape

AcChartBarShape is an enum that specifies the cross-section of a three-
dimensional bar in a chart. AcChartBarShape values are listed in Table 6-6.

Table 6-6 AcChartBarShape values

Constant Description
ChartBarShapeElliptical Cylinder

ChartBarShapeFlat Flat two-dimensional rectangle
ChartBarShapeHexagonal Hexagon
ChartBarShapeOctagonal Octagon
ChartBarShapeRectangular Rectangle
ChartBarShapeTriangular Triangle

AcChartComparisonOperator

AcChartComparisonOperator is an enum that specifies the Boolean operator to
use to compare two values in a chart. Valid values are listed in Table 6-7.

Table 6-7 AcChartComparisonOperator values

Constant Description

ChartComparisonOperatorEQ =
ChartComparisonOperatorGE >=
ChartComparisonOperatorGT >
(continues)

Chapter 6, AFC data types 157

AcChartDefaultMarkerSettings

Table 6-7 AcChartComparisonOperator values (continued)

Constant Description

ChartComparisonOperatorLE <=
ChartComparisonOperatorLT <

ChartComparisonOperatorNone No comparison is required.

AcChartDefaultMarkerSettings

AcChartDefaultMarkerSettings is a structure that defines the default shape and
color for a chart marker. AcChartDefaultMarkerSettings members are listed in

Table 6-8.

Table 6-8 AcChartDefaultMarkerSettings members

Member name Type Description

Filled Boolean Indicates whether the default marker uses a
fill color

Shape AcChart Indicates the default shape of the marker

MarkerShape

AcChartLayerType

AcChartLayerType is an enum that specifies the type of a layer in a chart.
AcChartLayerType values are listed in Table 6-9.

Table 6-9 AcChartLayerType values
Constant Description
ChartLayerTypeBase The layer is the base layer of a chart.
ChartLayerTypeOverlay The layer is the overlay layer of a chart.
ChartLayerTypeStudy The layer is one of the study layers of a
chart.

AcChartLegendPlacement

AcChartLegendPlacement is an enum that specifies the placement of the legend
of a chart. AcChartLegendPlacement values are listed in Table 6-10.

158 Programming with Actuate Foundation Classes

Table 6-10

AcChartMarkerShape

AcChartLegendPlacement values

Constant

Description

ChartLegendPlacementBottom

ChartLegendPlacementBottom
Left

ChartLegendPlacementBottom
Right
ChartLegendPlacementLeft
ChartLegendPlacementNone
ChartLegendPlacementRight
ChartLegendPlacementTop
ChartLegendPlacementTopLeft

ChartLegendPlacementTop
Right

Displays the legend at the bottom of the
chart

Displays the legend at the bottom left of the
chart

Displays the legend at the bottom right of
the chart

Displays the legend at the left of the chart
Does not display the legend

Displays the legend at the right of the chart
Displays the legend at the top of the chart

Displays the legend at the top left of the
chart

Displays the legend at the top right of the
chart

AcChartMarkerShape

AcChartMarkerShape is an enum that specifies the shape of a point marker in a
chart. AcChartMarkerShape values are listed in Table 6-11.

Table 6-11 AcChartMarkerShape values
Constant Description
ChartMarkerShapeCircle Circle

ChartMarkerShapeClose

ChartMarkerShapeCross
ChartMarkerShapeDiamond
ChartMarkerShapeHigh

ChartMarkerShapeLow

ChartMarkerShapeNone

Stock chart Close symbol: a small horizontal
dash offset to the right of the point

Diagonal cross
Diamond

Stock chart High symbol: a wide horizontal
dash

Stock chart Low symbol: a wide horizontal
dash

No marker

(continues)

Chapter 6, AFC data types 159

AcChartMissingPoints

Table 6-11 AcChartMarkerShape values (continued)
Constant Description
ChartMarkerShapeOpen Stock chart Open symbol: a small horizontal
dash offset to the left of the point
ChartMarkerShapePlus Plus sign
ChartMarkerShapeSquare Square
ChartMarkerShapeStar Star
ChartMarkerShapeTriangle Triangle pointing down
Down

ChartMarkerShapeTriangleUp

Triangle pointing up

AcChartMissingPoints

AcChartMissingPoints is an enum that specifies how to handle missing points in
a chart. AcChartMissingPoints values are listed in Table 6-12.

Table 6-12

AcChartMissingPoints values

Constant

Description

ChartMissingPointsDoNotPlot

ChartMissingPointsInterpolate

ChartMissingPointsPlotAsZero

Does not plot missing points. If the chart is a
line chart, the lines break each side of
missing points.

Plots missing points as points whose values
are linear interpolations of the points either
side of them. If the chart is a line chart, does
not display markers at the missing points,
but keeps the lines unbroken.

Plots missing points as points with zero
values.

AcChartPieExplode

AcChartPieExplode is an enum that specifies how to explode sectors in a pie
chart. AcChartPieExplode values are listed in Table 6-13.

Table 6-13

AcChartPieExplode values

Constant

Description

ChartPieExplodeAllSlices

Explodes all sectors

160 Programming with Actuate Foundation Classes

AcChartPointHighlight

Table 6-13 AcChartPieExplode values
Constant Description
ChartPieExplodeNone Does not explode sectors

ChartPieExplodeSpecificSlices

Explodes only those sectors that are
explicitly flagged to be exploded

AcChartPointHighlight

AcChartPointHighlight is an enum that specifies how to highlight a point in a
chart. AcChartPointHighlight values are listed in Table 6-14.

Table 6-14

AcChartPointHighlight values

Constant

Description

ChartPointHighlightExplode

ChartPointHighlightNone

The point is an exploded sector in a pie
chart.

Does not highlight the point.

AcChartPointLabelPlacement

AcChartPointLabelPlacement is an enum that specifies where to place a point
label in a chart. AcChartPointLabelPlacement values are listed in Table 6-15.

Table 6-15 AcChartPointLabelPlacement values

Constant Description

ChartPointLabelPlacement Displays the label above the point. This
Above placement is supported for line, scatter, and

ChartPointLabelPlacementAuto

ChartPointLabelPlacemen
Below

ChartPointLabelPlacement
Center

stock charts.

Places the label automatically to give a
reasonable appearance. This placement is
supported for all chart types.

Displays the label below the point. This
placement is supported for line, scatter, and
stock charts.

For line, scatter, and stock charts, displays
the label centered on the point. For area, bar,
pie, and step charts, displays the label

(continues)

Chapter 6, AFC data types 161

AcChartPointLabelSource

Table 6-15 AcChartPointLabelPlacement values (continued)
Constant Description
ChartPointLabelPlacement centered in the area, bar, pie sector, or step

Center (continued)

ChartPointLabelPlacement
InsideBase

ChartPointLabelPlacement
InsideEnd
ChartPointLabelPlacementLeft
ChartPointLabelPlacementNone
ChartPointLabelPlacement

OutsideEnd

ChartPointLabelPlacementRight

representing the point. This placement is
supported for all chart types.

Displays the label inside the base of the bar
representing the point (next to the x-axis).
This placement is supported for bar charts.

Displays the label inside the outer end of the
bar or pie sector representing the point. This
placement is supported for bar and pie
charts.

Displays the label to the left of the point.
This placement is supported for line, scatter,
and stock charts.

Does not display a label. This placement is
supported for all chart types.

Displays the label outside the outer end of
the bar or pie sector representing the point.
This placement is supported for bar and pie
charts.

Displays the label to the right of the point.
This placement is supported for line, scatter,
and stock charts.

AcChartPointLabelSource

AcChartPointLabelSource is an enum that specifies how to calculate the value of
a point label in a chart. AcChartPointLabelSource values are listed in Table 6-16.

Table 6-16 AcChartPointLabelSource values

Constant

Description

ChartPointLabelSourceCategory

The label value is the category label value for
the point’s category.

This setting is not supported for bubble and
scatter charts.

162 Programming with Actuate Foundation Classes

AcChartPointLabelSource

Table 6-16 AcChartPointLabelSource values (continued)

Constant

Description

ChartPointLabelSourceCategory
AndPercentage

ChartPointLabelSourceCustom

ChartPointLabelSource
Percentage

ChartPointLabelSourceSeries

ChartPointLabelSourceSeries
AndPercentage

ChartPointLabelSourceXValue

ChartPointLabelSourceY Value

ChartPointLabelSourceY Value
AndPercentage

In a pie chart, the label value is the category
label value for the sector’s category,
followed by the sector’s value as a
percentage of the whole pie.

In other chart types, the label value is the
category label value for the point’s category,
followed by the point’s value as a percentage
of the point’s category.

This setting is supported only for pie and
stacked charts.

The label value is a custom point label value
stored in the data point object.

In a pie chart, the label value is the sector’s
value as a percentage of the whole pie.

In other types of chart, the label value is the
point’s y value as a percentage of the point’s
category.

This setting is supported only for pie and
stacked charts.

The label value is the series label value for
the point’s series.

This setting is not supported for pie charts.
The label value is the series label value for

the point’s series, followed by the point’s y
value as a percentage of the point’s category.

This setting is supported only for stacked
charts.

The label value is the point’s x value.

This setting is supported only for bubble and
scatter charts.

In a pie chart, the label value is the sector’s
value.

In other types of chart, the label value is the
point’s y value.

In a pie chart, the label value is the sector’s
value, followed by the sector’s value as a
percentage of the whole pie.

