
Programming with Actuate
Foundation Classes

Volume 1

This documentation has been created for software version 11.0.5.
It is also valid for subsequent software versions as long as no new document version is shipped
with the product or is published at https://knowledge.opentext.com.

Open Text Corporation
275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1
Tel: +1-519-888-7111
Toll Free Canada/USA: 1-800-499-6544 International: +800-4996-5440
Fax: +1-519-888-0677
Support: https://support.opentext.com
For more information, visit https://www.opentext.com

Copyright © 2017 Actuate. All Rights Reserved.
Trademarks owned by Actuate
“OpenText” is a trademark of Open Text.

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in
this publication. However, Open Text Corporation and its affiliates accept no responsibility and
offer no warranty whether expressed or implied, for the accuracy of this publication.

Document No. 170215-2-130321 February 15, 2017

https://knowledge.opentext.com
https://support.opentext.com
https://www.opentext.com

i

Contents
About Programming with Actuate Foundation Classes xi

Part 1
Working with Actuate Foundation Classes

Chapter 1
Understanding Actuate Foundation Classes . 3
About the Actuate Foundation Class architecture . 4

About the core protocol . 4
About class protocols . 5
About abstract base classes . 6
About concrete classes . 6

Understanding the AFC by functional category . 6
About report structure classes . 7

About report structure abstract base classes . 7
About report structure concrete classes . 7

About page layout classes . 7
About page layout abstract base classes . 8
About page layout concrete classes . 8

About control classes . 9
About control abstract base classes . 10
About control concrete classes . 10

About connection classes . 10
About connection abstract base classes . 10
About connection concrete classes . 10

About collection classes .11
About collection abstract base classes . 12
About collection concrete classes . 12

About data stream classes . 12
About data stream abstract base classes . 12
About data stream concrete classes . 12

About Excel classes . 13
About Excel abstract base classes . 14
About Excel concrete classes . 14

About the visitor class . 14

Chapter 2
Working with a class . 15
About classes . 16

ii

About class declaration .16
Understanding class relationships .17

About inheritance .18
About references .18
About scope .19

Understanding class scope naming conventions .20
About the default scope of a class in a report design .20
About the default scope of a class in a library .21

Getting information about classes in a report .22
Getting information about a specific class .22
Getting information about all classes in a report .24

Working with a class variable .24
About the functional categories of variables .25
Defining properties .27

About function properties .28
About miscellaneous properties .31

Using a parameter .32
Using a regular variable .32
About variable visibility .33
Creating a variable .35
Editing a variable .36
Deleting a variable .37

Working with a method .37
About methods you can override .39
About methods you can call .40
About private methods .40
About user-defined methods .40
Creating a method .40
Naming a method .41
Editing a method .42
Deleting a method .43
Overloading a method .43

Chapter 3
Working with an object . 45
About objects and object reference variables .46
Creating an object .46

Declaring an object reference variable .46
Declaring an object reference variable as a specific class .47
Declaring an object reference variable as AnyClass type .47

Using Actuate Basic to create an object .47
Using an object reference variable .47

Working with a simple variable .48

iii

Working with an object reference variable . 48
Referring to an object’s variables and methods . 49
Referencing a method of a class . 50

Referencing a method in a superclass . 50
Referencing a method using a class name . 50
Resolving an ambiguous method call . 51

Assigning an object to an object reference variable . 52
Setting an object reference variable to Nothing . 53

Passing an object reference to a procedure . 53
Getting information about an object . 53
Testing an object reference using the Is operator . 54

Testing for Nothing . 54
Comparing object reference variables . 54

About object lifetime . 55
About transient objects . 55
About persistent objects . 55
About pinned objects . 56

Chapter 4
Actuate Foundation Class library . 57
Summary of classes and methods . 60

Report structure classes and methods . 61
AcComponent . 61
AcReportComponent . 61
AcReport . 64
AcSection . 66
AcConditionalSection . 68
AcDataSection . 68
AcGroupSection . 69
AcParallelSection . 70
AcReportSection . 70
AcSequentialSection . 71

Page layout classes and methods . 71
AcBaseFrame . 71
AcBasePage . 72
AcPage . 73
AcSubPage . 74
AcDataFrame . 74
AcFrame . 74
AcFlow . 76
AcLinearFlow . 77
AcTopDownFlow . 78
AcPageList . 78

iv

AcLeftRightPageList .79
AcSimplePageList .79
AcTitleBodyPageList .79

Control classes and methods .80
AcVisualComponent .80
AcControl .83
AcCrosstab .84
AcDrawing .84
AcChart .85
AcImageControl .89
AcLineControl .89
AcRectangleControl .89
AcTextualControl .90
AcBrowserScriptingControl .90
AcDataControl .90
AcCurrencyControl .90
AcDateTimeControl .90
AcDoubleControl .91
AcDynamicTextControl .91
AcIntegerControl .92
AcTextControl .92
AcLabelControl .93
AcPageNumberControl .93
AcChartAxis .93
AcChartCategory .99
AcChartGridLine .100
AcChartLayer .101
AcChartPoint . 110
AcChartPointStyle . 112
AcChartSeriesStyle . 113
AcChartSeries . 114
AcChartTrendline . 115
AcDrawingPlane . 117
AcDrawingChartPlane . 117
AcDrawingSVGPlane . 117

Connection classes and methods . 118
AcConnection . 118
AcDBConnection . 118
AcDB2Connection . 119
AcMSSQLConnection . 119
AcOdaConnection . 119
AcODBCConnection . 119
AcOracleConnection . 119

v

AcDBCursor .119
AcDBStatement . 121

Collection classes and methods . 122
AcCollection . 122
AcBTree . 122
AcOrderedCollection . 123
AcList . 124
AcSingleList . 124
AcObjectArray . 124
AcStaticIndex . 125
AcIterator . 125

Data stream classes and methods . 126
AcDataAdapter . 126
AcDataFilter . 127
AcMultipleInputFilter . 128
AcSingleInputFilter . 128
AcDataRowBuffer . 128
AcDataRowSorter . 129
AcDataSource . 129
AcDatabaseSource . 129
AcExternalDataSource . 130
AcOdaSource . 130
AcQuerySource . 131
AcSqlQuerySource . 131
AcTextQuerySource . 132
AcStoredProcedureSource . 132
AcDataRow . 132

Excel classes and methods . 133
AcExcelObject . 133
AcExcelApp . 133
AcExcelRange . 133
AcExcelCell . 135
AcExcelColumn . 135
AcExcelRow . 135
AcExcelWorkbook . 136
AcExcelWorksheet . 136

Visitor class and methods . 137
AcVisitor . 137

Chapter 5
Understanding report generation . 139
Understanding the report generation process . 140

Generating a report . 141

vi

Adding startup and cleanup code .141
Starting the build process .142

Creating content .143
Understanding how the core protocol creates content .143
Understanding how a component reference creates content .144

Understanding how a report section creates content .145
Understanding how a group section creates content .146
Understanding how a frame creates content .146
Understanding how a control creates content .147

Understanding page creation .148
Determining the page on which a frame appears .148
About page list styles .149
About page list events .150

Part 2
Actuate Foundation Class Reference

Chapter 6
AFC data types . 153
About the AFC data types .154

About AFC aliased types .154
About AFC structures .154
About AFC enums .154
AFC data types .154

AcAutoSplit .155
AcBrowserClipping .155
AcChartAxisLabelPlacement .155
AcChartAxisLetter .156
AcChartAxisPlacement .156
AcChartBarShape .157
AcChartComparisonOperator .157
AcChartDefaultMarkerSettings .158
AcChartLayerType .158
AcChartLegendPlacement .158
AcChartMarkerShape .159
AcChartMissingPoints .160
AcChartPieExplode .160
AcChartPointHighlight .161
AcChartPointLabelPlacement .161
AcChartPointLabelSource .162
AcChartSeriesPlacement .164
AcChartStatus .164

vii

AcChartTickCalculation . 165
AcChartTickPlacement . 165
AcChartType . 166
AcColor . 167
AcControlValueType . 169
AcCrosstabBorderStyle . 169
AcCrosstabTotalColumnPlacement . 170
AcCrosstabTotalRowPlacement . 170
AcCrosstabValueLayout . 170
AcDataGroupingMode . 171
AcDataGroupingUnit . 171
AcDataType . 172
AcDay . 173
AcDrawingBorderStyle . 173
AcDrawingFillPattern . 174
AcDrawingFillStyle . 178
AcDrawingLinePen . 179
AcDrawingLineStyle . 179
AcDrawingTextOrientation . 180
AcDrawingTextStyle . 180
AcExcelBorder . 181
AcExcelBorderType . 181
AcExcelHorizontalAlignment . 182
AcExcelVerticalAlignment . 182
AcFlowPlacement . 182
AcFont . 183
AcGroupOnType . 183
AcHorizontalPosition . 184
AcHorizontalSize . 185
AcImageEmbedType . 186
AcLayoutOrientation . 186
AcLinePen . 186
AcLineStyle . 187
AcMargins . 187
AcMonth . 188
AcPageHeaderOptions . 188
AcPageNumberStyle . 188
AcPercentage . 189
AcPoint . 189
AcRectangle . 190
AcSearchType . 190
AcSize . 191
AcSortingOptions . 191

viii

AcTextClipStyle .191
AcTextFormat .192
AcTextJustify .192
AcTextPlacement .193
AcTextVerticalPlacement .193
AcTOCNodeType .194
AcTwips .194
AcVerticalPosition .195
AcVerticalSize .196
AcWordWrapStyle .196
AcXMLType .197

Chapter 7
AFC classes . 199
Class AcBaseFrame .200
Class AcBasePage .209
Class AcBrowserScriptingControl .212
Class AcBTree .215
Class AcChart .220
Class AcChartAxis .261
Class AcChartCategory .310
Class AcChartGridLine .314
Class AcChartLayer .319
Class AcChartPoint .403
Class AcChartPointStyle .418
Class AcChartSeries .431
Class AcChartSeriesStyle .443
Class AcChartTrendline .452
Class AcCollection .462
Class AcComponent .466
Class AcConditionalSection .469
Class AcConnection .472
Class AcControl .474
Class AcCrosstab .480
Class AcCurrencyControl .484
Class AcDataAdapter .486
Class AcDatabaseSource .497
Class AcDataControl .501
Class AcDataFilter .506
Class AcDataFrame .507
Class AcDataRow .509
Class AcDataRowBuffer .516
Class AcDataRowSorter .518

ix

Class AcDataSection . 521
Class AcDataSource . 529
Class AcDateTimeControl . 531
Class AcDBConnection . 533
Class AcDB2Connection . 537
Class AcDBCursor . 540
Class AcDBStatement . 550
Class AcDoubleControl . 562
Class AcDrawing . 564
Class AcDrawingChartPlane . 574
Class AcDrawingPlane . 576
Class AcDrawingSVGPlane . 580
Class AcDynamicTextControl . 582
Class AcExcelApp . 590
Class AcExcelCell . 593
Class AcExcelColumn . 594
Class AcExcelObject . 596
Class AcExcelRange . 597
Class AcExcelRow . 606
Class AcExcelWorkbook . 608
Class AcExcelWorksheet .611
Class AcExternalDataSource . 614
Class AcFlow . 616
Class AcFrame . 624
Class AcGroupSection . 631
Class AcImageControl . 637
Class AcIntegerControl . 641
Class AcIterator . 643
Class AcLabelControl . 648
Class AcLeftRightPageList . 650
Class AcLinearFlow . 652
Class AcLineControl . 656
Class AcList . 658
Class AcMSSQLConnection . 660
Class AcMultipleInputFilter . 663
Class AcObjectArray . 667
Class AcOdaConnection . 670
Class AcOdaSource . 672
Class AcODBCConnection . 680
Class AcOracleConnection . 684
Class AcOrderedCollection . 687
Class AcPage . 691
Class AcPageList . 698

x

Class AcPageNumberControl .706
Class AcParallelSection . 711
Class AcQuerySource .714
Class AcRectangleControl .717
Class AcReport .720
Class AcReportComponent .736
Class AcReportSection .758
Class AcSection .767
Class AcSequentialSection .779
Class AcSimplePageList .783
Class AcSingleInputFilter .784
Class AcSingleList .788
Class AcSqlQuerySource .789
Class AcStaticIndex .791
Class AcStoredProcedureSource .793
Class AcSubPage .797
Class AcTextControl .799
Class AcTextQuerySource .801
Class AcTextualControl .803
Class AcTitleBodyPageList .805
Class AcTopDownFlow .806
Class AcVisitor .809
Class AcVisualComponent .826

Index . 851

A b o u t P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s xi

A b o u t P r o g r a m m i n g
w i t h A c t u a t e

F o u n d a t i o n C l a s s e s

Programming with Actuate Foundation Classes provides information about using the
Actuate Foundation Classes, their variables, properties, and methods.

Programming with Actuate Foundation Classes includes the following chapters:

■ About Programming with Actuate Foundation Classes. This chapter provides an
overview of this guide.

■ Part 1. Working with Actuate Foundation Classes. This part describes and
provides information about Actuate Foundation Classes, working with the
inheritance hierarchy, and document generation.

■ Chapter 1. Understanding Actuate Foundation Classes. This chapter describes the
Actuate Foundation Class architecture and provides an overview of Actuate
Foundation Classes by functional category.

■ Chapter 2. Working with a class. This chapter provides information about
declaring and working with Actuate Foundation Classes.

■ Chapter 3. Working with an object. This chapter provides information about
working with objects and object reference variables.

■ Chapter 4. Actuate Foundation Class library. This chapter shows an overview of
the inheritance hierarchy and a summary of classes and methods.

■ Chapter 5. Understanding report generation. This chapter provides information
about document generation and the content-creation process.

■ Part 2. Actuate Foundation Class Reference. This part provides lists of the AFC
data types and the AFC classes.

■ Chapter 6. AFC data types. This chapter lists the AFC data types.

xii P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

■ Chapter 7. AFC classes. This chapter contains an alphabetical listing of the
classes. Each class description includes a variables and properties summary
followed by an alphabetical listing of the methods.

Part 1Working with
Actuate Foundation Classes

Part One1

C h a p t e r 1 , U n d e r s t a n d i n g A c t u a t e F o u n d a t i o n C l a s s e s 3

C h a p t e r

1
Chapter 1Understanding Actuate

Foundation Classes
This chapter contains the following topics:

■ About the Actuate Foundation Class architecture

■ Understanding the AFC by functional category

4 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About the Actuate Foundation Class architecture
The Actuate Foundation Class (AFC) library, afc.rol, contains the classes that form
the framework on which report developers build Actuate reports. Each
foundation class serves a distinct purpose, such as creating a data source
connection, building a currency control, or creating a page layout.

The foundation classes are written in Actuate Basic, an object-oriented
programming language modeled after Microsoft Visual Basic Version 3. Actuate
Basic is the programming language used to access the AFC library. For
information about the data types, statements, and functions that Actuate Basic
uses for report development tasks, see Programming with Actuate Basic. Actuate
Basic is an interpreted language. The set of processes that interprets the language
is called the Factory. For more information about the Factory, see Chapter 5,
“Understanding report generation.”

About the core protocol
Despite differences in their functionality, the foundation classes share a core
protocol, which provides the logic for the tasks that are common to all report
components. This core protocol gives the foundation classes a uniformity that
makes the AFC library easy to understand and use. The core protocol consists of
methods that come from two foundation classes. Accompaniment is the base class
from which all other classes in the library descend. AcReportComponent is the
base class for all reports, sections, frames, controls, page lists, flows, and pages.
Figure 1-1 shows the methods that compose the core protocol.

Figure 1-1 AFC core protocol

Table 1-1 describes the core methods. For more information about these methods,
see “AcComponent” and “AcReportComponent” in Chapter 7, “AFC classes.”

From AcComponent

From AcReportComponent

Start()

Finish()

New()

Build() or
BuildFromRow()

OnRow()

C h a p t e r 1 , U n d e r s t a n d i n g A c t u a t e F o u n d a t i o n C l a s s e s 5

About class protocols
Each class adapts the core protocol to meet the needs of the class. The higher a
class is in the AFC hierarchy, the more general is its class protocol. You build the
features that differentiate classes on top of the core protocol. Each successive
generation of classes contains increasingly specialized versions of the core
protocol. The class protocol builds on methods from the core protocol, adding
methods that address the main task of the class and dropping core methods the
class protocol does not need.

Figure 1-2 shows the protocols for three classes, AcSection, AcDataAdapter, and
AcFlow. Although these classes support very different functionality, each class
protocol derives from the core protocol.

Figure 1-2 Protocols for AcSection, AcDataAdapter, and AcFlow

Table 1-1 AFC core methods

Core method Description

New() Provides the logic for constructing a new object.

Start() Provides the logic for preparing an object for the
build process.

Build()
and
BuildFromRow()

Provide the logic for creating the contents of
container objects such as reports or frames. Use
Build() for components that do not process data
rows. Use BuildFromRow() for components that
process data rows.

OnRow() Assigns to a data control the value from the
expression in the control’s ValueExp property.

Finish() Provides the logic for completing an object.

Start()

Fetch()

Finish()

Class protocol for
AcDataAdapter

Start()

Finish()

New()

Build() or
BuildFromRow()

Class protocol for
AcSection

New()

AddFrame()

Finish()

Class protocol for
AcFlow

Start()

6 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

e.Report Designer Professional supports the creation of reports without the need
to understand the class protocols. To create custom components that require
programming or to change or extend the AFC architecture, you must understand
class protocols.

About abstract base classes
An abstract base class defines the protocol governing the behavior of its
subclasses. Subclasses refine and build on this protocol. Many methods in an
abstract base class are empty. By subclassing a base class, you add the necessary
implementation details.

Never instantiate an abstract base class. In general, derive a class only from a
subclass of an abstract base class. If you subclass directly from an abstract class,
you must add functionality to your subclass. Most often, however, the
functionality you want to add already exists in a subclass.

About concrete classes
A concrete class defines the specific implementations of an abstract base class. A
concrete class inherits and extends behavior from an abstract base class.
Components in e.Report Designer Professional’s Toolbox correspond to concrete
classes.

You can instantiate a concrete class. You also can subclass a concrete class to
modify or extend the functionality of the original class.

Understanding the AFC by functional category
The Actuate Foundation Classes are divided into the following functional
categories:

■ Report structure classes

■ Page layout classes

■ Control classes

■ Connection classes

■ Collection classes

■ Data stream classes

■ Excel classes

■ A visitor class

The following sections provide an overview of the abstract and concrete classes in
each category, their purpose, and their position in the class hierarchy.

C h a p t e r 1 , U n d e r s t a n d i n g A c t u a t e F o u n d a t i o n C l a s s e s 7

About report structure classes
Report structure classes form the backbone of a report. They define the general
structural characteristics of objects, the logic for creating objects, and the way
objects work together.

When you create a new report in e.Report Designer Professional, you create a
subclass of AcReport. AcReport, in turn, is a subclass of AcReportComponent, as
shown in Figure 1-3.

Figure 1-3 Class hierarchy for report structure classes

About report structure abstract base classes
AcComponent is the root class from which all other reporting objects descend.
AcReportComponent is the base class for all components of a report. AcReport is
the container for all other objects in a report. AcSection is the abstract base class
for all sections. AcDataSection is the abstract base class that defines the logic a
section uses to process a group of data rows. Do not derive from these classes.

About report structure concrete classes
Use the AcConditionalSection, AcGroupSection, AcParallelSection,
AcReportSection, and AcSequentialSection concrete classes to organize data in a
report.

About page layout classes
The page layout classes manage the creation and display of a report page. The
classes that control page layout are shown in Figure 1-4.

AcComponent

AcReportComponent

AcReport

AcSection

AcDataSection

AcReportSection

AcGroupSection

AcSequentialSection

AcParallelSection

AcConditionalSection

8 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Figure 1-4 Classes that control page layout

About page layout abstract base classes
AcBaseFrame is the abstract base class that defines the core logic common to
pages and frames. AcBasePage is the abstract base class that defines the logic for
instantiating the contents of pages. AcDataFrame is the abstract base class that
defines the logic for how frames work with data rows. AcFlow is the abstract base
class that defines the logic for placing frames in a flow, the printable area of a
page. AcPageList is an abstract base class that instantiates and holds the pages for
a report. Do not derive from these classes.

About page layout concrete classes
Use AcSubPage and AcPage to design page styles. Use AcTopDownFlow to
determine the placement of report objects on the page. The AcSimplePageList,

AcComponent

AcReportComponent

AcVisualComponent

AcBasePage

AcSubPage

AcPage

AcFlow

AcLinearFlow

AcBaseFrame

AcPageList

AcSimplePageList

AcLeftRightPageList

AcTitleBodyPageList

AcDataFrame

AcFrame

AcTopDownFlow

C h a p t e r 1 , U n d e r s t a n d i n g A c t u a t e F o u n d a t i o n C l a s s e s 9

AcLeftRightPageList, and AcTitleBodyPageList classes represent specific page
designs.

AcFrame is a container for controls. In a report design, a frame and its contents
are typically associated with one or more data rows. For example, if a data row
contains name, address, and telephone data, the report design includes a frame
that contains three data controls for the data. In e.Report Designer Professional,
each time you drag a frame from a toolbox and drop it in the report design, you
instantiate a subclass of AcFrame.

About control classes
Control classes include data controls, cross tabulations, charts, and static
graphical objects, as shown in Figure 1-5.

Figure 1-5 Control classes

AcDataControl

AcVisualComponent

AcControl

AcTextControl

AcIntegerControl

AcDoubleControl

AcCurrencyControl

AcDateTimeControl

AcLineControl

AcRectangleControl

AcTextualControl

AcBrowserScriptingControl

AcCrosstab

AcDynamicTextControl

AcImageControl

AcChart

AcDrawing

AcLabelControl

AcPageNumberControl

AcChartAxis

AcChartCategory

AcChartLayer

AcChartPoint

AcChartPointStyle

AcChartSeries

AcChartGridLine

AcChartTrendline

AcDrawingChartPlane

AcDrawingPlane

AcDrawingSVGPlane

AcDrawingPlane

AcDrawingSVGPlane

AcDrawingPlane

10 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About control abstract base classes
AcControl is the abstract base class that defines the core characteristics of all
controls. AcCrosstab is the class you use in a report design to display data in rows
and columns. AcDataControl is the base class for controls that display data from
data rows. Derive from these classes only to create a custom control.

About control concrete classes
Use the AcCurrencyControl, AcDateTimeControl, AcDoubleControl,
AcDynamicTextControl, AcIntegerControl, and AcTextControl classes to display
various types of data from a data row. Use AcLabelControl to display static text.
Use AcPageNumberControl to display a page number.

UseAcImageControl, AcLineControl, and AcRectangleControl as drawing
elements that give a report visual interest.

Use AcChart, AcChartAxis, AcChartCategory, AcChartLayer, AcChartPoint,
AcChartPointStyle, and AcChartSeries to display data in various standard chart
formats, such as pie charts and bar charts. Use AcDrawingChartPlane,
AcDrawingPlane, and AcDrawingSVGPlane to work with chart drawings.

Use AcDrawing to create a custom illustration using SVG code.

Use AcBrowserScriptingControl to add web functionality to a report.
AcBrowserScriptingControl appears only in a DHTML report.

About connection classes
Connection classes provide communication links for an Actuate report. Figure 1-6
shows the types of connections a report can use. Each connection type is a
subclass of AcDBConnection.

About connection abstract base classes
AcConnection is the abstract base class that defines the core protocol for all
connection components. AcDBConnection is the base class that defines the basic
protocol for establishing database connections. Do not derive directly from these
classes.

About connection concrete classes
To connect to a data source, use the AcDB2Connection, AcMSSQLConnection,
AcOdaConnection, AcODBCConnection, AcOracleConnection, and
AcProgressSQL92Connection concrete classes.

AcDBStatement and AcDBCursor provide the Actuate Basic interface for working
with a SQL statement or cursor. The AFC framework creates and uses instances of
these classes when a report accesses a SQL database.

C h a p t e r 1 , U n d e r s t a n d i n g A c t u a t e F o u n d a t i o n C l a s s e s 11

Figure 1-6 Connection classes

About collection classes
Collection classes, shown in Figure 1-7, define the way e.Report Designer
Professional stores objects and accesses them in a linked list. For example, a frame
uses lists to manage the controls within the frame. To work with report content in
a list, such as controls in a frame or flows on a page, create a collection class and
an iterator class to access the contents.

Figure 1-7 Collection classes

AcComponent

AcDB2Connection

AcODBCConnection

AcDBStatementAcDBCursor

AcOracleConnection

AcProgressSQL92Connection

AcOdaConnection

AcDBConnection

AcConnection

AcMSSQLConnection

AcIterator

AcSingleList

AcCollection

AcOrderedCollection

AcObjectArray

AcBTree

AcStaticIndex

AcList

12 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About collection abstract base classes
AcCollection is the abstract base class for the Actuate collection classes.
AcOrderedCollection is the abstract base class for the Actuate ordered collection
classes. AcList class is an abstract class that defines the list interface. AcIterator is
the base class for all iterators.

About collection concrete classes
Use AcSingleList to process ordered lists, stacks, and queues. Use AcObjectArray
to create a resizable array of objects. Use AcStaticIndex to implement a multi-
layer, n-way tree to provide fast indexing into a large collection of data. Use
AcBTree to create a list of objects sorted by one object’s attributes.

About data stream classes
The data stream classes get and process data, create data rows, and send data
rows to the report. Figure 1-8 shows the principal data stream classes.

About data stream abstract base classes
AcDataRow is the abstract base class for user-defined data rows.

AcDataAdapter is the abstract base class that defines the logic of classes that form
a data stream. Do not derive from AcDataAdapter.

AcDataSource is a base class that defines how data sources retrieve data from an
input source and create data rows. AcDatabaseSource is an abstract base class for
data sources that retrieve data from databases. AcExternalDataSource is an
abstract base class for generic data source objects that use a command to retrieve a
single result set through an associated connection.

AcQuerySource is an abstract base class for query data sources. AcQuerySource
uses a Select statement to retrieve data from a database.

AcDataFilter is the abstract base class for all data filter classes.

About data stream concrete classes
AcDataRowBuffer, AcDataRowSorter, AcSingleInputFilter, and
AcMultipleInputFilter are data filters.

AcSqlQuerySource is a data source that you use to retrieve data from a SQL
database. AcStoredProcedureSource creates a data source for a stored procedure
that uses data rows. AcTextQuerySource creates a data source for a SELECT
statement that a report developer provides.

C h a p t e r 1 , U n d e r s t a n d i n g A c t u a t e F o u n d a t i o n C l a s s e s 13

Figure 1-8 Data stream classes

About Excel classes
Actuate’s Excel classes, shown in Figure 1-9, support creating and managing the
Excel workbooks, worksheets, ranges, rows, columns, and cells.

AcQuerySource

AcComponent

AcDataRow

AcDataAdapter

AcDataSource

AcDatabaseSource

AcDataFilter

AcSingleInputFilter

AcDataRowBuffer

AcMultipleInputFilter

AcStoredProcedureSource

AcSqlQuerySource

AcExternalDataSource

AcTextQuerySource

AcOdaSource

AcDataRowSorter

14 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Figure 1-9 Excel classes

About Excel abstract base classes
AcExcelObject is the abstract base class from which all other Excel classes
descend. AcExcelApp is the base class for all instances of classes you use to
generate and work with Excel files. AcExcelRange class is the base class for
AcExcelCell, AcExcelColumn, and AcExcelRow. Do not derive from these classes.

About Excel concrete classes
AcExcelCell, AcExcelColumn, AcExcelRow, AcExcelWorkbook, and
AcExcelWorksheet are concrete classes for working with Excel files.

About the visitor class
Use AcVisitor to create a utility to visit and perform an action on a report object.
AcVisitor provides the means to visit each type of report component. Figure 1-10
shows the visitor class.

Figure 1-10 The visitor class

AcExcelWorkbook

AcExcelApp

AcExcelCell

AcExcelColumn

AcExcelRow

AcExcelWorksheet

AcExcelRange

AcExcelObject

AcVisitor

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 15

C h a p t e r

2
Chapter 2Working with a class

This chapter contains the following topics:

■ About classes

■ About class declaration

■ Understanding class relationships

■ Getting information about classes in a report

■ Working with a class variable

■ Working with a method

16 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About classes
A class is a specification, or template, for creating an object in a report design. A
class contains variables and methods that define the attributes and behavior for
objects of the class. Report components, such as report sections, frames, and
controls, are instances of classes. This chapter introduces the concepts that you
use to declare and work with Actuate Foundation Classes.

Actuate Foundation Classes are written in Actuate Basic. You instantiate a class in
Actuate Basic differently from Java or C++. To instantiate a declared class in
Actuate Basic, use an object reference variable with a statement or function such
as Set, NewInstance, or NewPersistentInstance. An object reference variable
allocates memory for an object. You can instantiate the object using the Actuate
Foundation Classes or your own code.

In e.Report Designer Professional, the design environment accomplishes many
programming tasks for you, such as generating class declaration code for each
component in a report design.

About class declaration
Actuate Basic code defines the structure and behavior of the Actuate Foundation
Classes. e.Report Designer Professional creates Actuate Basic code for the classes
that correspond to components of a report design. To write a custom class for a
report design, declare the class using the Class statement. The Class statement
uses the following syntax:

Class <subclass name> Subclass Of <superclass name>
[<variable declarations>]
[<nested class declarations>]
[<method declarations>]

End Class

where

■ <variable declarations> declare variables associated with the class.

■ <nested class declarations> declare classes nested in the current class.

■ <method declarations> consist of subroutines and methods associated with
the class.

The following example shows a class declaration in an Actuate Basic source (.bas)
file. e.Report Designer Professional generates this file when you compile a report
object design (.rod) file. The example creates a class called ReportTitle. It is a

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 17

subclass of AcFrame. The class defines the label and a line control that are located
within the frame.

Class ReportTitle Subclass Of AcFrame

Class LabelControl Subclass Of AcLabelControl
Sub SetProperties()

Super::SetProperties()
Font.Bold = True
Font.Color = Navy
Font.Italic = True
Font.Size = 18
Position.X = 3551
Position.Y = 120
Size.Height = 459
Size.Width = 2257
Text = "Customers"
TextPlacement.Horizontal = TextAlignCenter

End Sub
End Class

Class LineControl Subclass Of AcLineControl
Sub SetProperties()

Super::SetProperties()
EndPosition.X = 9360
EndPosition.Y = 60
LineStyle.Color = Navy
LineStyle.Width = 60
Position.X = 0
Position.Y = 60

End Sub
End Class

End Class

Understanding class relationships
AFC classes co-exist to perform a variety of tasks. You must understand class
relationships to:

■ Create, modify, or delete a class, a variable, or a method.

■ Refer to a class, a variable, or a method.

■ Manage class modifications to avoid unexpected effects in related classes or
classes that refer to the modified class.

18 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Table 2-1 summarizes the principal concepts that govern class relationships.

About inheritance
In the AFC class hierarchy, inheritance supports maintaining a standard interface
for a report. It also supports code reusability. The classes at the top of the
hierarchy typically contain empty method declarations or methods with a few
lines of general instructions. These methods enforce a protocol for creating a
report. A class lower in the hierarchy adds implementation details to the higher-
level method. When you derive a class from an Actuate Foundation Class, the
subclass inherits the protocol.

The superclass serves as the baseline for the appearance and behavior of the
subclass. Typically, a subclass augments or redefines the behavior and structure
of its superclass. When you customize the subclass, the customization does not
affect the superclass.

Figure 2-1 shows the AcComponent abstract base class and the principal
subclasses that inherit from AcComponent.

About references
A method or object in one class can refer to a method or object in another class.
When you refer to an object, you make that object available to the calling class. A
reference is a link to another class, not a subclass or a new instance of another
class. For example, in class AcExcelWorksheet, the following method returns a
reference to an object of the class AcExcelRow:

Function GetRow(row As Integer) As AcExcelRow

Table 2-1 Terminology for expressing class relationships

Relationship Description

Inheritance A mechanism whereby one class is defined as a
special case of a more general class. The special case
is called a derived class or subclass. The general
class is called a base or superclass.

Reference A means of accessing an object directly from
another object. A reference is not a subclass or a new
instance of another class. For example, when
ObjectA of ClassA refers to ObjectB of ClassB in
code, ObjectA has access to the public components
of ObjectB, including methods and variables.

Scope Determines the visibility of classes, static variables,
and methods and how you refer to those items in
code.

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 19

References support creating an object once and using it in multiple contexts. A
calling class cannot modify the original class.

In e.Report Designer Professional, you create a reference when you drag a
component from a library and drop it in a report design. If you change the
component in the report design, you create a subclass of the component and the
original component in the library does not change. Conversely, if you change the
original component, all references to that component inherit the changes.

About scope
Scope defines the part of a report in which a symbol exists or is visible. A symbol
is the name of a class, a method, a variable, or a constant. Scope determines how
you access a class, how you create a reference to a class, when you instantiate a
class, when you initialize a variable, and so on.

You can declare a class in either global or class scope. A class has global scope if
you do not declare it within another class. A component in a library has global
scope. A class has class scope if you declare it within another class. A class with
class scope is called a nested class. For example, a control in a frame usually is a
nested class, scoped to the frame that contains the control. You cannot move the
base class into the scope of a nested class.

The following example shows the scope and inheritance of the SalesDetail class,
which is a subclass of AcReport. In addition, the example shows two nested

AcComponent

AcDataRowAcReportComponent

AcPageList

AcConnection AcDataAdapter

AcDataSource AcDataFilter

AcVisualComponent

AcFlow AcControlAcBaseFrame

AcReportAcSection

AcDBConnection

Figure 2-1 Principal subclasses that inherit from AcComponent

20 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

classes that have class scope, OfficeTitleFrame and CustomerTitleFrame. Both
classes are subclasses of AcFrame.

Class SalesDetail Subclass Of AcReport
…

Class OfficeTitleFrame Subclass Of AcFrame
…
End Class

Class CustomerTitleFrame Subclass Of AcFrame
…
End Class

End Class

Understanding class scope naming conventions
Using the scope-resolution operator (::), you can refer to any name of a class or
static variable, even if it is not visible in the current scope, and build a path to the
innermost scope. For example, the following class names refer to nested classes:

CustomerFrame::AddressControl
SalesRepFrame::AddressControl

This naming convention is similar to specifying a path in a URL using a slash (/).
This convention uses the following rules:

■ The class names in one scope are independent of class names in another scope.
Just as you can have two files with the same name if they are in different
directories, you can have two classes with the same name if they are in
different scopes.

■ To refer to a class in a different scope, use a qualified name. This convention is
analogous to accessing a file in a different directory. For example, to write code
for CustomerFrame that references AddressControl in SalesRepFrame, use the
full name, SalesRepFrame::AddressControl.

■ To refer to a class in the same scope, use only the class name. This convention
is similar to specifying a file in the current directory. For example, if
CustomerFrame contains two nested controls, CustomerNameControl and
CustomerAddressControl, use the class name, CustomerAddressControl, to
write code for a method in CustomerNameControl that refers to
CustomerAddressControl. The qualified name is not necessary because both
controls are in the same frame.

About the default scope of a class in a report design
In Actuate Basic, every class introduces its own default scope. Actuate Basic
applies the following rules to set default class scope when you place a component
in a report design:

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 21

■ The report has global scope.

■ All other classes except controls take the report’s scope.

■ A control takes the scope of its container, typically a frame.

Setting a default scope provides two key benefits:

■ Simplified naming conventions
Nesting a control within a frame supports managing control names. Because a
control has class scope, it does not require a unique name. Actuate Basic
supports an unlimited number of nesting levels.

■ Reusability
Nesting a class within the report object makes it possible to reuse the class in
another report design without a naming conflict. For example, you can place a
frame called CustomerFrame in a report design. In the same report, you can
use another frame called CustomerFrame from a different report design or a
library without changing the name of either frame. e.Report Designer
Professional recognizes one frame as <Report1>::CustomerFrame and the
other as <Report2>::CustomerFrame.

Table 2-2 summarizes the default class scope for several types of report classes.

About the default scope of a class in a library
Because a class in a library is available for any report design, the class has global
scope. If you publish a class that has report scope to a library, e.Report Designer
Professional changes the scope to global scope in both the library and the report
design.

Table 2-2 Default scopes for report classes

Type of class Default scope

Report Global

Section Report

Page list Report

Page Report

Flow Report

Connection Report

Data source Report

Data filter Report

Frame Report

Control Frame class or page class

22 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Getting information about classes in a report
e.Report Designer Professional provides various ways to get information about a
class. For example, you can use Project Browser to view all the classes available to
a report. You also can use the Properties window to view information about a
specific class. For more information about using these tools, see Developing
Reports using e.Report Designer Professional.

Getting information about a specific class
To view information about a class, use the Properties window, which is shown in
Figure 2-2.

Figure 2-2 Properties window

In the Properties window, you can access the following class information:

■ Properties
The Properties page displays properties of the class and their values. To view
the properties of a class, click the class in the report design. The Properties
page for the class appears. On this page, you can modify property settings and
designate some properties as parameters.

The properties that are visible on the page depend on the filtering option you
select. You can view expert properties, only advanced properties, only the
most commonly used properties, or only the properties you have overridden
or defined.

Properties page

Methods page

Variables page

Class page

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 23

■ Methods
The Methods page displays methods of the class. On this page, you can create
new methods, edit or override methods, and delete methods to which you
have access.

The methods that are visible on the page depend on the filtering option you
select. You can view the callable methods, only the overridable methods, only
the most commonly used methods, or only the methods you have overridden
or defined.

■ Variables
The Variables page displays the variables of the class. Using this page, you can
create and edit variables, view the data type of a variable, filter variables, and
delete variables.

The variables that appear on the page depend on the selected filtering option.
You can view local variables, local and public variables, or all variables.

■ Class
The Class page displays general information about the class, such as its
superclass and scope, a path to the library that contains the class, a description
of the class, and whether the class is public or private. Figure 2-3 shows the
Class page.

Figure 2-3 Class page

The check box labeled Private indicates whether a class remains private, which
means that the class is not available outside its current scope. A private class
does not appear in the Libraries window. The Private check box applies only
to classes with global scope.

The default setting of a component you add to a frame, a page, or a section is
private. The default setting of other classes is public.

Component’s class name

Scope of the class
Library that contains the component
If checked, the class is not available
outside its scope

Can include information such as
overridden methods, properties,
variables, or intended behavior for
the class

Component’s superclass

24 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Getting information about all classes in a report
For a list of all classes available to a report or to confirm a change you make using
the Class page, open Project Browser.

How to view all classes available to a report

1 In e.Report Designer Professional, choose View➛Project Browser. Project
appears.

2 Choose Filter. Browser Options appears, as shown in Figure 2-4.

Figure 2-4 Browser Options dialog box

3 Select Classes. Choose OK. Project appears, as shown in Figure 2-5.

Figure 2-5 Project window

4 Expand Includes and Symbols.

5 Expand the subclass of AcReport. Project displays the Actuate Foundation
Class subclasses available to the report, as shown in Figure 2-6. If the report
includes libraries, the libraries and their classes also appear in Project.

Working with a class variable
A class variable defines the state and the unique attributes of an object. Most
properties, such as background color, font, position, and size, are variables. The
scope of a variable is within the class in which you declare the variable. The
variable type determines how Actuate Basic stores the variable.

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 25

Figure 2-6 Project window listing the available classes

Actuate Basic supports two types of class variables:

■ Instance
An instance variable applies to a particular instance of a class. Actuate Basic
stores one copy of the variable in each instance. Use an instance variable if
each instance of a class must have a different value, such as when several text
controls each must be of a different size.

Declare an instance variable using the Dim statement, as shown in the
following example:

Dim Size As AcSize

■ Static
A static variable applies to all instances of a class and its subclasses. Actuate
Basic stores one copy of the variable for all instances of the class and its
subclasses. Use a static variable if all instances of a class must share the same
data, such as when you create a counter to track the number of times report
developers instantiate a particular class.

Declare a static variable using the Static statement, as shown in the following
example:

Static InstanceCount As Integer

About the functional categories of variables
The AFC framework organizes variables into the functional categories that are
described in Table 2-3.

Symbols
Subclass of AcReport

Classes available to the
AcReport subclass

26 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

How to filter the functional types of variables to display

1 In any view that displays classes, select the class for which you want to see the
variable. Properties appears.

2 Choose Variables. Variables appears.

3 Choose Filter. Variable Filtering appears, as shown in Figure 2-7.

Figure 2-7 Variable Filtering dialog box

4 Select the types of variables you want to see. Choose OK.

How to display sets of variables

The Variables page displays the class variables. The default setting for Variables is
to display all public, inherited, and locally declared variables in all functional
types.

1 In any view that displays classes, select the class for which you want to see the
variables. The Properties window appears.

Table 2-3 Functional categories of variables

Variable type Description

Parameter Stores values the user supplies to specify the data to
display in the report. Requester prompts for these values
before report generation begins. A parameter is a static
variable.

Property Defines the attributes of an object. For example, a control
has property variables such as BackgroundColor, Font,
Size, and Position that define its appearance. You supply
initial values for a property variable at design time. Only
an instance variable can be a property. The properties of a
subclass reflect property changes you make to the
superclass.

Regular Stores values that a report requires. For example, the
PageNumber variable of any subclass of AcPage stores
the current page number, which e.Report Designer
Professional updates continuously as the report
generates. This type of variable ensures that each page
displays the correct page number.

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 27

2 Choose Variables. The Variables page appears.

3 Select one of the options that are shown in Figure 2-8.

Figure 2-8 Display options

Defining properties
The properties of an object uniquely identify the object’s appearance and position
in the report, as well as the data the object displays and other information. The
AFC framework defines the following three types of properties:

■ Property variables
Most properties are variables, so you can work with a property variable in the
same way as you work with any other variable. In e.Report Designer
Professional, a property variable appears on both the Properties page and the
Variables page. The name of the property variable is the same on both pages.
For example, the BackgroundColor property for a component corresponds to
the BackgroundColor variable for the same component. The Position property
maps to the Position variable for the same component.

■ Function properties
The framework designates certain properties as function properties. Function
properties are not variables. During the build process, the framework uses a
property value that the report developer sets on the Properties page to
generate a method. The code in the generated method sets the value of an
associated variable, if there is one. Every function property has a generated
method. Not all function properties have an associated variable.

Displays only local variables
Displays local and public variables

Displays all variables

A variable declared in the class
appears in black text

An inherited variable
appears in gray text

28 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

■ Miscellaneous properties
A third group of properties, known as miscellaneous properties, do not have a
generated method. Miscellaneous properties can have an associated variable.
The mapping between a miscellaneous property and its associated variable is
not necessarily intuitive. For example, the Key property of a group section
maps to the KeyColumnName variable.

About function properties
Table 2-4 lists function properties by class. The table also shows the generated
method for each property and the associated variable, if any.

Table 2-4 Function properties

Class Function property Generated method Variable

AcBasePage BalanceFlows BalanceFlows() Not applicable

CanIncreaseWidth CanIncreaseWidth() Not applicable

AcBrowserScripting
Control

BrowserCode BrowserCode() Not applicable

Selectable Selectable() Not applicable

AcControl Format Format() Not applicable

Searchable Searchable() Not applicable

Selectable Selectable() Not applicable

ValueType ValueType() Not applicable

AcCurrencyControl Format Format() Not applicable

Searchable Searchable() Not applicable

SearchTag SetSearchTag() SearchTag

Selectable Selectable() Not applicable

ValueType ValueType() Not applicable

AcDataControl Format Format() Not applicable

Searchable Searchable() Not applicable

Selectable Selectable() Not applicable

AcDateTimeControl Format Format() Not applicable

Searchable Searchable() Not applicable

SearchTag SetSearchTag() SearchTag

Selectable Selectable() Not applicable

ValueType ValueType() Not applicable

AcFrame AutoSplitVertical AutoSplitVertical() Not applicable

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 29

AcFrame (continued) CanIncreaseHeight1 CanIncreaseHeight() Not applicable

CanIncreaseWidth CanIncreaseWidth() Not applicable

CanMoveLeft CanMoveLeft() Not applicable

CanMoveUp CanMoveUp() Not applicable

CanReduceHeight CanReduceHeight() Not applicable

CanReduceWidth CanReduceWidth() Not applicable

CustomDHTML
Footer

CustomDHTML
Footer()

Not applicable

CustomDHTML
Header

CustomDHTML
Header()

Not applicable

MaximumHeight MaximumHeight() Not applicable

MaximumWidth MaximumWidth() Not applicable

MinimumHeight MinimumHeight() Not applicable

MinimumWidth MinimumWidth() Not applicable

NoSplitBottom NoSplitBottom() Not applicable

NoSplitTop NoSplitTop() Not applicable

PageBreakAfter PageBreakAfter() Not applicable

PageBreakBefore PageBreakBefore() Not applicable

SplitMarginBottom SplitMarginBottom() Not applicable

SplitMarginTop SplitMarginTop() Not applicable

VerticalPosition VerticalPosition() Not applicable

VerticalSize VerticalSize() Not applicable

AcGroupSection GroupOn GroupOn() Not applicable

GroupInterval GroupInterval() Not applicable

AcImageControl Searchable Searchable() Not applicable

SearchTag SetSearchTag() SearchTag

Selectable Selectable() Not applicable

AcLineControl IsFrameDecoration IsFrameDecoration() Not applicable

Selectable Selectable() Not applicable

VerticalSize VerticalSize() Not applicable

AcPage CanIncreaseHeight CanIncreaseHeight() Not applicable

(continues)

Table 2-4 Function properties (continued)

Class Function property Generated method Variable

30 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPage (continued) CanIncreaseWidth CanIncreaseWidth() Not applicable

CanReduceHeight CanReduceHeight() Not applicable

CanReduceWidth CanReduceWidth() Not applicable

MaximumHeight MaximumHeight() Not applicable

MaximumWidth MaximumWidth() Not applicable

MinimumHeight MinimumHeight() Not applicable

MinimumWidth MinimumWidth() Not applicable

SplitMarginBottom SplitMarginBottom() Not applicable

SplitMarginLeft SplitMarginLeft() Not applicable

SplitMarginRight SplitMarginRight() Not applicable

SplitMarginTop SplitMarginTop() Not applicable

AcPageNumber
Control

Format Format() Not applicable

PageNumberType PageNumberType() Not applicable

Searchable Searchable() Not applicable

SearchTag SetSearchTag() SearchTag

Selectable Selectable() Not applicable

AcRectangleControl HorizontalSize HorizontalSize() Not applicable

AcRectangleControl IsFrameDecoration IsFrameDecoration() Not applicable

Selectable Selectable() Not applicable

VerticalSize VerticalSize() Not applicable

AcSection SearchValueExp SetSearchValue() SearchValue

PageBreakAfter PageBreakAfter() Not applicable

PageBreakBefore PageBreakBefore() Not applicable

PageBreakBetween PageBreakBetween() Not applicable

AcVisualComponent AnalysisType AnalysisType() Not applicable

CanIncreaseHeight CanIncreaseHeight() Not applicable

CanIncreaseWidth CanIncreaseWidth() Not applicable

CanMoveLeft CanMoveLeft() Not applicable

CanMoveUp CanMoveUp() Not applicable

CanReduceHeight CanReduceHeight() Not applicable

CanReduceWidth CanReduceWidth() Not applicable

Table 2-4 Function properties (continued)

Class Function property Generated method Variable

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 31

About miscellaneous properties
Table 2-5 shows miscellaneous properties by class, along with the variable
associated with the property, if any.

AcVisualComponent
(continued)

HorizontalPosition HorizontalPosition() Not applicable

HorizontalSize HorizontalSize() Not applicable

MaximumHeight MaximumHeight() Not applicable

MaximumWidth MaximumWidth() Not applicable

MinimumHeight MinimumHeight() Not applicable

MinimumWidth MinimumWidth() Not applicable

TocValueExp SetTocEntry() TocEntry

Searchable Searchable() Not applicable

SearchAlias SearchAlias() Not applicable

Selectable Selectable() Not applicable

VerticalPosition VerticalPosition() Not applicable

VerticalSize VerticalSize() Not applicable

1. Properties in the Dynamic Size and Position group, such as CanIncreaseHeight,
CanIncreaseWidth, CanMoveUp, and so on, apply to frames, pages, and data controls.

Table 2-4 Function properties (continued)

Class Function property Generated method Variable

Table 2-5 Miscellaneous properties

Class Miscellaneous property Variable

AcBaseFrame SearchValueExp SearchValue

AcConditional
Section

IfExp Not applicable

AcCrosstab LabelMultipleValues Not applicable

ValuePlacement Not applicable

AcDataControl SampleValue1 Not applicable

ValueExp Not applicable

AcGroupSection Key KeyColumnName

AcImageControl FileNameExp Not applicable

(continues)

32 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Using a parameter
To gather values when a report runs, specify a variable as a parameter. A report
typically uses parameters to filter the data to retrieve and display. For example, a
query can retrieve all customer records from a Customer table. Parameters
support specifying additional filter conditions when a report user runs the report,
such as retrieving only records for customers in Japan or only records in a specific
date range. You can also create a parameter to set properties such as the font and
color of an object when a report user runs the report.

You can create a parameter using the Properties page, Query Editor or Textual
Query Editor, or Parameter Editor.

A variable you specify as a parameter appears on the Variables page. It also
appears in Requester when a report user runs a report that uses parameters, as
shown in Figure 2-9.

For more information about parameters and how to create them, see Developing
Reports using e.Report Designer Professional.

Using a regular variable
To store values that e.Report Designer Professional uses when generating a
report, use a regular variable. For example, a frame uses the Container variable to
store a reference to its container object. You typically create a regular variable to
store values that methods need. For example, if you write a method that sets

AcOdaSource DriverName Not applicable

OdaInterfaceName Not applicable

AcReport
Component

TocValueExp Not applicable

AcReportSection OrderBy Not applicable

AcSection GrantExp Not applicable

SearchValueExp SearchValue

AcVisual
Component

LinkExp Not applicable

ObjectVariable Not applicable

1. SampleValue also applies to the AcBrowserScriptingControl and
AcPageNumberControl classes

Table 2-5 Miscellaneous properties (continued)

Class Miscellaneous property Variable

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 33

alternating rows to different colors, you can use a regular variable to store the
current row number.

To create a regular variable, choose New on the Variables page.

Figure 2-9 Requester showing parameters

About variable visibility
The visibility of a variable determines how, when, and where you can view and
use the variable. A property appears on the Properties page and its associated
variable, if any, on the Variables pages. A private variable appears only on the
Variables page. The visibility you can assign to a variable depends on whether it
is an instance variable or a static variable. For example, only a static variable can
be a parameter.

Table 2-6 describes the variable visibility settings and shows the type of variable
to which each setting applies.

Table 2-6 Variable visibility settings

Visibility setting Description Applies to

Private Appears on the Variables page for the
class in which it is declared.
Private visibility affects only where the

Instance and
static variables

(continues)

If a report uses parameters,
Requester prompts for the
parameters during report
generation

34 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

How to view the visibility setting for a variable

1 In any view that displays classes, such as Report Structure or Layout, select
the class for which you want to view a variable. The Properties window
appears.

2 Choose Variables. The Variables page appears.

3 Choose Edit. Class Variable appears, as shown in Figure 2-10.

Figure 2-10 Class Variable dialog box showing the visibility setting

Class Variable displays information about the variable. The visibility setting
appears in the lower portion of the window.

Private
 (continued)

variable is visible. A private variable is
available to the class and its subclasses.
In Actuate Basic code, you access a
Private variable in the same way as a
Public variable.

Instance and
static variables

Parameter Appears in Requester when a user runs a
report that uses parameters. The user
can type or select a value to set
additional run-specific filter conditions.

Static variable of
scalar data type

Public Appears on the Variables page for the
class in which it is declared and its
subclasses.

Instance and
static variables

Table 2-6 Variable visibility settings (continued)

Visibility setting Description Applies to

Visibility setting

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 35

Creating a variable
To create a variable in a report design, use the Variables page of a component. On
the Variables page, you can set the data type of the variable and indicate whether
the variable is private to its class or public. You can also show whether the
variable uses an externally defined data type, meaning a data type from outside
the Actuate Foundation Classes, and whether the variable is an instance variable,
available only to a specific object, or a static variable, available to all classes in the
report.

Use the Properties page to create an instance variable that is a property. When
you create a property, its name appears on both the Variables page and the
Properties page.

How to create a variable

1 In any view that displays classes, such as Report Structure or Layout, select
the class to which you want to add a variable. The Properties window appears.

2 Choose Variables. The Variables page appears.

3 Choose New. Class Variable appears, as shown in Figure 2-11.

Figure 2-11 Class Variable dialog box for creating a class variable

4 Type the variable name.

You can also type the name of an array, such as ProductArray(10) or
MultiArray(1 To 3, 1 To 3, 1 To 3).

5 Select or type the data type of the variable. The default value is Variant. You
can use any of the following as data types:

Select the data type of the variable

Type the variable or array name

Select the visibility of the variable

36 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

■ An Actuate Basic data type, such as Integer, Boolean, Double, or String

■ A custom data type

■ An Actuate Foundation Class data type, such as AcColor or AcFont

■ The name of any declared class

6 If this data type is a custom data type, select Externally Defined Data Type.

7 Select either Instance or Static.

8 Select the visibility of the variable. Choose OK.

The variable appears on the Variables page.

How to set the value of a property variable programmatically

You can programmatically set the values of a property variable at design time in
an overridable method, as shown in the following example:

Sub Start()
Super::Start()
Font.Size = 22
Font.FaceName = "Arial"
…

End Sub

Editing a variable
Use the Variables page to modify the data type of the variable or access the Class
Variable page to make other modifications. You can modify only a variable
scoped to a class. You cannot modify an inherited variable. Inherited variables
appear in gray on the Variables page.

How to edit a variable

1 In any view that displays classes, such as Report Structure or Layout, select
the class that contains the variable to edit. The Properties window appears.

2 Choose Variables. The Variables page appears.

3 Select the variable to edit. Choose Edit. Class Variable appears, as shown in
Figure 2-12.

4 Modify the variable. Choose OK.

To revert a variable to its previous definition immediately after making a change,
choose Edit➛Undo. This command works only if you do not perform another
task after editing the variable.

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 37

Deleting a variable
Use the Variables page to delete a variable. You can delete only a variable scoped
to a class. You cannot delete an inherited variable. Inherited variables appear in
gray on the Variables page. For a property variable, if you delete the variable, you
also delete the property.

Figure 2-12 Class Variable dialog box for editing a class variable

How to delete a variable

1 In any view that displays a class, select the class that contains the variable you
want to delete. The Properties window appears.

2 Choose Variables. The Variables page appears.

3 Select the variable to delete. Choose Delete.

To recover a variable immediately after you delete it, choose Edit➛Undo.

Working with a method
A method specifies the actions an object performs. A method is a procedure you
define within a class declaration. Most predefined methods in the Actuate
Foundation Classes support generating a report.

You can create a new method to add functionality to a class. You can also create a
method if the functionality you need does not exist in a predefined method. If the
functionality you require is an extension or a version of an existing method, you
can override the method.

38 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Actuate Foundation Classes support the following categories of predefined
methods:

■ Methods you can override

■ Methods you can call

■ User-defined methods

How to select the set of methods to display

In e.Report Designer Professional, the Methods page provides filters that support
viewing methods in each category. The default display setting for Methods shows
inherited and locally declared overridable methods.

1 In any view that displays classes, select the class for which you want to
display methods. The Properties window appears.

2 Choose Methods. The Methods page appears.

3 Select one of the options that are shown in Figure 2-13.

Figure 2-13 Methods page

Displays only local methods

Displays most commonly used methods

Displays methods you can override

Displays methods you can call

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 39

About methods you can override
An overridable method supports customizing parts of the report generation or
report viewing process. For example, the methods that are part of a class protocol,
such as New(), Start(), Build(), Fetch(), Finish(), are overridable.

When overriding a method, use the following guidelines:

■ Overriding a callable method can adversely impact the report generation
process.

■ Understand how the method works and the context in which it runs.

■ Decide whether you are replacing or extending the inherited method.

■ To extend the code, you must call the original method in the superclass, as
shown in the following example:

Function Start() As Boolean
Start = Super::Start()

' Your new code

End Function

Depending on the method and what you want to accomplish, you can call
the superclass method before, within, or after your code.

■ To replace the code, do not call the method in the ancestor class. You must
ensure that the replacement code performs all the necessary tasks that the
original method performs.

How to override a method

1 In any view that displays classes, such as Report Structure or Layout, select
the class containing the method you want to override. The Properties window
appears.

2 Choose Methods. The Methods page appears.

3 Select the method to override.

4 Choose Override. The method editor appears in Layout, as shown in
Figure 2-14.

Figure 2-14 The method editor

5 Add code to the method.

40 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

To retain and augment the method’s default behavior, keep the Super
statement. To replace the method’s default behavior, remove the Super
statement.

6 Close the method editor by choosing the X in the upper right corner of Layout.

About methods you can call
A callable method typically provides a defined service or information about an
object. You should not override these methods. For example, a data adapter class
provides methods such as SeekTo(), SeekBy(), SeekToEnd(), and Rewind() that
you can call to access and navigate through data. Report component classes
provide methods such as IsContainer(), IsLeaf(), IsVisual(), and HasContents()
that you can call to get information about an object. Page list classes define
methods such as GetPageCount(), GetContents(), GetCurrentPage(), and
GetFirstPage() that you can call to get a value your code requires.

If you cannot find a predefined method for a task, create a new method.

About private methods
The AFC framework calls private methods to perform internal tasks. Do not
override a private method. Actuate does not support overridden private
methods. If your report design contains an overridden private method, e.Report
Designer Professional displays a warning message when you compile or run the
report.

About user-defined methods
To add functionality that does not exist in a predefined method, create a new
method for a class. If the functionality to add is an extension of an existing
method, consider overriding the existing method instead.

Creating a method
Actuate Basic imposes no restrictions on what you can do with a method you
create. A method can significantly affect the behavior of an object. Design, code,
and test methods carefully. When creating a method, use the following
guidelines:

■ Confirm that creating a method is a better choice than overriding an existing
method. If you plan to use the method in a variety of contexts, creating a
method is the better choice.

■ Minimize conditions you impose on other programmers who use the method.
For example, be aware of the complexities that arise from creating the
following kinds of methods:

■ Methods a user must call to use the component

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 41

■ Methods that must execute in a strict order

■ Methods that put the component into a state that could invalidate another
method or event

If you cannot avoid such conditions, write code that manages incorrect use of
your methods. For example, if calling a method puts the component into a
state that renders another method invalid, program the other method to test
the state before executing its main code. At a minimum, display a warning
message and a cancellation option if an error occurs. Use code comments to
describe any special requirements or preconditions.

How to create a method

1 In any view that displays classes, select the class to which to add a new
method. The Properties window appears.

2 Choose Methods. The Methods page appears.

3 Choose New. Add Method appears, as shown in Figure 2-15.

Figure 2-15 Add Method dialog box

4 Type a name for the method.

5 Specify a return data type for the method, if necessary. Choose OK.

The method name appears on the Methods page as a locally defined method.
At the same time, the method editor appears in Layout, displaying the method
declaration.

6 Write code for the method.

7 Close the method editor by choosing the X in the upper right corner of Layout.

Naming a method
The name of a method must follow the naming conventions for any other object
in Actuate Basic, such as a class or a variable.

When naming a method, use the following guidelines:

■ Begin a method name with a verb.
For example, GetHorizontalPosition is clearer than XPosition, which sounds
like a property.

Specify the method name

Specify the method’s return type, if needed

42 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

■ Use unambiguous descriptive names that reflect the method’s purpose.
For example, a name such as ReadDataRow is more informative than
DoDataRow.

For more information about Actuate Basic naming conventions, see Programming
with Actuate Basic.

You can use duplicate method names within a report if the methods are
overloaded or in different scopes.

Editing a method
You can edit only a method you create or an overridden method. You cannot edit
an inherited method.

How to edit a method

1 In any view that displays classes, such as Report Structure or Layout, select
the class containing the method to edit. The Properties window appears.

2 Choose Methods. The Methods page appears.

Methods displays inherited and locally defined methods. To narrow or
expand the list of methods that appears, change the filtering options.

3 Select the method to edit. Choose Edit. The method editor appears in Layout,
as shown in Figure 2-16.

Figure 2-16 The method editor

4 Modify the code as necessary.

5 To close the method editor, choose the X in the upper right corner of Layout.

C h a p t e r 2 , W o r k i n g w i t h a c l a s s 43

Deleting a method
You can delete only a method you create or a method that you have overridden.
You cannot delete an inherited method.

How to delete a method

1 In any view that displays classes, select the class containing the method to
delete. The Properties window appears.

2 Choose Methods. The Methods page appears.

Methods displays inherited and locally defined methods. To narrow or
expand the list of methods that appears, change the filtering options.

3 Select the method you want to delete. Choose Delete.

To recover a method immediately after deleting it, choose Edit➛Undo. This
command works only if you do not perform another task after deleting the
method.

Overloading a method
Overloading a method means creating multiple methods in the same class, with
the same name but different argument lists. The compiler selects the appropriate
version of the method based on the arguments you use to call the method.
Overloading supports varying the number and data types of a method’s
arguments. In the following example, StrConcat() is an overloaded method:

Function StrConcat(str1 As String, str2 As String) As String
Function StrConcat(str1 As String, str2 As String, concatenator

As String) As String

The first method is the standard call that concatenates strings using a comma
character. To get the comma character, this function calls the second function
using the same str1 and str2 arguments, along with a comma (",") as the third
argument.

myFirstString = StrConcat(myName, myProperty, ", ")

The output of this method is similar to the following example:

CustomerName, Address

You can use the second function if you want to concatenate strings using a
different character or set of characters, such as two hyphens to simulate an
em-dash, as shown in the following example:

mySecondString = StrConcat(myName, myProperty, "- - ")

The output of this method is similar to the following example:

DataSource - - DriverName

44 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

C h a p t e r 3 , W o r k i n g w i t h a n o b j e c t 45

C h a p t e r

3
Chapter 3Working with an object

This chapter contains the following topics:

■ About objects and object reference variables

■ Creating an object

■ Using an object reference variable

■ About object lifetime

46 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About objects and object reference variables
An object is an instance of a class. Every component in a report design is an
object, including frames, controls, and sections. In e.Report Designer Professional,
you set the properties of an object when you design the object. Later, you can
modify an object’s properties for a specific report. For example, you can display
negative numbers in red and positive numbers in black. To do so, declare and use
variables that refer to objects.

A variable that is a pointer to an object is called an object reference variable. An
object reference variable refers to an object that can have different property values
from the original class definition.

This chapter describes how to create an object and use an object reference
variable. For more information about variables and all other information about
Actuate Basic, see Programming with Actuate Basic.

Creating an object
To create an object, first declare an object reference variable. Then, take one of the
following steps:

■ Create the object using the New or New Persistent keywords.

■ Access an existing object by calling a method that returns an object of the
appropriate class.

The following sections describe these steps in detail.

Declaring an object reference variable
You declare an object reference variable the same way you declare other variables,
except that you assign the class or AnyClass type as the variable type. Declare an
object reference variable using one of the following statements:

■ Dim

■ ReDim

■ Static

■ Global

The object reference declaration uses the following syntax:

{Dim | ReDim | Static | Global} <variable name> As {<class> |
AnyClass}

C h a p t e r 3 , W o r k i n g w i t h a n o b j e c t 47

The following sections describe how to declare an object reference variable as a
specific class and as type AnyClass.

Declaring an object reference variable as a specific class
You typically declare an object reference variable as a specific class. You can
specify an Actuate Foundation Class, its subclass, or a custom class. To declare an
object as a specific class, use the Class statement. For example, to create an object
reference variable of type AcLabelControl, use a declaration similar to the
following statement. This object reference variable can refer to any object of the
AcLabelControl class or its subclasses.

Dim MyLabelControl As AcLabelControl

Declaring an object reference variable as AnyClass type
If you do not know an object’s class, declare the object reference variable for that
object as AnyClass using the following syntax:

Dim handle As AnyClass

Using Actuate Basic to create an object
Declaring an object reference variable does not create the object. The object does
not exist in memory until you instantiate the class. To create the object, use the
New or New Persistent keyword using the Set statement. Set…New and
Set…New Persistent use the following syntax for creating an object:

Set <variable name> = New [Persistent] <class> [(<argument list>)]

Set…New and Set…New Persistent create a new object of <class> and store the
reference to the object in <variable name>. The following example creates a label
and stores the reference to the label in the MyLabel object reference variable:

Set MyLabel = New AcLabelControl

Use Set...New Persistent to keep the object until the user deletes the report. When
e.Report Designer Professional generates the report objects that users view and
use, it creates persistent objects by default.

Using an object reference variable
After you create an object or obtain the handle to an existing object, you can work
with it using an object reference variable. More than one object reference variable
can refer to the same object. You can call the object’s methods or access the
object’s member variables. You can also work with the object reference variable
itself. For example, you can pass an object reference variable to a procedure, make
the variable refer to another object, compare an object reference variable, and test
it. The following sections describe how to perform these tasks.

48 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

When working with an object, it is important to understand the difference
between a simple variable, such as an integer or string variable, and an object
reference variable. When you use a simple variable, you manipulate a value
directly. If you assign the value of one simple variable to another, you copy the
value. Subsequent changes to the original variable do not affect the copy. When
you use an object reference variable, a change to the original object affects all
references to the object. The following sections describe how changes to variable
values affect simple and object reference variables.

Working with a simple variable
A simple variable contains a value. For example, the SearchTag variable for a
report section contains a character string. The RowNumber variable for a data
row contains an integer. When you assign one variable to another, you copy the
contents of the first variable to the second. Subsequent changes to the contents of
the original variable have no effect on the second variable, as shown in the
following example:

Dim Variable1, Variable2 As Integer
Variable1 = 7
Variable2 = Variable1 'Variable2 contains the value 7
Variable1 = 77
Print Variable1 'Prints 77
Print Variable2 'Prints 7

Working with an object reference variable
As with a simple variable, an object reference variable contains a value. The value
of an object reference variable is the reference to, or address of, an object. The
object reference variable does not contain the object itself. You can assign an
object reference variable to an object or to another object reference variable. When
you assign one object reference variable to another, you do not copy the object.
Instead, you create a second reference to the same object.

The following example creates a label and sets its text property. The object
reference variable LabelControl1 refers to the label.

' Declare an object reference variable
Dim LabelControl1 As AcLabelControl
' Create the object
Set LabelControl1 = New AcLabelControl
' Set the Text property of the label
LabelControl1.Text = "Annual Sales Report"

Figure 3-1 shows the result of the preceding example.

C h a p t e r 3 , W o r k i n g w i t h a n o b j e c t 49

Figure 3-1 Setting the text property for a label using an object reference variable

The following example assigns another object reference variable, LabelControl2,
to the first object reference variable, LabelControl1:

Dim LabelControl2 As AcLabelControl
Set LabelControl2 = LabelControl1
LabelControl2.Text = "Monthly Sales Report"

Print LabelControl2.Text 'Prints "Monthly Sales Report"
Print LabelControl1.Text 'Prints "Monthly Sales Report"

Figure 3-2 shows the result of the preceding example.

Figure 3-2 Using multiple object reference variables

Referring to an object’s variables and methods
To change, store, or retrieve an object’s values, you refer to its instance variables
and methods using dot notation, as shown in the following example:

<object reference variable>.<variable>
<object reference variable>.<method>

The dot instructs Actuate Basic to access an instance variable or method in an
object. For example, to refer to a variable or method in a label control, specify the
object reference variable, followed by a dot, followed by the variable or method
name, as shown in the following example:

MyLabel.BackgroundColor
MyLabel.Build()

To change the background color of the label, assign a value to one of its variables,
as shown in the following example:

LabelControl1

Object reference variable

Font

Label object

Default

Default

Annual Sales Report

Size

Text

Object reference variables

Font

Label object

Default

Default

Annual Sales Report

Size

Text

LabelControl1

LabelControl2

50 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

MyLabel.BackgroundColor = Yellow

If an object contains an object reference variable that points to another object, as
shown in Figure 3-3, you can use dot notation to build a path of references.

Figure 3-3 Using dot notation to build a path of references for an object
reference variable

Using Figure 3-3, you can build the following path:

myLabel.Container.CanMoveUp

Referencing a method of a class
You typically reference an object’s methods to execute a task on the object.
Sometimes, however, you must reference a method defined in a superclass. For
example, if you override a method but must still perform its original task, you can
call the method in the superclass.

Referencing a method in a superclass
When you reference a method in a superclass, e.Report Designer Professional first
searches the superclass of the current class, then continues up the hierarchy until
it finds the method. You typically use this technique to augment the functionality
of an overridden method. Referencing a method in a superclass executes the
original code and the code you add. Referencing a method in a superclass has the
following advantages:

■ Because you do not hard code a class name, your code is more reusable.

■ You do not have to know the name of the superclass.

To call a method in a superclass, use the following syntax:

Super::<method>

Referencing a method using a class name
You can specify the class containing the method you want to call. If you specify a
class name, Actuate Basic searches only the class you specify. Specify a class name
if you modified the method in each successively derived class and you must call a

Object reference variable

ObjectA

Object reference var:

Container

BackgroundColor

BorderStyle
myLabel

...

CanMoveUp

Position

Build()

...

ObjectB

C h a p t e r 3 , W o r k i n g w i t h a n o b j e c t 51

specific version of the class. To specify a class containing the method, use the
following syntax:

<class name>::<method>

For example, ClassC derives from ClassB and ClassB derives from ClassA. Each
class has its own version of the Build() method. To write code for MyLabel, a
subclass of ClassC, and use ClassA’s Build() method, use the following
statement:

MyLabel.ClassA::Build

To write code for MyLabel without using ClassA’s Build() method, use the
following statement:

MyLabel.Build

In the preceding example, if MyLabel’s Build() method does not contain
overridden code, the Build() method calls Super::Build(), which is the Build()
method of ClassC.

Resolving an ambiguous method call
Inheritance can result in two methods with the same name that execute different
tasks because they are in different scopes. When a report contains duplicate
method names, you must qualify the method name when you call the method.
Otherwise, Actuate Basic resolves an ambiguous method call by searching within
the current instance first, then searching within the global scope. In the following
examples, DerivedClass derives from BaseClass. BaseClass defines methods X
and Y. DerivedClass defines its own version of method Y. When you call Y() from
X() within MyObject, an instance of DerivedClass, Actuate Basic calls the
DerivedClass version of Y().

Class BaseClass
…
Sub X

Y()
…

End Sub
Sub Y

Beep
End Sub

End Class

Class DerivedClass Subclass of BaseClass
'DerivedClass inherits method X and redefines method Y

52 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

…
Sub Y

Super::Y
MsgBox "This operation is invalid"

End Sub
End Class
…
Dim MyObject As DerivedClass
Set MyObject = New DerivedClass

X() 'X() calls DerivedClass’ version of Y()

MyObject.Y 'Refers to Y() in DerivedClass
MyObject.BaseClass::Y 'Refers explicitly to Y() in BaseClass

Assigning an object to an object reference variable
To assign an object reference variable to an object, use the Set statement, as shown
in the following example:

Set <object reference variable> = <object expression>

Do not use Let to assign an object reference variable to an object. Let, which takes
the form x = y, assigns one simple variable to another. Because object reference
variables do not contain actual values, using Let as shown in the following
example results in an error:

Dim x As AcLabelControl
Dim y As AcLabelControl

Let x = New AcLabelControl
y = x 'Compilation error—Invalid assignment

You can assign an object to an object reference variable if the object is of the same
type as the object reference variable or of a type that derives from the type of the
object reference variable.

As shown in the following example, you can assign Control1 to Control2 because
you declare both variables as AcControl:

Dim Control1 As AcControl
Dim Control2 As AcControl

Set Control1 = New AcControl
Set Control2 = Control1

As shown in the following example, although you declare Control1 and Control2
as different types, you can assign Control1 to Control2 because AcTextControl
derives from class AcControl:

Dim Control1 As AcTextControl
Dim Control2 As AcControl

C h a p t e r 3 , W o r k i n g w i t h a n o b j e c t 53

Set Control1 = New AcTextControl
Set Control2 = Control1

You cannot assign an object to an object reference variable of an unrelated class or
a parent class. For example, you cannot assign a report object to a control object
reference variable.

The following example results in a run-time error because AcControl does not
derive from AcTextControl:

Dim Control1 As AcTextControl
Dim Control2 As AcControl
SetControl2 = New AcControl
SetControl1 = Control2 'Runtime error—Illegal handle conversion

Setting an object reference variable to Nothing
When an object reference variable does not refer to an object, it has the special
value, Nothing. This value has a similar purpose as the special value Null has for
a simple variable. An object reference variable cannot hold the value Null. When
you declare an object reference variable, it is initially set to Nothing. You can
assign Nothing to any object reference variable using Set, as shown in the
following example:

Set MyControl = Nothing

Passing an object reference to a procedure
As with other variables, you can pass an object reference to a procedure as a
parameter and return it as a return value. The following examples show when to
pass an object reference to a procedure as a parameter. The procedure in the
following example receives a reference to an object, AnyControl, as a parameter
and sizes it:

Sub SizeObject(AnyControl As AcControl)
AnyControl.Size.Width = 5000 'Twips
AnyControl.Size.Height = 1000 'Twips

End Sub

The function in the following example creates a label and returns a reference to it:

Function NewLabel() As MyLabelControl
Set NewLabel = New MyLabelControl

End Function

Getting information about an object
Table 3-1 lists the Actuate Basic functions that you can use to get information
about an object.

54 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Testing an object reference using the Is operator
Use the Is operator to perform the following tasks:

■ Test whether an object reference variable does not refer to an object (Is
Nothing).

■ Compare two object reference variables.

Testing for Nothing
Use Is with Nothing to see if an object reference variable does not refer to an
object. The procedure in the following example displays different messages
depending on whether an object reference variable is empty:

Sub TestContent(element As AcVisualComponent)
If element Is Nothing Then

MsgBox "The object reference variable is empty"
Else

MsgBox "The object reference variable is set"
End If

End Sub

Comparing object reference variables
Use Is to compare two object reference variables and determine whether they
both refer to the same object. The function in the following example determines
whether AcControl is in a list of controls that make up the contents of a frame:

Table 3-1 Actuate Basic functions for getting object information

Function Description

GetClassID() Returns the unique number that e.Report Designer
Professional automatically assigns to all objects. Objects of
the same class have the same ID number. Use GetClassID() to
determine whether two objects are of the same class without
the overhead of a string comparison.

GetClass
Name()

Returns the name of the object’s class. Use GetClassName()
when you need an object’s class before performing an
action.

IsKindOf() Tests whether an object is of a specified class or is derived
from a specified class. Returns True if the object is an
instance of the specified class or is an instance of a subclass
of the specified class. Otherwise, this function returns False.
Use IsKindOf() to test whether an object is of a particular
class before performing an action.

C h a p t e r 3 , W o r k i n g w i t h a n o b j e c t 55

Function IsInFrame (frame As AcFrame, control As AcControl) As
Boolean
Dim element As AcVisualComponent
Dim iter As AcListIterator
Set iter = frame.ContentList.NewIterator()
Do While iter.HasMore()

Set element = iter.GetNext()
If element Is control Then

IsInFrame = True
Exit Function

End If
Loop
IsInFrame = False

End Function

About object lifetime
The lifetime of an object depends on whether the object is transient or persistent.
The following sections describe transient, persistent, and pinned objects.

About transient objects
e.Report Designer Professional creates transient, or temporary, objects to perform
specialized tasks during report generation. e.Report Designer Professional
releases these objects from memory once the specialized tasks finish. Examples of
transient objects include data streams and connections.

e.Report Designer Professional releases a transient object from memory when the
last reference variable that refers to it is destroyed or is set to refer to another
object. e.Report Designer Professional keeps track of the reference count, which
increases each time a new object reference variable refers to the object. The
reference count decreases each time an object reference variable is:

■ Set to Nothing

■ Set to refer to another variable

■ Destroyed because it is out of scope or because it is a variable of an object that
is destroyed

When the reference count is zero, e.Report Designer Professional deletes the
object.

About persistent objects
The persistent objects that e.Report Designer Professional creates exist until you
delete the report file. All objects that appear in the report at view time are

56 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

persistent, including data controls, graphical elements, sections, and page layout
components. Because the report object instance (.roi) file saves the report data and
structure, users can view the report at any time.

About pinned objects
During e.Report generation, Actuate Basic objects are locked into memory, or
pinned, until they are completely processed. Normally, pinned objects are
released from memory once they have been finalized. Incorrectly written code in
overridden methods can cause objects to remain pinned in memory indefinitely. If
large numbers of pinned objects accumulate in memory during generation of an
e.Report, that report will run more slowly and consume more system resources
than it should. In extreme cases, this can cause significant system performance
degradation.

When a report object instance (.roi) file is closed, all the objects in that file should
have been finalized and released from memory. If any objects are still pinned
when the ROI file is closed, there is a problem in the report design. e.Report
Designer Professional and iServer now provide information about objects that
remain pinned when an ROI file is closed. This information is in the form of a
warning message: “Warning <Number> objects were still pinned when the ROI
file was closed.” A list of the pinned objects follows the message. This message
does not indicate a defect or behavior change in the e.Reports runtime or Actuate
Foundation Classes; it has been added to warn you of faulty overridden method
code in your report designs.

If you do not correct the faulty code in an existing report which now causes the
new warning message to appear, that report will continue to run exactly as
before. However, Actuate strongly recommends that you correct the defective
code. Changes in usage patterns or data could cause the number of excess pinned
objects created by the report to rise to a level that causes problems. You should
not put a new report into production if it produces this warning message.

Understanding and resolving the causes of excess pinned objects requires in-
depth analysis of report designs, and could require substantial modifications to
those designs. This work is beyond the scope of services covered by your Actuate
Support agreement. If you are uncertain about how to resolve pinned object
issues, Actuate’s Professional Services team can review your report designs and
provide advice.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 57

C h a p t e r

4
Chapter 4Actuate Foundation Class

library
This chapter covers the topic “Summary of classes and methods.”

58 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCurrencyControl

AcDateTimeControl

AcDoubleControl

AcBaseFrame

AcPage

AcSubPage

AcComponent

AcReportComponent

AcReport

AcSection

AcVisualComponent

AcDataSection

AcReportSection

AcGroupSection

AcSequentialSection

AcParallelSection

AcControl

AcImageControl

AcRectangleControl

AcSimplePageList

AcLeftRightPageList

AcTitleBodyPageList

AcBasePage

Page layout

Report structure

AcConditionalSection

AcPageNumberControl

AcPageList

AcLineControl

AcLabelControl

AcTextualControl

AcDataControl

AcIntegerControl

AcTextControl

AcBrowserScriptingControl

AcDataFrame

AcFrame

AcExcelCell

AcExcelColumn

Excel

AcExcelRow

AcExcelWorkbook

AcExcelWorksheet

AcExcelRange

AcCrosstab

AcDynamicTextControl

AcDrawing

AcChart

AcChartAxis

AcChartCategory

AcChartLayer

AcChartSeries

AcChartPoint

AcChartPointStyle

AcChartSeriesStyle

AcExcelObject

AcFlow

AcLinearFlow

AcTopDownFlow

Controls

AcChartGridLine

AcChartTrendline

AcDrawingPlane

AcDrawingChartPlane

AcSVGDrawingPlane

Drawing plane

AcExcelApp

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 59

AcDataRowBuffer

AcVisitor

AcOrderedCollection

AcComponent

AcConnection

AcDBConnection

Connection

AcDataRow

AcDataAdapter

AcDataSource

AcDatabaseSource

AcQuerySource

AcDataFilter

AcSingleInputFilter

Data stream

AcDBStatementAcDBCursor

AcList

AcSingleList

AcIterator

AcCollection

AcBTree

Collection

AcStoredProcedureSource

AcObjectArray

AcSqlQuerySource

AcTextQuerySource

AcExternalDataSource

AcStaticIndex

AcMultipleInputFilter

Visitor

AcDataRowSorter

AcProgressSQL92Connection

AcOracleConnection

AcODBCConnection

AcOdaCConnection

AcDB2Connection

AcMSSQLConnection

60 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Summary of classes and methods
The Actuate Foundation Class (AFC) library, afc.rol, contains classes and methods
that support building a wide range of custom reports. This chapter provides an
overview of the AFC library class by class, along with the methods for each class.
The classes and methods change from time to time as the product architecture
changes to meet customer needs.

This chapter groups classes into the following categories:

■ Report structure

■ Page layout

■ Control

■ Connection

■ Collection

■ Data stream

■ Excel

■ Visitor

Within each category, classes are arranged in tables according to the class
hierarchy. For example, the report structure class table begins with the root class,
AcComponent, and with AcReportComponent, the class that derives from
AcComponent.

The methods for a class appear in alphabetical order in each class table. These
methods are either callable or overridable. Callable methods provide useful
functionality, such as returning a reference to a component or identifying a
component as transient or persistent. You should not attempt to override callable
methods. Overridable methods are those you can modify to change class
functionality.

Some classes are appropriate for customizing a report and other classes are not.
For example, you should never instantiate the abstract base classes that define the
core protocol, the rules governing the use of a class.

In the tables in this chapter, inherited methods and methods that define the core
protocol typically appear only in a single class table. For example,
ApplyVisitor(), which applies to many subclasses of AcComponent, is defined
only in the AcComponent class. New(), which is part of the core protocol,
appears in the AcComponent class but not in classes that inherit from
AcComponent. Exceptions to this convention are methods whose functionality
substantially changes in a subclass. For example, the core method
BuildFromRow() is defined once in the AcReportComponent class and again in
AcChart, where BuildFromRow() supports specialized functionality for charts.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 61

Report structure classes and methods
Use report structure classes and methods to define the structural components of a
report, including the topmost container report object and the report sections.

AcComponent
AcComponent is the root class for report components. All structural components
derive from AcComponent. This class defines the mechanism for creating objects
within container objects. AcComponent methods are listed in Table 4-1.

AcReportComponent
A subclass of AcComponent, AcReportComponent is the base class for all
sections, pages, frames, and controls. AcReportComponent defines the general
structural characteristics of all classes in which a report stores persistent objects.
AcReportComponent methods are listed in Table 4-2.

Table 4-1 AcComponent methods

Method Classification Type Description

ApplyVisitor() Callable AcVisitor Starts visitor functions for a
component.

Delete() Overridable N/A Destructor.

IsPersistent() Callable Boolean Returns True if the component is
persistent. Returns False if the
component is transient.

New() Overridable N/A Constructor method for this class.

Table 4-2 AcReportComponent methods

Method Classification Type Description

Abandon() Callable N/A Removes a component that the
report no longer needs.

AddContent() Callable N/A Adds a new content component to
the current component.

Build() Overridable N/A Builds components that do not use
data rows. Container components
override this method.

BuildFromRow() Overridable AcBuild
Status

Builds components that use data
rows. Data container objects
override this method.

(continues)

62 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

DetachContent() Callable N/A A container object, such as a frame,
calls this method to detach one of
its content objects, such as a
control.

DetachFrom
Container()

Callable N/A A content object, such as a control,
calls this method to detach the
content object from its container,
such as a frame.

FindContainerBy
Class()

Callable AcReport
Component

Returns a reference to this class in
the structure hierarchy.

FindContentByClass() Callable AcVisual
Component

Returns a content component by
the component’s class name.
Derived classes override this
method to implement a specific
search method.

Finish() Overridable Prepares the component to be
written to the report object
instance (.roi) file. Called when a
component is finished building.

GenerateXML() Overridable N/A Generates XML for components
with custom XML.

GetComponentACL() Overridable String Returns the access control list
(ACL) for the component.

GetConnection() Callable Ac
Connection

Returns the connection associated
with this component.

GetContainer() Callable AcReport Returns a reference to the
container object for this
component.

GetContentCount() Callable Integer Returns the number of content
items in a component.

GetContentIterator() Callable AcIterator Returns an iterator over the
contents of this component.

GetContents() Callable AcOrdered
Collection

Returns a handle to the collection
of contents for this component.

GetDataStream() Callable AcData
Adapter

Returns the data stream associated
with this component.

GetFirstContent() Callable AcReport
Component

Gets the first content component.

Table 4-2 AcReportComponent methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 63

GetFirstContent
Frame()

Callable AcFrame Gets the first content frame for a
component.

GetFlow() Callable AcFlow Returns a handle to the flow of this
component.

GetFullACL() Overridable String Returns the access control list
(ACL) for the component and each
of its containers in the report
structure hierarchy.

GetPage() Callable AcPage Returns the page that contains the
object.

GetPageIndex() Callable Integer Returns the page index of the page
that contains the object. The page
index identifies the position of the
page within the report, starting
with 1.

GetPageList() Callable AcPageList Returns the page list associated
with the report that contains this
component.

GetReport() Callable AcReport Returns the report that contains
this component.

GetRowCount() Callable Integer Returns the number of rows that
this component has processed.

GetSearchTag() Overridable String Returns the value of the SearchTag
property.

GetTocEntry() Overridable String Returns the text of the
component’s table of contents
entry.

GetVisiblePageIndex() Callable Integer Returns the visible page number of
the page that contains the object.

GetXMLText() Overridable String Returns the value of a control that
has the XMLType property set to
XMLText.

HasContents() Callable Boolean Returns True if this component
contains at least one content
component.

IsContainer() Callable Boolean Returns True if this component can
hold content components.

(continues)

Table 4-2 AcReportComponent methods (continued)

Method Classification Type Description

64 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport
A subclass of AcReportComponent, AcReport is the root object in a report object
instance (.roi) file. Methods for this class determine whether the ROI is temporary,
how the report interacts with the viewing or printing environment, whether the
report uses page-level security, and how to set privileges for a burst report. Other
methods provide information about the report, such as the layout orientation, the
page list, and the locale to use for report generation, viewing, or printing.
AcReport methods are listed in Table 4-3.

IsFlow() Callable Boolean Checks whether this component is
a flow.

IsFrame() Callable Boolean Checks whether the component is
a frame.

IsLeaf() Callable Boolean Returns True if this component
cannot contain a content
component.

IsPage() Callable Boolean Returns True if this component is a
page.

IsSubpage() Callable Boolean Returns True if this component is a
subpage.

IsVisual() Callable Boolean Checks whether the component is
visual.

OnRow() Overridable N/A Displays values from a single row.
Called for each new row.

SetSearchTag() Overridable N/A Sets the value of the SearchTag
property. SearchTag uniquely
identifies a component when a
report design contains multiple
instances of the same component.

SetTocEntry() Overridable N/A Sets the name of the table of
contents entry for a component.

Start() Overridable N/A Prepares a component for build
operations. Called when a
component begins building.

Table 4-2 AcReportComponent methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 65

Table 4-3 AcReport methods

Method Classification Type Description

GetContent() Callable AcReport
Component

Returns the component in the
Content slot of the root report
component.

GetCustomFormat() Overridable N/A Retrieves the generated Excel file
from the View process.

GetFactoryLocale() Overridable String Specifies the locale to use for
report generation.

GetGlobalDHTML
Code()

Overridable String Returns the custom code from a
browser scripting control and
makes it available to every
DHTML page the DHTML
converter generates.

GetLanguage() Callable String Returns the report’s language.

GetLayoutOrientation() Overridable AcLayout
Orientation

Returns the report’s layout
orientation, either right-to-left or
left-to-right.

GetPrintLocale() Overridable String Returns the locale to use for
printing a report on iServer.

GetReport() Overridable AcReport Returns a reference to the root
report component.

GetUserACL() Overridable String Returns the access control list
(ACL) for the current user.

GetViewLocale() Overridable String Returns the locale to use for report
viewing.

HasPageSecurity() Callable Boolean Returns True if the report uses
page-level security.

NewContent() Overridable AcReport
Component

Creates a component in the
top-level Content slot.

NewPageList() Overridable AcPageList Creates the page list for the report.

OnFinishPrint() Overridable N/A Override this method to perform
tasks after printing, such as
logging or sending a notification.

OnStartPrint() Overridable N/A Called at the start of a print
operation to perform custom tasks.

(continues)

66 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection
A subclass of AcReportComponent, AcSection defines the characteristics of all
non-visual structural classes, including report sections, group sections, and
parallel and sequential sections. Derived classes represent different ways of
grouping data. AcSection methods are listed in Table 4-4.

RoiIsTemporary() Overridable Boolean Specifies whether to delete the
report object instance (.roi) file
after the report runs. The default
setting is True.

SetBurstReport
Privileges()

Overridable N/A Sets privileges for a burst report.
By default, the burst report has the
same privileges as the original
report.

SetGlobalDHTML
Code()

Callable String Sets the custom code in a browser
scripting control.

SetLayoutOrientation() Callable N/A Sets the report layout to either
right-to-left or left-to-right
orientation.

SetROIAging
Properties()

Overridable N/A Sets autoarchive rules for an ROI
file.

SuggestRoiName() Overridable String Called to suggest the ROI name for
this report. Useful for naming the
output of batch reports, for
example.

TocAddComponent() Callable AcTocNode
Type

Adds the report to the table of
contents.

XMLDataProlog() Overridable N/A Creates the XML prolog.

Table 4-3 AcReport methods (continued)

Method Classification Type Description

Table 4-4 AcSection methods

Method Classification Type Description

CommittedToFlow() Overridable N/A Called by the page list for each
section assigned to a flow. After
the section is committed to a flow,
you can override this method to
perform custom processing.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 67

DeletePageFrame() Callable AcFrame Called by a section to delete a
frame.

FinishConnection() Overridable N/A Closes the connection for this
section. Override this method if
you do not want the section to
close the connection.

FinishFlow() Overridable N/A Called at the end of each flow to
support cleanup tasks and other
custom functionality.

FinishPage() Overridable N/A Called at the end of a new page to
support custom functionality.

GetCurrentRow() Callable AcDataRow Returns the current data row.

GetSearchValue() Overridable String Returns the value of the
SearchValueExp property for the
section.

NewPage() Overridable AcPage Determines which page type to use
in this section. Page types include
Letter, Legal, A4, A5, B4, B5, and
custom types.

ObtainConnection() Overridable Ac
Connection

Creates a connection for this
section. Override this method if
you want to use other than the
default mechanism to get a
connection.

PageBreakAfter() Overridable Boolean Returns True if the PageBreakAfter
property is set.

PageBreakBefore() Overridable Boolean Returns True if the property,
PageBreakBefore, is set.

SetSearchValue() Overridable AcDataRow Sets the search value for use in
searching a report, activating a
hyperlink, or generating a
reportlet from a report.

SetSecurity() Overridable AcDataRow Sets the ACL for the section.
Override this method to build a
custom ACL for the section.

(continues)

Table 4-4 AcSection methods (continued)

Method Classification Type Description

68 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcConditionalSection
AcConditionalSection is a subclass of AcSection. AcConditionalSection defines a
section that displays content based on a condition the report developer sets. For
example, a conditional section can display values greater than 500 in red text.
ConditionIsTrue() indicates whether the condition exists. The
AcConditionalSection method is described in Table 4-5.

AcDataSection
AcDataSection is a subclass of AcSection. A data section is either a report section
or a group section. You can use the methods for AcDataSection to retrieve
components in the section, such as the page header or footer, or to instantiate a
component in the section’s Before, After, Content, PageFooter, or PageHeader
slot. AcDataSection methods are listed in Table 4-6.

StartFlow() Overridable Boolean Called at the beginning of each
new flow to support custom
functionality.

StartPage() Overridable N/A Called at the beginning of each
new page to support custom
functionality.

StopAfterCurrent
Frame()

Callable N/A Stop processing after the current
frame is added to the page.

StopAfterCurrentRow() Callable N/A Stops processing after the current
data row is complete.

StopNow() Callable N/A Stops processing a data row
immediately.

TocAddComponent() Callable AcTocNode
Type

Adds the section to the table of
contents.

TocAddContents() Callable Boolean If True, adds the contents of the
section to the table of contents.