(continues)

Chapter 6, AFC data types 163

AcChartSeriesPlacement

Table 6-16 AcChartPointLabelSource values (continued)

Constant Description

ChartPointLabelSourceYValue = In other types of chart, the label value is the
AndPercentage (continued) point’s y value, followed by the point’s y
value as a percentage of the point’s category.

This setting is supported only for pie and
stacked charts.

ChartPointLabelSourceZValue = The label value is the point’s z value.

This setting is supported only for bubble
charts.

AcChartSeriesPlacement

AcChartSeriesPlacement is an enum that specifies how to place the points in
multiple series within a chart, relative to each other. AcChartSeriesPlacement
values are listed in Table 6-17.

Table 6-17 AcChartSeriesPlacement values
Constant Description
ChartSeriesPlacementAs For each category, stacks the values for each
Percentages series on top of each other such that the total

height for all the series is always 100%. The
y-axis displays percentages, not absolute
values. This placement is supported for area,
bar, line, and step charts.

ChartSeriesPlacement Places the values for each series side by side.
SideBySide All chart types support this placement.
ChartSeriesPlacementStacked For each category, stacks the values for each

series on top of each other. This placement is
supported for area, bar, line, and step charts.

ChartSeriesPlacementOnZAxis Places the values for each series
front-to-back on the z-axis of a
three-dimensional chart. This placement is
supported for area, bar, and line charts.

AcChartStatus

AcChartStatus is an enum that specifies the stage a chart has reached in its life
cycle. AcChartStatus values are listed in Table 6-18.

164 Programming with Actuate Foundation Classes

AcChartTickCalculation

Table 6-18 AcChartStatus values
Constant Description
ChartStatusBuilding The chart is gathering and processing data
and formatting itself.
ChartStatusFinished

ChartStatusFinishedBuilding

ChartStatusUninitialized

The chart is complete and cannot be changed
further.

The chart is still being initialized. This status
lasts until all the layers within the chart have
been created and initialized.

AcChartTickCalculation

AcChartTickCalculation is an enum that specifies how to calculate the spacing of
the tick marks and labels on a chart axis. AcChartTickCalculation values are listed

in Table 6-19.
Table 6-19

AcChartTickCalculation values

Constant

Description

ChartTickCalculationAuto

ChartTickCalculationExact
Interval

ChartTickCalculationMinimum
Interval

Calculates the spacing automatically, based
on the data in the chart and the axis settings

Specifies the spacing explicitly in the axis

Calculates the spacing automatically in the
same way as for the
ChartTickCalculationAuto setting, except
that the interval between ticks must be at
least a specified value

AcChartTickPlacement

AcChartTickPlacement is an enum that specifies the placement of the tick marks
on a chart axis. AcChartTickPlacement values are listed in Table 6-20.

Chapter 6, AFC data types 165

AcChartType

Table 6-20

AcChartTickPlacement values

Constant

Description

ChartTickPlacementAcross
ChartTickPlacementInside
ChartTickPlacementNone
ChartTickPlacementOutside

Ticks cross through the axis
Displays ticks inside the axis
Does not display ticks
Displays ticks outside the axis

AcChartType

AcChartType is an enum that specifies the presentation of data on a chart layer.
AcChartType values are listed in Table 6-21.

Table 6-21 AcChartType values
Constant Description
ChartTypeArea Presents data as filled areas. The x-axis
shows categories, the y-axis shows values.
ChartTypeBar Presents data as bars. The x-axis shows
categories, the y-axis shows values.
ChartTypeBubble Presents data as individual points, drawn as
circles of varying sizes. Both the x-axis and
the y-axis show values. The circles’ sizes are
controlled by the points” z values.
ChartTypeLine Presents data as lines. The x-axis shows
categories, the y-axis shows values.
ChartTypeNone Does not specify a presentation. This setting
causes the chart to throw a runtime error.
ChartTypePie Presents data as a pie. Each sector in the pie
represents a category. The layer has no axes.
ChartTypeScatter Presents data as individual points. Both the
x-axis and the y-axis show values.
ChartTypeStep Presents data as filled steps. The x-axis
shows categories, the y-axis shows values.
ChartTypeStock Presents data as a stock chart. The x-axis

shows a time series, the y-axis shows values.

166 Programming with Actuate Foundation Classes

AcColor

AcColor

AcColor is an Integer that contains a color expressed as a standard Windows RGB
value. AFC supports the standard Windows 16 million colors. The AFC
framework defines the constants for common Windows colors. AcColor constants

are listed in Table 6-22.

Table 6-22

AcColor constants

Constant

RGB Value

Black

Blue
BlueGray
BrickRed
Brown
Coral
Cream
Crimson
Cyan
DarkGray
DarkKhaki
DarkStraw
DeepPink
Forest

Gold
GrassGreen
Gray

Green
GreenYellow
Khaki
Lavender
LightBlue
LightBlueGray
LightBrown
LightCyan

RGB(0, 0, 0)
RGB(0, 0,255)
RGB(89,128,179)
RGB(234, 70, 0)
RGB(204, 102, 26)
RGB(255, 115, 51)
RGB(255, 255, 166)
RGB(198, 26, 26)
RGB(0,255,255)
RGB(64, 64, 64)
RGB(189, 183,107)
RGB(204, 168, 0)
RGB(255, 26, 128)
RGB(0,127, 0)
RGB(252,217, 13)
RGB(51,191, 51)
RGB(128, 128, 128)
RGB(0,255, 0)
RGB(128, 230, 26)
RGB(240, 230, 140)
RGB(230, 217, 255)
RGB(179, 204, 254)
RGB(179, 191,217)
RGB(242, 166, 115)
RGB(166, 255, 255)

(continues)

Chapter 6, AFC data types 167

AcColor

Table 6-22

AcColor constants (continued)

Constant

RGB Value

LightGray
LightGreen
LightMagenta
LightVioletRed
LightYellowGreen
Magenta
Maroon
MintGreen
Navy

Olive

Orange
PaleBlue
PaleBlueGray
PaleCyan
PaleGray
PaleGreen
PaleMagenta
PalePink
PaleStraw
PaleYellowGreen
Pink

Purple

Red

SeaGreen
SkyBlue
SmokeGray
Straw

Taupe

Teal
Transparent

Turquoise

RGB(192,192, 192)
RGB(166, 255, 153)
RGB(242, 128,242)
RGB(230, 153, 179)
RGB(217, 255, 128)
RGB(255, 0,255)
RGB(127, 0, 0)
RGB(0,230, 102)
RGB(0, 0,127)
RGB(127,127, 0)
RGB(255, 166, 0)
RGB(217, 230, 255)
RGB(217, 230, 242)
RGB(217, 255, 255)
RGB(230, 230, 230)
RGB(217, 255,191)
RGB(255, 217, 255)
RGB(255, 217, 217)
RGB(255, 242, 166)
RGB(230, 255, 166)
RGB(255,179, 179)
RGB(127, 0,127)
RGB(255, 0, 0)
RGB(0,191,191)
RGB(102, 166, 255)
RGB(242, 242, 242)
RGB(255, 230, 115)
RGB(204, 179, 140)
RGB(0,127,127)
N/A

RGB(89,242,217

168 Programming with Actuate Foundation Classes

AcControlValueType

Table 6-22 AcColor constants (continued)
Constant RGB Value

Violet RGB(140, 51,217)
VioletRed RGB(204, 51,102)
White RGB(255, 255, 255)
Yellow RGB(255,255, 0)
YellowGreen RGB(191, 230, 26)

AcControlValueType

AcControlValueType is an enum that determines whether a control processes a
single data row or multiple data rows. If you override methods within a control to
perform custom aggregation, set this property to SummaryControl to ensure that
the control processes all the data rows. If you set this property to PerRowControl,
and the control has value expression properties that contain aggregate functions,
those aggregate functions will not be evaluated correctly. AcControlValueType
values are listed in Table 6-23.

Table 6-23 AcControlValueType values

Constant Description

AutoValueControl If any value expression property of the control
contains an aggregate function, the control will
process multiple data rows. If no value expression
property of the control contains an aggregate
function, the control will process only one data row.

PerRowControl The control will process only one data row.

SummaryControl The control will process multiple data rows.

AcCrosstabBorderStyle

AcCrosstabBorderStyle is a structure that describes the border of a cross tab.
AcCrosstabBorderStyle members are listed in Table 6-24.

Table 6-24 AcCrosstabBorderStyle members

Member name Type Description
Color AcColor The color of the border
Thickness AcTwips The thickness of the border

Chapter 6, AFC data types 169

AcCrosstabTotalColumnPlacement

AcCrosstabTotalColumnPlacement

AcCrosstabTotalColumnPlacement is an enum that specifies how a summary
column appears, relative to its subgroups. AcCrosstabTotal ColumnPlacement
values are listed in Table 6-25.

Table 6-25 AcCrosstabTotalColumnPlacement values
Constant Description
NoTotalColumn Does not display the summary column in the cross tab
TotalColumnLeft Displays the summary column to the left of its

subgroups in the cross tab

TotalColumnRight Displays the summary column to the right of its
subgroups in the cross tab

AcCrosstabTotalRowPlacement

AcCrosstabTotalRowPlacement is an enum that specifies how a summary row
appears, relative to its subgroups AcCrosstabTotalRowPlacement values are
listed in Table 6-26.

Table 6-26 AcCrosstabTotalRowPlacement values
Constant Description
NoTotalRow Does not display the summary row
TotalRowAbove Displays the summary row above its subgroups
TotalRowBelow Displays the summary row below its subgroups

AcCrosstabValuelLayout

AcCrosstabValueLayout is an enum. In cross-tab cells that contain more than one
value, AcCrosstabValueLayout determines whether the values appear side by
side or one above the other. AcCrosstabValueLayout values are listed in

Table 6-27.
Table 6-27 AcCrosstabValuelLayout values
Constant Description
ValuesHorizontal In a cross-tab cell that contains more than one value,

displays values side by side

170 Programming with Actuate Foundation Classes

AcDataGroupingMode

Table 6-27 AcCrosstabValuelLayout values
Constant Description
ValuesVertical In a cross-tab cell that contains more than one value,

displays values in a vertical stack

AcDataGroupingMode

AcDataGroupingMode is an enum that specifies how to group data from multiple
data rows in a chart or cross tab. Valid values are listed in Table 6-28.

Table 6-28 AcDataGroupingMode values

Constant Description

DataGroupingMode Groups data into a series of ranges of equal sizes based

Interval on a key value in each data row. Values for all data
rows whose key values fall into a single range are
aggregated. For example, the sum of daily stock trade
volumes grouped by calendar month.

DataGroupingMode Does not group data. No aggregation is performed.

None

DataGroupingMode Groups data into a series of explicitly specified ranges

Ranges that might be of different sizes.

DataGroupingMode Groups data based on a key value in each data row.

UniqueKey Values for all data rows that have the same key value

are aggregated. For example, a count of customers
grouped by credit rank.

AcDataGroupingUnit

AcDataGroupingUnit is an enum that specifies a range unit to use to group data
from multiple data rows in a chart or cross tab. AcDataGroupingUnit values are

listed in Table 6-29.

Table 6-29 AcDataGroupingUnit values

Constant Description
DataGroupingUnit The key values used to group data are date and time
Day values that are truncated to days.

(continues)

Chapter 6, AFC data types 171

AcDataType

Table 6-29 AcDataGroupingUnit values (continued)
Constant Description
DataGroupingUnit The key values used to group data are date and time
Half values that are truncated to halves. For example, data
rows whose key values are 2003-01-01 and 2003-06-30
are grouped together.
DataGroupingUnit The key values used to group data are date and time
Hour values that are truncated to hours.
DataGroupingUnit The key values used to group data are numbers that
Integer are truncated to integers. For example, data rows
whose key values are 1.0 and 1.9 are grouped together.
DataGroupingUnit The key values used to group data are date and time
Minute values that are truncated to minutes. For example, data
rows whose key values are 07:55:00 and 07:55:59 are
grouped together.
DataGroupingUnit The key values used to group data are date and time
Month values that are truncated to months.
DataGroupingUnit Does not group data. No aggregation is performed.
None
DataGroupingUnit The key values used to group data are date and time
Quarter values that are truncated to quarters. For example, data
rows whose key values are 2003-01-01 and 2003-03-31
are grouped together.
DataGroupingUnit The key values used to group data are date and time
Second values that are truncated to seconds.
DataGroupingUnit The key values used to group data are date and time
Week values that are truncated to weeks. By default, a week
is Sunday through Saturday but this setting can be
configured elsewhere.
DataGroupingUnit The key values used to group data are date and time
Year values that are truncated to years.

AcDataType

AcDataType is an enum that specifies the format of a cross-tab row, column, or
cell value. AcDataType values are listed in Table 6-30.

172 Programming with Actuate Foundation Classes

AcDay

Table 6-30 AcDataType values

Constant Description

DataTypeAutomatic ~ The value is set automatically.
DataTypeText The value is text.

DataTypeNumber The value is a number.
DataTypeDateTime The value is in the date and time format.

AcDay

AcDay is an enum that specifies a day of the week. AcDay values are listed in

Table 6-31.

Table 6-31 AcDay values

Constant Description
Sunday Sunday
Monday Monday
Tuesday Tuesday
Wednesday Wednesday
Thursday Thursday
Friday Friday
Saturday Saturday

AcDrawingBorderStyle

AcDrawingBorderStyle is a structure that specifies the style of the border around
an element of a drawing. AcDrawingBorderStyle members are listed in

Table 6-32.

Table 6-32 AcDrawingBorderStyle members

Member name Type Description
Color AcColor The color of the border
Shadow Boolean True if the border is drawn with a shadow effect
Pen AcDrawing The pattern of the border
LinePen
Width AcTwips The width of the border, in twips

Chapter 6, AFC data types 173

AcDrawingFillPattern

See also AcColor
AcDrawingLinePen
AcTwips

AcDrawingFillPattern

AcDrawingFillPattern is an enum that specifies the pattern to use for a filled area
in a drawing. AcDrawingFillPattern values for gradient patterns are listed in

Table 6-33.

Table 6-33 AcDrawingFillPattern gradient values

Constant Description

DrawingFillGradientCenter Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the center of the filled area.

DrawingFillGradientCenter Displays a gradient between the Color1 and Color2

Diagonal values specified in AcDrawingFillStyle. The color
gradient is at the center of the filled area on the
diagonal.

DrawingFillGradientCorner Displays a gradient between the Color1 and Color2

BottomLeft values specified in AcDrawingFillStyle. The color
gradient is at the lower left corner of the filled area.

DrawingFillGradientCorner Displays a gradient between the Color1 and Color2

BottomRight values specified in AcDrawingFillStyle. The color
gradient is at the lower right corner of the filled area.

DrawingFillGradientCorner Displays a gradient between the Colorl and Color2

TopLeft values specified in AcDrawingFillStyle. The color
gradient is at the upper left corner of the filled area.

DrawingFillGradientCorner Displays a gradient between the Color1 and Color2

TopRight values specified in AcDrawingFillStyle. The color
gradient is at the upper right corner of the filled area.

DrawingFillGradientDiagonal Displays a gradient between the Colorl and Color2

Down values specified in AcDrawingFillStyle. Color1 starts at
the upper left of the filled area and transitions to Color2
at the lower right on the diagonal.

DrawingFillGradientDiagonal Displays a gradient between the Color1 and Color2

DownMiddle values specified in AcDrawingFillStyle. Color1 starts in
the middle of the filled area and transitions to Color2 on
the diagonal.

174 Programming with Actuate Foundation Classes

AcDrawingFillPattern

Table 6-33 AcDrawingFillPattern gradient values

Constant

Description

DrawingFillGradientDiagonalUp

DrawingFillGradientDiagonalUp
Middle

DrawingFillGradientHorizontal

DrawingFillGradientHorizontal
Middle

DrawingFillGradientVertical

DrawingFillGradientVertical
Middle

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. Color1 starts in
the lower left of the filled area and transitions to Color2
at the upper right on the diagonal.

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. Colorl starts in
the lower left of the filled area and transitions to Color2
in the upper right on the diagonal.

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed horizontally across the filled area.

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed horizontally across the middle of the filled
area.

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed vertically across the filled area.

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed vertically across the middle of the filled area.

AcDrawingFillPattern values for solid colors are listed in Table 6-34.

Table 6-34 AcDrawingFillPattern solid color values

Constant

Description

DrawingFillPatternNone
DrawingFillPatternO5Percent

DrawingFillPattern10Percent
DrawingFillPattern20Percent
DrawingFillPattern25Percent

DrawingFillPattern30Percent

The area is transparent.

A finely shaded pattern in which the foreground color
makes up 5% of the area.

A finely shaded pattern in which the foreground color
makes up 10% of the area.

A finely shaded pattern in which the foreground color
makes up 20% of the area.

A finely shaded pattern in which the foreground color
makes up 25% of the area.

A finely shaded pattern in which the foreground color
makes up 30% of the area.

(continues)

Chapter 6, AFC data types 175

AcDrawingFillPattern

Table 6-34 AcDrawingFillPattern solid color values (continued)

Constant

Description

DrawingFillPattern40Percent
DrawingFillPattern50Percent
DrawingFillPattern60Percent
DrawingFillPattern70Percent
DrawingFillPattern75Percent
DrawingFillPattern80Percent
DrawingFillPattern90Percent

DrawingFillPatternSolid

A finely shaded pattern in which the foreground color
makes up 40% of the area.

A finely shaded pattern in which the foreground color
makes up 50% of the area.

A finely shaded pattern in which the foreground color
makes up 60% of the area.

A finely shaded pattern in which the foreground color
makes up 70% of the area.

A finely shaded pattern in which the foreground color
makes up 75% of the area.

A finely shaded pattern in which the foreground color
makes up 80% of the area.

A finely shaded pattern in which the foreground color
makes up 90% of the area.

The area is filled with the background color.

AcDrawingFillPattern values for line patterns are listed in Table 6-35.