Table 4-4 AcSection methods (continued)

Method Classification Type Description

Table 4-5 AcConditionalSection methods

Method Classification Type Description

ConditionIsTrue() Overridable Boolean Returns the Boolean value that
indicates whether a condition for
displaying the section’s contents is
True

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 69

AcGroupSection
AcGroupSection is a subclass of AcDataSection. A group section defines a group
as a set of data rows that have the same key value, such as data rows with a state
field value of CA. A group section is an organizational tool that does not process
data rows. Use the public methods for this class to retrieve the group key value,
check whether the key value is still valid, and create a table of contents label for
the group section. AcGroupSection methods are listed in Table 4-7.

Table 4-6 AcDataSection methods

Method Classification Type Description

GetAfter() Callable AcReport
Component

Returns the After component, if
any, for this data section.

GetBefore() Callable AcReport
Component

Returns the Before component, if
any, for this data section.

GetFirstPageFooter() Overridable AcBase
Frame

Returns the first page footer, if any,
for this data section.

GetFirstPageHeader() Overridable AcBase
Frame

Returns the first page header, if
any, for this data section.

GetPageFooter() Callable AcBase
Frame

Returns the current page footer, if
any, for this page.

GetPageHeader() Callable AcBase
Frame

Returns the current page header, if
any, for this page.

NewAfter() Overridable AcReport
Component

Instantiates a component in the
After slot.

NewBefore() Overridable AcReport
Component

Instantiates a component in the
Before slot.

NewContent() Overridable AcReport
Component

Instantiates a component in the
Content slot.

NewPageFooter() Overridable AcBase
Frame

Instantiates a component in the
PageFooter slot.

NewPageHeader() Overridable AcBase
Frame

Instantiates a component in the
PageHeader slot.

OnEmptyGroup() Overridable N/A Called if the section processes no
rows. Passes the information that
no row exists. Also supports
logging and other custom
functionality.

70 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcParallelSection
AcParallelSection is a subclass of AcSection. A parallel section contains two or
more reports that appear side by side on a page in separate flows. When you
create a parallel section, you add multiple report sections to it and assign each
section to a separate flow. The AcParallelSection method is described in Table 4-8.

AcReportSection
AcReportSection is a subclass of AcDataSection. A report section opens a data
connection and retrieves rows from a data source. Use the public methods for
AcReportSection to locate, open, close, or create the data stream for the section.
You can also set the sorting key and create a label for the table of contents entry
for a report section. AcReportSection methods are listed in Table 4-9.

Table 4-7 AcGroupSection methods

Method Classification Type Description

GetKeyString() Callable String Returns the key value for a group

IsSameKey() Overridable Boolean Checks whether the group section
key has changed

Table 4-8 AcParallelSection methods

Method Classification Type Description

AddReport() Callable N/A Adds a subreport to the Reports
slot of a parallel section

Table 4-9 AcReportSection methods

Method Classification Type Description

FinishDataStream() Overridable N/A Closes the data stream for this
report section.

NewDataStream() Overridable AcData
Adapter

Instantiates the component in the
DataStream slot of the report
section. Override this method to
customize the data adapter that
the report instantiates and opens.

ObtainDataStream() Overridable AcData
Adapter

Creates the data stream to use for
this report section. Override this
method to reuse an existing data
stream. This method does not also
open the data stream.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 71

AcSequentialSection
AcSequentialSection is a subclass of AcSection. A sequential section contains two
or more reports that run or print one after the other. The reports appear in the
same flow. AcSequentialSection methods are listed in Table 4-10.

Page layout classes and methods
Use page layout classes and methods to customize building frames, flows, pages,
and page lists.

AcBaseFrame
AcBaseFrame is a subclass of AcVisualComponent. AcBaseFrame defines the
general characteristics of frames and pages and the logic for instantiating the
content in frames and pages. AcBaseFrame methods are listed in Table 4-11.

SetSortKey() Overridable N/A Sets the sort key for the data
adapter. The default behavior for
this method sets the sort key to the
column specified in the Key
property for any group sections in
this report.

StartDataStream() Overridable Opens the data stream.

Table 4-9 AcReportSection methods

Method Classification Type Description

Table 4-10 AcSequentialSection methods

Method Classification Type Description

NewContent() Overridable AcReport
Component

Instantiates one of the list of
contents for this section

SelectContent() Overridable Boolean Indicates whether to use a content
component as report output

StopAfterCurrent
Section()

Callable N/A Stops the current section after the
current nested section terminates

Table 4-11 AcBaseFrame methods

Method Classification Type Description

AddToAdjustSizeList() Overridable N/A Adds a component to its
container’s list of components to
resize.

(continues)

72 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBasePage
A subclass of AcBaseFrame, AcBasePage is an abstract base class that defines the
logic for instantiating the contents of a page. AcBasePage methods are listed in
Table 4-12.

BindToFlow() Overridable N/A Called when the framework adds a
frame to a flow on a page.

FindContentByClass
ID()

Callable AcVisual
Component

Locates one of the frame’s content
components using the class ID of
that component.

GetControl() Callable AcControl Locates a named control.

GetControlValue() Callable Variant Returns the value of a data control
within the frame.

GetPageNumber() Callable String Returns the formatted page
number for a page.

GetSearchValue() Overridable String Differentiates between subclasses
of a parent class when a user is
searching for values, activating a
hyperlink, or generating reportlet
content from a report.

IsDataFrame() Callable Boolean Indicates whether the component
is a data frame.

IsFooter() Callable Boolean Indicates whether the component
is a footer.

IsHeader() Callable Boolean Indicates whether the component
is a header.

MakeContents() Overridable N/A Creates the frame contents
dynamically when specific
conditions are present.

RebindToFlow() Overridable N/A The framework calls this method
for controls in a subpage when the
subpage’s BalanceFlows property
is True.

SearchAttributeName() Overridable String The name of an attribute on which
to base a search.

Table 4-11 AcBaseFrame methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 73

AcPage
AcPage is a subclass of AcBasePage that represents pages in a report. Use AcPage
methods to get information about a page, such as the page number, or to indicate
whether the page uses dynamic geometry. You also can indicate how to position
data from a dynamic text control when the data splits across multiple pages.
AcPage methods are listed in Table 4-13.

Table 4-12 AcBasePage methods

Method Classification Type Description

BalanceFlows() Overridable Boolean Implements the BalanceFlows
property. This property specifies
whether to redistribute the
contents of the page to make all
flows on the page the same height.
The default value is False.

GetFirstDataFrame() Callable AcFrame Retrieves the first data frame on a
page.

GetLastDataFrame() Callable AcFrame Retrieves the last data frame on a
page.

Table 4-13 AcPage methods

Method Classification Type Description

FormatPageNumber() Overridable String Returns the formatted page
number. Override this method if
your formatting requires writing
code.

GetVisiblePageIndex() Callable Integer Returns the index for visible pages.

SplitMarginBottom() Overridable AcTwips Implements the
SplitMarginBottom property.
When a dynamic text control can
split to fit on multiple pages,
SplitMarginBottom sets a blank
space between the bottom edge of
a page and its contents.

SplitMarginLeft() Overridable AcTwips Implements the SplitMarginLeft
property. When a dynamic text
control can split to fit on multiple
pages, SplitMarginLeft sets a blank
space between the left edge of a
page and its contents.

(continues)

74 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSubPage
AcSubpage is a subclass of AcBasePage. AcSubpage supports dynamically
switching from one column to two columns on the same page. There are no public
methods defined specifically for this class.

AcDataFrame
AcDataFrame is a subclass of AcBaseFrame. AcDataFrame is an abstract base
class that defines the logic for how frames work with data rows. There are no
public classes defined specifically for this class.

AcFrame
A subclass of AcDataFrame, AcFrame is the base class for frames in a report
design. The methods in this class support changing the size of the frame, creating
custom code for a web page, setting the relationship between a frame and a page,
splitting a frame across multiple pages, and so on. AcFrame methods are listed in
Table 4-14.

SplitMarginRight() Overridable AcTwips Implements the SplitMarginRight
property. When a dynamic text
control can split to fit on multiple
pages, SplitMarginRight sets a
blank space between the right edge
of a page and its contents.

SplitMarginTop() Overridable AcTwips Implements the SplitMarginTop
property. When a dynamic text
control can split to fit on multiple
pages, SplitMarginTop sets a blank
space between the top edge of a
page and its contents.

Table 4-13 AcPage methods (continued)

Method Classification Type Description

Table 4-14 AcFrame methods

Method Classification Type Description

AutoSplitVertical() Overridable AcAutoSplit Returns the value of the
AutoSplitVertical property.
AutoSplitVertical specifies how the
Factory splits a frame or a dynamic
text control.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 75

CustomDHTML
Footer()

Overridable String Supports custom browser code as
a footer in an HTML form.

CustomDHTML
Header()

Overridable String Supports custom browser code as
a header in an HTML form.

GetBorderOrigin() Callable AcPoint Returns the origin, or upper left
coordinates, of the border.

GetBorderRect() Callable AcRectangle Returns the the rectangle that
defines the border.

GetBorderSize() Callable AcSize Returns the size of the border.

NoSplitBottom() Overridable AcTwips Returns the value of the
NoSplitBottom property.
NoSplitBottom specifies the height
of the area that must not be split at
the bottom of the frame, or the
minimum height of the last
segment.

NoSplitTop() Overridable AcTwips Returns the value of the
NoSplitTop property. NoSplitTop
specifies the height of the area that
must not be split at the top of the
frame, or the minimum height of
the first segment. Applies only to a
frame that contains at least one
dynamic text control that splits
across multiple pages.

PageBreakAfter() Callable Boolean Returns the value of a frame’s
PageBreakAfter property. If
PageBreakAfter is True, a new
page begins immediately after the
frame. Applies only to frames in
Before, Content, or After slots.

PageBreakBefore() Callable Boolean Returns the value of a frame’s
PageBreakBefore property. If
PageBreakBefore is True, the frame
appears at the top of a new page.
Applies only to frames in Before,
Content, or After slots.

(continues)

Table 4-14 AcFrame methods (continued)

Method Classification Type Description

76 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFlow
AcFlow is a subclass of AcVisualComponent. AcFlow defines the logic for placing
frames in a flow, adding components to a flow, making adjustments to the size of
a flow, and other tasks related to flows. AcFlow methods are listed in Table 4-15.

SplitMarginBottom() Overridable AcTwips Returns the value of the
SplitMarginBottom property.
SplitMarginBottom specifies a
blank area between the bottom
edge of each segment, except the
last, and its contents. Applies only
to a frame that contains at least one
dynamic text control that splits
across multiple pages.

SplitMarginTop() Overridable AcTwips Returns the value of the
SplitMarginTop property.
SplitMarginTop specifies a blank
area between the top edge of each
segment, except the first, and its
contents. Applies only to a frame
that contains at least one dynamic
text control that splits across
multiple pages.

Table 4-14 AcFrame methods (continued)

Method Classification Type Description

Table 4-15 AcFlow methods

Method Classification Type Description

AddFooter() Overridable Boolean Adds a footer frame to the flow.

AddFrame() Overridable N/A Adds a frame to the flow at the next
available position in the report.

AddHeader() Overridable Boolean Adds a header frame to the flow.

AddSubpage() Overridable Boolean Adds a subpage to the flow.

AdjustFooter() Overridable N/A Adjusts the space available for a
page footer within the flow.

CanFitFrame() Callable Boolean Checks whether the flow contains
enough space to accommodate a
specific frame.

CanFitHeight() Overridable Boolean Checks whether the flow can
contain a specific component.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 77

AcLinearFlow
A subclass of AcFlow, AcLinearFlow is the abstract base class for working with a
flow that fills in one direction, either from top to bottom or from left to right.
AcLinearFlow methods are listed in Table 4-16.

GetFirstDataFrame() Callable AcFrame Returns the first data frame
associated with the current flow.

GetFreeSpace() Overridable AcSize Returns the unused space in the
flow.

GetInsideSize() Callable AcSize Returns the size of the content
rectangle.

GetLastDataFrame() Callable AcFrame Returns the last data frame
associated with the current flow.

IsEmpty() Overridable Boolean Indicates whether the flow contains
a data frame, such as a Content,
Before, or After frame.

ReleaseSpace() Overridable N/A Releases reserved space back to the
flow.

ReserveSpace() Overridable N/A Reserves a part of the available
space within the flow.

ResetSpace() Overridable N/A Calls ResizeByConstrained() from
AcVisualComponent. Resets the
available space in a flow in
response to a change in the flow’s
contents.

ResizeByConstrainedBy
Contents()

Callable N/A Resets the amount of space in the
flow to zero.

ShiftFooterUp() Overridable N/A Moves the footer up so the footer
appears immediately after the last
frame in the flow.

Table 4-15 AcFlow methods

Method Classification Type Description

Table 4-16 AcLinearFlow methods

Method Classification Type Description

GetFreeSpace() Callable AcSize Returns the unused space in the
flow

(continues)

78 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTopDownFlow
A subclass of AcLinearFlow, AcTopDownFlow defines the logic for adding
frames to a flow that fills from top to bottom only. The AcTopDownFlow method
is described in Table 4-17.

AcPageList
AcPageList is a subclass of AcReportComponent that instantiates and holds the
pages for a report. AcPageList is an abstract class that defines the logic for
building pages and managing data display. AcPageList methods are listed in
Table 4-18.

GetInsideOrigin() Callable AcPoint Gets the position of the inside area
of the flow, relative to the upper
left corner of the frame

GetInsideRect() Callable AcRectangle Gets the rectangle that defines the
inside space of the flow, relative to
the upper left corner, or origin, of
the frame

GetInsideSize() Callable AcSize Returns the size of the content
rectangle

Table 4-16 AcLinearFlow methods (continued)

Method Classification Type Description

Table 4-17 AcTopDownFlow methods

Method Classification Type Description

AdjustFooter() Callable AcFrame Adjusts the top of a page footer to
allow for size changes

Table 4-18 AcPageList methods

Method Classification Type Description

AddFrame() Callable N/A Adds a frame to a page list. Places
the frame in a flow on a page.

EjectPage() Callable N/A Finishes the currently active page.

GetCurrentFlow() Callable AcFlow Returns the active flow on the
current page.

GetCurrentPage() Callable AcPage Returns the current page in the
page list.

GetCurrentPage
ACL()

Callable String Returns the ACL for the current
page in the page list.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 79

AcLeftRightPageList
AcLeftRightPageList is a subclass of AcPageList. AcLeftRightPageList provides a
report format that has alternating left and right pages. There are no public
methods defined specifically for this class.

AcSimplePageList
AcSimplePageList is a subclass of AcPageList. AcSimplePageList provides a
report style in which all pages have the same layout. There are no public methods
defined specifically for this class.

AcTitleBodyPageList
AcTitleBodyPageList is a subclass of AcPageList. AcTitleBodyPageList provides a
report style in which the title page is different from the body pages.

GetEstimatedPage
Count()

Overridable Integer Provides an estimate of the
number of pages a report will
contain.

GetFirstPage() Callable AcPage Returns the first page in the page
list.

GetLastPage() Callable AcPage Returns the last page in the page
list.

GetPageCount() Callable Integer Returns the number of total pages
in the page list.

HasPageSecurity() Callable Boolean Indicates whether the page uses
page-level security.

NeedCheckpoint() Overridable Boolean Override this method to control
how frequently to flush persistent
objects to the report object instance
(.roi) file.

NeedHeight() Callable N/A Ensures that a specified amount of
vertical space is available in the
current flow, and if not, starts a
new flow.

NewPage() Overridable AcPage An empty method that derived
classes override to instantiate a
new page.

UseAccelerated
Checkpoints()

Overridable Boolean Creates additional page
checkpoints in the ROI file.

Table 4-18 AcPageList methods

Method Classification Type Description

80 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Control classes and methods
Use control classes and methods to manipulate the position and value of visual
controls.

AcVisualComponent
AcVisualComponent is a subclass of AcReportComponent. AcVisualComponent
is the base class that defines the characteristics of all visual classes, such as
frames, charts and other controls, pages, and flows. Derived classes display data
or graphical elements. AcVisualComponent methods are listed in Table 4-19.

Table 4-19 AcVisualComponent methods

Method Classification Type Description

AdjustHorizontal
Geometry()

Overridable N/A Adjusts the width and horizontal
position of the object relative to its
reference object

AdjustSize() Overridable N/A Changes the size of the component

AdjustVertical
Geometry()

Overridable N/A Adjusts the height and vertical
position of the object relative to its
reference object

CanIncreaseHeight() Callable Boolean Implements the
CanIncreaseHeight property

CanIncreaseWidth() Callable Boolean Implements the CanIncreaseWidth
property

CanMoveLeft() Callable Boolean Implements the CanMoveLeft
property

CanMoveUp() Callable Boolean Implements the CanMoveUp
property

CanReduceHeight() Callable Boolean Implements the CanReduceHeight
property

CanReduceWidth() Callable Boolean Implements the CanReduceWidth
property

CanSplitVertically() Overridable Boolean Determines whether an object can
split across multiple pages

ComputeLowestSplit() Callable Boolean Determines the lowest point at
which an object can split across
multiple pages

FindLowestSplit() Overridable Boolean Establishes the vertical point at
which the object can split

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 81

FindPageContainer
ByClass()

Callable AcReport
Component

Returns a reference to this class in
the page hierarchy

GetBottom() Callable Integer Returns the position of the bottom
of the component, in twips,
relative to the top of its container
frame

GetFirstSlave() Callable AcVisual
Component

Returns the handle to the object’s
first slave object

GetFrame() Callable AcFrame Returns a reference to the frame
containing the visual object

GetHeight() Callable Integer Returns the height of the
component

GetLastSlave() Callable AcVisual
Component

Returns the handle to the object’s
last slave object

GetLeft() Callable Integer Returns the position of the left
edge of the component

GetLinkTo() Callable String Returns the value of the hyperlink
expression in the LinkTo variable

GetMaster() Callable AcVisual
Component

Returns the handle to the object’s
master object

GetPageContainer() Callable AcVisual
Component

Returns the container in the page
hierarchy for the component

GetPixelSize() Callable AcSize Gets the size of the component in
pixels

GetRect() Callable AcRectangle Returns the coordinates of the
component relative to its frame

GetRight() Callable Integer Returns the position of the right
edge of the component

GetTop() Callable Integer Returns the position of the top of
the component

GetVisualComponent() Callable AcVisual
Component

Returns the current visual
component

GetWidth() Callable Integer Returns the width of the
component

HorizontalPosition() Callable AcHorizontal
Position

Implements the
HorizontalPosition property

(continues)

Table 4-19 AcVisualComponent methods (continued)

Method Classification Type Description

82 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

HorizontalSize() Callable AcHorizontal
Size

Implements the HorizontalSize
property

IsFirstSlave() Callable Boolean Determines whether the object is
the first slave of the master object

IsFrameDecoration() Callable Boolean Determines whether the object is a
frame decoration

IsLastSlave() Callable Boolean Determines whether the object is
the last slave of the master object

IsMaster() Callable Boolean Determines whether the object is a
master object

IsNormal() Callable Boolean Returns True if the object is neither
a master nor a slave object

IsSlave() Callable Boolean Determines whether the object is a
slave object

IsVisible() Callable Boolean Determines whether the
component is visible to the user

MaximumHeight() Callable Boolean Implements the MaximumHeight
property

MaximumWidth() Callable Boolean Implements the MaximumWidth
property

MinimumHeight() Callable Boolean Implements the MinimumHeight
property

MinimumWidth() Callable Boolean Implements the MinimumWidth
property

MoveBy() Callable N/A Moves the component by the
amount given

MoveByConstrained() Callable N/A Specifies the distance by which to
move the component

MoveTo() Callable N/A Moves the component to the
position given

MoveToConstrained() Callable N/A Moves the component

ResizeBy() Callable N/A Resizes a component by the
distances given

ResizeByConstrained() Callable N/A Specifies the amount by which to
resize the component

Table 4-19 AcVisualComponent methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 83

AcControl
A subclass of AcVisualComponent, AcControl defines the general characteristics
of all controls. AcControl methods are listed in Table 4-20.

ResizeTo() Callable N/A Resizes a frame or control to the
given size

ResizeToConstrained() Callable N/A Resizes the component to the
given size

Searchable() Callable AcSearch
Type

Implements the Searchable
property

SearchAlias() Callable String Implements the SearchAlias
property

Selectable() Overridable Boolean Implements the Selectable
property

SplitVertically() Overridable N/A Splits visual components vertically
across pages

StatusText() Callable String Returns the value of GetLinkTo()
if there is a hyperlink

TargetWindowName() Callable String Implements the
TargetWindowName property

VerticalPosition() Callable AcVertical
Position

Returns the value of the
VerticalPosition property

VerticalSize() Callable AcVertical
Size

Implements the VerticalSize
property

Table 4-19 AcVisualComponent methods (continued)

Method Classification Type Description

Table 4-20 AcControl methods

Method Classification Type Description

BalloonHelp() Overridable String Returns the text to display when a
user hovers the mouse pointer
over a control.

GetControlValue() Callable Variant Returns the value of another
control within the same frame.

GetText() Overridable String Formats the value of a data control
or label for display.

(continues)

84 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCrosstab
AcCrosstab is a subclass of AcControl. Use AcCrosstab to display data in
spreadsheet format in an Actuate Basic report. AcCrosstab methods are listed in
Table 4-21.

AcDrawing
AcDrawing is a subclass of AcControl and the parent class of AcChart. Use this
class to display a drawing. AcDrawing methods are listed in Table 4-22.

GetXMLText() Overridable String Returns the value of a control that
has the XMLType property set to
XMLText.

GetValue() Callable Variant Returns the value of the DataValue
variable for a data control.

IsSummary() Overridable Boolean Use IsSummary() to determine
whether the control processes a
single row or multiple rows.

PageNo() Callable Integer Returns the position of the page in
the report, starting from 1.

PageNo$() Callable String Returns the formatted page
number of the control as a string.
For example, to show the
formatted page number such as vi,
107, or 12-5 in a control, set the
value of the control to PageNo$.

SetDataValue() Callable N/A Sets the value for a data control
within the same frame.

Table 4-20 AcControl methods (continued)

Method Classification Type Description

Table 4-21 AcCrosstab methods

Method Classification Type Description

FinishBuilding() Overridable N/A Finishes building the data
collector. Creates and populates
the visual data structure.

Table 4-22 AcDrawing methods

Method Classification Type Description

AddDrawingPlane() Callable N/A Adds a drawing plane to he end of
a drawing’s list of drawing planes

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 85

AcChart
A subclass of AcDrawing, AcChart builds a data structure of objects that
represent the various elements of a chart, such as axes, categories, and points.
AcChart methods are listed in Table 4-23.

GetAntialias() Callable Boolean Determines whether a drawing
will be rendered with antialiasing

GetBackgroundColor() Callable AcColor Returns the background color of a
drawing

GetDrawingPlane() Callable AcDrawing
Plane

Returns a reference to the specified
drawing plane within a drawing

GetNumberOfDrawing
Planes()

Callable Integer Determines the number of
drawing planes in a drawing

GetRenderIn24Bit
Color()

Callable Boolean Determines whether a drawing
will be rendered in 24-bit color

InsertDrawingPlane() Callable AcDrawing
Plane

Inserts a drawing plane at a
specific position within a
drawing’s list of drawing planes

RemoveDrawing
Plane()

Callable N/A Removes a drawing plane from a
drawing

RenderToFile() Callable N/A Renders a drawing into a file

SetAntialias() Callable N/A Specifies whether a drawing will
be rendered with antialiasing

SetRenderIn24Bit
Color()

Callable N/A Specifies whether a drawing will
be rendered in 24-bit color

Table 4-22 AcDrawing methods

Method Classification Type Description

Table 4-23 AcChart methods

Method Classification Type Description

AdjustChart() Callable N/A Override this method to make final
adjustments to a chart after all its
automatic layout has been created.

BaseAndOverlayScales
AreMatched()

Callable Boolean Returns True if the base and
overlay y-axis scales of a chart are
forced to be identical.

(continues)

86 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

BuildFromRow() Overridable N/A Override this method to
manipulate the raw data to be
displayed in a chart.

BuildSampleCategory
ScaleData()

Callable N/A Generates sample data for a chart
whose x-axis is based on
categories.

BuildSampleValue
ScaleData()

Callable N/A Call this method to generate
sample data for a scatter chart.

ComputeMinMaxData
Values()

Callable N/A Computes the minimum and
maximum data values for each
layer of a chart and the chart as a
whole from the individual data
points.

ComputeScales() Callable N/A Computes the scales for all the
axes of a chart.

CustomizeAxes() Overridable N/A Override this method to change
the appearance of a chart’s axes.

CustomizeCategories
AndSeries()

Overridable N/A Override this method to adjust the
data displayed in a chart.

CustomizeChart() Overridable N/A Override this method to modify
the initial structure of a chart.

CustomizeLayers() Overridable N/A Override this method to modify
the appearance of the individual
layers of a chart.

CustomizeSeries
Styles()

Overridable N/A Override this method to modify
the appearance of individual series
or pie sectors in a chart.

DescribeLayout() Callable N/A Computes the layout of a chart
without rendering it.

DisableHyperchart() Callable N/A Call this method to disable
hyperchart links in a chart.

DisableOverlayLayer() Callable N/A Call this method to disable the
overlay layer of a chart.

DisableStudyLayers() Callable N/A Call this method to disable all
study layers of a chart.

DrawOnChart() Callable N/A Call this method to add drawing
elements to a chart.

Table 4-23 AcChart methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 87

EnableHyperchart() Callable N/A Call this method to enable
hyperchart links in a chart.

EnableOverlayLayer() Callable N/A Call this method to enable the
overlay layer of a chart.

EnableStudyLayers() Callable N/A Call this method to enable a
specified number of study layers
in a chart.

FlipAxes() Callable Boolean Returns True if a chart’s x-axis
displays vertically.

GetBaseLayer() Callable AcChart
Layer

Returns a reference to the base
layer of a chart.

GetBorderStyle() Callable AcDrawing
BorderStyle

Returns the style of the border
around a chart.

GetChartDrawing
Plane()

Callable AcDrawing
ChartPlane

Returns a reference to the drawing
plane of a chart.

GetFillStyle() Callable AcDrawing
FillStyle

Returns the background fill style
for a chart.

GetHyperchartLink() Overridable String Override this method to provide
the hyperlink URL for a given
layer, category, and series within a
chart.

GetLayer() Callable AcChart
Layer

Returns a reference to a layer of a
chart.

GetLegendBackground
Color()

Callable AcColor Returns the background color of a
chart’s legend.

GetLegendBorder
Style()

Callable AcDrawing
BorderStyle

Returns the style of the border
around a chart’s legend.

GetLegendFont() Callable AcFont Returns the font used for a chart’s
legend.

GetLegendPlacement() Callable AcChart
Legend
Placement

Returns the placement of a chart’s
legend relative to the chart.

GetNumberOfLayers() Callable Integer Returns the number of layers in a
chart.

GetNumberOfStudy
Layers()

Callable Integer Returns the number of study
layers in a chart.

(continues)

Table 4-23 AcChart methods (continued)

Method Classification Type Description

88 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GetOverlayLayer() Callable AcChart
Layer

Returns a reference to the overlay
layer of a chart.

GetStudyLayer() Callable AcChart
Layer

Returns a reference to a study
layer of a chart.

GetTitleStyle() Callable AcDrawing
TextStyle

Returns the style of a chart’s title.

GetTitleText() Callable String Returns the text of a chart’s title.

HasOverlayLayer() Callable Boolean Returns True if a chart has an
overlay layer.

IsHyperchart() Callable Boolean Returns True if a chart has
hyperchart links.

IsThreeD() Callable Boolean Returns True if a chart will be
displayed with a
three-dimensional appearance.

Localize() Overridable N/A Override this method to localize a
chart at view time.

MakeAxes() Callable N/A Call this method to create the axes
of a chart that you are creating
dynamically.

MakeLayers() Callable N/A Call this method to create the
layers of a chart that you are
creating dynamically.

SetBackgroundColor() Callable N/A Sets the background color of a
chart.

SetBorderStyle() Callable AcDrawing
BorderStyle

Sets the style of the border around
a chart.

SetFillStyle() Callable N/A Sets the background fill style for a
chart.

SetFlipAxes() Callable N/A Specifies whether to display a
chart’s x-axis vertically.

SetLegendBackground
Color()

Callable N/A Sets the background color of a
chart’s legend.

SetLegendBorder
Style()

Callable N/A Sets the style of the border around
a chart’s legend.

SetLegendFont() Callable N/A Sets the font used for a chart’s
legend.

Table 4-23 AcChart methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 89

AcImageControl
AcImageControl is a subclass of AcControl. Use AcImageControl to display a
static image or an image based on the contents of a data column. The
AcImageControl method is described in Table 4-24.

AcLineControl
AcLineControl is a subclass of AcControl. AcLineControl provides the logic for
using a line graphic in a report. There are no public methods defined specifically
for this class.

AcRectangleControl
AcRectangleControl is a subclass of AcControl. There are no public methods
defined specifically for this class.

SetLegendPlacement() Callable N/A Sets the placement of a chart’s
legend.

SetMatchBaseAnd
OverlayScales()

Callable N/A Specifies whether to force the base
and overlay y-axis scales of a chart
to be identical.

SetStatus() Callable N/A Sets the status of a chart being
created dynamically.

SetThreeD() Callable N/A Specifies whether to display a
chart with a three-dimensional
appearance.

SetTitleStyle() Callable N/A Sets the style of a chart’s title text.

SetTitleText() Callable N/A Sets a chart’s title text.

StartEmpty() Callable N/A Call this method to initialize a
chart being created dynamically.

StartLayers() Callable N/A Call this method to initialize the
layers of a chart being created
dynamically.

Table 4-23 AcChart methods (continued)

Method Classification Type Description

Table 4-24 AcImageControl methods

Method Classification Type Description

GetFileName() Overridable String Returns the file name for the image
to be displayed

90 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTextualControl
AcTextualControl is a subclass of AcControl. There are no public methods
defined specifically for this class.

AcBrowserScriptingControl
A subclass of AcTextualControl, AcBrowserScriptingControl provides web
functionality for reports a user can view in DHTML. AcBrowserScriptingControl
methods are listed in Table 4-25.

AcDataControl
AcDataControl is a subclass of AcTextualControl. AcDataControl defines the
logic for setting the values of data controls, which display data obtained from the
input source. Do not derive directly from AcDataControl. AcDataControl
methods are listed in Table 4-26.

AcCurrencyControl
AcCurrencyControl is a subclass of AcDataControl. AcCurrencyControl stores
and displays a currency value. This class provides a greater level of precision than
AcDoubleControl and avoids rounding errors. There are no public methods
defined specifically for this class.

AcDateTimeControl
AcDateTimeControl is a subclass of AcDataControl. AcDateTimeControl stores
and displays a date or time numeric value. There are no public methods defined
specifically for this class.

Table 4-25 AcBrowserScriptingControl methods

Method Classification Type Description

BrowserCode() Callable String Retrieves the value of the
BrowserCode property

GetText() Callable String Retrieves the value of the
AlternateText property

Table 4-26 AcDataControl methods

Method Classification Type Description

Format() Callable String Returns the format pattern
specified in the control’s Format
property

GetGroupKey() Callable Variant Returns the key for the group
section that contains the control

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 91

AcDoubleControl
AcDoubleControl is a subclass of AcDataControl. AcDoubleControl stores and
displays a real number, a number that has a fractional part. There are no public
methods defined specifically for this class.

AcDynamicTextControl
AcDynamicTextControl is a subclass of AcDataControl. AcDynamicTextControl
provides the ability to display text blocks in which the text uses multiple
formatting styles. A dynamic text control also automatically adjusts its size and
the size of the frame that contains it to accommodate varying amounts of data.
AcDynamicTextControl methods are listed in Table 4-27.

Table 4-27 AcDynamicTextControl methods

Method Classification Type Description

AutoSplitVertical() Callable AcAutoSplit Returns the value of the
AutoSplitVertical property

BuildText() Overridable Boolean Parses tagged text and populates
the internal data structure of the
control

GetAvailableHeight() Overridable AcTwips Returns the height of the area in
which text can be placed within
the control

GetAvailableWidth() Overridable AcTwips Returns the width of the area in
which text can be placed within
the control

GetFixedWidthFont
FaceName()

Overridable String Returns the name of the default
fixed-width font

GetPlainText() Overridable String Returns the value of the Plaintext
variable

GetTaggedText() Overridable String Returns the value of the
TaggedText variable

KeepTaggedText() Overridable Boolean Returns the value of the
KeepTaggedText property

LineSpacing() Overridable Double Returns the value of the
LineSpacing property

LineWidthPadding() Overridable AcPercentage Returns the value of the
LineWidthPadding property

MinimumLineHeight() Overridable AcTwips Returns the value of the
MinimumLineHeight property

(continues)

92 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcIntegerControl
AcIntegerControl is a subclass of AcDataControl. AcIntegerControl stores and
displays whole numbers. There are no public methods defined specifically for
this class.

AcTextControl
AcTextualControl is a subclass of AcDataControl. AcTextControl displays string
data. Typically, this class displays one line from a table column, such as a name or
address, but it also can be used for multi-line text. There are no public methods
defined specifically for this class.

NoSplitBottom() Callable AcTwips Returns the value of the
NoSplitBottom property

NoSplitTop() Callable AcTwips Returns the value of the
NoSplitTop property

ProcessText() Overridable N/A Creates the internal data structure

SetTaggedText() Overridable N/A Sets the TaggedText value

SpaceBetweenLines() Overridable AcTwips Returns the value of the
SpaceBetweenLines property

SpaceBetween
Paragraphs()

Overridable AcTwips Returns the value of the
SpaceBetweenParagraphs
property

SplitMarginBottom() Callable AcTwips Returns the value of the
SplitMarginBottom property

SplitMarginTop() Callable AcTwips Returns the value of the
SplitMarginTop property

TabPadding() Overridable AcPercentage Returns the value of the
TabPadding property

TabSpacing() Overridable AcTwips Returns the value of the
TabSpacing property

TextFormat() Overridable AcText
Format

Returns the value of the
TextFormat property

WidowAndOrphan
Control()

Overridable Boolean Returns the value of the
WidowAndOrphanControl
property

Table 4-27 AcDynamicTextControl methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 93

AcLabelControl
AcLabelControl is a subclass of AcTextualControl. AcLabelControl displays static
text labels. There are no public methods defined specifically for this class.

AcPageNumberControl
AcPageNumberControl is a subclass of AcTextualControl.
AcPageNumberControl calculates, formats, and displays the current page
number or the total number of pages in the report. AcPageNumberControl
methods are listed in Table 4-28.

AcChartAxis
AcChartAxis class represents a single axis within a chart layer. The methods of
this class change the appearance of a chart by changing a single axis. AcChartAxis
does not inherit from other classes. AcChartAxis methods are listed in Table 4-29.

Table 4-28 AcPageNumberControl methods

Method Classification Type Description

GetActualPageCount() Callable Integer Returns the total page count for
the report without considering
page security

GetActualPage
Number()

Callable Integer Returns the current page number
without considering page security

GetFormattedPage
Number()

Callable String Returns the page number without
considering page security, using
the format specified in the
PageNumberFormat property for
the page

GetVisiblePageCount() Callable Integer Returns the total page count for
the report considering page
security

GetVisiblePage
Number()

Callable Integer Returns the current page number
considering page security

PageN() Callable String Formats controls that have the
page number types ActualPageN
or VisiblePageN

PageNOfM() Callable String Formats controls that have the
page number types
ActualPageNofM or
VisiblePageNofM

PageNumberType() Callable AcPage
NumberStyle

Returns the value of the
PageNumberType property

94 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Table 4-29 AcChartAxis methods

Method Classification Type Description

AddGridLine() Callable AcChartGrid
Line

Adds a grid line to the end of a
chart axis’s list of grid lines

ClearMajorTick
Interval()

Callable N/A Resets the major tick interval of a
chart axis to its default setting and
causes the axis to compute the
major tick interval automatically

ClearMaximumValue() Callable N/A Removes a fixed maximum value
from a chart axis

ClearMinimumValue() Callable N/A Removes a fixed minimum value
from a chart axis

ClearOtherAxisCrosses
At()

Callable N/A Removes a fixed axis crossing
point from a chart axis and causes
the axis to compute the axis
crossing point automatically

ComputeScale() Callable N/A Computes the scale for a chart axis

ForceMajorTickCount() Callable Boolean Returns True if the number of
major ticks on a chart axis is forced
to be a specific value

GetAxisLetter() Callable AcChartAxis
Letter

Returns an axis letter value that
indicates the chart axis letter

GetAxisLetterText() Callable String Returns a string that indicates the
chart axis letter

GetDataType() Callable AcDataType Returns the data type of the scale
of a chart axis

GetDefaultRange
Ratio()

Callable Double Returns the ratio used to compute
the range of a chart axis when all
the values plotted on the axis lie on
the axis’s origin

GetGridLine() Callable AcChartGrid
Line

Returns a reference to the specified
grid line within a chart axis

GetInnerMarginRatio() Callable Double Returns the minimum ratio
between the inner margin on a
chart axis and the total range of
that axis

GetLabelFormat() Callable String Returns the format pattern used to
format labels on a chart axis

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 95

GetLabelPlacement() Callable AcChartAxis
Label
Placement

Returns the placement of labels on
a chart axis

GetLabelStyle() Callable AcDrawing
TextStyle

Returns the style for labels on a
chart axis

GetLabelText() Callable String Returns the formatted text of the
specified label on a chart axis

GetLabelValue() Callable Variant Returns the value of the specified
label on a chart axis

GetLayer() Callable AcChart
Layer

Returns a reference to the parent
chart layer of a chart axis

GetLineStyle() Callable AcDrawing
LineStyle

Returns the line style used to draw
a chart axis

GetMajorGridLine
Style()

Callable AcDrawing
LineStyle

Returns the line style used to draw
grid lines for the major ticks on a
chart axis

GetMajorTick
Calculation()

Callable AcChartTick
Calculation

Returns the type of calculation
used to compute major ticks on a
chart axis

GetMajorTickCount() Callable Integer Returns the exact or maximum
number of major ticks on a chart
axis

GetMajorTickInterval() Callable Double Returns the exact or minimum
interval between major ticks on a
chart axis

GetMajorTick
Placement()

Callable AcChartTick
Placement

Returns the placement of major
ticks on a chart axis

GetMaximumData
Value()

Callable Variant Returns the highest value plotted
against a chart axis

GetMaximumTrendline
Value()

Callable Variant Returns the maximum y value of
all the trendlines in a chart axis

GetMaximumValue() Callable Variant Returns the upper bound of a chart
axis

GetMinimumData
Value()

Callable Variant Returns the lowest value plotted
against a chart axis

(continues)

Table 4-29 AcChartAxis methods (continued)

Method Classification Type Description

96 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GetMinimumTrendline
Value()

Callable Variant Returns the minimum y value of
all the trendlines in a chart axis

GetMinimumValue() Callable Variant Returns the lower bound of a chart
axis

GetMinorGridLine
Style()

Callable AcDrawing
LineStyle

Returns the line style used to draw
grid lines for the minor ticks on a
chart axis

GetMinorTickCount() Callable Integer Returns the number of minor ticks
between major ticks on a chart axis

GetMinorTick
Placement()

Callable AcChartTick
Placement

Returns the placement of minor
ticks on a chart axis

GetNoZeroRatio() Callable Double Returns the minimum ratio
between the lowest and highest
values plotted on a chart axis that
will cause zero to be suppressed
on that axis

GetNumberOf
Gridlines()

Callable Integer Returns the number of grid lines
on the chart axis

GetNumberOfLabels() Callable Integer Returns the number of labels on a
chart axis

GetOriginValue() Callable Variant Returns the origin of a chart axis

GetOtherAxisCrosses
At()

Callable Variant Returns the value at which the
opposite axis crosses a chart axis

GetOtherAxis
Placement()

Callable AcChartAxis
Placement

Returns the placement of the
opposite axis relative to a chart
axis

GetOuterMarginRatio() Callable Double Returns the minimum ratio
between the outer margin on a
chart axis and the total range of
that axis

GetTitleStyle() Callable AcDrawing
TextStyle

Returns the style of the title of a
chart axis

GetTitleText() Callable String Returns the text of the title of a
chart axis

HasFixedMaximum() Callable Boolean Returns True if a chart axis has a
fixed upper bound

HasFixedMinimum() Callable Boolean Returns True if a chart axis has a
fixed lower bound

Table 4-29 AcChartAxis methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 97

IgnoreTrendlines() Callable Boolean Determines whether trendlines
will be ignored when computing
the scale for a chart axis

InsertGridline() Callable AcChartGrid
Line

Inserts a grid line at a specific
position within a chart axis’s list of
grid lines

IsCategoryScale() Callable Boolean Returns True if a chart axis is a
category scale axis

IsValueScale() Callable Boolean Returns True if a chart axis is a
value scale axis

IsXAxis() Callable Boolean Returns True if a chart axis is the
x-axis of its parent chart layer

IsYAxis() Callable Boolean Returns True if a chart axis is the
y-axis of its parent chart layer

IsZAxis() Callable Boolean Returns True if a chart axis is the
z-axis of its parent chart layer

PlotCategoriesBetween
Ticks()

Callable Boolean Returns True if categories are
plotted between the ticks on a
chart axis

ResetMajorTick
Interval()

Callable N/A Resets the major tick interval of a
chart axis to its default

SetDataType() Callable N/A Sets the data type of the scale of a
chart axis

SetDefaultRangeRatio() Callable N/A Sets the default ratio used to scale
a chart axis when all the values
plotted on the axis lie on the axis’s
origin

SetForceMajorTick
Count()

Callable N/A Specifies whether to force the
number of major ticks on a chart
axis to a specific value

SetIgnoreTrendlines() Callable N/A Call this method to specify
whether trendlines will be ignored
when computing the scale for a
chart axis

SetInnerMarginRatio() Callable N/A Sets the minimum ratio between
the inner margin on a chart axis
and the total range of that axis

(continues)

Table 4-29 AcChartAxis methods (continued)

Method Classification Type Description

98 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

SetLabelFormat() Callable N/A Sets the format pattern used to
format labels on a chart axis

SetLabelPlacement() Callable N/A Specifies the placement of labels
on a chart axis

SetLabelStyle() Callable N/A Sets the style for chart axis labels

SetLabelValue() Callable N/A Sets the value of the specified label
on a chart axis

SetLineStyle() Callable N/A Sets the line style used to draw a
chart axis

SetMajorGridLine
Style()

Callable N/A Sets the line style used to draw
grid lines for the major ticks on a
chart axis

SetMajorTick
Calculation()

Callable N/A Specifies the type of calculation
used to compute major ticks on a
chart axis

SetMajorTickCount() Callable N/A Sets the exact or maximum
number of major ticks on a chart
axis

SetMajorTickInterval() Callable N/A Sets the exact or minimum interval
between major ticks on a chart axis

SetMajorTick
Placement()

Callable N/A Specifies the placement of major
ticks on a chart axis

SetMaximumData
Value()

Callable N/A Uses a specific value as if it were
the highest value plotted against a
chart axis

SetMaximumValue() Callable N/A Sets a fixed upper bound on a
chart axis

SetMinimumData
Value()

Callable N/A Uses a specific value as if it were
the lowest value plotted against a
chart axis

SetMinimumValue() Callable N/A Sets a fixed lower bound on a chart
axis

SetMinorGridLine
Style()

Callable N/A Sets the line style used to draw
grid lines for the minor ticks on a
chart axis

SetMinorTickCount() Callable N/A Sets the number of minor ticks
between major ticks on a chart axis

Table 4-29 AcChartAxis methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 99

AcChartCategory
Use the AcChartCategory class to represent a single category within a chart layer.
Use the methods of this class to access and modify a chart layer’s categories.
AcChartCategory does not inherit from other classes. AcChartCategory methods
are listed in Table 4-30.

SetMinorTick
Placement()

Callable N/A Specifies the placement of minor
ticks on a chart axis

SetNoZeroRatio() Callable N/A Sets the minimum ratio between
the lowest and highest values
plotted on a chart axis that will
cause zero to be suppressed on
that axis

SetOtherAxisCrosses
At()

Callable N/A Sets the value at which the
opposite axis crosses an axis

SetOtherAxis
Placement()

Callable N/A Sets the opposite axis position
relative to a chart axis

SetOuterMarginRatio() Callable N/A Sets the minimum ratio between
the outer margin on a chart axis
and the total range of that axis

SetPlotCategories
BetweenTicks()

Callable N/A Specifies whether to plot
categories between the ticks on a
chart axis

SetTitleStyle() Callable N/A Sets the style of the title of a chart
axis

SetTitleText() Callable N/A Sets the text of the chart axis title

Table 4-29 AcChartAxis methods (continued)

Method Classification Type Description

Table 4-30 AcChartCategory methods

Method Classification Type Description

GetIndex() Callable Integer Returns the index of a chart
category within its parent chart
layer’s list of categories

GetKeyValue() Callable Variant Returns the unique key value for a
chart category

GetLabelText() Callable String Returns the formatted label text for
a chart category

(continues)

100 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartGridLine
Use AcChartGridLine to represent a grid line in a chart. AcChartGridLine does
not inherit from other classes. AcChartGridLine methods are listed in Table 4-31.

GetLabelValue() Callable Variant Returns the label value for a chart
category

GetLayer() Callable AcChart
Layer

Returns a reference to the parent
chart layer of a chart category

SetKeyValue() Callable N/A Sets the unique key value for a
chart category

SetLabelValue() Callable N/A Sets the label value for a chart
category

Table 4-30 AcChartCategory methods (continued)

Method Classification Type Description

Table 4-31 AcChartGridLine methods

Method Classification Type Description

DrawInFrontOfPoints() Callable Boolean Determines whether a grid line is
drawn in front of the data points in
a chart.

GetAxis() Callable AcChartAxis Returns a reference to the parent
chart axis of a grid line.

GetIndex() Callable Integer Returns the index of a grid line
within its parent axis’s list of grid
lines.

GetLabelText() Callable String Returns the label text for a grid
line.

GetLineStyle() Callable AcDrawing
LineStyle

Returns the line style used to draw
a grid line.

GetValue() Callable Variant Returns the axis value at which a
grid line is drawn.

SetDrawInFrontOf
Points()

Callable N/A True causes a grid line to be drawn
in front of the data points. False
causes a grid line to be drawn
behind the data points.

SetLabelText() Callable N/A Sets the label text for a grid line.

SetLineStyle() Callable N/A Sets the line style for a grid line.

SetValue() Callable N/A Sets the axis value at which a grid
line is drawn.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 101

AcChartLayer
Use the AcChartLayer class to represent a single chart layer. Use AcChartLayer’s
methods to access a chart’s layers and modify the appearance and functionality of
those layers. AcChartLayer does not inherit from other classes. AcChartLayer
methods are listed in Table 4-32.

Table 4-32 AcChartLayer methods

Method Classification Type Description

AddCategory() Callable AcChart
Category

Appends a new category to the
end of a chart layer’s list of
categories.

AddSeries() Callable AcChart
Series

Appends a new series to the end of
a chart layer’s list of series.

ChartTypeIsStackable() Callable Boolean Returns True if a chart layer’s chart
type supports stacked series.

GetBarShape() Callable AcChartBar
Shape

Returns the shape of bars in a
three-dimensional bar chart layer.

GetBubbleSize() Callable Double Returns the size of the largest
bubble in the chart as a percentage
of the chart canvas size.

GetCategory() Callable AcChart
Category

Returns a reference to the specified
category in a chart layer.

GetCategoryGapRatio() Callable Double Returns the size of the gap
between categories in a bar chart
layer, relative to the width of a
single bar.

GetCategory
Grouping()

Callable AcData
Grouping

Returns a reference to the data
grouping definition used to control
how data are grouped into
categories in a chart.

GetCategoryLabel
Format()

Callable String Returns the format pattern used to
format category labels in a chart
layer.

GetChart() Callable AcChart Returns a reference to a chart
layer’s parent chart.

GetChartType() Callable AcChartType Returns the chart type of a chart
layer.

(continues)

102 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GetDownBarBorder
Style()

Callable AcDrawing
Border
Style

Returns the style of the border
around a down bar in a chart layer.

GetDownBarFillStyle() Callable AcDrawing
FillStyle

Returns the fill style for a down
bar in a chart layer.

GetDropLineStyle() Callable AcDrawing
LineStyle

Returns the line style used to draw
drop lines in a chart layer.

GetHighLowLine
Style()

Callable AcDrawing
LineStyle

Returns the line style used to draw
high-low lines in a chart layer.

GetIndex() Callable Integer Returns the index of a chart layer
within its parent chart’s list of
layers.

GetLayerType() Callable AcChart
LayerType

Returns the chart layer type of a
chart layer.

GetLineWidth() Callable AcTwips Returns the default width of the
lines joining the points within each
series in a chart layer.

GetMarkerSize() Callable AcTwips Returns the default size of markers
within a chart layer.

GetMaximumData
XValue()

Callable Variant Returns the maximum x value of
all the points in a chart layer.

GetMaximumData
YValue()

Callable Variant Returns the maximum y value of
all the points in a chart layer.

GetMaximumNumber
OfPoints()

Callable Integer Returns the maximum number of
points permitted in a chart layer.

GetMaximumNumber
OfPointsPerSeries()

Callable Integer Returns the maximum number of
points permitted in a single series
in a chart layer.

GetMaximumNumber
OfSeries()

Callable Integer Returns the maximum number of
series permitted in a chart layer.

GetMaximumTrendline
YValue()

Callable Variant Returns the maximum y value of
all the trendlines in a chart layer.

GetMinimumData
XValue()

Callable Variant Returns the minimum x value of
all the points in a chart layer.

GetMinimumData
YValue()

Callable Variant Returns the minimum y value of
all the points in a chart layer.

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 103

GetMinimumTrendline
YValue()

Callable Variant Returns the minimum y value of
all the trendlines in a chart layer.

GetMissingPoints() Callable AcChart
Missing
Points

Returns the way that missing
points are plotted in a chart layer.

GetNumberOf
Categories()

Callable Integer Returns the number of categories
in a chart layer.

GetNumberOfSeries() Callable Integer Returns the number of series in a
chart layer.

GetPieCenter() Callable AcPoint Returns the position of the center
of a pie chart relative to the top left
corner of its parent chart’s chart
drawing plane.

GetPieExplosion() Callable AcChartPie
Explode

Returns the circumstances in
which pie sectors will be exploded
in a pie chart layer.

GetPieExplosion
Amount()

Callable Double Returns the amount that pie
sectors will be exploded in a pie
chart layer.

GetPieExplosion
TestOperator()

Callable AcChart
Comparison
Operator

Returns the operator used to test
whether a pie sector will be
exploded in a pie chart layer.

GetPieExplosion
TestValue()

Callable Variant Returns the value used to test
whether a pie sector will be
exploded in a pie chart layer.

GetPieRadius() Callable AcTwips Returns the radius of a pie chart.
You can use this method only for
two-dimensional pie charts.

GetPlotAreaBorder
Style()

Callable AcDrawing
BorderStyle

Returns the style of the border
around a chart layer’s plot area.

GetPlotAreaFillStyle() Callable AcDrawing
FillStyle

Returns the background fill style
for a chart layer’s plot area.

(continues)

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

104 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GetPlotAreaPosition() Callable AcPoint Returns the position of a chart
layer’s plot area relative to the top
left corner of its parent chart’s
chart drawing plane. You can use
this method only for
two-dimensional charts that are
not pie charts.

GetPlotAreaSize() Callable AcSize Returns the size of a chart layer’s
plot area. You can use this method
only for two-dimensional charts
that are not pie charts.

GetPointBorderStyle() Callable AcDrawing
BorderStyle

Returns the default style for the
borders around points in a chart
layer.

GetPointLabelFormat() Callable String Returns the default format pattern
used to format point labels in a
chart layer.

GetPointLabelLine
Style()

Callable AcDrawing
LineStyle

Returns the line style used to draw
point label lines in a chart layer.

GetPointLabel
Placement()

Callable AcChart
PointLabel
Placement

Returns the default placement of
point labels in a chart layer.

GetPointLabelSource() Callable AcChart
PointLabel
Source

Returns the default source for
point label values in a chart layer.

GetPointLabelStyle() Callable AcDrawing
TextStyle

Returns the default style for point
labels in a chart layer.

GetSeries() Callable AcChart
Series

Returns a reference to the specified
series in a chart layer.

GetSeriesGrouping() Callable AcData
Grouping

Returns a reference to the data
grouping definition used to control
how data are grouped into series
in a chart layer.

GetSeriesLabelFormat() Callable String Returns the format pattern used to
format series labels in a chart layer.

GetSeriesOverlap
Ratio()

Callable Double Returns the amount that adjacent
series in a bar chart layer will
overlap, relative to the width of a
single bar.

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 105

GetSeriesPlacement() Callable AcChart
Series
Placement

Returns the relative placement of
points for multiple series within a
category in a chart layer.

GetSeriesStyle() Callable AcChart
SeriesStyle

Returns a reference to the specified
series style in a chart layer.

GetStartAngle() Callable AcAngle Returns the angle at which the first
sector in a pie chart layer is drawn.

GetStudyHeightRatio() Callable Double Returns the ratio of the height of a
study layer to the height of its
parent chart’s base layer.

GetThreeDBackWall
FillStyle()

Callable AcDrawing
FillStyle

Returns the background fill style
for a three-dimensional chart’s
back wall.

GetThreeDFloorFill
Style()

Callable AcDrawing
FillStyle

Returns the background fill style
for a three-dimensional chart’s
floor.

GetThreeDSideWall
FillStyle()

Callable AcDrawing
FillStyle

Returns the background fill style
for a three-dimensional chart’s
side wall.

GetUpBarBorderStyle() Callable AcDrawing
BorderStyle

Returns the style of the border
around an up bar in a chart layer.

GetUpBarFillStyle() Callable AcDrawing
FillStyle

Returns the fill style for a down
bar in a chart layer.

GetXAxis() Callable AcChartAxis Returns a reference to a chart
layer’s x-axis.

GetYAxis() Callable AcChartAxis Returns a reference to a chart
layer’s y-axis.

HasCategoryScale
XAxis()

Callable Boolean Returns True if a chart layer’s
x-axis is a category scale axis.

HasValueScaleXAxis() Callable Boolean Returns True if a chart layer’s
x-axis is a value scale axis.

HasXAxis() Callable Boolean Returns True if a chart layer has an
x-axis.

HasYAxis() Callable Boolean Returns True if a chart layer has a
y-axis.

(continues)

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

106 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

InsertCategory() Callable AcChart
Category

Inserts a new category at a specific
position in a chart layer’s list of
categories.

InsertSeries() Callable AcChart
Series

Inserts a new series at a specific
position in a chart layer’s list of
series.

IsBaseLayer() Callable Boolean Returns True if a chart layer is the
base layer of its parent chart.

IsOverlayLayer() Callable Boolean Returns True if a chart layer is the
overlay layer of its parent chart.

IsStacked() Callable Boolean Returns True if the series in a chart
layer are stacked.

IsStudyLayer() Callable Boolean Returns True if a chart layer is a
study layer of its parent chart.

PieExplosionTestValue
IsPercentage()

Callable Boolean Returns True if the pie explosion
test value in a pie chart layer is
treated as a percentage of the total
pie.

PlotBarsAsLines() Callable Boolean Returns True if points in a bar
chart layer will be plotted as lines
instead of bars.

PlotLinesBetween
Points()

Callable Boolean Returns True if the default setting
for series in a chart layer is that
lines will be drawn between the
points within each series.

PlotMarkersAtPoints() Callable Boolean Returns True if the default setting
for series within a chart layer is
that markers will be drawn at
points.

PlotUpDownBars() Callable Boolean Returns True if up and down bars
will be drawn between points
within each category in a chart
layer.

RemoveCategory() Callable N/A Removes a category from a chart
layer.

RemoveSeries() Callable N/A Removes a series from a chart
layer.

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 107

SetBarShape() Callable N/A Sets the shape of bars in a
three-dimensional bar chart layer.

SetBubbleSize() Callable N/A Sets the size of the largest bubble
in a bubble chart as a percentage of
the chart canvas size. Must be in
the range of MinimumBubbleSize
to MaximumBubbleSize.

SetCategoryGapRatio() Callable N/A Sets the size of the gap between
categories in a bar chart layer,
relative to the width of a single bar.

SetCategoryLabel
Format()

Callable N/A Sets the format pattern used to
format category labels in a chart
layer.

SetChartType() Callable N/A Sets the chart type of a chart layer.

SetDownBarBorder
Style()

Callable N/A Sets the style of the border around
down bars in a chart layer.

SetDownBarFillStyle() Callable N/A Sets the fill style for down bars in a
chart layer.

SetDropLineStyle() Callable N/A Sets the line style used to draw
drop lines in a chart layer.

SetHighLowLineStyle() Callable N/A Sets the line style used to draw
high-low lines in a chart layer.

SetLineWidth() Callable N/A Sets the default width of the lines
joining the points within each
series in a chart layer.

SetMarkerSize() Callable N/A Sets the default size for markers
within a chart layer.

SetMaximumNumber
OfPoints()

Callable N/A Sets the maximum number of
points permitted in a chart layer.

SetMaximumNumber
OfPointsPerSeries()

Callable N/A Sets the maximum number of
points permitted in a single series
in a chart layer.

SetMaximumNumber
OfSeries()

Callable N/A Sets the maximum number of
series permitted in a chart layer.

SetMissingPoints() Callable N/A Specifies how to plot missing
points in a chart layer.

(continues)

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

108 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

SetPieExplosion() Callable N/A Specifies the circumstances in
which pie sectors are exploded in a
pie chart layer.

SetPieExplosion
Amount()

Callable N/A Sets the amount by which pie
sectors are exploded in a pie chart
layer.

SetPieExplosion
TestOperator()

Callable N/A Sets the operator used to test
whether a pie sector will be
exploded in a pie chart layer.

SetPieExplosion
TestValue()

Callable N/A Sets the value used to test whether
a pie sector will be exploded in a
pie chart layer.

SetPieExplosionTest
ValueIsPercentage()

Callable N/A Specifies whether the pie
explosion test value in a pie chart
layer is treated as a percentage of
the total pie.

SetPlotAreaBackground
Color()

Callable N/A Sets the background color of a
chart layer’s plot area.

SetPlotAreaBorder
Style()

Callable N/A Sets the style of the border around
a chart layer’s plot area.

SetPlotAreaFillStyle() Callable N/A Sets the background fill style for a
chart layer’s plot area.

SetPlotBarsAsLines() Callable N/A Specifies whether to plot points in
a bar chart layer as lines instead of
bars.

SetPlotHighLowLines() Callable N/A Specifies whether to draw high-
low lines in a chart layer.

SetPlotLinesBetween
Points()

Callable N/A Specifies whether the default
setting for series in a chart layer is
to draw lines between the points
within each series.

SetPlotMarkersAt
Points()

Callable N/A Specifies whether the default
setting for series within a chart
layer is to draw markers at points.

SetPlotUpDownBars() Callable N/A Specifies whether to draw
up-and-down bars between points
within each category in a chart
layer.

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 109

SetPointBorderStyle() Callable N/A Sets the default style for the
borders around points in a chart
layer.

SetPointLabelFormat() Callable N/A Sets the default format pattern
used to format point labels in a
chart layer.

SetPointLabelLine
Style()

Callable N/A Sets the line style used to draw
point label lines in a chart layer.

SetPointLabel
Placement()

Callable N/A Sets the default placement of point
labels in a chart layer.

SetPointLabelSource() Callable N/A Sets the default source for point
label values in a chart layer.

SetPointLabelStyle() Callable N/A Sets the default style for point
labels in a chart layer.

SetSeriesLabelFormat() Callable N/A Sets the default format pattern
used to format series labels in a
chart layer.

SetSeriesOverlap
Ratio()

Callable N/A Specifies the amount by which
adjacent series in a bar chart layer
overlap, relative to the width of a
single bar.

SetSeriesPlacement() Callable N/A Sets the relative placement of
points for multiple series within a
category in a chart layer.

SetStartAngle() Callable N/A Sets the angle at which to draw the
first sector in a pie chart layer.

SetStockHasClose() Callable N/A Specifies whether a stock chart
layer has a Close series.

SetStockHasOpen() Callable N/A Specifies whether a stock chart
layer has an Open series.

SetStudyHeightRatio() Callable N/A Sets the ratio of the height of a
study layer to the height of its
parent chart’s base layer.

SetThreeDFloorFill
Style()

Callable N/A Sets the background fill style for a
three-dimensional chart’s floor.

SetThreeDWallFill
Style()

Callable N/A Sets the background fill style for a
three-dimensional chart’s walls.

(continues)

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

110 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint
AcChartPoint represents a single point within a chart series. Use the methods
of AcChartPoint to access and modify the appearance of a chart’s points.
AcChartPoint does not inherit from other classes. AcChartPoint methods are
listed in Table 4-33.

SetUpBarBorderStyle() Callable N/A Sets the style of the border around
down bars in a chart layer.

SetUpBarFillStyle() Callable N/A Sets the fill style for down bars in a
chart layer.

StockHasClose() Callable Boolean Returns True if a stock chart layer
has a Close series.

StockHasOpen() Callable Boolean Returns True if a stock chart layer
has an Open series.

Table 4-32 AcChartLayer methods (continued)

Method Classification Type Description

Table 4-33 AcChartPoint methods

Method Classification Type Description

AddCustomStyle() Callable AcChart
PointStyle

Adds a custom style to a chart
point.

ClearCustomLabel
Format()

Callable N/A Removes a custom label format
pattern from a chart point.

ClearCustomLabel
Value()

Callable N/A Removes a custom label value
from a chart point.

ClearValues() Callable N/A Makes a chart point into an empty
point.

ExplodeSlice() Callable Boolean Returns True if a chart point is a
pie chart sector that is exploded.

GetCategory() Callable AcChart
Category

Returns a reference to the chart
category corresponding to a chart
point.

GetCustomLabel
Format()

Callable String Returns the custom format pattern
that formats a chart point’s label.

GetCustomLabel
Value()

Callable Variant Returns the custom value of a
chart point’s label.

GetCustomStyle() Callable AcChart
PointStyle

Returns a reference to the custom
style for a chart point.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 111

GetIndex() Callable Integer Returns the index of a chart point
within its parent chart series’ list of
points.

GetLabelText() Callable String Returns the formatted text of a
chart point’s label.

GetSeries() Callable AcChart
Series

Returns a reference to the parent
chart series of a chart point.

GetXValue() Callable Variant Returns the x value of a chart
point.

GetYValue() Callable Variant Returns the y value of a chart
point.

GetZValue() Callable Variant Returns the z value of a chart
point. Currently, only bubble
charts support z values.

HasCustomLabel
Format()

Callable Boolean Returns True if a chart point has a
custom label format pattern.

HasCustomLabel
Value()

Callable Boolean Returns True if a chart point has a
custom label value.

HasCustomStyle() Callable Boolean Returns True if a chart point has a
custom style.

IsMissing() Callable Boolean Returns True if a chart point is
empty.

SetCustomLabel
Format()

Callable N/A Adds a custom label format
pattern to a chart point.

SetCustomLabelValue() Callable N/A Adds a custom label value to a
chart point.

SetExplodeSlice() Callable N/A Specifies whether a chart point
that is a pie sector is exploded.

SetValues() Callable N/A Sets the values of a chart point.

SetXValue() Callable N/A Sets the x value of a chart point.

SetYValue() Callable N/A Sets the y value of a chart point.

SetZValue() Callable Variant Sets the z value of a chart point.
Currently, only bubble charts
support z values.

Table 4-33 AcChartPoint methods

Method Classification Type Description

112 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle
AcChartPointStyle represents a custom style for a single point within a chart
series. Use AcChartPointStyle’s methods to create, access, and modify a chart
point’s custom style. AcChartPointStyle does not inherit from other classes.
AcChartPointStyle methods are listed in Table 4-34.

Table 4-34 AcChartPointStyle methods

Method Classification Type Description

GetBorderStyle() Callable AcDrawing
BorderStyle

Returns the style of the border
around a chart point

GetFillStyle() Callable AcDrawing
FillStyle

Returns the background fill style
for a chart point

GetMarkerFillColor() Callable AcColor Returns the fill color of the marker
for a chart point

GetMarkerLineColor() Callable AcColor Returns the line color of the
marker for a chart point

GetMarkerShape() Callable AcChart
MarkerShape

Returns the shape of the marker
for a chart point

GetMarkerSize() Callable AcTwips Returns the size of the marker for a
chart point

GetPieExplosion
Amount()

Callable Double Returns the amount that a pie
sector chart point is exploded in a
pie chart layer

GetPointLabel
Placement()

Callable AcChart
PointLabel
Placement

Returns the placement of the point
label for a chart point

GetPointLabelStyle() Callable AcDrawing
TextStyle

Returns the style of the point label
for a chart point

SetBackgroundColor() Callable N/A Sets the background color for a
chart point

SetBorderStyle() Callable N/A Sets the style of the border around
a chart point

SetFillStyle() Callable N/A Sets the background fill style for a
chart point

SetMarkerFillColor() Callable N/A Sets the fill color of the marker for
a chart point

SetMarkerLineColor() Callable N/A Sets the line color of the marker for
a chart point

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 113

AcChartSeriesStyle
A subclass of AcChartPointStyle, AcChartSeriesStyle represents a custom style
for a chart series. AcChartSeriesStyle methods are listed in Table 4-35.

SetMarkerShape() Callable N/A Sets the shape of the marker for a
chart point

SetMarkerSize() Callable N/A Sets the size of the marker for a
chart point.

SetPieExplosion
Amount()

Callable N/A Sets the amount that a pie sector
chart point is exploded in a pie
chart layer

SetPointLabel
Placement()

Callable N/A Sets the placement of the point
label for a chart point

SetPointLabelStyle() Callable N/A Sets the style of the point label for
a chart point

Table 4-34 AcChartPointStyle methods

Method Classification Type Description

Table 4-35 AcChartSeriesStyle methods

Method Classification Type Description

GetLineStyle() Callable AcDrawing
LineStyle

Returns the style of lines between
points in a chart series

GetPointLabelFormat() Callable String Returns the format pattern used to
format point labels in a chart series
or a pie chart category

GetPointLabelSource() Callable AcChart
PointLabel
Source

Returns the source for point label
values in a chart series or a pie
chart category

PlotBarsAsLines() Callable Boolean Returns True if points are plotted
as lines in a chart series

PlotLinesBetween
Points()

Callable Boolean Returns True if lines are plotted
between points in a chart series

PlotMarkersAtPoints() Callable Boolean Returns True if markers are drawn
by default at points in a chart
series

SetLineStyle() Callable AcDrawing
LineStyle

Sets the style of lines between
points in a chart series

(continues)

114 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSeries
AcChartSeries represents a single series within a chart layer. AcChartSeries
methods support accessing and modifying a chart layer’s series. AcChartSeries
does not inherit from other classes. AcChartSeries methods are listed in
Table 4-36.

SetPlotBarsAsLines() Callable N/A Determines whether to plot points
as lines in a bar chart series

SetPlotLinesBetween
Points()

Callable N/A Determines whether to plot lines
between points in a chart series

SetPlotMarkersAt
Points()

Callable N/A Determines whether to draw
markers by default at points in a
chart series

SetPointLabelFormat() Callable N/A Sets the format pattern used to
format point labels in a chart series
or a pie chart category

SetPointLabelSource() Callable N/A Sets the source for point label
values in a chart series or a pie
chart category

Table 4-35 AcChartSeriesStyle methods (continued)

Method Classification Type Description

Table 4-36 AcChartSeries methods

Method Classification Type Description

AddEmptyPoint() Callable AcChart
Point

Appends a new empty point to the
end of a chart series’ list of points

AddPoint() Callable AcChart
Point

Appends a new point to the end of
a chart series’ list of points

AddTrendline() Callable AcChart
Trendline

Adds a trendline to the end of a
chart series’ list of trendlines

GetIndex() Callable Integer Returns the index of a chart series
within its parent chart layer’s list
of series

GetKeyValue() Callable Variant Returns the unique key value for a
chart series

GetLabelText() Callable String Returns the formatted label text for
a chart series

GetLabelValue() Callable Variant Returns the label value for a chart
series

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 115

AcChartTrendline
Use AcChartTrendline to represent a trendline in a chart. AcChartTrendline does
not inherit from other classes. AcChartTrendline methods are listed in Table 4-37.

GetLayer() Callable AcChart
Layer

Returns a reference to the parent
layer of a chart series

GetNumberOfPoints() Callable Integer Returns the number of points in a
chart series

GetNumberOf
Trendlines()

Callable Integer Returns the number of trendlines
in a chart series

GetPoint() Callable AcChart
Point

Returns a reference to a point in a
chart series

GetStyle() Callable AcChart
SeriesStyle

Returns a reference to the series
style corresponding to a chart
series

GetSumOfSliceValues() Callable Variant Returns the sum of the values of all
the sectors in a pie chart series

GetTrendline() Callable AcChart
Trendline

Returns a reference to a trendline
in a chart

InsertEmptyPoint() Callable AcChart
Point

Inserts a new empty point at a
specific position in a chart series’
list of points

InsertPoint() Callable AcChart
Point

Inserts a new point at a specific
position in a chart series’ list of
points

InsertTrendline() Callable AcChart
Point

Returns a reference to the specified
trendline for a chart series

RemovePoint() Callable N/A Removes a point from a chart
series

RemoveTrendline() Callable N/A Removes a trendline at a specific
position within a chart series’ list
of trendlines

SetKeyValue() Callable N/A Sets the unique key value for a
chart series.

SetLabelValue() Callable N/A Sets the chart series’ label value

Table 4-36 AcChartSeries methods

Method Classification Type Description

116 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Table 4-37 AcChartTrendline methods

Method Classification Type Description

ClearIntercept() Callable N/A Clears the intercept value for a
trendline

GetEndYValue() Callable Variant Returns the y value of the end of a
trendline

GetIndex() Callable Integer Returns the index of a trendline
within its parent chart series’ list of
trendlines

GetIntercept() Callable Variant Returns the intercept value for a
trendline

GetLabelText() Callable String Returns the trendline’s label text

GetLineStyle() Callable AcDrawing
LineStyle

Returns the line style used to draw
a trendline

GetMaximumYValue() Callable Variant Returns the maximum y value of a
trendline

GetMinimumYValue() Callable Variant Returns the minimum y value of a
trendline

GetOrder() Callable Integer Returns the order of a polynomial
trendline

GetPeriod() Callable Integer Returns the period of a moving
average trendline

GetStartYValue() Callable Variant Returns the y value of the start of a
trendline

GetTrendlineType() Callable AcChart
Trendline
Type

Returns a value that indicates how
a trendline is fitted to the points in
its parent series

HasIntercept() Callable Boolean Determines whether a trendline
has an intercept value

SetIntercept() Callable N/A Sets the intercept value for a
trendline

SetLabelText() Callable N/A Sets the label text for a trendline

SetLineStyle() Callable N/A Sets the line style used to draw a
trendline

SetOrder() Callable N/A Sets the order of a polynomial
trendline

SetPeriod() Callable N/A Sets the period for a moving
average trendline

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 117

AcDrawingPlane
AcDrawingPlane represents a single drawing plane within a drawing.
AcDrawingPlane does not inherit from other classes. AcDrawingPlane methods
are listed in Table 4-38.

AcDrawingChartPlane
AcDrawingChartPlane is a subclass of AcDrawingPlane. Use this class to
represent a drawing plane for a chart within a drawing. There are no public
methods defined specifically for AcDrawingChartPlane.

AcDrawingSVGPlane
AcDrawingSVGPlane is a subclass of AcDrawingPlane. Use this class to represent
a drawing plane whose contents are defined using Scalable Vector Graphics
(SVG). AcDrawingSVGPlane methods are listed in Table 4-39.

SetTrendlineType() Callable N/A Defines how a trendline is fitted to
the points in its parent series

Table 4-37 AcChartTrendline methods

Method Classification Type Description

Table 4-38 AcDrawingPlane methods

Method Classification Type Description

GetDrawingPlane
Type()

Callable AcDrawing
PlaneType

Returns the type of a drawing
plane

IsHidden() Callable Boolean Determines whether a drawing
plane is hidden

SetHidden() Callable N/A Specifies whether a drawing plane
is hidden

SetPosition() Callable N/A Sets the position of a drawing
plane within its parent drawing

SetSize() Callable N/A Sets the size of a drawing plane

Table 4-39 AcDrawingSVGPlane methods

Method Classification Type Description

GetSVG() Callable String Returns the SVG code for an SVG
drawing plane

SetSVG() Callable N/A Sets the SVG code for an SVG
drawing plane

118 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Connection classes and methods
Use connection classes and methods to connect to a data source.

AcConnection
AcConnection is a subclass of AcComponent. AcConnection defines the protocol
for connecting to and disconnecting from an input source. AcConnection
methods are listed in Table 4-40.

AcDBConnection
AcDBConnection is a subclass of AcConnection. AcDBConnection provides
methods for connecting to and disconnecting from a database and defining
error-handling methods when a connection fails. This class also provides the logic
for creating the database statement object required to execute a SQL statement.
AcDBConnection methods are listed in Table 4-41.

Table 4-40 AcConnection methods

Method Classification Type Description

Connect() Overridable Boolean Sets run-time properties and
establishes a connection. An empty
method that derived classes
override to connect to a data
source.

Disconnect() Callable N/A Disconnects from a data source.
An empty method that derived
classes override.

IsConnected() Callable Boolean Determines whether a data source
connection exists.

RaiseError() Callable N/A Produces an error message.

Table 4-41 AcDBConnection methods

Method Classification Type Description

GetGeneralError() Callable Integer Returns the general error code

GetGeneralErrorText() Callable String Returns the text of the general
error

GetSpecificError() Callable Integer Returns the specific error code

GetSpecificErrorText() Callable String Returns the text of the specific
error

Prepare() Callable AcDB
Statement

Creates a database statement
object for a SQL statement

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 119

AcDB2Connection
AcDB2Connection is a subclass of AcDBConnection. AcDB2Connection
establishes a connection to a DB2 database. There are no public methods defined
specifically for this class.

AcMSSQLConnection
AcMSSQLConnection is a subclass of AcDBConnection. AcMSSQLConnection
establishes a connection to a Microsoft SQL database. There are no public
methods defined specifically for this class.

AcOdaConnection
AcOdaConnection is a subclass of AcDBConnection. AcOdaConnection
establishes a connection to an Open Data Access (ODA) driver.
AcOdaConnection methods are listed in Table 4-42.

AcODBCConnection
AcODBCConnection is a subclass of AcDBConnection. AcODBCConnection
establishes a connection to an ODBC database. There are no public methods
defined specifically for this class.

AcOracleConnection
AcOracleConnection is a subclass of AcDBConnection. AcOracleConnection
establishes a connection to an Oracle database. There are no public methods
defined specifically for this class.

AcDBCursor
AcDBCursor provides an Actuate Basic interface to a database cursor for a SQL
statement. A database cursor is an identifier associated with a set of rows.
SELECT statements that return more than one row of data require a database
cursor. Use this class to create a cursor when you write custom code to handle

Table 4-42 AcOdaConnection methods

Method Classification Type Description

SetProperties() Overridable N/A Sets the value of a property
variable to the value the user sets

SetRuntimeProperties() Overridable N/A Calls SetConnectionProperty() to
assign a value to each run-time
property of the connection

120 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

data retrieval from, for example, a stored procedure. AcDBCursor does not inherit
from other classes. AcDBCursor methods are listed in Table 4-43.

Table 4-43 AcDBCursor methods

Method Classification Type Description

BindColumn() Callable N/A Binds a database column to a data
row variable

BindParameter() Callable Boolean Assigns the specified value to a
cursor parameter

CloseCursor() Callable N/A Closes the cursor

DefineProcedureInput
Parameter()

Callable Boolean Defines an input parameter used
by a stored procedure

DefineProcedureOutput
Parameter()

Callable Boolean Defines an input and output
parameter or an output only
parameter used by a stored
procedure

DefineProcedureReturn
Parameter()

Callable Boolean Specifies the data type of a return
value from a stored procedure

Delete() Overridable N/A Deletes the cursor object

Fetch() Callable Boolean Reads one row from the cursor

GetConnection() Callable AcDB
Statement

Returns the connection against
which the cursor operates

GetOutputParameter() Callable Variant Returns the value of a stored
procedure’s output parameter

GetProcedureStatus() Callable Integer Returns a value that indicates the
status of a stored procedure

GetStatement() Callable AcDB
Statement

Returns the statement from which
the cursor was created

IsOpen() Callable Boolean Determines whether the cursor is
open

New() Overridable N/A The class’ constructor method

OpenCursor() Callable Boolean Opens the cursor

SetProperty() Callable Boolean Sets a parameter property for a
stored procedure

StartNextSet() Callable Boolean Starts a new set of rows within a
stored procedure

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 121

AcDBStatement
AcDBStatement provides an Actuate Basic interface to a SQL statement.
AcDBStatement does not inherit from other classes. AcDBStatement methods are
listed in Table 4-44.

Table 4-44 AcDBStatement methods

Method Classification Type Description

AllocateCursor() Callable AcDBCursor Creates a cursor to read the rows
the statement returns

BindParameter() Callable Boolean Binds a statement parameter to a
variable

DefineProcedureInput
Parameter()

Callable Boolean Defines an input parameter used
by a stored procedure

DefineProcedureOutput
Parameter()

Callable Boolean Defines an input and output
parameter or an output-only
parameter for a stored procedure

DefineProcedureReturn
Parameter()

Callable Boolean Specifies the data type of a return
value from a stored procedure

Delete() Callable N/A The destructor method

Execute() Callable Boolean Executes the SQL statement

GetOutputCount() Callable Integer Returns the number of columns in
the rows that the SQL statement
returns

GetOutputParameter() Callable Variant Returns an output parameter of a
stored procedure by name or
position

GetParameterCount() Callable Integer Returns the number of parameters
in the SQL statement

GetProcedureStatus() Callable Integer Returns the return value from a
stored procedure

GetStatementText() Callable String Returns the text of the SQL
statement previously passed to
Prepare()

OpenCursor() Callable AcDBCursor Creates and opens a cursor to use
for reading the rows that the
statement returns

Prepare() Callable Boolean Prepares a SQL statement

122 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Collection classes and methods
Use collection classes and methods to work with arrays.

AcCollection
AcCollection is the base class for collection classes. This class provides methods
common to all collections. AcCollection does not inherit from other classes.
AcCollection methods are listed in Table 4-45.

AcBTree
AcBTree is a subclass of AcCollection. Use AcBTree to create a balanced-tree list of
objects sorted by one of the object’s properties. Table 4-46 lists AcBTree methods.

Table 4-45 AcCollection methods

Method Classification Type Description

Compare() Callable Variant Compares two objects in a
collection

Contains() Callable Boolean Determines whether an object
exists in the collection

Copy() Callable N/A Copies the contents of another
collection into the current
collection

FindByValue() Callable AnyClass Finds an object that has the same
value as the current object

GetCount() Callable Integer Returns the number of objects in
the collection

IsEmpty() Callable Boolean Determines whether the collection
is empty

NewIterator() Overridable AcIterator Creates an iterator for the
collection

Remove() Callable N/A Removes a specified item from the
collection

RemoveAll() Callable N/A Removes all contents from the
collection

Table 4-46 AcBTree methods

Method Classification Type Description

Abandon() Overridable N/A Removes an object that the
balanced tree no longer needs and
recovers memory

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 123

AcOrderedCollection
AcOrderedCollection is a subclass of AcCollection. AcOrderedCollection creates
a collection in which you control the order of the objects. Use
AcOrderedCollection methods to add and remove objects from the front or back
of a collection, to insert objects within a collection, and to copy the contents of one
collection into another collection. Table 4-47 lists AcOrderedCollection methods.

CompareKey() Overridable Integer Compares the values of two keys

CreateNode() Overridable N/A Adds a new node

Find() Callable AnyClass Finds the object with the given key

FindOrCreate() Callable AnyClass Locates an object that has a
specified key or creates the object if
an object with the specified key
does not exist in the collection

GetKey() Overridable Variant Returns the key for an object

Insert() Callable AnyClass Adds an object to the collection

New() Callable N/A Constructor method for this class

Table 4-46 AcBTree methods

Method Classification Type Description

Table 4-47 AcOrderedCollection methods

Method Classification Type Description

AddToHead() Callable N/A Adds an object to the beginning of
the collection

AddToTail() Callable N/A Adds an object to the end of the
collection

GetAt() Callable AnyClass Returns the object at a specified
location in the collection

GetHead() Callable AnyClass Returns the first object in the
collection

GetIndex() Callable Integer Returns the position of an object in
the collection

GetTail() Callable AnyClass Returns the last object in the
collection

InsertAfter() Callable N/A Inserts an object after a specified
object in the collection

(continues)

124 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcList
AcList is a subclass of AcOrderedCollection. AcList is an abstract class that
defines the list interface. There are no public methods defined specifically for this
class.

AcSingleList
AcSingleList is a subclass of AcList. AcSingleList processes a singly-linked list.
There are no public methods defined specifically for this class.

AcObjectArray
AcObjectArray is a subclass of AcOrderedCollection. AcObjectArray creates a
resizable array of objects. AcObjectArray methods are listed in Table 4-48.

InsertAt() Callable N/A Inserts a new object at a specific
location, moving the object
currently at that location and all
objects above it one higher

InsertBefore() Callable N/A Inserts an object before a specified
object in the collection

RemoveHead() Callable AnyClass Removes the first object in the
collection

RemoveTail() Callable AnyClass Removes the last object in the
collection

SetAt() Callable N/A Replaces an object at a specified
position with the specified object

Table 4-47 AcOrderedCollection methods (continued)

Method Classification Type Description

Table 4-48 AcObjectArray methods

Method Classification Type Description

RemoveAt() Callable AnyClass Removes the object at a specific
location in the array.

RemoveEmptyEntries() Callable N/A Removes slots that contain
Nothing. Resets the count by the
number of slots removed.

ResizeBy() Callable N/A Resizes the array by a specific
number of slots.

ResizeTo() Callable N/A Resets the size of the array to a
specific number of slots.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 125

AcStaticIndex
A subclass of AcOrderedCollection, AcStaticIndex implements a multi-layer tree
to provide fast indexing into a large collection of data. A static index pre-allocates
space rather than building the index dynamically. AcStaticIndex methods are
listed in Table 4-49.

AcIterator
AcIterator is the base class for all iterators. This class provides the methods
needed to iterate through a list. AcIterator does not inherit from other classes.
AcIterator methods are listed in Table 4-50.

SetGrowthIncrement() Callable N/A Sets the number of slots to add
each time the array expands.

Table 4-48 AcObjectArray methods

Method Classification Type Description

Table 4-49 AcStaticIndex methods

Method Classification Type Description

AddLevel() Callable N/A Adds a level if necessary when
building a static index of a
particular size

New() Callable N/A Creates a new static index

Table 4-50 AcIterator methods

Method Classification Type Description

Copy() Callable AcIterator Copies this iterator. The copy has
the same state as this iterator.

GetItem() Callable AnyClass Returns the current item in the list.

GetNext() Callable AnyClass Returns the next item in the list.

GetPosition() Callable Integer Returns the current position of the
iterator.

HasMore() Callable Boolean Determines whether there are
more items in the list.

IsDone() Callable Boolean Determines whether there are no
more items in the list.

MoveNext() Callable N/A Moves the iterator to the next
position in the list.

(continues)

126 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Data stream classes and methods
Use data stream classes and methods to work with data rows, data sources, and
filters.

AcDataAdapter
AcDataAdapter is a subclass of AcComponent. AcDataAdapter is an abstract
base class that defines the logic of data-related classes, such as data sources and
data filters, that can combine to form a data stream. The data stream manages
data collection and processing tasks. The parts of a data stream are called data
adapters. AcDataAdapter methods are listed in Table 4-51.

Restart() Callable N/A Positions the iterator using an
index.

SkipForwardTo() Callable N/A Moves the iterator to a specific
location ahead of the current
location in the list. Searches only
from the current position to the
end of the list.

SkipTo() Callable N/A Positions the iterator to a new
location in the list. If the location is
before the current position, the
iterator rewinds.

SkipToItem() Callable Boolean Skips to a specific object. Searches
the entire index for the object. If
the method does not find the
object, returns False and does not
change the position of the iterator.

Table 4-50 AcIterator methods (continued)

Method Classification Type Description

Table 4-51 AcDataAdapter methods

Method Classification Type Description

AddRow() Callable N/A Adds a row to the data adapter

AddSortKey() Callable N/A Adds a dynamic sort key column

CanSeek() Overridable Boolean Returns True if the data adapter
supports random access

CanSortDynamically() Overridable Boolean Determines whether the data
adapter supports dynamic
ordering

CloseConnection() Overridable N/A Closes the connection

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 127

AcDataFilter
AcDataFilter is a subclass of AcDataAdapter. AcDataFilter is the base class for the
two general types of data filter classes, AcMultipleInputFilter and
AcSingleInputFilter. AcDataFilter defines the logic for processing data rows
retrieved from another data adapter. There are no public methods defined
specifically for this class.

Fetch() Overridable AcDataRow Reads the row at the position
identified by GetPosition()

Finish() Overridable N/A Closes a data adapter

FlushBuffer() Callable N/A Flushes all buffered rows

FlushBufferTo() Overridable N/A Flushes all buffered rows up to the
row specified

GetConnection() Callable Ac
Connection

Returns the connection associated
with the data adapter

GetPosition() Callable Integer Returns the position of the next
row that will be fetched

IsStarted() Callable Boolean Returns True if the adapter is open

NewConnection() Overridable Ac
Connection

Instantiates the connection
specified in the data adapter’s
Connection slot

NewDataRow() Overridable AcDataRow Instantiates a data row based on
the DataRow property

OpenConnection() Overridable Boolean Opens a connection

Rewind() Callable N/A Moves the fetch position to the
beginning of the input set

SeekBy() Callable N/A Moves the fetch position by a
given amount relative to the
current position

SeekTo() Overridable N/A Moves the fetch position to a given
location

SeekToEnd() Callable N/A Moves the fetch position to one
past the end of the input set

SetConnection() Callable N/A Provides a connection to use if the
data adapter does not have its own
connection

Start() Overridable Boolean Opens the data adapter

Table 4-51 AcDataAdapter methods

Method Classification Type Description

128 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcMultipleInputFilter
A subclass of AcDataFilter, AcMultipleInputFilter is a base class for data filters.
AcMultipleInputFilter accepts input from multiple data adapters, processes the
data, and passes the data to the next data adapter or to the report.
AcMultipleInputFilter methods are listed in Table 4-52.

AcSingleInputFilter
A subclass of AcDataFilter, AcSingleInputFilter is a data filter that accepts one
data adapter as its input and filters each data row. AcSingleInputFilter methods
are listed in Table 4-53.

AcDataRowBuffer
A subclass of AcSingleInputFilter, AcDataRowBuffer is a data filter that converts
a sequential data stream into one which supports random access by buffering
data rows. AcDataRowBuffer methods are listed in Table 4-54.

Table 4-52 AcMultipleInputFilter methods

Method Classification Type Description

GetInputCount() Callable Integer Counts the number of data
adapters that provide input

NewInputAdapter() Overridable AcData
Adapter

Instantiates the input adapters
specified in the Input slot

Table 4-53 AcSingleInputFilter methods

Method Classification Type Description

GetInput() Callable AcData
Adapter

Returns the input adapter for this
data filter

NewInputAdapter() Overridable AcData
Adapter

Instantiates the input adapter

SetInput() Callable N/A Specifies the input adapter for this
data filter

Table 4-54 AcDataRowBuffer methods

Method Classification Type Description

AddRowToBuffer() Callable N/A Programmatically adds a row to
the data row buffer. Typically
called during a fetch, this method
can be called by the report to save
rows for later reuse.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 129

AcDataRowSorter
A subclass of AcDataRowBuffer, AcDataRowSorter is a data filter that reads and
stores data rows. AcDataRowSorter provides a framework for subclasses to
implement a sort algorithm. AcDataRowSorter methods are listed in Table 4-55.

AcDataSource
AcDataSource, a subclass of AcDataAdapter, is the base class for data adapters
that read data from an input source. AcDataSource defines the logic for retrieving
data from an external source and creating a data row for each input record. The
AcDataSource method is described in Table 4-56.

AcDatabaseSource
A subclass of AcDataSource, AcDatabaseSource is an abstract base class that
provides the standard logic for retrieving rows from a relational database cursor.
AcDatabaseSource methods are listed in Table 4-57.

GetBufferCount() Callable Integer Gets the number of rows currently
in the buffer.

GetBufferStart() Callable Integer Gets the position of the first row in
the buffer, relative to the beginning
of the input set. The first row is 1.

Table 4-54 AcDataRowBuffer methods

Method Classification Type Description

Table 4-55 AcDataRowSorter methods

Method Classification Type Description

Compare() Overridable Integer A pure virtual method that must
be overridden to implement the
comparison logic

CompareKeys() Callable Integer Compares two strings or numbers

Table 4-56 AcDataSource methods

Method Classification Type Description

HasFetchedLast() Callable Boolean Determines whether the data
source has fetched the last row

130 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExternalDataSource
AcExternalDataSource is a subclass of AcDatabaseSource. AcExternalDataSource
is an abstract base class for generic data source objects that use a command to
retrieve a single result set through a connection. The AcExternalDataSource
method is described in Table 4-58.

AcOdaSource
AcOdaSource is a subclass of AcExternalDataSource. AcOdaSource creates an
object for an open data access (ODA) data source. AcOdaSource methods are
listed in Table 4-59.

Table 4-57 AcDatabaseSource methods

Method Classification Type Description

BindDataRow() Overridable N/A Binds the data row to the cursor

BindStaticParameters() Overridable N/A Binds parameters to a statement

GetCursor() Callable AcDBCursor Gets the database cursor object
associated with this data source

GetDBConnection() Callable AcDB
Connection

Gets the database connection
against which to run this data
source

GetPrepared
Statement()

Callable AcDB
Statement

Gets the statement on which to
execute the cursor

OpenCursor() Callable N/A Opens a cursor on a statement

SetStatementProperty() Callable N/A Assigns a value to the specified
property

Table 4-58 AcExternalDataSource methods

Method Classification Type Description

ObtainCommand() Overridable String Obtains the command that
retrieves the result set from the
database

Table 4-59 AcOdaSource methods

Method Classification Type Description

ClearSortKeys() Callable N/A Removes all previously assigned
dynamic sort keys.

Commit() Callable N/A Commits all outstanding
transactions on the specified ODA
connection.

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 131

AcQuerySource
A subclass of AcDatabaseSource, AcQuerySource is an abstract base class that
provides the core logic for a query data source you build using Query Editor or
Textual Query Editor. AcQuerySource methods are listed in Table 4-60.

AcSqlQuerySource
A subclass of AcQuerySource, AcSqlQuerySource creates a data source for a
SELECT statement provided by the report, using the parts of the statement in the
variables provided. AcSqlQuerySource assembles the variables to form the
statement. There are no public methods defined specifically for this class.

GetOutputParameter() Callable Variant Retrieves the output value of a
specified output parameter as the
parameter’s default Actuate data
type.

GetOutputParameterAs
Type()

Callable Variant Retrieves the output value of a
specified output parameter and
converts that value to the specified
Actuate data type.

GetOutputParameters() Overridable N/A Calls GetOutputParameter() to
retrieve the output value of each
defined output parameter.

Rollback() Callable N/A Applies only if the ODA driver
supports this feature. Rolls back all
outstanding transactions on the
specified ODA connection.

SetInputParameter() Callable N/A Assigns an input value to a
specified input parameter.

SetInputParameters() Overridable N/A Calls SetInputParameter() to
assign input values to each input
parameter.

SetRuntimeProperties() Overridable N/A Assigns a value to each public and
private run-time property.

SetStatement
Attributes()

Overridable N/A Sets attributes on the prepared
statement before executing the
statement or allocating a cursor.

StartNextSet() Callable Boolean Starts the next result set on the
allocated cursor if the result set is
not referenced by name.

Table 4-59 AcOdaSource methods

Method Classification Type Description

132 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTextQuerySource
A subclass of AcQuerySource, AcTextQuerySource is the class for writing textual
SQL SELECT statements using the Textual Query Editor. There are no public
methods defined specifically for this class.

AcStoredProcedureSource
A subclass of AcDatabaseSource, AcStoredProcedureSource is the base class for
creating stored procedure data sources. The AcStoredProcedureSource method is
described in Table 4-61.

AcDataRow
AcDataRow is a subclass of AcComponent. AcDataRow defines the
characteristics of a data row. A data row is a record structure that contains data
from a single record in a format that the report accepts. AcDataRow methods are
listed in Table 4-62.

Table 4-60 AcQuerySource methods

Method Classification Type Description

GetStatementText() Callable String Returns the text of the SELECT
statement for the query source.

ObtainSelect
Statement()

Overridable String Returns the SELECT statement of
the query source.

SetupAdHoc
Parameters()

Overridable N/A The framework overrides this
method to call AcSqlQuerySource
::SetAdHocParameter() or
AcTextQuerySource::SetAdHoc
Condition() repeatedly until all ad
hoc parameters are processed.

Table 4-61 AcStoredProcedureSource methods

Method Classification Type Description

GetOutputParameters() Overridable N/A Gets the output parameters for the
stored procedure

Table 4-62 AcDataRow methods

Method Classification Type Description

GetValue() Callable Variant Gets the value of the specified
column or variable

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 133

Excel classes and methods
Use Excel classes and methods to generate Excel files.

AcExcelObject
Classes derived from AcExcelObject create and manage the Excel workbooks,
worksheets, ranges, rows, columns, and cells you use in an Actuate report. There
are no public methods defined specifically for this class. AcExcelObject does not
inherit from other classes.

AcExcelApp
A subclass of AcExcelObject, AcExcelApp is the root class that contains all
instances of classes you use to generate and work with Excel files. AcExcelApp
methods are listed in Table 4-63.

AcExcelRange
A subclass of AcExcelObject, AcExcelRange is the base class for the AcExcelCell,
AcExcelColumn, and AcExcelRow classes. AcExcelRange methods are listed in
Table 4-64.

OnRead() Overridable N/A Called after the associated data
adapter has written its output to
the data row

SetValue() Overridable Boolean Sets the value of the specified
column or variable

Table 4-62 AcDataRow methods

Method Classification Type Description

Table 4-63 AcExcelApp methods

Method Classification Type Description

AddWorkbook() Callable AcExcel
Workbook

Adds a new Excel file

DeleteWorkbook() Callable Integer Deletes a workbook

FindWorkbook() Callable AcExcel
Workbook

Finds a workbook

New() Callable N/A Creates an Excel application
instance

SetFontScalingFactor() Callable Integer Specifies scaling factor to apply to
a font

134 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Table 4-64 AcExcelRange methods

Method Classification Type Description

AddImage() Callable N/A Adds an image to an Excel file

DrawLine() Callable N/A Sets properties of a line in the
range

GetBackgroundColor() Callable AcColor Returns the background color

GetBorder() Callable AcExcel
Border

Returns the border

GetFont() Callable AcFont Returns the font

GetHorizontal
Alignment()

Callable AcExcel
Horizontal
Alignment

Returns the horizontal alignment

GetIndent() Callable Integer Returns the number of indent
characters

GetMergeCells() Callable Boolean Returns the setting of the merge
cells option

GetNumberFormat() Callable String Returns the string used for
formatting the numeric data

GetValue() Callable Variant Returns the contents of the range

GetValueAsDate() Callable Date Converts the contents of the range
into date format

GetVerticalAlignment() Callable AcExcel
Vertical
Alignment

Returns the vertical alignment

GetWrapText() Callable Boolean Returns the setting of the wrap text
option

SetBackgroundColor() Callable N/A Sets the background color

SetBorder() Callable N/A Sets the border for one or more
sides of the range

SetBorderAround() Callable N/A Sets the border around the entire
range

SetFont() Callable N/A Sets the font

SetHorizontal
Alignment()

Callable N/A Sets the horizontal alignment

SetIndent() Callable N/A Sets the number of characters for
the indent

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 135

AcExcelCell
A subclass of AcExcelRange, AcExcelCell represents a cell in a worksheet. There
are no public methods defined specifically for this class.

AcExcelColumn
A subclass of AcExcelRange, AcExcelColumn represents a column in a
worksheet. AcExcelColumn methods are listed in Table 4-65.

AcExcelRow
A subclass of AcExcelRange, AcExcelRow represents a row in a workbook.
AcExcelRow methods are listed in Table 4-66.

SetMergeCells() Callable N/A Turns the merge cells option on
and off

SetNumberFormat() Callable N/A Sets the format used for displaying
numeric data

SetValue() Callable Variant Sets the contents for the range

SetVerticalAlignment() Callable N/A Sets the vertical alignment for the
range

SetWrapText() Callable N/A Turns the wrap text option on and
off

Table 4-64 AcExcelRange methods

Method Classification Type Description

Table 4-65 AcExcelColumn methods

Method Classification Type Description

Autofit() Callable Integer Calculates the column width
expressed as an integer

GetColumnWidth() Callable Double Returns the column width in
number of characters that can be
displayed in a column

SetAutofitFont() Callable N/A Sets the font to use to calculate
column width

SetAutofitString() Callable N/A Sets the string to use to calculate
column width

SetColumnWidth() Callable N/A Sets the column width

136 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelWorkbook
A subclass of AcExcelObject, AcExcelWorkbook adds, removes, and locates
worksheets in a workbook. You also use AcExcelWorkbook to save and get the
name of the workbook. AcExcelWorkbook methods are listed in Table 4-67.

AcExcelWorksheet
A subclass of AcExcelObject, AcExcelWorksheet provides information about a
specific worksheet in a workbook. AcExcelWorksheet methods are listed in
Table 4-68.

Table 4-66 AcExcelRow methods

Method Classification Type Description

GetRowHeight() Callable Double Returns the row height, in points

SetRowHeight() Callable N/A Sets the row height

Table 4-67 AcExcelWorkbook methods

Method Classification Type Description

AddWorksheet() Callable AcExcelWork
Sheet

Adds a worksheet to the
workbook

DeleteWorksheet() Callable Integer Deletes a worksheet from the
workbook

FindWorksheet() Callable AcExcelWork
Sheet

Finds a worksheet in the
workbook

GetFullName() Callable String Returns the name of the workbook

Save() Callable N/A Saves the workbook

SaveAs() Callable N/A Saves the workbook with the
specified file name

Table 4-68 AcExcelWorksheet methods

Method Classification Type Description

Autofit() Callable Integer Adjusts the column width to fit the
contents

GetCell() Callable AcExcelCell Returns the handle to the cell to
access

GetColumn() Callable AcExcel
Column

Returns a handle to the column to
access

GetDisplayGridlines() Callable Boolean Returns the gridline settings

GetName() Callable String Returns the name of the worksheet

C h a p t e r 4 , A c t u a t e F o u n d a t i o n C l a s s l i b r a r y 137

Visitor class and methods
Use the AcVisitor class and methods to customize processing on a report
component.

AcVisitor
AcVisitor creates a utility to visit a report component and perform an action on
the component. AcVisitor does not inherit from other classes. AcVisitor methods
are listed in Table 4-69.

GetRange() Callable AcExcel
Range

Returns the handle to the cells to
access

GetRow() Callable AcExcelRow Returns the handle to the row to
access

SetDisplayGridlines() Callable N/A Turns the gridlines on or off

SetName() Callable Integer Sets the name of the worksheet

Table 4-68 AcExcelWorksheet methods

Method Classification Type Description

Table 4-69 AcVisitor methods

Method Classification Type Description

VisitBaseFrame() Overridable N/A Visits a base frame component

VisitBasePage() Overridable N/A Visits a base page component

VisitChart() Overridable N/A Visits a chart component

VisitComponent() Overridable N/A Visits components of a report

VisitConditional
Section()

Overridable N/A Visits a conditional section
component

VisitContents() Overridable N/A Visits the contents of a report’s data
hierarchy components

VisitControl() Overridable N/A Visits a control component

VisitCurrencyControl() Overridable N/A Visits a currency control component

VisitDataControl() Overridable N/A Visits a data control component

VisitDataFrame() Overridable N/A Visits a data frame component

VisitDataSection() Overridable N/A Visits a data section component

VisitDateTimeControl() Overridable N/A Visits a date and time control
component

(continues)

138 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

VisitDoubleControl() Overridable N/A Visits a double control component

VisitFlow() Overridable N/A Visits a flow component

VisitFrame() Overridable N/A Visits a frame component

VisitGroupSection() Overridable N/A Visits a group section component

VisitImageControl() Overridable N/A Visits an image control component

VisitIntegerControl() Overridable N/A Visits an integer control component

VisitLabelControl() Overridable N/A Visits a label control component

VisitLeftRightPage
List()

Overridable N/A Visits a left-right page list component

VisitLinearFlow() Overridable N/A Visits a linear flow component

VisitLineControl() Overridable N/A Visits a line control component

VisitPage() Overridable N/A Visits a page component

VisitPages() Overridable N/A Visits the contents of the report’s
page hierarchy components

VisitPageList() Overridable N/A Visits a page list component

VisitPageNumber
Control()

Overridable N/A Visits a page number control
component

VisitParallelSection() Overridable N/A Visits a parallel section component

VisitRectangleControl() Overridable N/A Visits a rectangle component

VisitReport() Overridable N/A Visits an AcReport component

VisitReport
Component()

Overridable N/A Visits an AcReportComponent
component

VisitReportSection() Overridable N/A Visits a report section component

VisitSection() Overridable N/A Visits a section component

VisitSequentialSection() Overridable N/A Visits a sequential section component

VisitSimplePageList() Overridable N/A Visits a simple page list component

VisitSubpage() Overridable N/A Visits a subpage component

VisitTextControl() Overridable N/A Visits a text control component

VisitTextualControl() Overridable N/A Visits a textual control component

VisitTitleBodyPage
List()

Overridable N/A Visits a title and body page list

VisitVisual
Component()

Overridable N/A Visits a visual component

Table 4-69 AcVisitor methods (continued)

Method Classification Type Description

C h a p t e r 5 , U n d e r s t a n d i n g r e p o r t g e n e r a t i o n 139

C h a p t e r

5
Chapter 5Understanding report

generation
This chapter contains the following topics:

■ Understanding the report generation process

■ Creating content

■ Understanding page creation

140 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Understanding the report generation process
The Factory manages the processes that run an executable file and display or
print a file. Factory processes result in a report object instance (.roi) file, which
consists of persistent objects. The report developer can print the output or view
the file locally using e.Report Designer Professional’s View perspective. If you
publish the executable file to iServer, the report user views the output in DHTML
using a web browser and a tool such as Actuate Information Console. Figure 5-1
shows the Factory operations that occur during the build process and the file
types that result from those processes.

Figure 5-1 Factory processes result in on-screen display or printed output

The process that results in a report instance begins when a data stream delivers a
data row to a section. The section creates its contents, which can be another
section or a frame and controls. The section then passes the frame to the page list,
which instantiates pages and flows as necessary. Figure 5-2 gives an overview of
this process.

Factory
processes

Design Generate
code

ROI

ROXBASROD

Browser

View
perspective

Actuate
Information

Console

Compile

Running the executable file on
iServer produces an ROI available
to Information Console users, who
view the output in DHTML over the
web

Printer
ROV

 iServer

DHTML
output

ROI

C h a p t e r 5 , U n d e r s t a n d i n g r e p o r t g e n e r a t i o n 141

Figure 5-2 Overview of the process of creating an ROI

The following sections describe how the Factory generates a report and the class
protocols that determine how objects in a report fit together.

Generating a report
When you build and run a report, Actuate software executes an internal method
called Factory(), which is specific to your file. Factory() performs the following
tasks:

■ Creates a report object instance (.roi) file. The Factory uses either a default
name with the same root name as the report object design (.rod) file or the
name the user specifies when Requester prompts for the output file name.

■ Creates a component relationship map. To show how components interact, the
component relationship map stores component reference information derived
from the report design’s structure.

■ Instantiates the report as a subclass of AcReport.

■ Calls the file’s Build() method to start the report-generation process.

■ Closes the ROI.

Adding startup and cleanup code
You can add code that runs before the Factory initiates the report-generation task
and after it generates the report. You do so by overriding the report’s Start() and
Finish() methods. Table 5-1 describes the use of the Start() and Finish() methods.

4. Creates a
page as
needed

Frame
and

control

Section Page list

Page
and
flow

1. Delivers a
data row

ROI

3. Passes
a frame

2. Creates
contents

Input Source

Data

Data
stream

142 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Starting the build process
One of the Factory’s first tasks is to instantiate the top-level report object. The
report object, a subclass of AcReport, is the object that contains all other
components of a report. AcReport establishes the report’s content and page
structures.

The content structure consists of objects that contain data. The page structure
consists of objects that determine how to display report content. Figure 5-3 shows
examples of the two structures.

Figure 5-3 Overview of content structure and page structure

Table 5-1 Using the Start() and Finish() methods

Method Called ... Example of use

Start() After the Factory
instantiates the report,
before report generation
begins

■ Initialize a global variable.
■ Verify or adjust parameter values

a user entered.
■ Open a log file to track the

objects or the number of pages
the report creates.

If you override Start(), you must
call Super::Start() first.

Finish() After the report
generates, before the
ROI closes

■ Send a completion notice to the
user.

■ Write statistics to a log file.
If you override Finish(), you must
call Super::Finish() after your code.

Report

Report section Page list

Group section Group section Page

Content structure Page structure

Page

Frame FlowFrame Frame Frame

Frame

Frame

Flow Flow Flow

Frame

Frame

Frame

Frame

Frame

Frame

C h a p t e r 5 , U n d e r s t a n d i n g r e p o r t g e n e r a t i o n 143

After instantiating the report class, the Factory calls the report’s Build() method,
which performs the following tasks:

■ Calls NewPageList() to instantiate the page list the report design specifies.

■ Calls NewContent() to instantiate the top-level component the report design
specifies. In a typical design, the top-level component is a report.

■ Calls the top-level content’s Build() method to build report content.

Creating content
All report components that contain content, such as a section, a frame, or a
control, follow a protocol that determines how to build the content. The protocol
makes it possible to connect report components into a variety of configurations.
For example, the top-level Content component can be a report section, a
sequential section, or a frame. You can nest a report within a report, a section
within a report, a section within a section, a frame within a frame, and so on. The
configuration determines the order in which to create the components.

Understanding how the core protocol creates content
AcReportComponent is the abstract base class that defines the protocol for
creating report components and putting them together to form a report. Table 5-2
describes the methods of AcReportComponent that form the core content-
creation protocol for all persistent content objects.

Table 5-2 Methods that form the core content-creation protocol

Method Description

New() Initializes the object.

Start() Prepares the object for build operations. For example, a
report section’s Start() method instantiates the
connection and the data stream. The frame’s Start()
method instantiates the controls the frame contains.

Build() or
BuildFromRow()

Builds the object’s contents. For example, a report
section’s Build() method reads data rows from the data
stream, instantiates the contents, and passes the data
rows to them. The frame’s BuildFromRow() method
passes the data rows to the controls it contains.

Finish() Prepares the object to write to the report object instance
(.roi) file. For example, the report section’s Finish()
method closes the data stream and connection.

144 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Understanding how a component reference creates
content
A component reference defines the relationship among components in the
structure of the report design. When a component uses or contains another
component, the first component refers to the other component. For example, the
report object creates and refers to the report section contained immediately
within it. The references that develop between a container and its contents
determine the hierarchy of objects in the report structure. The hierarchy
determines which processes occur and the order in which those processes occur.
The components in a report follow a predefined set of component reference rules
that you cannot change.

The Slots property group of a component shows the references for the
component. For example, Figure 5-4 shows the Slots property group for a report
section.

Figure 5-4 Slots property group

Every report section has all of these references available, even if the slots contain
no components.

It is possible for a container to have more than one component reference of the
same type. For example, a parallel or sequential section can have multiple
Content slots, and a frame can contain multiple components, all bearing the same
type of component reference. When there are multiple component references, you
can control the order in which the component references occur by using the up
and down arrows in the Report Structure toolbar. If the components you want to
move are references to library components, you must change the order in the
library. Figure 5-5 shows how the component reference relationships determine
how the Factory builds report contents.

Each component reference that a component supports has a corresponding
method. This method has a New prefix followed by the name of the reference. For
example, AcReportSection’s connection component reference has a
corresponding NewConnection() method and its data stream component
reference has a corresponding NewDataStream() method.

C h a p t e r 5 , U n d e r s t a n d i n g r e p o r t g e n e r a t i o n 145

Figure 5-5 Overview of how report structure drives report generation

A container object uses the New<component_reference> methods to instantiate
its content. To conditionally instantiate a component, you can override the
New<component_reference> method. For example, if a report uses a different
connection depending on the data stream it uses, you can override
NewConnection() to write the conditional logic. To determine where to place
code to add custom processing, you must understand the key methods involved
in content creation and how each component implements the core
content-creation protocol. The following sections provide this information.

Understanding how a report section creates content
The report section retrieves data rows from the data stream and passes the rows
to its contents. The report section, a subclass of AcReportSection, is typically the
top-level content in a report design. Table 5-3 describes how the report section
implements the core content-creation protocol.

Table 5-3 Core methods that a report section uses to create
content

Method Task

Start() Instantiates the connection.

Instantiates the data stream.

Passes the connection to the data stream.

Sets the sort key.

Build() Opens the data stream.
Creates the Before and After frames.
Reads a row from the data stream.

(continues)

Structure Implementation

Report section:

New()

Start()

Build()

Finish() Controls:

New()

Start()

Build()

Finish()

Frame:

New()

Start()

Build()

Finish()

Report:

Build()

146 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Understanding how a group section creates content
A group section organizes data by grouping rows on a key field, such as grouping
customers by sales representative. A group section is typically the content of a
report section. A group section contains other group sections or frames.

Each group section uses a unique sort key to define a group of rows. Set the group
section’s sort key, typically the name of a table column, using the Key property.
Figure 5-6 shows typical sort keys for a report’s group sections.

Figure 5-6 Group sections and sort keys

The group section tests the key of each data row it receives. Rows using the same
key value belong in the same group section. A change in a key’s value between
rows indicates the end of one group section and the start of another. Table 5-4
describes how the group section implements the core content-creation protocol.

Understanding how a frame creates content
A frame typically contains controls that display data from a data row. A frame
gets data rows from its container object, typically a section, and passes those rows

Build() (continued) Processes the row:
■ If content already exists, the report verifies that the

content needs the row. The report passes the row to
the content if the content needs it.

■ If content does not exist or if an existing component
rejects a row, the report instantiates new content and
passes the row to the new content.

Reads and processes rows until it retrieves all data rows.

Finish() Closes the data stream and connection.

Table 5-3 Core methods that a report section uses to create
content (continued)

Method Task

Nested group sections in
the structure

Sort key value in
the Key property

[offices.officeID]

[salesreps.repID]

[customers.customName]

[orders.orderID]

C h a p t e r 5 , U n d e r s t a n d i n g r e p o r t g e n e r a t i o n 147

to the controls. Table 5-5 describes how a frame implements the core content-
creation protocol.

Understanding how a control creates content
A control typically displays a value from the data row it receives from its
container, a frame. A control does not contain other components. Table 5-6
describes how a control implements the core content-creation protocol.

Table 5-4 Core methods that a group section uses to create content

Method Task

Start() Initializes the group section.

BuildFromRow() Accepts a data row from its container object.
Processes the row:
■ If the row is the first one, the group section

determines and stores the value of the sort key. The
group section also creates the Before and After
frames, passes the row to its content, and returns
ContinueBuilding. This return value indicates to the
container object that the group section needs the next
data row.

■ If the row is not the first one, the section verifies that
the row’s key is the same as the stored key value. If
the keys match, the group section passes the row to
its content. If the keys do not match,
BuildFromRow() returns Rejected Row, indicating
the end of a group section.

Repeats these steps until it retrieves all data rows,
returning ContinueBuilding.

Finish() Finishes the group section.

Table 5-5 Core methods that a frame uses to create content

Method Task

Start() Instantiates and starts the frame’s contents in the order
in which they appear in the structure. The frame’s
contents can be other frames or controls.

BuildFromRow() Passes data rows to the frame’s contents.

Finish() Calls each control’s Finish() method.

148 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Understanding page creation
The content-creation process drives the page-creation process. The two processes
occur concurrently. As each frame completes, the section that contains the frame
passes the frame to the page list. As each page begins or ends, the page list
notifies the section and the section generates a page header or footer.

Figure 5-7 shows how the content-creation and page-creation processes work
together.

Figure 5-7 Interaction of the content-creation and page-creation processes

Figure 5-8 shows the order in which headers and footers go into a report.

Determining the page on which a frame appears
A section passes a frame to the page list by calling the page list’s AddFrame()
method. AddFrame() determines the page on which to place the frame by
checking the following conditions:

Table 5-6 Core methods that a control uses to create content

Method Task

Start() Typically, a control needs only the default logic.

BuildFromRow() Sets the control’s value using data from a data row:
■ If a control, such as a line or label control, does not

need the data row, BuildFromRow() returns
FinishedBuilding.

■ If a control needs only one row, BuildFromRow()
sets the value of the control and returns
FinishedBuilding.

■ If a control is an aggregate control, it uses all data
rows. BuildFromRow() returns ContinueBuilding.

Finish() For an aggregate control, performs final calculations. For
other controls, Finish() does nothing.

Section

Frame and
control

Page list

Page and
flow

Creates
contents

Passes
a frame

Creates a page
as needed

Sends
an event

C h a p t e r 5 , U n d e r s t a n d i n g r e p o r t g e n e r a t i o n 149

■ If the frame’s PageBreakBefore property is True, AddFrame() finishes the
current page, if one exists, then starts a new page.

■ If the frame’s PageBreakBefore property is False, AddFrame() adds the frame
to the page if it fits. If it does not fit, the page list starts a new page.

■ If the frame does not fit on a new page, AddFrame() clips the frame to the
available space.

■ After placing the frame on a page, AddFrame() checks the value of the
frame’s PageBreakAfter property. If PageBreakAfter is True, AddFrame()
finishes the current page. AddFrame() starts a new page when it gets the next
frame.

Figure 5-8 The order in which headers and footers are added to a page

About page list styles
There are three page list styles:

■ AcSimplePageList, in which each page uses the same design

■ AcLeftRightPageList, in which the right and left pages mirror each other

■ AcTitleBodyPageList, in which the title page uses a different design from other
pages

A section can work on any style because a page list follows a standard protocol.
The protocol, defined in AcPageList, consists of the AddFrame() method. Before
instantiating a new page, the page list checks whether a section or frame sets a
page style in its NewPage() method. If a frame or section sets a page style, the
page list uses that style. Otherwise, the page list uses its default page style.

Section2 page header

Page header for report

Section2 page footer

Section1 page header

1

2

3

3

2Section1 page footer

Page footer for report 1

150 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About page list events
A page list sends a notice to a section when any of the following events occurs:

■ StartFlow

■ StartPage

■ FinishFlow

■ FinishPage

These events determine whether the framework places a header at the start of a
new flow or page, or a footer at the end of a flow or page.

Part 2Actuate Foundation Class Reference

Part Two2

C h a p t e r 6 , A F C d a t a t y p e s 153

C h a p t e r

6
Chapter 6AFC data types

This chapter covers the topic “About the AFC data types.”

154 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

About the AFC data types
Actuate products use two categories of data types, those provided by Actuate
Basic, and those that are defined specifically for use with Actuate Foundation
Classes (AFC). This chapter discusses the AFC data types. For information about
Actuate Basic data types, see Programming with Actuate Basic. AFC data types
include aliased types, structures, and enums.

About AFC aliased types
AFC defines aliases for some Actuate Basic data types. These aliases are
recognized and handled specially by e.Report Designer Professional. For
example, AcColor is an alias of Actuate Basic’s Integer data type, but e.Report
Designer Professional presents an AcColor property as a drop-down list of colors
with a custom color picker. Sections that follow describe the purpose and
behavior of each AFC aliased type.

About AFC structures
A structure is a data type that contains multiple named values, called members.
The members of a structure can be Visual Basic data types, such as Integer or
Boolean, or AFC data types. For example, AcDrawingLineStyle is a structure that
defines the format for a line. Its members, Color, Pen, and Width, define the line
color, the pattern of the line, and the line width, respectively. Structures can be
nested. In other words, structure members can be structures. e.Report Designer
Professional displays a structure property as an expandable group of values.
Sections that follow list the members for each AFC structure.

About AFC enums
An enum is a data type whose value is one of a set of named values. e.Report
Designer Professional displays an enum property as drop-down list of values. For
example, the value of a TrafficLightColor enum might be Red, Yellow, or Green.
Sections that follow list the values for each enum defined in AFC.

AFC data types
The following sections describe all the AFC data types.

C h a p t e r 6 , A F C d a t a t y p e s 155

AcAutoSpl it

AcAutoSplit
AcAutoSplit is an enum that specifies how a component, such as a cross tab or
frame, splits into multiple flows. AcAutoSplit values are listed in Table 6-1.

AcBrowserClipping
AcBrowserClipping is an enum that specifies how to clip text in a browser
scripting control when it is viewed in a web browser. AcBrowserClipping values
are listed in Table 6-2.

AcChartAxisLabelPlacement
AcChartAxisLabelPlacement is an enum that specifies the placement of the labels
on a chart axis. AcChartAxisLabelPlacement values are listed in Table 6-3.

Table 6-1 AcAutoSplit values

Constant Description

DefaultSplitting If the component is a frame that contains dynamically
sized content, such as a crosstab or dynamic text
control, or it is a dynamically sized control, it may be
split to maximize use of space within a flow.

DoNotSplit The component must not be split.

SplitIfPossible The component splits to maximize use of space within
a flow.

SplitIfNecessary The component splits only if it cannot fit as or within
the first non-decoration frame in a flow.

Table 6-2 AcBrowserClipping values

Constant Description

AutoScrollbar Display scrollbars when necessary to support viewing
text that does not fit in the control.

ClipToControlSize Clip text to fit within the control.

NoClipping Allow text to overflow the bounds of the control.

Scrollbar Always display scrollbars.

156 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxisLetter

AcChartAxisLetter
AcChartAxisLetter is an enum that specifies the type of a chart axis.
AcChartAxisLetter values are listed in Table 6-4.

AcChartAxisPlacement
AcChartAxisPlacement is an enum that specifies the placement of a chart axis.
AcChartAxisPlacement values are listed in Table 6-5.

Table 6-3 AcChartAxisLabelPlacement values

Constant Description

ChartAxisLabel
PlacementNone

Does not display the axis labels.

ChartAxisLabel
PlacementNextToAxis

Places the axis label next to the axis.

ChartAxisLabel
PlacementLeftOr
Bottom

If the axis is vertical, places the axis labels at the left of
the chart. If the axis is horizontal, places the axis labels
at the bottom of the chart.

ChartAxisLabel
PlacementRightOrTop

If the axis is vertical, places the axis labels at the right
of the chart. If the axis is horizontal, places the axis
labels at the top of the chart.

Table 6-4 AcChartAxisLetter values

Constant Description

ChartAxisLetterX The axis is an x-axis.

ChartAxisLetterY The axis is a y-axis.

ChartAxisLetterZ The axis is a z-axis.

Table 6-5 AcChartAxisPlacement values

Constant Description

ChartAxisPlacement
Auto

Places the chart axis automatically. If the opposite axis
includes zero, the axis crosses it at zero. If all the
values on the opposite axis are positive, the axis
crosses it at the lowest value. If all the values on the
opposite axis are negative, the axis crosses it at the
highest value.

C h a p t e r 6 , A F C d a t a t y p e s 157

AcChartBarShape

AcChartBarShape
AcChartBarShape is an enum that specifies the cross-section of a three-
dimensional bar in a chart. AcChartBarShape values are listed in Table 6-6.

AcChartComparisonOperator
AcChartComparisonOperator is an enum that specifies the Boolean operator to
use to compare two values in a chart. Valid values are listed in Table 6-7.

ChartAxisPlacement
Custom

The chart axis crosses the opposite axis at a specified
value.

ChartAxisPlacement
LeftOrBottom

If the axis is vertical, places it at the left of the chart. If
the axis is horizontal, places it at the bottom of the
chart.

ChartAxisPlacement
RightOrTop

If the axis is vertical, places it at the right of the chart.
If the axis is horizontal, places it at the top of the chart.

Table 6-5 AcChartAxisPlacement values

Constant Description

Table 6-6 AcChartBarShape values

Constant Description

ChartBarShapeElliptical Cylinder

ChartBarShapeFlat Flat two-dimensional rectangle

ChartBarShapeHexagonal Hexagon

ChartBarShapeOctagonal Octagon

ChartBarShapeRectangular Rectangle

ChartBarShapeTriangular Triangle

Table 6-7 AcChartComparisonOperator values

Constant Description

ChartComparisonOperatorEQ =

ChartComparisonOperatorGE >=

ChartComparisonOperatorGT >

(continues)

158 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartDefaultMarkerSett ings

AcChartDefaultMarkerSettings
AcChartDefaultMarkerSettings is a structure that defines the default shape and
color for a chart marker. AcChartDefaultMarkerSettings members are listed in
Table 6-8.

AcChartLayerType
AcChartLayerType is an enum that specifies the type of a layer in a chart.
AcChartLayerType values are listed in Table 6-9.

AcChartLegendPlacement
AcChartLegendPlacement is an enum that specifies the placement of the legend
of a chart. AcChartLegendPlacement values are listed in Table 6-10.

ChartComparisonOperatorLE <=

ChartComparisonOperatorLT <

ChartComparisonOperatorNone No comparison is required.

Table 6-7 AcChartComparisonOperator values (continued)

Constant Description

Table 6-8 AcChartDefaultMarkerSettings members

Member name Type Description

Filled Boolean Indicates whether the default marker uses a
fill color

Shape AcChart
MarkerShape

Indicates the default shape of the marker

Table 6-9 AcChartLayerType values

Constant Description

ChartLayerTypeBase The layer is the base layer of a chart.

ChartLayerTypeOverlay The layer is the overlay layer of a chart.

ChartLayerTypeStudy The layer is one of the study layers of a
chart.

C h a p t e r 6 , A F C d a t a t y p e s 159

AcChartMarkerShape

AcChartMarkerShape
AcChartMarkerShape is an enum that specifies the shape of a point marker in a
chart. AcChartMarkerShape values are listed in Table 6-11.

Table 6-10 AcChartLegendPlacement values

Constant Description

ChartLegendPlacementBottom Displays the legend at the bottom of the
chart

ChartLegendPlacementBottom
Left

Displays the legend at the bottom left of the
chart

ChartLegendPlacementBottom
Right

Displays the legend at the bottom right of
the chart

ChartLegendPlacementLeft Displays the legend at the left of the chart

ChartLegendPlacementNone Does not display the legend

ChartLegendPlacementRight Displays the legend at the right of the chart

ChartLegendPlacementTop Displays the legend at the top of the chart

ChartLegendPlacementTopLeft Displays the legend at the top left of the
chart

ChartLegendPlacementTop
Right

Displays the legend at the top right of the
chart

Table 6-11 AcChartMarkerShape values

Constant Description

ChartMarkerShapeCircle Circle

ChartMarkerShapeClose Stock chart Close symbol: a small horizontal
dash offset to the right of the point

ChartMarkerShapeCross Diagonal cross

ChartMarkerShapeDiamond Diamond

ChartMarkerShapeHigh Stock chart High symbol: a wide horizontal
dash

ChartMarkerShapeLow Stock chart Low symbol: a wide horizontal
dash

ChartMarkerShapeNone No marker

(continues)

160 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartMissingPoints

AcChartMissingPoints
AcChartMissingPoints is an enum that specifies how to handle missing points in
a chart. AcChartMissingPoints values are listed in Table 6-12.

AcChartPieExplode
AcChartPieExplode is an enum that specifies how to explode sectors in a pie
chart. AcChartPieExplode values are listed in Table 6-13.

ChartMarkerShapeOpen Stock chart Open symbol: a small horizontal
dash offset to the left of the point

ChartMarkerShapePlus Plus sign

ChartMarkerShapeSquare Square

ChartMarkerShapeStar Star

ChartMarkerShapeTriangle
Down

Triangle pointing down

ChartMarkerShapeTriangleUp Triangle pointing up

Table 6-11 AcChartMarkerShape values (continued)

Constant Description

Table 6-12 AcChartMissingPoints values

Constant Description

ChartMissingPointsDoNotPlot Does not plot missing points. If the chart is a
line chart, the lines break each side of
missing points.

ChartMissingPointsInterpolate Plots missing points as points whose values
are linear interpolations of the points either
side of them. If the chart is a line chart, does
not display markers at the missing points,
but keeps the lines unbroken.

ChartMissingPointsPlotAsZero Plots missing points as points with zero
values.

Table 6-13 AcChartPieExplode values

Constant Description

ChartPieExplodeAllSlices Explodes all sectors

C h a p t e r 6 , A F C d a t a t y p e s 161

AcChartPointHighlight

AcChartPointHighlight
AcChartPointHighlight is an enum that specifies how to highlight a point in a
chart. AcChartPointHighlight values are listed in Table 6-14.

AcChartPointLabelPlacement
AcChartPointLabelPlacement is an enum that specifies where to place a point
label in a chart. AcChartPointLabelPlacement values are listed in Table 6-15.

ChartPieExplodeNone Does not explode sectors

ChartPieExplodeSpecificSlices Explodes only those sectors that are
explicitly flagged to be exploded

Table 6-13 AcChartPieExplode values

Constant Description

Table 6-14 AcChartPointHighlight values

Constant Description

ChartPointHighlightExplode The point is an exploded sector in a pie
chart.

ChartPointHighlightNone Does not highlight the point.

Table 6-15 AcChartPointLabelPlacement values

Constant Description

ChartPointLabelPlacement
Above

Displays the label above the point. This
placement is supported for line, scatter, and
stock charts.

ChartPointLabelPlacementAuto Places the label automatically to give a
reasonable appearance. This placement is
supported for all chart types.

ChartPointLabelPlacemen
Below

Displays the label below the point. This
placement is supported for line, scatter, and
stock charts.

ChartPointLabelPlacement
Center

For line, scatter, and stock charts, displays
the label centered on the point. For area, bar,
pie, and step charts, displays the label

(continues)

162 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointLabelSource

AcChartPointLabelSource
AcChartPointLabelSource is an enum that specifies how to calculate the value of
a point label in a chart. AcChartPointLabelSource values are listed in Table 6-16.

ChartPointLabelPlacement
Center (continued)

centered in the area, bar, pie sector, or step
representing the point. This placement is
supported for all chart types.

ChartPointLabelPlacement
InsideBase

Displays the label inside the base of the bar
representing the point (next to the x-axis).
This placement is supported for bar charts.

ChartPointLabelPlacement
InsideEnd

Displays the label inside the outer end of the
bar or pie sector representing the point. This
placement is supported for bar and pie
charts.

ChartPointLabelPlacementLeft Displays the label to the left of the point.
This placement is supported for line, scatter,
and stock charts.

ChartPointLabelPlacementNone Does not display a label. This placement is
supported for all chart types.

ChartPointLabelPlacement
OutsideEnd

Displays the label outside the outer end of
the bar or pie sector representing the point.
This placement is supported for bar and pie
charts.

ChartPointLabelPlacementRight Displays the label to the right of the point.
This placement is supported for line, scatter,
and stock charts.

Table 6-15 AcChartPointLabelPlacement values (continued)

Constant Description

Table 6-16 AcChartPointLabelSource values

Constant Description

ChartPointLabelSourceCategory The label value is the category label value for
the point’s category.
This setting is not supported for bubble and
scatter charts.

C h a p t e r 6 , A F C d a t a t y p e s 163

AcChartPointLabelSource

ChartPointLabelSourceCategory
AndPercentage

In a pie chart, the label value is the category
label value for the sector’s category,
followed by the sector’s value as a
percentage of the whole pie.
In other chart types, the label value is the
category label value for the point’s category,
followed by the point’s value as a percentage
of the point’s category.
This setting is supported only for pie and
stacked charts.

ChartPointLabelSourceCustom The label value is a custom point label value
stored in the data point object.

ChartPointLabelSource
Percentage

In a pie chart, the label value is the sector’s
value as a percentage of the whole pie.
In other types of chart, the label value is the
point’s y value as a percentage of the point’s
category.
This setting is supported only for pie and
stacked charts.

ChartPointLabelSourceSeries The label value is the series label value for
the point’s series.
This setting is not supported for pie charts.

ChartPointLabelSourceSeries
AndPercentage

The label value is the series label value for
the point’s series, followed by the point’s y
value as a percentage of the point’s category.
This setting is supported only for stacked
charts.

ChartPointLabelSourceXValue The label value is the point’s x value.
This setting is supported only for bubble and
scatter charts.

ChartPointLabelSourceYValue In a pie chart, the label value is the sector’s
value.
In other types of chart, the label value is the
point’s y value.

ChartPointLabelSourceYValue
AndPercentage

In a pie chart, the label value is the sector’s
value, followed by the sector’s value as a
percentage of the whole pie.

(continues)

Table 6-16 AcChartPointLabelSource values (continued)

Constant Description

164 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer iesPlacement

AcChartSeriesPlacement
AcChartSeriesPlacement is an enum that specifies how to place the points in
multiple series within a chart, relative to each other. AcChartSeriesPlacement
values are listed in Table 6-17.

AcChartStatus
AcChartStatus is an enum that specifies the stage a chart has reached in its life
cycle. AcChartStatus values are listed in Table 6-18.

ChartPointLabelSourceYValue
AndPercentage (continued)

In other types of chart, the label value is the
point’s y value, followed by the point’s y
value as a percentage of the point’s category.
This setting is supported only for pie and
stacked charts.

ChartPointLabelSourceZValue The label value is the point’s z value.
This setting is supported only for bubble
charts.

Table 6-16 AcChartPointLabelSource values (continued)

Constant Description

Table 6-17 AcChartSeriesPlacement values

Constant Description

ChartSeriesPlacementAs
Percentages

For each category, stacks the values for each
series on top of each other such that the total
height for all the series is always 100%. The
y-axis displays percentages, not absolute
values. This placement is supported for area,
bar, line, and step charts.

ChartSeriesPlacement
SideBySide

Places the values for each series side by side.
All chart types support this placement.

ChartSeriesPlacementStacked For each category, stacks the values for each
series on top of each other. This placement is
supported for area, bar, line, and step charts.

ChartSeriesPlacementOnZAxis Places the values for each series
front-to-back on the z-axis of a
three-dimensional chart. This placement is
supported for area, bar, and line charts.

C h a p t e r 6 , A F C d a t a t y p e s 165

AcChartTickCalculat ion

AcChartTickCalculation
AcChartTickCalculation is an enum that specifies how to calculate the spacing of
the tick marks and labels on a chart axis. AcChartTickCalculation values are listed
in Table 6-19.

AcChartTickPlacement
AcChartTickPlacement is an enum that specifies the placement of the tick marks
on a chart axis. AcChartTickPlacement values are listed in Table 6-20.

Table 6-18 AcChartStatus values

Constant Description

ChartStatusBuilding The chart is gathering and processing data
and formatting itself.

ChartStatusFinished

ChartStatusFinishedBuilding The chart is complete and cannot be changed
further.

ChartStatusUninitialized The chart is still being initialized. This status
lasts until all the layers within the chart have
been created and initialized.

Table 6-19 AcChartTickCalculation values

Constant Description

ChartTickCalculationAuto Calculates the spacing automatically, based
on the data in the chart and the axis settings

ChartTickCalculationExact
Interval

Specifies the spacing explicitly in the axis

ChartTickCalculationMinimum
Interval

Calculates the spacing automatically in the
same way as for the
ChartTickCalculationAuto setting, except
that the interval between ticks must be at
least a specified value

166 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartType

AcChartType
AcChartType is an enum that specifies the presentation of data on a chart layer.
AcChartType values are listed in Table 6-21.

Table 6-20 AcChartTickPlacement values

Constant Description

ChartTickPlacementAcross Ticks cross through the axis

ChartTickPlacementInside Displays ticks inside the axis

ChartTickPlacementNone Does not display ticks

ChartTickPlacementOutside Displays ticks outside the axis

Table 6-21 AcChartType values

Constant Description

ChartTypeArea Presents data as filled areas. The x-axis
shows categories, the y-axis shows values.

ChartTypeBar Presents data as bars. The x-axis shows
categories, the y-axis shows values.

ChartTypeBubble Presents data as individual points, drawn as
circles of varying sizes. Both the x-axis and
the y-axis show values. The circles’ sizes are
controlled by the points’ z values.

ChartTypeLine Presents data as lines. The x-axis shows
categories, the y-axis shows values.

ChartTypeNone Does not specify a presentation. This setting
causes the chart to throw a runtime error.

ChartTypePie Presents data as a pie. Each sector in the pie
represents a category. The layer has no axes.

ChartTypeScatter Presents data as individual points. Both the
x-axis and the y-axis show values.

ChartTypeStep Presents data as filled steps. The x-axis
shows categories, the y-axis shows values.

ChartTypeStock Presents data as a stock chart. The x-axis
shows a time series, the y-axis shows values.

C h a p t e r 6 , A F C d a t a t y p e s 167

AcColor

AcColor
AcColor is an Integer that contains a color expressed as a standard Windows RGB
value. AFC supports the standard Windows 16 million colors. The AFC
framework defines the constants for common Windows colors. AcColor constants
are listed in Table 6-22.

Table 6-22 AcColor constants

Constant RGB Value

Black RGB(0, 0, 0)

Blue RGB(0, 0, 255)

BlueGray RGB(89, 128, 179)

BrickRed RGB(234, 70, 0)

Brown RGB(204, 102, 26)

Coral RGB(255, 115, 51)

Cream RGB(255, 255, 166)

Crimson RGB(198, 26, 26)

Cyan RGB(0, 255, 255)

DarkGray RGB(64, 64, 64)

DarkKhaki RGB(189, 183, 107)

DarkStraw RGB(204, 168, 0)

DeepPink RGB(255, 26, 128)

Forest RGB(0, 127, 0)

Gold RGB(252, 217, 13)

GrassGreen RGB(51, 191, 51)

Gray RGB(128, 128, 128)

Green RGB(0, 255, 0)

GreenYellow RGB(128, 230, 26)

Khaki RGB(240, 230, 140)

Lavender RGB(230, 217, 255)

LightBlue RGB(179, 204, 254)

LightBlueGray RGB(179, 191, 217)

LightBrown RGB(242, 166, 115)

LightCyan RGB(166, 255, 255)

(continues)

168 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcColor

LightGray RGB(192, 192, 192)

LightGreen RGB(166, 255, 153)

LightMagenta RGB(242, 128, 242)

LightVioletRed RGB(230, 153, 179)

LightYellowGreen RGB(217, 255, 128)

Magenta RGB(255, 0, 255)

Maroon RGB(127, 0, 0)

MintGreen RGB(0, 230, 102)

Navy RGB(0, 0, 127)

Olive RGB(127, 127, 0)

Orange RGB(255, 166, 0)

PaleBlue RGB(217, 230, 255)

PaleBlueGray RGB(217, 230, 242)

PaleCyan RGB(217, 255, 255)

PaleGray RGB(230, 230, 230)

PaleGreen RGB(217, 255, 191)

PaleMagenta RGB(255, 217, 255)

PalePink RGB(255, 217, 217)

PaleStraw RGB(255, 242, 166)

PaleYellowGreen RGB(230, 255, 166)

Pink RGB(255, 179, 179)

Purple RGB(127, 0, 127)

Red RGB(255, 0, 0)

SeaGreen RGB(0, 191, 191)

SkyBlue RGB(102, 166, 255)

SmokeGray RGB(242, 242, 242)

Straw RGB(255, 230, 115)

Taupe RGB(204, 179, 140)

Teal RGB(0, 127, 127)

Transparent N/A

Turquoise RGB(89, 242, 217)

Table 6-22 AcColor constants (continued)

Constant RGB Value

C h a p t e r 6 , A F C d a t a t y p e s 169

AcControlValueType

AcControlValueType
AcControlValueType is an enum that determines whether a control processes a
single data row or multiple data rows. If you override methods within a control to
perform custom aggregation, set this property to SummaryControl to ensure that
the control processes all the data rows. If you set this property to PerRowControl,
and the control has value expression properties that contain aggregate functions,
those aggregate functions will not be evaluated correctly. AcControlValueType
values are listed in Table 6-23.

AcCrosstabBorderStyle
AcCrosstabBorderStyle is a structure that describes the border of a cross tab.
AcCrosstabBorderStyle members are listed in Table 6-24.

Violet RGB(140, 51, 217)

VioletRed RGB(204, 51, 102)

White RGB(255, 255, 255)

Yellow RGB(255, 255, 0)

YellowGreen RGB(191, 230, 26)

Table 6-22 AcColor constants (continued)

Constant RGB Value

Table 6-23 AcControlValueType values

Constant Description

AutoValueControl If any value expression property of the control
contains an aggregate function, the control will
process multiple data rows. If no value expression
property of the control contains an aggregate
function, the control will process only one data row.

PerRowControl The control will process only one data row.

SummaryControl The control will process multiple data rows.

Table 6-24 AcCrosstabBorderStyle members

Member name Type Description

Color AcColor The color of the border

Thickness AcTwips The thickness of the border

170 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCrosstabTotalColumnPlacement

AcCrosstabTotalColumnPlacement
AcCrosstabTotalColumnPlacement is an enum that specifies how a summary
column appears, relative to its subgroups. AcCrosstabTotalColumnPlacement
values are listed in Table 6-25.

AcCrosstabTotalRowPlacement
AcCrosstabTotalRowPlacement is an enum that specifies how a summary row
appears, relative to its subgroups AcCrosstabTotalRowPlacement values are
listed in Table 6-26.

AcCrosstabValueLayout
AcCrosstabValueLayout is an enum. In cross-tab cells that contain more than one
value, AcCrosstabValueLayout determines whether the values appear side by
side or one above the other. AcCrosstabValueLayout values are listed in
Table 6-27.

Table 6-25 AcCrosstabTotalColumnPlacement values

Constant Description

NoTotalColumn Does not display the summary column in the cross tab

TotalColumnLeft Displays the summary column to the left of its
subgroups in the cross tab

TotalColumnRight Displays the summary column to the right of its
subgroups in the cross tab

Table 6-26 AcCrosstabTotalRowPlacement values

Constant Description

NoTotalRow Does not display the summary row

TotalRowAbove Displays the summary row above its subgroups

TotalRowBelow Displays the summary row below its subgroups

Table 6-27 AcCrosstabValueLayout values

Constant Description

ValuesHorizontal In a cross-tab cell that contains more than one value,
displays values side by side

C h a p t e r 6 , A F C d a t a t y p e s 171

AcDataGroupingMode

AcDataGroupingMode
AcDataGroupingMode is an enum that specifies how to group data from multiple
data rows in a chart or cross tab. Valid values are listed in Table 6-28.

AcDataGroupingUnit
AcDataGroupingUnit is an enum that specifies a range unit to use to group data
from multiple data rows in a chart or cross tab. AcDataGroupingUnit values are
listed in Table 6-29.

ValuesVertical In a cross-tab cell that contains more than one value,
displays values in a vertical stack

Table 6-27 AcCrosstabValueLayout values

Constant Description

Table 6-28 AcDataGroupingMode values

Constant Description

DataGroupingMode
Interval

Groups data into a series of ranges of equal sizes based
on a key value in each data row. Values for all data
rows whose key values fall into a single range are
aggregated. For example, the sum of daily stock trade
volumes grouped by calendar month.

DataGroupingMode
None

Does not group data. No aggregation is performed.

DataGroupingMode
Ranges

Groups data into a series of explicitly specified ranges
that might be of different sizes.

DataGroupingMode
UniqueKey

Groups data based on a key value in each data row.
Values for all data rows that have the same key value
are aggregated. For example, a count of customers
grouped by credit rank.

Table 6-29 AcDataGroupingUnit values

Constant Description

DataGroupingUnit
Day

The key values used to group data are date and time
values that are truncated to days.

(continues)

172 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataType

AcDataType
AcDataType is an enum that specifies the format of a cross-tab row, column, or
cell value. AcDataType values are listed in Table 6-30.

DataGroupingUnit
Half

The key values used to group data are date and time
values that are truncated to halves. For example, data
rows whose key values are 2003-01-01 and 2003-06-30
are grouped together.

DataGroupingUnit
Hour

The key values used to group data are date and time
values that are truncated to hours.

DataGroupingUnit
Integer

The key values used to group data are numbers that
are truncated to integers. For example, data rows
whose key values are 1.0 and 1.9 are grouped together.

DataGroupingUnit
Minute

The key values used to group data are date and time
values that are truncated to minutes. For example, data
rows whose key values are 07:55:00 and 07:55:59 are
grouped together.

DataGroupingUnit
Month

The key values used to group data are date and time
values that are truncated to months.

DataGroupingUnit
None

Does not group data. No aggregation is performed.

DataGroupingUnit
Quarter

The key values used to group data are date and time
values that are truncated to quarters. For example, data
rows whose key values are 2003-01-01 and 2003-03-31
are grouped together.

DataGroupingUnit
Second

The key values used to group data are date and time
values that are truncated to seconds.

DataGroupingUnit
Week

The key values used to group data are date and time
values that are truncated to weeks. By default, a week
is Sunday through Saturday but this setting can be
configured elsewhere.

DataGroupingUnit
Year

The key values used to group data are date and time
values that are truncated to years.

Table 6-29 AcDataGroupingUnit values (continued)

Constant Description

C h a p t e r 6 , A F C d a t a t y p e s 173

AcDay

AcDay
AcDay is an enum that specifies a day of the week. AcDay values are listed in
Table 6-31.

AcDrawingBorderStyle
AcDrawingBorderStyle is a structure that specifies the style of the border around
an element of a drawing. AcDrawingBorderStyle members are listed in
Table 6-32.

Table 6-30 AcDataType values

Constant Description

DataTypeAutomatic The value is set automatically.

DataTypeText The value is text.

DataTypeNumber The value is a number.

DataTypeDateTime The value is in the date and time format.

Table 6-31 AcDay values

Constant Description

Sunday Sunday

Monday Monday

Tuesday Tuesday

Wednesday Wednesday

Thursday Thursday

Friday Friday

Saturday Saturday

Table 6-32 AcDrawingBorderStyle members

Member name Type Description

Color AcColor The color of the border

Shadow Boolean True if the border is drawn with a shadow effect

Pen AcDrawing
LinePen

The pattern of the border

Width AcTwips The width of the border, in twips

174 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingFi l lPattern

See also AcColor
AcDrawingLinePen
AcTwips

AcDrawingFillPattern
AcDrawingFillPattern is an enum that specifies the pattern to use for a filled area
in a drawing. AcDrawingFillPattern values for gradient patterns are listed in
Table 6-33.

Table 6-33 AcDrawingFillPattern gradient values

Constant Description

DrawingFillGradientCenter Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the center of the filled area.

DrawingFillGradientCenter
Diagonal

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the center of the filled area on the
diagonal.

DrawingFillGradientCorner
BottomLeft

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the lower left corner of the filled area.

DrawingFillGradientCorner
BottomRight

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the lower right corner of the filled area.

DrawingFillGradientCorner
TopLeft

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the upper left corner of the filled area.

DrawingFillGradientCorner
TopRight

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The color
gradient is at the upper right corner of the filled area.

DrawingFillGradientDiagonal
Down

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. Color1 starts at
the upper left of the filled area and transitions to Color2
at the lower right on the diagonal.

DrawingFillGradientDiagonal
DownMiddle

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. Color1 starts in
the middle of the filled area and transitions to Color2 on
the diagonal.

C h a p t e r 6 , A F C d a t a t y p e s 175

AcDrawingFi l lPattern

AcDrawingFillPattern values for solid colors are listed in Table 6-34.

DrawingFillGradientDiagonalUp Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. Color1 starts in
the lower left of the filled area and transitions to Color2
at the upper right on the diagonal.

DrawingFillGradientDiagonalUp
Middle

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. Color1 starts in
the lower left of the filled area and transitions to Color2
in the upper right on the diagonal.

DrawingFillGradientHorizontal Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed horizontally across the filled area.

DrawingFillGradientHorizontal
Middle

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed horizontally across the middle of the filled
area.

DrawingFillGradientVertical Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed vertically across the filled area.

DrawingFillGradientVertical
Middle

Displays a gradient between the Color1 and Color2
values specified in AcDrawingFillStyle. The colors are
displayed vertically across the middle of the filled area.

Table 6-33 AcDrawingFillPattern gradient values

Constant Description

Table 6-34 AcDrawingFillPattern solid color values

Constant Description

DrawingFillPatternNone The area is transparent.

DrawingFillPattern05Percent A finely shaded pattern in which the foreground color
makes up 5% of the area.

DrawingFillPattern10Percent A finely shaded pattern in which the foreground color
makes up 10% of the area.

DrawingFillPattern20Percent A finely shaded pattern in which the foreground color
makes up 20% of the area.

DrawingFillPattern25Percent A finely shaded pattern in which the foreground color
makes up 25% of the area.

DrawingFillPattern30Percent A finely shaded pattern in which the foreground color
makes up 30% of the area.

(continues)

176 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingFi l lPattern

AcDrawingFillPattern values for line patterns are listed in Table 6-35.

DrawingFillPattern40Percent A finely shaded pattern in which the foreground color
makes up 40% of the area.

DrawingFillPattern50Percent A finely shaded pattern in which the foreground color
makes up 50% of the area.

DrawingFillPattern60Percent A finely shaded pattern in which the foreground color
makes up 60% of the area.

DrawingFillPattern70Percent A finely shaded pattern in which the foreground color
makes up 70% of the area.

DrawingFillPattern75Percent A finely shaded pattern in which the foreground color
makes up 75% of the area.

DrawingFillPattern80Percent A finely shaded pattern in which the foreground color
makes up 80% of the area.

DrawingFillPattern90Percent A finely shaded pattern in which the foreground color
makes up 90% of the area.

DrawingFillPatternSolid The area is filled with the background color.

Table 6-34 AcDrawingFillPattern solid color values (continued)

Constant Description

Table 6-35 AcDrawingFillPattern line values

Constant Description

DrawingFillPatternDiagonalDown
Dark

Heavy solid diagonal lines that run from top left to
bottom right

DrawingFillPatternDiagonalDown
Dash

Light dashed diagonal lines that run from top left to
bottom right

DrawingFillPatternDiagonalDown
Light

Light solid diagonal lines that run from top left to
bottom right

DrawingFillPatternDiagonalDown
Wide

Wide solid diagonal lines that run from top left to
bottom right

DrawingFillPatternDiagonalUp
Dark

Heavy solid diagonal lines that run from bottom left to
top right

DrawingFillPatternDiagonalUp
Dash

Light dashed diagonal lines that run from bottom left to
top right

DrawingFillPatternDiagonalUp
Light

Light solid diagonal lines that run from bottom left to
top right

DrawingFillPatternDiagonalUp
Wide

Wide solid diagonal lines that run from bottom left to
top right

C h a p t e r 6 , A F C d a t a t y p e s 177

AcDrawingFi l lPattern

AcDrawingFillPattern values for decorative patterns are listed in Table 6-36.

DrawingFillPatternHorizontal
Dark

Heavy solid horizontal lines

DrawingFillPatternHorizontal
Dash

Light dashed horizontal lines

DrawingFillPatternHorizontal
Light

Light solid horizontal lines

DrawingFillPatternHorizontal
Narrow

Narrow solid horizontal lines

DrawingFillPatternVerticalDark Heavy solid vertical lines

DrawingFillPatternVerticalDash Light dashed vertical lines

DrawingFillPatternVerticalLight Light solid vertical lines

DrawingFillPatternVertical
Narrow

Narrow solid vertical lines

Table 6-35 AcDrawingFillPattern line values

Constant Description

Table 6-36 AcDrawingFillPattern decorative values

Constant Description

DrawingFillPatternBrick
Horizontal

A pattern that resembles a brick wall

DrawingFillPatternBrickDiagonal
Up

A pattern that resembles a brick wall rotated 45 degrees
counterclockwise

DrawingFillPatternCheckerBoard
Large

A checkerboard with large squares

DrawingFillPatternCheckerBoard
Small

A checkerboard with small squares

DrawingFillPatternConfettiLarge A pattern that resembles a shower of large confetti

DrawingFillPatternConfettiSmall A pattern that resembles a shower of small confetti

DrawingFillPatternDiamond
Dotted

A coarse diagonal grid of dotted lines

DrawingFillPatternDiamond A coarse diagonal grid of solid lines

DrawingFillPatternDiamondSolid A checkerboard with large squares rotated 45 degrees

DrawingFillPatternDivot Alternating rows of < and > symbols

DrawingFillPatternGridDotted A coarse grid of dotted lines

(continues)

178 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingFi l lStyle

AcDrawingFillStyle
AcDrawingFillStyle is a structure that specifies the style of a filled area in a
drawing. AcDrawingFillStyle members are listed in Table 6-37.

See also AcColor
AcDrawingFillPattern

DrawingFillPatternGridLarge A coarse grid of solid lines

DrawingFillPatternGridSmall A fine grid of solid lines

DrawingFillPatternPlaid A coarse checkered pattern of shed horizontal bands
and solid vertical bands

DrawingFillPatternShingle A pattern that resembles a shingled roof

DrawingFillPatternSphere A pattern of spheres with a three-dimensional
appearance

DrawingFillPatternTrellis A pattern that resembles a trellis

DrawingFillPatternWave A pattern of light dashed horizontal wavy lines

DrawingFillPatternWeave A diagonal pattern of interwoven dotted lines

DrawingFillPatternZigzag A pattern of light solid horizontal wavy lines

Table 6-36 AcDrawingFillPattern decorative values (continued)

Constant Description

Table 6-37 AcDrawingFillStyle members

Member name Type Description

Color1 AcColor Ignores this color if the value of the Pattern member is
DrawingFillPatternNone. Fills the area with this color if the
value of the Pattern member is DrawingFillPatternSolid.
This color is the background color of the pattern if the value
of the Pattern member is a pattern. This color is the start
color of the gradient if the value of the Pattern member is a
gradient.

Color2 AcColor Ignores this color if the value of the Pattern member is
DrawingFillPatternNone or DrawingFillPatternSolid. This
color is the foreground color of the pattern if the value of the
Pattern member is a pattern. This color is the finish color of
the gradient if the value of the Pattern member is a gradient.

Pattern AcDrawing
FillPattern

The pattern used to fill the area.

C h a p t e r 6 , A F C d a t a t y p e s 179

AcDrawingLinePen

AcDrawingLinePen
AcDrawingLinePen is an enum that specifies the appearance of a line in a
drawing. AcDrawingLinePen values are listed in Table 6-38.

AcDrawingLineStyle
AcDrawingLineStyle is a structure that specifies the style of a line in a drawing.
AcDrawingLineStyle members are listed in Table 6-39.

See also AcColor
AcDrawingLinePen
AcTwips

Table 6-38 AcDrawingLinePen values

Constant Description

DrawingLinePenDash A line in the following format:
----- ----- ----- -----

DrawingLinePenDashDot A line in the following format:
----- - ----- - ----- -

DrawingLinePenDashDotDot A line in the following format:
----- -- -- ----- -- --

DrawingLinePenDot A line in the following format:
-- -- -- -- -- -- -- --

DrawingLinePenNone No line

DrawingLinePenSolid A solid line

Table 6-39 AcDrawingLineStyle members

Member name Type Description

Color AcColor The color of the line

Pen AcDrawingLinePen The pattern of the line

Width AcTwips The width of the line in twips

180 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingTextOrientat ion

AcDrawingTextOrientation
AcDrawingTextOrientation is an enum that specifies the orientation of some text
in a drawing. AcDrawingTextOrientation values are listed in Table 6-40.

AcDrawingTextStyle
AcDrawingTextStyle is a structure that specifies the style of some text in a
drawing. AcDrawingTextStyle members are listed in Table 6-41.

See also AcDrawingBorderStyle
AcDrawingTextOrientation
AcFont

Table 6-40 AcDrawingTextOrientation values

Constant Description

DrawingTextOrientationAuto Determines the angle of the text automatically. For
example, the axis labels on a chart rotate automatically if
there is not enough space to fit them horizontally.

DrawingTextOrientationCustom Draws the text at a specified angle.

DrawingTextOrientation
Horizontal

Draws the text horizontally.

DrawingTextOrientationVertical Draws the text vertically with the characters stacked on
top of another.

Table 6-41 AcDrawingTextStyle members

Member name Type Description

Background
Color

AcColor The background color for the text.

Border AcDrawing
BorderStyle

The style of the border around the text.

CustomAngle AcAngle If the value of the Orientation member is
DrawingTextOrientationCustom, the angle of the text
in degrees counterclockwise from horizontal.
Otherwise, the CustomAngle value is ignored. Text
angles are rounded to integer values internally.

Font AcFont The font of the text.

Orientation AcDrawingText
Orientation

The orientation of the text.

C h a p t e r 6 , A F C d a t a t y p e s 181

AcExcelBorder

AcExcelBorder
AcExcelBorder is a structure that describes the border. AcExcelBorder members
are listed in Table 6-42.

AcExcelBorderType
AcExcelBorderType specifies the line style of the border. AcExcelBorderType
values are listed in Table 6-43.

Table 6-42 AcExcelBorder members

Member name Type Description

Style AcExelBorderType The style of the border

Color AcColor The color of the border

Table 6-43 AcExcelBorderType values

Constant Description

ExcelBorderDashDot A dash-dot line

ExcelBorderDashDotDot A dash-dot-dot line

ExcelBorderDashed A dashed line

ExcelBorderDotted A dotted line

ExcelBorderDouble A double line

ExcelBorderHair A hairline

ExcelBorderMedium A medium line

ExcelBorderMediumDashDot A dash-dot line of medium thickness

ExcelBorderMediumDashDotDot A dash-dot-dot line of medium thickness

ExcelBorderMediumDashed A dashed-line of medium thickness

ExcelBorderNone No border

ExcelBorderSlantedDashDot A slanted dash-dot line

ExcelBorderThick A thick line

ExcelBorderThin A thin line

182 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelHorizontalAl ignment

AcExcelHorizontalAlignment
AcExcelHorizontalAlignment specifies the horizontal alignment of data in cells.
AcExcelHorizontalAlignment values are listed in Table 6-44.

AcExcelVerticalAlignment
AcExcelVerticalAlignment specifies the vertical alignment of data in cells.
AcExcelVerticalAlignment values are listed in Table 6-45.

AcFlowPlacement
AcFlowPlacement is an enum that specifies how a frame appears within a flow
that is wider than the frame. AcFlowPlacement values are listed in Table 6-46.

Table 6-44 AcExcelHorizontalAlignment values

Constant Description

ExcelHAlignCenter Centers data in the cell

ExcelHAlignGeneral The default alignment:
■ Aligns text at the left edge of the cell
■ Aligns numbers, dates, and times at the

right edge of the cell
■ Centers logical and error values

ExcelHAlignJustify Adjusts the spacing between words so that
all lines are as wide as the cell

ExcelHAlignLeft Aligns data at the left edge of the cell

ExcelHAlignRight Aligns data at the right edge of the cell

Table 6-45 AcExcelVerticalAlignment values

Constant Description

ExcelVAlignBottom Aligns data at the bottom of the cell

ExcelVAlignCenter Aligns data at the center of the cell

ExcelVAlignJustify Adjusts the spacing between lines so that
the spacing is even and the lines fill the cell

ExcelVAlignTop Aligns data at the top of the cell

C h a p t e r 6 , A F C d a t a t y p e s 183

AcFont

AcFont
AcFont is a structure that describes a font in a device-independent way. AcFont
members are listed in Table 6-47.

AcGroupOnType
AcGroupOnType defines how to group data in a group section. AcGroupOnType
values are listed in Table 6-48.

Table 6-46 AcFlowPlacement values

Constant Description

FlowAlignLeftOrTop Aligns a frame to the left of a flow or at the top of the flow

FlowAlignCenter Aligns a frame in the center of a flow

FlowAlignRightOrBottom Aligns a frame to the right of a flow or at the bottom of the
flow

FlowAlignCustom Aligns frames in the flow at the position given by the
frame’s Position.X member

Table 6-47 AcFont members

Member name Type Description

Bold Boolean If True, the text is bold

Color AcColor Color of the text

FaceName String Font name of the text

Italic Boolean If True, the text is italic

Script String Specifies a subset of a large font

Size Integer Size of the text in points

StrikeThrough Boolean If True, a line is drawn through the text

Underline Boolean If True, the text is underlined

Table 6-48 AcGroupOnType values

Constant Description

GroupOnCustom Group based on key value set in the GetGroupKey
method

(continues)

184 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcHorizontalPosit ion

AcHorizontalPosition
AcHorizontalPosition is an enum that specifies how to position a visual object
horizontally. AcHorizontalPosition values are listed in Table 6-49.

GroupOnDay Group data by full date

GroupOnEveryValue Group on the full key

GroupOnHour Group data by hour

GroupOnInterval Group on option for group section keys having data types
other than Currency, Date, Double, Integer, Single, or
String

GroupOnMinute Group data by minute

GroupOnMonth Group data by month

GroupOnPrefix Group on the first n characters of text

GroupOnQuarter Group data by calendar quarter

GroupOnWeek Group data by week

GroupOnYear Group data by year

Table 6-48 AcGroupOnType values (continued)

Constant Description

Table 6-49 AcHorizontalPosition values

Constant Description

HorizontalPositionDefault If the object’s left edge is at or to the right of the horizontal
midpoint of the reference object, the object moves to keep
the distance between its left edge and the right edge of the
reference object constant. Otherwise, the object does not
move or resize.

HorizontalPositionFrameCenter The object moves to keep the distance between its
horizontal midpoint and the horizontal midpoint of the
frame constant.

HorizontalPositionFrameLeft The object does not move.

HorizontalPositionFrameRight The object moves to keep the distance between its right
edge and the right edge of the frame constant.

HorizontalPositionLeft If the object’s left edge is to the left of the right edge of the
reference object, the object does not move. Otherwise, the
object moves to keep the distance between its left edge
and the right edge of the reference object constant.

C h a p t e r 6 , A F C d a t a t y p e s 185

AcHorizontalSize

AcHorizontalSize
AcHorizontalSize is an enum that specifies how to resize a visual object
horizontally. AcHorizontalSize values are listed in Table 6-50.

HorizontalPositionRight If the object’s left edge is to the left of the reference object’s
left edge, the object does not move. Otherwise, the object
moves to keep the distance between its left edge and the
right edge of the reference object constant.

Table 6-49 AcHorizontalPosition values

Constant Description

Table 6-50 AcHorizontalSize values

Constant Description

HorizontalSizeFixed The object is not resized.

HorizontalSizeFrameRelative The object’s width adjusts to keep the distance between its
right edge and the right edge of the frame constant.

HorizontalSizeRelative If the object’s left edge is at or to the left of the reference
object’s left edge and its right edge is at or to the right of
the reference object’s right edge, the object’s width
increases by the amount that the reference object’s width
increases. If more than one dynamic content object exists,
the object’s width increases in one of the following ways to
give the greatest width increase:
■ The distance between the object’s right edge and the

right edge of the reference object remains constant.
■ The object’s width increases by the amount the

reference object’s width increases. In this case, the
object also moves left, if the object’s CanMoveLeft
property is set to True. The object moves left in one of
the following ways, to give the smallest movement:
■ The distance between the object’s right edge and the

reference object’s right edge remains constant.
■ The object moves left by the amount its width

increased.

186 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcImageEmbedType

AcImageEmbedType
AcImageEmbedType defines when to include the image in the report.
AcImageEmbedType values are listed in Table 6-51.

AcLayoutOrientation
AcLayoutOrientation is an enum that defines the orientation for the report.
AcLayoutOrientation values are listed in Table 6-52.

AcLinePen
AcLinePen is an enum that specifies the style of line to draw. Note that although
these styles mimic the Windows line styles, they are not meant to duplicate the
Windows line style values or have a direct numeric mapping to Windows styles.
AcLinePen values are listed in Table 6-53.

Table 6-51 AcImageEmbedType values

Constant Description

ImageDesignTime Include image at compile time.

ImageFactoryTime Include image when the report builds.

ImageFactoryTimeSingle Include only a single copy of the image
when the report builds.

ImageViewTime Include image when the report appears.

ImageViewTimeSingle Include only a single copy of the image
when the report appears.

Table 6-52 AcLayoutOrientation values

Constant Description

LeftToRight The report has left-to-right orientation.

RightToLeft The report has right-to-left orientation.

Table 6-53 AcLinePen values

Constant Description

DashLine Draws a dashed line

C h a p t e r 6 , A F C d a t a t y p e s 187

AcLineStyle

AcLineStyle
AcLineStyle is a structure that describes how a line is drawn. AcLineStyle
members are listed in Table 6-54.

AcMargins
AcMargins is a structure that describes the margins of a textual control.
AcMargins members are listed in Table 6-55.

DashDotLine Draws a line in the following format:
----- - ----- - ----- -

DashDotDotLine Draws a line in the following format:
----- -- -- ----- -- --

DotLine Draws a dotted line

DoubleLine Draws a double solid line

InsideFrameBorder Draws a solid line inside the frame or control

NullLine Does not draw a line

ShortDotLine Draws a line using very small dots

SingleLine Draws a single solid line

Table 6-53 AcLinePen values

Constant Description

Table 6-54 AcLineStyle members

Member name Type Description

Color AcColor The color of the line

Pen AcLinePen The style of the line

Width AcTwips The width of the line in twips

Table 6-55 AcMargins members

Member name Type Description

Bottom AcTwips The top margin

Left AcTwips The left margin

Right AcTwips The right margin

Top AcTwips The top margin

188 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcMonth

AcMonth
AcMonth is an enum that specifies a month of the year. AcMonth values are listed
in Table 6-56.

AcPageHeaderOptions
AcPageHeaderOptions is an enum that determines whether and where to place a
page header. AcPageHeaderOptions values are listed in Table 6-57.

AcPageNumberStyle
AcPageNumberStyle is an enum that determines how to calculate and display
page numbers. AcPageNumberStyle values are listed in Table 6-58.

Table 6-56 AcMonth values

Constant Description

January First month of the year

February Second month of the year

March Third month of the year

April Fourth month of the year

May Fifth month of the year

June Sixth month of the year

July Seventh month of the year

August Eighth month of the year

September Ninth month of the year

October Tenth month of the year

November Eleventh month of the year

December Twelfth month of the year

Table 6-57 AcPageHeaderOptions values

Constant Description

AsColumnHeader Places the header above data columns

AsPageHeader Places the header on every page

NoHeaderOnFirst Places the header on every page except the first page

C h a p t e r 6 , A F C d a t a t y p e s 189

AcPercentage

AcPercentage
AcPercentage is a Double data type used to hold percentage values.

Percentage values are represented as fractions internally, so that 50% is stored as
0.5. This makes calculations easier, because you can simply multiply a number by
an AcPercentage value with no need to scale the result by a factor of 100.

e.Report Designer Professional’s property sheet displays AcPercentage property
values multiplied by 100 and with a trailing percentage sign. For example, a value
of 0.75 will be displayed as 75%.

AcPoint
AcPoint is a structure that defines a position. AcPoint members are listed in
Table 6-59.

Table 6-58 AcPageNumberStyle values

Constant Description

ActualPageCount The total number of pages (visible and invisible to the user) in
the report.

ActualPageN The actual page number, regardless of how many pages are
visible to the user.

ActualPageNofM The current page number relative to the total pages in the report
displayed in the form: Page N of M. Includes both visible and
invisible pages.

ActualPageNumber The current page number considering all the pages (both visible
and invisible to the user) in the report.

FormattedPageNumber Page number is presented using the format string specified in
the PageNumberFormat property. The value presented here
does not consider page security.

VisiblePageCount The total number of pages in the report that the user can see
considering page security.

VisiblePageN The number of the current page, based on the total number of
pages visible to the user.

VisiblePageNofM The current page number relative to the total pages in the report
displayed in the form: Page N of M. Considers page security.

VisiblePageNumber The current page number in the report that the user can see
considering page security.

190 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcRectangle

AcRectangle
AcRectangle is a structure that describes a rectangle relative to the origin of an
enclosing rectangle by giving the bounding points, the corners, of the rectangle.
AcRectangle members are listed in Table 6-60.

AcSearchType
AcSearchType is an enum that determines whether users can search for the
component using values for the DataValue property. AcSearchType values are
listed in Table 6-61.

Table 6-59 AcPoint members

Member name Type Description

X AcTwips The horizontal coordinate of the position

Y AcTwips The vertical coordinate of the position

Table 6-60 AcRectangle members

Member name Type Description

Bottom AcTwips The location of the bottom of the rectangle
measured relative to the top of the enclosing
rectangle

Left AcTwips The location of the left of the rectangle measured
relative to the left of the enclosing rectangle

Right AcTwips The location of the right of the rectangle measured
relative to the left of the enclosing rectangle

Top AcTwips The location of the top of the rectangle measured
relative to the top of the enclosing rectangle

Table 6-61 AcSearchType values

Constant Description

NotSearchable User cannot search for the component.

SearchableNo
Index

User can search for the component. The client viewing
software searches the entire report.

SearchableWith
Index

User can search for the component using a
high-performance indexed search.

C h a p t e r 6 , A F C d a t a t y p e s 191

AcSize

AcSize
AcSize is a structure that describes the width and height of a rectangle. AcSize
members are listed in Table 6-62.

AcSortingOptions
AcSortingOptions is an enum that determines the sorting rules for a report
section. AcSortingOptions values are listed in Table 6-63.

AcTextClipStyle
AcTextClipStyle is an enum that specifies how to handle text that is too long for
its enclosing rectangle. Leading truncation removes the first part of the string,
while trailing truncation removes the end part. There is also an option to use

Table 6-62 AcSize members

Member name Type Description

Height AcTwips The height of the rectangle

Width AcTwips The width of the rectangle

Table 6-63 AcSortingOptions values

Constant Description

AutoSort e.Report Designer Professional sorts the data rows
according to the groups in the report section. If the
data source uses a SQL query, sorting specified in the
ORDER BY clause is applied after the automatic
sorting that AutoSort applies.

CompatibleSort This constant provides backward compatibility for
reports converted from an Actuate release earlier
than 3.1.

PreSorted e.Report Designer Professional does not sort the data
unless the report developer codes a sort filter. Data
rows appear in the report in the same order in which
they appear in the data source. Typically, this
constant is useful when the SQL query has an
ORDER BY clause or when the data source provides
the rows in the order in which you want them to
appear in the report.

192 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTextFormat

overflow characters to show truncation. AcTextClipStyle applies only to
single-line controls. AcTextClipStyle values are listed in Table 6-64.

AcTextFormat
AcTextFormat is an enum that indicates the tagging format of text. AcTextFormat
values are listed in Table 6-65.

AcTextJustify
AcTextJustify is an enum that specifies how to align text. AcTextJustify values are
listed in Table 6-66.

Table 6-64 AcTextClipStyle values

Constant Description

ClipLeading Clips the leftmost characters of the text. Displays an
ellipsis (…) before the truncated text, when the Ellipsis
property of AcTextPlacement is set to True.

ClipTrailing Clips the rightmost characters of the text. Displays an
ellipsis (…) after the truncated text, when the Ellipsis
property of AcTextPlacement is set to True.

ShowOverflowChar Displays overflow characters (*) when text is too long to
display.

Table 6-65 AcTextFormat values

Constant Description

TextFormatHTML The text contains HTML tags.

TextFormatPlain The text is not tagged.

TextFormatRTF The text contains RTF tags.

Table 6-66 AcTextJustify values

Constant Description

TextAlignCenter Aligns text in the center of the control

TextAlignLeft Aligns text at the left of the control

TextAlignRight Aligns text at the right of the control

C h a p t e r 6 , A F C d a t a t y p e s 193

AcTextPlacement

AcTextPlacement
AcTextPlacement is a structure that describes the placement of text in a frame or
control. AcTextPlacement members are listed in Table 6-67.

AcTextVerticalPlacement
AcTextVerticalPlacement is an enum that specifies how single lines of text align
vertically within the enclosing rectangle. AcTextVerticalPlacement values are
listed in Table 6-68.

Table 6-67 AcTextPlacement members

Member name Type Description

Clip AcTextClipStyle Specifies how to clip text that is too
large to fit into the control.
Applies only to single-line controls.

Ellipsis Boolean If set to True, places an ellipsis after
the text within the control if the
text is too long to fit.
Applies only to single-line controls.

FillPattern String Specifies the fill pattern to use for
any space after the text within the
control.

Horizontal AcTextJustify Specifies horizontal text placement
and justification.

MultiLine Boolean Specifies whether the control can
contain more than one line of text.

Vertical AcTextVerticalPlacement Determines vertical text placement.
Applies only to single-line controls.

WordWrap AcWordWrapStyle Specifies how to split text that is
too long to fit onto a single line.

Table 6-68 AcTextVerticalPlacement values

Constant Description

TextAlignBottom Aligns text at the bottom of a control

TextAlignMiddle Aligns text in the vertical middle of a control

TextAlignTop Aligns text at the top of a control

194 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTOCNodeType

AcTOCNodeType
AcTOCNodeType is an enum that determines whether a component appears in a
report’s table of contents. AcTOCNodeType values are listed in Table 6-69.

AcTwips
AcTwips is an Integer data type used to hold values in the internal unit of
measurement of the AFC framework, the twip. A twip is 1/20 of an integer point,
or 1/1440 of an inch.

e.Report Designer Professional’s property sheet displays AcTwips property
values converted to the default unit of measurement, and with a suffix indicating
the unit of measurement. For example, if the default unit of measurement is
points, a value of 1440 twips is displayed as 72pt.

If you type an AcTwips property value with a suffix indicating a unit of
measurement, e.Report Designer Professional automatically converts that value
to the default unit of measurement. For example, if the default unit of
measurement is points, and you type 1cm, e.Report Designer Professional
converts the value to points and displays 28.35pt.

If you enter an AcTwips property value with no unit of measurement suffix,
e.Report Designer Professional uses the default unit of measurement. For
example, if the default unit of measurement is points, and you type 36, e.Report
Designer Professional displays 36pt.

AFC defines a set of constants that you can use to convert AcTwips values to and
from other units. AcTwips conversion constants are listed in Table 6-70.

Table 6-69 AcTOCNodeType values

Constant Description

TOCAlwaysAdd Always add the component to the table of
contents.

TOCIfAllVisible Add the component to the table of contents only if
the user can view at least one page generated from
the component based on page-level security.

TOCIfAnyVisible Add the component to the table of contents even if
the user cannot view any of the pages generated
from the component based on page-level security.

TOCSkip Never add the component to the table of contents.

C h a p t e r 6 , A F C d a t a t y p e s 195

AcVert icalPosi t ion

Example The following example creates a label control and sets its height to 14 points:

Dim l As AcLabelControl
Set l = New Persistent AcLabelControl
l.Size.Height = 14 * OnePoint

AcVerticalPosition
AcVerticalPosition is an enum that specifies how to position a visual object
vertically. AcVerticalPosition values are listed in Table 6-71.

Table 6-70 AcTwips conversion constants

Constant Value Description

OneCM 567 The number of twips in one centimeter

OneInch 1440 The number of twips in one inch

OneMM 57 The number of twips in one millimeter

OnePoint 20 The number of twips in one point

Table 6-71 AcVerticalPosition values

Constant Description

VerticalPositionBottom If the top of the object is above the top of the reference object, it
does not move. Otherwise, the object moves to keep the distance
between its bottom edge and the bottom of the reference object
constant.

VerticalPositionDefault If the top of the object is at or below the midpoint of the
reference object, the behavior is the same as
VerticalPositionBottom. Otherwise, the object does not move.

VerticalPositionFrame
Bottom

The object moves to keep the distance between its bottom edge
and the bottom of the frame constant.

VerticalPositionFrame
Middle

The object moves to keep the distance between its middle and
the middle of the frame constant.

VerticalPositionFrameTop The object does not move.

VerticalPositionTop If the top of the object is above the bottom of the reference object,
the object does not move. Otherwise, the object repositions to
keep the distance between its top and the bottom of the
reference object constant.

196 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVert icalSize

AcVerticalSize
AcVerticalSize is an enum that specifies how to resize a visual object vertically.
AcVerticalSize values are listed in Table 6-72.

AcWordWrapStyle
AcWordWrapStyle is an enum that specifies the actions for lines in a multi-line
control when a line is longer than the size of the control. AcWordWrapStyle
values are listed in Table 6-73.

Table 6-72 AcVerticalSize values

Constant Description

VerticalSizeFixed The object does not resize.

VerticalSizeFrameRelative The object resizes to keep the distance between its bottom edge
and the bottom of the frame constant.

VerticalSizeRelative If the top of the object is at or above the top of the reference
object and its bottom edge is at or below the bottom of the
reference object, the object’s height increases by the amount that
the reference object’s width increases. If more than one dynamic
content object exists, the object increases in one of the following
ways, to give the greatest height increase:
■ The distance between the object’s bottom edge and the

bottom of the reference object remains constant.
■ The object height increases by the same amount as the

reference object’s height increase. In this case, the object also
moves up, if the object’s CanMoveUp property is set to True.
The object moves up in one of the following ways, to give the
smallest movement:
■ The distance between the object’s bottom edge and the

reference object’s bottom edge remains constant.
■ The object moves up by the amount its height increases.
■ If the top of the object is below the top of the reference

object or its bottom edge is above the bottom of the
reference object, the object moves according to the setting
of its VerticalPosition property.

C h a p t e r 6 , A F C d a t a t y p e s 197

AcXMLType

AcXMLType
AcXMLType is an enum that specifies the type of XML to create for the
component. AcXMLType values are listed in Table 6-74.

Table 6-73 AcWordWrapStyle values

Constant Description

TextCharacterWrap Wraps text from one line to the next breaking
the text at a character boundary

TextTruncateLines Truncates any lines that do not fit

TextWordWrap Wraps text from one line to the next breaking
the text at a word boundary

Table 6-74 AcXMLType values

Constant Description

XMLAttribute Converts component to an XML attribute

XMLCustom Custom XML to be generated by
AcXMLDataVisitor class functions

XMLElement Converts component to an XML element

XMLEmptyElement Converts component to an empty XML element

XMLIgnore Does not convert the component into XML

XMLText Converts component into XML text

198 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcXMLType

C h a p t e r 7 , A F C c l a s s e s 199

C h a p t e r

7
Chapter 7AFC classes

Chapter 7AFC classes This chapter provides an alphabetical listing of the Actuate Foundation Classes.
Each class entry includes a general description of the class and a summary of its
variables, properties, and methods followed by an alphabetical listing of methods
for that class.

For the most part, the class documentation does not include repeated descriptions
of inherited variables, properties, and methods. For example, OnRow() is
described only in the AcReportComponent base class. A method is described in a
subclass as well as a superclass if the implementation details are significantly
different or enhanced in the subclass. For example, BuildFromRow() is described
in several class entries, including AcReportComponent, AcBaseFrame, and
AcChart, because its implementation varies from class to class.

200 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBaseFrame

Class AcBaseFrame
An abstract base class that defines the core logic that is common to pages and
frames. Figure 7-1 shows the class hierarchy for AcBaseFrame.

Figure 7-1 AcBaseFrame

Description AcBaseFrame is the abstract base class for pages and frames. It provides the core
logic for creating and working with contents in a page or a frame. The contents of
a page can include flows and controls. The contents of a frame can include other
frames and controls. AcBaseFrame defines

■ Methods for accessing the contents of a frame or page. The
FindContentByClass(), FindContentByClassID(), and GetControl() methods
locate the specified content in a frame or a page, and the GetControlValue()
method returns the value of a data control in a frame.

■ Methods for adjusting the contents of frames. The SplitContents() and
SplitFrame() methods distribute the contents of frames across pages.

■ Page-specific methods, such as GetPageNumber(), that are not applicable to
frames. If you call these methods in a frame, the framework displays an error
message.

Class protocol
Table 7-1 describes the class protocol for AcBaseFrame.

AcComponent

AcReportComponent

AcVisualComponent

AcBaseFrame

Table 7-1 Class protocol for AcBaseFrame

Method Task

Start() Instantiates and starts the contents of the frame or the
page

Build() Builds the contents for frames that are not dependent
on data

BuildFromRow() Populates the contained frames, charts, and controls
with data

Finish() Finishes each of the content objects

C h a p t e r 7 , A F C c l a s s e s 201

AcBaseFrame

Preparing the frame or page
The framework instantiates the contents of a frame or page using Start(). Start(),
in turn, calls MakeContents() to instantiate each of the contents in the order in
which they were added in the design perspective.

Start() is part of the framework’s core protocol. Override Start() in the AcFrame
class to perform custom processing in the frame that is unrelated to its contents.
For example, you can conditionally change the background color of the frame.
Always call Super::Start() before making your own programming changes to
Start().

Building the frame or page
The Build() method of the frame’s container calls the frame’s Build() method,
instead of BuildFromRow(), when you place the frame in a slot where the frame
does not receive data rows. The following list includes some of the situations in
which the frame does not receive data rows:

■ The frame is in a sequential or conditional section that is directly within the
report component.

■ The frame is placed directly on a page.

■ The frame is nested within any of the frames described in the previous bullets.

The frame’s Build() method, in turn, calls the Build() method for each of the
controls in the frame.

You can override the Build() method of a frame or page to perform custom
processing, such as conditionally adding or deleting frame or page contents, or
setting the values or properties of the contents.

Subclassing AcBaseFrame
Because AcBaseFrame is an abstract base class, do not derive directly from it.

Variables
AcBaseFrame variables are listed in Table 7-2.

Table 7-2 AcBaseFrame variables

Variable Type Description

BackgroundColor AcColor The color with which to fill the frame
before displaying the frame’s contents.
The default value is Transparent.

Border AcLineStyle The style, thickness, and color of the
border. The default value is no border.

202 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBaseFrame

Properties
AcBaseFrame properties are listed in Table 7-3.

Example The following example shows how to change the background color of a flow on
the first page to teal. The flows on the other pages use the color set at design time.
The example overrides Build() in PageStyle to change the color of the flow. The
call to GetPageIndex() identifies the first page.

Sub Build()
' Find the flow and change its background color to teal
' only on the first page.

Super::Build()
Dim flow As AcFlow
Set flow = FindContentByClass("Flow")
If GetPageIndex() = 1 Then

flow.BackgroundColor = teal
End If

End Sub

Methods for Class AcBaseFrame

Methods defined in Class AcBaseFrame

AddToAdjustSizeList, BindToFlow, FindContentByClassID, GetControl,
GetControlValue, GetPageNumber, GetSearchValue, IsDataFrame, IsFooter,
IsHeader, MakeContents, RebindToFlow, SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,

Table 7-3 AcBaseFrame properties

Property Type Description

BackgroundColor AcColor The color with which to fill the frame
before displaying the frame’s contents.
The default value is Transparent.

Border AcLineStyle The style, thickness, and color of the
border. The default value is no border.

C h a p t e r 7 , A F C c l a s s e s 203

AcBaseFrame

IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcBaseFrame::AddToAdjustSizeList method
Adds a component to its container’s list of components to resize and causes a call
to the component’s AdjustSize() method. To make a component resizable, you
must add a call to the AddToAdjustSizeList() method of the component’s Start()
method.

Syntax Sub AddToAdjustSizeList(component As AcVisualComponent)

Parameter component
The component to add to the list.

AcBaseFrame::AdjustSize method
Adjusts the size of the frame. Using this method, you can also adjust the sizes and
positions of the frame’s contents in response to the frame’s size adjustment.

Syntax Sub AdjustSize()

Example The following code calls AdjustSizeList() to get the frames to resize. After
completing the size adjustments, this code sets AdjustSizeList() to Nothing.

Sub AdjustSize()
If Not AdjustSizeList Is Nothing Then

Dim i As Integer
Dim content As AcVisualComponent

204 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBaseFrame

' Adjust the sizes of components that requested size
' adjustment.
For i = 1 To AdjustSizeList.Count
set content = AdjustSizeList.Contents(i)

content.AdjustSize()
Next i
' Adjust the geometry of the frame's contents. Get the
' amount of the frame's size change as a result.
Dim deltaFrameWidth As AcTwips
Dim deltaFrameHeight As AcTwips
AdjustContentGeometry(deltaFrameWidth, deltaFrameHeight)

' Resize the frame.
AdjustSizeBy(deltaFrameWidth, deltaFrameHeight)

' Adjust the contents of all contents in response to the
' frame’s adjustment.
For i = 1 To FrameContents.Count

set content = FrameContents.Contents(i)
content.AdjustContents()

Next i

' Recover memory when size adjustments are complete.
Set AdjustSizeList = Nothing

End If
End Sub

AcBaseFrame::BindToFlow method
Called when the framework places the frame into a flow on the page. You can
override this method to perform actions based on where the frame is in a flow.
For example, the flow can keep track of an alternating color for its frames and the
frame can ask the flow for the correct color.

If you override this method, you must call Super::BindToFlow().

Syntax Sub BindToFlow(flow As AcFlow)

Parameter flow
The flow that contains the component.

Example The following example shows how to override BindToFlow() to assign a different
color to every alternate frame in a flow. The code example assumes the following
variables are declared for the frame: AlternateColor, AlternateLines,
MostRecentContainer, MostRecentFlow, and RowNumber.

Sub BindToFlow(flow As AcFlow)
Super::BindToFlow(flow)
' If the current flow is different from the
' previous flow, then reset the color.

C h a p t e r 7 , A F C c l a s s e s 205

AcBaseFrame

If Not MostRecentFlow Is flow Then
RowNumber = 0
Set MostRecentFlow = flow

End If

' If the container is different, this frame is for
' a different group than the previous one; therefore,
' reset the color.
If Not MostRecentContainer Is Container Then

RowNumber = 0
Set MostRecentContainer = Container

End If
' Choose one of the two colors. AlternateLines and
' AlternateColor are user-defined properties that can be set
' in the Component Editor
RowNumber = RowNumber + 1
If RowNumber > AlternateLines * 2 Then

RowNumber = 1
End If
If RowNumber > AlternateLines Then

BackgroundColor = AlternateColor
End If

End Sub

AcBaseFrame::FindContentByClassID method
You can uniquely identify a component within a frame or page using the
component’s class ID. Accessing the component using its class ID is faster than
accessing the component by class name. Use the Actuate Basic function
GetClassID to identify the class ID for the component. For more information
about GetClassID, see Programming with Actuate Basic.

Syntax Function FindContentByClassID(classID As Integer) As AcVisualComponent

Parameter classID
The integer class ID of the component to find.

Returns A reference to the component if found.
Nothing if the component was not found.

See also AcReportComponent::FindContentByClass method
AcBaseFrame::GetControl method

AcBaseFrame::GetControl method
Use GetControl() to obtain a reference to a control in a frame. You specify the
control by using either the last part of the control’s name, such as PriceControl, or
its fully qualified name, such as OrdersReport::ItemFrame::PriceControl.

206 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBaseFrame

GetControlValue() finds the control, then calls the control’s GetValue() method
to obtain the value.

Syntax Function GetControl(controlName As String) As AcControl

Parameter controlName
The name of the control.

Returns A reference to the control if the control exists.
Nothing if the control does not exist.

See also AcReportComponent::FindContentByClass method
AcBaseFrame::FindContentByClassID method

AcBaseFrame::GetControlValue method
Returns the value of a specified data control within the frame. You specify the
control by using either the last part of the control’s name, such as PriceControl, or
its fully qualified name, such as OrdersReport::ItemFrame::PriceControl.
GetControlValue() finds the control, then calls the control’s GetValue() method
to obtain the value.

If you call this method from BuildFromRow(), you must consider the order in
which controls are built. Generally, the controls of a frame are built in the same
order that they appear in Report Structure. If you call GetControlValue() to get
the value of a control that is not yet created, GetControlValue() returns Null.