Table 6-35 AcDrawingFillPattern line values

Constant

Description

DrawingFillPatternDiagonalDown
Dark

DrawingFillPatternDiagonalDown
Dash

DrawingFillPatternDiagonalDown
Light
DrawingFillPatternDiagonalDown
Wide
DrawingFillPatternDiagonalUp
Dark

DrawingFillPatternDiagonalUp
Dash

DrawingFillPatternDiagonalUp
Light

DrawingFillPatternDiagonalUp
Wide

Heavy solid diagonal lines that run from top left to
bottom right

Light dashed diagonal lines that run from top left to
bottom right

Light solid diagonal lines that run from top left to
bottom right

Wide solid diagonal lines that run from top left to
bottom right

Heavy solid diagonal lines that run from bottom left to
top right

Light dashed diagonal lines that run from bottom left to
top right

Light solid diagonal lines that run from bottom left to
top right

Wide solid diagonal lines that run from bottom left to
top right

176 Programming with Actuate Foundation Classes

Table 6-35

AcDrawingFillPattern

AcDrawingFillPattern line values

Constant

Description

DrawingFillPatternHorizontal
Dark

DrawingFillPatternHorizontal
Dash

DrawingFillPatternHorizontal
Light
DrawingFillPatternHorizontal
Narrow

DrawingFillPatternVerticalDark
DrawingFillPatternVerticalDash
DrawingFillPatternVerticalLight

DrawingFillPatternVertical
Narrow

Heavy solid horizontal lines
Light dashed horizontal lines
Light solid horizontal lines
Narrow solid horizontal lines

Heavy solid vertical lines
Light dashed vertical lines
Light solid vertical lines

Narrow solid vertical lines

AcDrawingFillPattern values for decorative patterns are listed in Table 6-36.

Table 6-36

AcDrawingFillPattern decorative values

Constant

Description

DrawingFillPatternBrick
Horizontal

DrawingFillPatternBrickDiagonal
Up
DrawingFillPatternCheckerBoard
Large

DrawingFillPatternCheckerBoard
Small

DrawingFillPatternConfettiLarge
DrawingFillPatternConfettiSmall

DrawingFillPatternDiamond
Dotted

DrawingFillPatternDiamond
DrawingFillPatternDiamondSolid
DrawingFillPatternDivot
DrawingFillPatternGridDotted

A pattern that resembles a brick wall

A pattern that resembles a brick wall rotated 45 degrees
counterclockwise

A checkerboard with large squares
A checkerboard with small squares

A pattern that resembles a shower of large confetti
A pattern that resembles a shower of small confetti
A coarse diagonal grid of dotted lines

A coarse diagonal grid of solid lines

A checkerboard with large squares rotated 45 degrees
Alternating rows of < and > symbols

A coarse grid of dotted lines

(continues)

Chapter 6, AFC data types 177

AcDrawingFillStyle

Table 6-36

AcDrawingFillPattern decorative values (continued)

Constant

Description

DrawingFillPatternGridLarge
DrawingFillPatternGridSmall
DrawingFillPatternPlaid

DrawingFillPatternShingle

DrawingFillPatternSphere

DrawingFillPatternTrellis

DrawingFillPatternWave

DrawingFillPatternWeave

DrawingFillPatternZigzag

A coarse grid of solid lines
A fine grid of solid lines

A coarse checkered pattern of shed horizontal bands
and solid vertical bands

A pattern that resembles a shingled roof

A pattern of spheres with a three-dimensional
appearance

A pattern that resembles a trellis

A pattern of light dashed horizontal wavy lines
A diagonal pattern of interwoven dotted lines
A pattern of light solid horizontal wavy lines

AcDrawingFillStyle

Table 6-37

AcDrawingFillStyle is a structure that specifies the style of a filled area in a
drawing. AcDrawingFillStyle members are listed in Table 6-37.

AcDrawingFillStyle members

Member name Type

Description

Colorl

Color2

Pattern

AcColor

AcColor

AcDrawing
FillPattern

Ignores this color if the value of the Pattern member is
DrawingFillPatternNone. Fills the area with this color if the
value of the Pattern member is DrawingFillPatternSolid.
This color is the background color of the pattern if the value
of the Pattern member is a pattern. This color is the start
color of the gradient if the value of the Pattern member is a
gradient.

Ignores this color if the value of the Pattern member is
DrawingFillPatternNone or DrawingFillPatternSolid. This
color is the foreground color of the pattern if the value of the
Pattern member is a pattern. This color is the finish color of
the gradient if the value of the Pattern member is a gradient.

The pattern used to fill the area.

See also

AcColor

AcDrawingFillPattern

178 Programming with Actuate Foundation Classes

AcDrawingLinePen

AcDrawingLinePen

AcDrawingLinePen is an enum that specifies the appearance of a line in a
drawing. AcDrawingLinePen values are listed in Table 6-38.

Table 6-38 AcDrawingLinePen values

Constant Description
DrawingLinePenDash A line in the following format:
DrawingLinePenDashDot A line in the following format:
DrawingLinePenDashDotDot A line in the following format:
DrawingLinePenDot A line in the following format:
DrawingLinePenNone No line

DrawingLinePenSolid A solid line

AcDrawingLineStyle

AcDrawingLineStyle is a structure that specifies the style of a line in a drawing.
AcDrawingLineStyle members are listed in Table 6-39.

Table 6-39 AcDrawingLineStyle members

Member name Type Description
Color AcColor The color of the line
Pen AcDrawingLinePen The pattern of the line
Width AcTwips The width of the line in twips
Seealso AcColor
AcDrawingLinePen
AcTwips

Chapter 6, AFC data types 179

AcDrawingTextOrientation

AcDrawingTextOrientation

AcDrawingTextOrientation is an enum that specifies the orientation of some text
in a drawing. AcDrawingTextOrientation values are listed in Table 6-40.

Table 6-40

AcDrawingTextOrientation values

Constant

Description

DrawingTextOrientationAuto

DrawingTextOrientationCustom

DrawingTextOrientation

Horizontal

DrawingTextOrientationVertical

Determines the angle of the text automatically. For
example, the axis labels on a chart rotate automatically if
there is not enough space to fit them horizontally.

Draws the text at a specified angle.

Draws the text horizontally.

Draws the text vertically with the characters stacked on
top of another.

AcDrawingTextStyle

AcDrawingTextStyle is a structure that specifies the style of some text in a
drawing. AcDrawingTextStyle members are listed in Table 6-41.

Table 6-41 AcDrawingTextStyle members
Member name Type Description
Background AcColor The background color for the text.
Color
Border AcDrawing The style of the border around the text.
BorderStyle
CustomAngle AcAngle If the value of the Orientation member is
DrawingTextOrientationCustom, the angle of the text
in degrees counterclockwise from horizontal.
Otherwise, the CustomAngle value is ignored. Text
angles are rounded to integer values internally.
Font AcFont The font of the text.
Orientation AcDrawingText The orientation of the text.
Orientation

Seealso AcDrawingBorderStyle
AcDrawingTextOrientation
AcFont

180 Programming with Actuate Foundation Classes

AcExcelBorder

AcExcelBorder

AcExcelBorder is a structure that describes the border. AcExcelBorder members
are listed in Table 6-42.

Table 6-42 AcExcelBorder members

Member name Type Description

Style AcExelBorderType The style of the border
Color AcColor The color of the border

AcExcelBorderType

AcExcelBorderType specifies the line style of the border. AcExcelBorderType
values are listed in Table 6-43.

Table 6-43 AcExcelBorderType values

Constant Description

ExcelBorderDashDot A dash-dot line
ExcelBorderDashDotDot A dash-dot-dot line
ExcelBorderDashed A dashed line

ExcelBorderDotted A dotted line

ExcelBorderDouble A double line

ExcelBorderHair A hairline

ExcelBorderMedium A medium line
ExcelBorderMediumDashDot A dash-dot line of medium thickness
ExcelBorderMediumDashDotDot A dash-dot-dot line of medium thickness
ExcelBorderMediumDashed A dashed-line of medium thickness
ExcelBorderNone No border
ExcelBorderSlantedDashDot A slanted dash-dot line
ExcelBorderThick A thick line

ExcelBorderThin A thin line

Chapter 6, AFC data types 181

AcExcelHorizontalAlignment

AcExcelHorizontalAlignment

AcExcelHorizontal Alignment specifies the horizontal alignment of data in cells.
AcExcelHorizontal Alignment values are listed in Table 6-44.

Table 6-44 AcExcelHorizontalAlignment values
Constant Description
ExcelHAlignCenter Centers data in the cell
ExcelHAlignGeneral The default alignment:
m Aligns text at the left edge of the cell
m Aligns numbers, dates, and times at the
right edge of the cell
m Centers logical and error values
ExcelHAlign]Justify Adjusts the spacing between words so that
all lines are as wide as the cell
ExcelHAlignLeft Aligns data at the left edge of the cell
ExcelHAlignRight Aligns data at the right edge of the cell

AcExcelVerticalAlignment

AcExcelVerticalAlignment specifies the vertical alignment of data in cells.
AcExcelVertical Alignment values are listed in Table 6-45.

Table 6-45 AcExcelVerticalAlignment values
Constant Description
ExcelVAlignBottom Aligns data at the bottom of the cell
ExcelVAlignCenter Aligns data at the center of the cell
ExcelVAlign]Justify Adjusts the spacing between lines so that
the spacing is even and the lines fill the cell
ExcelVAlignTop Aligns data at the top of the cell

AcFlowPlacement

AcFlowPlacement is an enum that specifies how a frame appears within a flow
that is wider than the frame. AcFlowPlacement values are listed in Table 6-46.

182 Programming with Actuate Foundation Classes

AcFont

Table 6-46 AcFlowPlacement values
Constant Description
FlowAlignLeftOrTop Aligns a frame to the left of a flow or at the top of the flow
FlowAlignCenter Aligns a frame in the center of a flow
FlowAlignRightOrBottom Aligns a frame to the right of a flow or at the bottom of the
flow
FlowAlignCustom Aligns frames in the flow at the position given by the

frame’s Position.X member

AcFont

AcFont is a structure that describes a font in a device-independent way. AcFont
members are listed in Table 6-47.

Table 6-47 AcFont members

Member name Type Description

Bold Boolean If True, the text is bold

Color AcColor Color of the text

FaceName String Font name of the text

Ttalic Boolean If True, the text is italic

Script String Specifies a subset of a large font

Size Integer Size of the text in points
StrikeThrough Boolean If True, a line is drawn through the text
Underline Boolean If True, the text is underlined

AcGroupOnType

AcGroupOnType defines how to group data in a group section. AcGroupOnType
values are listed in Table 6-48.

Table 6-48 AcGroupOnType values

Constant Description
GroupOnCustom Group based on key value set in the GetGroupKey
method

(continues)

Chapter 6, AFC data types 183

AcHorizontalPosition

Table 6-48 AcGroupOnType values (continued)

Constant Description

GroupOnDay Group data by full date

GroupOnEveryValue Group on the full key

GroupOnHour Group data by hour

GroupOnlnterval Group on option for group section keys having data types
other than Currency, Date, Double, Integer, Single, or
String

GroupOnMinute Group data by minute

GroupOnMonth Group data by month

GroupOnPrefix Group on the first n characters of text

GroupOnQuarter Group data by calendar quarter

GroupOnWeek Group data by week

GroupOnYear Group data by year

AcHorizontalPosition

AcHorizontalPosition is an enum that specifies how to position a visual object
horizontally. AcHorizontalPosition values are listed in Table 6-49.

Table 6-49 AcHorizontalPosition values

Constant

Description

HorizontalPositionDefault

HorizontalPositionFrameCenter

HorizontalPositionFrameLeft
HorizontalPositionFrameRight

HorizontalPositionLeft

If the object’s left edge is at or to the right of the horizontal
midpoint of the reference object, the object moves to keep
the distance between its left edge and the right edge of the
reference object constant. Otherwise, the object does not
move or resize.

The object moves to keep the distance between its
horizontal midpoint and the horizontal midpoint of the
frame constant.

The object does not move.

The object moves to keep the distance between its right
edge and the right edge of the frame constant.

If the object’s left edge is to the left of the right edge of the
reference object, the object does not move. Otherwise, the
object moves to keep the distance between its left edge
and the right edge of the reference object constant.

184 Programming with Actuate Foundation Classes

AcHorizontalSize

Table 6-49 AcHorizontalPosition values

Constant

Description

HorizontalPositionRight

If the object’s left edge is to the left of the reference object’s
left edge, the object does not move. Otherwise, the object
moves to keep the distance between its left edge and the
right edge of the reference object constant.

AcHorizontalSize

AcHorizontalSize is an enum that specifies how to resize a visual object
horizontally. AcHorizontalSize values are listed in Table 6-50.

Table 6-50 AcHorizontalSize values
Constant Description
HorizontalSizeFixed The object is not resized.

HorizontalSizeFrameRelative

HorizontalSizeRelative

The object’s width adjusts to keep the distance between its
right edge and the right edge of the frame constant.

If the object’s left edge is at or to the left of the reference
object’s left edge and its right edge is at or to the right of
the reference object’s right edge, the object’s width
increases by the amount that the reference object’s width
increases. If more than one dynamic content object exists,
the object’s width increases in one of the following ways to
give the greatest width increase:

m The distance between the object’s right edge and the
right edge of the reference object remains constant.

m The object’s width increases by the amount the
reference object’s width increases. In this case, the
object also moves left, if the object’s CanMoveLeft
property is set to True. The object moves left in one of
the following ways, to give the smallest movement:

m The distance between the object’s right edge and the
reference object’s right edge remains constant.

m The object moves left by the amount its width
increased.

Chapter 6, AFC data types 185

AclmageEmbedType

AclmageEmbedType

AcImageEmbedType defines when to include the image in the report.
AcImageEmbedType values are listed in Table 6-51.

Table 6-51 AclmageEmbedType values

Constant Description

ImageDesignTime Include image at compile time.

ImageFactoryTime Include image when the report builds.

ImageFactoryTimeSingle Include only a single copy of the image
when the report builds.

ImageViewTime Include image when the report appears.

ImageViewTimeSingle Include only a single copy of the image

when the report appears.

AcLayoutOrientation

AcLayoutOrientation is an enum that defines the orientation for the report.
AcLayoutOrientation values are listed in Table 6-52.

Table 6-52 AcLayoutOrientation values
Constant Description
LeftToRight The report has left-to-right orientation.
RightToLeft The report has right-to-left orientation.
AcLinePen

AcLinePen is an enum that specifies the style of line to draw. Note that although
these styles mimic the Windows line styles, they are not meant to duplicate the
Windows line style values or have a direct numeric mapping to Windows styles.
AcLinePen values are listed in Table 6-53.

Table 6-53 AcLinePen values
Constant Description
DashLine Draws a dashed line

186 Programming with Actuate Foundation Classes

AcLineStyle

Table 6-53 AcLinePen values

Constant Description

DashDotLine Draws a line in the following format:
DashDotDotLine Draws a line in the following format:
DotLine Draws a dotted line
DoubleLine Draws a double solid line
InsideFrameBorder Draws a solid line inside the frame or control
NullLine Does not draw a line
ShortDotLine Draws a line using very small dots
SingleLine Draws a single solid line

AcLineStyle

AcLineStyle is a structure that describes how a line is drawn. AcLineStyle

members are listed in Table 6-54.

Table 6-54 AcLineStyle members

Member name Type

Description

Color AcColor
Pen AcLinePen
Width AcTwips

The color of the line
The style of the line
The width of the line in twips

AcMargins

AcMargins is a structure that describes the margins of a textual control.
AcMargins members are listed in Table 6-55.

Table 6-55 AcMargins members

Member name Type Description
Bottom AcTwips The top margin
Left AcTwips The left margin
Right AcTwips The right margin
Top AcTwips The top margin

Chapter 6, AFC data types

187

AcMonth

AcMonth

AcMonth is an enum that specifies a month of the year. AcMonth values are listed

in Table 6-56.

Table 6-56 AcMonth values

Constant Description

January First month of the year
February Second month of the year
March Third month of the year
April Fourth month of the year
May Fifth month of the year
June Sixth month of the year
July Seventh month of the year
August Eighth month of the year
September Ninth month of the year
October Tenth month of the year
November Eleventh month of the year
December Twelfth month of the year

AcPageHeaderOptions

AcPageHeaderOptions is an enum that determines whether and where to place a
page header. AcPageHeaderOptions values are listed in Table 6-57.

Table 6-57 AcPageHeaderOptions values

Constant Description

AsColumnHeader Places the header above data columns
AsPageHeader Places the header on every page

NoHeaderOnFirst Places the header on every page except the first page

AcPageNumberStyle

AcPageNumberStyle is an enum that determines how to calculate and display
page numbers. AcPageNumberStyle values are listed in Table 6-58.

188 Programming with Actuate Foundation Classes

AcPercentage

Table 6-58 AcPageNumberStyle values

Constant Description

ActualPageCount The total number of pages (visible and invisible to the user) in
the report.

ActualPageN The actual page number, regardless of how many pages are
visible to the user.

ActualPageNofM The current page number relative to the total pages in the report
displayed in the form: Page N of M. Includes both visible and
invisible pages.

ActualPageNumber The current page number considering all the pages (both visible
and invisible to the user) in the report.

FormattedPageNumber Page number is presented using the format string specified in
the PageNumberFormat property. The value presented here
does not consider page security.

VisiblePageCount The total number of pages in the report that the user can see
considering page security.

VisiblePageN The number of the current page, based on the total number of
pages visible to the user.

VisiblePageNofM The current page number relative to the total pages in the report
displayed in the form: Page N of M. Considers page security.

VisiblePageNumber The current page number in the report that the user can see
considering page security.

AcPercentage

AcPercentage is a Double data type used to hold percentage values.

Percentage values are represented as fractions internally, so that 50% is stored as
0.5. This makes calculations easier, because you can simply multiply a number by
an AcPercentage value with no need to scale the result by a factor of 100.

e.Report Designer Professional’s property sheet displays AcPercentage property
values multiplied by 100 and with a trailing percentage sign. For example, a value
of 0.75 will be displayed as 75%.

AcPoint

AcPoint is a structure that defines a position. AcPoint members are listed in

Table 6-59.

Chapter 6, AFC data types 189

AcRectangle

Table 6-59 AcPoint members

Member name Type Description
X AcTwips The horizontal coordinate of the position
Y AcTwips The vertical coordinate of the position

AcRectangle

AcRectangle is a structure that describes a rectangle relative to the origin of an
enclosing rectangle by giving the bounding points, the corners, of the rectangle.
AcRectangle members are listed in Table 6-60.

Table 6-60 AcRectangle members
Member name Type Description
Bottom AcTwips The location of the bottom of the rectangle
measured relative to the top of the enclosing
rectangle
Left AcTwips The location of the left of the rectangle measured

relative to the left of the enclosing rectangle

Right AcTwips Thelocation of the right of the rectangle measured
relative to the left of the enclosing rectangle

Top AcTwips The location of the top of the rectangle measured
relative to the top of the enclosing rectangle

AcSearchType

AcSearchType is an enum that determines whether users can search for the
component using values for the DataValue property. AcSearchType values are
listed in Table 6-61.