Syntax Function GetControlValue(controlName As String) As Variant

Parameter controlName
The name of the control for which you want the value.

Returns The value of the control if the control exists.
Null if the control does not exist.

See also AcControl::GetControlValue method

AcBaseFrame::GetPageNumber method
Returns the page number. The page number is a formatted string that represents
the page number as it appears in the generated report. The page number can be
the same as the page index or it can be different from the page index.

Call GetPageNumber() from a page only, not from a frame.

Syntax Function GetPageNumber() As String

Returns The page number of a page.

C h a p t e r 7 , A F C c l a s s e s 207

AcBaseFrame

AcBaseFrame::GetSearchValue method
Differentiates between subclasses of a parent class when a user is searching for
values, activating a hyperlink, or generating reportlet content from a report.

Syntax Function GetSearchValue() As String

AcBaseFrame::IsDataFrame method
Indicates whether the frame is a data frame. A data frame contains data
components, such as a text control, integer control, or chart.

Syntax Function IsDataFrame() As Boolean

Returns True if the frame contains data components.
False if the frame contains only labels, images, or other non-data components.

AcBaseFrame::IsFooter method
Indicates whether the frame is a PageFooter component.

Syntax Function IsFooter() As Boolean

Returns True if the frame is a footer.
False if the frame is not a footer.

AcBaseFrame::IsHeader method
Indicates whether the frame is a PageHeader component.

Syntax Function IsHeader() As Boolean

Returns True if the frame is a header.
False if the frame is not a header.

AcBaseFrame::MakeContents method
Creates the frame contents dynamically when specific conditions are present.

Syntax Sub MakeContents()

AcBaseFrame::RebindToFlow method
The framework calls this method for controls that appear within a subpage when
the BalanceFlows() property of the subpage is set to True. RebindToFlow()
informs the control that the flow that contains the control changed as a result of
the rebalancing. If you override this method, you must call the superclass
implementation.

208 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBaseFrame

Syntax Sub RebindToFlow(flow As AcFlow)

Parameter flow
The flow that contains the component.

AcBaseFrame::SearchAttributeName method
Search value for reportlets. Returns the name of the attribute that a reportlet uses
to find a frame. By default, the attribute is SearchValue. If you override this
method, you must also override GetSearchValue() to return the appropriate
value.

Syntax Function SearchAttributeName() As String

Returns The name of the attribute that a reportlet uses to find a frame.

C h a p t e r 7 , A F C c l a s s e s 209

AcBasePage

Class AcBasePage
An abstract base class that defines the logic for instantiating the contents of pages.
Figure 7-2 shows the class hierarchy of AcBasePage.

Figure 7-2 AcBasePage

Description AcBasePage is the abstract base class for the two types of page components in a
report design, AcPage and AcSubPage. AcPage describes the physical attributes
of a page, such as size and page numbering. AcSubpage supports placing a
subpage within a page. A subpage exists in a flow and adds a set of flows within
a page. For example, you can use a subpage to combine a one-column flow with a
two-column flow on a single page.

Subclassing AcBasePage
Because AcBasePage is an abstract base class, do not derive directly from it.

See also Class AcPage

Properties
AcBasePage properties are listed in Table 7-4.

AcComponent

AcReportComponent

AcVisualComponent

AcBasePage

AcBaseFrame

Table 7-4 AcBasePage properties

Property Type Description

BalanceFlows Boolean
function

Specifies whether to redistribute the contents
of the page to make all flows on the page the
same height.
The default value is False.

CanIncrease
Width

Boolean
function

Specifies whether the page width can increase.
The default value is False.

210 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBasePage

Methods for Class AcBasePage

Methods defined in Class AcBasePage

BalanceFlows, GetFirstDataFrame, GetLastDataFrame

Methods inherited from ClassAcBaseFrame

AddToAdjustSizeList, BindToFlow, FindContentByClass, FindContentByClassID,
GetControl, GetControlValue, GetPageNumber, GetSearchValue,
IsDataFrame, IsFooter, IsHeader, MakeContents, RebindToFlow,
SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 211

AcBasePage

AcBasePage::BalanceFlows method
Implements the BalanceFlows property. The BalanceFlows property specifies
whether the contents of the page should be redistributed to make all flows on the
page the same height. The default value is False.

Syntax Function BalanceFlows() As Boolean

Returns True if the contents of a page should be redistributed.
False if the contents of a page should not be redistributed.

AcBasePage::GetFirstDataFrame method
Retrieves the first data frame on a page. A data frame contains data rows.

Syntax Function GetFirstDataFrame() As AcFrame

Returns The first frame that contains data rows.

AcBasePage::GetLastDataFrame method
Retrieves the last data frame on a page. A data frame contains data rows.

Syntax Function GetLastDataFrame() As AcFrame

Returns The last frame that contains data rows.

212 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBrowserScript ingControl

Class AcBrowserScriptingControl
Supports the insertion of custom browser code in a report design. Figure 7-3
shows the class hierarchy of AcBrowserScriptingControl.

Figure 7-3 AcBrowserScriptingControl

Description Use AcBrowserScriptingControl to insert custom browser code into a report
design. For example, you can create a drop-down list and make it available to
report users who view the report on the web. Custom browser code can be any
code interpreted by a web browser, including:

■ JavaScript

■ Java applets

■ VBScript

Characters in the browser scripting control that have special meaning for the web
browser are not converted by the DHTML converter. Instead, the DHTML
converter creates a block of HTML code called the context block. The web
browser then interprets the code in the BrowserCode property when the report
user views the report in DHTML format.

Properties
AcBrowserScriptingControl properties are listed in Table 7-5.

AcBrowserScriptingControl

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcTextualControl

Table 7-5 AcBrowserScriptingControl properties

Property Type Description

AlternateText String Specifies the string to show when
viewing or printing the report in any
environment except a web browser.
The default value is “”.

C h a p t e r 7 , A F C c l a s s e s 213

AcBrowserScr ipt ingControl

Methods for Class AcBrowserScriptingControl

Methods defined in class AcBrowserScriptingControl

BrowserCode, GetText, OnViewCode

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetValue, PageNo, PageNo$, SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

BrowserClipping AcBrowserClipping Specifies how to clip text in the
browser scripting control when it is
viewed in a web browser.
The default value is NoClipping.

BrowserCode String The custom browser code.
The default value is “”.

DebugOption Boolean Selects whether the alternate text or
browser code is displayed in a web
browser. True displays the alternate
text, False displays the custom
browser code.
The default value is False.

Selectable Boolean Indicates whether a user can select
the control.
The default value is True.

Table 7-5 AcBrowserScriptingControl properties

Property Type Description

214 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBrowserScript ingControl

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcBrowserScriptingControl::BrowserCode method
Retrieves the value of the BrowserCode property. Override BrowserCode() to
generate DHTML code dynamically.

Syntax Function BrowserCode() As String

AcBrowserScriptingControl::GetText method
Retrieves the value of the AlternateText property. Override GetText() to generate
the string for PDF output dynamically.

Syntax Function GetText() As String

C h a p t e r 7 , A F C c l a s s e s 215

AcBTree

Class AcBTree
A collection class that describes objects organized in a balanced tree. Figure 7-4
shows the class hierarchy of AcBTree. A balanced tree is a sorted list of objects. An
attribute of the object contains the object’s key. Each key is unique.

Figure 7-4 AcBTree

Description Use the AcBTree collection class to create a list of objects sorted by one of the
object’s attributes. To create an object in a BTree, use CreateNode() or Insert(). To
locate an object in a BTree, call Find() or FindOrCreate() to compare a key
specified as an argument to the keys of the objects in the balanced tree. Objects
can be located with speed comparable to a simple binary search. To keep the
storage needed small, the key is contained in the object only.

Letting a reference to a BTree go out of scope does not recover memory. For this
reason, to remove a BTree and recover memory, you must call Abandon().

To remove all contents from the collection, call RemoveAll().

Subclassing AcBTree
To create a balanced tree collection, perform the following steps:

■ Subclass AcBTree.

■ Specify the NodeSize as an integer equal to the maximum number of objects in
the balanced tree.

■ Override GetKey() to specify how to determine an object’s key.

See also Class AcCollection
Class AcList
Class AcObjectArray
Class AcSingleList

Variable
Table 7-6 describes the AcBTree variable.

AcCollection

AcBTree

Table 7-6 AcBTree variable

Variable Type Description

NodeSize Integer The maximum size of the
collection

216 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBTree

Methods for Class AcBTree

Methods defined in Class AcBTree

Abandon, CompareKey, CreateNode, Find, FindOrCreate, GetKey, Insert, New

Methods inherited from Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
Remove, RemoveAll

AcBTree::Abandon method
Removes an object that the balanced tree no longer needs and recovers memory.

Syntax Sub Abandon()

AcBTree::CompareKey method
Compares the values of two keys.

Syntax Function CompareKey(key1 As Variant, obj2 As AnyClass) As Integer

Parameters key1
The first key in the comparison.

obj2
The object whose key is being compared to key1.

Returns -1 if key1 is less than the value of the key for obj2.
-1 if key1 is Null and the key to obj2 is not Null.
1 if key1 is greater than the key for obj2.
1 if the key for obj2 is Null and key1 is not Null.
0 if the two keys are equal or if both keys are Null.

AcBTree::CreateNode method
Adds an object to the collection. The logic to determine the object’s key in the
GetKey() override must be able to handle the new object’s data type. Also, you
must ensure that the new object’s key does not already exist in the collection. If an
object with the same key already exists in the collection, CreateNode() returns an
Actuate Basic error. If you do not know whether the new object’s key is unique,
call FindOrCreate() to add the object.

Syntax Function CreateNode (key As Variant) As AnyClass

Parameter obj
The object to create in the collection.

See also AcBTree::FindOrCreate method

C h a p t e r 7 , A F C c l a s s e s 217

AcBTree

AcBTree::GetKey method
AcBTree::Insert method

AcBTree::Find method
Finds an object in the collection that has the specified key. Before you call Find to
locate objects, you must override GetKey() to tell the framework how to
determine the object’s key.

Syntax Function Find(key As Variant) As AnyClass

Parameter key
The key of the object to be located.

Returns An object.
Nothing if the object does not exist.

See also AcBTree::FindOrCreate method
AcBTree::GetKey method

AcBTree::FindOrCreate method
Finds an object in the collection with the specified key or creates an object if there
is no match to the specified key. If no object with the specified key exists,
FindOrCreate() adds a new object to the collection with the specified key. Use
FindOrCreate() when you need to add an object but you do not know if the object
already exists in the collection. By using FindOrCreate(), you eliminate the need
to first locate the object using Find() and then add the object using CreateNode().
Before you call FindOrCreate(), you must override GetKey() to describe how to
determine an object’s key.

Syntax Function FindOrCreate(key As Variant) As AnyClass

Parameter key
The key of the object to be located.

Returns An object that has the specified key.
Nothing if no object with the specified key exists.

See also AcBTree::GetKey method

AcBTree::GetKey method
Determines the key for an object in a collection. Override this method to define
the logic that determines the object’s key.

Syntax Function GetKey(obj As AnyClass) As Variant

Parameter obj
The object in the collection.

218 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcBTree

Returns The key stored as a Variant data type.

Example In the following example, the objects in the collection are text controls in a report.
The object’s key is the text control’s DataValue property. The following code
shows how to override the GetKey() method to determine the key:

Function GetKey(obj As AnyClass) As Variant
Dim textControl As AcTextControl
Set textControl = obj
GetKey = textControl.DataValue

End Function

AcBTree::Insert method
Adds an object to the collection. The key determination logic in the GetKey()
method override must be able to handle the new object’s data type. Also, you
must ensure that the new object’s key does not already exist in the collection. If an
object with the same key already exists in the collection, Insert() returns an
Actuate Basic error. If you do not know whether the new object’s key is unique,
call FindOrCreate() to add the object.

Syntax Sub Insert(obj As AnyClass)

Parameter obj
The object to add to the collection.

Example The following code inserts an object into a balanced tree:

Sub Insert(obj As AnyClass)
Dim newNode As AcBTreeNode

' Call a private method, CreateRoot(), to create the root
' if no root exists.

If Root Is Nothing Then
CreateRoot()

End If

' Insert the object and increment the object count.
Set newNode = Root.Insert(GetKey(obj), obj)
Count = Count + 1
If Not newNode Is Nothing Then

SplitRoot(newNode)
End If

' Cache the last object seen.
Set LastObjectSeen = obj

End Sub

See also AcBTree::FindOrCreate method
AcBTree::GetKey method

C h a p t e r 7 , A F C c l a s s e s 219

AcBTree

AcBTree::New method
The constructor method for the AcBTree class.

Syntaxes Sub New()

Sub New(size As Integer)

Parameter size
The maximum number of items in a node in the BTree. If an addition to the node
increases the size beyond this value, the node splits.

220 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Class AcChart
Displays a chart. Figure 7-5 shows the class hierarchy of AcChart.

Figure 7-5 AcChart

Description AcChart takes data from one or more data rows and organizes it into one or more
series of data points displayed as a chart. AcChart builds a data structure of
objects that represent the various elements of a chart, such as axes, categories, and
points. This data structure is built from the following classes:

■ AcChartLayer

■ AcChartAxis

■ AcChartCategory

■ AcChartSeries

■ AcChartPoint

■ AcChartPointStyle

■ AcChartSeriesStyle

You can define most charts using the Chart Builder and Advanced Chart Options
dialogs. If you have more advanced requirements, you can usually get the results
you need by overriding one or two methods in a chart. You also can create a chart
dynamically without Chart Builder, using only the standard Actuate Foundation
Classes. Using the AFC gives you total control over the content and appearance of
the resulting chart.

Chart life cycle
When a report runs, a chart is created in the following series of steps:

■ Within the chart’s Start() method:

■ The high-level structure of the chart is initialized. For example, this is
where overlay and study layers are enabled.

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcDrawing

AcChart

C h a p t e r 7 , A F C c l a s s e s 221

AcChart

■ The chart’s CustomizeChart() method is called. You can override this
method to alter the high-level structure of the chart. For example, you
could override CustomizeChart() to disable the overlay layer.

■ The chart’s layers are created and initialized.

■ The chart’s CustomizeLayers() method is called. You can override this
method to modify the appearance of individual layers within the chart. For
example, you could override CustomizeLayers() to change the type of
chart displayed from a bar chart to a pie chart.

■ The chart’s status is set to ChartStatusBuilding.

■ Within the chart’s BuildFromRow() method:

■ The chart’s OnRow() method is called. You can override this method to
use data from the data rows to modify chart settings. For example, you
could override OnRow() to set the chart’s title using data from a data row.

■ The chart’s layers accumulate data from data rows until no more rows are
available.

■ The chart’s layers create categories, series, and points from the
accumulated data.

■ The chart’s CustomizeCategoriesAndSeries() method is called. You can
override this method to adjust the data displayed in the chart. For example,
you could override CustomizeCategoriesAndSeries() to add a category
that shows the average of all the other categories.

■ For all types of chart layers other than pie chart layers, series styles are
created for each series. For pie chart layers, series styles are created for each
category.

■ The chart’s CustomizeSeriesStyles() method is called. You can override
this method to modify the appearance of individual series or pie slices in
the chart. For example, you could override CustomizeSeriesStyles() to
change the colors of the series.

■ The minimum and maximum data values in each chart layer and the chart
as a whole are calculated.

■ The chart’s axes are created and initialized.

■ The chart’s CustomizeAxes() method is called. You can override this
method to change the appearance of individual axes in the chart. For
example, you could override CustomizeAxes() to add minor grid lines to
one of the chart’s axes.

■ The chart’s ComputeScales() method is called to compute the axis scales.

■ The chart’s AdjustChart() method is called. You can override this method
to make final adjustments to the chart once all its automatic layout has
been created. For example, you could override AdjustChart() to scale the

222 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

labels on one of the chart’s axes depending on the automatically computed
label values, then modify the axis’s title to match.

■ The chart’s status is set to ChartStatusFinishedBuilding.

■ Within the chart’s Finish() method, the chart’s status is set to
ChartStatusFinished.

When a report is being viewed within the chart’s ApplyVisitor() method, the
chart’s Localize() method is called. You can override this method to localize the
chart at view time, using the user’s viewing locale.

Example The following example overrides a frame’s Finish() method to create and
populate a simple chart with a bar chart base layer and a bar chart study layer
using the standard AcChart class:

Sub Finish()
Dim chart As AcChart
' Create a new chart object.
Set chart = New Persistent AcChart
chart.Size.Width = 8 * OneInch
chart.Size.Height = 6 * OneInch
' Add the chart to this frame.
AddContent(chart)
' Initialize the chart.
chart.StartEmpty()
' Add a title.
chart.SetTitleText("2003 Sales & Profits")

' Create the chart layers.
chart.EnableStudyLayers(1)
chart.MakeLayers()
Dim baseLayer As AcChartLayer
Set baseLayer = chart.GetBaseLayer()
Dim studyLayer As AcChartLayer
Set studyLayer = chart.GetStudyLayer(1)
' Make the chart a bar chart with a bar study.
baseLayer.SetChartType(ChartTypeBar,

+ ChartSeriesPlacementSideBySide)
studyLayer.SetChartType(ChartTypeBar,

+ ChartSeriesPlacementSideBySide)
' Initialize the chart layers.
chart.StartLayers()
' The chart is now building itself.
chart.SetStatus(ChartStatusBuilding)

' Add 4 categories.
baseLayer.AddCategory(#2003-01-01#)
baseLayer.AddCategory(#2003-04-01#)
baseLayer.AddCategory(#2003-07-01#)

C h a p t e r 7 , A F C c l a s s e s 223

AcChart

baseLayer.AddCategory(#2003-10-01#)
' Format the category labels as quarters.
baseLayer.SetCategoryLabelFormat("Short Quarter")
' Add 2 base series with points.
Dim series As AcChartSeries
Set series = baseLayer.AddSeries("Domestic")
series.AddPoint(100)
series.AddPoint(150)
series.AddPoint(200)
series.AddEmptyPoint()
Set series = baseLayer.AddSeries("Export")
series.AddEmptyPoint()
series.AddPoint(75)
series.AddPoint(150)
series.AddEmptyPoint()
' Add 2 overlay series with points.
Set series = studyLayer.AddSeries("Domestic")
series.AddPoint(10)
series.AddPoint(15)
series.AddPoint(40)
series.AddEmptyPoint()
Set series = studyLayer.AddSeries("Export")
series.AddEmptyPoint()
series.AddPoint(5)
series.AddPoint(20)
series.AddEmptyPoint()
' Compute the minimum and maximum data values.
chart.ComputeMinMaxDataValues()

' Add the axes.
chart.MakeAxes()
' Give the base y-axis a title.
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetTitleText("Sales (US$M)")
' Give the study y-axis a title.
Set yAxis = studyLayer.GetYAxis()
yAxis.SetTitleText("Profit (US$M)")
' Compute the axis scales.
chart.ComputeScales()
' Mark the chart complete.
chart.SetStatus(ChartStatusFinishedBuilding)
Super::Finish()

End Sub

See also Class AcDrawing
Class AcChartAxis
Class AcChartCategory

224 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

Property
Table 7-7 describes the AcChart property.

Methods for Class AcChart

Methods defined in Class AcChart

AdjustChart, BaseAndOverlayScalesAreMatched, BuildFromRow,
BuildSampleCategoryScaleData, BuildSampleValueScaleData,
ComputeMinMaxDataValues, ComputeScales, CustomizeAxes,
CustomizeCategoriesAndSeries, CustomizeChart, CustomizeLayers,
CustomizeSeriesStyles, DescribeLayout, DisableHyperchart,
DisableOverlayLayer, DisableStudyLayers, DrawOnChart, EnableHyperchart,
EnableOverlayLayer, EnableStudyLayers, FlipAxes, GetBaseLayer,
GetBorderStyle, GetChartDrawingPlane, GetFillStyle, GetHyperchartLink,
GetLayer, GetLegendBackgroundColor, GetLegendBorderStyle,
GetLegendFont, GetLegendPlacement, GetNumberOfLayers,
GetNumberOfStudyLayers, GetOverlayLayer, GetStudyLayer, GetTitleStyle,
GetTitleText, HasOverlayLayer, IsHyperchart, IsThreeD, Localize, MakeAxes,
MakeLayers, SetBackgroundColor, SetBorderStyle, SetFillStyle, SetFlipAxes,
SetLegendBackgroundColor, SetLegendBorderStyle, SetLegendFont,
SetLegendPlacement, SetMatchBaseAndOverlayScales, SetStatus,
SetThreeD, SetTitleStyle, SetTitleText, StartEmpty, StartLayers

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Table 7-7 AcChart property

Property Type Description

Definition AcPointer An internal representation of a chart definition. Use
the Chart Builder and Advanced Chart Options
dialogs to view and change this definition.

C h a p t e r 7 , A F C c l a s s e s 225

AcChart

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcChart::AdjustChart method
Override AdjustChart() to make final adjustments to a chart after all its
automatic layout has been created. You can make most adjustments to a chart
while it is being constructed by overriding methods such as CustomizeLayers().
There are a few adjustments that you can only make when the chart finishes
computing its automatic layout. Override the AdjustChart() method to make
those adjustments.

Syntax Sub AdjustChart(baseLayer As AcChartLayer, overlayLayer As AcChartLayer,
studyLayers() As AcChartLayer)

Parameters baseLayer
A reference to the chart’s base layer object.

overlayLayer
A reference to the chart’s overlay layer object. Nothing if the chart has no overlay
layer.

226 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

studyLayers()
An array of references to the chart’s study layer objects. To determine how many
study layers there are in a chart, call the chart’s GetNumberOfStudyLayers()
method.

Example The following example adjusts the upper limit of a study layer’s y-axis so that it is
at least 100. This adjustment can only be made in AdjustChart() because it relies
on the automatically computed upper limit.

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = studyLayers(1).GetYAxis()
If (yAxis.GetMaximumValue() < 100) Then

yAxis.SetMaximumValue(100)
' Recompute the ticks and labels.
yAxis.ComputeScale()

End If
End Sub

See also AcChart::CustomizeAxes method
AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::CustomizeLayers method
AcChart::CustomizeSeriesStyles method
AcChart::GetNumberOfStudyLayers method
AcChart::Localize method

AcChart::BaseAndOverlayScalesAreMatched method
Determines whether the base and overlay y-axis scales of a chart have been forced
to be identical.

Syntax Function BaseAndOverlayScalesAreMatched() As Boolean

Returns True if the base and overlay y-axis scales of the chart are forced to be identical.
False if the base and overlay y-axis scales are not forced to be identical.

See also AcChart::SetMatchBaseAndOverlayScales method

AcChart::BuildFromRow method
Override the BuildFromRow() method to manipulate the raw data to be
displayed in a chart. The AFC framework calls the BuildFromRow() method
automatically once for each data row in the chart’s parent data section, and once
with dataRow set to Nothing. Within this method, a chart accumulates the data to
display.

C h a p t e r 7 , A F C c l a s s e s 227

AcChart

To manipulate the raw data to be displayed in a chart, override this method.
Within BuildFromRow() you can

■ Skip data rows by not calling Super::BuildFromRow() and returning
ContinueBuilding.

■ Add calculated data to a chart by creating your own data rows and calling
Super::BuildFromRow() repeatedly.

■ Finish building a chart at any time by calling
Super::BuildFromRow(Nothing) and returning the result.

When you override this method, you must

■ Always handle the case where dataRow is Nothing.

■ Always call Super::BuildFromRow(Nothing) to finish building the chart.

■ Always return FinishedBuilding when the chart is complete.

Syntax Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus

Parameter dataRow
A reference to a data row whose values are to be displayed in the chart.

When the AFC framework calls BuildFromRow() with dataRow set to Nothing,
the chart finishes building itself.

Returns The build status of the chart.

Examples A chart’s default behavior is to process multiple data rows. If a chart is placed in a
Content frame, the result is a single chart that displays all the data rows for the
Content frame’s parent section.

The following example overrides BuildFromRow() to make a chart from a single
row. If the chart is in a Content frame, a separate chart appears for each data row.

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
' Process the first data row.
BuildFromRow = Super::BuildFromRow(dataRow)
If Not dataRow Is Nothing Then

' Force the chart to finish building itself.
BuildFromRow = Super::BuildFromRow(Nothing)

End If
End Function

In the following example, BuildFromRow() filters out data rows for New York:

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
If Not dataRow Is Nothing Then

If (GetValue(dataRow, "customers_state") = "NY") Then
' Do not process the row.
BuildFromRow = ContinueBuilding

228 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Exit Function
End If

End If
' Process the row as usual.
BuildFromRow = Super::BuildFromRow(dataRow)

End Function

See also AcReportComponent::BuildFromRow method

AcChart::BuildSampleCategoryScaleData method
Call the BuildSampleCategoryScaleData() method to generate sample data for a
chart whose x-axis is based on categories. If you are developing a custom chart
class with overridden methods, you can make a simple test harness that does not
require a data source. You can use BuildSampleCategoryScaleData() to populate
a custom chart with realistic sample data.

Call this method from AcChart::BuildFromRow(). You cannot call
BuildSampleCategoryScaleData() on a scatter chart.

If you call BuildSampleCategoryScaleData() on a pie chart, numberOfBaseSeries
must be set to 1. Both numberOfOverlaySeries and numberOfStudySeries must
be set to 0.

Syntax Sub BuildSampleCategoryScaleData(numberOfCategories As Integer,
numberOfBaseSeries As Integer, numberOfOverlaySeries As Integer,
numberOfStudySeries As Integer, baseMinimumValue As Double,
baseMaximumValue As Double, overlayMinimumValue As Double,
overlayMaximumValue As Double, studyMinimumValue As Double,
studyMaximumValue As Double)

Parameters numberOfCategories
The number of sample categories to be displayed on the x-axis.

numberOfBaseSeries
The number of sample series to be displayed in the chart’s base layer.

numberOfOverlaySeries
The number of sample series to be displayed in the chart’s overlay layer.

numberOfStudySeries
The number of sample series to be displayed in the chart’s first study layer.

baseMinimumValue
The minimum sample value to be displayed in the chart’s base layer.

baseMaximumValue
The maximum sample value to be displayed in the chart’s base layer.

overlayMinimumValue
The minimum sample value to be displayed in the chart’s overlay layer.

C h a p t e r 7 , A F C c l a s s e s 229

AcChart

overlayMaximumValue
The maximum sample value to be displayed in the chart’s overlay layer.

studyMinimumValue
The minimum sample value to be displayed in the chart’s first study layer.

studyMaximumValue
The maximum sample value to be displayed in the chart’s first study layer.

Example If the report containing a chart has no data source, the chart’s BuildFromRow()
method is called once with its parameter set to Nothing. The following code
overrides a chart’s BuildFromRow() method to create sample category scale data:

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
Assert(dataRow Is Nothing)
' Build sample data with 12 categories and 2 series, sample
' values in the range -35 through 35, no overlay or study.
BuildSampleCategoryScaleData(12, 2, 0, 0, -35.0, 35.0, 0, 0,

0, 0)
BuildFromRow = Super::BuildFromRow(dataRow)

End Function

See also AcChart::BuildFromRow method
AcChart::BuildSampleValueScaleData method

AcChart::BuildSampleValueScaleData method
Call the BuildSampleValueScaleData() method to create sample data for a scatter
chart. If you are developing a custom chart class with overridden methods, you
can make a simple test harness that does not require a data source. You can use
the BuildSampleValueScaleData() method to populate a custom chart with
realistic sample data. Call this method from AcChart::BuildFromRow().

You can call this method only on a scatter chart.

Syntax Sub BuildSampleValueScaleData(numberOfPoints As Integer,
numberOfBaseSeries As Integer, numberOfOverlaySeries As Integer,
numberOfStudySeries As Integer, minimumXValue As Double,
maximumXValue As Double, baseMinimumYValue As Double,
baseMaximumYValue As Double, overlayMinimumYValue As Double,
overlayMaximumYValue As Double, studyMinimumYValue As Double,
studyMaximumYValue As Double)

Parameters numberOfPoints
The number of sample points to be displayed in each series.

numberOfBaseSeries
The number of sample series to be displayed in the chart’s base layer.

numberOfOverlaySeries
The number of sample series to be displayed in the chart’s overlay layer.

230 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

numberOfStudySeries
The number of sample series to be displayed in the chart’s first study layer.

minimumXValue
The minimum sample x value to be displayed in the chart.

maximumXValue
The maximum sample x value to be displayed in the chart.

baseMinimumYValue
The minimum sample y value to be displayed in the chart’s base layer.

baseMaximumYValue
The maximum sample y value to be displayed in the chart’s base layer.

overlayMinimumYValue
The minimum sample y value to be displayed in the chart’s overlay layer.

overlayMaximumYValue
The maximum sample y value to be displayed in the chart’s overlay layer.

studyMinimumYValue
The minimum sample y value to be displayed in the chart’s first study layer.

studyMaximumYValue
The maximum sample y value to be displayed in the chart’s first study layer.

Example If the report containing a chart has no data source, the chart’s BuildFromRow()
method is still called once with its dataRow parameter set to Nothing. The
following code overrides a chart’s BuildFromRow() method to create sample
category scale data:

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
Assert(dataRow Is Nothing)
' Build sample data with 4 points per series, 3 series,
' sample x values in the range -35 through 35, sample y
' values in the range -5 through 5, no overlay or study.
BuildSampleValueScaleData(4, 3, 0, 0, -35.0, 35.0, -5.0,

5.0, 0, 0, 0, 0)
BuildFromRow = Super::BuildFromRow(dataRow)

End Function

See also AcChart::BuildFromRow method
AcChart::BuildSampleCategoryScaleData method

AcChart::ComputeMinMaxDataValues method
Call ComputeMinMaxDataValues() to compute the minimum and maximum
data values for each layer of a chart and the chart as a whole from the individual
data points. If you create a chart dynamically and do not use the standard chart

C h a p t e r 7 , A F C c l a s s e s 231

AcChart

building mechanism, you must call ComputeMinMaxDataValues() to compute
the minimum and maximum data values in the chart. You must make this call
after you create all the categories, series and points in the chart and before you
call the chart’s MakeAxes() method.

Syntax Sub ComputeMinMaxDataValues()

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

AcChart::ComputeScales method
Call ComputeScales() to compute the scales for all the axes of a chart. If you
create a chart dynamically and do not use the standard chart building
mechanism, you must call ComputeScales() to compute the scales for all the axes
of the chart. You must make this call after you call the chart’s MakeAxes()
method and before you call the chart’s Finish() method.

Syntax Sub ComputeScales()

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

AcChart::CustomizeAxes method
Override the CustomizeAxes() method to modify the appearance of a chart’s
axes. Within this method, you can obtain references to all the axes in a chart and
call methods on those axes.

Syntax Sub CustomizeAxes(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)

Parameters baseLayer
A reference to the chart’s base layer object.

overlayLayer
A reference to the chart’s overlay layer object.

Nothing if the chart has no overlay layer.

studyLayers()
An array of references to the chart’s study layer objects. To find out how many
study layers there are in a chart, call the chart’s GetNumberOfStudyLayers()
method.

Example The default scaling for a chart’s y-axis automatically leaves a small margin
between the greatest value and the top of the axis. The following example
overrides a chart’s CustomizeAxes() method to increase the automatic margin to
20 percent of the axis’s height:

232 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As

AcChartLayer)
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetOuterMarginRatio(0.2)

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::CustomizeLayers method
AcChart::CustomizeSeriesStyles method
AcChart::GetNumberOfStudyLayers method
AcChart::Localize method
AcChartLayer::GetXAxis method
AcChartLayer::GetYAxis method
Class AcChartAxis

AcChart::CustomizeCategoriesAndSeries method
Override the CustomizeCategoriesAndSeries() method to add, remove, or
modify categories, series, and points within a chart.

Syntax Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer, overlayLayer
As AcChartLayer, studyLayers() As AcChartLayer)

Parameters baseLayer
A reference to the chart’s base layer object.

overlayLayer
A reference to the chart’s overlay layer object. Nothing if the chart has no overlay
layer.

studyLayers()
An array of references to the chart’s study layer objects. To find out how many
study layers there are in a chart, call the chart’s GetNumberOfStudyLayers()
method.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to insert a new category. The new category appears as the first category
on the x-axis. The points for each series in the new category are populated with
the mean value of the other points in the same series.

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Insert a new category.
Dim newCategory As AcChartCategory
Set newCategory = baseLayer.InsertCategory(1, "Mean")

C h a p t e r 7 , A F C c l a s s e s 233

AcChart

' Loop through all the series.
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
' Get the mean value of the points in the series.
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()
Dim point As AcChartPoint
Dim pointIndex As Integer
Dim total As Double
total = 0
Dim count As Integer
count = 0
' Ignore the first point in each series, because
' that point belongs to the new category.
For pointIndex = 2 To numberOfPoints

Set point = series.GetPoint(pointIndex)
' Ignore missing values.
If Not point.IsMissing() Then

total = total + point.GetYValue()
count = count + 1

End If
Next pointIndex

' Put the mean value into the point for the new category.
Set point = series.GetPoint(1)
point.SetYValue(total / count)

Next seriesIndex
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::CustomizeChart method
AcChart::CustomizeLayers method
AcChart::CustomizeSeriesStyles method
AcChart::DisableStudyLayers method
AcChart::Localize method
AcChartLayer::AddCategory method
AcChartLayer::AddSeries method
AcChartLayer::GetCategory method
AcChartLayer::GetNumberOfCategories method
AcChartLayer::GetNumberOfSeries method
AcChartLayer::GetSeries method
AcChartLayer::InsertCategory method

234 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

AcChartLayer::InsertSeries method
AcChartLayer::RemoveCategory method
AcChartLayer::RemoveSeries method
AcChartSeries::AddEmptyPoint method
AcChartSeries::AddPoint method
AcChartSeries::GetNumberOfPoints method
AcChartSeries::GetPoint method
AcChartSeries::InsertEmptyPoint method
AcChartSeries::InsertPoint method
AcChartSeries::RemovePoint method
Class AcChartLayer
Class AcChartPoint
Class AcChartSeries

AcChart::CustomizeChart method
Override the CustomizeChart() method to modify the basic structure and
appearance of a chart.

Syntax Sub CustomizeChart()

Example The following example overrides a chart’s CustomizeChart() method to disable
the overlay layer, depending on the value of a Boolean parameter:

Sub CustomizeChart()
If Not parmShowOverlay Then

DisableOverlayLayer()
End If

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeLayers method
AcChart::CustomizeSeriesStyles method
AcChart::Localize method

AcChart::CustomizeLayers method
Override the CustomizeLayers() method to modify the appearance of the
individual layers of a chart.

Syntax Sub CustomizeLayers(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)

Parameters baseLayer
A reference to the chart’s base layer object.

C h a p t e r 7 , A F C c l a s s e s 235

AcChart

overlayLayer
A reference to the chart’s overlay layer object. Nothing if the chart has no overlay
layer.

studyLayers()
An array of references to the chart’s study layer objects. To find out how many
study layers there are in a chart, call the chart’s GetNumberOfStudyLayers()
method.

Example The following example overrides a chart’s CustomizeLayers() method to show
values side-by-side or as stacked percentages, depending on the value of a
Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As

AcChartLayer)
If parmShowAsPercentages Then

baseLayer.SetSeriesPlacement(
ChartSeriesPlacementAsPercentages)

Else
baseLayer.SetSeriesPlacement(
ChartSeriesPlacementSideBySide)

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::CustomizeSeriesStyles method
AcChart::GetNumberOfStudyLayers method
AcChart::Localize method
Class AcChartLayer

AcChart::CustomizeSeriesStyles method
Override the CustomizeSeriesStyles() method to modify the appearance of
individual series or pie slices in a chart.

Syntax Sub CustomizeSeriesStyles(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)

Parameters baseLayer
A reference to the chart’s base layer object.

overlayLayer
A reference to the chart’s overlay layer object. Nothing if the chart has no overlay
layer.

236 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

studyLayers()
An array of references to the chart’s study layer objects. To determine the number
of study layers in a chart, call the chart’s GetNumberOfStudyLayers() method.

Example The following example overrides a chart’s CustomizeSeriesStyles() method to
give the first series a green background:

Sub CustomizeSeriesStyles(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim seriesStyle As AcChartSeriesStyle
Set seriesStyle = baseLayer.GetSeriesStyle(1)
seriesStyle.SetBackgroundColor(Green)

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::CustomizeLayers method
AcChart::GetNumberOfStudyLayers method
AcChart::Localize method
AcChartLayer::GetSeriesStyle method
Class AcChartSeriesStyle

AcChart::DescribeLayout method
Call this method to compute the layout of a chart without rendering it. You can
get information about the chart’s layout by calling DescribeLayout() then calling
the following methods:

■ AcChartLayer::GetPieCenter method

■ AcChartLayer::GetPieRadius method

■ AcChartLayer::GetPlotAreaPosition method

■ AcChartLayer::GetPlotAreaSize method

You can call DescribeLayout() only from the DrawOnChart() method.

Syntax Sub DescribeLayout()

Example For an example of how to use this method, see the example for the
AcChart::DrawOnChart() method.

See also AcChart::DrawOnChart method
AcChartLayer::GetPieCenter method
AcChartLayer::GetPieRadius method
AcChartLayer::GetPlotAreaPosition method
AcChartLayer::GetPlotAreaSize method

C h a p t e r 7 , A F C c l a s s e s 237

AcChart

AcChart::DisableHyperchart method
If you define hyperchart links in a chart, you can disable the links in code by
calling the DisableHyperchart() method from the chart’s CustomizeChart()
method. You can call DisableHyperchart() only from CustomizeChart().

Syntax Sub DisableHyperchart()

Example The following example overrides a chart’s CustomizeChart() method to disable
hyperchart links, depending on the value of a Boolean parameter:

Sub CustomizeChart()
If Not parmAllowHyperlinks Then

DisableHyperchart()
End If

End Sub

See also AcChart::CustomizeChart method
AcChart::EnableHyperchart method

AcChart::DisableOverlayLayer method
If you define an overlay layer in a chart, you can disable the overlay layer
programmatically by calling the DisableOverlayLayer() method from the chart’s
CustomizeChart() method. You can call DisableOverlayLayer() only from the
CustomizeChart() method.

Syntax Sub DisableOverlayLayer()

Example The following example overrides a chart’s CustomizeChart() method to disable
the overlay layer, depending on the value of a Boolean parameter:

Sub CustomizeChart()
If Not parmShowOverlay Then

DisableOverlayLayer()
End If

End Sub

See also AcChart::CustomizeChart method
AcChart::DisableStudyLayers method
AcChart::EnableOverlayLayer method

AcChart::DisableStudyLayers method
If you define a study layer in a chart, you can disable the study layer
programmatically by calling the DisableStudyLayers() method from the chart’s
CustomizeChart() method. You can call DisableStudyLayers() only from the
CustomizeChart() method.

Syntax Sub DisableStudyLayers()

238 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Example The following example overrides a chart’s CustomizeChart() method to disable
the study layer, depending on the value of a Boolean parameter:

Sub CustomizeChart()
If Not parmShowStudy Then

DisableStudyLayers()
End If

End Sub

See also AcChart::CustomizeChart method
AcChart::DisableOverlayLayer method
AcChart::EnableStudyLayers method

AcChart::DrawOnChart method
Override this method to add drawing elements such as lines, rectangles, and text
to a chart.

Syntax Sub DrawOnChart(baseLayer As AcChartLayer,
overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Example In the following example, the values in a line chart are known to have a margin of
error of ±10%. The chart’s DrawOnChart() method has been overridden to draw
points as bars that show the range of possible values.

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Get the position and size of the chart's plot area
DescribeLayout()
Dim plotAreaPosition As AcPoint
plotAreaPosition = baseLayer.GetPlotAreaPosition()
Dim plotAreaSize As AcSize
plotAreaSize = baseLayer.GetPlotAreaSize()

' Convert values to points
Dim x As Double
x = plotAreaPosition.X / OnePoint
Dim y As Double
y = plotAreaPosition.Y / OnePoint
Dim w As Double
w = PlotAreaSize.Width / OnePoint
Dim h As Double
h = PlotAreaSize.Height / OnePoint

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
' Get the visual attributes of the bars for the series
Dim seriesStyle As AcChartSeriesStyle
Set seriesStyle = baseLayer.GetSeriesStyle(1)
Dim fillStyle As AcDrawingFillStyle

C h a p t e r 7 , A F C c l a s s e s 239

AcChart

fillStyle = seriesStyle.GetFillStyle()
Dim seriesColor As AcColor
seriesColor = fillStyle.Color1
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()
Dim categoryWidth As Double
categoryWidth = (w / numberOfPoints)
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
Dim minY As Double
minY = yAxis.GetMinimumValue()
Dim maxY As Double
maxY = yAxis.GetMaximumValue()
Dim yRange As Double
yRange = maxY - minY

Dim errorMargin As Double
errorMargin = 0.1 ' +/- 10% error

' Create SVG to draw the error bars
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"

' Draw the error bars for each point
Dim pointIndex As Integer
For pointIndex = 1 To numberOfPoints
Dim point As AcChartPoint
Set point = series.GetPoint(pointIndex)
If Not point.IsMissing() Then
Dim pointYValue As Double
pointYValue = point.GetYValue()
Dim pointX As Double
pointX = (pointIndex - 0.5) * categoryWidth
Dim pointY As Double
pointY = (1 - ((pointYValue - minY) / yRange)) * h
Dim errorBarHeight As Double
errorBarHeight

+ = (pointYValue / yRange) * (errorMargin * 2) * h
svg = svg

+ & "<rect"

240 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

+ & SVGAttr("x", pointX - 8)
+ & SVGAttr("y", pointY - (errorBarHeight / 2))
+ & SVGAttr("width", 16)
+ & SVGAttr("height", errorBarHeight)
+ & SVGColorAttr("fill", seriesColor)
+ & " stroke='black' stroke-width='0.667'/>"

End If
' Hide the original bar
Dim pointStyle As AcChartPointStyle
Set pointStyle = point.AddCustomStyle()
fillStyle.Color1 = Transparent
pointStyle.SetFillStyle(fillStyle)
borderStyle.Pen = DrawingLinePenNone
pointStyle.SetBorderStyle(borderStyle)

Next pointIndex

svg = svg & "</svg>"

Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
' Position and size the SVG drawing plane
' to match the chart's plot area
svgPlane.SetPosition(plotAreaPosition.X,

+ plotAreaPosition.Y)
svgPlane.SetSize(PlotAreaSize.Width, PlotAreaSize.Height)
svgPlane.SetSVG(svg)

End Sub

See also AcChart::DescribeLayout method
Class AcDrawing

AcChart::EnableHyperchart method
Call EnableHyperchart() to enable hyperchart links in a chart. Hyperchart links
are enabled automatically if any of the category, series, or point link expressions
are set in Advanced Chart Options. If you override GetHyperchartLink() to
compute hyperchart links instead of using one of the hyperchart link expressions,
hyperchart links are not enabled automatically. In this case, you must call
EnableHyperchart() from the chart’s CustomizeChart() method.

You can call EnableHyperchart() only from the CustomizeChart() method.

Syntax Sub EnableHyperchart()

Example The following example overrides a chart’s CustomizeChart() method to enable
hyperchart links:

Sub CustomizeChart()
EnableHyperchart()

End Sub

C h a p t e r 7 , A F C c l a s s e s 241

AcChart

See also AcChart::CustomizeChart method
AcChart::DisableHyperchart method
AcChart::GetHyperchartLink method

AcChart::EnableOverlayLayer method
Call the EnableOverlayLayer() method to enable the overlay layer of a chart.

You can call this method only from:

■ A chart’s CustomizeChart() method

■ Code that is creating a chart dynamically, before you call the chart’s
MakeLayers() method

If you call EnableOverlayLayer(), you must also populate the overlay layer
programmatically. It is often easier to define an overlay layer using Chart Builder.
To populate the overlay layer programmatically, leave Chart Builder’s Overlay
Data page blank and create series and points in the chart’s
CustomizeCategoriesAndSeries() method.

Syntax Sub EnableOverlayLayer()

Examples The following example overrides a chart’s CustomizeChart() method to enable
the chart’s overlay layer:

Sub CustomizeChart()
EnableOverlayLayer()

End Sub

For another example of how to use this method, see the dynamic chart example
for the AcChart class.

See also AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::DisableOverlayLayer method
AcChart::EnableStudyLayers method
Class AcChart
Class AcChartLayer

AcChart::EnableStudyLayers method
Call EnableStudyLayers() to add one or more study layers to a chart
programmatically. This method is the only way you can add multiple study
layers to a chart.

If you call EnableStudyLayers(), you must also populate the study layer
programmatically. It is often easier to define a study layer using Chart Builder. To
populate the study layer leave Chart Builder’s Study Data page blank and create
series and points in the chart’s CustomizeCategoriesAndSeries() method.

242 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

You can call EnableStudyLayers only from:

■ A chart’s CustomizeChart() method

■ Code that is creating a chart dynamically, before you call the chart’s
MakeLayers() method

Syntax Sub EnableStudyLayers(numberOfStudyLayers As Integer)

Examples The following example overrides a chart’s CustomizeChart() method to enable
two study layers:

Sub CustomizeChart()
EnableStudyLayers(2)

End Sub

For another example of how to use this method, see the dynamic chart example
for the AcChart class.

See also AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::DisableStudyLayers method
AcChart::EnableOverlayLayer method
Class AcChart
Class AcChartLayer

AcChart::FlipAxes method
Determines whether a chart’s x-axis and y-axis are reversed. If the axes are
reversed, the x-axis displays vertically and the y-axis displays horizontally.

Syntax Function FlipAxes() As Boolean

Returns True if the chart’s x-axis and y-axis are reversed.
False if the chart’s x-axes and y-axes are not reversed.

See also AcChart::SetFlipAxes method

AcChart::GetBaseLayer method
Returns a reference to the base layer of a chart.

Syntax Function GetBaseLayer() As AcChartLayer

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

Returns A reference to the base layer of the chart.

See also AcChart::GetLayer method
AcChart::GetOverlayLayer method
AcChart::GetStudyLayer method

C h a p t e r 7 , A F C c l a s s e s 243

AcChart

Class AcChart
Class AcChartLayer

AcChart::GetBorderStyle method
Returns the style of the border around a chart. To change the border around a
chart, call this method to get the default settings.

Syntax Function GetBorderStyle() As AcDrawingBorderStyle

Returns The style of the border around the chart.

Example The following example overrides a chart’s CustomizeChart() method to create a
border around the chart, depending on the value of a Boolean parameter.
GetBorderStyle() gets the default settings so that only the border style’s Pen
member needs to be changed.

Sub CustomizeChart()
If parmAddABorder Then

Dim borderStyle As AcDrawingBorderStyle
borderStyle = GetBorderStyle()
borderStyle.Pen = DrawingLinePenSolid
SetBorderStyle(borderStyle)

End If
End Sub

See also AcChart::SetBorderStyle method
AcChartLayer::GetPlotAreaBorderStyle method
AcDrawingBorderStyle

AcChart::GetChartDrawingPlane method
Returns a reference to the chart drawing plane of a chart.

Syntax Function GetChartDrawingPlane() As AcDrawingChartPlane

Returns A reference to the chart drawing plane of the chart.

Example For an example of how to use this method, see the example for the
AcDrawingChartPlane class.

See also Class AcDrawingChartPlane

AcChart::GetFillStyle method
Returns the background fill style for a chart. To change the background of a chart,
call GetFillStyle() to get the default settings.

Syntax Function GetFillStyle() As AcDrawingFillStyle

Returns The background fill style for the chart.

244 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Example The following example overrides a chart’s CustomizeChart() method to create a
patterned background, depending on the value of a Boolean parameter.
GetFillStyle() is used to get the default settings so that only the fill style’s Pattern
member needs to be changed.

Sub CustomizeChart()
If parmAddBackgroundPattern Then

Dim fillStyle As AcDrawingFillStyle
fillStyle = GetFillStyle()
fillStyle.Pattern = DrawingFillPattern05Percent
SetFillStyle(fillStyle)

End If
End Sub

See also AcChart::SetFillStyle method
AcChartLayer::GetPlotAreaFillStyle method
AcDrawingFillStyle

AcChart::GetHyperchartLink method
Override the GetHyperchart() method to provide the hyperlink URL for a given
layer, category, and series within a chart. In most cases, you can use the hyperlink
expressions in Advanced Chart Options to define hyperlinks. If you need more
advanced control over hyperlinking, you can override a chart’s
GetHyperchartLink() method to compute the hyperlink URL for a given layer,
category, and series.

Hyperchart links are enabled automatically if any of the category, series, or point
link expressions are set in Advanced Chart Options. If you override a chart’s
GetHyperchartLink() method to compute hyperchart links instead of using one
of the hyperchart link expressions, hyperchart links are not enabled
automatically. In this case, you must call EnableHyperchart() from the chart’s
CustomizeChart() method.

Syntax Function GetHyperchartLink(layerNumber As Integer, categoryNumber As
Integer, seriesNumber As Integer) As String

Parameters layerNumber
The selected layer, specified as an index into the chart’s list of layers. The first
layer is number 1.

If layerNumber is less than 1, no layer was selected.

categoryNumber
The selected category, specified as an index into the selected layer’s list of
categories. The first category is number 1.

If the selected layer is a scatter chart, the layer has no categories. In this case,
categoryNumber is the index of the selected point within the selected series. The
first point in a series is number 1.

C h a p t e r 7 , A F C c l a s s e s 245

AcChart

If categoryNumber is less than 1, no category or point was selected.

seriesNumber
The selected series, specified as an index into the selected layer’s list of series. The
first series is number 1.

If seriesNumber is less than 1, no series was selected.

Returns The hyperlink URL corresponding to the specified layer, category and series.
An empty string if there is no valid hyperlink.

Example In the following example, a chart has one category for each sales region. The
example overrides the GetHyperchartLink() method of the chart to link to
different sales team web sites, depending on the target category.

Function GetHyperchartLink(layerNumber As Integer,
+ categoryNumber As Integer, seriesNumber As Integer) As String

If (layerNumber < 1) Or (categoryNumber < 1) Or (seriesNumber
< 1) Then
Exit Function

End If
Dim layer As AcChartLayer
Set layer = GetLayer(layerNumber)
Dim category As AcChartCategory
Set category = layer.GetCategory(categoryNumber)
Dim region As String
region = category.GetKeyValue()
Select Case region
Case "North"

GetHyperchartLink = "http://www.detroit.icharts.com/sales"
Case "East"

GetHyperchartLink = "http://www.boston.icharts.com/
salesgroup"

Case "South"
GetHyperchartLink = "http://www.houston.icharts.com/

salesteam"
Case "West"

GetHyperchartLink = "http://www.portland.icharts.com/
salesportal"

Case Else
' Unknown region - no link.
GetHyperchartLink = ""

End Select
End Function

See also AcChart::CustomizeChart method
AcChart::EnableHyperchart method
AcChart::GetLayer method
AcChartLayer::GetCategory method
AcChartLayer::GetSeries method

246 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Class AcChartCategory
Class AcChartLayer
Class AcChartSeries

AcChart::GetLayer method
Returns a reference to the specified layer of a chart. Where possible, use one of the
following more specific methods to get a chart layer:

■ GetBaseLayer()

■ GetOverlayLayer()

■ GetStudyLayer()

Use GetLayer() in the following situations:

■ To access all the layers in a chart within a loop

■ To override a method that has a layer index parameter, such as
GetHyperchartLink()

To determine the number of layers in a chart, call the chart’s
GetNumberOfLayers() method.

Syntax Function GetLayer(index As Integer) As AcChartLayer

Parameter index
An index into the chart’s list of layers. The first layer is index 1.

Returns A reference to the specified layer of the chart.

Example In the following example, all a chart’s layers are bar chart layers. The example
overrides the chart’s CustomizeCategoriesAndSeries() method to adjust the gaps
between categories in all its layers so that the total width of the bars in each
category is the same in each layer.

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim numberOfLayers As Integer
numberOfLayers = GetNumberOfLayers()
Dim layerIndex As Integer

For layerIndex = 1 To numberOfLayers
Dim layer As AcChartLayer
Set layer = GetLayer(layerIndex)
' Adjust the gap between categories so that
' all layers' bars take up the same space.
Dim gapRatio As Integer
gapRatio = layer.GetNumberOfSeries()
' The maximum permitted gap ratio is 5.

C h a p t e r 7 , A F C c l a s s e s 247

AcChart

If (gapRatio > 5) Then
gapRatio = 5

End If
layer.SetCategoryGapRatio(gapRatio)

Next layerIndex
End Sub

See also AcChart::GetBaseLayer method
AcChart::GetNumberOfLayers method
AcChart::GetOverlayLayer method
AcChart::GetStudyLayer method
Class AcChartLayer

AcChart::GetLegendBackgroundColor method
Returns the background color of a chart’s legend.

Syntax Function GetLegendBackgroundColor() As AcColor

Returns The background color of the chart’s legend.

See also AcChart::SetLegendBackgroundColor method

AcChart::GetLegendBorderStyle method
Returns the style of the border around a chart’s legend. To change the border
around a chart’s legend, call GetLegendBorderStyle() to get the default settings.

Syntax Function GetLegendBorderStyle() As AcDrawingBorderStyle

Returns The style of the border around the chart.

Example The following example overrides a chart’s CustomizeChart() method to change
the color of the border around the chart’s legend to a value specified by a
parameter. GetLegendBorderStyle() is used to get the default settings so that only
the border style’s Color member needs to be changed.

Sub CustomizeChart()
Dim legendBorderStyle As AcDrawingBorderStyle
legendBorderStyle = GetLegendBorderStyle()
legendBorderStyle.Color = parmLegendBorderColor
SetLegendBorderStyle(legendBorderStyle)

End Sub

See also AcChart::SetLegendBorderStyle method
AcDrawingBorderStyle

248 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

AcChart::GetLegendFont method
Returns the font used for a chart’s legend. The GetLegendFont() method returns
the font used for a chart’s legend.

Syntax Function GetLegendFont() As AcFont

Returns The font used for the chart’s legend.

Example The following example overrides a chart’s CustomizeChart() method to make the
chart’s legend bold, depending on the value of a Boolean parameter.
GetLegendFont() is used to get the default font so that only the Bold member
needs to be changed.

Sub CustomizeChart()
If parmBoldLegend Then

Dim legendFont As AcFont
legendFont = GetLegendFont()
legendFont.Bold = True
SetLegendFont(legendFont)

End If
End Sub

See also AcChart::SetLegendFont method
AcFont

AcChart::GetLegendPlacement method
Returns the placement of a chart’s legend relative to the chart.

Syntax Function GetLegendPlacement() As AcChartLegendPlacement

Returns The placement of the legend in the chart.

See also AcChartLegendPlacement
AcChart::SetLegendPlacement method

AcChart::GetNumberOfLayers method
Returns the number of layers in a chart. Use this method when you want to access
all the layers of a chart within a loop, using the GetLayer() method.

Syntax Function GetNumberOfLayers() As Integer

Returns The number of layers in the chart.

Example For an example of how to use this method, see the example for the GetLayer()
method.

See also AcChart::GetLayer method
AcChart::GetNumberOfStudyLayers method
AcChart::HasOverlayLayer method

C h a p t e r 7 , A F C c l a s s e s 249

AcChart

AcChart::GetNumberOfStudyLayers method
Returns the number of study layers in a chart. Use this method:

■ To test whether a chart has any study layers

■ To access all the study layers of a chart within a loop, using the
GetStudyLayer() method

Syntax Function GetNumberOfStudyLayers() As Integer

Returns The number of study layers in the chart.
Zero if the chart has no study layers.

See also AcChart::GetNumberOfLayers method
AcChart::GetStudyLayer method
AcChart::HasOverlayLayer method

AcChart::GetOverlayLayer method
Returns a reference to the overlay layer of a chart.

Syntax Function GetOverlayLayer() As AcChartLayer

Returns A reference to the overlay layer of the chart.
Nothing if the chart has no overlay layer.

See also AcChart::GetBaseLayer method
AcChart::GetLayer method
AcChart::GetStudyLayer method
AcChart::HasOverlayLayer method
Class AcChartLayer

AcChart::GetStudyLayer method
Returns a reference to the specified study layer of a chart. To determine the
number of study layers in a chart, call the chart’s GetNumberOfStudyLayers()
method.

Syntax Function GetStudyLayer(index As Integer) As AcChartLayer

Parameter index
An index into the chart’s list of study layers. The first study layer is index 1.

Returns A reference to the specified study layer of the chart.

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also AcChart::GetBaseLayer method
AcChart::GetLayer method
AcChart::GetNumberOfStudyLayers method

250 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

AcChart::GetOverlayLayer method
Class AcChart
Class AcChartLayer

AcChart::GetTitleStyle method
Returns the style of a chart’s title. To change the style of a chart’s title, call
GetTitleStyle() to get the default settings.

Syntax Function GetTitleStyle() As AcDrawingTextStyle

Returns The chart’s title style.

Example The following example overrides a chart’s CustomizeChart() method to make the
chart’s title italic, depending on the value of a Boolean parameter. GetTitleStyle()
gets the default settings so that only the title style’s Font member needs to be
changed.

Sub CustomizeChart()
If parmItalicTitle Then

Dim titleStyle As AcDrawingTextStyle
titleStyle = GetTitleStyle()
titleStyle.Font.Italic = True
SetTitleStyle(titleStyle)

End If
End Sub

See also AcChart::SetTitleStyle method
AcDrawingTextStyle

AcChart::GetTitleText method
Returns the text of a chart’s title.

Syntax Function GetTitleText() As String

Returns The chart’s title text.

See also AcChart::GetTitleText method

AcChart::HasOverlayLayer method
Determines whether a chart has an overlay layer.

Syntax Function GetTitleText() As String

Returns True if the chart has an overlay layer.
False if the chart does not have an overlay layer.

See also AcChart::DisableOverlayLayer method

C h a p t e r 7 , A F C c l a s s e s 251

AcChart

AcChart::EnableOverlayLayer method
AcChart::GetOverlayLayer method

AcChart::IsHyperchart method
Determines whether a chart has hyperchart links.

Syntax Function IsHyperchart() As Boolean

Returns True if the chart has hyperchart links.
False if the chart does not have hyperchart links.

See also AcChart::DisableHyperchart method
AcChart::EnableHyperchart method

AcChart::IsThreeD method
Determines whether a chart has a three-dimensional appearance.

Syntax Function IsThreeD() As Boolean

Returns True if the chart has a three-dimensional appearance.
False if the chart has a two-dimensional appearance.

See also AcChart::SetThreeD method

AcChart::Localize method
Override the Localize() method to localize a chart at view time. You cannot create
new persistent objects in this method. For example, you cannot add a new series
to a chart layer from this method.

Changes you make in this method apply only at the instant a chart is being
rendered to a viewable image and are not persistent.

Syntax Sub Localize(baseLayer As AcChartLayer, overlayLayer As AcChartLayer,
studyLayers() As AcChartLayer)

Parameters baseLayer
A reference to the chart’s base layer object.

overlayLayer
A reference to the chart’s overlay layer object. Nothing if the chart has no overlay
layer.

studyLayers()
An array of references to the chart’s study layer objects. To find out how many
study layers there are in a chart, call the chart’s GetNumberOfStudyLayers()
method.

252 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Example The following example overrides a chart’s Localize() method to translate labels
on the chart’s x-axis into French at view time if the viewing locale is fr_FR:

Sub Localize(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)
If (GetLocaleName() = "fr_FR") Then

Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
Dim numberOfLabels As Integer
numberOfLabels = xAxis.GetNumberOfLabels

Dim labelIndex As Integer
For labelIndex = 1 To numberOfLabels

Select Case xAxis.GetLabelValue(labelIndex)
Case "North"

xAxis.SetLabelValue(labelIndex, "Nord")
Case "South"

xAxis.SetLabelValue(labelIndex, "Sud")
Case "East"

xAxis.SetLabelValue(labelIndex, "Est")
Case "West"

xAxis.SetLabelValue(labelIndex, "Ouest")
End Select

Next labelIndex
End If

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::CustomizeCategoriesAndSeries method
AcChart::CustomizeChart method
AcChart::CustomizeLayers method
AcChart::CustomizeSeriesStyles method
AcChart::GetNumberOfStudyLayers method
Class AcChartLayer

AcChart::MakeAxes method
Call the MakeAxes() method to create all the axes in a chart. If you create a chart
dynamically and do not use the standard chart building mechanism, you must
call the MakeAxes() method to create all the axes in the chart before calling the
chart’s ComputeScales() method.

Syntax Sub MakeAxes()

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also Class AcChart

C h a p t e r 7 , A F C c l a s s e s 253

AcChart

AcChart::MakeLayers method
Call the MakeLayers() method to create all the layers in a chart. If you create a
chart dynamically and do not use the standard chart building mechanism, you
must call MakeLayers() to create all the layers.

Syntax Sub MakeLayers()

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also Class AcChart

AcChart::SetBackgroundColor method
Call the SetBackgroundColor() method to set the background color of a chart.
This method sets a chart’s fill style to a single solid color and sets a chart’s fill
style members as follows:

■ The Color1 member is set to the specified background color.

■ The Color2 member is not affected.

■ The Pattern member is set to DrawingFillPatternSolid.

The recommended method from which to call SetBackgroundColor() is a chart’s
CustomizeChart() method.

Syntax Sub SetBackgroundColor(backgroundColor As AcColor)

Parameter backgroundColor
The background color for the chart.

Example The following example overrides a chart’s CustomizeChart() method to set the
background color to the value of a parameter:

Sub CustomizeChart()
SetBackgroundColor(parmChartBackgroundColor)

End Sub

See also AcChart::CustomizeChart method
AcChart::SetFillStyle method
AcChartLayer::SetPlotAreaBackgroundColor method
AcDrawingFillStyle

AcChart::SetBorderStyle method
Call the SetBorderStyle() method to set the style of the border around a chart. The
recommended method from which to call SetBorderStyle() is a chart’s
CustomizeChart() method.

Syntax Sub SetBorderStyle(borderStyle As AcDrawingBorderStyle)

254 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Parameter borderStyle
The border style for the chart.

Example The following example overrides a chart’s CustomizeChart() method to create a
border around the chart, depending on the value of a Boolean parameter.
GetBorderStyle() gets the default settings so that only the border style’s Pen
member needs to be changed.

Sub CustomizeChart()
If parmAddABorder Then

Dim borderStyle As AcDrawingBorderStyle
borderStyle = GetBorderStyle()
borderStyle.Pen = DrawingLinePenSolid
SetBorderStyle(borderStyle)

End If
End Sub

See also AcChart::CustomizeChart method
AcChart::GetBorderStyle method
AcChartLayer::SetPlotAreaBorderStyle method
AcDrawingBorderStyle

AcChart::SetFillStyle method
Call SetFillStyle() to set the background fill style for a chart. The recommended
method from which to call SetFillStyle() is a chart’s CustomizeChart() method.

Syntax Sub SetFillStyle(fillStyle As AcDrawingFillStyle)

Parameter fillStyle
The background fill style for the chart.

Example The following example overrides a chart’s CustomizeChart() method to create a
patterned background. GetFillStyle() gets the default settings so that only the fill
style’s Pattern member needs to be changed.

Sub CustomizeChart()
If parmAddBackgroundPattern Then

Dim fillStyle As AcDrawingFillStyle
fillStyle = GetFillStyle()
fillStyle.Pattern = DrawingFillPattern05Percent
SetFillStyle(fillStyle)

End If
End Sub

See also AcChart::CustomizeChart method
AcChart::GetFillStyle method
AcChart::SetBackgroundColor method
AcChartLayer::SetPlotAreaFillStyle method
AcDrawingFillStyle

C h a p t e r 7 , A F C c l a s s e s 255

AcChart

AcChart::SetFlipAxes method
Call the SetFlipAxes() method to specify whether a chart’s x-axis and y-axis are
reversed. The recommended method from which to call SetFlipAxes() is a chart’s
CustomizeChart() method.

You can use reversed axes only on a chart whose base layer is a bar chart. You
cannot use reversed axes on a chart that has an overlay layer or a study layer.

Syntax Sub SetFlipAxes(flipAxes As Boolean)

Parameter flipAxes
True reverses the chart’s x-axis and y-axis.

False does not reverse the chart’s x-axis and y-axis.

Example The following example overrides a chart’s CustomizeChart() method to reverse
the chart’s axes, depending on the value of a Boolean parameter:

Sub CustomizeChart()
SetFlipAxes(parmFlipAxes)

End Sub

See also AcChart::CustomizeChart method
AcChart::FlipAxes method

AcChart::SetLegendBackgroundColor method
Call the SetLegendBackgroundColor() method to set the background color of a
chart’s legend. The recommended method from which to call
SetLegendBackgroundColor() is a chart’s CustomizeChart() method.

Syntax Sub SetLegendBackgroundColor(legendBackgroundColor As AcColor)

Parameter legendBackgroundColor
The background color for the chart’s legend.

Example The following example overrides a chart’s CustomizeChart() method to set the
background color of the chart’s legend to the value of a parameter:

Sub CustomizeChart()
SetLegendBackgroundColor(parmLegendBackgroundColor)

End Sub

See also AcChart::CustomizeChart method
AcChart::GetLegendBackgroundColor method

AcChart::SetLegendBorderStyle method
Call the SetLegendBorderStyle() method to set the style of the border around a
chart’s legend. The recommended method from which to call
SetLegendBorderStyle() is a chart’s CustomizeChart() method.

256 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Syntax Sub SetLegendBorderStyle(legendBorderStyle As AcDrawingBorderStyle)

Parameter legendBorderStyle
The border style for the chart’s legend.

Example The following example overrides a chart’s CustomizeChart() method to change
the color of the border around the chart’s legend to a value specified by a
parameter. GetLegendBorderStyle() gets the default settings so that only the
border style’s Color member needs to be changed.

Sub CustomizeChart()
Dim legendBorderStyle As AcDrawingBorderStyle
legendBorderStyle = GetLegendBorderStyle()
legendBorderStyle.Color = parmLegendBorderColor
SetLegendBorderStyle(legendBorderStyle)

End Sub

See also AcChart::CustomizeChart method
AcChart::GetLegendBorderStyle method
AcDrawingBorderStyle

AcChart::SetLegendFont method
Call the SetLegendFont() method to set the font for a chart’s legend. The
recommended method from which to call SetLegendFont() is a chart’s
CustomizeChart() method. To change the legend font at view time, call this
method from a chart’s Localize() method.

Syntax Sub SetLegendFont(legendFont As AcFont)

Parameter legendFont
The font to be used for the chart’s legend.

Example The following example overrides a chart’s CustomizeChart() method to make the
chart’s legend bold, based on the value of a Boolean parameter. GetLegendFont()
gets the default font so that only the Bold member needs to be changed.

Sub CustomizeChart()
If parmBoldLegend Then

Dim legendFont As AcFont
legendFont = GetLegendFont()
legendFont.Bold = True
SetLegendFont(legendFont)

End If
End Sub

See also AcChart::CustomizeChart method
AcChart::GetLegendFont method
AcChart::Localize method
AcFont

C h a p t e r 7 , A F C c l a s s e s 257

AcChart

AcChart::SetLegendPlacement method
Call the SetLegendPlacement() method to set the placement of a chart’s legend.
The recommended method from which to call SetLegendPlacement() is a chart’s
CustomizeChart() method.

Syntax Sub SetLegendPlacement(legendPlacement As AcChartLegendPlacement)

Parameter legendPlacement
The placement of the chart’s legend.

Example The following example overrides a chart’s CustomizeChart() method to hide the
chart’s legend, depending on the value of a Boolean parameter:

Sub CustomizeChart()
If parmHideLegend Then

SetLegendPlacement(ChartLegendPlacementNone)
End If

End Sub

See also AcChart::CustomizeChart method
AcChart::GetLegendPlacement method
AcChartLegendPlacement

AcChart::SetMatchBaseAndOverlayScales method
Call the SetMatchBaseAndOverlayScales() method to specify whether the base
and overlay y-axis scales of a chart are forced to be identical. If you call this
method with matchBaseAndOverlayScales set to True, the y-axis settings of the
overlay layer will be copied from the base layer’s y-axis.

You can call this method only from a chart’s CustomizeChart() method.

Syntax Sub SetMatchBaseAndOverlayScales(matchBaseAndOverlayScales
As Boolean)

Parameter matchBaseAndOverlayScales
True forces the chart’s base and overlay y-axis scales to be identical. False allows
the chart’s base and overlay y-axis scales to be independent of each other.

Example The following example overrides a chart’s CustomizeChart() method to force the
chart’s base and overlay y-axis scales to be identical:

Sub CustomizeChart()
SetMatchBaseAndOverlayScales(True)

End Sub

See also AcChart::BaseAndOverlayScalesAreMatched method
AcChart::CustomizeChart method

258 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

AcChart::SetStatus method
Call the SetStatus() method to set the status of a chart you are creating
dynamically. The chart status is part of a safety mechanism that checks whether
methods are being called in the correct sequence to produce a valid chart. If you
create a chart dynamically and do not use the standard chart building
mechanism, you must call the SetStatus() method to set the status as you create
and populate the chart.

Call SetStatus() with status set to ChartStatusBuilding after you call the chart’s
StartLayers() method and before you call the chart’s Finish() method.

Syntax Sub SetStatus(status As AcChartStatus)

Parameter status
The new status for the chart.

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also AcChartStatus
Class AcChart

AcChart::SetThreeD method
Call the SetThreeD() method to specify whether a chart displays with a three-
dimensional appearance. The recommended method from which to call
SetThreeD() is a chart’s CustomizeChart() method.

The following chart types do not support three-dimensional appearance:

■ Scatter

■ Step

■ Stock

You cannot use three-dimensional appearance on a chart that has an overlay layer
or a study layer.

If you attempt to set three-dimensional appearance on a chart that has a layer that
does not support three-dimensional appearance, SetThreeD() throws a run-time
error. For example, selecting a three-dimensional appearance on a chart with a
step chart layer throws a run-time error.

Syntax Sub SetThreeD(threeD As Boolean)

Parameter threeD
True displays the chart with a three-dimensional appearance. False displays the
chart with a two-dimensional appearance.

Example The following example overrides a chart’s CustomizeChart() method to select
between two- and three-dimensional appearances, depending on the value of a
Boolean parameter:

C h a p t e r 7 , A F C c l a s s e s 259

AcChart

Sub CustomizeChart()
SetThreeD(parmThreeD)

End Sub

See also AcChart::CustomizeChart method
AcChart::IsThreeD method

AcChart::SetTitleStyle method
Call the SetTitleStyle() method to set the style of a chart’s title. The recommended
method from which to call SetTitleStyle() is a chart’s CustomizeChart() method.

To change the title style at view time, call SetTitleStyle() from a chart’s Localize()
method.

Syntax Sub SetTitleStyle(titleStyle As AcDrawingTextStyle)

Parameter titleStyle
The style for the chart’s title.

Example The following example overrides a chart’s CustomizeChart() method to make the
chart’s title italic, depending on the value of a Boolean parameter. GetTitleStyle()
retrieves the default settings so that only the title style’s Font member needs to be
changed.

Sub CustomizeChart()
If parmItalicTitle Then

Dim titleStyle As AcDrawingTextStyle
titleStyle = GetTitleStyle()
titleStyle.Font.Italic = True
SetTitleStyle(titleStyle)

End If
End Sub

See also AcChart::CustomizeChart method
AcChart::GetTitleStyle method
AcChart::Localize method
AcDrawingTextStyle

AcChart::SetTitleText method
Call the SetTitleText() method to set the text of a chart’s title. The recommended
methods from which to call SetTitleText() are:

■ A chart’s CustomizeChart() method

■ A chart’s OnRow() method

To change the title text at view time, call SetTitleText() from a chart’s Localize()
method.

260 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChart

Syntax Sub SetTitleText(titleText As String)

Parameter titleText
The text of the chart’s title. Set this parameter to "" if you do not want a title.

Examples The following example overrides a chart’s OnRow() method to set the chart’s title
using a value from the data row:

Sub OnRow(row As AcDataRow)
' Only look at the first row.
If (GetRowCount() = 1) Then

SetTitleText("Credit Rank " & GetValue(row,
"customers_creditrank"))

End If
End Sub

For another example of how to use SetTitleText(), see the dynamic chart example
for the AcChart class.

See also AcChart::CustomizeChart method
AcChart::GetTitleText method
AcChart::Localize method
AcReportComponent::OnRow method

AcChart::StartEmpty method
Call StartEmpty() to initialize a chart that you are creating dynamically. If you
call this method, you must not call the chart’s Start() method.

Syntax Sub StartEmpty()

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also Class AcChart

AcChart::StartLayers method
Call the StartLayers() method to initialize the layers of a chart that you are
creating dynamically. If you create a chart dynamically and do not use the
standard chart building mechanism, you must call the StartLayers() method to
initialize the chart’s layers.

Syntax Sub StartLayers()

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also Class AcChart
Chapter 7AFC classes

C h a p t e r 7 , A F C c l a s s e s 261

AcChartAxis

Class AcChartAxis
Chapter 7AFC classes An axis within a chart layer. Figure 7-6 shows the class hierarchy of AcChartAxis.

Figure 7-6 AcChartAxis

Description Use the AcChartAxis class to represent a single axis within a chart layer. Do not
create AcChartAxis objects explicitly from your own code. Instead, AcChartLayer
objects create AcChartAxis objects automatically as necessary to build complete
charts.

Use the methods of AcChartLayer to access a chart layer’s axes. You can
manipulate the appearance of a chart by calling methods on the chart’s axes.

All types of base chart layers except pie chart layers have an x-axis and a y-axis.
Pie chart layers do not have axes. Overlay and study chart layers except pie chart
layers have y-axes only. Overlay and study chart layers do not have their own
x-axes. Instead, they share the base chart layer’s x-axis.

A chart axis must be either a category scale axis or a value scale axis.

About category scale axes
A category scale axis shows categories used to group multiple values. The x-axis
of a bar chart layer is a category scale axis. A category scale axis simply shows all
the categories in the chart data.

Category scale axes do not have lower and upper bounds. Points plotted against a
category scale axis always line up exactly with the categories on that axis.

About value scale axes
A value scale axis shows a range of values. The y-axis of a bar chart layer is a
value scale axis. Value scale axes have lower and upper bounds. Points plotted
against a value scale axis do not have to line up with the ticks on that axis.

A value scale axis uses the values plotted against it to compute:

■ The lower and upper bounds of the axis

■ The interval between ticks and the number of ticks

■ The label values

About the origin
The origin of a value scale axis determines how points in filled chart types such as
area, bar, and step are drawn relative to the axis origin. For example, consider a
bar chart layer’s y-axis whose lower bound is 55 and whose upper bound is 105:

AcChartAxis

262 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

■ If the axis’s origin is 0, a point whose value is 75 is drawn as a bar between 55
and 75.

■ If the axis’s origin is 0, a point whose value is 50 is drawn as a bar between 75
and 105.

The origin of a value scale axis is calculated as follows:

■ If series in the chart layer are not stacked, the origin is always the axis value
where the opposite axis crosses.

■ If series in the chart layer are stacked, the origin is the axis value that is closest
to zero.

About outer margins
The upper bound of a value scale axis is normally slightly higher than the highest
point plotted against that axis. The space between the highest point and the
upper bound of the axis is the outer margin.

■ A value scale axis that includes values below the value where the opposite
axis crosses has an outer margin between its lower bound and the lowest
point. This means that some value scale axes have two outer margins, one at
the lower bound and one at the upper bound.

■ A value scale axis that does not have any values above the value where the
opposite axis crosses does not have an outer margin between its upper bound
and the highest point.

About inner margins
By default, when all the values plotted against a value scale axis fall within a
certain percentage of the highest value, the axis will not include zero. In this
situation, the lower bound of the axis is normally slightly lower than the lowest
point plotted against the axis. The distance between the lowest point and the
lower bound of the axis is the inner margin.

■ A value scale axis that includes zero does not have an inner margin.

■ Value scale axes never have more than one inner margin.

■ If the opposite axis crosses a value scale axis at its upper bound, the axis’s
inner margin will be between its upper bound and the highest point.

Example For an example of how to use this class to build a chart dynamically, see the
dynamic chart example for the AcChart class.

See also Class AcChart
Class AcChartCategory
Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint

C h a p t e r 7 , A F C c l a s s e s 263

AcChartAxis

Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

Methods for Class AcChartAxis

Methods defined in Class AcChartAxis

AddGridLine, ClearMajorTickInterval, ClearMaximumValue, ClearMinimumValue,
ClearOtherAxisCrossesAt, ComputeScale, ForceMajorTickCount,
GetAxisLetter, GetAxisLetterText, GetDataType, GetDefaultRangeRatio,
GetGridLine, GetInnerMarginRatio, GetLabelFormat, GetLabelPlacement,
GetLabelStyle, GetLabelText, GetLabelValue, GetLayer, GetLineStyle,
GetMajorGridLineStyle, GetMajorTickCalculation, GetMajorTickCount,
GetMajorTickInterval, GetMajorTickPlacement, GetMaximumDataValue,
GetMaximumTrendlineValue, GetMaximumValue, GetMinimumDataValue,
GetMinimumTrendlineValue, GetMinimumValue, GetMinorGridLineStyle,
GetMinorTickCount, GetMinorTickPlacement, GetNoZeroRatio,
GetNumberOfGridLines, GetNumberOfLabels, GetOriginValue,
GetOtherAxisCrossesAt, GetOtherAxisPlacement, GetOuterMarginRatio,
GetTitleStyle, GetTitleText, HasFixedMaximum, HasFixedMinimum,
IgnoreTrendlines, InsertGridLine, IsCategoryScale, IsValueScale, IsXAxis,
IsYAxis, IsZAxis, PlotCategoriesBetweenTicks, ResetMajorTickInterval,
SetDataType, SetDefaultRangeRatio, SetForceMajorTickCount,
SetIgnoreTrendlines, SetInnerMarginRatio, SetLabelFormat,
SetLabelPlacement, SetLabelStyle, SetLabelValue, SetLineStyle,
SetMajorGridLineStyle, SetMajorTickCalculation, SetMajorTickCount,
SetMajorTickInterval, SetMajorTickPlacement, SetMaximumDataValue,
SetMaximumValue, SetMinimumDataValue, SetMinimumValue,
SetMinorGridLineStyle, SetMinorTickCount, SetMinorTickPlacement,
SetNoZeroRatio, SetOtherAxisCrossesAt, SetOtherAxisPlacement,
SetOuterMarginRatio, SetPlotCategoriesBetweenTicks, SetTitleStyle,
SetTitleText

AcChartAxis::AddGridLine method
Call this method to add a grid line to the end of a chart axis’s list of grid lines.

You can call this method only from:

■ A chart’s AdjustChart() method

■ A chart’s DrawOnChart() method

■ Code that creates a chart dynamically

Syntax Function AddGridLine(value As Variant) As AcChartGridLine

264 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

Parameter value
The axis value at which the grid line is drawn. If the axis is a category scale axis,
the first tick on the axis has the value 0, the second tick has the value 1, and so on.

Returns A handle to the new grid line object.

Example For an example of how to use this method, see the example for the
AcChartGridLine class.

See also AcChart::AdjustChart method
AcChart::DrawOnChart method
AcChartAxis::GetGridLine method
AcChartAxis::GetNumberOfGridLines method
AcChartAxis::InsertGridLine method
Class AcChartGridLine

AcChartAxis::ClearMajorTickInterval method
Call the ClearMajorTickInterval() method to reset the major tick interval of a
chart axis to its default setting and cause the axis to compute the major tick
interval automatically.

You can call this method only on a value scale axis. You can call this method only
from:

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

If you call ClearMajorTickInterval() from a chart’s AdjustChart() method, you
must also call ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub ClearMajorTickInterval()

Example In the following example, you defined the y-axis of a chart’s base layer in Chart
Builder to have a fixed major tick interval. The example overrides the chart’s
CustomizeAxes() method to cancel the fixed interval, depending on the value of
a Boolean parameter.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAutoYAxisMajorInterval Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.ClearMajorTickInterval()

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method

C h a p t e r 7 , A F C c l a s s e s 265

AcChartAxis

AcChartAxis::GetMajorTickCalculation method
AcChartAxis::GetMajorTickInterval method
AcChartAxis::SetMajorTickCalculation method
AcChartAxis::SetMajorTickInterval method

AcChartAxis::ClearMaximumValue method
Call the ClearMaximumValue() method to remove a fixed maximum value from
a chart axis.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub ClearMaximumValue()

Example In the following example, you defined the y-axis of a chart’s base layer in Chart
Builder to have a fixed maximum value. The example overrides the chart’s
CustomizeAxes() method to cancel the fixed maximum value, depending on the
value of a Boolean parameter.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAutoYAxisMaximum Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.ClearMaximumValue()

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ClearMinimumValue method
AcChartAxis::ComputeScale method
AcChartAxis::GetMaximumValue method
AcChartAxis::HasFixedMaximum method
AcChartAxis::SetMaximumValue method

AcChartAxis::ClearMinimumValue method
Call the ClearMinimumValue() method to remove a fixed minimum value from a
chart axis. You can call this method only on a value scale axis. You can call this
method only from:

266 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s X AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub ClearMinimumValue()

Example In the following example, the y-axis of a chart’s base layer was defined in Chart
Builder to have a fixed minimum value. The example overrides the chart’s
CustomizeAxes() method to cancel the fixed minimum value, depending on the
value of a Boolean parameter.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAutoYAxisMinimum Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.ClearMinimumValue()

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ClearMaximumValue method
AcChartAxis::ComputeScale method
AcChartAxis::GetMaximumValue method
AcChartAxis::HasFixedMinimum method
AcChartAxis::SetMinimumValue method

AcChartAxis::ClearOtherAxisCrossesAt method
Call the ClearOtherAxisCrossesAt() method to remove a fixed axis crossing point
from a chart axis and cause the axis to compute the axis crossing point
automatically.

You can call this method only on a value scale axis. You can call this method only
from:

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

If you call ClearOtherAxisCrossesAt() from a chart’s AdjustChart() method, you
must also call ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub ClearOtherAxisCrossesAt()

Example In the following example, you defined the x-axis of a chart’s base layer in Chart
Builder to cross the base layer’s y-axis at a fixed y value. The example overrides

C h a p t e r 7 , A F C c l a s s e s 267

AcChartAxis

the chart’s CustomizeAxes() method to cancel the fixed axis crossing, depending
on the value of a Boolean parameter.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAutoAxisCrossing Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.ClearOtherAxisCrossesAt()

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetOtherAxisCrossesAt method
AcChartAxis::GetOtherAxisPlacement method
AcChartAxis::SetOtherAxisCrossesAt method
AcChartAxis::SetOtherAxisPlacement method

AcChartAxis::ComputeScale method
Call the ComputeScale() method to compute the scale for a chart axis. If you
modify the scaling settings of a chart axis programmatically after the axis scale
has been computed, you must call the ComputeScale() method to recompute the
axis scale.

You can call this method only on a value scale axis.

You can call this method only from a chart’s AdjustChart() method.

Syntax Sub ComputeScale()

Example The following example adjusts the upper bound of a study layer’s y-axis so that it
is at least 100. Because this adjustment relies on the automatically computed
upper bound, it can only be made in AdjustChart().

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = studyLayers(1).GetYAxis()
If (yAxis.GetMaximumValue() < 100) Then

yAxis.SetMaximumValue(100)
' Recompute the ticks and labels.
yAxis.ComputeScale()

End If
End Sub

See also AcChart::AdjustChart method
AcChart::ComputeScales method

268 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

AcChartAxis::ForceMajorTickCount method
Determines whether the number of major ticks on a chart axis is forced to be a
specific value. You can call this method only on a value scale axis.

Syntax Function ForceMajorTickCount() As Boolean

Returns True if the number of major ticks on the chart axis is forced to be a specific value.
False if the number of major ticks on the chart axis is computed from data plotted
on the axis.

See also AcChartAxis::SetForceMajorTickCount method
AcChartAxis::SetMajorTickCount method

AcChartAxis::GetAxisLetter method
Returns an axis letter value that indicates which axis a chart axis is.

Syntax Function GetAxisLetter() As AcChartAxisLetter

Returns An axis letter value that indicates which axis the chart axis is.

See also AcChartAxis::GetAxisLetterText method
AcChartAxisLetter

AcChartAxis::GetAxisLetterText method
Returns a string that indicates whether the axis is an x-axis, a y-axis, or a z-axis.

Syntax Function GetAxisLetterText() As AcChartAxisLetter

Returns X if the axis is an x-axis.
Y if the axis is a y-axis.
Z if the axis is a z-axis.

See also AcChartAxis::GetAxisLetter method

AcChartAxis::GetDataType method
Returns the data type of the scale of a chart axis. You can call this method only on
a value scale axis.

Syntax Function GetDataType() As AcDataType

Returns The data type of the scale of the chart axis. One of the following values:

■ DataTypeDateTime

■ DataTypeNumber

See also AcChartAxis::SetDataType method
AcDataType

C h a p t e r 7 , A F C c l a s s e s 269

AcChartAxis

AcChartAxis::GetDefaultRangeRatio method
Returns the ratio used to compute the range of a chart axis when all the values
plotted on the axis lie on the axis’s origin. The axis’s origin value is multiplied by
the default range ratio to give a range. That range is subtracted from the value to
get the lower bound of the axis and added to the value to get the upper bound of
the axis. For example, if all the points plotted on a chart axis have the value 100,
and the default range ratio is 0.1, the lower bound of the axis will be 90 and the
upper bound of the axis will be 110.

You can call GetDefaultRangeRatio() only on a value scale axis.

Syntax Function GetDefaultRangeRatio() As Double

Returns The ratio used to compute the range of the chart axis when all the values plotted
on the axis lie on the axis’s origin.

See also AcChartAxis::SetDefaultRangeRatio method

AcChartAxis::GetGridLine method
Returns a reference to the specified grid line within a chart axis. To determine the
the chart axis’s number of grid lines, call the GetNumberOfGridLines() method
on the chart axis.

You can call this method only from:

■ A chart’s AdjustChart() method

■ A chart’s DrawOnChart() method

Syntax Function GetGridLine(index As Integer) As AcChartGridLine

Parameter index
An index into the chart axis’s list of grid lines. The first grid line is index 1.

Returns A reference to the specified grid line within the chart axis.

See also AcChart::AdjustChart method
AcChart::DrawOnChart method
AcChartAxis::AddGridLine method
AcChartAxis::GetNumberOfGridLines method
AcChartAxis::InsertGridLine method
Class AcChartGridLine

AcChartAxis::GetInnerMarginRatio method
Returns the minimum ratio between the inner margin on a chart axis and the total
range of that axis. For example, if this method returns 0.25 for a bar chart layer’s
y-axis, the shortest bar will be at least 25% of the total height of the axis from the
bottom of the axis.

270 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

You can call this method only on a value scale axis.

Syntax Function GetInnerMarginRatio() As Double

Returns The minimum ratio between the inner margin on the chart axis and the total
range of the axis.

See also AcChartAxis::GetOuterMarginRatio method
AcChartAxis::SetInnerMarginRatio method

AcChartAxis::GetLabelFormat method
Returns the format pattern used to format labels on a chart axis. Category labels
are used as category scale axis labels. The value that this method returns for a
category scale axis is exactly the same as the value that the
GetCategoryLabelFormat() method returns of the parent chart layer of that axis.

Syntax Function GetLabelFormat() As String

Returns The format pattern used to format labels on a chart axis.

See also AcChartAxis::SetLabelFormat method
AcChartLayer::GetCategoryLabelFormat method

AcChartAxis::GetLabelPlacement method
Returns the placement of labels on a chart axis.

Syntax Function GetLabelPlacement() As AcChartAxisLabelPlacement

Returns The placement of labels on a chart axis.

See also AcChartAxisLabelPlacement
AcChartAxis::SetLabelPlacement method

AcChartAxis::GetLabelStyle method
Returns the style for labels on a chart axis. To change the style of labels on a chart
axis, call this method to get the default settings.

Syntax Function GetLabelStyle() As AcDrawingTextStyle

Returns The style for labels on a chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to make axis
labels on the x-axis of the chart’s base layer italic, depending on the value of a
Boolean parameter. GetLabelStyle() retrieves the default settings so that only the
title style’s Font member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

C h a p t e r 7 , A F C c l a s s e s 271

AcChartAxis

If parmItalicXLabels Then
Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
Dim labelStyle As AcDrawingTextStyle
labelStyle = xAxis.GetLabelStyle()
labelStyle.Font.Italic = True
xAxis.SetLabelStyle(labelStyle)

End If
End Sub

See also AcChartAxis::SetLabelStyle method
AcDrawingTextStyle

AcChartAxis::GetLabelText method
Returns the formatted text of the specified label on a chart axis. To retrieve the
number of labels on a chart axis, call the axis’s GetNumberOfLabels() method.
Category labels are used as category scale axis labels. The value that this method
returns for a category scale axis is exactly the same as the value that the
GetLabelText() method returns of the corresponding chart category.

Syntax Function GetLabelText(index As Integer) As String

Parameter index
An index into the axis’s list of labels. The first label is index 1.

Returns The formatted text of the specified label on a chart axis.
String label values are returned unformatted.

See also AcChartAxis::GetLabelValue method
AcChartAxis::GetNumberOfLabels method
AcChartCategory::GetLabelText method

AcChartAxis::GetLabelValue method
Returns the value of the specified label on a chart axis. To retrieve the number of
labels on a chart axis, call the axis’s GetNumberOfLabels() method. Category
labels are used as category scale axis labels. The value that this method returns for
a category scale axis is exactly the same as the value that the GetLabelValue()
method returns of the corresponding chart category.

Syntax Function GetLabelValue(index As Integer) As Variant

Parameter index
An index into the axis’s list of labels. The first label is index 1.

Returns The value of the specified label on a chart axis.

See also AcChartAxis::GetNumberOfLabels method

272 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

AcChartAxis::SetLabelValue method
AcChartCategory::GetLabelValue method

AcChartAxis::GetLayer method
Returns a reference to the parent chart layer of a chart axis.

Syntax Function GetLayer() As AcChartLayer

Returns A reference to the parent chart layer of a chart axis.

See also Class AcChartLayer

AcChartAxis::GetLineStyle method
Returns the line style used to draw a chart axis. To change the style of a chart axis
line, call this method to get the default settings.

Syntax Function GetLineStyle() As AcDrawingLineStyle

Returns The line style used to draw a chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to change
the thickness of all axes in the chart, depending on the value of a Boolean
parameter. GetLineStyle() gets the default settings so that only the line style’s
Width member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmHeavyAxes Then
Dim numberOfLayers As Integer
numberOfLayers = GetNumberOfLayers()
Dim layerIndex As Integer
For layerIndex = 1 To numberOfLayers

Dim layer As AcChartLayer
Set layer = GetLayer(layerIndex)
Dim lineStyle As AcDrawingLineStyle
Dim axis As AcChartAxis
Set axis = layer.GetXAxis()
If Not axis Is Nothing Then

lineStyle = axis.GetLineStyle()
lineStyle.Width = 2 * OnePoint
axis.SetLineStyle(lineStyle)

End If
Set axis = layer.GetYAxis()
If Not axis Is Nothing Then

lineStyle = axis.GetLineStyle()
lineStyle.Width = 2 * OnePoint
axis.SetLineStyle(lineStyle)

C h a p t e r 7 , A F C c l a s s e s 273

AcChartAxis

End If
Next layerIndex

End If
End Sub

See also AcChartAxis::SetLineStyle method
AcDrawingLineStyle

AcChartAxis::GetMajorGridLineStyle method
Returns the line style used to draw grid lines for the major ticks on a chart axis. To
change the style of grid lines, call this method to get the default settings.