Table 6-61 AcSearchType values

Constant Description

NotSearchable User cannot search for the component.

SearchableNo User can search for the component. The client viewing
Index software searches the entire report.

SearchableWith User can search for the component using a

Index high-performance indexed search.

190 Programming with Actuate Foundation Classes

AcSize

AcSize

AcSize is a structure that describes the width and height of a rectangle. AcSize
members are listed in Table 6-62.

Table 6-62 AcSize members

Member name Type Description

Height AcTwips The height of the rectangle
Width AcTwips The width of the rectangle

AcSortingOptions

AcSortingOptions is an enum that determines the sorting rules for a report
section. AcSortingOptions values are listed in Table 6-63.

Table 6-63 AcSortingOptions values

Constant Description

AutoSort e.Report Designer Professional sorts the data rows
according to the groups in the report section. If the
data source uses a SQL query, sorting specified in the
ORDER BY clause is applied after the automatic
sorting that AutoSort applies.

CompatibleSort This constant provides backward compatibility for
reports converted from an Actuate release earlier
than 3.1.

PreSorted e.Report Designer Professional does not sort the data

unless the report developer codes a sort filter. Data
rows appear in the report in the same order in which
they appear in the data source. Typically, this
constant is useful when the SQL query has an
ORDER BY clause or when the data source provides
the rows in the order in which you want them to
appear in the report.

AcTextClipStyle

AcTextClipStyle is an enum that specifies how to handle text that is too long for
its enclosing rectangle. Leading truncation removes the first part of the string,
while trailing truncation removes the end part. There is also an option to use

Chapter 6, AFC data types 191

AcTextFormat

overflow characters to show truncation. AcTextClipStyle applies only to
single-line controls. AcTextClipStyle values are listed in Table 6-64.

Table 6-64 AcTextClipStyle values

Constant Description

ClipLeading Clips the leftmost characters of the text. Displays an
ellipsis (...) before the truncated text, when the Ellipsis
property of AcTextPlacement is set to True.

ClipTrailing Clips the rightmost characters of the text. Displays an
ellipsis (...) after the truncated text, when the Ellipsis
property of AcTextPlacement is set to True.

ShowOverflowChar Displays overflow characters (*) when text is too long to
display.

AcTextFormat

AcTextFormat is an enum that indicates the tagging format of text. AcTextFormat
values are listed in Table 6-65.

Table 6-65 AcTextFormat values
Constant Description
TextFormatHTML The text contains HTML tags.
TextFormatPlain The text is not tagged.
TextFormatRTF The text contains RTF tags.

AcTextJustify

AcTextJustify is an enum that specifies how to align text. AcTextJustify values are
listed in Table 6-66.

Table 6-66 AcTextJustify values

Constant Description

TextAlignCenter Aligns text in the center of the control
TextAlignLeft Aligns text at the left of the control
TextAlignRight Aligns text at the right of the control

192 Programming with Actuate Foundation Classes

AcTextPlacement

AcTextPlacement

AcTextPlacement is a structure that describes the placement of text in a frame or
control. AcTextPlacement members are listed in Table 6-67.

Table 6-67 AcTextPlacement members

Member name Type

Description

Clip AcTextClipStyle

Ellipsis Boolean

FillPattern String

Horizontal AcTextJustify

MultiLine Boolean

Vertical AcTextVerticalPlacement

WordWrap AcWordWrapStyle

Specifies how to clip text that is too
large to fit into the control.

Applies only to single-line controls.

If set to True, places an ellipsis after
the text within the control if the
text is too long to fit.

Applies only to single-line controls.

Specifies the fill pattern to use for
any space after the text within the
control.

Specifies horizontal text placement
and justification.

Specifies whether the control can
contain more than one line of text.

Determines vertical text placement.
Applies only to single-line controls.

Specifies how to split text that is
too long to fit onto a single line.

AcTextVerticalPlacement

AcTextVerticalPlacement is an enum that specifies how single lines of text align
vertically within the enclosing rectangle. AcTextVerticalPlacement values are

listed in Table 6-68.

Table 6-68 AcTextVerticalPlacement values
Constant Description
TextAlignBottom Aligns text at the bottom of a control
TextAlignMiddle Aligns text in the vertical middle of a control
TextAlignTop Aligns text at the top of a control

Chapter 6, AFC data types 193

AcTOCNodeType

AcTOCNodeType

AcTOCNodeType is an enum that determines whether a component appears in a
report’s table of contents. AcTOCNodeType values are listed in Table 6-69.

Table 6-69 AcTOCNodeType values

Constant Description

TOCAlwaysAdd Always add the component to the table of
contents.

TOCIfAllVisible Add the component to the table of contents only if

the user can view at least one page generated from
the component based on page-level security.

TOCIfAny Visible Add the component to the table of contents even if
the user cannot view any of the pages generated
from the component based on page-level security.

TOCSkip Never add the component to the table of contents.

AcTwips

AcTwips is an Integer data type used to hold values in the internal unit of
measurement of the AFC framework, the twip. A twip is 1/20 of an integer point,
or 1/1440 of an inch.

e.Report Designer Professional’s property sheet displays AcTwips property
values converted to the default unit of measurement, and with a suffix indicating
the unit of measurement. For example, if the default unit of measurement is
points, a value of 1440 twips is displayed as 72pt.

If you type an AcTwips property value with a suffix indicating a unit of
measurement, e.Report Designer Professional automatically converts that value
to the default unit of measurement. For example, if the default unit of
measurement is points, and you type 1lcm, e.Report Designer Professional
converts the value to points and displays 28.35pt.

If you enter an AcTwips property value with no unit of measurement suffix,
e.Report Designer Professional uses the default unit of measurement. For
example, if the default unit of measurement is points, and you type 36, e.Report
Designer Professional displays 36pt.

AFC defines a set of constants that you can use to convert AcTwips values to and
from other units. AcTwips conversion constants are listed in Table 6-70.

194 Programming with Actuate Foundation Classes

AcVerticalPosition

Table 6-70 AcTwips conversion constants

Constant Value Description

OneCM 567 The number of twips in one centimeter
Onelnch 1440 The number of twips in one inch
OneMM 57 The number of twips in one millimeter
OnePoint 20 The number of twips in one point

Example The following example creates a label control and sets its height to 14 points:

Dim 1 As AcLabelControl
Set 1 = New Persistent AcLabelControl
1.Size.Height = 14 * OnePoint

AcVerticalPosition

AcVerticalPosition is an enum that specifies how to position a visual object
vertically. AcVerticalPosition values are listed in Table 6-71.

Table 6-71 AcVerticalPosition values
Constant Description
VerticalPositionBottom If the top of the object is above the top of the reference object, it

does not move. Otherwise, the object moves to keep the distance
between its bottom edge and the bottom of the reference object
constant.

VerticalPositionDefault If the top of the object is at or below the midpoint of the
reference object, the behavior is the same as
VerticalPositionBottom. Otherwise, the object does not move.

VerticalPositionFrame The object moves to keep the distance between its bottom edge
Bottom and the bottom of the frame constant.

VerticalPositionFrame The object moves to keep the distance between its middle and
Middle the middle of the frame constant.

VerticalPositionFrameTop The object does not move.

VerticalPositionTop If the top of the object is above the bottom of the reference object,
the object does not move. Otherwise, the object repositions to
keep the distance between its top and the bottom of the
reference object constant.

Chapter 6, AFC data types 195

AcVerticalSize

AcVerticalSize

AcVerticalSize is an enum that specifies how to resize a visual object vertically.
AcVerticalSize values are listed in Table 6-72.

Table 6-72 AcVerticalSize values
Constant Description
VerticalSizeFixed The object does not resize.

VerticalSizeFrameRelative = The object resizes to keep the distance between its bottom edge
and the bottom of the frame constant.

VerticalSizeRelative If the top of the object is at or above the top of the reference
object and its bottom edge is at or below the bottom of the
reference object, the object’s height increases by the amount that
the reference object’s width increases. If more than one dynamic
content object exists, the object increases in one of the following
ways, to give the greatest height increase:

m The distance between the object’s bottom edge and the
bottom of the reference object remains constant.

m The object height increases by the same amount as the
reference object’s height increase. In this case, the object also
moves up, if the object’'s CanMoveUp property is set to True.
The object moves up in one of the following ways, to give the
smallest movement:

m The distance between the object’s bottom edge and the
reference object’s bottom edge remains constant.

m The object moves up by the amount its height increases.

m If the top of the object is below the top of the reference
object or its bottom edge is above the bottom of the
reference object, the object moves according to the setting
of its VerticalPosition property.

AcWordWrapStyle

AcWordWrapStyle is an enum that specifies the actions for lines in a multi-line
control when a line is longer than the size of the control. AcWordWrapStyle
values are listed in Table 6-73.

196 Programming with Actuate Foundation Classes

AcXMLType

Table 6-73 AcWordWrapStyle values

Constant Description

TextCharacterWrap Wraps text from one line to the next breaking
the text at a character boundary

TextTruncateLines Truncates any lines that do not fit

TextWordWrap Wraps text from one line to the next breaking

the text at a word boundary

AcXMLType

AcXMLType is an enum that specifies the type of XML to create for the
component. AcXMLType values are listed in Table 6-74.