Syntax Function GetMajorGridLineStyle() As AcDrawingLineStyle

Returns The line style used to draw grid lines for the major ticks on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to set dotted
major grid lines for the y-axis of the chart’s base layer, depending on the value of
a Boolean parameter. GetMajorGridLineStyle() retrieves the default settings so
that only the line style’s Pen member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedMajorGrid Then
Dim yAxis As AcChartAxis
Set yAxis = layer.GetYAxis()
Dim lineStyle As AcDrawingLineStyle
lineStyle = yAxis.GetMajorGridLineStyle()
lineStyle.Pen = DrawingLinePenDot
yAxis.SetMajorGridLineStyle(lineStyle)

End If
End Sub

See also AcChartAxis::GetMinorGridLineStyle method
AcChartAxis::SetMajorGridLineStyle method
AcDrawingLineStyle

AcChartAxis::GetMajorTickCalculation method
Returns the type of calculation used to compute major ticks on a chart axis.

You can call this method only on a value scale axis.

In some cases, the value that this method returns is altered automatically when
the axis’s scale is computed, as follows:

■ If the axis has fixed lower and upper bounds, and the major tick count is
forced, the interval is also forced. In this case, the major tick calculation
changes to ChartTickCalculationAuto.

274 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

■ If the axis has fixed lower and upper bounds, the major tick count is not
forced, and the major tick calculation is ChartTickCalculationExactInterval,
the calculation changes to ChartTickCalculationMinimumInterval. In such a
case, forcing an exact interval might violate the maximum major tick count.

Syntax Function GetMajorTickCalculation() As AcChartTickCalculation

Returns The type of calculation used to compute major ticks on a chart axis.

See also AcChartAxis::GetMajorTickInterval method
AcChartAxis::SetMajorTickCalculation method
AcChartTickCalculation

AcChartAxis::GetMajorTickCount method
Returns the exact or maximum number of major ticks on a chart axis.

You can call this method only on a value scale axis.

Syntax Function GetMajorTickCount() As Integer

Returns If the major tick count is forced, the exact number of major ticks on a chart axis.
If the major tick count is not forced, the maximum number of major ticks on a
chart axis.

See also AcChartAxis::ForceMajorTickCount method
AcChartAxis::GetMinorTickCount method
AcChartAxis::SetForceMajorTickCount method
AcChartAxis::SetMajorTickCount method

AcChartAxis::GetMajorTickInterval method
Returns the exact or minimum interval between major ticks on a chart axis. You
can call this method only on a value scale axis.

If you call GetMajorTickInterval() before a chart axis’s scale has been computed
and the chart axis major tick calculation is not ChartTickCalculationAuto, it
returns the value used to compute the interval between major ticks on the axis.

Syntax Function GetMajorTickInterval() As Double

Returns The interval between major ticks on a chart axis.

See also AcChartAxis::GetMajorTickCalculation method
AcChartAxis::SetMajorTickInterval method

AcChartAxis::GetMajorTickPlacement method
Returns the placement of major ticks on a chart axis.

Syntax Function GetMajorTickPlacement() As AcChartTickPlacement

C h a p t e r 7 , A F C c l a s s e s 275

AcChartAxis

Returns The placement of major ticks on a chart axis.

See also AcChartAxis::GetMinorTickPlacement method
AcChartAxis::SetMajorTickPlacement method
AcChartTickPlacement

AcChartAxis::GetMaximumDataValue method
Returns the highest value plotted against a chart axis.

Syntax Function GetMaximumDataValue() As Variant

Returns The highest value plotted against a chart axis.

See also AcChartAxis::GetMaximumTrendlineValue method
AcChartAxis::GetMinimumDataValue method
AcChartAxis::SetMaximumValue method

AcChartAxis::GetMaximumTrendlineValue method
Returns the maximum y value of all the trendlines in a chart axis.

You can only call this method after the chart has computed its trendlines. You can
call this method from the following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMaximumTrendlineValue() As Variant

Returns The maximum y value of all the trendlines in the chart axis.
Null if the chart axis does not contain any trendlines.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::ComputeMinMaxDataValues method
AcChartAxis::GetMaximumDataValue method
AcChartAxis::GetMinimumTrendlineValue method
AcChartLayer::GetMaximumTrendlineYValue method
Class AcChartTrendline

AcChartAxis::GetMaximumValue method
Returns the upper bound of a chart axis.

You can call this method only on a value scale axis.

Syntax Function GetMaximumValue() As Variant

Returns The upper bound of a chart axis.

276 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

See also AcChartAxis::GetMaximumDataValue method
AcChartAxis::GetMaximumTrendlineValue method
AcChartAxis::GetMinimumValue method
AcChartAxis::HasFixedMaximum method
AcChartAxis::SetMaximumValue method

AcChartAxis::GetMinimumDataValue method
Returns the lowest value plotted against a chart axis.

Syntax Function GetMinimumDataValue() As Variant

Returns The lowest value plotted against a chart axis.

See also AcChartAxis::GetMaximumDataValue method
AcChartAxis::SetMinimumDataValue method

AcChartAxis::GetMinimumTrendlineValue method
Returns the minimum y value of all the trendlines in a chart axis.

You can only call this method after the chart has computed its trendlines.

You can call this method from the following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMinimumTrendlineValue() As Variant

Returns The minimum y value of all the trendlines in the chart axis.
Null if the chart axis does not contain any trendlines.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::ComputeMinMaxDataValues method
AcChartAxis::GetMaximumTrendlineValue method
AcChartAxis::GetMinimumDataValue method
AcChartLayer::GetMinimumTrendlineYValue method
Class AcChartTrendline

AcChartAxis::GetMinimumValue method
Returns the lower bound of a chart axis.

You can call this method only on a value scale axis.

Syntax Function GetMinimumValue() As Variant

Returns The lower bound of a chart axis.

C h a p t e r 7 , A F C c l a s s e s 277

AcChartAxis

See also AcChartAxis::GetMaximumValue method
AcChartAxis::GetMinimumDataValue method
AcChartAxis::GetMinimumTrendlineValue method
AcChartAxis::HasFixedMinimum method
AcChartAxis::SetMinimumValue method

AcChartAxis::GetMinorGridLineStyle method
Returns the line style used to draw grid lines for the minor ticks on a chart axis.
To change the style of grid lines, call this method to get the default settings.

Syntax Function GetMinorGridLineStyle() As AcDrawingLineStyle

Returns The line style used to draw grid lines for the minor ticks on a chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to set dotted
minor grid lines for the y-axis of the chart’s base layer, depending on the value of
a Boolean parameter. GetMinorGridLineStyle() retrieves the default settings so
that only the line style’s Pen member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedMinorGrid Then
Dim yAxis As AcChartAxis
Set yAxis = layer.GetYAxis()
Dim lineStyle As AcDrawingLineStyle
lineStyle = yAxis.GetMinorGridLineStyle()
lineStyle.Pen = DrawingLinePenDot
yAxis.SetMinorGridLineStyle(lineStyle)

End If
End Sub

See also AcChartAxis::GetMajorGridLineStyle method
AcChartAxis::SetMinorGridLineStyle method
AcDrawingLineStyle

AcChartAxis::GetMinorTickCount method
Returns the number of minor ticks between major ticks on a chart axis.

You can call this method only on a value scale axis.

Syntax Function GetMinorTickCount() As Integer

Returns The number of minor ticks between major ticks on a chart axis.

See also AcChartAxis::GetMajorTickCount method
AcChartAxis::SetMinorTickCount method

278 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

AcChartAxis::GetMinorTickPlacement method
Returns the placement of minor ticks on a chart axis. You can call this method
only on a value scale axis.

Syntax Function GetMinorTickPlacement() As AcChartAxisTickPlacement

Returns The placement of minor ticks on a chart axis.

See also AcChartAxis::GetMajorTickPlacement method
AcChartAxis::SetMinorTickPlacement method
AcChartAxisPlacement

AcChartAxis::GetNoZeroRatio method
Returns the minimum ratio between the lowest and highest values plotted on a
chart axis that will cause zero to be suppressed on that axis.

For example, if the highest value plotted against a chart axis is 100, and the no
zero ratio for that axis is 0.7:

■ If the lowest value plotted against the axis is 70, zero will be suppressed.

■ If the lowest value plotted against the axis is 69.9, zero will not be suppressed.

You can call this method only on a value scale axis.

Syntax Function GetNoZeroRatio() As Double

Returns The minimum ratio between the lowest and highest values plotted on the chart
axis that will cause zero to be suppressed on the axis.

See also AcChartAxis::SetNoZeroRatio method

AcChartAxis::GetNumberOfGridLines method
Determines the number of grid lines in a chart axis. You can call this method only
from:

■ A chart’s AdjustChart() method

■ A chart’s DrawOnChart() method

Syntax Function GetNumberOfGridLnes() As Integer

Returns The number of grid lines in the chart axis.

See also AcChart::AdjustChart method
AcChart::DrawOnChart method
AcChartAxis::AddGridLine method
AcChartAxis::GetGridLine method
AcChartAxis::InsertGridLine method
Class AcChartGridLine

C h a p t e r 7 , A F C c l a s s e s 279

AcChartAxis

AcChartAxis::GetNumberOfLabels method
Returns the number of labels on a chart axis. Category labels are used as category
scale axis labels. The value that this method returns for a category scale axis is
exactly the same as the value that the GetNumberOfCategories() method returns
of the parent chart layer of that axis.

Syntax Function GetNumberOfLabels() As Integer

Returns The number of labels on a chart axis.

See also AcChartLayer::GetNumberOfCategories method

AcChartAxis::GetOriginValue method
Returns the origin of a chart axis.

You can call this method only on a value scale axis.

Syntax Function GetOriginValue() As Variant

Returns The origin of a chart axis.

See also AcChartAxis::GetOtherAxisCrossesAt method
AcChartAxis::GetOtherAxisPlacement method

AcChartAxis::GetOtherAxisCrossesAt method
Returns the value at which the opposite chart axis crosses a chart axis.

Syntax Function GetOtherAxisCrossesAt() As Variant

Returns The value at which the opposite chart axis crosses the chart axis.

If the chart axis is a category scale, this method returns the tick number on the
axis at which the opposite axis crosses. The first tick is number 1.

See also AcChartAxis::GetOriginValue method
AcChartAxis::GetOtherAxisPlacement method
AcChartAxis::SetOtherAxisCrossesAt method

AcChartAxis::GetOtherAxisPlacement method
Returns the placement of the opposite axis relative to a chart axis.

Syntax Function GetOtherAxisPlacement() As AcChartAxisPlacement

Returns The placement of the opposite axis relative to a chart axis.

See also AcChartAxisPlacement
AcChartAxis::GetOriginValue method

280 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

AcChartAxis::GetOtherAxisCrossesAt method
AcChartAxis::SetOtherAxisPlacement method

AcChartAxis::GetOuterMarginRatio method
Returns the minimum ratio between the outer margin on a chart axis and the total
range of that axis. For example, if this method returns 0.05 for a bar chart layer’s
y-axis, the longest bar will be no more than 95% of the total height of the axis from
the top of the axis.

You can call this method only on a value scale axis.

Syntax Function GetOuterMarginRatio() As Double

Returns The minimum ratio between the outer margin on the chart axis and the total
range of the axis.

See also AcChartAxis::GetOuterMarginRatio method
AcChartAxis::SetOuterMarginRatio method

AcChartAxis::GetTitleStyle method
Returns the style of the title of a chart axis. To change the style of the title of a
chart axis, call this method to get the default settings.

Syntax Function GetTitleStyle() As AcDrawingTextStyle

Returns The style of the title of the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to make the
title of the y-axis of the chart’s overlay layer bold, depending on the value of a
Boolean parameter. GetTitleStyle() retrieves the default settings so that only the
title style’s Font member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmBoldOverlayTitle Then
Dim yAxis As AcChartAxis
Set yAxis = overlayLayer.GetYAxis()
Dim TitleStyle As AcDrawingTextStyle
TitleStyle = yAxis.GetTitleStyle()
TitleStyle.Font.Bold = True
yAxis.SetTitleStyle(TitleStyle)

End If
End Sub

See also AcChartAxis::SetTitleStyle method
AcDrawingTextStyle

C h a p t e r 7 , A F C c l a s s e s 281

AcChartAxis

AcChartAxis::GetTitleText method
Returns the text of the title of a chart axis.

Syntax Function GetTitleText() As AcDrawingTextStyle

Returns The text of the title of a chart axis.

See also AcChartAxis::SetTitleText method

AcChartAxis::HasFixedMaximum method
Determines whether a chart axis has a fixed upper bound. You can call this
method only on a value scale axis.

Syntax Function HasFixedMaximum() As Boolean

Returns True if the chart axis has a fixed upper bound.
False if the upper bound of the chart axis is computed from data plotted on the
axis.

See also AcChartAxis::GetMaximumValue method
AcChartAxis::SetMaximumValue method

AcChartAxis::HasFixedMinimum method
Determines whether a chart axis has a fixed lower bound. You can only call this
method on a value scale axis.

Syntax Function HasFixedMinimum() As Boolean

Returns True if the chart axis has a fixed lower bound.
False if the lower bound of the chart axis is computed from data plotted on the
axis.

See also AcChartAxis::GetMinimumValue method
AcChartAxis::SetMinimumValue method

AcChartAxis::IgnoreTrendlines method
Determines whether trendlines will be ignored when computing the scale for a
chart axis.

Syntax Function IgnoreTrendlines() As Boolean

Returns True if trendlines will be ignored when computing the scale for the chart axis.
False if the chart axis’s scale will be adjusted to fit trendlines.

See also AcChartAxis::SetIgnoreTrendlines method
Class AcChartTrendline

282 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

AcChartAxis::InsertGridLine method
Call this method to insert a grid line at a specific position within a chart axis’s list
of grid lines. When you insert a new grid line, the original grid line at the
insertion point and all the grid lines above the insertion point move up one place.

You can call this method only from:

■ A chart’s AdjustChart() method

■ A chart’s DrawOnChart() method

■ Code that creates a chart dynamically

Syntax Function InsertGridLine(index As Integer, value As Variant) As AcChartGridLine

Parameters index
The position in the chart axis’s list of grid lines at which the new grid line will be
inserted. The first grid line is index 1.

Must be greater than or equal to one. Must be less than or equal to the current
number of grid lines in the chart axis plus one.

value
The axis value at which the grid line is drawn. If the axis is a category scale axis,
the first tick on the axis has the value 0, the second tick has the value 1, and so on.

Returns A handle to the new grid line object.

See also AcChart::AdjustChart method
AcChart::DrawOnChart method
AcChartAxis::AddGridLine method
AcChartAxis::GetGridLine method
AcChartAxis::GetNumberOfGridLines method
Class AcChartGridLine

AcChartAxis::IsCategoryScale method
Determines whether a chart axis is a category scale axis.

Syntax Function IsCategoryScale() As Boolean

Returns True if the chart axis is a category scale axis.
False if the chart axis is not a category scale axis.

See also AcChartAxis::IsValueScale method

AcChartAxis::IsValueScale method
Determines whether a chart axis is a value scale axis.

Syntax Function IsValueScale() As Boolean

C h a p t e r 7 , A F C c l a s s e s 283

AcChartAxis

Returns True if the chart axis is a value scale axis.
False if the chart axis is not a value scale axis.

See also AcChartAxis::IsCategoryScale method

AcChartAxis::IsXAxis method
Determines whether a chart axis is the x-axis of its parent chart layer.

Syntax Function IsXAxis() As Boolean

Returns True if the chart axis is the x-axis of its parent chart layer.
False if the chart axis is not the x-axis of its parent chart layer.

See also AcChartAxis::IsYAxis method
AcChartAxis::IsZAxis method

AcChartAxis::IsYAxis method
Determines whether a chart axis is the y-axis of its parent chart layer.

Syntax Function IsYAxis() As Boolean

Returns True if the chart axis is the y-axis of its parent chart layer.
False if the chart axis is not the y-axis of its parent chart layer.

See also AcChartAxis::IsXAxis method
AcChartAxis::IsZAxis method

AcChartAxis::IsZAxis method
Determines whether a chart axis is the z-axis of its parent chart layer.

Syntax Function IsZAxis() As Boolean

Returns True if the chart axis is the z-axis of its parent chart layer.
False if the chart axis is not the z-axis of its parent chart layer.

See also AcChartAxis::IsXAxis method
AcChartAxis::IsYAxis method

AcChartAxis::PlotCategoriesBetweenTicks method
Determines whether categories are plotted between the ticks on a chart axis.

You can call this method only on a category scale axis.

Syntax Function PlotCategoriesBetweenTicks() As Boolean

Returns True if categories are plotted between the ticks on the chart axis.
False if categories are plotted on the ticks on the chart axis.

284 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

See also AcChartAxis::SetPlotCategoriesBetweenTicks method

AcChartAxis::ResetMajorTickInterval method
Call the ResetMajorTickInterval() method to reset the major tick interval of a
chart axis to its default setting.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub ResetMajorTickInterval()

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetMajorTickCalculation method
AcChartAxis::GetMajorTickInterval method
AcChartAxis::SetMajorTickCalculation method
AcChartAxis::SetMajorTickInterval method

AcChartAxis::SetDataType method
Call the SetDataType() method to set the data type of the scale of a chart axis. A
value scale axis determines its data type automatically from data plotted on the
axis. If necessary, use type conversion functions in the data expressions in Chart
Builder to give your chart data the data types you want.

To overrule the automatic data type setting for a chart axis, call the SetDataType()
method to explicitly set the required data type.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetDataType(dataType As AcDataType)

Parameter dataType
The data type to set. Must be either DataTypeDateTime or DataTypeNumber.

C h a p t e r 7 , A F C c l a s s e s 285

AcChartAxis

See also AcChart::CustomizeAxes method
AcChartAxis::GetDataType method

AcChartAxis::SetDefaultRangeRatio method
Call the SetDefaultRangeRatio() method to set the default ratio used to scale a
chart axis when all the values plotted on the axis lie on the axis’s origin. You can
call this method only on a value scale axis.

The axis’s origin value is multiplied by the default range ratio to give a range.
That range is subtracted from the value to get the lower bound of the axis, and
added to the value to get the upper bound of the axis. For example, if all the
points plotted on a chart axis have the value 100 and the default range ratio is 0.1,
the lower bound of the axis is 90 and the upper bound of the axis is 110.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetDefaultRangeRatio(defaultRangeRatio As Double)

Parameter defaultRangeRatio
The ratio used to compute the range of the chart axis when all the values plotted
on the axis lie on the axis’s origin. Must be in the range 0.01 through 1.

Example The following example overrides a chart’s CustomizeAxes() method to set the
default range ratio for the y-axis of the chart’s base layer to 1:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetDefaultRangeRatio(0.2)

End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetDefaultRangeRatio method

AcChartAxis::SetForceMajorTickCount method
Call the SetForceMajorTickCount() method to specify whether the number of
major ticks on a chart axis is forced to be a specific value. You can set the number
of major ticks an a chart axis by calling the axis’s SetMajorTickCount() method.
You can call SetForceMajorTickCount() only on a value scale axis.

You can call SetForceMajorTickCount() only from:

■ A chart’s CustomizeAxes() method

286 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetForceMajorTickCount(forceMajorTickCount As Boolean)

Parameter forceMajorTickCount
True forces the number of major ticks on the chart axis to be a specific value.
False allows the number of major ticks on the chart axis to be computed from data
plotted on the axis.

Example The following example overrides a chart’s CustomizeAxes() method to set the
number of major ticks on the y-axis of the chart’s base layer to a value specified by
a parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If (parmNumberOfYMajorTicks > 0) Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetMajorTickCount(parmNumberOfYMajorTicks)
yAxis.SetForceMajorTickCount(True)

End If
End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::ForceMajorTickCount method
AcChartAxis::SetMajorTickCount method

AcChartAxis::SetIgnoreTrendlines method
Call this method to specify whether trendlines will be ignored when computing
the scale for a chart axis.

Syntax Sub SetIgnoreTrendlines(ignoreTrendlines As Boolean)

Parameter ignoreTrendlines

True causes trendlines to be ignored when computing the scale for the chart axis.
False cause the chart axis’s scale to be adjusted to fit trendlines.

See also AcChartAxis::IgnoreTrendlines method
Class AcChartTrendline

AcChartAxis::SetInnerMarginRatio method
Call the SetInnerMarginRatio() method to set the minimum ratio between the
inner margin on a chart axis and the total range of that axis. For example, if you
call SetInnerMarginRatio() on a bar chart layer’s y-axis with innerMarginRatio
set to 0.25, the shortest bar will be at least 25% of the total height of the axis from
the bottom of the axis.

C h a p t e r 7 , A F C c l a s s e s 287

AcChartAxis

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetInnerMarginRatio(innerMarginRatio As Double)

Parameter innerMarginRatio
The minimum ratio between the inner margin on the chart axis and the total
range of the axis. Must be in the range 0 through 0.5.

Example The following example overrides a chart’s CustomizeAxes() method to make the
inner margin on the y-axis of the chart’s base layer at least 35% of the total height
of the axis:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetInnerMarginRatio(0.35)

End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetInnerMarginRatio method
AcChartAxis::SetOuterMarginRatio method

AcChartAxis::SetLabelFormat method
Call the SetLabelFormat() method to set the format pattern used to format labels
on a chart axis. The format pattern is ignored for string label values.

The recommended method from which to call SetLabelFormat() is a chart’s
CustomizeAxes() method.

To change the format pattern at view time, call this method from a chart’s
Localize() method.

Category labels are used as category scale axis labels. Setting a format pattern for
a category scale axis with this method has the same effect as setting a format
pattern with the SetCategoryLabelFormat() method of the parent chart layer of
that axis.

Syntax Sub Format(labelFormat As String)

Parameter labelFormat
The format pattern.

288 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

Example The following example overrides a chart’s CustomizeAxes() method to use a
short or long date format for labels on the x-axis of the chart’s base layer,
depending on the value of a Boolean parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
If parmUseShortDateFormat Then

xAxis.SetLabelFormat("Short Date")
Else

xAxis.SetLabelFormat("Long Date")
End If

End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetLabelFormat method
AcChartLayer::SetCategoryLabelFormat method

AcChartAxis::SetLabelPlacement method
Call the SetLabelPlacement() method to specify the placement of labels on a chart
axis.

The recommended method from which to call SetLabelPlacement() is a chart’s
CustomizeAxes() method.

Syntax Sub SetLabelPlacement(labelPlacement As AcChartAxisLabelPlacement)

Parameter labelPlacement
The placement of labels on the chart axis.

Set labelPlacement to ChartAxisLabelPlacementNone if you do not want to show
labels on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to disable
labels on the x-axis of the chart’s base layer if there is only one category:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
If (baseLayer.GetNumberOfCategories() = 1) Then

' Disable labels on the x-axis.
xAxis.SetLabelPlacement(ChartAxisLabelPlacementNone)

End If
End Sub

See also AcChartAxisPlacement
AcChart::CustomizeAxes method
AcChartAxis::GetLabelPlacement method

C h a p t e r 7 , A F C c l a s s e s 289

AcChartAxis

AcChartAxis::SetLabelStyle method
Call the SetLabelStyle() method to set the style for labels on a chart axis.

The recommended method from which to call SetLabelStyle() is a chart’s
CustomizeAxes() method. To change the label style at view time, call
SetLabelStyle() from a chart’s Localize() method.

Syntax Sub SetLabelStyle(labelStyle As AcDrawingTextStyle)

Parameter labelStyle
The style for labels on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to make axis
labels on the x-axis of the chart’s base layer italic, depending on the value of a
Boolean parameter. GetLabelStyle() retrieves the default settings so that only the
title style’s Font member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmItalicXLabels Then
Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
Dim labelStyle As AcDrawingTextStyle
labelStyle = xAxis.GetLabelStyle()
labelStyle.Font.Italic = True
xAxis.SetLabelStyle(labelStyle)

End If
End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetLabelStyle method
AcDrawingTextStyle

AcChartAxis::SetLabelValue method
Call the SetLabelValue() method to set the value of the specified label on a chart
axis. The recommended method from which to call SetLabelValue() is a chart’s
AdjustChart() method.

To change label values at view time, call this method from a chart’s Localize()
method.

If you call this method from code that is creating a chart dynamically, you must
call it after you call the chart’s ComputeScales() method.

To determine the number of labels on a chart axis, call the axis’s
GetNumberOfLabels() method.

290 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

Category labels are used as category scale axis labels. Setting a label value for a
category scale axis with this method has the same effect as setting a label value
with the SetLabelValue() method of the corresponding chart category.

Syntax Function SetLabelValue(index As Integer, labelValue As Variant)

Parameters index
An index into the axis’s list of labels. The first label is index 1.
Must be in the range 1 through the number of labels on the axis.

labelValue
The label value.

Examples The following example overrides a chart’s AdjustChart() method to scale the
y-axis labels on the chart’s base layer and set the y-axis title to match. Because this
adjustment relies on the automatically computed label values, it can only be
made in AdjustChart().

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
Dim labelValue As Integer
' Assume axis starts at 0.
' Get the value of the first label above 0.
labelValue = yAxis.GetLabelValue(2)
If (labelValue > 1000) Then

Dim numberOfLabels As Integer
numberOfLabels = yAxis.GetNumberOfLabels()
Dim i As Integer
For i = 2 To numberOfLabels

labelValue = yAxis.GetLabelValue(i)
yAxis.SetLabelValue(i, labelValue / 1000)

Next i
yAxis.SetTitleText("Sales ($K)")

End If
End Sub

The following example overrides a chart’s Localize() method to translate labels
on the chart’s x-axis into French at view time if the viewing locale is French:

Sub Localize(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)
If (GetLocaleName() = "fr_FR") Then

Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
Dim numberOfLabels As Integer
numberOfLabels = xAxis.GetNumberOfLabels
Dim labelIndex As Integer

C h a p t e r 7 , A F C c l a s s e s 291

AcChartAxis

For labelIndex = 1 To numberOfLabels
Select Case xAxis.GetLabelValue(labelIndex)
Case "North"

xAxis.SetLabelValue(labelIndex, "Nord")
Case "South"

xAxis.SetLabelValue(labelIndex, "Sud")
Case "East"

xAxis.SetLabelValue(labelIndex, "Est")
Case "West"

xAxis.SetLabelValue(labelIndex, "Ouest")
End Select

Next labelIndex
End If

End Sub

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartAxis::GetLabelValue method
AcChartAxis::GetNumberOfLabels method
AcChartAxis::SetLabelValue method

AcChartAxis::SetLineStyle method
Call the SetLineStyle() method to set the line style used to draw a chart axis.

The recommended method from which to call SetLineStyle() is a chart’s
AdjustChart() method.

Syntax Sub SetLineStyle(lineStyle As AcDrawingLineStyle)

Parameter lineStyle
The line style used to draw the chart axis.
Set the Pen member of lineStyle to DrawingLinePenNone to hide the axis.

Example The following example overrides a chart’s CustomizeAxes() method to change
the thickness of all axes in the chart, depending on the value of a Boolean
parameter. GetLineStyle() retrieves the default settings so that only the line
style’s Width member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmHeavyAxes Then
Dim numberOfLayers As Integer
numberOfLayers = GetNumberOfLayers()
Dim layerIndex As Integer
For layerIndex = 1 To numberOfLayers

Dim layer As AcChartLayer
Set layer = GetLayer(layerIndex)

292 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

Dim lineStyle As AcDrawingLineStyle
Dim axis As AcChartAxis
Set axis = layer.GetXAxis()
If Not axis Is Nothing Then

lineStyle = axis.GetLineStyle()
lineStyle.Width = 2 * OnePoint
axis.SetLineStyle(lineStyle)

End If
Set axis = layer.GetYAxis()
If Not axis Is Nothing Then

lineStyle = axis.GetLineStyle()
lineStyle.Width = 2 * OnePoint
axis.SetLineStyle(lineStyle)

End If
Next layerIndex

End If
End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetLineStyle method
AcDrawingLineStyle

AcChartAxis::SetMajorGridLineStyle method
Call the SetMajorGridLineStyle() method to set the line style used to draw grid
lines for the major ticks on a chart axis.

The recommended method from which to call SetMajorGridLineStyle() is a
chart’s AdjustChart() method.

Syntax Sub SetMajorGridLineStyle(majorGridLineStyle As AcDrawingLineStyle)

Parameter majorGridLineStyle
The line style used to draw grid lines for the major ticks on the chart axis.
If you do not want to display major grid lines on the chart axis, set the Pen
member of majorGridLineStyle to DrawingLinePenNone.

Example The following example overrides a chart’s CustomizeAxes() method to set dotted
major grid lines for the y-axis of the chart’s base layer, depending on the value of
a Boolean parameter. GetMajorGridLineStyle() retrieves the default settings so
that only the line style’s Pen member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedMajorGrid Then
Dim yAxis As AcChartAxis
Set yAxis = layer.GetYAxis()
Dim lineStyle As AcDrawingLineStyle
lineStyle = yAxis.GetMajorGridLineStyle()

C h a p t e r 7 , A F C c l a s s e s 293

AcChartAxis

lineStyle.Pen = DrawingLinePenDot
yAxis.SetMajorGridLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetMajorGridLineStyle method
AcChartAxis::SetMinorGridLineStyle method
AcDrawingLineStyle

AcChartAxis::SetMajorTickCalculation method
Call the SetMajorTickCalculation() method to specify the type of calculation used
to compute major ticks on a chart axis.

You can call this method only on a value scale axis. You can call this method only
from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call SetMajorTickCalculation() from a chart’s AdjustChart() method, you
must also call ComputeScale() on the chart axis to recompute the axis scale.

In some cases, the value you set by calling SetMajorTickCalculation() is altered
automatically when the axis’s scale is computed, as follows:

■ If the axis has fixed lower and upper bounds and the major tick count is
forced, the interval is also forced. In this case, the major tick calculation is
changed to ChartTickCalculationAuto.

■ If the axis has fixed lower and upper bounds, the major tick count is not
forced, and the major tick calculation is ChartTickCalculationExactInterval,
the calculation is changed to ChartTickCalculationMinimumInterval. This
change is done because forcing an exact interval might violate the maximum
major tick count.

Setting an exact major tick interval on an axis can cause some points to be clipped.

Syntax Sub SetMajorTickCalculation(majorTickCalculation As AcChartTickCalculation)

Parameter majorTickCalculation
The type of calculation used to compute major ticks on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to force the
minimum interval between major ticks on the y-axis of the chart’s base layer to a
value specified by a parameter:

294 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If (parmMinimumYMajorTickInterval > 0) Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetMajorTickCalculation(

ChartTickCalculationMinimumInterval)
yAxis.SetMajorTickInterval(

parmMinimumYMajorTickInterval)
End If

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetMajorTickCalculation method
AcChartAxis::SetMajorTickInterval method
AcChartTickCalculation

AcChartAxis::SetMajorTickCount method
Call the SetMajorTickCount() method to set the exact or maximum number of
major ticks on a chart axis. You can call this method only on a value scale axis.

If the major tick count is forced, the axis will have the exact number of major ticks
set by this method. If the major tick count is not forced, the axis will have no more
than the number of major ticks this method sets.

You can call SetMajorTickCount() only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call SetMajorTickCount() from a chart’s AdjustChart() method, you must
also call ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub SetMajorTickCount(majorTickCount As Integer)

Parameter majorTickCount
The exact or maximum number of major ticks on the chart axis. Must be greater
than or equal to 2.

Example The following example overrides a chart’s CustomizeAxes() method to set the
number of major ticks on the y-axis of the chart’s base layer to a value specified by
a parameter:

C h a p t e r 7 , A F C c l a s s e s 295

AcChartAxis

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If (parmNumberOfYMajorTicks > 0) Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetMajorTickCount(parmNumberOfYMajorTicks)
yAxis.SetForceMajorTickCount(True)

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::ForceMajorTickCount method
AcChartAxis::GetMajorTickCount method
AcChartAxis::SetForceMajorTickCount method
AcChartAxis::SetMinorTickCount method

AcChartAxis::SetMajorTickInterval method
Call the SetMajorTickInterval() method to set the exact or minimum interval
between major ticks on a chart axis. If the major tick calculation is
ChartTickCalculationAuto, then SetMajorTickInterval() automatically changes
the major tick calculation to ChartTickCalculationExactInterval.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub SetMajorTickInterval(majorTickInterval As Double)

Parameter majorTickInterval
The interval between major ticks on the chart axis. Must be greater than zero.

Example The following example overrides a chart’s CustomizeAxes() method to force the
minimum interval between major ticks on the y-axis of the chart’s base layer to a
value specified by a parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

296 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

If (parmMinimumYMajorTickInterval > 0) Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetMajorTickCalculation(

ChartTickCalculationMinimumInterval)
yAxis.SetMajorTickInterval(parmMinimumYMajorTickInterval)

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetMajorTickInterval method
AcChartAxis::SetMajorTickCalculation method

AcChartAxis::SetMajorTickPlacement method
Call the SetMajorTickPlacement() method to specify the placement of major ticks
on a chart axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

Syntax Sub SetMajorTickPlacement(majorTickPlacement As
AcChartTickPlacement)

Parameter majorTickPlacement
The placement of major ticks on the chart axis.

Set majorTickPlacement to ChartTickPlacementNone if you do not want to show
major ticks on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to disable
major ticks on the x-axis of the chart’s base layer if only one category exists:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
If (baseLayer.GetNumberOfCategories() = 1) Then

' Disable major ticks on the x-axis.
xAxis.SetMajorTickPlacement(ChartTickPlacementNone)

End If
End Sub

C h a p t e r 7 , A F C c l a s s e s 297

AcChartAxis

See also AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetMajorTickPlacement method
AcChartAxis::SetMinorTickPlacement method
AcChartTickPlacement

AcChartAxis::SetMaximumDataValue method
Call the SetMaximumDataValue() method to use a specific value as if it were the
highest value plotted against a chart axis. This method supports using the
standard automatic scaling mechanism with values that do not exist as points.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub SetMaximumDataValue(maximumDataValue As Variant)

Parameter maximumDataValue
The value to use as if it were the lowest value plotted against the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to make the
y-axis of the chart’s base layer symmetrical above and below zero. Using
SetMaximumDataValue() and SetMinimumDataValue() allows the automatic
scaling mechanism to maintain the correct outer margins.

Sub CustomizeAxes(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer,

+ studyLayers() As AcChartLayer)
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
Dim minimumDataValue As Variant
minimumDataValue = yAxis.GetMinimumDataValue()
Dim maximumDataValue As Variant
maximumDataValue = yAxis.GetMaximumDataValue()
If (-minimumDataValue > maximumDataValue) Then

yAxis.SetMaximumDataValue(-minimumDataValue)
Else

yAxis.SetMinimumDataValue(-maximumDataValue)
End If

298 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

' Recompute the axis scale.
yAxis.ComputeScale()

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetMaximumDataValue method
AcChartAxis::SetMaximumValue method
AcChartAxis::SetMinimumDataValue method

AcChartAxis::SetMaximumValue method
Call the SetMaximumValue() method to set a fixed upper bound on a chart axis.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Setting a fixed upper bound on an axis can cause some points to be clipped.

Syntax Sub SetMaximumValue(maximumValue As Variant)

Parameter maximumValue
The upper bound of the chart axis.

Example The following example adjusts the upper bound of a study layer’s y-axis so that it
is at least 100. Because this adjustment relies on the automatically computed
upper bound, it can only be made in AdjustChart().

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = studyLayers(1).GetYAxis()
If (yAxis.GetMaximumValue() < 100) Then

yAxis.SetMaximumValue(100)
' Recompute the ticks and labels.
yAxis.ComputeScale()

End If
End Sub

See also AcChart::AdjustChart method

C h a p t e r 7 , A F C c l a s s e s 299

AcChartAxis

AcChart::CustomizeAxes method
AcChartAxis::ClearMaximumValue method
AcChartAxis::ComputeScale method
AcChartAxis::GetMaximumValue method
AcChartAxis::HasFixedMaximum method
AcChartAxis::SetMaximumDataValue method
AcChartAxis::SetMinimumValue method

AcChartAxis::SetMinimumDataValue method
Call the SetMinimumDataValue() method to use a specific value as if it were the
lowest value plotted against a chart axis. This allows you to use the standard
automatic scaling mechanism with values that do not exist as points.

You can call this method only on a value scale axis.

You can call this method only from:

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub SetMinimumDataValue(minimumDataValue As Variant)

Parameter minimumDataValue
The value to use as if it were the lowest value plotted against the chart axis.

Example For an example of how to use this method, see the example for the
AcChartAxis::SetMaximumDataValue() method.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ComputeScale method
AcChartAxis::GetMinimumDataValue method
AcChartAxis::SetMaximumDataValue method
AcChartAxis::SetMinimumValue method

AcChartAxis::SetMinimumValue method
Call the SetMinimumValue() method to set a fixed lower bound on a chart axis.
You can only call this method on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

300 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Setting a fixed lower bound on an axis might cause some points to be clipped.

Syntax Sub SetMinimumValue(minimumValue As Variant)

Parameter minimumValue
The lower bound of the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to set the
lower bound of the y-axis of a chart’s base layer to zero, depending on the value
of a Boolean parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmYAxisClipsAtZero Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetMinimumValue(0)

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ClearMinimumValue method
AcChartAxis::ComputeScale method
AcChartAxis::GetMinimumValue method
AcChartAxis::HasFixedMinimum method
AcChartAxis::SetMaximumValue method
AcChartAxis::SetMinimumValue method

AcChartAxis::SetMinorGridLineStyle method
Call the SetMinorGridLineStyle() method to set the line style used to draw grid
lines for the minor ticks on a chart axis.

The recommended method from which to call SetMinorGridLineStyle() is a
chart’s CustomizeAxes() method.

Syntax Sub SetMinorGridLineStyle(minorGridLineStyle As AcDrawingLineStyle)

Parameter minorGridLineStyle
The line style used to draw grid lines for the minor ticks on the chart axis.
If you do not want to display minor grid lines on the chart axis, set the Pen
member of minorGridLineStyle to DrawingLinePenNone.

C h a p t e r 7 , A F C c l a s s e s 301

AcChartAxis

Example The following example overrides a chart’s CustomizeAxes() method to set dotted
minor grid lines for the y-axis of the chart’s base layer, depending on the value of
a Boolean parameter. GetMinorGridLineStyle() retrieves the default settings so
that only the line style’s Pen member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedMinorGrid Then
Dim yAxis As AcChartAxis
Set yAxis = layer.GetYAxis()
Dim lineStyle As AcDrawingLineStyle
lineStyle = yAxis.GetMinorGridLineStyle()
lineStyle.Pen = DrawingLinePenDot
yAxis.SetMinorGridLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetMinorGridLineStyle method
AcChartAxis::SetMajorGridLineStyle method
AcDrawingLineStyle

AcChartAxis::SetMinorTickCount method
Call the SetMinorTickCount() method to set the number of minor ticks between
major ticks on a chart axis. You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

Syntax Sub SetMinorTickCount(minorTickCount As Integer)

Parameter minorTickCount
The number of minor ticks between major ticks on the chart axis. Must be greater
than or equal to 1.

Example The following example overrides a chart’s AdjustChart() method to set the
number of minor ticks depending on the interval between major ticks:

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
Dim interval As Integer
interval = yAxis.GetMajorTickInterval()

302 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

Do
Select Case interval
Case 1, 5

yAxis.SetMinorTickCount(4)
Exit Do

Case 2
yAxis.SetMinorTickCount(1)
Exit Do

Case 0
' Didn't find the interval - disable minor ticks.
yAxis.SetMinorTickPlacement(ChartTickPlacementNone)
Exit Do

End Select
interval = interval \ 10

Loop
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::GetMinorTickCount method

AcChartAxis::SetMinorTickPlacement method
Call the SetMinorTickPlacement() method to specify the placement of minor ticks
on a chart axis.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

Syntax Sub SetMinorTickPlacement(minorTickPlacement As AcChartTickPlacement)

Parameter minorTickPlacement
The placement of minor ticks on the chart axis.
Set minorTickPlacement to ChartTickPlacementNone if you do not want to show
minor ticks on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to enable
minor ticks on the y-axis of the chart’s overlay layer, depending on the value of a
Boolean parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis

C h a p t e r 7 , A F C c l a s s e s 303

AcChartAxis

Set yAxis = overlayLayer.GetYAxis()
If parmShowMinorTicks Then

yAxis.SetMinorTickPlacement(ChartTickPlacementOutside)
End If

End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetMinorTickPlacement method
AcChartAxis::SetMajorTickPlacement method
AcChartTickPlacement

AcChartAxis::SetNoZeroRatio method
Call the SetNoZeroRatio() method to set the minimum ratio between the lowest
and highest values plotted on a chart axis that will cause zero to be suppressed on
that axis. For example, if the highest value plotted against a chart axis is 100, and
the no zero ratio for that axis is 0.7:

■ If the lowest value plotted against the axis is 70, zero will be suppressed.

■ If the lowest value plotted against the axis is 69.9, zero will not be suppressed.

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetNoZeroRatio(noZeroRatio As Double)

Parameter noZeroRatio
The minimum ratio between the lowest and highest values plotted on a chart axis
that will cause zero to be suppressed on that axis. Must be in the range 0 through
1. 0 means that zero can be suppressed as long as all the values plotted on the axis
have the same sign. 1 means that zero can never be suppressed.

Example The following example overrides a chart’s CustomizeAxes() method to prevent
zero from being suppressed on the y-axis of the chart’s base layer, depending on
the value of a Boolean parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmNoZeroSuppression Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetNoZeroRatio(1)

End If
End Sub

304 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

See also AcChart::CustomizeAxes method
AcChartAxis::GetNoZeroRatio method

AcChartAxis::SetOtherAxisCrossesAt method
Call the SetOtherAxisCrossesAt() method to set the value at which the opposite
axis crosses a chart axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

SetOtherAxisCrossesAt() automatically forces the other axis placement setting to
ChartAxisPlacementCustom.

Syntax Sub SetOtherAxisCrossesAt(otherAxisCrossesAt As Variant)

Parameter otherAxisCrossesAt
The value at which the opposite chart axis crosses the chart axis.
If the chart axis is a category scale:

■ otherAxisCrossesAt specifies the tick number on the axis at which the
opposite axis crosses. The first tick is number 1.

■ otherAxisCrossesAt must be an integer in the range 1 through the number of
ticks on the axis.

Example The following example overrides a chart’s CustomizeAxes() method to set the
value at which the chart’s base layer’s x-axis crosses its y-axis to the value of the
first point in the first series:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim point As AcChartPoint
Set point = series.GetPoint(1)
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetOtherAxisCrossesAt(point.GetYValue())

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChartAxis::ClearOtherAxisCrossesAt method

C h a p t e r 7 , A F C c l a s s e s 305

AcChartAxis

AcChartAxis::GetOtherAxisCrossesAt method
AcChartAxis::SetOtherAxisPlacement method

AcChartAxis::SetOtherAxisPlacement method
Call the SetOtherAxisPlacement() method to specify the placement of the
opposite axis relative to a chart axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

■ A chart’s AdjustChart() method

If you call this method from a chart’s AdjustChart() method, you must also call
ComputeScale() on the chart axis to recompute the axis scale.

Syntax Sub SetOtherAxisPlacement(otherAxisPlacement As AcChartAxisPlacement)

Parameter otherAxisPlacement
The placement of the opposite axis relative to the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to change
the placement of the x-axis relative to the y-axis of the chart’s base layer,
depending on the value of a Boolean parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmXAxisCrossesAtTop Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetOtherAxisPlacement(

ChartAxisPlacementRightOrTop)
End If

End Sub

See also AcChartAxisPlacement
AcChartAxis::GetOtherAxisPlacement method
AcChartAxis::SetOtherAxisCrossesAt method

AcChartAxis::SetOuterMarginRatio method
Call the SetOuterMarginRatio() method to set the minimum ratio between the
outer margin on a chart axis and the total range of that axis. For example, if you
call this method on a bar chart layer’s y-axis with outerMarginRatio set to 0.05,
the longest bar is no more than 95% of the total height of the axis from the top of
the axis.

306 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

You can call this method only on a value scale axis.

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetOuterMarginRatio(outerMarginRatio As Double)

Parameter outerMarginRatio
The minimum ratio between the outer margin on the chart axis and the total
range of the axis. Must be in the range 0 through 0.25.

Example The following example overrides a chart’s CustomizeAxes() method to make the
outer margin on the y-axis of the chart’s base layer at least 10% of the total height
of the axis:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetOuterMarginRatio(0.1)

End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::GetOuterMarginRatio method
AcChartAxis::SetInnerMarginRatio method

AcChartAxis::SetPlotCategoriesBetweenTicks
method
Call the SetPlotCategoriesBetweenTicks() method to specify whether categories
are plotted between the ticks on a chart axis. You can call this method only on a
category scale axis.

You can call this method only on an axis in a chart if all of the layers in the chart
have either of the following chart types:

■ Area

■ Line

You can call this method only from:

■ A chart’s CustomizeAxes() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetPlotCategoriesBetweenTicks(plotCategoriesBetweenTicks As Boolean)

C h a p t e r 7 , A F C c l a s s e s 307

AcChartAxis

Parameter plotCategoriesBetweenTicks
True causes categories to be plotted between the ticks on the chart axis.
False causes categories to be plotted on the ticks on the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to plot
categories between ticks on the x-axis of the chart’s base layer, depending on the
value of a Boolean parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
xAxis.SetPlotCategoriesBetweenTicks(

parmCategoriesBetweenTicks)
End Sub

See also AcChart::CustomizeAxes method
AcChartAxis::PlotCategoriesBetweenTicks method

AcChartAxis::SetTitleStyle method
Call SetTitleStyle() to set the style of the title of a chart axis. The recommended
method from which to call SetTitleStyle() is a chart’s CustomizeAxes() method.
To change the title style at view time, call SetTitleStyle() from a chart’s Localize()
method.

Syntax Sub SetTitleStyle(titleStyle As AcDrawingTextStyle)

Parameter titleStyle
The style of the title of the chart axis.

Example The following example overrides a chart’s CustomizeAxes() method to make the
axis title of the x-axis of a chart italic, depending on the value of a Boolean
parameter. GetTitleStyle() retrieves the default settings so that only the title
style’s Font member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmItalicTitle Then
Dim xAxis As AcCHart
Dim titleStyle As AcDrawingTextStyle
titleStyle = GetTitleStyle()
titleStyle.Font.Italic = True
SetTitleStyle(titleStyle)

End If
End Sub

See also AcChart::CustomizeAxes method
AcChart::Localize method

308 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartAxis

AcChartAxis::GetTitleStyle method
AcDrawingTextStyle

AcChartAxis::SetTitleText method
Call the SetTitleText() method to set the text of the title of a chart axis.

The recommended methods from which to call SetTitleText() are:

■ A chart’s CustomizeAxes() method

■ A chart’s AdjustChart() method

To change the title text at view time, call SetTitleText() from a chart’s Localize()
method.

Syntax Sub SetTitleText(titleText As String)

Parameter titleText
The text of the title of the chart axis. Set this parameter to "" if you do not want a
title.

Examples The following example overrides a chart’s AdjustChart() method to scale the
y-axis labels on the chart’s base layer and set the y-axis title to match. Because this
adjustment relies on the automatically computed label values, it can only be
made in AdjustChart().

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
Dim labelValue As Integer
' Assume axis starts at 0, get the value of the first label
' above 0.
labelValue = yAxis.GetLabelValue(2)
If (labelValue > 1000) Then

Dim numberOfLabels As Integer
numberOfLabels = yAxis.GetNumberOfLabels()
Dim i As Integer
For i = 2 To numberOfLabels

labelValue = yAxis.GetLabelValue(i)
yAxis.SetLabelValue(i, labelValue / 1000)

Next i
yAxis.SetTitleText("Sales ($K)")

End If
End Sub

For another example of how to use this method, see the dynamic chart example
for the AcChart class.

C h a p t e r 7 , A F C c l a s s e s 309

AcChartAxis

See also Class AcChart
AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::Localize method
AcChartAxis::GetTitleText method

310 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartCategory

Class AcChartCategory
A category within a chart layer. Figure 7-7 shows the class hierarchy of
AcChartCategory.

Figure 7-7 AcChartCategory

Description Use AcChartCategory to represent a single category within a chart layer. Do not
create AcChartCategory objects explicitly from your own code. Instead,
AcChartLayer objects create AcChartCategory objects as necessary to build
complete charts.

To access a chart layer’s categories, you must use AcChartLayer’s methods. You
can manipulate the appearance of a chart by calling methods on the chart’s
categories. All types of chart layer except scatter chart layers have at least one
category. Scatter chart layers do not have categories.

Example For an example of how to use this class to build a chart dynamically, see the
dynamic chart example for the AcChart class.

See also Class AcChart
Class AcChartAxis
Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

Methods for Class AcChartCategory

Methods defined in Class AcChartCategory

GetIndex, GetKeyValue, GetLabelText, GetLabelValue, GetLayer,
GetSumOfPointValues, SetKeyValue, SetLabelValue

AcChartCategory::GetIndex method
Returns the index of a chart category within its parent chart layer’s list of
categories. The first category in a layer is index 1.

Syntax Function GetIndex() As Integer

Returns The index of the chart category within its parent chart layer’s list of categories.

AcChartCategory

C h a p t e r 7 , A F C c l a s s e s 311

AcChartCategory

AcChartCategory::GetKeyValue method
Returns the unique key value for a chart category.

Syntax Function GetKeyValue() As Variant

Returns The unique key value for the chart category.

See also AcChartCategory::GetLabelValue method
AcChartCategory::SetKeyValue method

AcChartCategory::GetLabelText method
Returns the formatted label text for a chart category. String label values are
returned unformatted.

Syntax Function GetLabelText() As String

Returns The formatted label text for a chart category.

See also AcChartCategory::GetKeyValue method
AcChartCategory::GetLabelValue method
AcChartCategory::SetLabelValue method

AcChartCategory::GetLabelValue method
Returns the label value for a chart category.

Syntax Function GetLabelValue() As Variant

Returns The label value for a chart category.

See also AcChartCategory::GetKeyValue method
AcChartCategory::GetLabelText method
AcChartCategory::SetLabelValue method

AcChartCategory::GetLayer method
Returns a reference to the parent chart layer of a chart category.

Syntax Function GetLayer() As AcChartLayer

Returns A reference to the parent chart layer of the chart category.

See also Class AcChartLayer

AcChartCategory::GetSumOfPointValues method
Returns the sum of the y values of all the points in a chart category.

Syntax Function GetSumOfPointValues() As Variant

312 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartCategory

Returns The sum of the y values of all the points in the category.

See also AcChartPoint::GetYValue method
AcChartSeries::GetSumOfPointValues method

AcChartCategory::SetKeyValue method
Call the SetKeyValue() method to set the unique key value for a chart category. A
chart category’s initial key value is set when the category is created. This method
changes that value. Changing a category’s key value has no effect on the order in
which categories appear on the x-axis.

You can call this method only from a chart’s CustomizeCategoriesAndSeries()
method.

Syntax Sub SetKeyValue(keyValue As Variant)

Parameter keyValue
The unique key value for the chart category.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartCategory::GetKeyValue method
AcChartCategory::GetLabelValue method

AcChartCategory::SetLabelValue method
Call the SetLabelValue() method to set the label value for a chart category. A
chart category’s initial label value is set when the category is created. This
method changes that value. Changing a category’s label value has no effect on the
order in which categories appear on the x-axis.

The label value does not have to be a string. Label values are formatted into label
text when the chart is viewed. This allows locale-specific formatting. For
example, if you set labelValue to 1.5, when the chart is viewed in the US English
locale, the label text will be "1.5", but when the chart is viewed in the French
locale the label text will be "1,5".

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ A chart’s Localize() method

Syntax Sub SetLabelValue(labelValue As Variant)

Parameter labelValue
The label value for the chart category.

Example The following example overrides a chart’s Localize() method to translate
category labels in the chart’s base layer into French at view time if the viewing
locale is French:

C h a p t e r 7 , A F C c l a s s e s 313

AcChartCategory

Sub Localize(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)
If (GetLocaleName() = "fr_FR") Then

Dim numberOfCategories As Integer
numberOfCategories = baseLayer.GetNumberOfCategories()
Dim categoryIndex As Integer
For categoryIndex = 1 To numberOfCategories

Dim category As AcChartCategory
Set category = baseLayer.GetCategory(categoryIndex)
Select Case category.GetLabelValue(labelIndex)
Case "North"

category.SetLabelValue("Nord")
Case "South"

category.SetLabelValue("Sud")
Case "East"

category.SetLabelValue("Est")
Case "West"

category.SetLabelValue("Ouest")
End Select

Next categoryIndex

See also AcChart::CustomizeCategoriesAndSeries method
AcChart::Localize method
AcChartCategory::GetKeyValue method
AcChartCategory::GetLabelValue method

314 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartGridLine

Class AcChartGridLine
A grid line in a chart. Figure 7-8 shows the class hierarchy of AcChartGridLine.

Figure 7-8 AcChartGridLine

Description AcChartGridLine represents a grid line in a chart. A grid line is a horizontal or
vertical line across the plot area of a chart layer.

To add grid lines to a chart, use the AcChartAxis::AddGridLine() or
AcChartAxis::InsertGridLine() methods. You cannot use the New keyword or the
NewInstance() or NewPersistentInstance() functions to create AcChartGridLine
objects.

To define the appearance of a grid line, call methods on the corresponding
AcChartGridLine object.

Example In the following example, a chart’s DrawOnChart() method has been overridden
to add a horizontal grid line to a chart. The grid line indicates the average value of
all the data points in the first series in the base layer.

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)

Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()

Dim averageValue As Double
Dim pointIndex As Integer
For pointIndex = 1 To numberOfPoints

Dim pointValue As Double
pointValue = series.GetPoint(pointIndex).GetYValue()
If Not IsNull(pointValue) Then

averageValue = averageValue + pointValue
End If

Next pointIndex
averageValue = averageValue / numberOfPoints

Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
Dim gridLine As AcChartGridLine
Set gridLine = yAxis.AddGridLine(averageValue)
gridLine.SetLabelText("Average")
gridLine.SetDrawInFrontOfPoints(True)
Dim lineStyle As AcDrawingLineStyle

AcChartGridLine

C h a p t e r 7 , A F C c l a s s e s 315

AcChartGridLine

lineStyle = gridLine.GetLineStyle()
lineStyle.Color = Blue
lineStyle.Pen = DrawingLinePenDot
lineStyle.Width = 1.5 * OnePoint
gridLine.SetLineStyle(lineStyle)

End Sub

See also Class AcChart
Class AcChartAxis
Class AcChartCategory
Class AcChartLayer
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

Methods for Class AcChartGridLine

Methods defined in Class AcChartGridLine

DrawInFrontOfPoints, GetAxis, GetIndex, GetLabelText, GetLineStyle, GetValue,
SetDrawInFrontOfPoints, SetLabelText, SetLineStyle, SetValue

AcChartGridLine::DrawInFrontOfPoints method
Determines whether a grid line is drawn in front of the data points within a chart.

Syntax Function DrawInFrontOfPoints() As Boolean

Returns True if the grid line is drawn in front of the data points.
False if the grid line is drawn behind the data points.

See also AcChartGridLine::SetDrawInFrontOfPoints method

AcChartGridLine::GetAxis method
Returns a reference to the parent chart axis of a grid line.

Syntax Function GetAxis() As AcChartAxis

Returns A reference to the parent chart axis of the grid line.

See also Class AcChartAxis

AcChartGridLine::GetIndex method
Returns the index of a grid line within its parent axis’s list of grid lines.

316 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartGridLine

Syntax Function GetIndex() As Integer

Returns The index of the grid line within its parent axis’s list of grid lines. The first grid
line for an axis is index 1.

AcChartGridLine::GetLabelText method
Returns the label text for a grid line. The label text appears in the chart legend.

Syntax Function GetLabelText() As String

Returns The label text for the grid line.

See also AcChartGridLine::SetLabelText method

AcChartGridLine::GetLineStyle method
Returns the line style used to draw a grid line. Call this method to retrieve the
default settings before changing a grid line’s line style.

Syntax Function GetLineStyle() As AcDrawingLineStyle

Returns The line style used to draw the grid line.

Example For an example of how to use this method, see the example for the
AcChartGridLine::SetLineStyle method.

See also AcChartGridLine::SetLineStyle method
AcDrawingLineStyle

AcChartGridLine::GetValue method
Returns the axis value at which a grid line is drawn.

Syntax Function GetValue() As Variant

Returns The axis value at which the grid line is drawn. If the grid line’s parent axis is a
category scale axis, the first tick on the axis has the value 0, the second tick has the
value 1, and so on.

See also AcChartGridLine::SetValue method

AcChartGridLine::SetDrawInFrontOfPoints method
Defines whether a grid line is drawn in front of the data points within a chart.

The recommended place from which to call SetDrawInFrontOfPoints() is a
chart’s DrawOnChart() method.

Syntax Sub SetDrawInFrontOfPoints(drawInFrontOfPoints As Boolean)

C h a p t e r 7 , A F C c l a s s e s 317

AcChartGridLine

Parameter drawInFrontOfPoints
True causes the grid line to be drawn in front of the data points. False causes the
grid line to be drawn behind the data points.

Example For an example of how to use this method, see the example for the
AcChartGridLine class.

See also Class AcChartGridLine
AcChart::DrawOnChart method
AcChartGridLine::DrawInFrontOfPoints method

AcChartGridLine::SetLabelText method
Sets the label text for a grid line. The label text appears in the chart legend. If the
label text is "" or Null, the grid line will not be listed in the legend.

The recommended place from which to call SetLabelText() is a chart’s
DrawOnChart() method.

Syntax Function SetILabelText(labelText As String)

Parameter labelText
Text that will be shown in the chart legend. Null or "" if you do not want the grid
line to be listed in the chart’s legend.

Example For an example of how to use this method, see the example for the
AcChartGridLine class.

See also Class AcChartGridLine
AcChart::DrawOnChart method
AcChartGridLine::GetLabelText method

AcChartGridLine::SetLineStyle method
Sets the line style used to draw a grid line.

The recommended place from which to call SetLineStyle() is a chart’s
DrawOnChart() method.

Syntax Function SetLineStyle(lineStyle As AcDrawingLineStyle)

Parameter lineStyle
The line style used to draw the grid line.

Example For an example of how to use this method, see the example for the
AcChartGridLine class.

See also Class AcChartGridLine
AcChart::DrawOnChart method
AcChartGridLine::GetLineStyle method

318 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartGridLine

AcChartGridLine::SetValue method
Sets the axis value at which a grid line is drawn.

The recommended place from which to call SetValue() is a chart’s
DrawOnChart() method.

Syntax Function SetValue(value As Variant)

Parameter value
The axis value at which the grid line is drawn. If the grid line’s parent axis is a
category scale axis, the first tick on the axis has the value 0, the second tick has the
value 1, and so on.

See also AcChart::DrawOnChart method
AcChartAxis::AddGridLine method
AcChartAxis::InsertGridLine method
AcChartGridLine::GetValue method

C h a p t e r 7 , A F C c l a s s e s 319

AcChartLayer

Class AcChartLayer
Defines a layer in a chart. Figure 7-9 shows the class hierarchy of AcChartLayer.

Figure 7-9 AcChartLayer

Description A chart layer is a set of points plotted against a single y-axis, or a set of points
plotted as a pie. Every chart contains one or more chart layers. All charts contain
a base layer. In addition to the base layer, some charts contain an overlay layer
and one or more study layers.

The points in an overlay layer are plotted in the same area as the points in the
base layer, but using a second y-axis opposite the base layer’s y-axis. For example,
an overlay line chart layer might be plotted on a base bar chart layer.

A study layer is drawn below a chart’s base layer, using its own y-axis and a
duplicate of the base layer’s x-axis. An example of a study layer is volume bars
drawn below a candlestick stock chart. If a chart contains multiple study layers,
the study layers are arranged from top to bottom. Study layers do not overlay
each other.

Use the AcChartLayer class to represent a single chart layer. Do not create
AcChartLayer objects explicitly from your own code. Instead, AcChart objects
create AcChartLayer objects automatically as necessary to build complete charts.

Use AcChart’s methods to access a chart’s layers. You can manipulate the content
and appearance of a chart by calling methods on the chart’s layers.

Example For an example of how to use this class to build a chart dynamically, see the
dynamic chart example for the AcChart class.

See also Class AcChart
Class AcChartAxis
Class AcChartCategory
Class AcChartGridLine
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

Methods for Class AcChartLayer

Methods defined in Class AcChartLayer

AddCategory, AddSeries, ChartTypeIsStackable, GetBarShape, GetBubbleSize,
GetCategory, GetCategoryGapRatio, GetCategoryGrouping,

AcChartLayer

320 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

GetCategoryLabelFormat, GetChart, GetChartType, GetDownBarBorderStyle,
GetDownBarFillStyle, GetDropLineStyle, GetHighLowLineStyle, GetIndex,
GetLayerType, GetLineWidth, GetMarkerSize, GetMaximumDataXValue,
GetMaximumDataYValue, GetMaximumNumberOfPoints,
GetMaximumNumberOfPointsPerSeries, GetMaximumNumberOfSeries,
GetMaximumTrendlineYValue, GetMinimumDataXValue,
GetMinimumDataYValue, GetMinimumTrendlineYValue, GetMissingPoints,
GetNumberOfCategories, GetNumberOfSeries, GetPieCenter,
GetPieExplosion, GetPieExplosionAmount, GetPieExplosionTestOperator,
GetPieExplosionTestValue, GetPieRadius, GetPlotAreaBorderStyle,
GetPlotAreaFillStyle, GetPlotAreaPosition, GetPlotAreaSize,
GetPointBorderStyle, GetPointLabelFormat, GetPointLabelLineStyle,
GetPointLabelPlacement, GetPointLabelSource, GetPointLabelStyle,
GetSeries, GetSeriesGrouping, GetSeriesLabelFormat,
GetSeriesOverlapRatio, GetSeriesPlacement, GetSeriesStyle, GetStartAngle,
GetStudyHeightRatio, GetThreeDBackWallFillStyle, GetThreeDFloorFillStyle,
GetThreeDSideWallFillStyle, GetUpBarBorderStyle, GetUpBarFillStyle,
GetXAxis, GetYAxis, HasCategoryScaleXAxis, HasValueScaleXAxis,
HasXAxis, HasYAxis, InsertCategory, InsertSeries, IsBaseLayer,
IsOverlayLayer, IsStacked, IsStudyLayer,
PieExplosionTestValueIsPercentage, PlotBarsAsLines,
PlotLinesBetweenPoints, PlotMarkersAtPoints, PlotUpDownBars,
RemoveCategory, RemoveSeries, SetBarShape, SetBubbleSize,
SetCategoryGapRatio, SetCategoryLabelFormat, SetChartType,
SetDownBarBorderStyle, SetDownBarFillStyle, SetDropLineStyle,
SetHighLowLineStyle, SetLineWidth, SetMarkerSize,
SetMaximumNumberOfPoints, SetMaximumNumberOfPointsPerSeries,
SetMaximumNumberOfSeries, SetMissingPoints, SetPieExplosion,
SetPieExplosionAmount, SetPieExplosionTestOperator,
SetPieExplosionTestValue, SetPieExplosionTestValueIsPercentage,
SetPlotAreaBackgroundColor, SetPlotAreaBorderStyle, SetPlotAreaFillStyle,
SetPlotBarsAsLines, SetPlotHighLowLines, SetPlotLinesBetweenPoints,
SetPlotMarkersAtPoints, SetPlotUpDownBars, SetPointBorderStyle,
SetPointLabelFormat, SetPointLabelLineStyle, SetPointLabelPlacement,
SetPointLabelSource, SetPointLabelStyle, SetSeriesLabelFormat,
SetSeriesOverlapRatio, SetSeriesPlacement, SetStartAngle,
SetStockHasClose, SetStockHasOpen, SetStudyHeightRatio,
SetThreeDFloorFillStyle, SetThreeDWallFillStyle, SetUpBarBorderStyle,
SetUpBarFillStyle, StockHasClose, StockHasOpen

AcChartLayer::AddCategory method
Call AddCategory() to append a new category at the end of a chart layer’s list of
categories. When you add a category to a chart layer that already has a series,
corresponding empty points are added to each of the chart layer’s series.

You can call this method only on a chart’s base layer.

C h a p t e r 7 , A F C c l a s s e s 321

AcChartLayer

All the layers in a chart share the same x-axis. This means that all the layers in a
chart must have the same set of categories.

If a chart has an overlay layer, when you call AddCategory on the chart’s base
layer the new category is automatically duplicated in the chart’s overlay layer.

If a chart has study layers, when you call AddCategory on the chart’s base layer
the new category is automatically duplicated in all the chart’s study layers.

You cannot call this method on a scatter chart layer. Scatter chart layers do not
have categories.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

If you are adding categories and series to an empty chart layer, you must add at
least one category before you add any series.

If you add categories to a chart layer using AddCategory(), the categories appear
on the chart in the order in which you added them. Categories you add using
AddCategory() are not automatically sorted in any way.

The categoryLabelValue does not have to be a string. Label values are formatted
into label text when the chart is viewed. This formatting allows locale-specific
formatting. For example, if you set categoryLabelValue to 1.5, when the chart is
viewed in the US English locale the label text is 1.5 but the label text is 1,5 when
the chart is viewed in the French locale.

Syntax Function AddCategory(categoryKeyValue As Variant) As AcChartCategory

Function AddCategory(categoryKeyValue As Variant, categoryLabelValue As
Variant) As AcChartCategory

Parameters categoryKeyValue
A unique identifying key value for the new category.

categoryLabelValue
A value to display as the label for the new category.

If this parameter is omitted, the category label value is the same as the category
key value.

Returns A reference to the new category.

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also Class AcChart
Class AcChartCategory
AcChart::CustomizeCategoriesAndSeries method

322 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::AddSeries method
AcChartLayer::InsertCategory method
AcChartLayer::RemoveCategory method

AcChartLayer::AddSeries method
Call this method to append a new series to the end of a chart layer’s list of series.

You can call AddSeries() on any layer in a chart.

All the layers in a chart share the same x-axis. All the layers in a chart do not
necessarily have the same set of series.

You cannot call this method on a pie chart layer. Such layers only have one series.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

If you are adding categories and series to an empty chart layer, you must add at
least one category before you add any series.

If you add series to a chart layer using AddSeries(), you must also populate
those series with points. Points are not created automatically when you call
AddSeries().

If you add series to a chart layer using AddSeries(), the series appear on the chart
in the order in which you added them. Series you add using AddSeries() will not
be sorted automatically in any way.

The seriesLabelValue does not have to be a string. Label values are formatted into
label text when the chart is viewed. This allows locale-specific formatting. For
example, if you set seriesLabelValue to 1.5, when the chart is viewed in the US
English locale the label text is 1.5 but the label text is 1,5 when the chart is viewed
in the French locale.

Syntax Function AddSeries(seriesKeyValue As Variant) As AcChartSeries

Function AddSeries(seriesKeyValue As Variant, seriesLabelValue As
Variant) As AcChartSeries

Parameters seriesKeyValue
A unique identifying key value for the new series.

seriesLabelValue
A value to be displayed as the label for the new series.
If this parameter is omitted, the series label value is the same as the series key
value.

Returns A reference to the new series.

C h a p t e r 7 , A F C c l a s s e s 323

AcChartLayer

Example For an example of how to use this method, see the dynamic chart example for the
AcChart class.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartLayer::AddCategory method
AcChartLayer::InsertSeries method
AcChartLayer::RemoveSeries method
Class AcChart
Class AcChartSeries

AcChartLayer::ChartTypeIsStackable method
Specifies whether a chart layer’s chart type supports stacked series. A typical
stacked series chart type is a stacked bar chart. In a stacked bar chart layer, the
points for all the series in the chart layer are stacked into a single bar in each
category. The height of a bar is the sum of the values for all series in a category.

The following chart types support stacked series:

■ Area

■ Bar

■ Line

■ Step

Syntax Function ChartTypeIsStackable() As Boolean

Returns True if the chart layer’s chart type supports stacked series.
False if the chart layer’s chart type does not support stacked series.

See also AcChartLayer::SetChartType method
AcChartLayer::SetSeriesPlacement method

AcChartLayer::GetBarShape method
Returns the shape of bars in a three-dimensional bar chart layer. You can call this
method only on a three-dimensional bar chart layer.

Syntax Function GetBarShape() As AcChartBarShape

Returns The shape of the bars in the chart layer.

See also AcChartBarShape
AcChartLayer::SetBarShape method

AcChartLayer::GetBubbleSize method
Returns the size of the largest bubble in a bubble chart as a percentage of the
length of the shorter of the chart layer’s two axes.

324 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Syntax Function GetBubbleSize() As Double

Returns The size of the largest bubble.

See also AcChartLayer::SetBubbleSize method

AcChartLayer::GetCategory method
Returns a reference to the specified category in a chart layer. You can call this
method only on a chart’s base layer. Do not call this method on a scatter chart
layer. Scatter chart layers do not have categories.

To determine the number of categories in a chart layer, call the chart layer’s
GetNumberOfCategories() method.

Syntax Function GetCategory(index As Integer) As AcChartCategory

Parameter index
An index into the chart layer’s list of categories. The first category is index 1.

Returns A reference to the specified category in the chart layer.

See also Class AcChartCategory
AcChartLayer::GetNumberOfCategories method
AcChartLayer::GetSeries method

AcChartLayer::GetCategoryGapRatio method
Returns the size of the gap between categories in a bar chart layer, relative to the
width of a single bar.

The size of the gap is defined relative to the width of a single bar. If the size of the
gap is 1, it is the same width as a single bar. If the size of the gap is 2, it is twice the
width of a single bar. If the size of the gap is 0.5, it is half the width of a single bar.

You can call this method only on a bar chart layer.

Syntax Function GetCategoryGapRatio() As Double

Returns The size of the gap between categories in the bar chart layer.

See also AcChartLayer::GetSeriesOverlapRatio method
AcChartLayer::SetCategoryGapRatio method

AcChartLayer::GetCategoryGrouping method
Returns a reference to the data grouping definition used to control how data is
grouped into categories in a chart. You can then call methods on the data
grouping definition object to change the way data is grouped into categories.

The category data grouping mechanism only works in charts that have a category
key defined in Chart Builder.

C h a p t e r 7 , A F C c l a s s e s 325

AcChartLayer

You can change the way data is grouped only from within a chart’s
CustomizeLayers() method.

You cannot call this method on a scatter chart layer. Scatter chart layers do not
have categories.

You can call this method only on a chart’s base layer.

All the layers in a chart must have the same set of categories, so there is only one
category grouping definition object in a chart. All the layers in a chart share the
category grouping definition.

Syntax Function GetCategoryGrouping() As AcDataGrouping

Returns A reference to the data grouping definition used to group data into categories in
the chart layer.

Example In the following example, a chart has a base stock chart layer. You defined the
category in Chart Builder as a date. The chart’s CustomizeLayers() method has
been overridden to group category key values into weeks.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim categoryGrouping As AcDataGrouping
Set categoryGrouping = baseLayer.GetCategoryGrouping()
categoryGrouping.SetUnit(DataGroupingUnitWeek)

End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetCategoryGrouping method

AcChartLayer::GetCategoryLabelFormat method
Returns the format pattern used to format category labels in a chart layer. You can
call this method only on a chart’s base layer.

Category labels are used as category scale axis labels. The value that this method
returns is exactly the same as the value that the GetLabelFormat() method
returns of a category scale axis.

Syntax Function GetCategoryLabelFormat() As String

Returns The format pattern used to format category labels in the chart layer.

See also AcChartAxis::GetLabelFormat method
AcChartLayer::GetPointLabelFormat method
AcChartLayer::GetSeriesLabelFormat method
AcChartLayer::SetCategoryLabelFormat method

AcChartLayer::GetChart method
Returns a reference to a chart layer’s parent chart.

326 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Syntax Function GetChart() As AcChart

Returns A reference to the chart layer’s parent chart.

See also Class AcChart

AcChartLayer::GetChartType method
Returns the chart type of a chart layer.

Syntax Function GetChartType() As AcChartType

Returns The chart type of the chart layer.

See also AcChartType

AcChartLayer::GetDownBarBorderStyle method
Returns the style of the border around down bars in a chart layer. To change the
border around down bars, call this method to retrieve the default settings.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

Syntax Function GetDownBarBorderStyle() As AcDrawingBorderStyle

Returns The style of the border around a down bar in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around down bars in the chart’s base layer, depending on
the value of a Boolean parameter. GetDownBarBorderStyle() retrieves the default
settings so that only the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmRedOutlinedDownBars Then
Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetDownBarBorderStyle()
borderStyle.Color = Red
baseLayer.SetDownBarBorderStyle(borderStyle)

End If
End Sub

See also AcChartLayer::GetDownBarFillStyle method
AcChartLayer::GetUpBarBorderStyle method
AcChartLayer::SetDownBarBorderStyle method
AcChartLayer::SetPlotUpDownBars method
AcDrawingBorderStyle

C h a p t e r 7 , A F C c l a s s e s 327

AcChartLayer

AcChartLayer::GetDownBarFillStyle method
Returns the fill style for down bars in a chart layer. To change the fill for down
bars, call this method to retrieve the default settings.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

Syntax Function GetDownBarFillStyle() As AcDrawingFillStyle

Returns The fill style for a down bar in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of down bars in the chart’s base layer, depending on the value of a
Boolean parameter. GetDownBarFillStyle() retrieves the default settings so that
only the fill style’s Color1 member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmRedFilledDownBars Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetDownBarFillStyle()
fillStyle.Color = Red
baseLayer.SetDownBarFillStyle(fillStyle)

End If
End Sub

See also AcChartLayer::GetDownBarBorderStyle method
AcChartLayer::GetUpBarFillStyle method
AcChartLayer::SetDownBarFillStyle method
AcChartLayer::SetPlotUpDownBars method
AcDrawingFillStyle

AcChartLayer::GetDropLineStyle method
Returns the line style used to draw drop lines in a chart layer. To change the style
of drop lines, call this method to retrieve the default settings.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

Syntax Function GetDropLineStyle() As AcDrawingLineStyle

Returns The line style used to draw drop lines in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the pattern used to draw drop lines in the chart’s base layer, depending on the

328 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

value of a Boolean parameter. GetDropLineStyle() retrieves the default settings
so that only the line style’s Pen member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedDropLines Then
Dim lineStyle As AcDrawingLineStyle
lineStyle = baseLayer.GetDropLineStyle()
lineStyle.Pen = DrawingLinePenDot
baseLayer.SetDropLineStyle(lineStyle)

End If
End Sub

See also AcChartLayer::SetDropLineStyle method
AcDrawingLineStyle

AcChartLayer::GetHighLowLineStyle method
Returns the line style used to draw high-low lines in a chart layer. To change the
style of high-low lines, call this method to retrieve the default settings.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

Syntax Function GetHighLowLineStyle() As AcDrawingLineStyle

Returns The line style used to draw high-low lines in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the thickness of high-low lines in the chart’s base layer, depending on the value of
a Boolean parameter. GetHighLowLineStyle() retrieves the default settings so
that only the line style’s Width member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmThickHighLowLines Then
Dim lineStyle As AcDrawingLineStyle
lineStyle = baseLayer.GetHighLowLineStyle()
lineStyle.Width = 2 * OnePoint
baseLayer.SetHighLowLineStyle(lineStyle)

End If
End Sub

See also AcChartLayer::SetHighLowLineStyle method
AcDrawingLineStyle

C h a p t e r 7 , A F C c l a s s e s 329

AcChartLayer

AcChartLayer::GetIndex method
Returns the index of a chart layer within its parent chart’s list of layers. The first
layer in a chart is index 1.

Syntax Function GetIndex() As Integer

Returns The index of the chart layer within its parent chart’s list of layers.

AcChartLayer::GetLayerType method
Returns the chart layer type of a chart layer.

Syntax Function GetLayerType() As AcChartLayerType

Returns The chart layer type of the chart layer.

See also AcChartLayerType

AcChartLayer::GetLineWidth method
Returns the default width of the lines joining points within each series in a chart
layer. You can call this method only on chart layers of the following chart types:

■ Stacked bar

■ Line

■ Scatter

The line width this method returns might not apply to all the series in a chart
layer. You can retrieve the width of the line for an individual series by calling the
corresponding series style’s GetLineStyle() method.

Syntax Function GetLineWidth() As AcTwips

Returns The default width of the lines joining points within each series in the chart layer.

See also AcChartLayer::PlotLinesBetweenPoints method
AcChartLayer::SetLineWidth method
AcChartSeriesStyle::GetLineStyle method
AcTwips

AcChartLayer::GetMarkerSize method
Returns the default size for markers within a chart layer. You can call this method
only on chart layers with the following chart types:

■ Line

■ Scatter

■ Stock

330 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

The marker size this method returns might not apply to all the points in a chart
layer. To retrieve the default size for markers in an individual series, call the
corresponding series style’s GetMarkerSize() method. To retrieve the size of the
marker for an individual point, call the corresponding point style’s
GetMarkerSize() method.

Syntax Function GetMarkerSize() As AcTwips

Returns The default size for markers within the chart layer.

See also AcChartLayer::SetMarkerSize method
AcChartPointStyle::GetMarkerSize method
AcTwips

AcChartLayer::GetMaximumDataXValue method
Returns the maximum x value of all the points in a chart layer. You can call this
method only on scatter chart layers.

You can call this method only after the chart has computed its minimum and
maximum data values. You can call GetMaximumDataXValue() from the
following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMaximumDataXValue() As Variant

Returns The maximum x value of all the points in a chart layer.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::ComputeMinMaxDataValues method
AcChartLayer::GetMaximumDataYValue method
AcChartLayer::GetMinimumDataXValue method

AcChartLayer::GetMaximumDataYValue method
Returns the maximum y value of all the points in a chart layer. In a pie chart layer,
the y values are the slice values.

You can call this method only after the chart has computed its minimum and
maximum data values. You can call GetMaximumDataYValue() from the
following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMaximumDataYValue() As Variant

C h a p t e r 7 , A F C c l a s s e s 331

AcChartLayer

Returns The maximum y value of all the points in the chart layer.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::ComputeMinMaxDataValues method
AcChartLayer::GetMaximumDataXValue method
AcChartLayer::GetMaximumTrendlineYValue method
AcChartLayer::GetMinimumDataYValue method

AcChartLayer::GetMaximumNumberOfPoints method
Returns the maximum number of points permitted in a chart layer. This number
is a safety limit used to prevent charts from growing excessively large due to
programming errors or unexpected data. If you exceed this limit, a run-time error
occurs.

Syntax Function GetMaximumNumberOfPoints() As Integer

Returns The maximum number of points permitted in the chart layer.

See also AcChartLayer::GetMaximumNumberOfPointsPer Series method
AcChartLayer::GetMaximumNumberOfSeries method
AcChartLayer::SetMaximumNumberOfPoints method

AcChartLayer::GetMaximumNumberOfPointsPer
Series method
Returns the maximum number of points permitted in a single series in a chart
layer. This number is a safety limit used to prevent charts from growing
excessively large due to programming errors or unexpected data. If you exceed
this limit, a run-time error occurs.

In charts with a category axis, the maximum number of points per series is
equivalent to the maximum number of categories.

Syntax Function GetMaximumNumberOfPointsPerSeries() As Integer

Returns The maximum number of points permitted in a single series in the chart layer.

See also AcChartLayer::GetMaximumNumberOfPoints method
AcChartLayer::GetMaximumNumberOfSeries method
AcChartLayer::SetMaximumNumberOfPointsPer Series method

AcChartLayer::GetMaximumNumberOfSeries method
Returns the maximum number of series permitted in a chart layer. This number is
a safety limit used to prevent charts from growing excessively large due to
programming errors or unexpected data. If you exceed this limit, a run-time error
occurs.

332 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Syntax Function GetMaximumNumberOfSeries() As Integer

Returns The maximum number of series permitted in the chart layer.

See also AcChartLayer::GetMaximumNumberOfPoints method
AcChartLayer::GetMaximumNumberOfPointsPer Series method
AcChartLayer::SetMaximumNumberOfSeries method

AcChartLayer::GetMaximumTrendlineYValue method
Returns the maximum y value of all the trendlines in a chart layer.

You can only call this method after the chart has computed its trendlines.

You can call this method from the following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMaximumTrendlineYValue() As Variant

Returns The maximum y value of all the trendlines in the chart layer.
Null if the chart layer does not contain any trendlines.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::ComputeMinMaxDataValues method
AcChartAxis::GetMaximumTrendlineValue method
AcChartLayer::GetMaximumDataYValue method
AcChartLayer::GetMinimumTrendlineYValue method
Class AcChartTrendline

AcChartLayer::GetMinimumDataXValue method
Returns the minimum x value of all the points in a chart layer. You can only call
this method on scatter chart layers.

You can only call this method after the chart has computed its minimum and
minimum data values. You can call GetMaximumDataYValue() from the
following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMinimumDataXValue() As Variant

Returns The minimum x value of all the points in the chart layer.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method

C h a p t e r 7 , A F C c l a s s e s 333

AcChartLayer

AcChart::ComputeMinMaxDataValues method
AcChartLayer::GetMaximumDataXValue method
AcChartLayer::GetMinimumDataYValue method

AcChartLayer::GetMinimumDataYValue method
Returns the minimum y value of all the points in a chart layer. In a pie chart layer,
the y values are the slice values.

You can only call this method after the chart has computed its minimum and
minimum data values.

You can call GetMinimumDataYValue() from the following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMinimumDataYValue() As Variant

Returns The minimum y value of all the points in the chart layer.

See also AcChart::AdjustChart method
AcChart::ComputeMinMaxDataValues method
AcChartLayer::GetMaximumDataYValue method
AcChartLayer::GetMaximumTrendlineYValue method
AcChartLayer::GetMinimumDataXValue method
AcChartLayer::GetMinimumTrendlineYValue method

AcChartLayer::GetMinimumTrendlineYValue method
Returns the minimum y value of all the trendlines in a chart layer.

You can only call this method after the chart has computed its trendlines. You can
call this method from the following methods:

■ AcChart::CustomizeAxes()

■ AcChart::AdjustChart()

Syntax Function GetMinimumTrendlineYValue() As Variant

Returns The minimum y value of all the trendlines in the chart layer.
Null if the chart layer does not contain any trendlines.

See also AcChart::AdjustChart method
AcChart::CustomizeAxes method
AcChart::ComputeMinMaxDataValues method
AcChartAxis::GetMinimumTrendlineValue method
AcChartLayer::GetMinimumDataYValue method
AcChartLayer::GetMaximumTrendlineYValue method

334 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::GetMinimumDataYValue method
Class AcChartTrendline

AcChartLayer::GetMissingPoints method
Returns the way that missing points are plotted in a chart layer.

Syntax Function GetMissingPoints() As AcChartMissingPoints

Returns The way that missing points are plotted in the chart layer.

See also AcChartLayer::SetMissingPoints method
AcChartMissingPoints

AcChartLayer::GetNumberOfCategories method
Returns the number of categories in a chart layer.

You cannot call this method on a scatter chart layer. Scatter chart layers do not
have categories.

You can only call this method on a chart’s base layer.

Syntax Function GetNumberOfCategories() As Integer

Returns The number of categories in the chart layer.

See also AcChartLayer::GetCategory method
AcChartLayer::GetNumberOfSeries method

AcChartLayer::GetNumberOfSeries method
Returns the number of series in a chart layer.

Syntax Function GetNumberOfSeries() As Integer

Returns The number of series in the chart layer.

See also AcChartLayer::GetNumberOfCategories method
AcChartLayer::GetSeries method

AcChartLayer::GetPieCenter method
Returns the position of the center of a pie chart relative to the top left corner of its
parent chart’s chart drawing plane.

You can use this method only for two-dimensional pie charts.

You can call this method only from the AcChart::DrawOnChart() method. You
must call the AcChartDescribeLayout() method before calling this method.

Syntax Function GetPieCenter() As AcPoint

C h a p t e r 7 , A F C c l a s s e s 335

AcChartLayer

Returns The position of the center of the pie chart relative to the top left corner of its
parent chart’s chart drawing plane.

See also AcChart::DescribeLayout method
AcChart::DrawOnChart method
AcChartLayer::GetPieRadius method
AcChartLayer::GetPlotAreaPosition method
AcChartLayer::GetPlotAreaSize method
Class AcDrawingChartPlane
AcRectangle

AcChartLayer::GetPieExplosion method
Returns the circumstances in which pie slices will be exploded in a pie chart layer.

You can call this method only on a pie chart layer.

Syntax Function GetPieExplosion() As AcChartPieExplode

Returns The circumstances in which pie slices will be exploded in the pie chart layer.

See also AcChartLayer::GetPieExplosionAmount method
AcChartLayer::GetPieExplosionTestOperator method
AcChartLayer::GetPieExplosionTestValue method
AcChartLayer::PieExplosionTestValueIsPercentage method
AcChartLayer::SetPieExplosion method
AcChartPieExplode

AcChartLayer::GetPieExplosionAmount method
Returns the amount that pie slices will be exploded in a pie chart layer. The
amount is a proportion of the radius of the pie. If the amount is 0.25, exploded
slices will be moved outwards from the center of the pie by one quarter of the
radius of the pie.

You can only call this method on a pie chart layer.

Syntax Function GetPieExplosionAmount() As Double

Returns The amount that pie slices will be exploded in the pie chart layer.

See also AcChartLayer::GetPieExplosion method
AcChartLayer::GetPieExplosionTestOperator method
AcChartLayer::GetPieExplosionTestValue method
AcChartLayer::PieExplosionTestValueIsPercentage method
AcChartLayer::SetPieExplosionAmount method

336 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::GetPieExplosionTestOperator method
Returns the operator used to test whether a pie slice will be exploded in a pie
chart layer.

You can only call this method on a pie chart layer.

Syntax Function GetPieExplosionTestOperator() As AcChartComparisonOperator

Returns The operator used to test whether a pie slice will be exploded in a pie chart layer.

See also AcChartComparisonOperator
AcChartLayer::GetPieExplosion method
AcChartLayer::GetPieExplosionAmount method
AcChartLayer::GetPieExplosionTestValue method
AcChartLayer::PieExplosionTestValueIsPercentage method
AcChartLayer::SetPieExplosionTestOperator method

AcChartLayer::GetPieExplosionTestValue method
Returns the value used to test whether a pie slice will be exploded in a pie chart
layer.

You can only call this method on a pie chart layer.

Syntax Function GetPieExplosionTestValue() As Variant

Returns The value used to test whether to explode a pie slice in the pie chart layer.

See also AcChartLayer::GetPieExplosion method
AcChartLayer::GetPieExplosionAmount method
AcChartLayer::GetPieExplosionTestOperator method
AcChartLayer::PieExplosionTestValueIsPercentage method
AcChartLayer::SetPieExplosionTestValue method

AcChartLayer::GetPieRadius method
Returns the radius of a pie chart.

You can use this method only for two-dimensional pie charts.

You can call this method only from the AcChart::DrawOnChart() method.

You must call the AcChartDescribeLayout() method before calling this method.

Syntax Function GetPieRadius() As AcTwips

Returns The radius of the pie chart.

See also AcChart::DescribeLayout method
AcChart::DrawOnChart method
AcChartLayer::GetPieCenter method

C h a p t e r 7 , A F C c l a s s e s 337

AcChartLayer

AcChartLayer::GetPlotAreaPosition method
AcChartLayer::GetPlotAreaSize method
Class AcDrawingChartPlane
AcTwips

AcChartLayer::GetPlotAreaBorderStyle method
Returns the style of the border around a chart layer’s plot area. To change the
border around a chart layer’s plot area, call this method to retrieve the default
settings.

You can only call this method on a chart’s base layer.

All the layers in a chart are drawn with the same plot area border style as the base
layer. You cannot change the plot area border style on individual layers.

You cannot call this method on a three-dimensional chart layer. A three-
dimensional chart layer does not have a plot area border.

You cannot call this method on a pie chart layer. A pie chart layer does not have a
plot area border.

Syntax Function GetPlotAreaBorderStyle() As AcDrawingBorderStyle

Returns The style of the border around the chart layer’s plot area.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around the chart’s base layer’s plot area, based on the
value of a parameter. GetPlotAreaBorderStyle() retrieves the default settings so
that only the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetPlotAreaBorderStyle()
borderStyle.Color = parmPlotAreaBorderColor
baseLayer.SetPlotAreaBorderStyle(borderStyle)

End Sub

See also AcChart::GetBorderStyle method
AcChartLayer::SetPlotAreaBorderStyle method
AcDrawingBorderStyle

AcChartLayer::GetPlotAreaFillStyle method
Returns the background fill style for a chart layer’s plot area. To change the
background of a chart layer’s plot area, call this method to retrieve the default
settings.

You can only call this method on a chart’s base layer.

338 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

All the layers in a chart are drawn with the same plot area fill style as the base
layer. You cannot change the plot area fill style on individual layers.

You cannot call this method on a three-dimensional chart layer. A three-
dimensional chart layer has separate fill styles for its walls and its floor instead of
a plot area fill style.

You cannot call this method on a pie chart layer. A pie chart layer does not have a
plot area fill style.

Syntax Function GetPlotAreaFillStyle() As AcDrawingFillStyle

Returns The background fill style for the chart layer’s plot area.

Example The following example overrides a chart’s CustomizeLayers() method to create a
patterned plot area background, depending on the value of a Boolean parameter.
GetPlotAreaFillStyle() retrieves the default settings so that only the fill style’s
Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddBackgroundPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetPlotAreaFillStyle()
fillStyle.Pattern = DrawingFillPattern05Percent
baseLayer.SetPlotAreaFillStyle(fillStyle)

End If
End Sub

See also AcChart::GetFillStyle method
AcChartLayer::GetThreeDBackWallFillStyle method
AcChartLayer::GetThreeDFloorFillStyle method
AcChartLayer::GetThreeDSideWallFillStyle method
AcChartLayer::SetPlotAreaBackgroundColor method
AcChartLayer::SetPlotAreaFillStyle method
AcDrawingFillStyle

AcChartLayer::GetPlotAreaPosition method
Returns the position of a chart layer’s plot area relative to the top left corner of its
parent chart’s chart drawing plane. You can use this method only for two-
dimensional charts that are not pie charts. You can call this method only from the
AcChart::DrawOnChart() method. You must call the AcChartDescribeLayout()
method before calling this method.

Syntax Function GetPlotAreaPosition() As AcPoint

Returns The position of the chart layer’s plot area relative to the top left corner of its
parent chart’s chart drawing plane.

C h a p t e r 7 , A F C c l a s s e s 339

AcChartLayer

Example For an example of how to use this method, see the example for the
AcChart::DrawOnChart() method.

See also AcChart::DescribeLayout method
AcChart::DrawOnChart method
AcChartLayer::GetPieCenter method
AcChartLayer::GetPieRadius method
AcChartLayer::GetPlotAreaSize method
Class AcDrawingChartPlane
AcRectangle

AcChartLayer::GetPlotAreaSize method
Returns the size of a chart layer’s plot area. You can use this method only for two-
dimensional charts that are not pie charts. You can call this method only from the
AcChart::DrawOnChart() method. You must call the AcChartDescribeLayout()
method before calling this method.

Syntax Function GetPlotAreaSize() As AcSize

Returns The size of the chart layer’s plot area.

Example For an example of how to use this method, see the example for the
AcChart::DrawOnChart() method.

See also AcChart::DescribeLayout method
AcChart::DrawOnChart method
AcChartLayer::GetPieCenter method
AcChartLayer::GetPieRadius method
AcChartLayer::GetPlotAreaPosition method
Class AcDrawingChartPlane
AcSize

AcChartLayer::GetPointBorderStyle method
Returns the default style for the borders around points in a chart layer. To change
the border around a chart layer’s points, call this method to retrieve the default
settings.

You can only call this method on chart layers with these chart types:

■ Area

■ Bar

■ Pie

■ Step

The border style that this method returns might not apply to all the points in a
chart layer. To retrieve the default border style for the points within an individual

340 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

series, call the corresponding series style’s GetBorderStyle() method. To retrieve
the border style for an individual point, call the corresponding point style’s
GetBorderStyle() method.