Table 6-74 AcXMLType values

Constant Description
XMLAttribute Converts component to an XML attribute
XMLCustom Custom XML to be generated by
AcXMLDataVisitor class functions
XMLElement Converts component to an XML element
XMLEmptyElement Converts component to an empty XML element
XMLIgnore Does not convert the component into XML
XMLText Converts component into XML text

Chapter 6, AFC data types 197

AcXMLType

198 Programming with Actuate Foundation Classes

AFC classes

This chapter provides an alphabetical listing of the Actuate Foundation Classes.
Each class entry includes a general description of the class and a summary of its
variables, properties, and methods followed by an alphabetical listing of methods
for that class.

For the most part, the class documentation does not include repeated descriptions
of inherited variables, properties, and methods. For example, OnRow() is
described only in the AcReportComponent base class. A method is described in a
subclass as well as a superclass if the implementation details are significantly
different or enhanced in the subclass. For example, BuildFromRow() is described
in several class entries, including AcReportComponent, AcBaseFrame, and
AcChart, because its implementation varies from class to class.

Chapter 7, AFC classes 199

AcBaseFrame

Class AcBaseFrame

Description

An abstract base class that defines the core logic that is common to pages and
frames. Figure 7-1 shows the class hierarchy for AcBaseFrame.

| AcComponent I
AcReportComponent I
L‘AcVisuaIComponent I
|—{AcBaseFrame I
Figure 7-1 AcBaseFrame

AcBaseFrame is the abstract base class for pages and frames. It provides the core
logic for creating and working with contents in a page or a frame. The contents of
a page can include flows and controls. The contents of a frame can include other
frames and controls. AcBaseFrame defines

m Methods for accessing the contents of a frame or page. The
FindContentByClass(), FindContentByClassID(), and GetControl() methods
locate the specified content in a frame or a page, and the GetControlValue()
method returns the value of a data control in a frame.

m Methods for adjusting the contents of frames. The SplitContents() and
SplitFrame() methods distribute the contents of frames across pages.

m Page-specific methods, such as GetPageNumber(), that are not applicable to
frames. If you call these methods in a frame, the framework displays an error
message.

Class protocol

Table 7-1 describes the class protocol for AcBaseFrame.

Table 7-1 Class protocol for AcBaseFrame

Method Task

Start() Instantiates and starts the contents of the frame or the
page

Build() Builds the contents for frames that are not dependent
on data

BuildFromRow() Populates the contained frames, charts, and controls
with data

Finish() Finishes each of the content objects

200 Programming with Actuate Foundation Classes

AcBaseFrame

Preparing the frame or page

The framework instantiates the contents of a frame or page using Start(). Start(),
in turn, calls MakeContents() to instantiate each of the contents in the order in
which they were added in the design perspective.

Start() is part of the framework’s core protocol. Override Start() in the AcFrame
class to perform custom processing in the frame that is unrelated to its contents.
For example, you can conditionally change the background color of the frame.
Always call Super::Start() before making your own programming changes to
Start().

Building the frame or page

The Build() method of the frame’s container calls the frame’s Build() method,
instead of BuildFromRow(), when you place the frame in a slot where the frame
does not receive data rows. The following list includes some of the situations in
which the frame does not receive data rows:

m The frame is in a sequential or conditional section that is directly within the
report component.

m The frame is placed directly on a page.
m The frame is nested within any of the frames described in the previous bullets.

The frame’s Build() method, in turn, calls the Build() method for each of the
controls in the frame.

You can override the Build() method of a frame or page to perform custom
processing, such as conditionally adding or deleting frame or page contents, or
setting the values or properties of the contents.

Subclassing AcBaseFrame

Because AcBaseFrame is an abstract base class, do not derive directly from it.

Variables

AcBaseFrame variables are listed in Table 7-2.

Table 7-2 AcBaseFrame variables

Variable Type Description

BackgroundColor AcColor The color with which to fill the frame
before displaying the frame’s contents.
The default value is Transparent.

Border AcLineStyle The style, thickness, and color of the
border. The default value is no border.

Chapter 7, AFC classes 201

AcBaseFrame

Properties

AcBaseFrame properties are listed in Table 7-3.

Table 7-3 AcBaseFrame properties

Property Type Description

BackgroundColor AcColor The color with which to fill the frame
before displaying the frame’s contents.
The default value is Transparent.

Border AcLineStyle The style, thickness, and color of the
border. The default value is no border.

Example The following example shows how to change the background color of a flow on
the first page to teal. The flows on the other pages use the color set at design time.
The example overrides Build() in PageStyle to change the color of the flow. The
call to GetPagelndex() identifies the first page.

Sub Build()
' Find the flow and change its background color to teal
' only on the first page.

Super: :Build()

Dim flow As AcFlow

Set flow = FindContentByClass("Flow")

If GetPageIndex() = 1 Then
flow.BackgroundColor = teal
End If
End Sub

Methods for Class AcBaseFrame

Methods defined in Class AcBaseFrame

AddToAdjustSizelList, BindToFlow, FindContentByClassID, GetControl,
GetControlValue, GetPageNumber, GetSearchValue, IsDataFrame, IsFooter,
IsHeader, MakeContents, RebindToFlow, SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanincreaseHeight, CanincreaseWidth, CanMoveleft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetlLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,

202 Programming with Actuate Foundation Classes

Syntax

Parameter

Syntax

Example

AcBaseFrame

IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentlterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPagelndex, GetPagelist, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePagelndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent
ApplyVisitor, Delete, IsPersistent, New

AcBaseFrame::AddToAdjustSizeList method

Adds a component to its container’s list of components to resize and causes a call
to the component’s AdjustSize() method. To make a component resizable, you
must add a call to the AddToAdjustSizeList() method of the component’s Start()
method.

Sub AddToAdjustSizeList(component As AcVisualComponent)

component
The component to add to the list.

AcBaseFrame::AdjustSize method

Adjusts the size of the frame. Using this method, you can also adjust the sizes and
positions of the frame’s contents in response to the frame’s size adjustment.

Sub AdjustSize()

The following code calls AdjustSizeList() to get the frames to resize. After
completing the size adjustments, this code sets AdjustSizeList() to Nothing.

Sub AdjustSize()
If Not AdjustSizeList Is Nothing Then
Dim i As Integer
Dim content As AcVisualComponent

Chapter 7, AFC classes 203

AcBaseFrame

Syntax

Parameter

Example

' Adjust the sizes of components that requested size
' adjustment.
For i = 1 To AdjustSizeList.Count
set content = AdjustSizeList.Contents (i)
content .AdjustSize()
Next i
' Adjust the geometry of the frame's contents. Get the
' amount of the frame's size change as a result.
Dim deltaFrameWidth As AcTwips
Dim deltaFrameHeight As AcTwips
AdjustContentGeometry (deltaFrameWidth, deltaFrameHeight)

' Resize the frame.
AdjustSizeBy(deltaFrameWidth, deltaFrameHeight)

' Adjust the contents of all contents in response to the
' frame’s adjustment.
For i = 1 To FrameContents.Count
set content = FrameContents.Contents (i)
content .AdjustContents ()
Next i

' Recover memory when size adjustments are complete.
Set AdjustSizelList = Nothing
End If
End Sub

AcBaseFrame::BindToFlow method

Called when the framework places the frame into a flow on the page. You can
override this method to perform actions based on where the frame is in a flow.
For example, the flow can keep track of an alternating color for its frames and the
frame can ask the flow for the correct color.

If you override this method, you must call Super::BindToFlow().
Sub BindToFlow(flow As AcFlow)

flow
The flow that contains the component.

The following example shows how to override BindToFlow() to assign a different
color to every alternate frame in a flow. The code example assumes the following
variables are declared for the frame: AlternateColor, AlternateLines,
MostRecentContainer, MostRecentFlow, and RowNumber.

Sub BindToFlow(flow As AcFlow)
Super: :BindToFlow(flow)
' If the current flow is different from the
' previous flow, then reset the color.

204 Programming with Actuate Foundation Classes

Syntax

Parameter

Returns

See also

AcBaseFrame

If Not MostRecentFlow Is flow Then
RowNumber = 0
Set MostRecentFlow = flow

End If

' If the container is different, this frame is for
' a different group than the previous one; therefore,
' reset the color.
If Not MostRecentContainer Is Container Then
RowNumber = 0
Set MostRecentContainer = Container
End If
' Choose one of the two colors. AlternateLines and
' AlternateColor are user-defined properties that can be set
' in the Component Editor
RowNumber = RowNumber + 1
If RowNumber > AlternateLines * 2 Then
RowNumber = 1
End If
If RowNumber > AlternateLines Then
BackgroundColor = AlternateColor
End If
End Sub

AcBaseFrame::FindContentByClassID method

You can uniquely identify a component within a frame or page using the
component’s class ID. Accessing the component using its class ID is faster than
accessing the component by class name. Use the Actuate Basic function
GetClassID to identify the class ID for the component. For more information
about GetClasslID, see Programming with Actuate Basic.

Function FindContentByClassID(classID As Integer) As AcVisualComponent

classID
The integer class ID of the component to find.

A reference to the component if found.
Nothing if the component was not found.

AcReportComponent::FindContentByClass method
AcBaseFrame::GetControl method

AcBaseFrame::GetControl method

Use GetControl() to obtain a reference to a control in a frame. You specify the
control by using either the last part of the control’s name, such as PriceControl, or
its fully qualified name, such as OrdersReport::ItemFrame::PriceControl.