Syntax Function GetPointBorderStyle() As AcDrawingBorderStyle

Returns The default style for the borders around points in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around points in the chart’s base layer, based on the value
of a parameter. GetPointBorderStyle() retrieves the default settings so that only
the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetPointBorderStyle()
borderStyle.Color = parmPointBorderColor
baseLayer.SetPointBorderStyle(borderStyle)

End Sub

See also AcChartLayer::SetPointBorderStyle method
AcChartPointStyle::GetBorderStyle method
AcDrawingBorderStyle

AcChartLayer::GetPointLabelFormat method
Returns the default format pattern used to format point labels in a chart layer. The
format pattern that this method returns might not apply to all the points in a chart
layer. To retrieve the point label format pattern for an individual series, call the
corresponding series style’s GetPointLabelFormat() method. To retrieve the point
label format pattern for an individual point, call the point’s
GetCustomLabelFormat() method.

Syntax Function GetPointLabelFormat() As String

Returns The default format pattern used to format point labels in the chart layer.

See also AcChartLayer::GetCategoryLabelFormat method
AcChartLayer::GetSeriesLabelFormat method
AcChartLayer::GetPointLabelFormat method
AcChartPoint::GetCustomLabelFormat method
AcChartPoint::HasCustomLabelFormat method
AcChartSeriesStyle::GetPointLabelFormat method

AcChartLayer::GetPointLabelLineStyle method
Returns the line style used to draw point label lines in a chart layer. To change line
style used to draw point label lines in a chart layer, call this method to retrieve the
default settings. You can only call this method on pie chart layers.

C h a p t e r 7 , A F C c l a s s e s 341

AcChartLayer

Syntax Function GetPointLabelLineStyle() As AcDrawingLineStyle

Returns The line style used to draw point label lines in a chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the pattern used to draw the point label lines in the chart’s base layer, depending
on the value of a Boolean parameter. GetPointLabelLineStyle() retrieves the
default settings so that only the line style’s Pen member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedPointLabelLines Then
Dim lineStyle As AcDrawingLineStyle
lineStyle = baseLayer.GetPointLabelLineStyle()
lineStyle.Pen = DrawingLinePenDot
baseLayer.SetPointLabelLineStyle(lineStyle)

End If
End Sub

See also AcChartLayer::SetPointLabelStyle method
AcDrawingLineStyle

AcChartLayer::GetPointLabelPlacement method
Returns the default placement of point labels in a chart layer. The placement that
this method returns might not apply to all the points in a chart layer. To retrieve
the default point label placement for the points within an individual series, call
the corresponding series style’s GetPointLabelPlacement() method. To retrieve
the point label placement for an individual point, call the corresponding point
style’s GetPointLabelPlacement() method.

Syntax Function GetPointLabelPlacement() As AcChartPointLabelPlacement

Returns The default placement of point labels in a chart layer.

See also AcChartPointLabelPlacement
AcChartPointStyle::SetPointLabelPlacement method

AcChartLayer::GetPointLabelSource method
Returns the default source for point label values in a chart layer. The source that
this method returns might not apply to all the points in a chart layer. To retrieve
the point label source for an individual series, call the corresponding series style’s
GetPointLabelSource() method. To retrieve the point label value for an individual
point, call the point’s GetCustomLabelValue() method.

Syntax Function GetPointLabelSource() As AcChartPointLabelSource

Returns The default source for point label values in the chart layer.

See also AcChartLayer::SetPointLabelSource method

342 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartPoint::GetCustomLabelValue method
AcChartPoint::HasCustomLabelFormat method
AcChartPointLabelSource
AcChartSeriesStyle::GetPointLabelSource method

AcChartLayer::GetPointLabelStyle method
Returns the default style for point labels in a chart layer. To change the default
style of a chart layer’s point labels, call this method to retrieve the default
settings.

The style that this method returns might not apply to all the points in a chart
layer. To retrieve the default point label style for the points within an individual
series, call the corresponding series style’s GetPointLabelStyle() method. To
retrieve the point label style for an individual point, call the corresponding point
style’s GetPointLabelStyle() method.

Syntax Function GetPointLabelStyle() As AcDrawingTextStyle

Returns The default style for point labels in a chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to make
point labels italic in the chart’s base layer, depending on the value of a Boolean
parameter. GetPointLabelStyle() retrieves the default settings so that only the text
style’s Font member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim textStyle As AcDrawingTextStyle
textStyle = baseLayer.GetPointLabelStyle()
textStyle.Font.Italic = parmItalicPointLabels
baseLayer.SetPointLabelStyle(textStyle)

End Sub

See also AcChartLayer::SetPointLabelStyle method
AcChartPointStyle::GetPointLabelStyle method
AcDrawingTextStyle

AcChartLayer::GetSeries method
Returns a reference to the specified series in a chart layer. To determine the
number of series in a chart layer, call the chart layer’s GetNumberOfSeries()
method.

Syntax Function GetSeries(index As Integer) As AcChartSeries

Parameter index
An index into the chart layer’s list of series. The first series is index 1.

Returns A reference to the specified series in the chart layer.

C h a p t e r 7 , A F C c l a s s e s 343

AcChartLayer

See also AcChartLayer::GetCategory method
AcChartLayer::GetNumberOfSeries method
Class AcChartSeries

AcChartLayer::GetSeriesGrouping method
Returns a reference to the data grouping definition used to control how data is
grouped into series in a chart layer. You can then call methods on the data
grouping definition object to change the way data is grouped into series.

The series data grouping mechanism only works in chart layers that have a series
key defined in Chart Builder.

You can change the way data is grouped only from within a chart’s
CustomizeLayers() method.

Syntax Function GetSeriesGrouping() As AcDataGrouping

Returns A reference to the data grouping definition used to group data into series in the
chart layer.

Example In the following example, you defined the series key for a chart’s base layer in
Chart Builder as a date. The example overrides the chart’s CustomizeLayers()
method to group series key values into calendar quarters.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim seriesGrouping As AcDataGrouping
Set seriesGrouping = baseLayer.GetSeriesGrouping()
' Enable grouping.
seriesGrouping.Mode = DataGroupingModeInterval
' Group into calendar quarters.
seriesGrouping.SetUnit(DataGroupingUnitQuarter)

End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetCategoryGrouping method

AcChartLayer::GetSeriesLabelFormat method
Returns the format pattern used to format series labels in a chart layer.

Syntax Function GetSeriesLabelFormat() As String

Returns The format pattern used to format series labels in the chart layer.

See also AcChartLayer::GetCategoryLabelFormat method
AcChartLayer::GetPointLabelFormat method

344 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::GetSeriesOverlapRatio method
Returns the amount by which adjacent series in a bar chart can overlap, relative to
the width of a single bar.

The amount of overlap is defined relative to the width of a single bar. If the
amount of overlap is 0.5, adjacent bars overlap by half the width of a single bar.

Negative overlaps are permitted. If the amount of overlap is -0.5, there is a gap
half the width of a single bar between adjacent bars.

You can only call this method on a two-dimensional bar chart layer.

Syntax Function GetSeriesOverlapRatio() As Double

Returns The amount that adjacent series in the bar chart layer will overlap, relative to the
width of a single bar.
Negative values mean there is a gap instead of an overlap.

See also AcChartLayer::GetCategoryGapRatio method
AcChartLayer::SetSeriesOverlapRatio method

AcChartLayer::GetSeriesPlacement method
Returns the relative placement of points for multiple series within a category in a
chart layer. You cannot call this method on chart layers with the following chart
types:

■ Pie

■ Scatter

■ Stock

Syntax Function GetSeriesPlacement() As AcChartSeriesPlacement

Returns The relative placement of points for multiple series within a category in a chart
layer.

See also AcChartLayer::IsStacked method
AcChartLayer::SetChartType method
AcChartLayer::SetSeriesPlacement method
AcChartSeriesPlacement

AcChartLayer::GetSeriesStyle method
Returns a reference to the specified series style in a chart layer. You can then call
methods on the series style object to change the appearance of the corresponding
series in the chart layer.

To determine the number of series styles in a chart layer that is not a pie chart
layer, call the chart layer’s GetNumberOfSeries() method.

C h a p t e r 7 , A F C c l a s s e s 345

AcChartLayer

A pie chart layer has only one series. Each slice in a pie corresponds to a category,
not a series. For pie chart layers, series styles are used for pie slices. To determine
the number of series styles in a pie chart layer, call the chart layer’s
GetNumberOfCategories() method.

The recommended method in which to modify series styles is a chart’s
CustomizeSeriesStyles() method.

Syntax Function GetSeriesStyle(index As Integer) As AcChartSeriesStyle

Parameter index
An index into the chart layer’s list of series styles. The first series style is index 1.

Returns A reference to the specified series style in the chart layer.

Example The following example overrides a chart’s CustomizeSeriesStyles() method to
change the fill patterns of all the series in the chart’s base layer, depending on the
value of a Boolean parameter. Each series styles’ GetFillStyle() method retrieves
the default settings for that series so that only the fill style’s Pattern member
needs to change.

Sub CustomizeSeriesStyles(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

Dim seriesStyle As AcChartSeriesStyle
Set seriesStyle = baseLayer.GetSeriesStyle(seriesIndex)
Dim fillStyle As AcDrawingFillStyle
fillStyle = seriesStyle.GetFillStyle()
fillStyle.Pattern = DrawingFillPattern05Percent
seriesStyle.SetFillStyle(fillStyle)

Next seriesIndex
End Sub

See also AcChart::CustomizeSeriesStyles method
AcChartLayer::GetNumberOfCategories method
AcChartLayer::GetNumberOfSeries method
Class AcChartSeriesStyle

AcChartLayer::GetStartAngle method
Returns the angle at which the first slice in a pie chart layer is drawn. The angle is
measured in degrees clockwise from vertical.

You can only call this method on a pie chart layer.

Syntax Function GetStartAngle() As AcAngle

Returns The angle at which the first slice in the pie chart layer is drawn.

346 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

See also AcChartLayer::SetStartAngle method

AcChartLayer::GetStudyHeightRatio method
Returns the ratio of the height of a study layer to the height of its parent chart’s
base layer. For example, if the study layer is half the height of the base layer, this
method returns 0.5.

You can only call this method on a study layer.

Syntax Function GetStudyHeightRatio() As Double

Returns The ratio of the height of the study layer to the height of its parent chart’s base
layer.

See also AcChartLayer::SetStudyHeightRatio method

AcChartLayer::GetThreeDBackWallFillStyle method
Returns the background fill style for a three-dimensional chart’s back wall. To
change the background of a three-dimensional chart’s walls, call this method to
get the default settings.

You can only call this method on a chart’s base layer.

You can only call this method on a three-dimensional chart layer.

You cannot call this method on a three-dimensional pie chart layer. A
three-dimensional pie chart layer does not have walls or a floor.

The back wall and side wall of a three-dimensional chart layer always have the
same fill styles.

Syntax Function GetThreeDBackWallFillStyle() As AcDrawingFillStyle

Returns The background fill style of the chart layer’s back wall.

Example The following example overrides a chart’s CustomizeLayers() method to create
patterned walls, depending on the value of a Boolean parameter.
GetThreeDBackWallFillStyle() retrieves the default settings so that only the fill
style’s Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddBackgroundPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetThreeDBackWallFillStyle()
fillStyle.Pattern = DrawingFillPattern20Percent
baseLayer.SetThreeDWallFillStyle(fillStyle)

End If
End Sub

C h a p t e r 7 , A F C c l a s s e s 347

AcChartLayer

See also AcChartLayer::GetPlotAreaFillStyle method
AcChartLayer::GetThreeDFloorFillStyle method
AcChartLayer::GetThreeDSideWallFillStyle method
AcChartLayer::SetThreeDWallFillStyle method
AcDrawingFillStyle

AcChartLayer::GetThreeDFloorFillStyle method
Returns the background fill style for a three-dimensional chart’s floor. To change
the background of a three-dimensional chart’s floor, call this method to get the
default settings.

You can only call this method on a chart’s base layer.

You can only call this method on a three-dimensional chart layer.

You cannot call this method on a three-dimensional pie chart layer. A
three-dimensional pie chart layer does not have walls or a floor.

Syntax Function GetThreeDFloorFillStyle() As AcDrawingFillStyle

Returns The background fill style of the chart layer’s floor.

Example The following example overrides a chart’s CustomizeLayers() method to create a
patterned floor, depending on the value of a Boolean parameter.
GetThreeDFloorFillStyle() retrieves the default settings so that only the fill style’s
Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddFloorPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetThreeDFloorFillStyle()
fillStyle.Pattern = DrawingFillPatternBrickHorizontal
baseLayer.SetThreeDFloorFillStyle(fillStyle)

End If
End Sub

See also AcChartLayer::GetPlotAreaFillStyle method
AcChartLayer::GetThreeDBackWallFillStyle method
AcChartLayer::GetThreeDSideWallFillStyle method
AcChartLayer::SetThreeDFloorFillStyle method
AcDrawingFillStyle

AcChartLayer::GetThreeDSideWallFillStyle method
Returns the background fill style for a three-dimensional chart’s side wall. To
change the background of a three-dimensional chart’s walls, call this method to
get the default settings.

348 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

You can only call this method on a chart’s base layer.

You can only call this method on a three-dimensional chart layer.

You cannot call this method on a three-dimensional pie chart layer. A three-
dimensional pie chart layer does not have walls or a floor.

The back wall and side wall of a three-dimensional chart layer always have the
same fill styles.

Syntax Function GetThreeDSideWallFillStyle() As AcDrawingFillStyle

Returns The background fill style of the chart layer’s side wall.

Example The following example overrides a chart’s CustomizeLayers() method to create
patterned walls, depending on the value of a Boolean parameter.
GetThreeDSideWallFillStyle() retrieves the default settings so that only the fill
style’s Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddWallPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetThreeDSideWallFillStyle()
fillStyle.Pattern = DrawingFillPattern20Percent
baseLayer.SetThreeDWallFillStyle(fillStyle)

End If
End Sub

See also AcChartLayer::GetPlotAreaFillStyle method
AcChartLayer::GetThreeDBackWallFillStyle method
AcChartLayer::GetThreeDFloorFillStyle method
AcChartLayer::SetThreeDWallFillStyle method
AcDrawingFillStyle

AcChartLayer::GetUpBarBorderStyle method
Returns the style of the border around an up bar in a chart layer. To change the
border around up bars, call this method to get the default settings.

You can only call this method on chart layers with the following chart types:

■ Line

■ Stock

Syntax Function GetUpBarBorderStyle() As AcDrawingBorderStyle

Returns The style of the border around an up bar in the chart.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around the chart’s base layer’s up bars, depending on the

C h a p t e r 7 , A F C c l a s s e s 349

AcChartLayer

value of a Boolean parameter. GetUpBarBorderStyle() retrieves the default
settings so that only the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmGreenOutlinedUpBars Then
Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetUpBarBorderStyle()
borderStyle.Color = Green
baseLayer.SetUpBarBorderStyle(borderStyle)

End If
End Sub

See also AcChartLayer::GetDownBarBorderStyle method
AcChartLayer::GetUpBarFillStyle method
AcChartLayer::SetUpBarBorderStyle method
AcChartLayer::SetPlotUpDownBars method
AcDrawingBorderStyle

AcChartLayer::GetUpBarFillStyle method
Returns the fill style for an up bar in an chart layer. To change the fill for up bars,
call this method to retrieve the default settings. You can only call this method on
chart layers with the following chart types:

■ Line

■ Stock

Syntax Function GetUpBarFillStyle() As AcDrawingFillStyle

Returns The fill style for an up bar in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the chart’s base layer’s up bars, depending on the value of a Boolean
parameter. GetUpBarFillStyle() retrieves the default settings so that only the fill
style’s Color1 member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmGreenFilledUpBars Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetUpBarFillStyle()
fillStyle.Color = Green
baseLayer.SetUpBarFillStyle(fillStyle)

End If
End Sub

See also AcChartLayer::GetDownBarFillStyle method
AcChartLayer::GetUpBarBorderStyle method
AcChartLayer::SetUpBarFillStyle method

350 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetPlotUpDownBars method
AcDrawingFillStyle

AcChartLayer::GetXAxis method
Returns a reference to a chart layer’s x-axis. You can then call methods on the axis
object to change the behavior and appearance of the axis. The recommended
method in which to modify axes is a chart’s CustomizeAxes() method.

You can only call this method on a chart’s base layer. Only the base layer of a
chart has an x-axis. All the other layers in a chart use the base layer’s x-axis.

Pie chart layers do not have any axes.

Syntax Function GetXAxis() As AcChartAxis

Returns A reference to the chart layer’s x-axis.
Nothing if the chart layer does not have an x-axis.

Example The following example overrides a chart’s CustomizeAxes() method to change
the thickness of the chart’s base layer’s x-axis, depending on the value of a
Boolean parameter. The x-axis GetLineStyle() method retrieves the default
settings so that only the line style’s Width member needs to change.

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmThickXAxis Then
Dim xAxis As AcChartAxis
Set xAxis = baseLayer.GetXAxis()
Dim lineStyle As AcDrawingLineStyle
lineStyle = xAxis.GetLineStyle()
lineStyle.Width = 2 * OnePoint
xAxis.SetLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeAxes method
AcChartLayer::GetYAxis method
AcChartLayer::HasXAxis method
Class AcChartAxis

AcChartLayer::GetYAxis method
Returns a reference to a chart layer’s y-axis. You can then call methods on the axis
object to change the behavior and appearance of the axis. The recommended
method in which to modify axes is a chart’s CustomizeAxes() method.

Pie chart layers do not have axes.

Syntax Function GetYAxis() As AcChartAxis

C h a p t e r 7 , A F C c l a s s e s 351

AcChartLayer

Returns A reference to the chart layer’s y-axis.
Nothing if the chart layer does not have a y-axis.

Examples The following example overrides a chart’s CustomizeAxes() method to show
minor ticks on the chart’s base layer’s y-axis, depending on the value of a Boolean
parameter:

Sub CustomizeAxes(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmShowMinorTicks Then
Dim yAxis As AcChartAxis
Set yAxis = baseLayer.GetYAxis()
yAxis.SetMinorTickPlacement(ChartTickPllacementOutside)

End If
End Sub

For another example of how to use this method, see the dynamic chart example
for the AcChart class.

See also AcChart::CustomizeAxes method
AcChartLayer::GetXAxis method
AcChartLayer::HasYAxis method
Class AcChartAxis

AcChartLayer::HasCategoryScaleXAxis method
Determines whether a chart layer’s x-axis is a category scale axis. You can only
call this method on a chart’s base layer. Only the base layer of a chart has an
x-axis. All the other layers in a chart use the base layer’s x-axis.

You cannot call this method on a pie chart layer. Pie chart layers do not have axes.

Syntax Function HasCategoryScaleXAxis() As Boolean

Returns True if the chart layer’s x-axis is a category scale axis.
False if the chart layer’s x-axis is not a category scale axis.

See also AcChartLayer::HasValueScaleXAxis method

AcChartLayer::HasValueScaleXAxis method
Determines whether a chart layer’s x-axis is a value scale axis. You can only call
this method on a chart’s base layer. Only the base layer of a chart has an x-axis.
All the other layers in a chart use the base layer’s x-axis.

You cannot call this method on a pie chart layer. Pie chart layers do not have axes.

Syntax Function HasValueScaleXAxis() As Boolean

Returns True if the chart layer’s x-axis is a value scale axis.
False if the chart layer’s x-axis is not a value scale axis.

352 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

See also AcChartLayer::HasCategoryScaleXAxis method

AcChartLayer::HasXAxis method
Determines whether a chart layer has an x-axis.

Syntax Function HasXAxis() As Boolean

Returns True if the chart layer has an x-axis.
False if the chart layer does not have an x-axis.

See also AcChartLayer::HasYAxis method

AcChartLayer::HasYAxis method
Determines whether a chart layer has a y-axis.

Syntax Function HasYAxis() As Boolean

Returns True if the chart layer has a y-axis.
False if the chart layer does not have a y-axis.

See also AcChartLayer::HasXAxis method

AcChartLayer::InsertCategory method
Call the InsertCategory() method to insert a new category at a specific position in
a chart layer’s list of categories. When you insert a category, the original category
at the insertion point and all the categories above the insertion point move up one
place.

When you add a category to a chart layer that already has a series, corresponding
empty points are added automatically to each of the chart layer’s series.

You can only call this method on a chart’s base layer.

All the layers in a chart share the same x-axis. This means that all the layers in a
chart must have the same set of categories.

If a chart has an overlay layer, when you call InsertCategory on the chart’s base
layer the new category is automatically duplicated in the chart’s overlay layer.

If a chart has study layers, when you call AddCategory on the chart’s base layer
the new category is automatically duplicated in all the chart’s study layers.

You cannot call this method on a scatter chart layer. Scatter chart layers do not
have categories.

You can only call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

C h a p t e r 7 , A F C c l a s s e s 353

AcChartLayer

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

If you are adding categories and series to an empty chart layer, you must add at
least one category before you add any series.

If you add categories to a chart layer using InsertCategory(), the categories
appear on the chart in the order in which they occur in the chart layer’s list of
categories. Categories you add using InsertCategory() are not automatically
sorted in any way.

The categoryLabelValue need not be a string. Label values are formatted into text
when the chart is viewed to support locale-specific formatting. For example, if
you set categoryLabelValue to 1.5, when the chart is viewed in US English locale
the label text is 1.5 but the text is 1,5 when the chart is viewed in the French locale.

Syntaxes Function InsertCategory(index As Integer, categoryKeyValue As Variant) As
AcChartCategory

Function InsertCategory(index As Integer, categoryKeyValue As Variant,
categoryLabelValue As Variant) As AcChartCategory

Parameters index
The position in the chart layer’s list of categories at which the new category will
be inserted. The first category is index 1. Must be greater than or equal to one.
Must be less than or equal to the current number of categories in the chart layer
plus one.

categoryKeyValue
A unique identifying key value for the new category.

categoryLabelValue
A value to be displayed as the label for the new category. If this parameter is
omitted, the category label value is the same as the category key value.

Returns A reference to the new category.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to insert a new category. The new category appears as the first category
on the x-axis. The points for each series in the new category are populated with
the mean value of the other points in that series.

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Insert a new category.
Dim newCategory As AcChartCategory
Set newCategory = baseLayer.InsertCategory(1, "Mean")
' Loop through all the series.
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

354 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
' Get the mean value of the points in the series.
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()
Dim point As AcChartPoint
Dim pointIndex As Integer
Dim total As Double
total = 0
Dim count As Integer
count = 0
' Ignore the first point in each series, because
' that point belongs to the new category.
For pointIndex = 2 To numberOfPoints

Set point = series.GetPoint(pointIndex)
' Ignore missing values.
If Not point.IsMissing() Then

total = total + point.GetYValue()
count = count + 1

End If
Next pointIndex
' Put the mean value into the point for the new category.
Set point = series.GetPoint(1)
point.SetYValue(total / count)

Next seriesIndex
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartLayer::AddCategory method
AcChartLayer::InsertSeries method
AcChartLayer::RemoveCategory method
Class AcChartCategory

AcChartLayer::InsertSeries method
Call the InsertSeries() method to insert a new series at a specific position in a
chart layer’s list of series. When you insert a series, the original series at the
insertion point and all the series above the insertion point move up one place.

You can call InsertSeries() on any layer in a chart except a pie chart layer. Pie
chart layers have only one series.

All the layers in a chart share the same x-axis. This does not mean, though, that all
the layers in a chart must have the same set of series.

You can only call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

C h a p t e r 7 , A F C c l a s s e s 355

AcChartLayer

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

If you are adding categories and series to an empty chart layer, you must add at
least one category before you add any series.

If you add series to a chart layer using InsertSeries(), you must also populate
those series with points. Points are not created automatically when you call
AddSeries().

If you add series to a chart layer using InsertSeries(), the series appear on the
chart in the order in which they occur in the chart layer’s list of series. Series you
add using InsertSeries() are sorted automatically in any way.

The seriesLabelValue need not be a string. Label values are formatted into text
when the chart is viewed to support locale-specific formatting. For example, if
you set seriesLabelValue to 1.5, when the chart is viewed in the US English locale
the label text is 1.5 but the text is 1,5 when the chart is viewed in the French locale.

Syntaxes Function InsertSeries(index As Integer, seriesKeyValue As Variant) As
AcChartSeries

Function InsertSeries(index As Integer, seriesKeyValue As Variant,
seriesLabelValue As Variant) As AcChartSeries

Parameters index
The position in the chart layer’s list of series at which the new series will be
inserted. The first series is index 1. Must be greater than or equal to one. Must be
less than or equal to the current number of series in the chart layer plus one.

seriesKeyValue
A unique identifying key value for the new series.

seriesLabelValue
A value to display as the label for the new series.
If this parameter is omitted, the series label value is the same as the series key
value.

Returns A reference to the new series.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to insert a new series into the chart’s base layer. The new series appear as
the first series on the chart’s x-axis. Each point in the new series is populated with
the mean value of the points in the same category for all the other series.

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Insert a new series.
Dim newSeries As AcChartSeries
Set newSeries = baseLayer.InsertSeries(1, "Mean")
' Loop through all the categories.
Dim numberOfCategories As Integer

356 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

numberOfCategories = baseLayer.GetNumberOfCategories()
Dim categoryIndex As Integer
For categoryIndex = 1 To numberOfCategories

' Get the mean value of all the points in this category.
Dim point As AcChartPoint
Dim total As Double
total = 0
Dim count As Integer
count = 0
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
' Ignore the first series, because that is the new series.
For seriesIndex = 2 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
Set point = series.GetPoint(categoryIndex)
' Ignore missing values.
If Not point.IsMissing() Then

total = total + point.GetYValue()
count = count + 1

End If
Next seriesIndex
' Put the mean value into a new point in the new series.
Set point = newSeries.InsertPoint(categoryIndex, total/count)

Next categoryIndex
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartLayer::AddSeries method
AcChartLayer::InsertCategory method
AcChartLayer::RemoveSeries method
Class AcChartSeries

AcChartLayer::IsBaseLayer method
Determines whether a chart layer is the base layer of its parent chart.

Syntax Function IsBaseLayer() As Boolean

Returns True if the chart layer is the base layer of its parent chart.
False if the chart layer is not the base layer of its parent chart.

See also AcChartLayer::IsOverlayLayer method
AcChartLayer::IsStudyLayer method

C h a p t e r 7 , A F C c l a s s e s 357

AcChartLayer

AcChartLayer::IsOverlayLayer method
Determines whether a chart layer is the overlay layer of its parent chart.

Syntax Function IsOverlayLayer() As Boolean

Returns True if the chart layer is the overlay layer of its parent chart.
False if the chart layer is not the overlay layer of its parent chart.

See also AcChartLayer::IsBaseLayer method
AcChartLayer::IsStudyLayer method

AcChartLayer::IsStacked method
Determines whether the series in a chart layer are stacked. A typical example of a
stacked series chart layer is a stacked bar chart layer. In a stacked bar chart layer,
the points for all the series in the chart layer are stacked into a single bar in each
category, with the total height of a bar showing the sum of the values for all the
series in a category.

You cannot call this method on a pie chart layer.

Syntax Function IsStacked() As Boolean

Returns True if the series in a chart layer are stacked.
False if the series in a chart layer are not stacked.

See also AcChartLayer::ChartTypeIsStackable method
AcChartLayer::GetSeriesPlacement method

AcChartLayer::IsStudyLayer method
Determines whether a chart layer is a study layer of its parent chart.

Syntax Function IsStudyLayer() As Boolean

Returns True if the chart layer is a study layer of its parent chart.
False if the chart layer is not a study layer of its parent chart.

See also AcChartLayer::IsBaseLayer method
AcChartLayer::IsOverlayLayer method

AcChartLayer::PieExplosionTestValueIsPercentage
method
Determines whether the pie explosion test value in a pie chart layer is treated as a
percentage of the total pie.

You can only call this method on a pie chart layer.

Syntax Function PieExplosionTestValueIsPercentage() As Boolean

358 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Returns True if the pie explosion test value in the pie chart layer is treated as a percentage
of the total pie.
False if the pie explosion test value in the pie chart layer is treated as a value.

See also AcChartLayer::GetPieExplosion method
AcChartLayer::GetPieExplosionAmount method
AcChartLayer::GetPieExplosionTestOperator method
AcChartLayer::GetPieExplosionTestValue method
AcChartLayer::SetPieExplosionTestValuesIs Percentage method

AcChartLayer::PlotBarsAsLines method
Determines whether points in a bar chart layer are plotted as lines instead of bars.

You can call this method only on a two-dimensional bar chart layer.

The value that this method returns might not apply to all the series in a chart
layer. To retrieve the setting for an individual series, call the corresponding series
style’s PlotBarsAsLines() method.

Syntax Function PlotBarsAsLines() As Boolean

Returns True if points in the bar chart layer are plotted as lines instead of bars.
False if points in the bar chart layer are plotted as bars.

See also AcChartLayer::SetPlotBarsAsLines method

AcChartLayer::PlotLinesBetweenPoints method
Determines whether the default setting for series in a chart layer is that lines will
be drawn between the points within each series.

You can only call this method on layers with the following chart types:

■ Stacked bar

■ Line

■ Scatter

The value that this method returns might not apply to all the series in a chart
layer. To retrieve the setting for an individual series, call the corresponding series
style’s PlotLinesBetweenPoints() method.

Syntax Function PlotLinesBetweenPoints() As Boolean

Returns True if the default setting for series in the chart layer is that lines will be drawn
between the points within each series.
False if the default setting for series in the chart layer is that lines will not be
drawn between the points within each series.

See also AcChartLayer::SetPlotLinesBetweenPoints method

C h a p t e r 7 , A F C c l a s s e s 359

AcChartLayer

AcChartLayer::PlotMarkersAtPoints method
Determines whether the default setting for series within a chart layer is to draw
markers at points.

You can only call this method on layers with the following chart types:

■ Line

■ Scatter

■ Stock

The value that this method returns might not apply to all the points in a chart
layer. To retrieve the default setting for points within an individual series, call the
corresponding series style’s PlotMarkersAtPoints() method. To retrieve the
marker shape for an individual point, call the corresponding point style’s
GetMarkerShape() method.

Syntax Function PlotMarkersAtPoints() As Boolean

Returns True if the default setting for series within the chart layer is that markers will be
drawn at points.
False if the default setting for series within the chart layer is that markers will not
be drawn at points.

See also AcChartLayer::SetPlotMarkersAtPoints method
AcChartPointStyle::GetMarkerShape method
AcChartSeriesStyle::PlotMarkersAtPoints method

AcChartLayer::PlotUpDownBars method
Determines whether up and down bars will be drawn between points within each
category in a chart layer.

You can only call this method on chart layers with the following chart types:

■ Line

■ Stock

Syntax Function PlotUpDownBars() As Boolean

Returns True to draw up and down bars between points within each category in the chart
layer.
False if up and down bars are not drawn between points within each category in
the chart layer.

See also AcChartLayer::SetPlotUpDownBars method

360 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::RemoveCategory method
Call the RemoveCategory() method to remove a category from a chart layer.
When you remove a category from a chart layer that already has series, the
corresponding points are removed automatically from all of the chart layer’s
series.

You can call this method only on a chart’s base layer.

All the layers in a chart share the same x-axis. This means that all the layers in a
chart must have the same set of categories.

If a chart has an overlay layer, when you call RemoveCategory() on the chart’s
base layer the corresponding category is automatically removed from the chart’s
overlay layer.

If a chart has study layers, when you call RemoveCategory() on the chart’s base
layer the corresponding category is automatically removed from all the chart’s
study layers.

You cannot call this method on a scatter chart layer. Scatter chart layers do not
have categories.

You can only call this method from a chart’s CustomizeCategoriesAndSeries()
method.

Syntax Sub RemoveCategory(index As Integer)

Parameter index
The position in the chart layer’s list of categories from to remove the category. The
first category is index 1.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to remove any category where the sum of the values of the points in that
category is less than 10:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Loop through all the categories.
Dim numberOfCategories As Integer
numberOfCategories = baseLayer.GetNumberOfCategories()
Dim categoryIndex As Integer
' Use reverse order so that deleting categories
' does not invalidate the current index.
For categoryIndex = numberOfCategories To 1 Step -1

' Add up all the values in the category.
Dim total As Double
total = 0
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer

C h a p t e r 7 , A F C c l a s s e s 361

AcChartLayer

For seriesIndex = 1 To numberOfSeries
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
Dim point As AcChartPoint
Set point = series.GetPoint(categoryIndex)
' Ignore missing values.
If Not point.IsMissing() Then

total = total + point.GetYValue()
End If

Next seriesIndex
' Remove categories whose values total less than 10.
If (total < 10) Then

baseLayer.RemoveCategory(categoryIndex)
End If

Next categoryIndex
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartLayer::AddCategory method
AcChartLayer::InsertCategory method
AcChartLayer::InsertSeries method
Class AcChartCategory

AcChartLayer::RemoveSeries method
Call the RemoveSeries() method to remove a series from a chart layer. When you
remove a series, all the points in the series are automatically deleted.

When you remove a series, all the series above that one move down one place.

You can call RemoveSeries() on any layer in a chart.

All the layers in a chart share the same x-axis. This does not mean that all the
layers in a chart must have the same set of series, though.

You cannot call this method on a pie chart layer. Pie chart layers only have one
series.

You can only call this method from a chart’s CustomizeCategoriesAndSeries()
method.

Syntax Function RemoveSeries(index As Integer)

Parameter index
The position in the chart layer’s list of series from which to remove the series. The
first series is index 1.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to remove any series where the sum of the values of the points in that
series is less than 10:

362 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
' Use reverse order so that deleting series
' does not invalidate the current index.
For seriesIndex = numberOfSeries To 1 Step -1

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
' Add up all the values in the series.
Dim total As Double
total = 0
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()
Dim pointIndex As Integer
For pointIndex = 1 To numberOfPoints

Dim point As AcChartPoint
Set point = series.GetPoint(pointIndex)
' Ignore missing values.
If Not point.IsMissing() Then

total = total + point.GetYValue()
End If

Next pointIndex
' Remove series whose values total less than 10.
If (total < 10) Then

baseLayer.RemoveSeries(seriesIndex)
End If

Next seriesIndex
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartLayer::AddSeries method
AcChartLayer::InsertSeries method
AcChartLayer::RemoveCategory method
Class AcChartSeries

AcChartLayer::SetBarShape method
Call the SetBarShape() method to set the shape of bars in a three-dimensional bar
chart layer. You can call this method only on a three-dimensional bar chart layer.

The recommended methods from which to call SetBarShape() are:

■ A chart’s CustomizeLayers() method

■ A chart’s AdjustChart() method

Syntax Sub SetBarShape(barShape As AcChartBarShape)

C h a p t e r 7 , A F C c l a s s e s 363

AcChartLayer

Parameter barShape
The bar shape.

Example The following example overrides a chart’s CustomizeLayers() method to set the
shape of bars in the chart’s base three-dimensional bar chart layer, depending on
the value of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmHexagonalBars Then
baseLayer.SetBarShape(ChartBarShapeHexagonal)

End If
End Sub

See also AcChartBarShape
AcChart::AdjustChart method
AcChart::CustomizeLayers method
AcChartLayer::GetBarShape method

AcChartLayer::SetBubbleSize method
Sets the size of the largest bubble in a bubble chart as a percentage of the length of
the shorter of the chart layer’s two axes.

You can call this method only on a bubble chart layer.

The recommended methods from which to call SetBubbleSize() are:

■ A chart’s CustomizeLayers() method

■ A chart’s AdjustChart() method

Syntax Sub SetBubbleSize(bubbleSize As Double)

Parameter bubbleSize
The size of the largest bubble in the bubble chart, as a percentage of the length of
the shorter of the chart layer’s two axes. Must be in the range 0 through 0.75.

Example The following example overrides a chart’s CustomizeLayers() method to set the
size of bubbles in the chart’s base bubble chart layer, depending on the value of a
Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmSmallBubbles Then
baseLayer.SetBubbleSize(0.15)

End If
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeLayers method
AcChartLayer::GetBubbleSize method

364 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetCategoryGapRatio method
Call the SetCategoryGapRatio() method to set the size of the gap between
categories in a bar chart layer, relative to the width of a single bar. The size of the
gap is defined relative to the width of a single bar. If the size of the gap is 1, it is
the same width as a single bar. If the size of the gap is 2, it is twice the width of a
single bar. If the size of the gap is 0.5, it is half the width of a single bar.

You can call this method only on a bar chart layer.

The recommended methods from which to call SetCategoryGapRatio() are:

■ A chart’s CustomizeLayers() method

■ A chart’s AdjustChart() method

Syntax Sub SetCategoryGapRatio(categoryGapRatio As Double)

Parameter categoryGapRatio
The size of the gap between categories, relative to the width of a single bar. Must
be in the range 0 through 5.

Example In the following example, all a chart’s layers are bar chart layers. The example
overrides the chart’s AdjustChart() method to adjust the gaps between categories
in all its layers so that the total width of the bars in each category is the same in
each layer.

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim numberOfLayers As Integer
numberOfLayers = GetNumberOfLayers()
Dim layerIndex As Integer
For layerIndex = 1 To numberOfLayers

Dim layer As AcChartLayer
Set layer = GetLayer(layerIndex)
' Adjust the gap between categories so that
' all layers' bars take up the same space.
Dim gapRatio As Integer
gapRatio = layer.GetNumberOfSeries()
' The maximum permitted gap ratio is 5.
If (gapRatio > 5) Then

gapRatio = 5
End If
layer.SetCategoryGapRatio(gapRatio)

Next layerIndex
End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeLayers method
AcChartLayer::GetCategoryGapRatio method
AcChartLayer::SetSeriesOverlapRatio method

C h a p t e r 7 , A F C c l a s s e s 365

AcChartLayer

AcChartLayer::SetCategoryLabelFormat method
Call the SetCategoryLabelFormat() method to set the format pattern used to
format category labels in a chart layer. Category labels appear on a chart layer’s
x-axis.

You can call this method only on a chart’s base layer. You cannot call this method
on a scatter chart layer. Scatter chart layers do not have categories.

The format pattern is ignored for string label values.

The recommended method from which to call SetCategoryLabelFormat() is a
chart’s CustomizeLayers() method. You can also call SetCategoryLabelFormat()
from the following methods:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

Category labels are used as category scale x-axis labels. Setting a format pattern
with this method has exactly the same effect as setting a format pattern with the
SetCategoryLabelFormat() method of a category scale x-axis.

Syntax Sub Format(categoryLabelFormat As String)

Parameter categoryLabelFormat
The format pattern.

Examples The following example overrides a chart’s CustomizeLayers() method to use a
short or long date format for labels on the x-axis of the chart’s base layer,
depending on the value of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmUseShortDateFormat Then
baseLayer.SetCategoryLabelFormat("Short Date")

Else
baseLayer.SetCategoryLabelFormat("Long Date")

End If
End Sub

For another example of how to use this method, see the dynamic chart example
for the AcChart class.

See also AcChart::AdjustChart method
AcChart::CustomizeLayers method
AcChart::Localize method
AcChartAxis::SetLabelFormat method
AcChartLayer::SetCategoryLabelFormat method
AcChartLayer::GetCategoryLabelFormat method
AcChartLayer::SetPointLabelFormat method
AcChartLayer::SetSeriesLabelFormat method

366 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetChartType method
Call the SetChartType() method to set the chart type of a chart layer.

You can only call this method from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

If you call this method on a chart layer, you must do so before calling any other
methods on that chart layer.

Table 7-8 lists the default chart layer settings for each chart type.

SetChartType() always resets the plot area background color to LightGray for
two-dimensional chart types other than pie.

Table 7-8 Default settings for chart types

Chart type Default settings

Area Missing points: interpolate
Series placement: stacked

Bar Lines between points: off
Missing points: do not plot
Series placement: side by side

Line High-low lines: off
Lines between points: on
Markers at points: off
Marker size: 5 pt
Missing points: do not plot
Series placement: side by side
Up/down bars: off

Pie Not applicable

Scatter Lines between points: off
Markers at points: on
Marker size: 5 pt

Step Missing points: interpolate
Series placement: stacked

Stock High-low lines: on
Markers at points: off
Marker size: 6 pt
Missing points: do not plot
Up/down bars: on

C h a p t e r 7 , A F C c l a s s e s 367

AcChartLayer

SetChartType() always resets the plot area border pen to DrawingLinePenSolid
for two-dimensional chart types other than pie.

SetChartType() might change the chart layer’s parent chart from
two-dimensional presentation to three-dimensional presentation or the reverse
automatically to match the new chart type and series placement. If the chart
layer’s parent chart has an overlay layer or study layers and SetChartType()
attempts to change the chart to three-dimensional presentation, SetChartType()
throws a run-time error.

Syntax Sub SetChartType(chartType As AcChartType)

Sub SetChartType(chartType As AcChartType, seriesPlacement As
AcChartSeriesPlacement)

Parameters chartType
The chart type.

seriesPlacement
The relative placement of points for multiple series within a category. If you do
not specify this parameter, the series placement is selected automatically, based
on the chart type. This parameter is ignored for the following chart types:

■ Pie

■ Scatter

■ Stock

Do not set this parameter to ChartSeriesPlacementOnZAxis if the chart type is
step.

Examples The following example overrides a chart’s CustomizeLayers() method to make
the chart’s base layer a pie chart layer or a bar chart layer, depending on the value
of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmPieChart Then
' Series placement does not apply to a pie.
baseLayer.SetChartType(ChartTypePie)

Else
' Use default series placement.
baseLayer.SetChartType(ChartTypeBar)

End If
End Sub

The following example overrides a chart’s CustomizeLayers() method to make
the chart’s base layer a line chart layer or a bar chart layer, depending on the
value of a Boolean parameter. A second Boolean parameter controls whether the
series are stacked.

368 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim seriesPlacement As AcChartSeriesPlacement
If parmStackSeries Then

seriesPlacement = ChartSeriesPlacementStacked
Else

seriesPlacement = ChartSeriesPlacementSideBySide
End If
If parmLineChart Then

baseLayer.SetChartType(ChartTypeLine, seriesPlacement)
Else

baseLayer.SetChartType(ChartTypeBar, seriesPlacement)
End If

End Sub

For another example of how to use this method, see the dynamic chart example
for the AcChart class.

See also AcChart::CustomizeLayers method
AcChartLayer::GetChartType method
AcChartLayer::SetSeriesPlacement method
AcChartSeriesPlacement
AcChartType
Class AcChart

AcChartLayer::SetDownBarBorderStyle method
Call the SetDownBarBorderStyle() method to set the style of the borders around
down bars in a chart layer.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

To turn off borders around down bars, set the border style’s Pen member to
DrawingLinePenNone.

Syntax Sub SetDownBarBorderStyle(downBarBorderStyle As
AcDrawingBorderStyle)

Parameter downBarBorderStyle
The style for borders around down bars in the chart layer.

C h a p t e r 7 , A F C c l a s s e s 369

AcChartLayer

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around down bars in the chart’s base layer, depending on
the value of a Boolean parameter. GetDownBarBorderStyle() retrieves the default
settings so that only the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmRedOutlinedDownBars Then
Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetDownBarBorderStyle()
borderStyle.Color = Red
baseLayer.SetDownBarBorderStyle(borderStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetDownBarBorderStyle method
AcChartLayer::SetDownBarFillStyle method
AcChartLayer::SetPlotUpDownBars method
AcChartLayer::SetUpBarBorderStyle method
AcDrawingBorderStyle

AcChartLayer::SetDownBarFillStyle method
Call the SetDownBarFillStyle() method to set the fill style for down bars in a
chart layer.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetDownBarFillStyle(downBarFillStyle As AcDrawingFillStyle)

Parameter downBarFillStyle
The fill style for down bars in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of down bars in the chart’s base layer, depending on the value of a
Boolean parameter. GetDownBarFillStyle() retrieves the default settings so that
only the fill style’s Color1 member needs to change.

370 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmRedFilledDownBars Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetDownBarFillStyle()
fillStyle.Color = Red
baseLayer.SetDownBarFillStyle(fillStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetDownBarBorderStyle method
AcChartLayer::GetDownBarFillStyle method
AcChartLayer::SetPlotUpDownBars method
AcChartLayer::SetUpBarFillStyle method
AcDrawingFillStyle

AcChartLayer::SetDropLineStyle method
Call the SetDropLineStyle() method to set the line style used to draw drop lines
in a chart layer.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

To turn off drop lines, set the line style’s Pen member to DrawingLinePenNone.

Syntax Sub SetDropLineStyle(dropLineStyle As AcDrawingLineStyle)

Parameter dropLineStyle
The line style used to draw drop lines in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the pattern used to draw drop lines in the chart’s base layer, depending on the
value of a Boolean parameter. GetDropLineStyle() retrieves the default settings
so that only the line style’s Pen member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedDropLines Then
Dim lineStyle As AcDrawingLineStyle
lineStyle = baseLayer.GetDropLineStyle()

C h a p t e r 7 , A F C c l a s s e s 371

AcChartLayer

lineStyle.Pen = DrawingLinePenDot
baseLayer.SetDropLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetDropLineStyle method
AcDrawingLineStyle

AcChartLayer::SetHighLowLineStyle method
Call the SetHighLowLineStyle() method to set the line style used to draw
high-low lines in a chart layer.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetHighLowLineStyle(highLowLineStyle As AcDrawingLineStyle)

Parameter highLowLineStyle
The line style used to draw high-low lines in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the thickness of high-low lines in the chart’s base layer, depending on the value of
a Boolean parameter. GetHighLowLineStyle() retrieves the default settings so
that only the line style’s Width member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmThickHighLowLines Then
Dim lineStyle As AcDrawingLineStyle
lineStyle = baseLayer.GetHighLowLineStyle()
lineStyle.Width = 2 * OnePoint
baseLayer.SetHighLowLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetHighLowLineStyle method
AcChartLayer::SetPlotHighLowLines method
AcDrawingLineStyle

372 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetLineWidth method
Call the SetLineWidth() method to set the default width of the lines joining the
points within each series in a chart layer.

You can call this method only on chart layers with the following chart types:

■ Stacked bar

■ Line

■ Scatter

To set the width of the line for an individual series, call the corresponding series
style’s SetLineStyle() method.

To enable or disable lines between points, call a chart layer’s
SetPlotLinesBetweenPoints() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetLineWidth(lineWidth As AcTwips)

Parameter lineWidth
The default line width of the lines joining the points within each series in the
chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the thickness of lines in the chart’s base layer, depending on the value of a
Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmThickLines Then
baseLayer.SetLineWidth(2 * OnePoint)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetLineWidth method
AcChartLayer::SetPlotLinesBetweenPoints method
AcChartSeriesStyle::SetLineStyle method
Class AcChartSeriesStyle
AcTwips

C h a p t e r 7 , A F C c l a s s e s 373

AcChartLayer

AcChartLayer::SetMarkerSize method
Call the SetMarkerSize() method to set the default size for markers within a chart
layer.

You can call this method only on chart layers with the following chart types:

■ Stacked bar

■ Line

■ Scatter

To set the default size for markers in an individual series, call the corresponding
series style’s SetMarkerSize() method. To set the size of the marker for an
individual point, call the corresponding point style’s SetMarkerSize() method.

To enable or disable markers, call a chart layer’s SetPlotMarkersAtPoints()
method.

You can call this method only from:

■ A chart’s CustomizeLayers() method.

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method.

Syntax Sub SetMarkerSize(markerSize As AcTwips)

Parameter markerSize
The default size for markers within the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to draw
large markers in the chart’s base layer, depending on the value of a Boolean
parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmPlotBigMarkers Then
baseLayer.SetPlotMarkersAtPoints(True)
baseLayer.SetMarkerSize(8 * OnePoint)

Else
baseLayer.SetPlotMarkersAtPoints(False)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetMarkerSize method
AcChartPointStyle::SetMarkerSize method
AcChartLayer::SetPlotMarkersAtPoints method
Class AcChartPointStyle
Class AcChartSeriesStyle
AcTwips

374 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetMaximumNumberOfPoints method
Call the SetMaximumNumberOfPoints() method to set the maximum number of
points permitted in a chart layer. This value is a safety limit used to prevent charts
from growing excessively large due to programming errors or unexpected data. If
you exceed this limit, a run-time error occurs.

You can call this method only from a chart’s CustomizeLayers() method.

Syntax Sub SetMaximumNumberOfPoints(maximumNumberOfPoints As Integer)

Parameter maximumNumberOfPoints
The maximum number of points permitted in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to set the
maximum number of points permitted in the chart’s base layer to 100:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

baseLayer.SetMaximumNumberOfPoints(100)
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetMaximumNumberOfPoints method
AcChartLayer::SetMaximumNumberOfPointsPer Series method
AcChartLayer::SetMaximumNumberOfSeries method

AcChartLayer::SetMaximumNumberOfPointsPer
Series method
Call the SetMaximumNumberOfPointsPerSeries() method to set the maximum
number of points permitted in a single series in a chart layer. This value is a safety
limit used to prevent charts from growing excessively large due to programming
errors or unexpected data. If you exceed this limit, a run-time error occurs.

You can call this method only from a chart’s CustomizeLayers() method.

Syntax Sub SetMaximumNumberOfPointsPerSeries(
maximumNumberOfPointsPerSeries As Integer)

Parameter maximumNumberOfPointsPerSeries
The maximum number of points permitted in a single series in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to set the
maximum number of points permitted in a single series in the chart’s first study
layer to 100:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

studyLayers(1).SetMaximumNumberOfPointsPerSeries(100)
End Sub

C h a p t e r 7 , A F C c l a s s e s 375

AcChartLayer

See also AcChart::CustomizeLayers method
AcChartLayer::GetMaximumNumberOfPointsPer Series method
AcChartLayer::SetMaximumNumberOfPoints method
AcChartLayer::SetMaximumNumberOfSeries method

AcChartLayer::SetMaximumNumberOfSeries method
Call the SetMaximumNumberOfSeries() method to set the maximum number of
series permitted in a chart layer. This value is a safety limit used to prevent charts
from growing excessively large due to programming errors or unexpected data. If
you exceed this limit, a run-time error occurs.

You can call this method only from a chart’s CustomizeLayers() method.

Syntax Sub SetMaximumNumberOfSeries(maximumNumberOfSeries As Integer)

Parameter maximumNumberOfSeries
The maximum number of series permitted in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to set the
maximum number of series permitted in the chart’s overlay layer to 10:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

overlayLayer.SetMaximumNumberOfSeries(10)
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetMaximumNumberOfSeries method
AcChartLayer::SetMaximumNumberOfPoints method
AcChartLayer::SetMaximumNumberOfPointsPer Series method

AcChartLayer::SetMissingPoints method
Call the SetMissingPoints() method to specify how missing points are plotted in
a chart layer.

You can call this method only on chart layers with the following chart types:

■ Area

■ Bar

■ Line

■ Scatter

■ Step

You can call this method only from:

■ A chart’s CustomizeLayers() method

376 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetMissingPoints(missingPoints As AcChartMissingPoints)

Parameters missingPoints
The way that missing points are plotted in the chart layer.

Table 7-9 lists the valid values for missingPoints for each chart type.

Example The following example overrides a chart’s CustomizeLayers() method to select
the way that missing points are plotted in the chart’s bar base layer, depending on
the value of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmSkipMissingPoints Then
baseLayer.SetMissingPoints(ChartMissingPointsDoNotPlot)

Else
baseLayer.SetMissingPoints(ChartMissingPointsPlotAsZero)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetMissingPoints method
AcChartMissingPoints

AcChartLayer::SetPieExplosion method
Call the SetPieExplosion() method to specify which pie slices are exploded in a
pie chart layer. You can specify all pie slices, only specific pie slices, or none.

Table 7-9 Valid values for chart types

Chart Type Valid Values

Area ChartMissingPointsPlotAsZero
ChartMissingPointsInterpolate

Bar ChartMissingPointsDoNotPlot
ChartMissingPointsPlotAsZero

Line ChartMissingPointsDoNotPlot
ChartMissingPointsPlotAsZero
ChartMissingPointsInterpolate

Scatter ChartMissingPointsDoNotPlot
ChartMissingPointsPlotAsZero
ChartMissingPointsInterpolate

Step ChartMissingPointsPlotAsZero
ChartMissingPointsInterpolate

C h a p t e r 7 , A F C c l a s s e s 377

AcChartLayer

You can call this method only on a pie chart layer.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPieExplosion(pieExplosion As AcChartPieExplode)

Parameter pieExplosion
The pie slices to explode in the pie chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to explode
pie slices in the chart’s base layer. Slices are exploded if their values are greater
than a certain percentage of the total pie value. The percentage is specified as a
parameter value.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If (parmTestValue > 0) Then
baseLayer.SetPieExplosion(ChartPieExplodeSpecificSlices)
baseLayer.SetPieExplosionTestOperator(

ChartComparisonOperatorGT)
baseLayer.SetPieExplosionTestValue(parmTestValue)
baseLayer.SetPieExplosionTestValueIsPercentage(True)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPieExplosion method
AcChartLayer::SetPieExplosionAmount method
AcChartLayer::SetPieExplosionTestOperator method
AcChartLayer::SetPieExplosionTestValue method
AcChartLayer::SetPieExplosionTestValuesIs Percentage method
AcChartPieExplode

AcChartLayer::SetPieExplosionAmount method
Call the SetPieExplosionAmount() method to set the amount that pie slices are
exploded in a pie chart layer. The amount is relative to the radius of the pie. If the
amount is 0.25, exploded slices are moved outward from the center of the pie by
one quarter of the radius of the pie.

You can call this method only on a pie chart layer.

You can call this method only from:

■ A chart’s CustomizeLayers() method

378 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPieExplosionAmount(pieExplosionAmount As Double)

Parameter pieExplosionAmount
The amount that pie slices are exploded in the pie chart layer. Must be in the
range 0 through 0.4.

Example The following example overrides a chart’s CustomizeLayers() method to increase
the amount that pie slices are exploded in the chart’s base layer, depending on the
value of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmBigExplosion Then
baseLayer.SetPieExplosionAmount(0.4)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPieExplosionAmount method
AcChartLayer::SetPieExplosion method
AcChartLayer::SetPieExplosionTestOperator method
AcChartLayer::SetPieExplosionTestValue method
AcChartLayer::SetPieExplosionTestValuesIs Percentage method

AcChartLayer::SetPieExplosionTestOperator method
Call the SetPieExplosionTestOperator() method to set the operator used to test
whether a pie slice is exploded in a pie chart layer. You can call this method only
on a pie chart layer.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPieExplosionTestOperator(pieExplosionTestOperator As
AcChartComparisonOperator)

Parameter pieExplosionTestOperator
The operator used to test whether a pie slice is exploded in a pie chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to explode
pie slices in the chart’s base layer. Slices are exploded if their values are less than
or equal to a parameter value.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

C h a p t e r 7 , A F C c l a s s e s 379

AcChartLayer

If (parmTestValue > 0) Then
baseLayer.SetPieExplosion(ChartPieExplodeSpecificSlices)
baseLayer.SetPieExplosionTestOperator(

ChartComparisonOperatorLE)
baseLayer.SetPieExplosionTestValue(parmTestValue)
baseLayer.SetPieExplosionTestValueIsPercentage(False)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPieExplosionTestOperator method
AcChartLayer::SetPieExplosion method
AcChartLayer::SetPieExplosionAmount method
AcChartLayer::SetPieExplosionTestValue method
AcChartLayer::SetPieExplosionTestValuesIs Percentage method
AcChartPieExplode

AcChartLayer::SetPieExplosionTestValue method
Call the SetPieExplosionTestValue() method to set the value used to test whether
a pie slice is exploded in a pie chart layer.

You can call this method only on a pie chart layer.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPieExplosionTestValue(pieExplosionTestValue As Variant)

Parameter pieExplosionTestValue
The value used to test whether a pie slice is exploded in a pie chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to explode
pie slices in the chart’s base layer. Slices are exploded if their values are less than a
certain percentage of the total pie value. The percentage is specified as a
parameter value.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If (parmTestValue > 0) Then
baseLayer.SetPieExplosion(ChartPieExplodeSpecificSlices)
baseLayer.SetPieExplosionTestOperator(

ChartComparisonOperatorLT)
baseLayer.SetPieExplosionTestValue(parmTestValue)
baseLayer.SetPieExplosionTestValueIsPercentage(True)

End If
End Sub

380 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

See also AcChart::CustomizeLayers method
AcChartLayer::GetPieExplosionTestValue method
AcChartLayer::SetPieExplosion method
AcChartLayer::SetPieExplosionAmount method
AcChartLayer::SetPieExplosionTestOperator method
AcChartLayer::SetPieExplosionTestValuesIs Percentage method
AcChartPieExplode

AcChartLayer::SetPieExplosionTestValuesIs
Percentage method
Call the SetPieExplosionTestValueIsPercentage() method to specify whether the
pie explosion test value in a pie chart layer is treated as a percentage of the total
pie.

You can call this method only on a pie chart layer.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPieExplosionTestValueIsPercentage(
pieExplosionTestValueIsPercentage As Boolean)

Parameter pieExplosionTestValueIsPercentage
True causes the pie explosion test value in the pie chart layer to be treated as a
percentage of the total pie. False causes the pie explosion test value in the pie
chart layer to be treated as a value.

Example The following example overrides a chart’s CustomizeLayers() method to explode
pie slices in the chart’s base layer. Slices are exploded if their values are greater
than or equal to a parameter value.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If (parmTestValue > 0) Then
baseLayer.SetPieExplosion(ChartPieExplodeSpecificSlices)
baseLayer.SetPieExplosionTestOperator(

ChartComparisonOperatorGE)
baseLayer.SetPieExplosionTestValue(parmTestValue)
baseLayer.SetPieExplosionTestValueIsPercentage(False)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::PieExplosionTestValueIsPercentage method
AcChartLayer::SetPieExplosion method

C h a p t e r 7 , A F C c l a s s e s 381

AcChartLayer

AcChartLayer::SetPieExplosionAmount method
AcChartLayer::SetPieExplosionTestOperator method
AcChartLayer::SetPieExplosionTestValue method
AcChartPieExplode

AcChartLayer::SetPlotAreaBackgroundColor method
Call the SetPlotAreaBackground() method to set the background color of a chart
layer’s plot area. This sets a chart layer’s plot area fill style to a single solid color.
This method sets a chart layer’s plot area fill style members as follows:

■ The Color1 member is set to the specified background color.

■ The Color2 member is not affected.

■ The Pattern member is set to DrawingFillPatternSolid.

You can call this method only on a chart’s base layer.

All the layers in a chart are drawn with the same plot area fill style as the base
layer. You cannot change the plot area fill style on individual layers.

You cannot call this method on a three-dimensional chart layer. A
three-dimensional chart layer has separate fill styles for its walls and its floor
instead of a plot area fill style.

You cannot call this method on a pie chart layer. A pie chart layer does not have a
plot area fill style.

The recommended method from which to call SetPlotAreaBackgroundColor() is
a chart’s CustomizeLayers() method.

Syntax Sub SetPlotAreaBackgroundColor(plotAreaBackgroundColor As AcColor)

Parameter plotAreaBackgroundColor
The background color for the chart layer’s plot area.

Example The following example overrides a chart’s CustomizeLayers() method to set the
background color of the chart’s base layer to the value of a parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

baseLayer.SetPlotAreaBackgroundColor(parmPlotAreaColor)
End Sub

See also AcChart::CustomizeLayers method
AcChart::SetBackgroundColor method
AcChart::SetFillStyle method
AcChartLayer::SetPlotAreaFillStyle method
AcChartLayer::SetThreeDFloorFillStyle method
AcChartLayer::SetThreeDWallFillStyle method
AcDrawingFillStyle

382 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetPlotAreaBorderStyle method
Call the SetPlotAreaBorderStyle() method to set the style of the border around a
chart layer’s plot area. To turn off the border around a chart layer’s plot area, set
the border style’s Pen member to DrawingLinePenNone.

You can call this method only on a chart’s base layer.

All the layers in a chart are drawn with the same plot area border style as the base
layer. You cannot change the plot area border style on individual layers.

You cannot call this method on a three-dimensional chart layer. A
three-dimensional chart layer does not have a plot area border.

You cannot call this method on a pie chart layer. A pie chart layer does not have a
plot area border.

The recommended method from which to call SetPlotAreaBorderStyle() is a
chart’s CustomizeLayers() method.

Syntax Sub SetPlotAreaBorderStyle(PlotAreaBorderStyle As AcDrawingBorderStyle)

Parameter plotAreaBorderStyle
The border style for the chart layer’s plot area.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around the chart’s base layer’s plot area, based on the
value of a parameter. GetPlotAreaBorderStyle() retrieves the default settings so
that only the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetPlotAreaBorderStyle()
borderStyle.Color = parmPlotAreaBorderColor
baseLayer.SetPlotAreaBorderStyle(borderStyle)

End Sub

See also AcChart::CustomizeLayers method
AcChart::SetBorderStyle method
AcChartLayer::GetPlotAreaBorderStyle method
AcDrawingBorderStyle

AcChartLayer::SetPlotAreaFillStyle method
Call the SetPlotAreaFillStyle() method to set the background fill style for a chart
layer’s plot area. You can call this method only on a chart’s base layer.

All the layers in a chart are drawn with the same plot area fill style as the base
layer. You cannot change the plot area fill style on individual layers.

C h a p t e r 7 , A F C c l a s s e s 383

AcChartLayer

You cannot call this method on a three-dimensional chart layer. A three-
dimensional chart layer has separate fill styles for its walls and its floor instead of
a plot area fill style.

You cannot call this method on a pie chart layer. A pie chart layer does not have a
plot area fill style.

The recommended method from which to call SetPlotAreaFillStyle() is a chart’s
CustomizeLayers() method.

Syntax Sub SetPlotAreaFillStyle(plotAreaFillStyle As AcDrawingFillStyle)

Parameter plotAreaFillStyle
The background fill style for the chart layer’s plot area.

Example The following example overrides a chart’s CustomizeLayers() method to create a
patterned plot area background, depending on the value of a Boolean parameter.
GetPlotAreaFillStyle() retrieves the default settings so that only the fill style’s
Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddBackgroundPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetPlotAreaFillStyle()
fillStyle.Pattern = DrawingFillPattern05Percent
baseLayer.SetPlotAreaFillStyle(fillStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChart::SetBackgroundColor method
AcChart::SetFillStyle method
AcChartLayer::GetPlotAreaFillStyle method
AcChartLayer::SetPlotAreaBackgroundColor method
AcChartLayer::SetThreeDFloorFillStyle method
AcChartLayer::SetThreeDWallFillStyle method
AcDrawingFillStyle

AcChartLayer::SetPlotBarsAsLines method
Call the SetPlotBarsAsLines() method to specify whether points in a bar chart
layer are plotted as lines instead of bars. You can call this method only on a
two-dimensional bar chart layer. In some cases, the value that this method sets
does not apply to all the series in a chart layer. To set the value for an individual
series, call the corresponding series style’s SetPlotBarsAsLines() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

384 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPlotBarsAsLines(plotBarsAsLines As Boolean)

Parameter plotBarsAsLines
True causes points in the bar chart layer to be plotted as lines instead of bars.
False causes points in the bar chart layer to be plotted as bars.

Example The following example overrides a chart’s CustomizeLayers() method to plot
bars as lines in the chart’s overlay layer, depending on the value of a Boolean
parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

overlayLayer.SetPlotBarsAsLines(parmOverlayBarsAsLines)
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::PlotBarsAsLines method
AcChartSeriesStyle::PlotBarsAsLines method

AcChartLayer::SetPlotHighLowLines method
Call the SetPlotHighLowLines() method to specify whether high-low lines are
plotted in a chart layer. This method is a simple way to set a chart layer’s
high-low line style to sensible default values. The high-low line style settings
depend on the value of the plotHighLowLines parameter, as shown in Table 7-10.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Table 7-10 Setting high-low line styles

plotHighLowLines High-low line style

True Color = Black
Pen = DrawingLinePenSolid
Width = 1 pt

False Color = not changed
Pen = DrawingLinePenNone
Width = not changed

C h a p t e r 7 , A F C c l a s s e s 385

AcChartLayer

Syntax Sub SetPlotHighLowLines(plotHighLowLines As Boolean)

Parameter plotHighLowLines
True turns on plotting high-low lines in the chart layer. False turns off plotting
high-low lines in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to plot
high-low lines in the chart’s base layer, depending on the value of a Boolean
parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

baseLayer.SetPlotHighLowLines(parmPlotHighLowLines)
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::SetHighLowLineStyle method
AcDrawingLineStyle

AcChartLayer::SetPlotLinesBetweenPoints method
Call the SetPlotLinesBetweenPoints() method to specify whether the default
setting for series in a chart layer is that lines are drawn between the points within
each series.

You can call this method only on layers with the following chart types:

■ Stacked bar

■ Line

■ Scatter

The value that this method sets might not apply to all the series in a chart layer. To
set the value for an individual series, call the corresponding series style’s
SetPlotLinesBetweenPoints() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPlotLinesBetweenPoints(plotLinesBetweenPoints As Boolean)

Parameter plotLinesBetweenPoints
True sets the default to be that lines are drawn between the points within each
series in the chart layer. False sets the default to be that lines are drawn between
the points within each series in the chart layer.

386 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Example The following example overrides a chart’s CustomizeLayers() method to plot
lines between points in the chart’s overlay layer, depending on the value of a
Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

overlayLayer.SetPlotLinesBetweenPoints(
parmPlotOverlayLines)

End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::PlotLinesBetweenPoints method
AcChartSeriesStyle::SetPlotLinesBetweenPoints method

AcChartLayer::SetPlotMarkersAtPoints method
Call the SetPlotMarkersAtPoints() method to specify whether the default setting
for series within a chart layer is that markers are drawn at points.

You can call this method only on layers with the following chart types:

■ Line

■ Scatter

■ Stock

The value that this method sets might not apply to all the points in a chart layer.
To set the default value for points within an individual series, call the
corresponding series style’s PlotMarkersAtPoints() method. To set the marker
shape for an individual point, call the corresponding point style’s
SetMarkerShape() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPlotMarkersAtPoints(plotMarkersAtPoints As Boolean)

Parameter plotMarkersAtPoints
True sets the default to be that markers are drawn at points in the chart layer.
False sets the default to be that markers are not drawn at points in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to plot
markers at points in the chart’s first study layer, depending on the value of a
Boolean parameter:

C h a p t e r 7 , A F C c l a s s e s 387

AcChartLayer

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

studyLayers(1).SetPlotMarkersAtPoints(parmPlotStudyMarkers)
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::PlotMarkersAtPoints method
AcChartPointStyle::SetMarkerShape method
AcChartSeriesStyle::SetPlotMarkersAtPoints method

AcChartLayer::SetPlotUpDownBars method
Call the SetPlotUpDownBars() method to specify whether up and down bars are
drawn between points within each category in a chart layer.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPlotUpDownBars(plotUpDownBars As Boolean)

Parameter plotUpDownBars
True turns on drawing up and down bars in the chart layer. False turns off
drawing up and down bars in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to draw
up and down bars in the chart’s base layer, depending on the value of a Boolean
parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

baseLayer.SetPlotUpDownBars(parmPlotUpDownBars)
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::SetPlotUpDownBars method

AcChartLayer::SetPointBorderStyle method
Call the SetPointBorderStyle() method to set the default style for the borders
around points in a chart layer. To turn off borders around points, set the border
style’s Pen member to DrawingLinePenNone.

388 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

You can call this method only on chart layers with the following chart types:

■ Area

■ Bar

■ Pie

■ Step

In some cases, the border style that this method sets does not apply to all the
points in a chart layer. To set the default border style for points within an
individual series, call the corresponding series style’s SetBorderStyle() method.
To set the border style for a particular point, call the corresponding point style’s
SetBorderStyle() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPointBorderStyle(pointBorderStyle As AcDrawingBorderStyle)

Parameter pointBorderStyle
The default style for the borders around points in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around points in the chart’s base layer, based on the value
of a parameter. GetPointBorderStyle() retrieves the default settings so that only
the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetPointBorderStyle()
borderStyle.Color = parmPointBorderColor
baseLayer.SetPointBorderStyle(borderStyle)

End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPointBorderStyle method
AcChartPointStyle::GetBorderStyle method
AcDrawingBorderStyle

AcChartLayer::SetPointLabelFormat method
Call the SetPointLabelFormat() method to set the default format pattern used to
format point labels in a chart layer. The format pattern is ignored for string label
values.

C h a p t e r 7 , A F C c l a s s e s 389

AcChartLayer

In some cases, the format pattern that this method sets does not apply to all
points in a chart layer. To set the point label format pattern for an individual
series, call the corresponding series style’s SetPointLabelFormat() method. To set
the point label format pattern for an individual point, call the point’s
SetCustomLabelFormat() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

■ A chart’s Localize() method

Syntax Sub SetPointLabelFormat(pointLabelFormat As String)

Parameter pointLabelFormat
The default format pattern used to format point labels in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the number of decimal places shown in point labels in the chart’s base layer,
based on the value of a parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim pointLabelFormat As String
If (parmPointLabelDP > 0) Then

pointLabelFormat = "." & String(parmPointLabelDP, "0")
End If
pointLabelFormat = "#,##0" & pointLabelFormat
baseLayer.SetPointLabelFormat(pointLabelFormat)

End Sub

See also AcChart::CustomizeLayers method
AcChart::Localize method
AcChartLayer::GetPointLabelFormat method
AcChartLayer::SetCategoryLabelFormat method
AcChartLayer::SetSeriesLabelFormat method
AcChartPoint::SetCustomLabelFormat method
AcChartSeriesStyle::SetPointLabelFormat method

AcChartLayer::SetPointLabelLineStyle method
Call the SetPointLableLineStyle() method to set the line style used to draw point
label lines in a chart layer. To disable point label lines, set the line style’s Pen
member to DrawingLinePenNone.

You can call this method only on pie chart layers.

390 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

The recommended method from which to call SetPointLabelLineStyle() is a
chart’s CustomizeLayers() method.

Syntax Sub SetPointLabelLineStyle(pointLabelLineStyle As AcDrawingLineStyle)

Parameter pointLabelLineStyle
The line style used to draw point label lines in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the pattern used to draw the point label lines in the chart’s base layer, depending
on the value of a Boolean parameter. GetPointLabelLineStyle() retrieves the
default settings so that only the line style’s Pen member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmDottedPointLabelLines Then
Dim lineStyle As AcDrawingLineStyle
lineStyle = baseLayer.GetPointLabelLineStyle()
lineStyle.Pen = DrawingLinePenDot
baseLayer.SetPointLabelLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPointLabelLineStyle method
AcDrawingLineStyle

AcChartLayer::SetPointLabelPlacement method
Call the SetPointLabelPlacement() method to set the default placement of point
labels in a chart layer. To turn off point labels, set pointLabelPlacement to
ChartPointLabelPlacementNone.

The placement that this method sets might not apply to all the points in a chart
layer. To set the default point label placement for the points within an individual
series, call the corresponding series style’s SetPointLabelPlacement() method. To
set the point label placement for an individual point, call the corresponding point
style’s SetPointLabelPlacement() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPointLabelPlacement(pointLabelPlacement As
AcChartPointLabelPlacement)

Parameter pointLabelPlacement
The default placement of point labels in the chart layer.

C h a p t e r 7 , A F C c l a s s e s 391

AcChartLayer

Example The following example overrides a chart’s CustomizeLayers() method to change
the chart type of the chart’s base layer, depending on the value of a Boolean
parameter. If the base layer is a pie chart, the method calls
SetPointLabelPlacement() and SetPointLabelSource() to display categories as
point labels. If the base layer is a bar chart, the method calls
SetPointLabelPlacement() to turn off point labels.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmPieChart Then
baseLayer.SetChartType(ChartTypePie)
baseLayer.SetPointLabelPlacement(

ChartPointLabelPlacementAuto)
baseLayer.SetPointLabelSource(

ChartPointLabelSourceCategory)
Else

' Use default series placement.
baseLayer.SetChartType(ChartTypeBar)
' Disable point labels.
baseLayer.SetPointLabelPlacement(

ChartPointLabelPlacementNone)
End If

End Sub

See also AcChart::CustomizeLayers method
AcChartPointLabelPlacement
AcChartPointStyle::SetPointLabelPlacement method

AcChartLayer::SetPointLabelSource method
Call the SetPointLabelSource() method to set the default source for point label
values in a chart layer.

The source that this method specifies might not apply to all the points in a chart
layer. To set the point label source for an individual series, call the corresponding
series style’s SetPointLabelSource() method. To set the point label value for an
individual point, call the point’s SetCustomLabelValue() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetPointLabelSource(pointLabelSource As AcChartPointLabelSource)

Parameter pointLabelSource
The default source for point label values in the chart layer.

392 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Example The following example overrides a chart’s CustomizeLayers() method to change
the chart type of the chart’s base layer, depending on the value of a Boolean
parameter. If the base layer is a pie chart, the method calls SetPointLabelSource()
to display categories as point labels. If the base layer is a bar chart, the method
calls SetPointLabelSource() to display categories as point labels.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmPieChart Then
baseLayer.SetChartType(ChartTypePie)
baseLayer.SetPointLabelPlacement(

+ ChartPointLabelPlacementOutsideEnd)
baseLayer.SetPointLabelSource(

ChartPointLabelSourceCategory)
Else

' Use default series placement.
baseLayer.SetChartType(ChartTypeBar)
baseLayer.SetPointLabelPlacement(

+ ChartPointLabelPlacementInsideBase)
baseLayer.SetPointLabelSource(

ChartPointLabelSourceSeries)
End If

End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPointLabelSource method
AcChartPoint::SetCustomLabelValue method
AcChartPointLabelSource
AcChartSeriesStyle::SetPointLabelSource method

AcChartLayer::SetPointLabelStyle method
Call the SetPointLabelStyle() method to set the default style for point labels in a
chart layer. The style that this method sets might not apply to all the points in a
chart layer. To set the default point label style for the points within an individual
series, call the corresponding series style’s SetPointLabelStyle() method. To set
the point label style for an individual point, call the corresponding point style’s
SetPointLabelStyle() method.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub GetPointLabelStyle(pointLabelStyle As AcDrawingTextStyle)

Parameter pointLabelStyle
The default style for point labels in the chart layer.

C h a p t e r 7 , A F C c l a s s e s 393

AcChartLayer

Example The following example overrides a chart’s CustomizeLayers() method to make
point labels italic in the chart’s base layer, depending on the value of a Boolean
parameter. GetPointLabelStyle() retrieves the default settings so that only the text
style’s Font member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim textStyle As AcDrawingTextStyle
textStyle = baseLayer.GetPointLabelStyle()
textStyle.Font.Italic = parmItalicPointLabels
baseLayer.SetPointLabelStyle(textStyle)

End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetPointLabelStyle method
AcChartPointStyle::GetPointLabelStyle method
AcDrawingTextStyle

AcChartLayer::SetSeriesLabelFormat method
Call the SetSeriesLabelFormat() method to set the default format pattern used to
format series labels in a chart layer. You cannot call this method on a pie chart
layer. Pie chart layers do not have series labels. Legend items for a pie chart layer
are category labels.

The format pattern is ignored for string label values.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

■ A chart’s Localize() method

Syntax Sub Format(seriesLabelFormat As String)

Parameter seriesLabelFormat
The format pattern.

Example The following example overrides a chart’s CustomizeLayers() method to use a
short or long calendar quarter format for series labels from the chart’s base layer,
depending on the value of a Boolean parameter:

394 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmUseShortQuarterFormat Then
baseLayer.SetSeriesLabelFormat("Short Quarter")

Else
baseLayer.SetSeriesLabelFormat("Long Quarter")

End If
End Sub

See also AcChart::CustomizeLayers method
AcChart::Localize method
AcChartLayer::GetSeriesLabelFormat method
AcChartLayer::SetCategoryLabelFormat method
AcChartLayer::SetPointLabelFormat method

AcChartLayer::SetSeriesOverlapRatio method
Call the SetSeriesOverlapRatio() method to specify the amount that adjacent
series in a bar chart layer overlap, relative to the width of a single bar. The
amount of overlap is defined relative to the width of a single bar. If the amount of
overlap is 0.5, adjacent bars overlap by half the width of a single bar.

Negative overlaps are permitted. If the amount of overlap is -0.5, there will be a
gap half the width of a single bar between adjacent bars.

You can call this method only on a two-dimensional bar chart layer.

The recommended methods from which to call SetSeriesOverlapRatio() are:

■ A chart’s CustomizeLayers() method

■ A chart’s AdjustChart() method

Syntax Sub SetSeriesOverlapRatio(seriesOverlapRatio As Double)

Parameter seriesOverlapRatio
The amount that adjacent series in the bar chart layer overlap, relative to the
width of a single bar. Negative values mean there is a gap instead of an overlap.
Must be in the range -1 through 1.

Example The following example overrides a chart’s CustomizeLayers() method to add a
gap between adjacent bars in the chart’s base layer, depending on the value of a
Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmGapsBetweenSeries Then
baseLayer.SetSeriesOverlapRatio(-0.5)

End If
End Sub

C h a p t e r 7 , A F C c l a s s e s 395

AcChartLayer

See also AcChart::AdjustChart method
AcChart::CustomizeLayers method
AcChartLayer::GetSeriesOverlapRatio method
AcChartLayer::SetCategoryGapRatio method

AcChartLayer::SetSeriesPlacement method
Call the SetSeriesPlacement() method to set the relative placement of points for
multiple series within a category in a chart layer.

SetSeriesPlacement() automatically resets the overlap between adjacent bars in
bar chart layers as shown in Table 7-11.

You cannot call this method on chart layers with the following chart types:

■ Pie

■ Scatter

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetSeriesPlacement(seriesPlacement As AcChartSeriesPlacement)

Parameter seriesPlacement
The relative placement of points for multiple series within a category in the chart
layer. Must not be set to ChartSeriesPlacementOnZAxis if the chart is not
three-dimensional. You must not set Placement to ChartSeriesPlacementOnZAxis
if the chart layer’s chart type is step.

Example The following example overrides a chart’s CustomizeLayers() method to make
the chart’s base layer show series either as percentages or stacked, depending on
the value of a Boolean parameter:

Table 7-11 Specifying how to place a series on a chart

seriesPlacement Series overlap ratio

ChartSeriesPlacementAsPercentages -1

ChartSeriesPlacementOnZAxis 0

ChartSeriesPlacementSideBySide 0

ChartSeriesPlacementStacked -1

396 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmPlotSeriesAsPercentages Then
baseLayer.SetSeriesPlacement(

ChartSeriesPlacementAsPercentages)
Else

baseLayer.SetSeriesPlacement(
ChartSeriesPlacementStacked)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetSeriesPlacement method
AcChartLayer::SetChartType method
AcChartLayer::SetSeriesOverlapRatio method
AcChartSeriesPlacement

AcChartLayer::SetStartAngle method
Call the SetStartAngle() method to set the angle at which the first slice in a pie
chart layer is drawn. The angle is measured in degrees clockwise from vertical.

You can call this method only on a pie chart layer.

The recommended method from which to call SetStartAngle() is a chart’s
CustomizeLayers() method.

Syntax Sub SetStartAngle(startAngle As AcAngle)

Parameter startAngle
The angle at which the first slice in the pie chart layer is drawn.

Example The following example overrides a chart’s CustomizeLayers() method to make
the chart’s base layer show series either as percentages or stacked, depending on
the value of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmPlotSeriesAsPercentages Then
baseLayer.SetSeriesPlacement(

ChartSeriesPlacementAsPercentages)
Else

baseLayer.SetSeriesPlacement(
ChartSeriesPlacementStacked)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetStartAngle method

C h a p t e r 7 , A F C c l a s s e s 397

AcChartLayer

AcChartLayer::SetStockHasClose method
Call the SetStockHasClose() method to specify whether a stock chart layer has a
Close series.

You can call this method only on a stock chart layer.

You cannot call this method on a stock chart layer whose data has been specified
using Chart Builder. You must call this method if you are creating data in a stock
chart programmatically.

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetStockHasClose(stockHasClose As Boolean)

Parameter stockHasClose
True if the stock chart layer has a Close series.
False if the stock chart layer does not have a Close series.

See also AcChart::CustomizeLayers method
AcChartLayer::SetStockHasOpen method
AcChartLayer::StockHasClose method

AcChartLayer::SetStockHasOpen method
Call the SetStockHasOpen() method to specify whether a stock chart layer has an
Open series. You can call this method only on a stock chart layer. You must call
this method if you are creating data in a stock chart programmatically.

You cannot call SetStockHasOpen() on a stock chart layer whose data has been
specified using Chart Builder.

Call SetStockHasOpen() only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetStockHasOpen(stockHasOpen As Boolean)

Parameter stockHasOpen
True if the stock chart layer has an Open series.
False if the stock chart layer does not have an Open series.

See also AcChart::CustomizeLayers method
AcChartLayer::SetStockHasClose method
AcChartLayer::StockHasOpen method

398 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

AcChartLayer::SetStudyHeightRatio method
Call the SetStudyHeightRatio() method to set the ratio of the height of a study
layer to the height of its parent chart’s base layer. For example, to set the study
layer to be half the height of the base layer, call this method with
studyHeightRatio set to 0.5.

You can call SetStudyHeightRatio() only on a study layer.

The ratio that this method sets is not simply the ratio of the heights of the layer’s
y-axes. The heights of chart layers include their axes, axis labels and some
additional space. You can experiment to get the exact appearance you require.

The recommended method from which to call SetStudyHeightRatio() is a chart’s
CustomizeLayers() method.

Syntax Sub SetStudyHeightRatio(studyHeightRatio As Double)

Parameter studyHeightRatio
The ratio of the height of the study layer to the height of its parent chart’s base
layer. Must be in the range 0.2 through 5.0.

Example The following example overrides a chart’s CustomizeLayers() method to increase
the height of the chart’s first study layer relative to the chart’s base layer,
depending on the value of a Boolean parameter:

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmBigStudy Then
studyLayers(1).SetStudyHeightRatio(1)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetStudyHeightRatio method

AcChartLayer::SetThreeDFloorFillStyle method
Call the SetThreeDFloorFillStyle() method to set the background fill style for a
three-dimensional chart’s floor.

The recommended method from which to call SetThreeDFloorFillStyle() is a
chart’s CustomizeLayers() method.

You can call this method only on:

■ A chart’s base layer

■ A three-dimensional chart layer

You cannot call this method on a three-dimensional pie chart layer. A three-
dimensional pie chart layer does not have walls or a floor.

C h a p t e r 7 , A F C c l a s s e s 399

AcChartLayer

Syntax Sub SetThreeDFloorFillStyle(threeDFloorFillStyle As AcDrawingFillStyle)

Parameter threeDFloorFillStyle
The background fill style for the chart layer’s floor.

Example The following example overrides a chart’s CustomizeLayers() method to create a
patterned floor, depending on the value of a Boolean parameter.
GetThreeDFloorFillStyle() retrieves the default settings so that only the fill style’s
Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddFloorPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetThreeDFloorFillStyle()
fillStyle.Pattern = DrawingFillPatternBrickHorizontal
baseLayer.SetThreeDFloorFillStyle(fillStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetThreeDFloorFillStyle method
AcChartLayer::SetPlotAreaFillStyle method
AcChartLayer::SetThreeDWallFillStyle method
AcDrawingFillStyle

AcChartLayer::SetThreeDWallFillStyle method
Call the SetThreeDWallFillStyle() method to set the background fill style for a
three-dimensional chart’s walls. The recommended method from which to call
SetThreeDWallFillStyle() is a chart’s CustomizeLayers() method.

You can call this method only on:

■ A chart’s base layer

■ A three-dimensional chart layer

You cannot call this method on a three-dimensional pie chart layer. A three-
dimensional pie chart layer does not have walls or a floor.

You cannot set the fill styles for a three-dimensional chart layer’s back wall and
side wall independently.

Syntax Sub SetThreeDWallFillStyle(threeDWallFillStyle As AcDrawingFillStyle)

Parameter threeDWallFillStyle
The background fill style for the chart layer’s walls.

Example The following example overrides a chart’s CustomizeLayers() method to create
patterned walls, depending on the value of a Boolean parameter.

400 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

GetThreeDSideWallFillStyle() retrieves the default settings so that only the fill
style’s Pattern member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmAddWallPattern Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetThreeDSideWallFillStyle()
fillStyle.Pattern = DrawingFillPattern20Percent
baseLayer.SetThreeDWallFillStyle(fillStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetThreeDBackWallFillStyle method
AcChartLayer::GetThreeDSideWallFillStyle method
AcChartLayer::SetPlotAreaFillStyle method
AcChartLayer::SetThreeDFloorFillStyle method
AcDrawingFillStyle

AcChartLayer::SetUpBarBorderStyle method
Call the SetUpBarBorderStyle() method to set the style of the borders around up
bars in a chart layer. To turn off borders around up bars, set the border style’s Pen
member to DrawingLinePenNone.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetUpBarBorderStyle(UpBarBorderStyle As
AcDrawingBorderStyle)

Parameter UpBarBorderStyle
The style for borders around up bars in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of the border around up bars in the chart’s base layer, depending on the
value of a Boolean parameter. GetUpBarBorderStyle() retrieves the default
settings so that only the border style’s Color member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

C h a p t e r 7 , A F C c l a s s e s 401

AcChartLayer

If parmGreenOutlinedUpBars Then
Dim borderStyle As AcDrawingBorderStyle
borderStyle = baseLayer.GetUpBarBorderStyle()
borderStyle.Color = Green
baseLayer.SetUpBarBorderStyle(borderStyle)

End If
End Sub

See also AcChart::CustomizeLayers method
AcChartLayer::GetUpBarBorderStyle method
AcChartLayer::SetDownBarBorderStyle method
AcChartLayer::SetPlotUpDownBars method
AcChartLayer::SetUpBarFillStyle method
AcDrawingBorderStyle

AcChartLayer::SetUpBarFillStyle method
Call the SetUpBarFillStyle() method to set the fill style for up bars in a chart layer.

You can call this method only on chart layers with the following chart types:

■ Line

■ Stock

You can call this method only from:

■ A chart’s CustomizeLayers() method

■ Code that is creating a chart dynamically, after you call the chart’s
MakeLayers() method

Syntax Sub SetUpBarFillStyle(UpBarFillStyle As AcDrawingFillStyle)

Parameter UpBarFillStyle
The fill style for up bars in the chart layer.

Example The following example overrides a chart’s CustomizeLayers() method to change
the color of up bars in the chart’s base layer, depending on the value of a Boolean
parameter. GetUpBarFillStyle() retrieves the default settings so that only the fill
style’s Color1 member needs to change.

Sub CustomizeLayers(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmGreenFilledUpBars Then
Dim fillStyle As AcDrawingFillStyle
fillStyle = baseLayer.GetUpBarFillStyle()
fillStyle.Color = Green
baseLayer.SetUpBarFillStyle(fillStyle)

End If
End Sub

402 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartLayer

See also AcChart::CustomizeLayers method
AcChartLayer::GetUpBarFillStyle method
AcChartLayer::SetDownBarFillStyle method
AcChartLayer::SetPlotUpDownBars method
AcChartLayer::SetUpBarBorderStyle method
AcDrawingFillStyle

AcChartLayer::StockHasClose method
Determines whether a stock chart layer has a Close series.

You can call this method only on a stock chart layer.

Syntax Function StockHasClose() As Boolean

Description The StockHasClose() method determines whether a stock chart layer has a Close
series.

Returns True if the stock chart layer has a Close series.
False if the stock chart layer does not have a Close series.

See also AcChart::CustomizeLayers method
AcChartLayer::SetStockHasClose method
AcChartLayer::StockHasOpen method

AcChartLayer::StockHasOpen method
Determines whether a stock chart layer has an Open series.

You can call this method only on a stock chart layer.

Syntax Function StockHasOpen() As Boolean

Returns True if the stock chart layer has an Open series.
False if the stock chart layer does not have an Open series.

See also AcChart::CustomizeLayers method
AcChartLayer::SetStockHasOpen method
AcChartLayer::StockHasClose method

Chapter 7AFC classes

C h a p t e r 7 , A F C c l a s s e s 403

AcChartPoint

Class AcChartPoint
Chapter 7AFC classes Defines a point within a chart series. Figure 7-10 shows the class hierarchy of

AcChartPoint.

Figure 7-10 AcChartPoint

Description Use the AcChartPoint class to represent a single point within a chart series. Do
not create AcChartPoint objects explicitly from your own code. Instead,
AcChartSeries objects create AcChartPoint objects automatically as necessary to
build complete charts.

Use AcChartSeries methods to access a chart series’ points. You can manipulate
the appearance of a chart by calling methods on the chart’s points.

About empty points
If there is no value available for a point in a chart layer that has a category scale,
the point still exists but has no value. Such points are called empty or missing
points.

For example, a chart shows a count of customers with regions North, South, East,
and West as categories and credit ranks A, B, and C as series. There are no
customers in the East region with credit rank A. The chart still includes a point in
series A for category East but that point is empty.

Customizing points
By default, a chart point is displayed using its parent series’ series style settings. If
you want an individual point to have a different appearance from the other
points in its parent series, add a custom point style, point label value, or point
label format to that point.

Example For an example of how to use this class to build a chart dynamically, see the
dynamic chart Example for the AcChart class.

See also Class AcChart
Class AcChartAxis
Class AcChartCategory
Class AcChartGridLine
Class AcChartLayer
Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

AcChartPoint

404 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

Methods for Class AcChartPoint

Methods defined in Class AcChartPoint

AddCustomStyle, ClearCustomLabelFormat, ClearCustomLabelValue,
ClearValues, ExplodeSlice, GetCategory, GetCustomLabelFormat,
GetCustomLabelValue, GetCustomStyle, GetIndex, GetLabelText, GetSeries,
GetXValue, GetYValue, GetZValue, HasCustomLabelFormat,
HasCustomLabelValue, HasCustomStyle, IsMissing, SetCustomLabelFormat,
SetCustomLabelValue, SetExplodeSlice, SetValues, SetXValue, SetYValue,
SetZValue

AcChartPoint::AddCustomStyle method
Call the AddCustomStyle() method to add a custom style to a chart point.

You can call this method only from:

■ A chart’s AdjustChart() method

■ Code that is creating a chart dynamically

You cannot add a new custom style to a point that already has a custom style.

When you add a custom style to a point, the new custom style is initialized with
the series style values for the point’s parent series.

Syntax Function AddCustomStyle() As AcChartPointStyle

Returns A reference to the new custom point style.

Example The following example overrides a chart’s AdjustChart() method to highlight all
points in the first series having values greater than 15, using custom point styles:

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries

' Get the first series.
Set series = baseLayer.GetSeries(1)

' Determine how many points are there in the series
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()

' Loop through all the points in the series.
Dim pointIndex As Integer
For pointIndex = 1 To numberOfPoints

' Get the point.
Dim point As AcChartPoint
Set point = series.GetPoint(pointIndex)
' Get the y value of the point.

C h a p t e r 7 , A F C c l a s s e s 405

AcChartPoint

Dim pointValue As Variant
pointValue = point.GetYValue()
If (pointValue > 15) Then

' Give the point a custom style.
Dim pointStyle As AcChartPointStyle
Set pointStyle = point.AddCustomStyle()
' Color the point green.
pointStyle.SetBackgroundColor(Green)
' Show the point's value as a point label.
pointStyle.SetPointLabelPlacement(+

ChartPointLabelPlacementCenter)
point.SetCustomLabelValue(pointValue)

End If
Next pointIndex

End Sub

See also AcChart::AdjustChart method
AcChartPoint::HasCustomStyle method
Class AcChartPointStyle

AcChartPoint::ClearCustomLabelFormat method
Call the ClearCustomLabelFormat() method to remove a custom label format
pattern from a chart point. You can call this method only from a chart’s
AdjustChart() method.

Syntax Sub ClearCustomLabelFormat()

See also AcChart::AdjustChart method
AcChartPoint::ClearCustomLabelValue method
AcChartPoint::GetCustomLabelFormat method
AcChartPoint::HasCustomLabelFormat method
AcChartPoint::SetCustomLabelFormat method

AcChartPoint::ClearCustomLabelValue method
Call the ClearCustomLabelValue() method to remove a custom label value from a
chart point.

You can call this method only from a chart’s AdjustChart() method.

Syntax Sub ClearCustomLabelValue()

See also AcChart::AdjustChart method
AcChartPoint::ClearCustomLabelFormat method
AcChartPoint::GetCustomLabelValue method
AcChartPoint::HasCustomLabelValue method
AcChartPoint::SetCustomLabelValue method

406 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

AcChartPoint::ClearValues method
Call the ClearValues() method to make a chart point into an empty point.

You can call this method only from a chart’s AdjustChart() method.

Syntax Sub ClearValues()

See also AcChart::AdjustChart method
AcChartPoint::SetValues method
AcChartPoint::SetXValue method
AcChartPoint::SetYValue method
AcChartPoint::SetZValue method

AcChartPoint::ExplodeSlice method
Determines whether a chart point is a pie chart slice that is exploded.

You can call this method only on a chart point that is a pie chart slice.

You can call this method only after a chart’s ComputeScales() method has been
called.

Syntax Function ExplodeSlice() As Boolean

Returns True if the chart point is a pie chart slice that is exploded.
False if the chart point is a pie chart slice that is not exploded.

Example The following example overrides a chart’s AdjustChart() method to add a point
label to each exploded slice in the chart’s pie chart base layer:

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' A pie chart layer has only one series - get that series.
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
' Determine how many slices there are in the pie
Dim numberOfSlices As Integer
numberOfSlices = series.GetNumberOfPoints()
' Loop through all the slices.
Dim sliceIndex As Integer
For sliceIndex = 1 To numberOfSlices

' Get the slice.
Dim slice As AcChartPoint
Set slice = series.GetPoint(sliceIndex)
If slice.ExplodeSlice() Then

' Give the slice a custom style.
Dim pointStyle As AcChartPointStyle
Set pointStyle = slice.AddCustomStyle()
' Show the slice's value as a point label.

C h a p t e r 7 , A F C c l a s s e s 407

AcChartPoint

pointStyle.SetPointLabelPlacement(
+ ChartPointLabelPlacementCenter)

slice.SetCustomLabelValue(slice.GetYValue())
End If

Next sliceIndex
End Sub

See also AcChart::AdjustChart method
AcChartPoint::SetExplodeSlice method

AcChartPoint::GetCategory method
Returns a reference to the chart category corresponding to a chart point.

You can call this method only on a chart point in a chart layer that has a category
scale x-axis.

Syntax Function GetCategory() As AcChartCategory

Returns A reference to the chart category corresponding to the chart point.

See also Class AcChartCategory
AcChartPoint::GetSeries method

AcChartPoint::GetCustomLabelFormat method
Returns the custom format pattern used to format a chart point’s label. You can
call this method only on a chart point that has a custom label format. To check
whether a point has a custom label value, use HasCustomLabelFormat().

If a point does not have a custom label format, its point label is formatted using
the point label format pattern in the series style corresponding to the point’s
parent series.

Syntax Function GetCustomLabelFormat() As String

Returns The custom format pattern used to format the chart point’s label.

See also AcChartPoint::ClearCustomLabelFormat method
AcChartPoint::GetCustomLabelValue method
AcChartPoint::GetLabelText method
AcChartPoint::HasCustomLabelFormat method
AcChartPoint::SetCustomLabelFormat method
AcChartSeriesStyle::GetPointLabelFormat method

AcChartPoint::GetCustomLabelValue method
Returns the custom value of a chart point’s label. You can call this method only on
a chart point that has a custom label value. Use HasCustomLabelValue() to check
whether a point has a custom label value. If a point does not have a custom label

408 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

value, its point label value is calculated from the point label source specified in
the series style corresponding to the point’s parent series.

Syntax Function GetCustomLabelValue() As Variant

Returns The custom value of the chart point’s label.

See also AcChartPoint::ClearCustomLabelValue method
AcChartPoint::GetCustomLabelFormat method
AcChartPoint::GetLabelText method
AcChartPoint::HasCustomLabelValue method
AcChartPoint::SetCustomLabelValue method
AcChartSeriesStyle::GetPointLabelSource method

AcChartPoint::GetCustomStyle method
Returns a reference to the custom style for a chart point. You can call this method
only on a chart point that has a custom style. To check whether a point has a
custom style, use HasCustomStyle(). To add a custom style to a point, use
AddCustomStyle().

If a point does not have a custom style, it is displayed using the series style
corresponding to the point’s parent series.

Syntax Function GetCustomStyle() As AcChartPointStyle

Returns A reference to the custom style for the chart point.

See also AcChartPoint::AddCustomStyle method
AcChartPoint::HasCustomStyle method
AcChartSeries::GetStyle method
Class AcChartPointStyle

AcChartPoint::GetIndex method
Returns the index of a chart point within its parent chart series’ list of points. The
first point in a series is index 1.

Syntax Function GetIndex() As Integer

Returns The index of the chart point within its parent chart series’ list of points.

AcChartPoint::GetLabelText method
Returns the formatted text of a chart point’s label. String label values return
unformatted.

Syntax Function GetLabelText() As String

Returns The formatted text of the chart point’s label.

C h a p t e r 7 , A F C c l a s s e s 409

AcChartPoint

See also AcChartPoint::GetCustomLabelFormat method
AcChartPoint::GetCustomLabelValue method

AcChartPoint::GetSeries method
Returns a reference to the parent chart series of a chart point.

Syntax Function GetSeries() As AcChartSeries

Returns A reference to the parent chart series of the chart point.

See also AcChartPoint::GetCategory method
Class AcChartSeries

AcChartPoint::GetXValue method
Returns the x value of a chart point. You can call this method only on a point in a
bubble or scatter chart layer.

Syntax Function GetXValue() As Variant

Returns The x value of the chart point.
Null if the chart point is empty.

See also AcChartPoint::GetYValue method
AcChartPoint::GetZValue method
AcChartPoint::IsMissing method
AcChartPoint::SetValues method
AcChartPoint::SetXValue method

AcChartPoint::GetYValue method
Returns the y value of a chart point.

Syntax Function GetYValue() As Variant

Returns The y value of the chart point.
Null if the chart point is empty.

See also AcChartCategory::GetSumOfPointValues method
AcChartPoint::GetXValue method
AcChartPoint::GetZValue method
AcChartPoint::IsMissing method
AcChartPoint::SetValues method
AcChartPoint::SetYValue method
AcChartSeries::GetSumOfPointValues method
AcChartSeries::GetSumOfSliceValues method

410 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

AcChartPoint::GetZValue method
Returns the z value of a chart point. You can call this method only on a point in a
bubble chart layer.

Syntax Function GetZValue() As Variant

Returns The z value of a chart point.
Null if the chart point is empty.

See also AcChartPoint::GetXValue method
AcChartPoint::GetYValue method
AcChartPoint::IsMissing method
AcChartPoint::SetValues method
AcChartPoint::SetZValue method

AcChartPoint::HasCustomLabelFormat method
Determines whether a chart point has a custom label format pattern.

Syntax Function HasCustomLabelFormat() As Boolean

Returns True if the chart point has a custom label format pattern.
False if the chart point uses the point label format pattern from the point’s parent
series’ series style.

See also AcChartPoint::ClearCustomLabelFormat method
AcChartPoint::GetCustomLabelFormat method
AcChartPoint::HasCustomLabelValue method
AcChartPoint::SetCustomLabelFormat method

AcChartPoint::HasCustomLabelValue method
Determines whether a chart point has a custom label value.

Syntax Function HasCustomLabelValue() As Boolean

Returns True if the chart point has a custom label value.
False if the chart point’s label value is calculated from the point label source
specified in the series style corresponding to the point’s parent series.

See also AcChartPoint::ClearCustomLabelValue method
AcChartPoint::GetCustomLabelValue method
AcChartPoint::HasCustomLabelFormat method
AcChartPoint::SetCustomLabelValue method

AcChartPoint::HasCustomStyle method
Determines whether a chart point has a custom style.

C h a p t e r 7 , A F C c l a s s e s 411

AcChartPoint

Syntax Function HasCustomStyle() As Boolean

Returns True if the chart point has a custom style.
False if the chart point is displayed using the series style corresponding to the
point’s parent series.

See also AcChartPoint::ClearCustomLabelValue method
AcChartPoint::GetCustomLabelValue method
AcChartPoint::HasCustomLabelFormat method
AcChartPoint::SetCustomLabelValue method
AcChartSeries::GetStyle method

AcChartPoint::IsMissing method
Determines whether a chart point is empty.

Syntax Function IsMissing() As Boolean

Returns True if the chart point is empty.
False if the chart point has a value.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to remove any category where the sum of the values of the points in that
category is less than 10. The example uses IsMissing() to skip points that have no
value.

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Loop through all the categories.
Dim numberOfCategories As Integer
numberOfCategories = baseLayer.GetNumberOfCategories()
Dim categoryIndex As Integer

' Use reverse order so that deleting categories
' does not invalidate the current index.
For categoryIndex = numberOfCategories To 1 Step -1

' Add all the values in the category.
Dim total As Double
total = 0
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
Dim point As AcChartPoint
Set point = series.GetPoint(categoryIndex)
' Ignore missing values.

412 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

If Not point.IsMissing() Then
total = total + point.GetYValue()

End If
Next seriesIndex
' Remove categories whose values total less than 10.
If (total < 10) Then

baseLayer.RemoveCategory(categoryIndex)
End If

Next categoryIndex
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartPoint::ClearValues method
AcChartPoint::SetValues method
AcChartPoint::SetXValue method
AcChartPoint::SetYValue method
AcChartPoint::SetZValue method

AcChartPoint::SetCustomLabelFormat method
Call the SetCustomLabelFormat() method to add a custom label format pattern
to a chart point. The format pattern is ignored for string label values.

You can call SetCustomLabelFormat() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

If a point does not have a custom label format, its point label is formatted using
the point label format pattern in the series style corresponding to the point’s
parent series.

Syntax Sub SetCustomLabelFormat(customLabelFormat As String)

Parameter customLabelFormat
The custom label format pattern for the chart point.

Example For an example of how to use this method, see the example for the
AcChartPoint::SetCustomLabelValue() method.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartPoint::ClearCustomLabelFormat method
AcChartPoint::GetCustomLabelFormat method
AcChartPoint::HasCustomLabelFormat method
AcChartPoint::SetCustomLabelValue method
AcChartSeriesStyle::SetPointLabelFormat method

C h a p t e r 7 , A F C c l a s s e s 413

AcChartPoint

AcChartPoint::SetCustomLabelValue method
Call the SetCustomLabelValue() method to add a custom label value to a chart
point.

You can call SetCustomLabelValue() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

If a point does not have a custom label value, its point label value is calculated
from the point label source specified in the series style corresponding to the
point’s parent series.

A point label is displayed only for a point if that point’s point label placement
setting is not ChartPointLabelPlacementNone. You can change the point label
placement settings for points by:

■ Specifying the point label placement in Advanced Chart Options

■ Setting a default point label placement for all points in a chart layer using the
layer’s SetPointLabelPlacement() method

■ Setting a default point label placement for all points in a chart series using the
SetPointLabelPlacement() method of the series style corresponding to the
series

■ Adding custom chart point styles to individual chart points and using the
SetPointLabelPlacement() method of those styles

Syntax Sub SetCustomLabelValue(customLabelValue As Variant)

Parameter customLabelValue
The custom label value for the chart point.

Example The following example overrides a chart’s AdjustChart() method to add a special
message to the point label for the point with the highest value in the first series in
the chart’s base layer:

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()
Dim pointIndex As Integer
For pointIndex = 1 To numberOfPoints

Dim point As AcChartPoint
Dim maxPoint As AcChartPoint
Set point = series.GetPoint(pointIndex)

414 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

' Ignore missing values.
If Not point.IsMissing() Then

If maxPoint Is Nothing Then
Set maxPoint = point

ElseIf (maxPoint.GetYValue() < point.GetYValue()) Then
Set maxPoint = point

End If
End If

Next pointIndex
If Not maxPoint Is Nothing Then

' Get the standard point label text.
Dim pointLabelText As String
pointLabelText = maxPoint.GetLabelText()
' Suppress the numeric point label format.
maxPoint.SetCustomLabelFormat("")
' Add a special message to the point label.
maxPoint.SetCustomLabelValue(pointLabelText & " - Best

Region!")
End If

End Sub

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetPointLabelPlacement method
AcChartPoint::ClearCustomLabelValue method
AcChartPoint::GetCustomLabelValue method
AcChartPoint::HasCustomLabelValue method
AcChartPoint::SetCustomLabelFormat method
AcChartPointStyle::SetPointLabelPlacement method
AcChartSeriesStyle::SetPointLabelSource method

AcChartPoint::SetExplodeSlice method
Call the SetExplodeSlice() method to specify whether a chart point that is a pie
slice is exploded.

You can call SetExplodeSlice() from:

■ A chart’s AdjustChart() method

■ Code that is creating a chart dynamically, after you have called the chart’s
ComputeScales() method

■ A chart’s Localize() method

To enable pie slice explosion, use a chart layer’s SetPieExplosion() method.

Syntax Sub SetExplodeSlice(explode As Boolean)

C h a p t e r 7 , A F C c l a s s e s 415

AcChartPoint

Parameter explode
True causes the pie slice to be exploded. False causes the pie slice not to be
exploded.

Example The following example overrides a chart’s Localize() method to explode the pie
slice whose category key corresponds to the user’s viewing locale, so that users in
different locales see different slices exploded without re-running the report:

Sub Localize(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Convert the user's locale to a country name.
Dim localeName As String
localeName = GetLocaleName()
Dim userCountry As String
Select Case localeName
Case "fr_FR"

userCountry = "France"
Case "es_ES"

userCountry = "Spain"
Case "en_US"

userCountry = "USA"
End Select
' Enable conditional pie slice explosion and get the series.
baseLayer.SetPieExplosion(ChartPieExplodeSpecificSlices)
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
' Determine how many slices are in the pie
Dim numberOfSlices As Integer
numberOfSlices = series.GetNumberOfPoints()
' Loop through all the slices.
Dim sliceIndex As Integer
For sliceIndex = 1 To numberOfSlices

' Get the slice.
Dim slice As AcChartPoint
Set slice = series.GetPoint(sliceIndex)
Dim category As AcChartCategory
Set category = slice.GetCategory()
' Explode slices whose country name is the user's
' country.
slice.SetExplodeSlice(category.GetKeyValue() =

userCountry)
Next sliceIndex

End Sub

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetPieExplosion method
AcChartPoint::ExplodeSlice method

416 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPoint

AcChartPoint::SetValues method
Call the SetValues() method to set the values of a chart point.

You can call this method only on a point in a scatter chart layer.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetValues(xValue As Variant, yValue As Variant)

Sub SetValues(xValue As Variant, yValue As Variant, zValue As Variant)

Parameters xValue
The x value for the point. If Null, the point is made into an empty point.

yValue
The y value for the point. If Null, the point is made into an empty point.

zValue
The z value for the point. If Null, the point is made into an empty point.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartPoint::ClearValues method
AcChartPoint::SetXValue method
AcChartPoint::SetYValue method
AcChartPoint::SetZValue method

AcChartPoint::SetXValue method
Call the SetXValue() method to set the x value of a chart point.

You can call this method only on a point in a bubble or scatter chart layer.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetXValue(xValue As Variant)

Parameter xValue
The x value for the point. If Null, the point turns into an empty point.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartPoint::ClearValues method
AcChartPoint::GetXValue method
AcChartPoint::SetValues method

C h a p t e r 7 , A F C c l a s s e s 417

AcChartPoint

AcChartPoint::SetYValue method
AcChartPoint::SetZValue method

AcChartPoint::SetYValue method
Call the SetYValue() method to set the y value of a chart point.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetYValue(yValue As Variant)

Parameter yValue
The y value for the point. If Null, the point is made into an empty point.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartPoint::ClearValues method
AcChartPoint::GetYValue method
AcChartPoint::SetValues method
AcChartPoint::SetXValue method
AcChartPoint::SetZValue method

AcChartPoint::SetZValue method
Call SetZValue() to set the z value of a chart point.

You can call this method only on a point in a bubble chart layer.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetZValue(zValue As Variant)

Parameter zValue
The z value for the point. If Null, the point is made into an empty point.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartPoint::ClearValues method
AcChartPoint::GetZValue method
AcChartPoint::SetValues method
AcChartPoint::SetXValue method
AcChartPoint::SetYValue method

418 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

Class AcChartPointStyle
A custom style for a chart point. Figure 7-11 shows the class hierarchy of
AcChartPointStyle.

Figure 7-11 AcChartPointStyle

Description Use the AcChartPointStyle class to represent a custom style for a single point
within a chart series. Do not create AcChartPointStyle objects explicitly from your
own code. Instead, AcChartPoint objects create AcChartPointStyle objects
automatically as necessary to build complete charts.

Use AcChartPoint’s methods to create and access a chart point’s custom style.
You can manipulate the appearance of a chart by calling methods on the chart’s
custom point styles.

A chart point’s default behavior is to use its parent series’ series style settings. If
you want an individual point to have a different appearance from the other
points in its parent series, you can add a custom point style. When you add a
custom style to a point, the new custom style is initialized with the series style
values for the point’s parent series.

Example The following example overrides a chart’s AdjustChart() method to change the
appearance of all points in the first series in the chart’s base layer whose values
are greater than 15:

■ Diagonal yellow stripes are added to the points. GetFillStyle() retrieves the
default settings so that the points’ background color is preserved.

■ The color of the borders around the points is changed to red. GetBorderStyle()
retrieves the default settings so that only the border style’s Color member
needs to change.

■ Centered point labels are added to the points.

■ The point’s point labels are given borders and white backgrounds.
GetPointLabelStyle() retrieves the default settings so that only the border pen
and background color need to change.

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Get the first series.
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
' How many points are there in the series?
Dim numberOfPoints As Integer
numberOfPoints = series.GetNumberOfPoints()

AcChartPointStyle

C h a p t e r 7 , A F C c l a s s e s 419

AcChartPointStyle

' Loop through all the points in the series.
Dim pointIndex As Integer
For pointIndex = 1 To numberOfPoints

' Get the point.
Dim point As AcChartPoint
Set point = series.GetPoint(pointIndex)
' Get the y value of the point.
Dim pointValue As Variant
pointValue = point.GetYValue()
If (pointValue > 15) Then

' Give the point a custom style.
Dim pointStyle As AcChartPointStyle
Set pointStyle = point.AddCustomStyle()
' Add diagonal yellow stripes to the point.
Dim fillStyle As AcDrawingFillStyle
fillStyle = pointStyle.GetFillStyle()
fillStyle.Color2 = Yellow
fillStyle.Pattern = DrawingFillPatternDiagonalUpWide
pointStyle.SetFillStyle(fillStyle)
' Give the point a red border.
Dim borderStyle As AcDrawingBorderStyle
borderStyle = pointStyle.GetBorderStyle()
borderStyle.Color = Red
pointStyle.SetBorderStyle(borderStyle)
' Show the point's value as a point label.
pointStyle.SetPointLabelPlacement(

+ ChartPointLabelPlacementCenter)
point.SetCustomLabelValue(pointValue)
' Give the point label a white background and a border.
Dim labelStyle As AcDrawingTextStyle
labelStyle = pointStyle.GetPointLabelStyle()
labelStyle.Border.Pen = DrawingLinePenSolid
labelStyle.BackgroundColor = White
pointStyle.SetPointLabelStyle(labelStyle)

End If
Next pointIndex

End Sub

See also Class AcChart
Class AcChartAxis
Class AcChartCategory
Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint
Class AcChartSeries
Class AcChartSeriesStyle
Class AcChartTrendline

420 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

Methods for Class AcChartPointStyle

Methods defined in Class AcChartPointStyle

GetBorderStyle, GetFillStyle, GetMarkerFillColor, GetMarkerLineColor,
GetMarkerShape, GetMarkerSize, GetPieExplosionAmount,
GetPointLabelPlacement, GetPointLabelStyle, SetBackgroundColor,
SetBorderStyle, SetFillStyle, SetMarkerFillColor, SetMarkerLineColor,
SetMarkerShape, SetMarkerSize, SetPieExplosionAmount,
SetPointLabelPlacement, SetPointLabelStyle

AcChartPointStyle::GetBorderStyle method
Returns the style of the border around a chart point. To change the border around
a chart point, call this method on the point’s point style to get the default settings.
You can call this method only on point styles for points in chart layers with the
following chart types:

■ Area

■ Bar

■ Pie

■ Step

Syntax Function GetBorderStyle() As AcDrawingBorderStyle

Returns The style of the border around the chart point.

Example For an example of how to use this method, see the example for the
AcChartPointStyle class.

See also AcChartLayer::GetPointBorderStyle method
AcChartPointStyle::SetBorderStyle method
Class AcChartPointStyle
AcDrawingBorderStyle

AcChartPointStyle::GetFillStyle method
Returns the background fill style for a chart point. To change the fill style for a
chart point, call this method on the point’s point style to get the default settings.
You can call this method only on point styles for points in chart layers with the
following chart types:

■ Area

■ Bar

■ Pie

■ Step

C h a p t e r 7 , A F C c l a s s e s 421

AcChartPointStyle

Syntax Function GetFillStyle() As AcDrawingFillStyle

Returns The background fill style for the chart point.

Example For an example of how to use this method, see the example for the
AcChartPointStyle class.

See also AcChartPointStyle::SetBackgroundColor method
AcChartPointStyle::SetFillStyle method
Class AcChartPointStyle
AcDrawingFillStyle

AcChartPointStyle::GetMarkerFillColor method
Returns the fill color of the marker for a chart point.

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Line

■ Scatter

■ Stock

Syntax Function GetMarkerFillColor() As AcColor

Returns The fill color of the marker for the chart point.

See also AcChartPointStyle::GetMarkerLineColor method
AcChartPointStyle::SetMarkerFillColor method

AcChartPointStyle::GetMarkerLineColor method
Returns the line color of the marker for a chart point.

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Line

■ Scatter

■ Stock

Syntax Function GetMarkerLineColor() As AcColor

Returns The line color of the marker for the chart point.

See also AcChartPointStyle::GetMarkerFillColor method
AcChartPointStyle::SetMarkerLineColor method

422 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

AcChartPointStyle::GetMarkerShape method
Returns the shape of the marker for a chart point.

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Line

■ Scatter

■ Stock

Syntax Function GetMarkerShape() As AcChartMarkerShape

Returns The shape of the marker for the chart point.
ChartMarkerShapeNone if no marker is displayed at the point.

See also AcChartMarkerShape
AcChartPointStyle::SetMarkerShape method

AcChartPointStyle::GetMarkerSize method
Returns the size of the marker for a chart point. You can call this method only on
point styles for points in chart layers with the following chart types:

■ Line

■ Scatter

■ Stock

Syntax Function GetMarkerSize() As AcTwips

Returns The size of the marker for the chart point.

See also AcChartLayer::GetMarkerSize method
AcChartPointStyle::SetMarkerSize method
AcTwips

AcChartPointStyle::GetPieExplosionAmount method
Returns the amount that a pie slice chart point is exploded in a pie chart layer.
The amount is relative to the radius of the pie. If the amount is 0.25, the slice is
moved outward from the center of the pie by one quarter of the radius of the pie.

You can call this method only on point styles for points in pie chart layers.

Syntax Function GetPieExplosionAmount() As Double

Returns The amount that a pie slice chart point is exploded in a pie chart layer.

See also AcChartLayer::GetPieExplosionAmount method
AcChartPointStyle::SetPieExplosionAmount method

C h a p t e r 7 , A F C c l a s s e s 423

AcChartPointStyle

AcChartPointStyle::GetPointLabelPlacement method
Returns the placement of the point label for a chart point.

Syntax Function GetPointLabelPlacement() As AcChartPointLabelPlacement

Returns The placement of the point label for the chart point.

See also AcChartLayer::GetPointLabelPlacement method
AcChartPointLabelPlacement
AcChartPointStyle::SetPointLabelPlacement method

AcChartPointStyle::GetPointLabelStyle method
Returns the style of the point label for a chart point. To change the style of a
point’s point label, call this method to retrieve the default settings.

Syntax Function GetPointLabelPlacement() As AcChartPointLabelPlacement

Returns The style of the point label for the chart point.

Example For an example of how to use this method, see the example for the
AcChartPointStyle class.

See also AcChartLayer::GetPointLabelStyle method
AcChartPointStyle::GetPointLabelStyle method
AcDrawingTextStyle

AcChartPointStyle::SetBackgroundColor method
Call the SetBackgroundColor() method to set the background color for a chart
point. This method sets a chart point’s fill style to a single solid color. This
method sets a chart point’s fill style members as follows:

■ Sets the Color1 member to the specified background color

■ Does not affect the Color2 member

■ Sets the Pattern member to DrawingFillPatternSolid

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Area

■ Bar

■ Pie

■ Step

You can call SetBackgroundColor() from:

■ A chart’s AdjustChart() method

424 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetBackgroundColor(customLabelFormat As String)

Parameter customLabelFormat
The custom label format pattern for the chart point.

Example The following example overrides a chart’s AdjustChart() method to set the color
of all unexploded slices in the chart’s pie chart base layer to light gray:

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' A pie chart layer has only one series. Get that series.
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)

' Determine how many slices are in the pie
Dim numberOfSlices As Integer
numberOfSlices = series.GetNumberOfPoints()

' Loop through all the slices.
Dim sliceIndex As Integer
For sliceIndex = 1 To numberOfSlices

' Get the slice.
Dim slice As AcChartPoint
Set slice = series.GetPoint(sliceIndex)
If Not slice.ExplodeSlice() Then

' Give the slice a custom style.
Dim pointStyle As AcChartPointStyle
Set pointStyle = slice.AddCustomStyle()
pointStyle.SetBackgroundColor(LightGray)

End If
Next sliceIndex

End Sub

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartPointStyle::GetFillStyle method
AcChartPointStyle::SetFillStyle method

AcChartPointStyle::SetBorderStyle method
Call the SetBorderStyle() method to set the style of the border around a chart
point. You can call SetBorderStyle() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

C h a p t e r 7 , A F C c l a s s e s 425

AcChartPointStyle

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Area

■ Bar

■ Pie

■ Step

Syntax Sub SetBorderStyle(borderStyle As AcDrawingBorderStyle)

Parameter borderStyle
The style for the border around the chart point.

Example For an example of how to use this method, see the example for the
AcChartPointStyle class.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetPointBorderStyle method
AcChartPointStyle::GetBorderStyle method
AcChartPointStyle
AcDrawingBorderStyle

AcChartPointStyle::SetFillStyle method
Call the SetFillStyle() method to set the background fill style for a chart point.

You can call SetFillStyle() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Area

■ Bar

■ Pie

■ Step

Syntax Sub SetFillStyle(fillStyle As AcDrawingFillStyle)

Parameter fillStyle
The background fill style for the chart point.

Example For an example of how to use this method, see the example for the
AcChartPointStyle class.

426 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartPointStyle::GetFillStyle method
AcChartPointStyle::SetBackgroundColor method
AcChartPointStyle
AcDrawingFillStyle

AcChartPointStyle::SetMarkerFillColor method
Call the SetMarkerFillColor() method to set the fill color of the marker for a chart
point. You can call this method only on point styles for points in chart layers with
the following chart types:

■ Line

■ Scatter

■ Stock

You can call SetMarkerFillColor() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetMarkerFillColor(markerFillColor As AcColor)

Parameter markerFillColor
The fill color of the marker for the chart point.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartPointStyle::GetMarkerFillColor method
AcChartPointStyle::SetMarkerLineColor method
Class AcChartSeriesStyle

AcChartPointStyle::SetMarkerLineColor method
Call the SetMarkerLineColor() method to set the line color of the marker for a
chart point.

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Line

■ Scatter

C h a p t e r 7 , A F C c l a s s e s 427

AcChartPointStyle

■ Stock

You can call SetMarkerLineColor() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetMarkerLineColor(markerLineColor As AcColor)

Parameter markerLineColor
The line color of the marker for the chart point.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartPointStyle::GetMarkerLineColor method
AcChartPointStyle::SetMarkerFillColor method
Class AcChartSeriesStyle

AcChartPointStyle::SetMarkerShape method
Call the SetMarkerShape() method to set the shape of the marker for a chart
point.

You can call this method only on point styles for points in chart layers with the
following chart types:

■ Line

■ Scatter

■ Stock

You can call SetMarkerShape() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetMarkerShape(markerShape As AcChartMarkerShape)

Parameter markerShape
The shape of the marker for the chart point. To turn off the marker at the point, set
markerShape to ChartMarkerShapeNone.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChart::AdjustChart method

428 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

AcChart::Localize method
AcChartMarkerShape
AcChartPointStyle::GetMarkerShape method
Class AcChartSeriesStyle

AcChartPointStyle::SetMarkerSize method
Call the SetMarkerSize() method to set the size of the marker for a chart point.
You can call this method only on point styles for points in chart layers with the
following chart types:

■ Line

■ Scatter

■ Stock

You can call SetMarkerSize() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetMarkerSize(markerSize As AcTwips)

Parameter markerSize
The size of the marker for the chart point.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetMarkerSize method
AcChartPointStyle::GetMarkerSize method
Class AcChartSeriesStyle
AcTwips

AcChartPointStyle::SetPieExplosionAmount method
Call the SetPieExplosionAmount() method to set the amount that a pie slice chart
point is exploded in a pie chart layer. The amount is relative to the radius of the
pie. If the amount is 0.25, the slice is moved outward from the center of the pie by
one quarter of the radius of the pie.

You can call this method only on point styles for points in pie chart layers.

You can call SetPieExplosionAmount() from:

■ A chart’s AdjustChart() method

C h a p t e r 7 , A F C c l a s s e s 429

AcChartPointStyle

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetPieExplosionAmount(pieExplosionAmount As Double)

Parameter pieExplosionAmount
The amount that the pie slice chart point is exploded. Must be in the range 0
through 0.4.

Example The following example overrides a chart’s AdjustChart() method to explode pie
chart slices in the chart’s base layer in proportion to the percentages of the total
pie represented by those slices:

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Explode all pie slices.
baseLayer.SetPieExplosion(ChartPieExplodeAllSlices)
' A pie chart layer has only one series - get that series.
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
' Determine the total value of the pie
Dim sumOfSliceValues As Variant
sumOfSliceValues = series.GetSumOfSliceValues()
' Determine how many slices are in the pie
Dim numberOfSlices As Integer
numberOfSlices = series.GetNumberOfPoints()
' Loop through all the slices.
Dim sliceIndex As Integer
For sliceIndex = 1 To numberOfSlices

' Get the slice.
Dim slice As AcChartPoint
Set slice = series.GetPoint(sliceIndex)
' Compute the explosion amount.
Dim explosionAmount As Double
explosionAmount = slice.GetYValue() / sumOfSliceValues
If (explosionAmount > 0.4) Then

explosionAmount = 0.4
End If
' Give the slice a custom style.
Dim pointStyle As AcChartPointStyle
Set pointStyle = slice.AddCustomStyle()
pointStyle.SetPieExplosionAmount(explosionAmount)

Next sliceIndex
End Sub

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetPieExplosionAmount method
AcChartPointStyle::GetPieExplosionAmount method

430 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartPointStyle

AcChartPointStyle::SetPointLabelPlacement method
Call the SetPointLabelPlacement() method to set the placement of the point label
for a chart point. You can call SetPointLabelPlacement() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetPointLabelPlacement(pointLabelPlacement As
AcChartPointLabelPlacement)

Parameter pointLabelPlacement
The placement of the point label for the chart point. To turn off the point label, set
pointLabelPlacement to ChartPointLabelPlacementNone.

Example For an example of how to use this method, see the AcChartPointStyle class.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetPointLabelPlacement method
AcChartPointLabelPlacement
Class AcChartPointStyle
AcChartPointStyle::GetPointLabelPlacement method
AcDrawingTextStyle

AcChartPointStyle::SetPointLabelStyle method
Call the SetPointLabelStyle() method to set the style of the point label for a chart
point. You can call SetPointLabelStyle() from:

■ A chart’s AdjustChart() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically

Syntax Sub SetPointLabelStyle(pointLabelStyle As AcDrawingTextStyle)

Parameter pointLabelStyle
The style of the point label for the chart point.

Example For an example of how to use this method, see the AcChartPointStyle class.

See also AcChart::AdjustChart method
AcChart::Localize method
AcChartLayer::SetPointLabelStyle method
AcChartPointStyle::GetPointLabelStyle method
Class AcChartPointStyle
AcDrawingTextStyle

C h a p t e r 7 , A F C c l a s s e s 431

AcChartSeries

Class AcChartSeries
A series within a chart layer. Figure 7-12 shows the class hierarchy of
AcChartSeries.

Figure 7-12 AcChartSeries

Description Use the AcChartSeries class to represent a single series within a chart layer. Do
not create AcChartSeries objects explicitly from your own code. AcChartLayer
objects create AcChartSeries objects automatically as necessary to build complete
charts. Use AcChartLayer’s methods to access a chart layer’s series. You can
manipulate the appearance of a chart by calling methods on the chart’s series.

All types of chart layer except pie chart layers have at least one series. Pie chart
layers have only one series.

Example For an example of how to use this class to build a chart dynamically, see the
dynamic chart example for the AcChart class.

See also Class AcChart
Class AcChartAxis
Class AcChartCategory
Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeriesStyle
Class AcChartTrendline

Methods for Class AcChartSeries

Methods defined in Class AcChartSeries

AddEmptyPoint, AddPoint, AddTrendline, GetIndex, GetKeyValue, GetLabelText,
GetLabelValue, GetLayer, GetNumberOfPoints, GetNumberOfTrendlines,
GetPoint, GetStyle, GetSumOfPointValues, GetSumOfSliceValues,
GetTrendline, InsertEmptyPoint, InsertPoint, InsertTrendline, RemovePoint,
RemoveTrendline, SetKeyValue, SetLabelValue

AcChartSeries::AddEmptyPoint method
Call the AddEmptyPoint() method to append a new empty point to the end of a
chart series’ list of points. You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

AcChartSeries

432 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer ies

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

Syntax Function AddEmptyPoint() As AcChartPoint

Returns A reference to the new point.

Example For an example of using this method, see the dynamic chart example for AcChart.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddPoint method
AcChartSeries::InsertEmptyPoint method
AcChartSeries::RemovePoint method
Class AcChart
Class AcChartPoint

AcChartSeries::AddPoint method
Call the AddPoint() method to append a new point to the end of a chart series’
list of points. You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

If xValue, yValue, or zValue is Null, the new point will be an empty point.

Syntaxes Function AddPoint(yValue As Variant) As AcChartPoint

Function AddPoint(xValue As Variant, yValue As Variant) As AcChartPoint

Function AddPoint(xValue As Variant, yValue As Variant,
zValue As Variant) As AcChartPoint

Parameters xValue
The x value for the new point. You can specify xValue only if you are adding a
point to a series in a bubble or scatter chart layer.

yValue
The y value for the new point.

zValue
The z value for the new point. You can specify zValue only if you are adding a
point to a series in a bubble chart layer.

Returns A reference to the new point.

Example For an example of using this method, see the dynamic chart example for AcChart.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddEmptyPoint method
AcChartSeries::InsertPoint method

C h a p t e r 7 , A F C c l a s s e s 433

AcChartSeries

AcChartSeries::RemovePoint method
Class AcChart
Class AcChartPoint

AcChartSeries::AddTrendline method
Call this method to add a trendline to the end of a chart series’ list of trendlines.
You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries method

■ Code that creates a chart dynamically

Syntax Function AddTrendline(labelText As String,
trendlineType As AcChartTrendlineType) As AcChartTrendline

Parameters labeText
The text shown in the chart legend for the trendline is drawn. Null or "" if you do
not want the trendline to be listed in the chart’s legend.

trendlineType
Defines how the trendline will be fitted to the points in its parent series.

Returns A handle to the new trendline object.

Example For an example of how to use this method, see the example for the
AcChartTrendline class.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::InsertTrendline method
AcChartSeries::RemoveTrendline method
AcChartTrendline
AcChartType

AcChartSeries::GetIndex method
Returns the index of a chart series within its parent chart layer’s list of series.

Syntax Function GetIndex() As Integer

Returns The 1-based index of the chart series within its parent chart layer’s list of series.

AcChartSeries::GetKeyValue method
Returns the unique key value for a chart series.

Syntax Function GetKeyValue() As Variant

Returns The unique key value for the chart series.

See also AcChartSeries::GetLabelValue method
AcChartSeries::SetKeyValue method

434 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer ies

AcChartSeries::GetLabelText method
Returns the formatted label text for a chart series. String label values are returned
unformatted.

Syntax Function GetLabelText() As String

Returns The formatted label text for a chart series.

See also AcChartSeries::GetKeyValue method
AcChartSeries::GetLabelValue method
AcChartSeries::SetLabelValue method

AcChartSeries::GetLabelValue method
Returns the label value for a chart series.

Syntax Function GetLabelValue() As Variant

Returns The label value for a chart series.

See also AcChartSeries::GetKeyValue method
AcChartSeries::GetLabelText method
AcChartSeries::SetLabelValue method

AcChartSeries::GetLayer method
Returns a reference to the parent chart layer of a chart series.

Syntax Function GetLayer() As AcChartLayer

Returns A reference to the parent chart layer of the chart series.

See also AcChartLayer

AcChartSeries::GetNumberOfPoints method
Returns the number of points in a chart series.

Syntax Function GetNumberOfPoints() As Integer

Returns The number of points in the chart series.

AcChartSeries::GetNumberOfTrendlines method
Determines the number of trendlines in a chart series.

Syntax Function GetNumberOfTrendlnes() As Integer

Returns The number of trendlines in the chart series.

C h a p t e r 7 , A F C c l a s s e s 435

AcChartSeries

See also AcChartSeries::GetTrendline method
AcChartTrendline

AcChartSeries::GetPoint method
Returns a reference to a point in a chart series. To retrieve the number of points in
a chart series, call the series’ GetNumberOfPoints() method.

Syntax Function GetPoint(index As Integer) As AcChartPoint

Parameter index
An index into the series’ list of points. The first point is index 1.

Returns A reference to the specified point in the chart series.

See also AcChartSeries::GetNumberOfPoints method
Class AcChartPoint

AcChartSeries::GetStyle method
Returns a reference to the series style corresponding to a chart series. You cannot
call GetStyle() on a series in a pie chart layer. A pie chart layer has only one
series. Each slice in a pie corresponds to a category, not a series. Series styles in pie
chart layers correspond to categories, not series. To retrieve the series styles for
pie slices, use a pie chart layer’s GetSeriesStyle() method.

Syntax Function GetStyle() As AcChartSeriesStyle

Returns A reference to the series style corresponding to the chart series.

See also AcChartLayer::GetSeriesStyle method
AcChartSeriesStyle

AcChartSeries::GetSumOfPointValues method
Returns the sum of the y values of all the points in a chart series.

Syntax Function GetSumOfPointValues() As Variant

Returns The sum of the y values of all the points in the series.

See also AcChartCategory::GetSumOfPointValues method
AcChartPoint::GetYValue method
AcChartSeries::GetSumOfSliceValues method

AcChartSeries::GetSumOfSliceValues method
Returns the sum of the values of all the slices in a pie chart series.

You can call this method only on a series in a pie chart layer.

436 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer ies

Syntax Function GetSumOfSliceValues() As Variant

Returns The sum of the values of all the slices in the pie chart series.

See also AcChartPoint::GetYValue method
AcChartSeries::GetSumOfPointValues method

AcChartSeries::GetTrendline method
Returns a reference to the specified trendline for a chart series. To determine the
number of trendlines in a chart series, call the chart series’
GetNumberOfTrendlines() method.

Syntax Function GetTrendline(index As Integer) As AcChartTrendline

Parameter index
An index into the chart series’s list of trendlines. The first trendline is index 1.

Returns A reference to the specified trendline for the chart series.

See also AcChartSeries::GetNumberOfTrendlines method
AcChartTrendline

AcChartSeries::InsertEmptyPoint method
Call the InsertEmptyPoint() method to insert a new empty point at a specific
position in a chart series’ list of points. You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

Syntax Function InsertEmptyPoint(index As Integer) As AcChartPoint

Parameter index
The position in the chart series’ list of points at which the new empty point will be
inserted. The first point is index 1. Must be greater than or equal to one. Must be
less than or equal to the current number of points in the chart series plus one.

Returns A reference to the new empty point.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddEmptyPoint method
AcChartSeries::InsertPoint method
AcChartSeries::RemovePoint method
AcChartPoint

C h a p t e r 7 , A F C c l a s s e s 437

AcChartSeries

AcChartSeries::InsertPoint method
Call the InsertPoint() method to insert a new point at a specific position in a chart
series’ list of points. You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, after you have set the chart’s status
to ChartStatusBuilding

If xValue, yValue, or zValue is Null, the new point will be an empty point.

Syntaxes Function InsertPoint(index As Integer, yValue AsVariant) As AcChartPoint

Function InsertPoint(index As Integer, xValue As Variant,
yValue As Variant) As AcChartPoint

Function InsertPoint(index As Integer, xValue As Variant,
yValue As Variant, zValue As Variant) As AcChartPoint

Parameter index
The position in the chart series’ list of points at which the new empty point will be
inserted. The first point is index 1. Must be greater than or equal to one. Must be
less than or equal to the current number of points in the chart series plus one.

xValue
The x value for the new point. You can specify xValue only if you are adding a
point to a series in a bubble or scatter chart layer.

yValue
The y value for the new point.

zValue
The z value for the new point. You can specify zValue only if you are adding a
point to a series in a bubble chart layer.

Returns A reference to the new point.

Example The following example overrides a chart’s CustomizeCategoriesAndSeries()
method to insert a new series into the chart’s base layer. The new series appear as
the first series on the chart’s x-axis. Each point in the new series is populated with
the mean value of the points in the same category for all the other series.

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Insert a new series.
Dim newSeries As AcChartSeries
Set newSeries = baseLayer.InsertSeries(1, "Mean")

' Loop through all the categories.
Dim numberOfCategories As Integer
numberOfCategories = baseLayer.GetNumberOfCategories()

438 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer ies

Dim categoryIndex As Integer
For categoryIndex = 1 To numberOfCategories

' Get the mean value of all the points in this category.
Dim point As AcChartPoint
Dim total As Double
total = 0
Dim count As Integer
count = 0
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer

' Ignore the first series, because that is the new series.
For seriesIndex = 2 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
Set point = series.GetPoint(categoryIndex)

' Ignore missing values.
If Not point.IsMissing() Then

total = total + point.GetYValue()
count = count + 1

End If
Next seriesIndex

' Put the mean value into a new point in the new series.
Set point = newSeries.InsertPoint(categoryIndex, total /

count)
Next categoryIndex

End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddPoint method
AcChartSeries::InsertEmptyPoint method
AcChartSeries::RemovePoint method
AcChartPoint

AcChartSeries::InsertTrendline method
Call this method to insert a trendline at a specific position within a chart series’
list of trendlines. When you insert a new trendline, the original trendline at the
insertion point and all trendlines above the insertion point move up one place.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries method

■ Code that creates a chart dynamically

C h a p t e r 7 , A F C c l a s s e s 439

AcChartSeries

Syntax Function InsertTrendline(index As Integer, labelText As String,
trendlineType As AcChartTrendlineType) As AcChartTrendline

Parameters index
The position in the chart series’ list of trendlines at which the new trendline will
be inserted. The first trendline is index 1.
Must be greater than or equal to one. Must be less than or equal to the current
number of trendlines for the chart series plus one.

labelText
The text shown in the chart legend for the trendline is drawn.
Null or "" if you do not want the trendline to be listed in the chart’s legend.

trendlineType
Defines how the trendline will be fitted to the points in its parent series.

Returns A handle to the new trendline object.

See also AcChartSeries::AddTrendline method
AcChartSeries::RemoveTrendline method
AcChartTrendline
AcChartType

AcChartSeries::RemovePoint method
Call the RemovePoint() method to remove a point from a chart series. You can
call this method only from a chart’s CustomizeCategoriesAndSeries() method.

To determine the number of points in a chart series, call the series’
GetNumberOfPoints() method.

Each chart series in a chart layer that has a category scale must have one point for
each category in the chart layer. If you remove a point from a chart layer with a
category scale, you must replace it with a new point.

If you do not want a point in a chart layer with a category scale to be visible, do
not use RemovePoint() to remove it. Instead, call the point’s ClearValues()
method to convert it into an empty point.

Syntax Sub RemovePoint(index As Integer)

Parameter index
An index into the series’ list of points. The first point is index 1.

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddPoint method
AcChartSeries::GetNumberOfPoints method
AcChartSeries::InsertPoint method
AcChartPoint::ClearValues method

440 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer ies

AcChartSeries::RemoveTrendline method
Call this method to remove a trendline at a specific position within a chart series’
list of trendlines. When you remove a trendline from a chart series, all the
trendlines above that move down one place.

You can call this method only from a chart’s CustomizeCategoriesAndSeries
method.

Syntax Sub RemoveTrendline(index As Integer)

Parameter index
The position in the chart series’ list of trendlines from which the trendline will be
removed. The first trendline is index 1.

Must be greater than or equal to one. Must be less than or equal to the current
number of trendlines for the chart series.

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to remove the first trendline from the chart’s first series when a
Boolean parameter’s value is True:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmRemoveTrendline Then
baseLayer.GetSeries(1).RemoveTrendline(1)

End If
End Sub

See also AcChartSeries::AddTrendline method
AcChartSeries::InsertTrendline method
AcChartTrendline

AcChartSeries::SetKeyValue method
Call SetKeyValue() to set the unique key value for a chart series. A chart series’
initial key value is set when the series is created. This method changes the value.

Changing a series’ key value has no effect on the order in which series appear.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetKeyValue(keyValue As Variant)

Parameter keyValue
The unique key value for the chart series.

C h a p t e r 7 , A F C c l a s s e s 441

AcChartSeries

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::GetKeyValue method
AcChartSeries::SetLabelValue method

AcChartSeries::SetLabelValue method
Call the SetLabelValue() method to set the label value for a chart series. If the
label value is "" or Null, the series will not be listed in the chart’s legend.

A chart series’ initial label value is set when the series is created. This method
changes the value.

Changing a series’ label does not affect the order in which series appear.

The label value does not have to be a string. Label values are formatted into text
when the chart is viewed, to support locale-specific formatting. For example, if
you set labelValue to 1.5, when the chart is viewed in the US English locale the
label text is 1.5 but the text is 1,5 when the chart is viewed in the French locale.

You can call this method only from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ A chart’s Localize() method

■ Code that is creating a chart dynamically, before you call the chart’s
ComputeScales() method

Syntax Sub SetLabelValue(labelValue As Variant)

Parameter labelValue
The label value for the chart series.
Null or "" if you do not want the series to be listed in the chart’s legend.

Example The following example overrides a chart’s Localize() method to translate series
labels in the chart’s base layer into French at view time if the viewing locale is
French:

Sub Localize(baseLayer As AcChartLayer, overlayLayer As
AcChartLayer, studyLayers() As AcChartLayer)
If (GetLocaleName() = "fr_FR") Then

Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
Select Case series.GetLabelValue(labelIndex)
Case "North"

series.SetLabelValue("Nord")
Case "South"

series.SetLabelValue("Sud")

442 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer ies

Case "East"
series.SetLabelValue("Est")

Case "West"
series.SetLabelValue("Ouest")

End Select
Next seriesIndex

See also AcChart::CustomizeCategoriesAndSeries method
AcChart::Localize method
AcChartSeries::SetKeyValue method
AcChartSeries::GetLabelValue method

C h a p t e r 7 , A F C c l a s s e s 443

AcChartSeriesStyle

Class AcChartSeriesStyle
A custom style for a chart series. Figure 7-13 shows the class hierarchy of
AcChartSeriesStyle.

Figure 7-13 AcChartSeriesStyle

Description Use the AcChartSeriesStyle class to represent a custom style for a chart series. Do
not create AcChartSeriesStyle objects explicitly from your code. Instead,
AcChartLayer objects create AcChartSeriesStyle objects automatically as
necessary to build complete charts.

Use AcChartLayer’s methods to create and access a chart series’ style. You can
change the appearance of a chart by calling methods on the chart’s series styles.

A series style is used for both the default style for points within the
corresponding chart series and the series as a whole. An example of a style setting
for individual points is the marker size. An example of a style setting for a series
as a whole is the line width.

About default series style
When a new series style is created, the following default settings are copied from
its parent chart layer:

■ Plot bars as lines

■ Border style

■ Plot lines between points

■ Line width

■ Plot markers at points

■ Marker size

■ Point label format, placement, source, and style

In addition, the series’ fill color and line color are set from the standard sequences
of fill and line colors.

About custom point styles
By default, a chart point is displayed using its parent series’ series style settings. If
you want an individual point to have a different appearance from the other
points in its parent series, you can add a custom point style.

AcChartPointStyle

AcChartSeriesStyle

444 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer iesStyle

Example The following example overrides a chart’s CustomizeSeriesStyles() method to
change the appearance of the first series in the chart’s scatter chart base layer to:

■ Display dotted lines between points. GetLineStyle() retrieves the default line
style so that only the Pen member of the line style needs to change.

■ Display markers at points. The markers are 8 pt red squares filled with yellow.

Sub CustomizeSeriesStyles(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

' Get the first series style.
Dim seriesStyle As AcChartSeriesStyle
Set seriesStyle = baseLayer.GetSeriesStyle(1)

' Plot dotted lines between points.
seriesStyle.SetPlotLinesBetweenPoints(True)
Dim lineStyle As AcDrawingLineStyle
lineStyle = seriesStyle.GetLineStyle()
lineStyle.Pen = DrawingLinePenDot
seriesStyle.SetLineStyle(lineStyle)

' Draw markers at points.
seriesStyle.SetPlotMarkersAtPoints(True)
seriesStyle.SetMarkerFillColor(Yellow)
seriesStyle.SetMarkerLineColor(Red)
seriesStyle.SetMarkerShape(ChartMarkerShapeSquare)
seriesStyle.SetMarkerSize(8 * OnePoint)

End Sub

See also Class AcChart
Class AcChartAxis
Class AcChartCategory
Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeries
Class AcChartTrendline

Methods for Class AcChartSeriesStyle

Methods defined in Class AcChartSeriesStyle

GetLineStyle, GetPointLabelFormat, GetPointLabelSource, PlotBarsAsLines,
PlotLinesBetweenPoints, PlotMarkersAtPoints, SetLineStyle,
SetPlotBarsAsLines, SetPlotLinesBetweenPoints, SetPlotMarkersAtPoints,
SetPointLabelFormat, SetPointLabelSource

C h a p t e r 7 , A F C c l a s s e s 445

AcChartSeriesStyle

Methods inherited from Class AcChartPointStyle

GetBorderStyle, GetFillStyle, GetMarkerFillColor, GetMarkerLineColor,
GetMarkerShape, GetMarkerSize, GetPieExplosionAmount,
GetPointLabelPlacement, GetPointLabelStyle, SetBackgroundColor,
SetBorderStyle, SetFillStyle, SetMarkerFillColor, SetMarkerLineColor,
SetMarkerShape, SetMarkerSize, SetPieExplosionAmount,
SetPointLabelPlacement, SetPointLabelStyle

AcChartSeriesStyle::GetLineStyle method
Returns the style of lines between points in a chart series. To change the style of
lines between points, call this method to retrieve the default settings.

You can call this method only on series styles in chart layers with the following
chart types:

■ Stacked bar

■ Line

■ Scatter

Syntax Function GetLineStyle() As AcDrawingLineStyle

Returns The style of lines between points in the chart series.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChartLayer::GetLineWidth method
AcChartSeriesStyle::PlotLinesBetweenPoints method
AcChartSeriesStyle::SetLineStyle method
Class AcChartSeriesStyle
AcDrawingLineStyle

AcChartSeriesStyle::GetPointLabelFormat method
Returns the format pattern used to format point labels in a chart series.

The format pattern that this method returns might not apply to all the points in a
chart series. To retrieve the point label format pattern for an individual point, call
the point’s GetCustomLabelFormat() method.

Syntax Function GetPointLabelFormat() As String

Returns The format pattern used to format point labels in the chart series.

See also AcChartLayer::GetPointLabelFormat method
AcChartPoint::GetCustomLabelFormat method
AcChartPoint::HasCustomLabelFormat method
AcChartSeriesStyle::SetPointLabelFormat method

446 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer iesStyle

AcChartSeriesStyle::GetPointLabelSource method
Returns the source for point label values in a chart series.

The source that this method returns might not apply to all the points in a chart
series. To retrieve the point label value for an individual point, call the point’s
GetCustomLabelValue() method.

Syntax Function GetPointLabelSource() As AcChartPointLabelSource

Returns The source for point label values in the chart series.

See also AcChartLayer::GetPointLabelSource method
AcChartPoint::GetCustomLabelValue method
AcChartPoint::HasCustomLabelValue method
AcChartSeriesStyle::SetPointLabelSource method
AcChartPointLabelSource

AcChartSeriesStyle::PlotBarsAsLines method
Determines whether points are plotted as lines in a bar chart series.

You can call this method only on series styles in two-dimensional bar chart layers.

Syntax Function PlotBarsAsLines() As Boolean

Returns True if points in the bar chart series are plotted as lines instead of bars.
False if points in the bar chart series are plotted as bars.

See also AcChartLayer::PlotBarsAsLines method
AcChartSeriesStyle::SetPlotBarsAsLines method

AcChartSeriesStyle::PlotLinesBetweenPoints method
Determines whether lines are plotted between points in a chart series.

You can call this method only on series styles in chart layers with the following
chart types:

■ Stacked bar

■ Line

■ Scatter

Syntax Function PlotLinesBetweenPoints() As Boolean

Returns True if lines are plotted between points in a chart series.
False if lines are not plotted between points in a chart series.

See also AcChartLayer::PlotLinesBetweenPoints method
AcChartSeriesStyle::SetPlotLinesBetweenPoints method

C h a p t e r 7 , A F C c l a s s e s 447

AcChartSeriesStyle

AcChartSeriesStyle::PlotMarkersAtPoints method
Determines whether markers are drawn by default at points in a chart series.

You can call this method only on series styles in chart layers with the following
chart types:

■ Line

■ Scatter

■ Stock

The value that this method returns might not apply to all the points in a chart
series. To retrieve the marker shape for an individual point, call the
corresponding point style’s GetMarkerShape() method.

Syntax Function PlotMarkersAtPoints() As Boolean

Returns True if the default setting for a chart series is that markers will be drawn at points.
False if the default setting for a chart series is that markers will not be drawn at
points.

See also AcChartLayer::PlotMarkersAtPoints method
AcChartPointStyle::GetMarkerShape method
AcChartSeriesStyle::SetPlotMarkersAtPoints method

AcChartSeriesStyle::SetLineStyle method
Call the SetLineStyle() method to set the style of lines between points in a chart
series.

You can call this method only on series styles in chart layers with the following
chart types:

■ Stacked bar

■ Line

■ Scatter

The recommended place from which to call SetLineStyle() is a chart’s
CustomizeSeriesStyles() method.

Syntax Sub SetLineStyle(lineStyle As AcDrawingLineStyle)

Parameter lineStyle
The line style used to draw lines between points in the chart series.

Example The following example overrides a chart’s CustomizeSeriesStyles() method to
change the colors of the lines between points in the first five series in the chart’s
base layer. GetLineStyle() retrieves the default line styles so that only the line
styles’ Color members need to change.

448 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer iesStyle

Sub CustomizeSeriesStyles(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim seriesStyle As AcChartSeriesStyle
Dim seriesStyleIndex As Integer
For seriesStyleIndex = 1 To 5

Set seriesStyle = baseLayer.GetSeriesStyle(
seriesStyleIndex)

Dim lineStyle As AcDrawingLineStyle
lineStyle = seriesStyle.GetLineStyle()
Select Case seriesStyleIndex
Case 1

lineStyle.Color = Red
Case 2

lineStyle.Color = Green
Case 3

lineStyle.Color = Blue
Case 4

lineStyle.Color = Magenta
Case 5

lineStyle.Color = Cyan
End Select
seriesStyle.SetLineStyle(lineStyle)

Next seriesStyleIndex
End Sub

See also AcChart::CustomizeSeriesStyles method
AcChartLayer::SetLineWidth method
AcChartSeriesStyle::GetLineStyle method
AcChartSeriesStyle::SetPlotLinesBetweenPoints method
AcDrawingLineStyle

AcChartSeriesStyle::SetPlotBarsAsLines method
Call the SetPlotBarsAsLines() method to specify whether points are plotted as
lines in a bar chart series. You can call this method only on series styles in
two-dimensional bar chart layers.

The recommended place from which to call SetPlotBarsAsLines() is a chart’s
CustomizeSeriesStyles() method.

Syntax Sub SetPlotBarsAsLines(plotBarsAsLines As Boolean)

Parameter plotBarsAsLines
True causes points in the bar chart series to be plotted as lines instead of bars.
False causes points in the bar chart series to be plotted as bars.

See also AcChart::CustomizeSeriesStyles method
AcChartLayer::SetPlotBarsAsLines method
AcChartSeriesStyle::PlotBarsAsLines method

C h a p t e r 7 , A F C c l a s s e s 449

AcChartSeriesStyle

AcChartSeriesStyle::SetPlotLinesBetweenPoints
method
Call the SetPlotLinesBetweenPoints() method to specify whether lines are plotted
between points in a chart series.

You can call this method only on series styles in chart layers with the following
chart types:

■ Stacked bar

■ Line

■ Scatter

The recommended place from which to call SetPlotLinesBetweenPoints() is a
chart’s CustomizeSeriesStyles() method.

Syntax Sub SetPlotLinesBetweenPoints(plotLinesBetweenPoints As Boolean)

Parameter plotLinesBetweenPoints
True causes lines to be drawn between the points in the chart series.
False causes lines not to be drawn between the points in the chart series.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChart::CustomizeSeriesStyles method
AcChartLayer::SetPlotLinesBetweenPoints method
AcChartSeriesStyle::PlotLinesBetweenPoints method

AcChartSeriesStyle::SetPlotMarkersAtPoints method
Call the SetPlotMarkersAtPoints() method to specify whether markers are drawn
by default at points in a chart series.

You can call this method only on layers with the following chart types:

■ Line

■ Scatter

■ Stock

The value that this method sets might not apply to all the points in a chart series.
To set the marker shape for an individual point, call the corresponding point
style’s SetMarkerShape() method.

The recommended place from which to call SetPlotMarkersAtPoints() is a chart’s
CustomizeSeriesStyles() method.

Syntax Sub SetPlotMarkersAtPoints(plotMarkersAtPoints As Boolean)

450 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartSer iesStyle

Parameter plotMarkersAtPoints
True causes markers to be drawn at points in the chart layer. False causes markers
not to be drawn at points in the chart layer.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle class.

See also AcChart::CustomizeSeriesStyles method
AcChartLayer::SetPlotMarkersAtPoints method
AcChartPointStyle::SetMarkerShape method
AcChartSeriesStyle::PlotMarkersAtPoints method

AcChartSeriesStyle::SetPointLabelFormat method
Call the SetPointLabelFormat() method to set the format pattern used to format
point labels in a chart series.

The format pattern is ignored for string label values.

The format pattern that this method sets might not apply to all the points in a
chart series. To set the point label format pattern for an individual point, call the
point’s SetCustomLabelFormat() method.

The recommended place from which to call SetPointLabelFormat() is a chart’s
CustomizeSeriesStyles() method.

Syntax Sub SetPointLabelFormat(pointLabelFormat As String)

Parameter pointLabelFormat
The format pattern used to format point labels in the chart series.

Example For an example of how to use this method, see the example for the
AcChartSeriesStyle::SetPointLabelSource method.

See also AcChart::CustomizeSeriesStyles method
AcChartSeriesStyle::SetPointLabelSource method
AcChartLayer::SetPointLabelFormat method
AcChartPoint::SetCustomLabelFormat method
AcChartSeriesStyle::GetPointLabelFormat method

AcChartSeriesStyle::SetPointLabelSource method
Call the SetPointLabelSource() method to set the source for point label values in a
chart series. The source that this method sets does not necessarily apply to all the
points in a chart series. To set the point label value for an individual point, call the
point’s SetCustomLabelValue() method.

The recommended place from which to call SetPointLabelSource() is a chart’s
CustomizeSeriesStyles() method.

Syntax Sub SetPointLabelSource(pointLabelSource As AcChartPointLabelSource)

C h a p t e r 7 , A F C c l a s s e s 451

AcChartSeriesStyle

Parameter pointLabelSource
The default source for point label values in the chart layer.

Example The following example overrides a chart’s CustomizeSeriesStyles() method to
add point labels to the first series in the chart’s base layer:

Sub CustomizeSeriesStyles(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim seriesStyle As AcChartSeriesStyle
Set seriesStyle = baseLayer.GetSeriesStyle(1)
seriesStyle.SetPointLabelSource(

ChartPointLabelSourceYValue)
seriesStyle.SetPointLabelFormat("#,##0.00")

End Sub

See also AcChartPointLabelSource
AcChartLayer::SetPointLabelSource method
AcChartPoint::SetCustomLabelValue method
AcChartSeriesStyle::GetPointLabelSource method

452 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartTrendl ine

Class AcChartTrendline
A trendline in a chart. Figure 7-14 shows the class hierarchy of AcChartTrendline.

Figure 7-14 AcChartTrendline

Description AcChartTrendline represents a trendline in a chart. A trendline shows the trend
for a single series in a chart.

In most cases, you can define trendlines using Advanced Chart Options. If you
define trendlines in this way, AcChartTrendline objects are created automatically.
To access an AcChartTrendline object that has been created automatically, use the
AcChartSeries::GetTrendline() method.

If you need to create an AcChartTrendline object in code, you cannot use the New
keyword, or the NewInstance() or NewPersistentInstance() functions. Instead,
use the AcChartSeries::AddTrendline() or AcChartSeries::InsertTrendline()
methods.

To change the appearance of a trendline, call methods on the corresponding
AcChartTrendline object.

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to add a trendline to the chart’s first series when a Boolean
parameter’s value is True:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmShowTrendline Then
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.AddTrendline("Trend",

+ ChartTrendlineTypePolynomial)
trendline.SetOrder(3)
Dim lineStyle As AcDrawingLineStyle
lineStyle = trendline.GetLineStyle()
lineStyle.Color = Red
lineStyle.Width = 2 * OnePoint
trendline.SetLineStyle(lineStyle)

End If
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddTrendline method
AcChartSeries::InsertTrendline method
Class AcChart

AcChartTrendline

C h a p t e r 7 , A F C c l a s s e s 453

AcChartTrendl ine

Class AcChartAxis
Class AcChartCategory
Class AcChartGridLine
Class AcChartLayer
Class AcChartPoint
Class AcChartPointStyle
Class AcChartSeries
Class AcChartSeriesStyle

Methods for Class AcChartTrendline

Methods defined in Class AcChartTrendline

ClearIntercept, GetEndYValue, GetIndex, GetIntercept, GetLabelText,
GetLineStyle, GetMaximumYValue, GetMinimumYValue, GetOrder,
GetPeriod, GetStartYValue, GetTrendlineType, HasIntercept, SetIntercept,
SetLabelText, SetLineStyle, SetOrder, SetPeriod, SetTrendlineType

AcChartTrendline::ClearIntercept method
Clears the intercept value for a trendline. You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically

Syntax Sub ClearIntercept()

See also AcChart::CustomizeCategoriesAndSeries method
AcChartTrendline::GetIntercept method
AcChartTrendline::HasIntercept method
AcChartTrendline::SetIntercept method

AcChartTrendline::GetEndYValue method
Returns the y value of the end of a trendline.

You can call this method only from a chart’s AdjustChart() method.

Syntax Function GetEndYValue() As Variant

Returns The y value of the end of the trendline.

Example For an example of how to use this method, see the example for the
AcChartTrendline::SetLineStyle method.

See also AcChart::AdjustChart method
AcChartTrendline::GetMaximumYValue method
AcChartTrendline::GetMinimumYValue method

454 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartTrendl ine

AcChartTrendline::GetStartYValue method
AcChartTrendline::SetLineStyle method

AcChartTrendline::GetIndex method
Returns the index of a trendline within its parent chart series’ list of trendlines.

Syntax Function GetIndex() As Integer

Returns The index of the trendline within its parent chart series’ list of trendlines. The first
trendline for a series is index 1.

AcChartTrendline::GetIntercept method
Returns the intercept value for a trendline.

Syntax Function GetIntercept() As Variant

Returns The intercept value for the trendline.
Null if the trendline has no intercept value.

See also AcChartTrendline::ClearIntercept method
AcChartTrendline::HasIntercept method
AcChartTrendline::SetIntercept method

AcChartTrendline::GetLabelText method
Returns the label text for a trendline. The label text appears in the chart legend.

Syntax Function GetLabelText() As String

Returns The label text for the trendline.

See also AcChartTrendline::SetLabelText method

AcChartTrendline::GetLineStyle method
Returns the line style used to draw a trendline. Call this method to retrieve the
default settings before changing a trendline’s line style.

Syntax Function GetLineStyle() As AcDrawingLineStyle

Returns The line style used to draw the trendline.

Example For an example of how to use this method, see the example for the
AcChartTrendline::SetLineStyle method.

See also AcChartTrendline::SetLineStyle method
AcDrawingLineStyle

C h a p t e r 7 , A F C c l a s s e s 455

AcChartTrendl ine

AcChartTrendline::GetMaximumYValue method
Returns the maximum y value of a trendline. You can call this method only from a
chart’s AdjustChart() method.

Syntax Function GetMaximumYValue() As Variant

Returns The maximum y value of the trendline.

See also AcChart::AdjustChart method
AcChartTrendline::GetEndYValue method
AcChartTrendline::GetMinimumYValue method
AcChartTrendline::GetStartYValue method

AcChartTrendline::GetMinimumYValue method
Returns the minimum y value of a trendline.

You can call this method only from a chart’s AdjustChart() method.

Syntax Function GetMinimumYValue() As Variant

Returns The minimum y value of the trendline.

See also AcChart::AdjustChart method
AcChartTrendline::GetEndYValue method
AcChartTrendline::GetMaximumYValue method
AcChartTrendline::GetStartYValue method

AcChartTrendline::GetOrder method
Returns the order of a polynomial trendline.

Syntax Function GetOrder() As Integer

Returns The order of the trendline.
Null if the trendline is not a polynomial trendline.

See also AcChartTrendline::SetOrder method

AcChartTrendline::GetPeriod method
Returns the period of a moving average trendline.

Syntax Function GetPeriod() As Integer

Returns The period of the trendline.
Null if the trendline is not a moving average trendline.

See also AcChartTrendline::SetPeriod method

456 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartTrendl ine

AcChartTrendline::GetStartYValue method
Returns the y value of the start of a trendline.

You can call this method only from a chart’s AdjustChart() method.

Syntax Function GetStartYValue() As Variant

Returns The y value of the start of the trendline.

Example For an example of how to use this method, see the example for the
AcChartTrendline::SetLineStyle method.

See also AcChart::AdjustChart method
AcChartTrendline::GetEndYValue method
AcChartTrendline::GetMaximumYValue method
AcChartTrendline::GetMinimumYValue method
AcChartTrendline::SetLineStyle method

AcChartTrendline::GetTrendlineType method
Returns a value that indicates how a trendline is fitted to the points in its parent
series.

Syntax Function GetTrendlineType() As AcChartTrendlineType

Returns A value that indicates how the trendline is fitted to the points in its parent series.

See also AcChartTrendline::SetTrendlineType method
AcChartType

AcChartTrendline::HasIntercept method
Determines whether a trendline has an intercept value.

Syntax Function HasIntercept() As Boolean

Returns True if the trendline has an intercept value.
False if the trendline does not have an intercept value.

See also AcChartTrendline::ClearIntercept method
AcChartTrendline::GetIntercept method
AcChartTrendline::SetIntercept method

AcChartTrendline::SetIntercept method
Sets the intercept value for a trendline. You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically

C h a p t e r 7 , A F C c l a s s e s 457

AcChartTrendl ine

You can call this method only when the trendline is one of the following types:

■ Linear

■ Polynomial

■ Exponential

Syntax Function SetIntercept(intercept As Variant)

Parameter intercept
The intercept value for the trendline.

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to remove the first category from a chart and use the y value for
that category as the intercept for a trendline:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.GetTrendline(1)
Dim point As AcChartPoint
Set point = series.GetPoint(1)
trendline.SetIntercept(point.GetYValue)
baseLayer.RemoveCategory(1)

End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartTrendline::ClearIntercept method
AcChartTrendline::GetIntercept method
AcChartTrendline::HasIntercept method

AcChartTrendline::SetLabelText method
Sets the label text for a trendline. The label text appears in the chart legend. If the
label text is "" or Null, the trendline will not be listed in the legend.

You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically

Syntax Function SetILabelText(labelText As String)

Parameter labelText
Text that will be shown in the chart legend. Null or "" if you do not want the
trendline to be listed in the chart’s legend.

458 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartTrendl ine

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to suppress the legend entry for a trendline when a Boolean
parameter’s value is True:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

If parmRemoveTrendlineFromLegend Then
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.GetTrendline(1)
trendline.SetLabelText("")

End If
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddTrendline method
AcChartSeries::InsertTrendline method
AcChartTrendline::GetLabelText method

AcChartTrendline::SetLineStyle method
Sets the line style used to draw a trendline. You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ A chart’s AdjustChart() method

■ Code that is creating a chart dynamically

Syntax Function SetILineStyle(lineStyle As AcDrawingLineStyle)

Parameter lineStyle
The line style used to draw the trendline.

Example In the following example, a chart’s AdjustChart() method has been overridden to
change the color of a trendline depending on whether the trend is upwards or
downwards. GetLineStyle() is used to retrieve the trendline’s original line style
settings so that only the line style’s Color member needs to be set.

Sub AdjustChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.GetTrendline(1)
Dim startYValue As Variant
startYValue = trendline.GetStartYValue()
Dim endYValue As Variant
endYValue = trendline.GetEndYValue()

C h a p t e r 7 , A F C c l a s s e s 459

AcChartTrendl ine

Dim lineStyle As AcDrawingLineStyle
lineStyle = trendline.GetLineStyle()
if (endYValue > startYValue) Then

lineStyle.Color = Green
ElseIf (endYValue < startYValue) Then

lineStyle.Color = Red
End If
trendline.SetLineStyle(lineStyle)

End Sub

See also AcChart::AdjustChart method
AcChart::CustomizeCategoriesAndSeries method
AcChartTrendline::GetLineStyle method
AcDrawingLineStyle

AcChartTrendline::SetOrder method
Sets the order of a polynomial trendline.

You can call this method only for a polynomial trendline.

You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically

Syntax Function SetOrder(order As Integer)

Parameter order
The order of the polynomial trendline. Must be in the range 2 through 6.

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to set the order of a trendline to 2 less than the number of points
in the trendline’s parent series:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.GetTrendline(1)
Dim order As Integer
order = series.GetNumberOfPoints() - 2
If (order < 2) Then

order = 2
ElseIf (order > 6) Then

order = 6
End If
trendline.SetOrder(order)

End Sub

460 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcChartTrendl ine

See also AcChart::CustomizeCategoriesAndSeries method
AcChartTrendline::GetOrder method

AcChartTrendline::SetPeriod method
Sets the period of a moving average trendline. You can call this method only for a
moving average trendline.

You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically

Syntax Function SetPeriod(period As Integer)

Parameter period
The number of values to be averaged to calculate each point in the trendline.
Must be at least 2.

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to set the period of a trendline to the value of an integer
parameter:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.GetTrendline(1)
trendline.SetPeriod(parmTrendlinePeriod)

End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartTrendline::GetPeriod method

AcChartTrendline::SetTrendlineType method
Defines how a trendline will be fitted to the points in its parent series.

You can call this method from:

■ A chart’s CustomizeCategoriesAndSeries() method

■ Code that is creating a chart dynamically

Syntax Function SetTrendlineType(trendlineType As AcChartTrendlineType)

Parameter trendlineType
Defines how the trendline will be fitted to the points in its parent series.

C h a p t e r 7 , A F C c l a s s e s 461

AcChartTrendl ine

Example In the following example, a chart’s CustomizeCategoriesAndSeries() method has
been overridden to change the way in which a trendline is fitted to the points in
its parent series based on the value of a Boolean parameter:

Sub CustomizeCategoriesAndSeries(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)

Dim series As AcChartSeries
Set series = baseLayer.GetSeries(1)
Dim trendline As AcChartTrendline
Set trendline = series.GetTrendline(1)
If (parmMakeTrendlinePolynomial) Then

trendline.SetTrendlineType(ChartTrendlineTypePolynomial)
trendline.SetOrder(3)

End If
End Sub

See also AcChart::CustomizeCategoriesAndSeries method
AcChartSeries::AddTrendline method
AcChartSeries::InsertTrendline method
AcChartTrendline::GetTrendlineType method
AcChartType

462 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCol lect ion

Class AcCollection
The abstract base class for the Actuate collection classes. Figure 7-15 shows the
class hierarchy of AcCollection.

Figure 7-15 AcCollection

Description A collection holds objects of any type. The methods on a collection pass
references to these objects as a special type called AnyClass. You must assign the
object reference to a handle of your derived class to access the methods on your
object.

You must take care to store the correct kind of objects in each of your collections.
For example, if you create a collection of controls, you can also store a data
adapter in that collection. If your code expects all the objects in the collection to be
controls, however, a run-time error occurs when you try to assign the data
adapter to an object reference variable for a control.

Subclassing AcCollection
Because AcCollection is an abstract base class, do not derive directly from it.

See also Class AcIterator
Class AcOrderedCollection

Methods for Class AcCollection

Methods defined in Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
RemoveAll, Remove

AcCollection::Compare method
Compares two objects in a collection. A report can subclass the collection and
override this method to provide the logic for making the comparison.
FindByValue() calls Compare() to determine whether an object with a matching
value exists in the collection.

Syntax Function Compare(obj1 As AnyClass, obj2 As AnyClass) As Variant

Parameters obj1
The first object to compare.

obj2
The second object to compare.

AcCollection

C h a p t e r 7 , A F C c l a s s e s 463

AcCollection

Returns 0 if obj1 is the same as obj2.
1 if obj1 is greater than obj2.
-1 if obj2 is greater than obj1.

AcCollection::Contains method
Tests whether an object exists in the collection.

Syntax Function Contains(item as AnyClass) As Boolean

Parameter item
The object to test.

Returns True if the object is in the collection.
False if the object is not in the collection.

AcCollection::Copy method
Copies the contents of another collection into the current collection.

Syntax Sub Copy(from As AcCollection)

Parameter from
The collection from which to copy the contents.

AcCollection::FindByValue method
Finds an object that has the same value as a specified object.

Syntax Function FindByValue(obj As AnyClass) As AnyClass

Parameter obj
The object to find.

AcCollection::GetCount method
Returns the number of objects in the collection. To determine if a collection
contains objects, use IsEmpty().

Syntax Function GetCount() As Integer

Returns The number of objects in the collection.

See also AcCollection::IsEmpty method

AcCollection::IsEmpty method
Determines whether the collection is empty. To determine the number of objects
in a collection, use GetCount().

Syntax Function IsEmpty() As Boolean

464 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCol lect ion

Returns True if the collection contains no objects.
False if the collection contains at least one object.

See also AcCollection::GetCount method

AcCollection::NewIterator method
Creates an iterator for the collection. The iterator supports accessing each item in
the collection. If the collection is ordered, the iterator accesses each item in the
order you established previously.

Syntax Function NewIterator() As AcIterator

Returns A reference to the iterator.

See also Class AcIterator

AcCollection::Remove method
Removes a specified item from the collection. If you specify an object that is not in
the collection, Remove() does nothing. To remove all objects in a collection, use
RemoveAll().

The framework automatically deletes objects if they are transient and their
reference count goes to zero.

Syntax Sub Remove(item As AnyClass)

Parameter item
The object in the collection to delete.

Example The following example shows how to override a page’s OnRow() method to
remove a control based on the name of the class:

Sub OnRow(row As AcDataRow)
Super::OnRow(row)
Dim control As AcControl
Set control = FindContentByClass("XXX")
control.DetachFromContainer()
control.Abandon()

End Sub

See also AcCollection::RemoveAll method

AcCollection::RemoveAll method
Removes all contents from the collection. To remove a single object from a
collection, use Remove().

The framework automatically deletes objects if they are transient and their
reference count goes to zero.

C h a p t e r 7 , A F C c l a s s e s 465

AcCollection

Syntax Sub RemoveAll()

See also AcCollection::Remove method

466 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcComponent

Class AcComponent
The principal base class for the Actuate Foundation Classes (AFC). Figure 7-16
shows the class hierarchy of AcComponent.

Figure 7-16 AcCollection

Description AcComponent is the root class for the AFC framework. All classes that appear in
Report Structure derive from AcComponent. AcComponent defines the
mechanism for creating objects within container objects.

Within the AFC framework, most classes are derived from AcComponent.
However, several classes are not derived from AcComponent because they are
not part of the report structure, rather they are classes that provide services to the
report. Such classes include AcDBCursor, AcDBStatement, and AcIterator.

Subclassing AcComponent
Because AcComponent is the foundation for the AFC framework, do not derive
directly from it.

Property
Table 7-12 describes the AcComponent property.

See also Class AcConnection
Class AcReport
Class AcReportComponent

Methods for Class AcComponent

Methods defined in Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcComponent

Table 7-12 AcComponent properties

Property Type Description

DisplayName String Not used by e.Report Designer
Professional

C h a p t e r 7 , A F C c l a s s e s 467

AcComponent

AcComponent::ApplyVisitor method
Starts visitor functions for a component. Visitor functions revisit components in a
report to do special processing, such as creating output in a text file or
spreadsheet.

Syntax Sub ApplyVisitor(visitor As AcVisitor)

Parameter visitor
The visitor component that contains the visit methods to call.

Example The following example shows part of the programming required to produce an
Excel spreadsheet from information that is contained in components. For a
description of the entire example, see AcVisitor.

The part of the example below shows how to call ApplyVisitor. The Visitor
should be invoked during report generation, in the report root component's
Finish() method, after Super::Finish(). The class, AcDetailCsvVisitor, contains
the visitor methods that are used to create the Excel spreadsheet.

Sub Finish()
Dim visitor As AcDetailCsvVisitor
Super::Finish()
Set visitor = New AcDetailCsvVisitor
visitor.FileName = "c:\temp\extract.csv"
ApplyVisitor(visitor)
Shell("d:\Program Files\Microsoft Office\Office\Excel.exe

c:\Temp\Extract.csv", 1)
End Sub

See also Class AcVisitor

AcComponent::Delete method
The Actuate Basic destructor. In derived classes, Actuate Basic calls Delete()
when deleting transient objects. The destructor for the most derived class is called
first, followed by all the destructors in the ancestor classes in order of their
position in the class hierarchy.

In derived classes, you can override Delete() to perform cleanup tasks such as
closing files. To do this, call Super::Delete() as the last line of your method.

Syntax Sub Delete()

See also AcComponent::New method

AcComponent::IsPersistent method
Indicates whether the component is persistent or transient. A persistent
component is stored in the report object instance (.roi) file. A transient component
deletes from memory when the report completes.

468 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcComponent

Syntax Function IsPersistent() As Boolean

Returns True if the component is persistent.
False if the component is transient.

AcComponent::New method
Constructor. Initializes all the properties set using the Properties page.

In derived classes, called by Actuate Basic after an object is instantiated. In
derived classes, you typically override New() to initialize variables you define. If
you override New(), you must call Super::New() as the first line of your method
so that SetProperties() can initialize property values.

Syntax Sub New()

C h a p t e r 7 , A F C c l a s s e s 469

AcCondit ionalSect ion

Class AcConditionalSection
A class that you use in the report design to instantiate a component in a section,
depending on a specified condition. Figure 7-17 shows the class hierarchy of
AcConditionalSection.

Figure 7-17 AcConditionalSection

Description Use a conditional section to instantiate one of several components conditionally
in a section. For example, you can use a conditional section to print a different
frame for credit card or cash transactions.

The three general steps to set up a conditional section are:

■ Write a Boolean expression in the conditional section’s IfExp property.

■ Place a component in the conditional section’s Then slot.

■ Place a component in the conditional section’s Else slot.

If the IfExp expression evaluates to True, the conditional section builds the
component in the section’s Then slot. Otherwise, the conditional section builds
the component in the Else slot, as shown in Figure 7-18.

Figure 7-18 A conditional section

You can create a case-statement type of structure, in which your report chooses
from one of a group of possible components to generate. Perform the following
steps to create a case-statement structure:

■ Add a sequential section to your report to represent the entire set of possible
components.

■ Add conditional sections to the sequential section where each conditional
section represents one case.

AcComponent

AcReportComponent

AcSection

AcConditionalSection

Conditional section
Then slot
Else slot

470 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCondit ionalSect ion

■ For each conditional section, specify a Boolean IfExp value to describe the
case.

■ For each conditional section, place a component in the Then slot. This
component instantiates when the IfExp value is True.

Using this structure, you can choose your If expressions so that the cases do not
overlap. You can also overlap the cases to instantiate multiple components
depending on the condition.

Properties
Table 7-13 lists AcConditionalSection properties.

Methods for Class AcConditionalSection

Method defined in Class AcConditionalSection

ConditionIsTrue

Method inherited from Class AcComponent

ApplyVisitor

Table 7-13 AcConditionalSection properties

Property Type Description

IfExp Expression A Boolean expression. If the expression
evaluates to True, the section builds the
component in the Then slot. If the
expression is False, the conditional section
builds the component in the Else slot. The
default value for the expression is True.

Then AcReportComponent
slot

Builds this component if IfExp is True. If
you enter nothing in this slot and the
condition is True, e.Report Designer
Professional does not build content for the
conditional section.

Else AcReportComponent
slot

Builds this component if IfExp is False. If
you enter nothing in this slot and the
condition is False, e.Report Designer
Professional does not build content for the
conditional section.

C h a p t e r 7 , A F C c l a s s e s 471

AcCondit ionalSect ion

AcConditionalSection::ConditionIsTrue method
Returns True if the conditional section should instantiate a component in the
Then slot of a report. Returns False if the conditional section should instantiate a
component in the Else slot.

You can consider the condition as follows:

If ConditionIsTrue(row) Then
instantiate Then component

Else
instantiate Else component

End If

The AFC framework generates this method based on the value you enter in the
conditional section’s IfExp property. Override this method when the expression
you want to evaluate is more complex than IfExp can handle.

Syntax Function ConditionIsTrue(row As AcDataRow) As Boolean

Parameter row
The data row, if any, associated with this component. This is the data row passed
to the BuildFromRow() method of the conditional section. The row returns
Nothing if the container component calls Build() instead.

Returns True if the conditional section should instantiate the component in the Then slot.
False if the conditional section should instantiate the component in the Else slot.

472 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcConnect ion

Class AcConnection
An abstract base class that defines the core protocol for all connection
components. Figure 7-19 shows the class hierarchy of AcConnection.

Figure 7-19 AcConnection

Description AcConnection defines the core protocol for connecting to and disconnecting from
an input source. Concrete AFC connection classes derived from AcConnection
redefine the methods to perform tasks specific to a database connection.

The IsOpen variable contains the current state of the connection. If you derive
your own connection classes, keep IsOpen up to date.

Variable
Table 7-14 describes the AcConnection variable.

Methods for Class AcConnection
Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcConnection::Connect method
Attempts to connect to the database. You must have previously set the variables
needed to describe the connection. Derived classes override this method to
establish the connection to the database.

Syntax Function Connect() As Boolean

Returns True if the connection is established.
False if the connection is not established.

See also AcConnection::Disconnect method
AcConnection::IsConnected method

AcComponent

AcConnection

Table 7-14 AcConnection variable

Variable Type Description

IsOpen Boolean True establishes a valid connection.

C h a p t e r 7 , A F C c l a s s e s 473

AcConnection

AcConnection::Disconnect method
Disconnects from the database. Derived classes override this method to perform
the actual disconnect.

Syntax Sub Disconnect()

See also AcConnection::Connect method
AcConnection::IsConnected method

AcConnection::IsConnected method
Determines whether the connection is established. Use IsConnected() in a control
structure to execute tasks depending on whether a connection is opened or
closed.

Syntax Function IsConnected() As Boolean

Returns True if the connection is established.
False if the connection is not established.

See also AcConnection::Connect method
AcConnection::Disconnect method

AcConnection::RaiseError method
An abstract method that derived classes override to obtain error information from
the database connection, then raise the error.

Relational databases usually report error conditions using their connection
interfaces.

Syntax Sub RaiseError()

474 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcControl

Class AcControl
An abstract base class that defines the core characteristics of all controls.
Figure 7-20 shows the class hierarchy of AcControl.

Figure 7-20 AcControl

Description A control is the primary visual component in a report. You typically place
controls in a frame to display labels, data, images, drawing elements, and so on.
You can also place controls directly on a page, to display the page number or date,
for example.

AcControl is the base class for:

■ Constant controls, such as labels, lines, and rectangles. Constant controls are
fully defined at design time and need no additional data in the Factory.
You can, however, write code to change the attributes of a constant control in
the Factory. For example, you can adjust the size of a line based on the dollar
amount of a data row field, or change the color of a label to red to show that a
particular customer is 60 days past due.

To accomplish these tasks, you can override the container frame’s OnRow()
method or the control’s BuildFromRow() method to add the code.

■ Data controls, such as text, integer, and date and time controls, that display
values from data rows processed in the Factory. For more information about
data controls, see the description of the AcDataControl class.

Subclassing AcControl
Typically, you derive a new control from one of the more specialized subclasses of
AcControl, such as AcDoubleControl or AcCrosstabControl. Do not derive
directly from AcControl.

Class protocol
AcControl’s protocol defines the tasks that all controls perform. Table 7-15 lists
the protocol methods for AcControl.

AcComponent

AcReportComponent

AcVisualComponent

AcControl

C h a p t e r 7 , A F C c l a s s e s 475

AcControl

Property
Table 7-16 describes the AcControl property.

Methods for Class AcControl

Methods defined in Class AcControl

BalloonHelp, GetControlValue, GetText, GetXMLText, GetValue, IsSummary,
PageNo, PageNo$, SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Table 7-15 Class protocol for AcControl

Method Task

New() Initializes the control.

Start() Initializes the control.

Build()
or

Called if the enclosing frame does not have access to a
data row.

BuildFromRow() Called if the enclosing frame has access to a data row. Sets
the value of the control from the data row.

Finish() Completes the control.

Table 7-16 AcControl property

Property Type Description

BalloonHelp String The text to display when the user holds the
cursor over a control

476 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcControl

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcControl::BalloonHelp method
Returns the text to be displayed when the user hovers the mouse pointer over a
control. The default behavior is to display the value of the BalloonHelp property.
Override BalloonHelp() to display any other fixed or calculated value. You can
specify the text programmatically, or display the formatted value of a control.
BalloonHelp() is available for all subclasses of AcControl except AcLineControl.

Syntax Function BalloonHelp() As String

Returns The string to display.

See also AcControl::GetText method

AcControl::GetControlValue method
Returns the value of another control within the same frame. If, for example, you
want to change the value or property of one control depending on the value of
another control, you can call GetControlValue() from the first control to get the
value of the second control.

GetControlValue() first finds the control, then calls that control’s GetValue()
method to obtain the value. If you call GetControlValue() to get the value of a
control before its value is set, GetControlValue() returns Null.

If your code calls GetControlValue(), you must be aware of the order in which
controls are built. Generally, the controls of a frame are built in the same order
that they appear in Report Structure.

Syntax Function GetControlValue(controlName As String) As Variant

Parameter controlName
The name of the control for which you want the value. Specify the control using
its fully qualified name, such as OrdersReport::ItemFrame::PriceControl, or just
the control’s name, such as PriceControl.

C h a p t e r 7 , A F C c l a s s e s 477

AcControl

Returns The value of the specified control.
Null if the specified control’s value is not set.

Example In the following example, a label control’s Finish() method is overridden so that
the label’s font color is set to red when the value of an integer control,
DaysOverdue, is greater than 30. GetControlValue() returns the value of the
DaysOverdue integer control. Both the label and integer controls are in the same
frame.

Sub Finish()
Super::Finish()
If (GetControlValue("DaysOverdue") > 30) Then

Font.Color = Red
End If

End Sub

Note that you can use Conditional Formatting to achieve the same effect as this
example without writing code.

See also AcBaseFrame::GetControlValue method

AcControl::GetXMLText method
Returns the value of a control that has the XMLType property set to XMLText.

Syntax Function GetXMLText() As String

Returns The control value as a string.

AcControl::GetText method
Formats a control’s value for display. The framework calls GetText() to format the
data value of data controls and the text value of label controls. In derived classes,
such as AcTextControl or AcIntegerControl, GetText() formats a control’s data
value by calling the Actuate Basic Format$ function and using the format pattern
you specified in the control’s Format property.

You can override a control’s GetText() method to perform additional formatting,
such as translating a numeric value into a string of words for printing on a check.

Use GetText() to alter the appearance of a control’s value at view time. You
cannot modify the actual value of the control by changing the value of its
DataValue variable. Overriding DataValue at view time is not a supported
operation and can cause unpredictable behavior.

Syntax Function GetText() As String

Returns The text to display in the control.

See also AcDataControl::Format method

478 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcControl

AcControl::GetValue method
Returns the value of a data control.

Syntax Function GetValue() As Variant

Returns The value of the DataValue variable if the control is a data control.
Null if the control is not a data control.

See also AcDataRow::GetValue method

AcControl::IsSummary method
Use the IsSummary() method to determine whether the control processes a single
row or multiple rows. If IsSummary() returns True, the control processes
multiple rows.

e.Report Designer Professional generates IsSummary() based on the expressions
you enter in the value expression properties for a control. If any of those
expressions contains an aggregate function, IsSummary() returns True.

Syntax Function IsSummary() As Boolean

Returns True if the control processes multiple rows.
False otherwise.

AcControl::PageNo method
Returns the position of the page in the report, starting from one. For example, to
show the page number in a control, set the value of the control to PageNo().

You can use this method for a control directly on a page or for a control in a frame
in a PageHeader or PageFooter slot. It is not applicable to other frames because
the page is not known when the value of the control is set.

PageNo() raises an error if it is called before the frame holding this control is
added to a page.

Syntax Function PageNo() As Integer

Returns An integer indicating the page index of this control.

See also AcControl::PageNo$ method
AcVisualComponent::GetPageContainer method

AcControl::PageNo$ method
Returns the formatted page number of the control as a string. For example, to
show the formatted page number such as vi, 107, or 12-5 in a control, set the value
of the control to PageNo$.

C h a p t e r 7 , A F C c l a s s e s 479

AcControl

You can use this method for a control directly on a page, or for a control in a
frame in a PageHeader or PageFooter slot. It is not applicable to other frames
because the page is not known when the value of the control is set.

PageNo$() raises an error if it is called before the frame holding this control is
added to a page.

Syntax Function PageNo$() As String

Returns A string containing the formatted page number of this control.

See also AcControl::PageNo method
AcVisualComponent::GetPageContainer method

AcControl::SetDataValue method
Sets the value for a data control within the same frame. SetDataValue() simplifies
coding by providing a way to assign values to controls that work with
AcDataControl or any subclass of AcDataControl.

Syntax Sub SetDataValue(newValue As Variant)

Parameter newValue
The value of the control.

Example The following example shows how SetDataValue() simplifies the coding required
to set the value of a control. The first code snippet shows how to set the value of a
control in Actuate Basic without using the SetDataValue() method.

Dim control As AcControl
Dim textControl As AcTextControl
Dim intControl As AcIntegerControl

Set control = GetControl("Foo")
Set textControl = control
textControl.DataValue = "Text Value"
Set control = GetControl("Bar")
Set intControl = control
intControl.DataValue = 10

The following code shows how to use SetDataValue() to perform the same task:

GetControl("Foo").SetDataValue("Text Value")
GetControl("Bar").SetDataValue(10)

Using SetDataValue() removes the requirement to refer to specific subclasses.