Chapter 7, AFC classes 205

AcBaseFrame

Syntax

Parameter

Returns

See also

Syntax

Parameter

Returns

See also

Syntax

Returns

GetControlValue() finds the control, then calls the control’s GetValue() method
to obtain the value.

Function GetControl(controlName As String) As AcControl

controlName
The name of the control.

A reference to the control if the control exists.
Nothing if the control does not exist.

AcReportComponent::FindContentByClass method
AcBaseFrame::FindContentByClassID method

AcBaseFrame::GetControlValue method

Returns the value of a specified data control within the frame. You specify the
control by using either the last part of the control’s name, such as PriceControl, or
its fully qualified name, such as OrdersReport::ItemFrame::PriceControl.
GetControlValue() finds the control, then calls the control’s GetValue() method
to obtain the value.

If you call this method from BuildFromRow(), you must consider the order in
which controls are built. Generally, the controls of a frame are built in the same
order that they appear in Report Structure. If you call GetControlValue() to get
the value of a control that is not yet created, GetControlValue() returns Null.

Function GetControlValue(controlName As String) As Variant

controlName
The name of the control for which you want the value.

The value of the control if the control exists.
Null if the control does not exist.

AcControl::GetControlValue method

AcBaseFrame::GetPageNumber method

Returns the page number. The page number is a formatted string that represents
the page number as it appears in the generated report. The page number can be
the same as the page index or it can be different from the page index.

Call GetPageNumber() from a page only, not from a frame.
Function GetPageNumber() As String
The page number of a page.

206 Programming with Actuate Foundation Classes

Syntax

Syntax

Returns

Syntax

Returns

Syntax

Returns

Syntax

AcBaseFrame

AcBaseFrame::GetSearchValue method

Differentiates between subclasses of a parent class when a user is searching for
values, activating a hyperlink, or generating reportlet content from a report.

Function GetSearchValue() As String

AcBaseFrame::IsDataFrame method

Indicates whether the frame is a data frame. A data frame contains data
components, such as a text control, integer control, or chart.

Function IsDataFrame() As Boolean

True if the frame contains data components.
False if the frame contains only labels, images, or other non-data components.

AcBaseFrame::IsFooter method

Indicates whether the frame is a PageFooter component.
Function IsFooter() As Boolean

True if the frame is a footer.
False if the frame is not a footer.

AcBaseFrame::IsHeader method

Indicates whether the frame is a PageHeader component.
Function IsHeader() As Boolean

True if the frame is a header.
False if the frame is not a header.

AcBaseFrame::MakeContents method

Creates the frame contents dynamically when specific conditions are present.
Sub MakeContents()

AcBaseFrame::RebindToFlow method

The framework calls this method for controls that appear within a subpage when
the BalanceFlows() property of the subpage is set to True. Rebind ToFlow()
informs the control that the flow that contains the control changed as a result of
the rebalancing. If you override this method, you must call the superclass
implementation.

Chapter 7, AFC classes 207

AcBaseFrame

Syntax Sub RebindToFlow(flow As AcFlow)

Parameter flow
The flow that contains the component.

AcBaseFrame::SearchAttributeName method

Search value for reportlets. Returns the name of the attribute that a reportlet uses
to find a frame. By default, the attribute is SearchValue. If you override this
method, you must also override GetSearchValue() to return the appropriate
value.

Syntax Function SearchAttributeName() As String

Returns The name of the attribute that a reportlet uses to find a frame.

208 Programming with Actuate Foundation Classes

AcBasePage

Class AcBasePage

Description

See also

An abstract base class that defines the logic for instantiating the contents of pages.
Figure 7-2 shows the class hierarchy of AcBasePage.

|AcComponent I

AcReportComponent I

L‘AcVisuaIComponent I

|—{AcBaseFrame I

L{AcBasePage I
Figure 7-2 AcBasePage

AcBasePage is the abstract base class for the two types of page components in a
report design, AcPage and AcSubPage. AcPage describes the physical attributes
of a page, such as size and page numbering. AcSubpage supports placing a
subpage within a page. A subpage exists in a flow and adds a set of flows within
a page. For example, you can use a subpage to combine a one-column flow with a
two-column flow on a single page.

Subclassing AcBasePage

Because AcBasePage is an abstract base class, do not derive directly from it.

Class AcPage

Properties

AcBasePage properties are listed in Table 7-4.

Table 7-4 AcBasePage properties

Property Type Description

BalanceFlows Boolean Specifies whether to redistribute the contents

function of the page to make all flows on the page the

same height.
The default value is False.

Canlncrease Boolean Specifies whether the page width can increase.

Width function The default value is False.

Chapter 7, AFC classes 209

AcBasePage

Methods for Class AcBasePage

Methods defined in Class AcBasePage

BalanceFlows, GetFirstDataFrame, GetLastDataFrame

Methods inherited from ClassAcBaseFrame

AddToAdjustSizelList, BindToFlow, FindContentByClass, FindContentByClassID,
GetControl, GetControlValue, GetPageNumber, GetSearchValue,
IsDataFrame, IsFooter, IsHeader, MakeContents, RebindToFlow,
SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanincreaseHeight, CanincreaseWidth, CanMoveleft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetlLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentlterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPagelndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePagelndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent
ApplyVisitor, Delete, IsPersistent, New

210 Programming with Actuate Foundation Classes

Syntax

Returns

Syntax

Returns

Syntax

Returns

AcBasePage

AcBasePage::BalanceFlows method

Implements the BalanceFlows property. The BalanceFlows property specifies
whether the contents of the page should be redistributed to make all flows on the
page the same height. The default value is False.

Function BalanceFlows() As Boolean

True if the contents of a page should be redistributed.
False if the contents of a page should not be redistributed.

AcBasePage::GetFirstDataFrame method

Retrieves the first data frame on a page. A data frame contains data rows.
Function GetFirstDataFrame() As AcFrame

The first frame that contains data rows.

AcBasePage::GetLastDataFrame method

Retrieves the last data frame on a page. A data frame contains data rows.
Function GetLastDataFrame() As AcFrame

The last frame that contains data rows.

Chapter 7, AFC classes 211

AcBrowserScriptingControl

Class AcBrowserScriptingControl

Supports the insertion of custom browser code in a report design. Figure 7-3
shows the class hierarchy of AcBrowserScriptingControl.

|AcComponent I

|—‘AcReportComponent I

|—{AcVisua\IComponent I

|—{ AcControl I

Ll AcTextualControl

L‘ AcBrowserScriptingControl

Figure 7-3 AcBrowserScriptingControl

Description Use AcBrowserScriptingControl to insert custom browser code into a report
design. For example, you can create a drop-down list and make it available to
report users who view the report on the web. Custom browser code can be any
code interpreted by a web browser, including;:

m JavaScript
m Javaapplets
m VBScript

Characters in the browser scripting control that have special meaning for the web
browser are not converted by the DHTML converter. Instead, the DHTML
converter creates a block of HTML code called the context block. The web
browser then interprets the code in the BrowserCode property when the report
user views the report in DHTML format.

Properties

AcBrowserScriptingControl properties are listed in Table 7-5.

Table 7-5 AcBrowserScriptingControl properties

Property Type Description

AlternateText String Specifies the string to show when
viewing or printing the report in any
environment except a web browser.
The default value is “”.

212 Programming with Actuate Foundation Classes

AcBrowserScriptingControl

Table 7-5 AcBrowserScriptingControl properties

Property Type Description

BrowserClipping AcBrowserClipping Specifies how to clip text in the
browser scripting control when it is
viewed in a web browser.

The default value is NoClipping.

BrowserCode String The custom browser code.

“ur

The default value is “”.

DebugOption Boolean Selects whether the alternate text or
browser code is displayed in a web
browser. True displays the alternate
text, False displays the custom
browser code.

The default value is False.

Selectable Boolean Indicates whether a user can select
the control.

The default value is True.

Methods for Class AcBrowserScriptingControl

Methods defined in class AcBrowserScriptingControl

BrowserCode, GetText, OnViewCode

Methods inherited from Class AcControl
BalloonHelp, GetControlValue, GetValue, PageNo, PageNo$, SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanincreaseHeight, CanincreaseWidth, CanMoveleft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetlLeft,
GetlLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Chapter 7, AFC classes 213

AcBrowserScriptingControl

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentlterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPagelndex, GetPagelist, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePagelndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent
ApplyVisitor, Delete, IsPersistent, New

AcBrowserScriptingControl::BrowserCode method

Retrieves the value of the BrowserCode property. Override BrowserCode() to
generate DHTML code dynamically.

Syntax Function BrowserCode() As String

AcBrowserScriptingControl::GetText method

Retrieves the value of the AlternateText property. Override GetText() to generate
the string for PDF output dynamically.

Syntax Function GetText() As String

214 Programming with Actuate Foundation Classes

AcBTree

Class AcBTree

Description

See also

A collection class that describes objects organized in a balanced tree. Figure 7-4
shows the class hierarchy of AcBTree. A balanced tree is a sorted list of objects. An
attribute of the object contains the object’s key. Each key is unique.

| AcCollection I

|—lAcBTree I

Figure 7-4 AcBTree

Use the AcBTree collection class to create a list of objects sorted by one of the
object’s attributes. To create an object in a BTree, use CreateNode() or Insert(). To
locate an object in a BTree, call Find() or FindOrCreate() to compare a key