See also AcBaseFrame::GetControl method
AcControl::SetDataValue method

480 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCrosstab

Class AcCrosstab
Displays data in rows and columns. Figure 7-21 shows the class hierarchy of
AcCrosstab.

Figure 7-21 AcCrosstab

Description Use the AcCrosstab class to display data in a spreadsheet format. For example,
you can use AcCrosstab to display calculated data values and totals of those
values. The contents of the cross tab determine its size. A cross tab resizes
dynamically both horizontally and vertically to fit its contents.

Variables
Table 7-17 lists AcCrosstab variables.

AcComponent

AcReportComponent

AcVisualComponent

AcCrosstab

AcControl

Table 7-17 AcCrosstab variables

Variable Type Description

Background
Color

AcColor The background color of the cross tab, row,
column, or cell. This property does not affect
subgroups of rows and columns. The
background color of the row overwrites the
background color of the column because
rows are added on top of columns. The
default value is Transparent.

Column
Headings
Border

AcCrosstab
BorderStyle

Specifies the border color and thickness of a
column heading. The default color is Black.
The default thickness is 1 point.

OuterBorder AcCrosstab
BorderStyle

Specifies the color and thickness of the
outside border of a cross tab, row, or
column. The default color is Black. The
default thickness is 1 point for a cross tab,
0.5 point for a row or column.

C h a p t e r 7 , A F C c l a s s e s 481

AcCrosstab

Properties
Table 7-18 lists AcCrosstab properties.

RowHeadings
Border

AcCrosstab
BorderStyle

Specifies the border color and thickness of
row headings of a cross tab. The default
color is Black. The default thickness is
1 point.

Table 7-18 AcCrosstab properties

Property Type Description

Background
Color

AcColor The background color of the cross tab, row,
column, or cell. This property does not affect
subgroups of rows and columns.
The background color of the row overwrites
the background color of the column because
rows are added on top of columns.
The default value is Transparent.

Font AcFont The default font used in the cross tab.

Column
Headings
Border

Borders Specifies the border color and thickness of a
column heading. The default color is black.
The default thickness is 1 point.

Definition N/A Accesses the Crosstab Builder.

LabelMultiple
Values

Boolean Displays labels for each column. The default
value is True.

OuterBorder Borders Specifies the color and thickness of the
outside border of a cross tab, row, or column.
The default color is Black. The default
thickness is 1 point for a cross tab, 0.5 point
for a row or column.

RowHeadings
Border

Borders Specifies the border color and thickness of
row headings of a cross tab. The default
color is Black. The default thickness is
1 point.

(continues)

Table 7-17 AcCrosstab variables

Variable Type Description

482 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCrosstab

Methods for Class AcCrosstab

Method defined in Class AcCrosstab

FinishBuilding

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue, SetValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Value
Placement

AcCrosstab
ValueLayout

Specifies whether cross tab values appear
horizontal or vertical. Valid values are:
■ ValuesHorizontal
■ ValuesVertical
The default value is ValuesHorizontal.

Table 7-18 AcCrosstab properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 483

AcCrosstab

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcCrosstab::FinishBuilding method
Finishes building the data collector, and creates and populates the visual data
structure.

Syntax Sub FinishBuilding()

484 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCurrencyControl

Class AcCurrencyControl
Displays a Currency value. Figure 7-22 shows the class hierarchy of
AcCurrencyControl.

Figure 7-22 AcCurrencyControl

Description Use the currency control to display a Currency value. You can also use a double
control or integer control to display numeric values.

See also Class AcControl
Class AcDataControl
Class AcDoubleControl
Class AcIntegerControl
Class AcTextualControl

Variable
Table 7-19 describes the AcCurrencyControl variable.

Methods for Class AcCurrencyControl

Methods inherited from Class AcDataControl

Format, GetGroupKey, IsSummary

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcDataControl

AcCurrencyControl

AcTextualControl

Table 7-19 AcCurrencyControl variable

Variable Type Description

DataValue Currency Stores the value of the control

C h a p t e r 7 , A F C c l a s s e s 485

AcCurrencyControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New
Chapter 7AFC classes

486 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataAdapter

Class AcDataAdapter
Chapter 7AFC classes An abstract base class that defines the logic of classes that form a data stream. The

data stream collects, processes, and delivers data to the report. The parts of a data
stream are called data adapters. Figure 7-23 shows the class hierarchy of
AcDataAdapter.

Figure 7-23 AcDataAdapter

Description AcDataAdapter is the abstract base class for the two types of data adapter base
classes, AcDataSource and AcDataFilter.

A data source collects data from an input source, such as a database or a
spreadsheet. A data filter processes the collected data. Both classes work together
to produce and deliver formatted data, called data rows, to the report. You can
limit the number of data rows a data adapter retrieves by using the FetchLimit
property. This feature is useful for testing and debugging report designs,
especially designs that generate large numbers of pages.

AcDataAdapter defines the core logic for how data adapters work with
connections and data rows. This class also defines the basic algorithms for
random access to data.

Class protocol
Table 7-20 describes AcDataAdapter’s protocol, which defines the tasks that all
data adapters perform.

AcComponent

AcDataAdapter

Table 7-20 Class protocol for AcDataAdapter

Method Task

New() Initializes the data adapter.

Start() Opens the data adapter. For a data source, this method opens
the input source from which to read data. For a data filter, this
method opens the input adapter. An input adapter is the data
adapter that supplies data rows to the data filter.

Fetch() Reads one row from the data adapter.

Finish() Closes the data adapter. For a data source, this method closes
the input source. For a data filter, this method closes the input
adapter(s).

C h a p t e r 7 , A F C c l a s s e s 487

AcDataAdapter

Subclassing AcDataAdapter
You typically derive from one of AcDataAdapter’s more specialized subclasses,
AcDataSource or AcDataFilter.

Variables
Table 7-21 lists AcDataAdapter variables.

Properties
Table 7-22 lists AcDataAdapter properties.

Methods for Class AcDataAdapter

Methods defined in Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,

Table 7-21 AcDataAdapter variables

Variable Type Description

FetchLimit Integer The number of data rows the data adapter retrieves.

IsOpen Boolean True when the data adapter is open. The IsOpen
variable is set to True in Start() and False in Finish().
Use IsStarted() to obtain the value of this variable.

Position Integer The current input position. Start() sets Position to 1.
Each call to AddRow() increments it by 1. Your other
overridden methods must maintain Position. Use
GetPosition() to obtain the value of this variable.

Table 7-22 AcDataAdapter properties

Property Type Description

Connection AcConnection
Structure
Reference

Identifies the connection to use for the data
adapter.

DataRow AcDataRow
Structure
Reference

Identifies the data row to use with the data
adapter.

FetchLimit Integer The number of data rows the data adapter
retrieves. Limiting the number of data rows is
useful for testing and debugging report designs
when you need a small data sample.

488 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataAdapter

NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

See also Class AcDataRow
Class AcDataSource
Class AcMultipleInputFilter
Class AcSingleInputFilter

AcDataAdapter::AddRow method
Adds a row to the data adapter. If you override Fetch(), call AddRow() after you
instantiate the data row and set its variables. AddRow() performs the following
tasks:

■ Sets the row’s RowNumber variable to the current input position

■ Advances the input position

■ Calls the OnRead() method for the data row so the row can compute its
computed column values

Syntax Sub AddRow(row As AcDataRow)

Parameter row
The new data row.

See also AcDataAdapter::Fetch method
AcDataRow::OnRead method

AcDataAdapter::AddSortKey method
Adds a dynamic sort key column. Group sections provide the ability to
automatically update the ORDER BY clause of the SELECT statement for a SQL
query source to match the sequence a report needs. The group sections inform the
data source of the preferred sort order by calling AddSortKey() and passing the
group section’s Key property value.

If you write code that uses a data source, your custom code can call
AddSortKey() to customize the sort order of the data. If you create a custom data
adapter, you can override this method to support custom run-time sorting.

Unless a subclass specifically overrides AddSortKey(), the base AcDataAdapter
class raises a run-time error if the report calls this method.

Syntax Sub AddSortKey(keyName As String, sortSense As AcSortSense)

Parameters keyName
The name of one of the columns in the SELECT clause.

C h a p t e r 7 , A F C c l a s s e s 489

AcDataAdapter

sortSense
The direction of the sort. Specify either SortAscending or SortDescending.

See also AcDataAdapter::CanSortDynamically method

AcDataAdapter::CanSeek method
Determines whether the data adapter supports random access to data. The
default setting for CanSeek() is False. In derived classes, you can override
CanSeek() to return True if you want support for random access.

Syntax Function CanSeek() As Boolean

Returns True if the data adapter supports random access.
False if the data adapter does not support random access.

AcDataAdapter::CanSortDynamically method
Determines whether the data adapter supports dynamic ordering.
AcDataAdapter assumes that the adapter does not support dynamic sorting, so
the default setting for CanSortDynamically() is False. If a custom data adapter
supports sorting, you can override this method to return True, then override
AddSortKey() to accept the sort columns.

Call CanSortDynamically() to ensure that a data adapter supports custom sorting
before calling AddSortKey().

Syntax Function CanSortDynamically() As Boolean

Returns True if the data adapter supports dynamic ordering.
False if the data adapter does not support dynamic ordering.

See also AcDataAdapter::AddSortKey method

AcDataAdapter::CloseConnection method
Closes a local connection that NewConnection() returns. For information about
overriding this method, see the AcDataAdapter::OpenConnection method.

Syntax Sub CloseConnection(connection As AcConnection)

Parameter connection
The connection to close.

See also AcDataAdapter::GetConnection method
AcDataAdapter::NewConnection method
AcDataAdapter::OpenConnection method
AcDataAdapter::SetConnection method

490 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataAdapter

AcDataAdapter::Fetch method
Reads the row at the position identified by GetPosition(). Fetch() reads one row
from the data adapter at the position identified by GetPosition(). Fetch() then
advances the position by one. If the current position is past the end of the input
set, Fetch() returns Nothing.

If you create a custom data source or filter, you must override this method to fetch
a row. You must handle repeated calls to Fetch(), even after Fetch() reaches the
end of the input set. Also, your override should call AddRow() each time it
instantiates a new row.

If you write a custom Fetch() method for a data filter, and your Fetch() method
simply passes along rows created by an input adapter, then you should not call
AddRow() because it was already called by the input adapter. Instead, increment
Position directly.

When you override a data adapter’s Fetch() method, the FetchLimit property
value has no effect. You need to check this property’s value in your code if you
want to limit the number of data rows to retrieve.

Syntax Function Fetch() As AcDataRow

Returns A reference to the data row fetched.
Nothing if the current position is past the end of the input set.

Example The following example shows how to accumulate the projected and actual cost
figures for each month and chart the accumulated results, when the data is not
normalized. For example, the report receives the data as one value per row, with
one row for January Budget, one row for January Actual, and so on. To chart this
data, the report design uses a data filter to normalize the data returned from the
query.

The code in the Fetch() method of the filter receives a data row from the data
source SqlQuerySource, which contains the database query. For each call to
Fetch(), the data filter splits off another amount field and returns it to the report.
The dollars accumulate each month. For example, the budget amount for March
shows the sum of January, February, and March budgets.

Function Fetch() As AcDataRow
Dim aFltrDataRow As FilterDataRow
' Get the row returned from the SQL Query
If queryDataRow is Nothing Then

Set queryDataRow = InputAdapter.Fetch()
If queryDataRow Is Nothing Then Exit Function
dataPointCount = 0
actualTotal = 0.0
planTotal = 0.0

End If

C h a p t e r 7 , A F C c l a s s e s 491

AcDataAdapter

' Run through each of the twelve monthly fields on the query
' data row and return one row for each month-and-amount
' combination to the report
Set aFltrDataRow = New FilterDataRow
aFltrDataRow.month = (dataPointCount \ 2) + 1
aFltrDataRow.amountType = dataPointCount MOD 2
'Type of 0 = actual, 1 = plan
dataPointCount = dataPointCount + 1
If dataPointCount = 25 Then

Exit Function
End If

Select Case dataPointCount
Case 1

aFltrDataRow.amntToChart = queryDataRow.aJanDollars
Case 2

aFltrDataRow.amntToChart = queryDataRow.bJanDollars
Case 3

aFltrDataRow.amntToChart = queryDataRow.aFebDollars
Case 4

aFltrDataRow.amntToChart = queryDataRow.bFebDollars

…
Case 23

aFltrDataRow.amntToChart = queryDataRow.aDecDollars
Case 24

aFltrDataRow.amntToChart = queryDataRow.bDecDollars
End Select

If aFltrDataRow.amountType = 0 Then
aFltrDataRow.amntToChart = aFltrDataRow.amntToChart +

actualTotal
actualTotal = aFltrDataRow.amntToChart

Else
aFltrDataRow.amntToChart = aFltrDataRow.amntToChart +

planTotal
planTotal = aFltrDataRow.amntToChart

End If

Set Fetch = aFltrDataRow
AddRow(Fetch)

End Function

AcDataAdapter::Finish method
Closes the data adapter. If the data adapter is a data source, Finish() closes the
input source, which can be a query, a file, or another source. If the data adapter is
a filter, Finish() closes each of the input adapters. An input adapter is the data
adapter that supplies data rows to the data filter.

492 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataAdapter

If the connection was created using NewConnection(), Finish() calls
CloseConnection() to close the connection.

In derived classes, you can override Finish() to do additional work when the
Factory finishes processing the data adapter. Call Super::Finish after your code.

Example See the AcReportComponent::FindContentByClass method for an example of
how to use the Finish() method.

Syntax Sub Finish()

See also AcReportComponent::FindContentByClass method
AcDataAdapter::Start method

AcDataAdapter::FlushBuffer method
If the data adapter uses internal buffering to enable random access, this method
flushes all the buffered rows. Call FlushBuffer() to reclaim memory. FlushBuffer()
calls FlushBufferTo() to clear the buffer. FlushBuffer() does nothing if the data
source does not use buffering.

After the buffer flush is complete, the read position moves to the first row past
those that were in the buffer.

Derived classes that support buffering should override this method.

Syntax Sub FlushBuffer()

See also AcDataAdapter::FlushBufferTo method

AcDataAdapter::FlushBufferTo method
Flushes all buffered rows. Call FlushBufferTo() to clear all rows, up to and
including a specified row. If the data adapter supports buffering and the read
position is less than posn, the current read position is set to posn + 1.

Syntax Sub FlushBufferTo(posn As Integer)

Parameter posn
The data row to flush to.

See also AcDataAdapter::FlushBuffer method

AcDataAdapter::GetConnection method
Returns a connection. You might need to get a connection if you want to
customize the process of selecting and instantiating a connection. For example,
you can call GetConnection() to return the connection, which you then pass as an
argument to SetConnection().

Syntax Function GetConnection() As AcConnection

C h a p t e r 7 , A F C c l a s s e s 493

AcDataAdapter

Returns A reference to the connection associated with the data adapter.

See also AcDataAdapter::CloseConnection method
AcDataAdapter::NewConnection method
AcDataAdapter::OpenConnection method
AcDataAdapter::SetConnection method

AcDataAdapter::GetPosition method
Returns the position of the next row to fetch, starting with 1. The number of rows
fetched to date from a sequential source is one less than GetPosition().

Syntax Function GetPosition() As Integer

Returns The current row number or 1 when the data adapter is first opened.

AcDataAdapter::IsStarted method
Returns True if you open the adapter using a call to Start(). Returns False if the
data adapter was never started, or if you close the adapter using a call to Finish().

Syntax Function IsStarted() As Boolean

Returns The value of the IsOpen variable.

AcDataAdapter::NewConnection method
Instantiates the connection class that you place in the Connection slot of the data
adapter in Report Structure. You can override NewConnection() to customize the
process for selecting a connection. For example, if your report needs a different
connection depending on the type of data adapter in use, you can override
NewConnection() to write the conditional logic.

Syntax Function NewConnection() As AcConnection

Returns The new connection.

See also AcDataAdapter::CloseConnection method
AcDataAdapter::GetConnection method
AcDataAdapter::OpenConnection method
AcDataAdapter::SetConnection method

AcDataAdapter::NewDataRow method
Instantiates the data row class that appears in the DataRow slot for this adapter.
You can override this method to customize the data row to instantiate.

Fetch() calls NewDataRow() each time it reads a new data row. If you create a
custom data source and override Fetch() to specify how the data source retrieves

494 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataAdapter

data rows, call NewDataRow() to instantiate the data row. For an example of
creating a custom data source, see Accessing Data using e.Report Designer
Professional.

Syntax Function NewDataRow() As AcDataRow

Returns The new data row.

AcDataAdapter::OpenConnection method
Opens the connection returned by NewConnection(). If NewConnection()
returns a local connection, the data adapter calls the OpenConnection() method
to open the connection. You can override this method to customize the connection
before opening it.

For example, suppose you have five data sources in a report. The first and third
data sources use an Oracle connection, and the others use an ODBC connection.
You can place the ODBC connection in the common section, then create a static
variable to hold the Oracle connection. In the data adapters that work with the
Oracle connection, override NewConnection() to get the shared connection, then
override OpenConnection() and CloseConnection() to do nothing. Code
elsewhere must then open and close the Oracle connection.

Syntax Function OpenConnection(connection As AcConnection) As Boolean

Parameter connection
The connection to open.

Returns True if the connection opens.
False if the connection does not open.

Example If the data adapter sets the database or user name based on a parameter, your
override should call any relevant superclass method and return the value of that
method, as shown in the following example:

Function OpenConnection(connection As AcConnection) As Boolean
Dim conn As AcODBCConnection
Set conn.DataSource = "testDB"
OpenConnection = Super::OpenConnection(connection)

End Function

Alternatively, you can override OpenConnection(), along with NewConnection()
and CloseConnection(), to implement a custom scheme for sharing connections.

See also AcDataAdapter::CloseConnection method
AcDataAdapter::GetConnection method
AcDataAdapter::NewConnection method
AcDataAdapter::SetConnection method

C h a p t e r 7 , A F C c l a s s e s 495

AcDataAdapter

AcDataAdapter::Rewind method
Moves the fetch position to position one, the beginning of the input set. Rewind()
is equivalent to:

SeekTo(1)

Syntax Sub Rewind()

AcDataAdapter::SeekBy method
Moves the fetch position by a given amount, relative to the current position. If
you specify an offset of 0, then the position does not move. Negative offsets move
the position toward the beginning of the input set. Positive offsets move the
position toward the end of the input set. SeekBy() is equivalent to:

SeekTo(GetPosition() + offset)

Derived classes need not override this method. They should override SeekTo()
instead.

Syntax Sub SeekBy(offset As Integer)

Parameter offset
The number of rows, relative to the current position, to move.

AcDataAdapter::SeekTo method
Moves the fetch position to a given location. The position is relative to the
beginning of the input set. The first row is position one. After a call to SeekTo(),
the next call to GetPosition() returns the position you specified. Similarly, the
next call to Fetch() returns the row to the position you specify.

If you specify a position less than one, the data adapter uses position one instead.
Similarly, if you seek a position past the end of the input set, the position will be
set to one past the end of the file.

SeekTo() is available only in data adapters that support random access. If the
adapter provides only sequential access, SeekTo() raises a run-time error.

Derived classes that support random access must override this method.

Syntax Sub SeekTo(posn As Integer)

Parameter posn
The position from which to read on the next call to Fetch().

AcDataAdapter::SeekToEnd method
Reads rows from the current position to the end of the input set. This method is
equivalent to calling Fetch() in a loop until Fetch() returns Nothing.

496 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataAdapter

After a call to SeekToEnd(), GetPosition() returns one greater than the number of
rows in the input set.

Derived classes need not override this method.

Syntax Sub SeekToEnd()

AcDataAdapter::SetConnection method
Sets a connection for the data adapter. The connection must be open and you
must call SetConnection() before calling Start(). Any connection
NewConnection() returns has precedence.

Syntax Sub SetConnection(theConnection As AcConnection)

See also AcDataAdapter::CloseConnection method
AcDataAdapter::GetConnection method
AcDataAdapter::NewConnection method
AcDataAdapter::OpenConnection method

AcDataAdapter::Start method
Opens the data adapter. For a data source, the Start() method opens the input
source from which to read data. For a data filter, Start() opens the input adapter,
the data adapter that supplies data rows to the data filter.

Start() also calls NewConnection() to instantiate the connection. If
NewConnection() returns a connection, Start() calls OpenConnection() to open
the connection.

You can override Start() to add startup code for your class. You should, however,
call the superclass method first, then continue with your own initialization only if
the superclass method returns True.

Function Start() As Boolean
Start = Super::Start()
If Not Start Then

Exit Function
End If
' Custom startup code

End Function

Syntax Function Start() As Boolean

Returns True if the data adapter opens.
False if the data adapter does not open.

See also AcDataAdapter::Finish method

C h a p t e r 7 , A F C c l a s s e s 497

AcDatabaseSource

Class AcDatabaseSource
An abstract base class for data sources that retrieve data from databases.
Figure 7-24 shows the class hierarchy of AcDatabaseSource.

Figure 7-24 AcDatabaseSource

Description AcDatabaseSource is an abstract base class that provides the standard logic for
retrieving rows from a relational database cursor. It defines the methods for
binding parameters to the database statement, opening the cursor, binding the
data row to the cursor, retrieving rows from the cursor, and closing the cursor.

See also Class AcDataAdapter
Class AcDataRow
Class AcDataSource
Class AcSqlQuerySource

Methods for Class AcDatabaseSource

Methods defined in Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
OpenCursor, SetStatementProperty

Method inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

498 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDatabaseSource

AcDatabaseSource::BindDataRow method
Binds a data row to a SQL query cursor. Figure 7-25 shows the binding
relationship between columns in the row that the cursor returns and variables in
the data row that you defined.

Figure 7-25 The mapping of columns in a row to variables in a data row

Syntax Sub BindDataRow(cursor As AcDBCursor)

Parameter cursor
The cursor to which to bind the data row.

Example The following example shows how to set up a SQL query, define a data row, and
bind the row fetched by the cursor to the data row.

First, override the Start() method on the data stream component to define the
SQL SELECT statement.

Function Start() As Boolean
 Start = Super::Start()

Dim selectClause As String
Dim fromClause As String
Dim whereClause As String
Dim aStmt As String
' prepare the text for the query statement
selectClause = "SELECT DISTINCT salesreps.last,

salesreps.first, orders.orderID"
fromClause = " FROM customers, orders, salesreps"
whereClause = " WHERE salesreps.repID = customers.repID AND

orders.custID = customers.custID"
aStmt = selectClause & fromClause & whereClause
' open a cursor for the above query statement

 OpenCursor(aStmt)
End Function

Then, subclass AcDataRow to create a data row by programming in Actuate Basic
or using e.Report Designer Professional.

Class fSqlDataRow Subclass of AcDataRow
Dim Salesreps_first As String
Dim Salesreps_last As String
Dim orders_orderID As Integer

End Class

Row returned by the
SELECT statement

Columns

Variables

Data row

C h a p t e r 7 , A F C c l a s s e s 499

AcDatabaseSource

Override BindDataRow() to bind the row the cursor fetched and your data row
subclass.

Sub BindDataRow(cursor As AcDBCursor)
' BindColumn statement must be run for each column in the
' SELECT statement
cursor.BindColumn(1, "fSqlApp::fSqlDataRow",

"salesreps_last")
cursor.BindColumn(2, "fSqlApp::fSqlDataRow",

"salesreps_first")
cursor.BindColumn(3, "fSqlApp::fSqlDataRow",

"orders_orderID")
End Sub

AcDatabaseSource::BindStaticParameters method
The OpenCursor() method of AcDatabaseSource calls BindStaticParameters() to
bind parameters to the cursor for a SQL statement. You must override
BindStaticParameters() if the SQL statement uses parameters.

Syntax Sub BindStaticParameters(cursor As AcDBCursor)

Parameter cursor
The cursor to which to bind the parameters.

Example The following example shows how to accomplish the following tasks:

■ Code a SELECT statement that uses a parameter.

■ Override BindStaticParameters() to bind the parameter to the statement’s
cursor.

' SELECT statement
SELECT fname, lname FROM Customers WHERE Customer.State = ?

' BindStaticParameters() code
Sub BindStaticParameters(cursor As AcDBCursor)

cursor.BindParameter(1, "CA")
EndSub

AcDatabaseSource::GetCursor method
Returns the database cursor associated with the data source. The cursor is
available after the Start() method calls OpenCursor(). To get the associated
database statement, call GetStatement() from the cursor.

Syntax Function GetCursor() As AcDBCursor

Returns The database cursor from which the database source retrieves rows.

See also AcDBCursor::GetStatement method

500 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDatabaseSource

AcDatabaseSource::GetDBConnection method
Returns the database connection associated with the data source. This method is
equivalent to GetConnection(), except the type of the returned connection is the
more derived AcDBConnection class. You can use this connection, for example, to
raise an error if a database error occurs.

Syntax Function GetDBConnection() As AcDBConnection

Returns The database connection.

See also AcDataAdapter::GetConnection method
Class AcDBConnection

AcDatabaseSource::GetPreparedStatement method
Gets the statement on which to execute the database cursor. A prepared statement
is one on which the Prepare() method has been called.

Syntax Function GetPreparedStatement() As AcDBStatement

See also AcDBConnection::Prepare method

AcDatabaseSource::OpenCursor method
Opens the database cursor. OpenCursor() is a helper method called by your
implementation of Start(). The Start() method must create the SQL statement.
Start() then calls OpenCursor() to prepare the statement, bind the parameters,
allocate and open a cursor, and bind the data row to the cursor. OpenCursor()
calls BindStaticParameters() to bind static parameters to the statement. If your
SQL statement already has parameters, you must override
BindStaticParameters(). OpenCursor() also calls BindDataRow(), which you
must override to bind the data row to the cursor.

Syntax Sub OpenCursor(stmt As String)

See also AcDatabaseSource::BindDataRow method
AcDatabaseSource::BindStaticParameters method

AcDatabaseSource::SetStatementProperty method
Assigns a string value to the specified property. The ODA driver interprets this
value when the report runs.

Syntax Sub SetStatementProperty(propName As String, propValue As String)

Parameters propName
The name of the property to which to assign the value.

propValue
The value to assign to the property.

C h a p t e r 7 , A F C c l a s s e s 501

AcDataControl

Class AcDataControl
The base class for controls that display data from data rows. Figure 7-26 shows
the class hierarchy for AcDataControl.

Figure 7-26 AcDataControl

Description AcDataControl defines the logic for setting the values of data controls, which
display data from the input source. Each data control displays one piece of data,
such as a name, a date, a quantity, or a total. To specify what data a data control
should display, you assign a value expression to the control’s ValueExp property.
If you leave this property blank, the default value of the data control is Null.

Subclassing AcDataControl
Do not derive directly from AcDataControl. Actuate products provide a different
type of data control for each data type, as follows:

■ AcCurrencyControl displays currency data.

■ AcDateTimeControl displays dates.

■ AcDoubleControl displays double precision floating point numbers.

■ AcDynamicTextControl displays text that has variable size and optionally
contains HTML or RTF formatting information.

■ AcIntegerControl displays numeric data other than currencies, floating-point
numbers, or dates and times.

■ AcTextControl displays string data.

These specialized classes derive from AcDataControl. You derive a new control
from one of the specialized subclasses of AcDataControl.

Building a control without a data row
The Build() method of the frame that contains a control calls the control’s Build()
method instead of BuildFromRow(). The call to the frame’s Build() method

AcComponent

Component

AcVisualComponent

AcControl

AcTextualControl

AcDataControl

502 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataControl

occurs when you place a frame in a slot where the frame does not receive data
rows. For information about when the framework calls a frame’s Build() method,
see AcBaseFrame.

Build() sets the value of a control using data from a source other than a data row.
The value can be from an Actuate Basic function call, a method call, a variable, or
a constant. The default behavior for Build() is to call SetValue() to set the value of
the control.

You can override the data control’s Finish() method to perform custom
processing, such as changing the value or property of the control depending on a
condition.

The following example overrides a text control’s Finish() method to change the
control’s data value to a different string. This code also changes the display text to
a different color when Date$() returns “04-15-2010”. The report developer
assigned Date$() to the control’s ValueExp property.

Sub Finish()
If DataValue = "04-15-2010" Then

DataValue = "Tax day"
Font.Color = Red

End If
Super::Finish()

End Sub

Building a control from the data row
BuildFromRow() sets the value of a control using data from a data row. The
enclosing frame’s BuildFromRow() method calls the control’s BuildFromRow()
method.

Controls can have one of the following three relationships to a data row:

■ The control needs no data. Some controls, such as graphic images and lines,
require no data from the data row. Controls that do not take data from a data
source are called constant controls. A label control is a constant control.

■ The control uses data from a single row. A control that returns a customer’s
name from the data source displays data from a single data row.

■ The control uses data from multiple rows. Some controls summarize data from
a set of rows. These controls are called aggregate controls. A currency control
that sums a customer’s payments for the past three quarters is an example of
an aggregate control.

The BuildFromRow() method provides a general mechanism for handling all
three relationships. If the control does not need the data row, BuildFromRow()
returns Finished Building. If the control uses a single row, BuildFromRow() sets
the control’s value and returns Finished Building. If the control uses multiple
rows, BuildFromRow() returns Continue Building.

C h a p t e r 7 , A F C c l a s s e s 503

AcDataControl

You can override a control’s Finish() method to perform custom processing, such
as changing the value or a property of the control depending on a condition.

About controls that use a single data row
If a control uses a single data row, BuildFromRow() performs the following tasks:

■ Calls SetValue() on the first row to set the value of the control

■ Calls SetTocEntry() to set the Table of Contents entry for the control

■ Calls OnRow(), which you can override to do further processing on the row

■ Returns Finished Building

Controls that need no data rows work as if they need only one row. These controls
simply ignore the row. In this case, SetValue() does nothing.

About controls that use multiple data rows
Aggregate controls work with any number of rows and summarize data from
those rows. For example, an aggregate control might show the minimum,
maximum, sum, or average of a group of sales records. In this case,
BuildFromRow() processes rows a bit differently than in the single row case. On
the first row, BuildFromRow() calls SetTocEntry() to set the Table of Contents
entry. For all rows, BuildFromRow() calls both SetValue() and OnRow(). For
aggregate controls, BuildFromRow() always returns Continue Building.

The following code overrides an integer control’s Finish() method so that the
data value is green when the value is greater than 20:

Sub Finish
If DataValue > 20 Then

Font.Color = green
End If
Super::Finish

End Sub

See also Class AcControl
Class AcCurrencyControl
Class AcDateTimeControl
Class AcDoubleControl
Class AcIntegerControl
Class AcTextControl
Class AcTextualControl

Class protocol
The protocol for AcDataControl is the same as for AcControl, except that it adds
the capability to set the value of a control. Table 7-23 lists methods for
AcDataControl.

504 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataControl

Properties
Table 7-24 lists AcDataControl properties.

Methods for Class AcDataControl

Methods defined in Class AcDataControl

Format, GetGroupKey

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue, SetValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,

Table 7-23 Class protocol for AcDataControl

Method Task

New() Initializes the control

Start() Prepares the data control for building

SetValue() Called by BuildFromRow() to set the value of the control,
typically from the expression in the ValueExp property

OnRow() Called by BuildFromRow() to let the control do additional
processing for the row

Table 7-24 AcDataControl properties

Property Type Description

Format String Formats the data control

ValueExp Expression Specifies the value of the control

ValueType AcControl
ValueType

Specifies how many data rows the
control will process

C h a p t e r 7 , A F C c l a s s e s 505

AcDataControl

ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class Component

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDataControl::Format method
Returns the format pattern specified in the control’s Format property. The Format
property accepts any of the format patterns available to the Actuate Basic
Format$ function. Format() returns the format pattern as a string. For example, if
you specify (@@@) @@@-@@@@ as the format pattern for a text control that
displays telephone numbers, Format() returns the string (@@@) @@@-@@@@. The
GetText() method uses this return value to format the control’s value for display.

Syntax Function Format() As String

Returns The format pattern that formats the control’s value.

See also AcControl::GetText method

AcDataControl::GetGroupKey method
Returns the key for the group section, if any, that contains the control.

If the GroupOn property is set to the default value of GroupOnEachValue,
GetGroupKey() returns the value of the column key.

If the GroupOn property is set to GroupOnCustom, GetGroupKey() returns the
group key set by the GetKeyValue() method.

For all other values of GroupOn, GetGroupKey() returns the first value in the
range of values for the key. For example, if GroupOn is set to GroupOnYear,
GetGroupKey() returns values such as 1/1/2004, 1/1/2009.

Syntax Function GetGroupKey() As Variant

Returns The group key. Nothing if there is no group section.

506 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataFi l ter

Class AcDataFilter
The abstract base class for all data filter classes. Figure 7-27 shows the class
hierarchy of AcDataFilter.

Figure 7-27 AcDataFilter

Description AcDataFilter is the base class for the two general types of data filter classes:
AcSingleInputFilter and AcMultipleInputFilter. A single-input filter accepts input
from one data adapter, processes the data, then passes it to the next data adapter
or the report section. A multiple-input filter performs the same tasks but accepts
input from any number of data adapters.

Subclassing AcDataFilter
You typically do not derive directly from AcDataFilter. To customize a data filter,
use one of the data filters derived from AcDataFilter and override Fetch() to
implement the filtering algorithm.

See also Class AcDataAdapter
Class AcMultipleInputFilter
Class AcSingleInputFilter

Methods for Class AcDataFilter

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcComponent

AcDataAdapter

AcDataFilter

C h a p t e r 7 , A F C c l a s s e s 507

AcDataFrame

Class AcDataFrame
Defines the logic for how frames work with data rows. Figure 7-28 shows the
class hierarchy of AcDataFrame.

Figure 7-28 AcDataFrame

Description AcDataFrame provides the mechanism for building a frame’s contents using
values from a data row. The mechanism includes passing a data row to each of the
frame’s contents and accumulating aggregates.

Building a frame
The framework calls BuildFromRow() to set the data value of a control in a frame
using a value from a data row. The frame’s BuildFromRow() method calls
BuildFromRow() for each of the frame’s components.

The return value of BuildFromRow() indicates whether the frame processed the
row. The frame’s BuildFromRow() method determines its return value based on
the return values of each component’s BuildFromRow() method. The frame uses
this return value to determine whether to continue passing rows to the frame’s
components or instantiate a new frame to process a row.

A frame can process either a single row or an unlimited set of rows.

If the frame processes only a single row, BuildFromRow() returns Finished
Building after the frame’s contents set their values. This return value indicates to
the frame’s container that it should instantiate a new frame to process the next
data row.

If a frame processes multiple rows, as when the frame contains a chart,
BuildFromRow() always returns Continue Building. This return value indicates
to the frame’s container that it should send further data rows to the frame.

If any one of the frame’s contents returns Continue Building, the frame’s
BuildFromRow() method returns Continue Building. This process supports
including, for example, a line control, which requires no rows, a text control,
which requires one row, and a chart, which processes multiple rows, within a
single frame. The controls that process only one row processes only the first row
and ignores all subsequent rows.

AcComponent

Component

AcVisualComponent

AcBaseFrame

AcDataFrame

508 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataFrame

You can override a frame’s BuildFromRow() method to perform custom
processing, such as conditionally accepting rows or accepting a limited number of
rows.

Subclassing AcDataFrame
You typically do not subclass AcDataFrame unless you must change the way a
frame builds its contents.

Methods for Class AcDataFrame

Methods inherited from ClassAcBaseFrame

AddToAdjustSizeList, BindToFlow, FindContentByClass, FindContentByClassID,
GetControl, GetControlValue, GetPageNumber, GetSearchValue,
IsDataFrame, IsFooter, IsHeader, MakeContents, RebindToFlow,
SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class Component

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 509

AcDataRow

Class AcDataRow
A class that defines the characteristics of a data row. A data row is a record
structure that contains data from a single input record, processed into a format
that the report accepts. Typically, each variable in a data row maps to a single
column, or field, of a record. Figure 7-29 shows the class hierarchy of AcDataRow.

Figure 7-29 AcDataRow

Description AcDataRow works with data adapter classes, such as AcDataSource,
AcSingleInputFilter, and AcMultipleInputFilter, to produce formatted data for
the report. If you use the Query Editor or Textual Query Editor to build a SQL
query, the framework creates the data row. If you create a custom data source or a
custom data filter, you must create a custom data row that works with the data
source or filter. Data rows are transient. The Factory creates them, passes them to
the report, and deletes them.

The data source retrieves data from an input source and creates an instance of a
subclass of AcDataRow for each record. The data filter filters and sorts the data as
needed. Data filters are optional.

Figure 7-30 gives a high-level view of how the data from an input source is
processed into data rows and sent to the report.

Figure 7-30 Overview of how data goes from an input source to a report

Subclassing AcDataRow
You must create a subclass of AcDataRow when you create a custom data source
or filter. To derive a subclass from AcDataRow, take the following steps:

■ Add the variables that represent the fields of the data row.

AcComponent

AcDataRow

Data source

Data row 1

Data filter

Data row 2

Data stream

Input Source

Data

Report section

510 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataRow

■ Override the OnRead() method to compute the variable values based on the
input fields.

The following example shows a derived AcDataRow class that defines the
variables to hold the result of a query. The query returns four columns,
AccountName, Address, CreditLimit, DueDate.

Class AccountSummary Subclass of AcDataRow
Dim AccountName As String
Dim Address As String
Dim CreditLimit As Currency
Dim DueDate As Date

End Class

Working with columns stored in a data row
Conceptually, data rows are composed of columns. The Actuate framework
provides the following options for defining columns:

■ A data row variable

■ A table.column alias for a data row variable

■ A method

■ A member of a class or structure member variable

■ A variable index

The framework provides two methods, GetValue() and SetValue() to help you
work with columns stored in a data row. GetValue() retrieves the value of a
column stored in a data row. SetValue() updates the value of a column stored in a
data row. Using GetValue() and SetValue() simplifies programming by reducing
the need to set up object reference variables for the data row columns that you
need to retrieve or update. See the description of the AcDataRow::GetValue
method for examples of using the various options for defining columns.

Variable
Table 7-25 describes the AcDataRow variable.

See also Class AcDataAdapter
Class AcDataSource
Class AcReportComponent

Table 7-25 AcDataRow variables

Variable Type Description

RowNumber Integer The number of the current row, starting
with 1, within the data source

C h a p t e r 7 , A F C c l a s s e s 511

AcDataRow

Methods for Class AcDataRow

Methods defined in Class AcDataRow

GetValue, OnRead, SetValue

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDataRow::GetValue method
Returns the value of the specified column or variable. Use GetValue() to write
generic code that accesses the value of a column or variable within your data row.
If you write code for a specific data row type, use an object reference variable for
the data row and Actuate Basic’s dot notation to access the variable directly. This
code runs faster than calling GetValue() to access a data row variable.

You can use the following five types of values to pass the column name:

■ A data row variable name

■ A database column alias

■ A method name

■ A member of a class or a structure member variable

■ A variable index

Using a data row variable name
The simplest approach is to call GetValue() using a data row variable name. If
you create your own data row, you can use GetValue() to find the value of a
variable. The following example shows how to get the account name from a data
row variable named AccountName in the AccountSummary data row:

Sub AccountInfo(row As AcDataRow)
DataValue = row.GetValue("AccountName")

End Sub

Using a database column alias
When you use Query Editor or Textual Query Editor to build a query data stream,
the framework builds a data row for you. The framework also maps from
database table.column names to data row variables. You can then pass one of
these database names to GetValue() to obtain the value of the corresponding data
row variable. This feature of GetValue() enables dynamic binding, the ability to
work with a row at run time, even if you do not know the exact data type of the
row. To write code that operates independently of the data row structure, use
table.column names to refer to columns.

512 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataRow

The following example shows how to retrieve a customer name derived from the
Name column of the Customer table:

Sub AccountInfo(row As AcDataRow)
DataValue = row.GetValue("Customer.Name")

End Sub

Using a method name
Sometimes you need to create a set of computations on columns. For example, if
you have a data row for a customer invoice, you might want to know how much
of the total amount of that invoice is not yet due, how much is now due, or how
much is 30, 60, or 90+ days past due. You can create a set of variables to hold these
amounts. It is easier, however, to provide a set of methods that perform the
calculation, as shown in the following example:

Function Amount30DaysLate() As Currency
If DueDate + 30 <= Date() And Date() < DueDate + 60 Then

Amount30DaysLate = InvoiceAmount
Else

Amount30DaysLate = 0.0
End If

End Function

You can refer to such methods using square bracket notation in value expressions
for controls or by using the GetValue() method. You can create methods that act
like data row columns. These methods have the following restrictions:

■ They must return a value consistent with GetValue() return values.

■ They must accept no arguments.

The following example accesses the Amount30DaysLate() method:

[Amount30DaysLate]
row.GetValue("Amount30DaysLate")

Using a structure or an object
You can use square bracket notation in a value expression or GetValue() in code
to access members of structures or objects nested inside the data row. In the
following example, the data row contains an AddressStruct structure that
declares the FullName, Street, City, State, and Zip variables:

Type AddressStruct
FullName As String
Street As String
City As String
State As String
Zip As String

End Type

C h a p t e r 7 , A F C c l a s s e s 513

AcDataRow

If the customer data row also has a variable Address of type AddressStruct, you
can access members of that structure using dot notation as shown in the following
example:

[Address.FullName]
[Address.Street]
…
row.GetValue("Address.FullName")
row.GetValue("Address.Street")
…

Similarly, if the data row contains an object reference variable to another object,
you can access members of that object using the same dot syntax. You can still
convert the AcDataRow variable to point to your particular data row class, then
access the variable directly, as shown in the following example:

Sub AccountInfo(row As AcDataRow)
Dim accRow As AccountSummary
Set accRow = row
DataValue = accRow.AccountName

End Sub

If you access the data row variable directly, your control works with only one
specific type of data row. To ensure the code works with any data row that has the
correct column or variable name, access data in a data row using the GetValue()
method.

Using a variable index
You can use a variable index to access data row variables. For example, to iterate
over variables in a data row, you can access the value of any data row variable by
using an index corresponding to the variable’s position in the data row. The
following code sample uses a variable index to access the values of data row
variables. The Actuate Basic function, GetVariableCount, returns the total number
of variables in the data row.

Sub AccountInfo(row As AcDataRow)
Dim accRow As AccountSummary
Dim colIndex As Integer
Dim DataValue As Variant
' Compute the index of the first local variable in a
' data row subclassed from AcDataRow.
Static firstRowVariableIndex As Integer
if (firstRowVariableIndex = 0) Then

Dim r As AcDataRow
Set r = New AcDataRow
firstRowVariableIndex = GetVariableCount(r) + 1
Set r = Nothing

End If
…

514 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataRow

Set accRow = row
For colIndex = firstRowVariableIndex to

+ GetVariableCount(accRow)
…

DataValue = accRow.GetValue(colIndex)
…

Next
…
End Sub

About the order of evaluation
Typically, the name you provide to GetValue() uniquely identifies one column
alias, variable, function, structure, or object. If you have a column alias and a
variable, function, structure, or object with the same name, the framework uses
the column alias.

Syntax Function GetValue(colName As String) As Variant

Parameters colName
The column or variable name with the value to return.

Function GetValue(index As Integer) As Variant

index
The index of the variable that holds the value to return.

Returns The value of the given column or variable.

See also AcDataRow::GetValue method
AcDataRow::SetValue method

AcDataRow::OnRead method
Called by the data adapter after it creates the data row and sets the data row
values. You can override OnRead() to manipulate variables in a data row. For
example, you can set the value of a calculated variable based on other variables in
the data row.

Syntax Sub OnRead()

Example The following example overrides the data row’s OnRead() method to calculate a
value for the ExtendedCost variable. The calculation uses values in two other
variables, Cost and Quantity.

Sub OnRead()
Super::OnRead()
ExtendedCost = Cost * Quantity

End Sub

C h a p t e r 7 , A F C c l a s s e s 515

AcDataRow

AcDataRow::SetValue method
Sets the value of the specified column or variable. Use this method in generic
code to set the value of a column or variable in a data row. If you write code for a
specific data row type, use an object reference variable for the data row and
Actuate Basic’s dot notation to access the variable directly. This code runs faster
than calling SetValue() to access a data row variable.

Syntax Function SetValue(colName As Any, value As Any) As Boolean

Parameters colName
The column or variable name with the value to set.

value
The data value for the column or variable. The data type for this value must be
the same as the type of the column. If the types do not match, it must be possible
to convert the value’s data type to the type of the column.

Function SetValue(index As Integer, value As Any) As Boolean

index
The index of the variable with the value to set.

Returns True if the value is set.
False if the data type for the value is not the same as the type for the column and
it is not possible to convert the value’s data type to the column’s type.

See also AcDataRow::GetValue method
Class AcDataRowBuffer
Class AcDataRowSorter

516 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataRowBuffer

Class AcDataRowBuffer
A data filter that converts a sequential data stream into one that supports random
access by buffering data rows. Figure 7-31 shows the class hierarchy of
AcDataRowBuffer.

Figure 7-31 AcDataRowBuffer

Description Many data sources provide only the ability to read rows in a sequential first-to-
last order. In some cases, you need to move through the data in random order, or
make multiple passes over certain groups of data to print the data first in a chart,
then in a table. The AcDataRowBuffer class acts as a converter to change a
sequential data source into a random-access data stream. It does so by storing, or
buffering, data rows as you read them so that you can return to them later. You do
not need to use this class if the data source already provides random access.

Because this class supports random access, the CanSeek() method returns True.
All the random-access methods, such as SeekTo() and Rewind(), are available.

AcDataRowBuffer lets you manipulate data as if you had direct access to the
input source. You can locate rows by specifying a row number with SeekTo() or
by specifying a relative position using SeekBy(). You can rewind to the beginning
of the data buffer using Rewind() or advance to the end using SeekToEnd(). The
row number starts at 1. See class AcDataAdapter for details.

Optionally, you can flush the buffer as needed to recover disk space. For example,
if you must make two passes over data for each customer, you can flush the rows
for each customer as you complete the process. Flushing the buffer does not
change the way you access rows. You cannot seek back to revisit the flushed rows.

You can also use the data row buffer class to gather data rows the report creates
programmatically. For example, you can produce a report of account activity. For
every account with exceptional items, you can create a second data row to print in
a second report. To process these rows, create a data row buffer without an input
adapter. Call AddRowToBuffer() to add each exception row to the buffer. Then,
in a later report section, you can read and process these rows in the usual way.

See also Class AcDataAdapter
Class AcDataSource
Class AcSingleInputFilter

AcComponent

AcDataAdapter

AcDataFilter

AcSingleInputFilter

AcDataRowBuffer

C h a p t e r 7 , A F C c l a s s e s 517

AcDataRowBuffer

Methods for Class AcDataRowBuffer

Methods defined in Class AcDataRowBuffer

AddRowToBuffer, GetBufferCount, GetBufferStart

Methods inherited from Class AcSingleInputFilter

SetInput, GetInput, NewInputAdapter

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDataRowBuffer::AddRowToBuffer method
Adds a row to the end of the data row buffer. Use this method to add a row to the
buffer programmatically. This method does not modify the current read position.

Syntax Sub AddRowToBuffer(row As AcDataRow)

Parameter row
The data row to add to the buffer.

AcDataRowBuffer::GetBufferCount method
Gets the number of rows currently in the buffer. Rows that have been flushed are
not counted.

Syntax Function GetBufferCount() As Integer

Returns The number of rows currently in the buffer.

AcDataRowBuffer::GetBufferStart method
Gets the position of the first row in the buffer, relative to the beginning of the
input set. If the buffer is empty, this method returns the position of the row that
will become the first row in the buffer the next time you call Fetch().

Syntax Function GetBufferStart() As Integer

Returns Returns the position of the first row in the buffer, relative to the beginning of the
input set.

518 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataRowSorter

Class AcDataRowSorter
A data filter that has the capability to sort rows in a buffer. Figure 7-32 shows the
class hierarchy of AcDataRowSorter.

Figure 7-32 AcDataRowSorter

Description AcDataRowSorter is a data filter that uses the buffering capabilities of its
superclass, AcDataRowBuffer, to read and store data rows. In addition,
AcDataRowSorter provides a framework for subclasses to implement a sort
algorithm.

To implement the sort functions and process data rows:

■ Derive a class from AcDataRowSorter.

■ Override the Compare() method, which implements the sort algorithm.

See also Class AcDataAdapter
Class AcDataSource
Class AcDataRowBuffer
Class AcSingleInputFilter

Methods for Class AcDataRowSorter

Methods defined in Class AcDataRowSorter

Compare, CompareKeys

Methods inherited from Class AcDataRowBuffer

GetBufferCount, GetBufferStart, AddRowToBuffer

Methods inherited from Class AcSingleInputFilter

SetInput, GetInput, NewInputAdapter

AcComponent

AcDataAdapter

AcDataFilter

AcSingleInputFilter

AcDataRowBuffer

AcDataRowSorter

C h a p t e r 7 , A F C c l a s s e s 519

AcDataRowSorter

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDataRowSorter::Compare method
Compares two data rows. The Compare() method determines whether one row
comes before or after another in the sort order. The comparison is based on sort
keys. A sort key is a column on which you want to base the sort.

Do not use a non-integer number field as a sort key because of the rounding
errors that can result from converting from a floating point to binary form.

When writing the Compare() method, cascade the comparisons as follows:

■ If the first sort key column differs between the two rows, return 1 if
key 1 > key 2 or -1 if key 1 < key 2.

■ If the first sort key columns are the same, then repeat the process on the
second key and any subsequent keys.

You must override the Compare() method when you create a custom sort filter. If
you fail to override this method, you get a run-time error when the sorter
attempts to sort the data.

Syntax Function Compare(row1 As AcDataRow, row2 As AcDataRow) As Integer

Parameters row1
A reference to the first row to compare.

row2
A reference to the second row to compare.

Returns A positive number if row1 goes after row2.
0 if row1 equals row2.
A negative number if row1 goes before row2.

Example The following example compares two customers by state. If the states are
identical, then Compare() compares the customer names.

Function Compare(row1 As AcDataRow, row2 As AcDataRow) As
Integer
Dim Cust1 As CustomerRow
Dim Cust2 As CustomerRow
Set Cust1 = row1

520 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataRowSorter

Set Cust2 = row2
Compare = CompareKeys(Cust1.State, Cust2.State)
If Compare = 0 Then

Compare = CompareKeys(Cust1.CustName, Cust2.CustName)
End If

End Function

See also AcDataRowSorter::CompareKeys method

AcDataRowSorter::CompareKeys method
Compares two sort keys in a column. You typically call CompareKeys() from
Compare(), which defines the sort algorithm. For an example of using
CompareKeys(), see the example in AcDataRowSorter::Compare method.

Syntax Function CompareKeys(key1 As Variant, key2 As Variant) As Integer

Parameters key1
A reference to the first key to compare.

key2
A reference to the second key to compare.

Returns -1 if key1 is less than key2.
0 if key1 equals key2.
1 if key1 is more than key2.

See also AcDataRowSorter::Compare method

C h a p t e r 7 , A F C c l a s s e s 521

AcDataSect ion

Class AcDataSection
An abstract base class that defines the logic sections use to process a group of data
rows. Figure 7-33 shows the class hierarchy of AcDataSection.

Figure 7-33 AcDataSection

Description A data section processes a group of data rows. AcDataSection is the base class for
the two types of data sections, Section and AcGroupSection.

A report section defines a group as the entire set of data rows the section reads
from a data stream. A report section opens a data stream and retrieves data rows
from it.

A group section defines a group as a set of data rows that have the same key
value, such as data rows with a state field value of CA. A group section relies on
another component to provide it with data rows.

Both types of data sections process groups of data rows the same way. The
processing involves the five component references that AcDataSection defines.
Table 7-26 describes how the data section processes rows for components in these
component references.

AcComponent

Component

AcSection

AcDataSection

Table 7-26 Overview of how a data section processes component references

Component
reference Description Process

PageHeader Contains a frame that
appears at the top of
each page, except the
first page

The data section keeps track of the page and flow
start and end events to build the page header frame.
The data section passes the current row to the page
header frame when the frame is built.

Before Contains a frame that
appears before the first
row in a group

The data section’s Start() method instantiates the
Before frame. The Before frame’s BuildFromRow()
method is called to process each row the section
processes. The data section finishes the Before frame
after the frame processes the last row in the group.

(continues)

522 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataSect ion

The processes described in the preceding table explain what occurs when a data
section uses running, or one-pass, aggregates, such as an After frame that
calculates the total orders for a group of rows. The process changes if the section
uses lookahead, or two-pass, aggregates, such as an After frame that calculates
the order value for a group of rows as a percentage of all totals, across all groups.
For lookahead aggregates, the data section has to process the data rows twice.
The first pass calculates the aggregates. The second pass builds the contents as
described in the preceding table.

Subclassing AcDataSection
Because AcDataSection is an abstract class, do not subclass AcDataSection.

Variables
Table 7-27 lists AcDataSection variables.

Content Contains a section or a
frame that processes
each data row in a
group

The data section instantiates the content component
when it processes the first row. The component’s
BuildFromRow() method is called to process each
row until it returns Finished Building.

After Contains a frame that
appears after the last
row in a group

The data section’s Start() method instantiates the
After frame. The After frame’s BuildFromRow()
method is called to process each row the section
processes. The data section finishes the After frame
after the frame processes the last row in the group.

PageFooter Contains a frame that
appears at the bottom
of each page, except
the last

The data section keeps track of the page and flow
start and end events to build the page footer frame.
The data section passes the current row to the page
footer frame when the frame is built.

Table 7-26 Overview of how a data section processes component references (continued)

Component
reference Description Process

Table 7-27 AcDataSection variables

Variable Type Description

ContiguousPageFooter Boolean Determines whether the page footer
appears directly under the last frame on
the page or at the bottom of the page.

ShowFooterOnLast Boolean Determines whether the page footer
appears on the last page. The default
setting places the page footer on every
page except the last.

C h a p t e r 7 , A F C c l a s s e s 523

AcDataSect ion

Properties
Table 7-28 lists AcDataSection properties.

ShowHeaderOnFirst AcPage
Header
Options

Determines whether the page header
appears on the first page. The default
setting places the page header on every
page except the first.

Table 7-28 AcDataSection properties

Property Type Description

ContiguousPage
Footer

Pagination Determines whether the page footer
appears directly under the last frame on
the page or at the bottom of the page.

PageBreakBetween Pagination Determines whether the section should
start each Content component except
page headers and footers at the top of a
new page.

ShowFooterOnLast Pagination Determines whether the page footer
appears on the last page. The default
setting displays the page footer on
every page except the last.

ShowHeaderOnFirst Pagination Determines whether the page header
appears on the first page. Valid values
are:
■ AsColumnHeader. The column

headers appear after the Before
frame and immediately before the
first set of columns.

■ AsPageHeader. The page header
appears before the Before frame.

■ NoHeaderOnFirst. The page header
does not appear on the first page.

The default value is NoHeaderOnFirst.

Table 7-27 AcDataSection variables

Variable Type Description

524 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataSect ion

Methods for Class AcDataSection

Methods defined in Class AcDataSection

GetAfter, GetBefore, GetFirstPageFooter, GetFirstPageHeader, GetPageFooter,
GetPageHeader, NewAfter, NewBefore, NewContent, NewPageFooter,
NewPageHeader, OnEmptyGroup

Methods inherited from Class AcSection

CommittedToFlow, DeletePageFrame, FinishConnection, FinishFlow,
FinishPage, GetComponentACL, GetCurrentRow, GetSearchValue,
NewPage, ObtainConnection, PageBreakAfter, PageBreakBefore,
SetSearchValue, SetSecurity, StartFlow, StartPage, StopAfterCurrentFrame,
StopAfterCurrentRow, StopNow, TocAddComponent, TocAddContents

Methods inherited from Class Component

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDataSection::GetAfter method
Retrieves a reference to the component in the After slot. You need a reference to
the component if, for example, you want to change properties of an existing After
component.

Syntax Function GetAfter() As Component

Returns The component in the After slot.
Nothing if there is no component in the After slot.

See also AcDataSection::GetBefore method
AcDataSection::GetPageFooter method
AcDataSection::GetPageHeader method

C h a p t e r 7 , A F C c l a s s e s 525

AcDataSect ion

AcDataSection::GetBefore method
Retrieves a reference to the component in the Before slot of this report or group
section. You need a reference to the component if, for example, you want to
change properties of an existing Before component.

Syntax Function GetBeforeFrame() As Component

Returns The component in the Before slot.
Nothing if there is no component in the Before slot.

See also AcDataSection::GetAfter method
AcDataSection::GetPageFooter method
AcDataSection::GetPageHeader method

AcDataSection::GetFirstPageFooter method
Returns the page footer of the first page in a report or group section. The page
footer component exists even if the section does not contain a visible page footer.
GetFirstPageFooter() is a viewing method.

When performing a search on page footer controls, the search engine examines
the instance of the page footer GetFirstPageFooter() returns.

Syntax Function GetFirstPageFooter() As AcBaseFrame

Returns The page footer component.
Nothing if the page footer does not exist in the report design.

AcDataSection::GetFirstPageHeader method
Returns the page header of the first page in a report or group section. The page
header component exists even if the section does not contain a visible page
header, such as when if the ShowHeaderOnFirst property is set to
NoHeaderOnFirst and the section starts and ends on the same page.
GetFirstPageHeader() method is a viewing method.

When performing a search on page header controls, the search engine examines
the instance of the page header GetFirstPageHeader() returns.

Syntax Function GetFirstPageHeader() As AcBaseFrame

Returns The page header object.
Nothing if the page header does not exist in the report design.

AcDataSection::GetPageFooter method
Returns a reference to the PageFooter component for the currently active flow.
You need a reference to the component if, for example, you want to change
properties of an existing PageFooter component.

526 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataSect ion

Syntax Function GetPageFooter() As AcBaseFrame

Returns The reference to the PageFooter component for the currently active flow.
Nothing if there is no PageFooter component.

See also AcDataSection::GetAfter method
AcDataSection::GetBefore method
AcDataSection::GetPageHeader method

AcDataSection::GetPageHeader method
Returns a reference to the PageHeader component in the current flow. You need a
reference to the component if, for example, you want to change properties of an
existing PageHeader component.

Syntax Function GetPageHeader() As AcBaseFrame

Returns Returns the page header for the currently active flow.
Nothing if there is no component in the PageHeader slot.

See also AcDataSection::GetAfter method
AcDataSection::GetBefore method
AcDataSection::GetPageFooter method

AcDataSection::NewAfter method
Instantiates the component in the After slot. You can override NewAfter() to
conditionally instantiate an After component. For example, to display a different
After frame depending on the value of a data row variable, you can override
NewAfter() to write the conditional logic.

Syntax Function NewAfter() As Component

Returns The component in the After slot.

See also AcDataSection::NewContent method

AcDataSection::NewBefore method
Instantiates the component in the Before slot. You can override NewBefore() to
conditionally instantiate a Before component. For example, to display a different
Before frame depending on the value of a data row variable, you can override
NewBefore() to write the conditional logic.

Syntax Function NewBefore() As Component

Returns The component instantiated in the Before slot.

See also AcDataSection::NewContent method

C h a p t e r 7 , A F C c l a s s e s 527

AcDataSect ion

AcDataSection::NewContent method
Instantiates the component in the Content slot of the report or group section. You
can override NewContent() to conditionally instantiate a Content component.
For example, to display a different frame depending on the value of a data row
variable, you can override NewContent() to write the conditional logic.

Syntax Function NewContent() As Component

Returns The component instantiated in the Content slot.

Example The following example shows how to override NewContent() to instantiate one
of three frames depending on the type of customer. One frame is for business
customers, another frame is for residential customers, and another frame is for
government customers.

Function NewContent() As Component
Dim cust As CustomerRow
Set cust = GetCurrentRow()

If row Is Nothing Then
 'Creating a content for use in detecting two-pass

aggregates
 'This report has no aggregates, so just return Nothing
Exit Function

End If

Select Case cust.CustType
Case "R"

Set NewContent = New Persistent ResidentialCustomerFrame
Case "S"

Set NewContent = New Persistent BusinessCustomerFrame
Case "G"

Set NewContent = New Persistent GovtCustomerFrame
End Select

End Function

See also AcDataSection::NewAfter method
AcDataSection::NewBefore method
AcDataSection::NewPageFooter method
AcDataSection::NewPageHeader method

AcDataSection::NewPageFooter method
Instantiates the component in the PageFooter slot. You can override
NewPageFooter() to conditionally instantiate a PageFooter component. For
example, to display a different frame depending on the value of a data row
variable, you can override NewPageFooter() to write the conditional logic.

Syntax Function NewPageFooter() As AcBaseFrame

528 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataSect ion

Returns The component instantiated in the PageFooter slot.

See also AcDataSection::NewContent method

AcDataSection::NewPageHeader method
Instantiates the component in the PageHeader slot of the report or group section.
You can override NewPageHeader() to conditionally instantiate a PageHeader
component. For example, to display a different frame depending on the value of a
data row variable, you can override NewPageHeader() to write the conditional
logic.

Syntax Function NewPageHeader() As AcBaseFrame

Returns The component instantiated in the PageHeader slot.

See also AcDataSection::NewContent method

AcDataSection::OnEmptyGroup method
The report or group section calls OnEmptyGroup() when the section finishes
processing the current group and the group contains no data rows. Override
OnEmptyGroup() to change this behavior. For example, you can output a custom
frame to describe the case or raise an error.

Syntax Sub OnEmptyGroup()

C h a p t e r 7 , A F C c l a s s e s 529

AcDataSource

Class AcDataSource
A base class that defines how a data source retrieves data from an input source
and creates data rows. Figure 7-34 shows the class hierarchy of AcDataSource.

Figure 7-34 AcDataSource

Description AcDataSource is the base class for data adapters that read data from an input
source such as a query, a file, or another external source. AcDataSource adds to
the base data adapter class some general functionality that is useful when
creating data sources.

AcDataSource defines and maintains a variable, IsAtEnd, that keeps track of a
data source’s state. You can set IsAtEnd to True when the report detects that the
data source has read the last input row.

Subclassing AcDataSource
Create a subclass directly from AcDataSource to retrieve data from an input
source that is not a database. For example, if a report uses data from a
spreadsheet or a text file, you need to create a data source that can read from a
spreadsheet or text file. To create a custom data source, take the following steps:

■ Override Start() to open an input source, such as a flat file.

■ Override Fetch() to read data rows from an input source.

■ Override Finish() to close an input source.

Variable
Table 7-29 describes the AcDataSource variable.

See also Class AcDataAdapter
Class AcDataRow
Class AcMultipleInputFilter
Class AcSingleInputFilter

AcComponent

AcDataAdapter

AcDataSource

Table 7-29 AcDataSource variables

Variable Type Description

IsAtEnd Boolean The status of the data source state

530 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDataSource

Methods for Class AcDataSource

Method defined in Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDataSource::HasFetchedLast method
Determines whether the data source has fetched the last row. HasFetchedLast()
returns the value of the IsAtEnd variable. It is the responsibility of derived classes
to ensure that this variable is set correctly. Instead of calling HasFetchedLast() to
determine whether the data source has all the data rows, it is better to use
Fetch()’s return value. Fetch() returns Nothing when the last data row returns.

HasFetchLast() is primarily used when data sources must prevent reading past
the end of their input sources.

Syntax Function HasFetchedLast() As Boolean

Returns True if the data source retrieved the last data row.
False if there are more data rows to retrieve.

C h a p t e r 7 , A F C c l a s s e s 531

AcDateTimeControl

Class AcDateTimeControl
A class that you use in the report design to display a date or time. Figure 7-35
shows the hierarchy of AcDateTimeControl.

Figure 7-35 AcDateTimeControl

Description Use the DateTime control to store and display a date or time numeric value. The
value you assign to the control’s ValueExp property must be a date type. If, for
example, you specify Date$() in ValueExp, you get an error message because
Date$() returns a string. To get the current date as a date type, use Now() in
ValueExp. Similarly, if the DateTime control gets its value from a data row
column, make sure the date is a date value and not a string.

Variable
Table 7-30 describes the AcDateTimeControl variable.

Methods for Class AcDateTimeControl

Methods inherited from Class AcDataControl

Format, GetGroupKey, IsSummary

AcComponent

Component

AcVisualComponent

AcControl

AcDataControl

AcDateTimeControl

AcTextualControl

Table 7-30 AcDateTimeControl variables

Variable Type Description

DataValue Date Stores the date and time value. The range is
1 January 100 to 31 December 9999 for dates.
The range is 0:00:00 to 23:59:59 for times.
The default value is Null.

532 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDateTimeContro l

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class Component

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New
Chapter 7AFC classes

C h a p t e r 7 , A F C c l a s s e s 533

AcDBConnect ion

Class AcDBConnection
Chapter 7AFC classes A base class that defines the basic protocol for establishing database connections.

Figure 7-36 shows the class hierarchy of AcDBConnection.

Figure 7-36 AcDBConnection

Description AcDBConnection class is the base class for the following connection classes:

■ AcDB2Connection

■ AcMSSQLConnection

■ AcOdaConnection

■ AcODBCConnection

■ AcOracleConnection

■ AcProgressSQL92Connection

AcDBConnection defines the basics of connecting to and disconnecting from a
database, and the logic for creating the database statement object required to
execute a SQL statement. For information about database statements, see Class
AcDBStatement.

AcDBConnection also defines error-handling methods, such as
GetGeneralError(), GetSpecificError(), GetGeneralErrorText(), and
GetSpecificErrorText(). You can call these methods to display error messages
when the connect or disconnect operations fail.

Properties
Table 7-31 lists AcDBConnection properties.

See also Class AcDBStatement

Methods for Class AcDBConnection

Methods defined in Class AcDBConnection

GetGeneralError, GetGeneralErrorText, GetSpecificError, GetSpecificErrorText,
Prepare

AcComponent

AcConnection

AcDBConnection

534 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBConnect ion

Methods inherited from Class AcConnection

Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDBConnection::GetGeneralError method
Checks for error conditions and returns a general error code. General error codes
are generated by Actuate software and are used for all databases. To return error
codes generated by a specific SQL database, use GetSpecificError().

Table 7-32 lists the general error code constants.

Table 7-31 AcDBConnection properties

Property Type Description

ConfigKey String Specifies the run-time connection properties for
a report. The value of the ConfigKey property
must match the value of the Type attribute for
the connection’s ConnectOptions element in the
configuration file. If the ConfigKey property is
not set, the framework uses the fully qualified
name of the connection component.

Maximum
StringLength

String
Variable

The maximum length of a table field. The
maximum length is 32,672 characters.
The default value is 8,000 characters.

Table 7-32 General error code constants

DB_BadParamTypeForFunc DB_InvalidProcedure

DB_CannotLoadDLL DB_InvalidStatement

DB_CantConvertParameter DB_LoginFailed

DB_CursorNotOpen DB_MaxCursorsOnParm

DB_CursorOnSprocStmtErr DB_MaxCursorsOnStatement

DB_DescNotAvailable DB_NoColumnInfo

DB_EndOfLife DB_NoCurrentConnection

DB_EndOfResults DB_NoError

DB_FuncNotForDB DB_NoResultSetAvailable

DB_FuncNotForDBServer DB_NotSupportedPlatform

DB_FuncNotForDS DB_OutOfCursors

C h a p t e r 7 , A F C c l a s s e s 535

AcDBConnect ion

Syntax Function GetGeneralError() As Integer

Returns The error code.

See also AcDBConnection::GetGeneralErrorText method
AcDBConnection::GetSpecificError method
AcDBConnection::GetSpecificErrorText method

AcDBConnection::GetGeneralErrorText method
Checks for errors and returns a description of the error. Actuate software
generates general error messages for all databases. To return an error message
from a specific SQL database, use GetSpecificErrorText().

Syntax Function GetGeneralErrorText() As String

Returns The text of the Actuate error code.

See also AcDBConnection::GetGeneralError method
AcDBConnection::GetSpecificError method
AcDBConnection::GetSpecificErrorText method

AcDBConnection::GetSpecificError method
Checks for error conditions and returns an error code from a SQL database. To
return general error codes from Actuate software, use GetGeneralError().

Syntax Function GetSpecificError() As Integer

Returns The error code generated by the SQL server.

See also AcDBConnection::GetGeneralError method
AcDBConnection::GetGeneralErrorText method
AcDBConnection::GetSpecificErrorText method

DB_IncompatibleClient DB_OutOfMemory

DB_InternalError DB_OverloadedStoredProc

DB_InvalidConnProperty DB_ParameterNotBound

DB_Invalid_DataType DB_Specific

DB_InvalidDescId DB_TimeOut

DB_InvalidLogin DB_UnauthorizedConnection

DB_InvalidColumn DB_UnboundVariable

DB_InvalidParameter DB_VariableDescMismatch

DB_InvalidParamId

Table 7-32 General error code constants

536 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBConnect ion

AcDBConnection::GetSpecificErrorText method
Checks for error conditions and returns a description of the error from the SQL
server. To return general error messages from Actuate software, use
GetGeneralErrorText().

Syntax Function GetSpecificErrorText() As String

Returns The text of the SQL server error code.

See also AcDBConnection::GetGeneralError method
AcDBConnection::GetGeneralErrorText method
AcDBConnection::GetSpecificError method

AcDBConnection::Prepare method
Creates and prepares a database statement object to execute a SQL statement.

If you use the standard SQL query data source to retrieve data from the database,
the framework calls Prepare(). If you create and execute your own SQL
statements, you must call Prepare(), then call Execute() or open a cursor on the
statement.

Syntax Function Prepare(stmtText As String) As AcDBStatement

Returns The database statement that was prepared.
Nothing if there is an error in the statement.

See also AcDBStatement::Execute method
AcDBStatement::Prepare method

C h a p t e r 7 , A F C c l a s s e s 537

AcDB2Connect ion

Class AcDB2Connection
Establishes a connection to a DB2 database. Figure 7-37 shows the class hierarchy
of AcDB2Connection.

Figure 7-37 AcDB2Connection

Description Use the AcDB2Connection class to establish a connection to a DB2 database. The
report must set the DLL path, user name, password, and data source prior to
connecting. Once connected, the report should not change these values.

Variables
Table 7-33 lists AcDB2Connection variables.

Properties
Table 7-34 lists AcDB2Connection properties.

AcComponent

AcConnection

AcDBConnection

AcDB2Connection

Table 7-33 AcDB2Connection variables

Variable Type Description

DataSource String The DB2 data source

DllPath String The name of the DLL providing the client
database

Password String The client password for the connection

UserName String The client user name for the connection

Table 7-34 AcDB2Connection properties

Property Type Description

DataSource String The DB2 data source

DllPath String The name of the DLL providing the client
database

Password String The client password for the connection

UserName String The client user name for the connection

538 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDB2Connect ion

About DB2 data types
Table 7-35 describes the default conversion between DB2 and Actuate data types.

Table 7-35 Default mapping of DB2 to Actuate data types

DB2 data type Maps to

Bigint Actuate Long. Can map to Actuate Currency,
Double, Integer, Single, or String.

Binary Actuate String.

Bit Actuate Integer. Can also map to Actuate Double,
Long, Single, or String.

Blob Actuate String.

Char Actuate String.

Clob Actuate String.

Date Actuate Date. Can also map to Actuate String.

Dbclob Actuate String.

Decimal Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, or String.

Double Actuate Double. Can also map to Actuate Currency,
Single, or String.

Float Actuate Double. Can also map to Actuate Currency,
Single, or String.

Graphic Actuate String.

Integer Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Longvarbinary Actuate String.

Longvarchar Actuate String.

Longvargraphic Actuate String.

Numeric Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, or String.

Real Actuate Single. Can also map to Actuate Currency,
Double, or String.

Smallint Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Time Actuate Date. Can also map to Actuate String.

Timestamp Actuate Date. Can also map to Actuate String.

Tinyint Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

C h a p t e r 7 , A F C c l a s s e s 539

AcDB2Connect ion

Methods for Class AcDB2Connection

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Methods inherited from Class AcConnection

Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcDBConnection

GetGeneralError, GetGeneralErrorText, GetSpecificError, GetSpecificErrorText,
Prepare

Type_date Actuate Date. Can also map to Actuate String.

Type_time Actuate Date. Can also map to Actuate String.

Type_timestamp Actuate Date. Can also map to Actuate String.

Varbinary Actuate String.

Varchar Actuate String.

Vargraphic Actuate String.

Table 7-35 Default mapping of DB2 to Actuate data types

DB2 data type Maps to

540 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBCursor

Class AcDBCursor
Provides an Actuate Basic interface to a database cursor for a SQL statement.
Figure 7-38 shows the class hierarchy of AcDBCursor.

Figure 7-38 AcDBCursor

Description A database cursor is an identifier associated with a set of data rows that a SQL
query returns. The cursor manages the retrieval of rows and acts as intermediary
between the data that returns and the data stream component of a report. The
cursor also keeps track of the row position in the set as the database sends each
row to the data source. SELECT statements that return more than one row of data
require a database cursor.

When you use Actuate’s SQL query data source to retrieve data, the framework
executes all the necessary tasks, including creating an instance of AcDBCursor to
manage row retrieval. If you write custom code to handle data retrieval from, for
example, a stored procedure, you must create a connection, a database statement,
and a cursor.

Use the following steps to retrieve rows using a cursor:

■ Use a subclass of AcDBConnection to connect to your database.

■ Prepare the statement object using the connection’s Prepare() method. For
more information about database statement objects, see Class AcDBStatement.

■ Create a cursor using the statement’s AllocateCursor() method.

■ Open the cursor using the cursor’s OpenCursor() method.

■ Bind the cursor to a data row class using the cursor’s BindColumn() method.

■ Instantiate a data row to hold the first row of data.

■ Call the cursor’s Fetch() method to retrieve the first row.

■ Repeat the previous two steps to retrieve each row until Fetch() returns False,
indicating that the cursor has read all available rows.

The framework deletes the statement and cursor when they complete their tasks.
Actuate software generates an error if you call the Delete() method to delete a
cursor.

Example You can use the New() method to create a cursor. In the following code example,
the two Set statements are equivalent:

Sub Example(stmt As AcDBStatement)
Dim cursor1 As AcDBCursor
Dim cursor2 As AcDBCursor
Set cursor1 = stmt.AllocateCursor()

AcDBCursor

C h a p t e r 7 , A F C c l a s s e s 541

AcDBCursor

Set cursor2 = New AcDBCursor(stmt)
End Sub

You can also use the AcDBStatement::AllocateCursor method to create a cursor.

Methods for Class AcDBCursor

Methods defined in Class AcDBCursor

BindColumn, BindParameter, CloseCursor, DefineProcedureInputParameter,
DefineProcedureOutputParameter, DefineProcedureReturnParameter,
Delete, Fetch, GetConnection, GetOutputParameter, GetProcedureStatus,
GetStatement, IsOpen, New, OpenCursor, SetProperty, StartNextSet

AcDBCursor::BindColumn method
Binds a database column to a data row variable. Use the BindColumn() method
to specify how the framework copies column data to the data row. Call
BindColumn() repeatedly until you have bound each column to a data row
variable. All columns must be bound to variables of a single class. Figure 7-39
shows conceptually how columns are bound to variables. In the following
example, you call BindColumn() six times.

Figure 7-39 Column binding

After binding the columns to the data row variables, call Fetch() to retrieve each
row from the database.

Syntaxes Sub BindColumn(columnID As Integer, className As String, memberName As
String)

Sub BindColumn(columnName As String, className As String, memberName
As String)

Parameters columnID
The index of the column to which to bind the data row variable. The first column
has an index of 1. The index of each column is determined by its position in the
SELECT clause.

columnName
The name of the column to which to bind the data row variable. The name must
be the same as the column name or alias used in the SELECT clause.

Row returned by the
SELECT statement

Columns

Variables

Data row

542 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBCursor

className
The name of the data row class. This class is typically a subclass of AcDataRow.
You can, however, bind column data to variables in any class.

memberName
The name of the variable in the data row to hold the output data.

Example In the following example, a SELECT statement gets the names of contacts whose
last names are Franco. A cursor is required because the SELECT statement returns
data rows. The calls to BindColumn() set up the association between the columns
and the FirstName and LastName variables in MyRow.

Class MyRow
Dim FirstName As String
Dim LastName As String

End Class

Sub Example(connection As AcDBConnection)
Dim stmt As AcDBStatement
Dim cursor As AcDBCursor
Dim row As MyRow

' Prepare the statement
Set stmt = connection.Prepare("SELECT contact_first,

contact_last FROM Customers WHERE contact_last =
'Franco'")

' Open the cursor
Set cursor = stmt.AllocateCursor()
cursor.OpenCursor()

' Bind the columns to the data row variables
cursor.BindColumn(1, "MyRow", "FirstName")
cursor.BindColumn(2, "MyRow", "LastName")

' Instantiate the data row and retrieve data
Do While True

Set row = New MyRow
If Not cursor.Fetch(row) Then

Exit Do
End If
' Process the row

Loop
End Sub

See also AcDBCursor::Fetch method

C h a p t e r 7 , A F C c l a s s e s 543

AcDBCursor

AcDBCursor::BindParameter method
Assigns the value of an Actuate Basic variable to a cursor parameter. You must
assign a value to all the cursor parameters specified in the associated database
statement text.

Syntaxes Sub BindParameter(parameterId As Integer, var As Any)

Sub BindParameter(parameterName As String, var As Any)

Parameters parameterId
The position of the cursor parameter. The first parameter in the statement is
position 1, the second is position 2, and so on.

var
The variable with the value assigned to the parameter. Its data type should be
appropriate for the parameter.

parameterName
The name of the cursor parameter.

AcDBCursor::CloseCursor method
Closes the cursor. Use CloseCursor() only if you need to reopen the same cursor
later. The framework closes the cursor automatically when it deletes the cursor
object.

Syntax Sub CloseCursor()

See also AcDBCursor::OpenCursor method

AcDBCursor::DefineProcedureInputParameter
method
Defines an input parameter used by a stored procedure. If your report accesses a
stored procedure that uses only input parameters, you must call
DefineProcedureInputParameter() for each parameter to specify the parameter
name and Basic data type that matches the parameter’s type. If the parameter
both accepts an input value and returns an output value, specify the input and
output parameters using DefineProcedureOutputParameter().

Syntax Function DefineProcedureInputParameter(pname As String, val As Variant) As
Boolean

Parameters pname
The name of the input parameter.

val
The value to pass to a stored procedure input parameter.

544 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBCursor

Returns True if the parameter is defined successfully.
A database error is raised if errors are found.

See also AcDBCursor::DefineProcedureOutputParameter method
AcDBCursor::DefineProcedureReturnParameter method

AcDBCursor::DefineProcedureOutputParameter
method
Defines an input and output parameter or an output only parameter used by a
stored procedure. If your report accesses a stored procedure that uses output
parameters, you must call DefineProcedureOutputParameter() for each
parameter to specify the parameter name and Basic data type that matches the
parameter’s type. If the parameter both accepts an input value and returns an
output value, you must also specify the input value to pass.

After defining the stored procedure’s output parameters and executing the stored
procedure, call StartNextSet() to get the value of each output parameter. Output
parameters with a V_CPOINTER Actuate Basic type code cannot be accessed
using GetOutputParameter(). To get a reference to the cursor, call
AcDBStatement::AllocateCursor method.

Syntaxes For parameters that only return output:

Function DefineProcedureOutputParameter(pname As String, tcode As Integer)
As Boolean

For parameters that receive input values and return output:

Function DefineProcedureOutputParameter(pname As String, tcode As Integer,
val as Variant) As Boolean

Parameters pname
The name of the output parameter.

tcode
The Actuate Basic type code that maps to the data type of the stored procedure
output parameter. Valid data types are:

■ V_CURRENCY

■ V_DATE

■ V_DOUBLE

■ V_INTEGER

■ V_LONG

■ V_SINGLE

■ V_STRING

C h a p t e r 7 , A F C c l a s s e s 545

AcDBCursor

val
The value to pass to a stored procedure output parameter that also takes input. If
the corresponding Actuate Basic type code is V_CPOINTER, specify a Null value.

Returns True if parameter is defined successfully.
A database error is raised if errors are found.

See also AcDBCursor::DefineProcedureInputParameter method
AcDBCursor::DefineProcedureReturnParameter method
AcDBStatement::AllocateCursor method

AcDBCursor::DefineProcedureReturnParameter
method
Specifies the data type of the return value from a stored procedure.

Syntax Function DefineProcedureReturnParameter(pname As String, tcode As Integer)
As Boolean

Parameters pname
The name of the parameter that represents the return value.

tcode
The Actuate Basic type code that maps to the data type of the stored procedure
return value. Valid data types are:

■ V_CURRENCY

■ V_DATE

■ V_DOUBLE

■ V_INTEGER

■ V_LONG

■ V_SINGLE

■ V_STRING

Returns True if return value is defined successfully.
A database error is raised if there are errors.

See also AcDBCursor::DefineProcedureInputParameter method
AcDBCursor::DefineProcedureOutputParameter method

AcDBCursor::Delete method
Deletes the cursor object.

Syntax Sub Delete()

546 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBCursor

AcDBCursor::Fetch method
Retrieves one row from a database cursor. To retrieve all rows, execute Fetch() in
a Do loop. When Fetch() finishes retrieving rows, it returns False.

Syntax Function Fetch(dataRow As AnyClass) As Boolean

Parameter dataRow
The data row to which to copy the data. The data row’s variables should already
be bound to the columns with BindColumn().

Returns True if a row is available.
False if there are no more rows. If you are reading from a stored procedure that
returns more than one set of rows, Fetch() returns False at the end of each set.

See also AcDataAdapter::Fetch method
AcDBCursor::BindColumn method

AcDBCursor::GetConnection method
Returns a reference to the connection against which the cursor operates. You need
this reference if, for example, you want to call the connection’s error-handling
methods, such as GetGeneralError() or GetSpecificError().

Syntax Function GetConnection() As AcDBConnection

Returns The connection this cursor uses.

AcDBCursor::GetOutputParameter method
Returns the value of a stored procedure’s output parameter. You should already
have defined each output parameter using DefineProcedureOutputParameter().

GetOutputParameter() returns a single value. To get rows of data, use the
cursor’s Fetch() method.

Syntaxes Function GetOutputParameter(columnName As String) As Variant

Function GetOutputParameter(columnIndex As Integer) As Variant

Parameters columnName
The name of the database column from which the data for the output parameter is
fetched. This argument must be used for output parameters on Oracle stored
procedures. You cannot use output parameters with a data type of V_CPOINTER.

columnIndex
The position of the column from which the data for the output parameter is
fetched. This argument cannot be used for Oracle stored procedures.

Returns Value of the output parameter.

See also AcDBCursor::DefineProcedureOutputParameter method

C h a p t e r 7 , A F C c l a s s e s 547

AcDBCursor

AcDBCursor::GetProcedureStatus method
Returns a preset value that indicates the status of a stored procedure, if status
values were previously defined. GetProcedureStatus() is typically used to
monitor the execution and termination of the stored procedure.

Syntax Function GetProcedureStatus() As Integer

Returns A preset status value.

AcDBCursor::GetStatement method
Returns a reference to the database statement for which the cursor was created.

Syntax Function GetStatement() As AcDBStatement

Returns A reference to the statement for which the cursor was created.

AcDBCursor::IsOpen method
Determines whether the database cursor is open. The return value is useful for
checking the status of the cursor before closing or reopening it, or before
executing a task.

Syntax Function IsOpen() As Boolean

Returns True if the cursor is open.
False if the cursor is not open.

See also AcDBCursor::OpenCursor method
AcDBStatement::AllocateCursor method

AcDBCursor::New method
Constructor method for this class. You cannot call Sub New(), the default
constructor method that has no parameters. Instead, use one of the constructors
that takes parameters.

Syntaxes Sub New()

Sub New(theStatement As AcDBStatement)

Sub New(theStatement As AcDBStatement, parameterName as String)

Parameters theStatement
The statement to use to create the new cursor.

parameterName
The name of a parameter the statement uses.

548 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBCursor

AcDBCursor::OpenCursor method
Opens the database cursor. You can also call OpenCursor() to reopen a cursor
previously closed with CloseCursor().

Another way to open a cursor is to use the statement’s OpenCursor() method.
The difference between the cursor’s OpenCursor() method and the statement’s
OpenCursor() method is that the latter both allocates and opens a cursor.

Syntax Function OpenCursor() As Boolean

Example The following code illustrates the two ways to allocate and open a cursor. The
code assumes the statement is created and prepared.

Dim cursor1 As AcDBCursor
Dim cursor2 As AcDBCursor
' Using the cursor’s AllocateCursor() and OpenCursor()
' methods
Set cursor1 = stmt.AllocateCursor()
cursor1.OpenCursor()
' Using the statement’s OpenCursor() method
Set cursor2 = stmt.OpenCursor()

Returns True if the cursor opens successfully.
False if an error occurs.

See also AcDBCursor::CloseCursor method
AcDBStatement::AllocateCursor method
AcDBStatement::OpenCursor method

AcDBCursor::SetProperty method
Sets a parameter property for a stored procedure.

Syntax Function SetProperty(parameterName As String, parameterValue As
Variant) As Boolean

Parameters parameterName
The name of the parameter.

parameterValue
The parameter value.

Returns True if the property is set.
False if there are errors.

AcDBCursor::StartNextSet method
Starts a new set of rows in a stored procedure. If you are accessing a stored
procedure that returns more than one set of rows, you typically must call
StartNextSet() after Fetch() finishes retrieving a set.

C h a p t e r 7 , A F C c l a s s e s 549

AcDBCursor

StartNextSet() prepares the cursor to read a new set of rows. After calling
StartNextSet(), you go through another process of binding the row columns to
variables of a new data row using BindColumn(), then retrieving rows using
Fetch().

Syntax Function StartNextSet() As Boolean

Returns True if there is another set of data.
False if there are no more data sets.

Example The following example shows how to use a cursor to read rows from a stored
procedure that returns two sets of rows:

Sub Example(connection As AcDBConnection)
Dim stmt As AcDBStatement
Dim cursor As AcDBCursor
Dim order As OrderRow
Dim payment As PaymentRow
' Prepare the statement and open the cursor.
Set stmt = connection.Prepare("CustomerInfo Jones")
Set cursor = stmt.AllocateCursor()
cursor.OpenCursor()
' Prepare for the first set; bind each database column
' to a data row variable.
cursor.BindColumn(1, "OrderRow", "OrderNumber")
' <bind other columns>
' Read the first set until Fetch() returns False.
Do While True

Set order = New OrderRow
If Not cursor.Fetch(order) Then

Exit Do
End If
' <Process the order row>

Loop
' Prepare for the second set, then bind each database column
' to a data row variable.
Cursor.StartNextSet()
Cursor.BindColumn(1, "PaymentRow", "PaymentDate")
' <bind other columns>

' Read the second set until Fetch() returns False.
Do While True

Set order = New PaymentRow
If Not cursor.Fetch(order) Then

Exit Do
End If
' <Process the payment row>

Loop
End Sub

550 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBStatement

Class AcDBStatement
A class that provides a Basic interface to a SQL statement. Figure 7-40 shows the
class hierarchy of AcDBStatement.

Figure 7-40 AcDBStatement

Description A database statement provides a way to execute a SQL statement. Actuate
software supports two kinds of database statements. One kind of statement
executes and returns no data. Examples of such statements include the SQL
CREATE TABLE, INSERT, and UPDATE statements. The other kind of statement
executes and returns one or more rows of data. The SELECT statement is a typical
example.

A statement that returns more than one row of data requires a database cursor. A
database cursor manages the retrieval of rows. For more information about
database cursors, see AcDBCursor.

When you use Actuate’s SQL query data source to retrieve data, the framework
executes all the necessary tasks, including creating the database statement. To
create and execute other SQL statements, you must create an instance of
AcDBStatement.

Using a database statement
The following steps show how to create and execute a SQL statement that does
not return data rows:

■ Establish a connection to the database. You can use the one that a report
creates for you, or you can create your own connection.

■ Prepare the statement object using the connection’s Prepare() method.

■ If the SQL statement accepts parameters with values that are provided later,
use BindParameter() to assign the value of a variable to each parameter.

■ Execute the statement any number of times by calling Execute().

The framework deletes the statement and cursor when they complete their tasks.
The framework generates an error if you call the Delete method to delete a cursor.

For information about executing a SQL statement that returns data rows, see
Class AcDBCursor.

Creating a database statement
You can use the New() method to create a statement. You also can call the
connection’s Prepare() method. The difference between the two methods is that
the connection’s Prepare() method creates and also prepares a statement,

AcDBStatement

C h a p t e r 7 , A F C c l a s s e s 551

AcDBStatement

whereas New() only creates the statement. If you use New(), you must call the
statement’s Prepare() method after New() to prepare the statement. The
following example illustrates the two ways to create and prepare a statement:

Sub Example(connection As AcDBConnection)
Dim stmt1 As AcDBStatement
Dim stmt2 As AcDBStatement

' Using the connection’s Prepare() method
Set stmt1 = connection.Prepare("DROP TABLE MyTable")

' Using the statement’s New() and Prepare() methods
Set stmt2 = New AcDBStatement(connection)
stmt2.Prepare("DROP TABLE MyTable")

End Sub

Methods for Class AcDBStatement

Methods defined in Class AcDBStatement

AllocateCursor, BindParameter, DefineProcedureInputParameter,
DefineProcedureOutputParameter, DefineProcedureReturnParameter,
Delete, Execute, GetOutputCount, GetOutputParameter, GetParameterCount,
GetProcedureStatus, GetStatementText, OpenCursor, Prepare

AcDBStatement::AllocateCursor method
Creates a cursor to read the rows that the statement returns. After you create the
cursor, call the cursor’s OpenCursor() method to open the cursor. This technique
allows you to reuse a cursor multiple times for the same database statement.

If you are using Oracle stored procedures, use AllocateCursor() to create an
AcDBCursor object for an Oracle cursor variable. The cursor variable is an output
parameter on the Oracle stored procedure call statement.

In most cases, you can use OpenCursor() to allocate and open a cursor in one
step.

Syntaxes Function AllocateCursor() As AcDBCursor

Function AllocateCursor(parameterName As String) As AcDBCursor

Parameter parameterName
The name of a cursor variable parameter specified in the Oracle stored procedure.
ParameterName must be enclosed in quotation marks (").

Returns The database cursor that was created.

Example The example shows how to allocate and then open a cursor on an Oracle database
accessed using a stored procedure. EmpCursor is the name of the cursor
parameter on the Oracle stored procedure Call statement.

552 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBStatement

Dim theEmpCursor As AcDBCursor
' Using the cursor’s AllocateCursor() and OpenCursor()
' methods
Set theEmpCursor = stmt.AllocateCursor("EmpCursor")
If theEmpCursor Is Nothing Then

If Not theEmpCursor.OpenCursor() Then
GetDBConnection().RaiseError()
Exit Function

EndIf
End If

See also AcDBCursor::OpenCursor method
AcDBStatement::OpenCursor method

AcDBStatement::BindParameter method
Assigns the value of an Actuate Basic variable to a cursor parameter. You must
assign a value to all the cursor parameters specified in the database statement.

Before calling BindParameter(), you must already have created the statement
using Prepare().

Syntax Sub BindParameter(parameterId As Variant, var As Any)

Parameters parameterId
The position of the parameter to bind. The first parameter in the statement is
position 1, the second is position 2, and so on.

var
The variable with the value assigned to the parameter. Its data type should be
appropriate for the parameter.

Example The following example shows how to execute a parameterized INSERT statement
twice, each time using a different set of parameter values. The example assumes
you have established a connection to the database.

Note that you assign values to the local variables, then bind each parameter to the
corresponding local variable. To execute the statement again with different
values, you must assign the new values to the local variables, and again bind each
parameter to the corresponding local variable.

Sub AnExample(connection As AcDBConnection)
Dim statement As AcDBStatement
Dim val1 As Integer
Dim val2 As Integer
' Prepare the statement with two parameters, :val1 and :val2
Set statement = connection.Prepare("INSERT INTO MyTable

(col1, col2) VALUES (:val1, :val2)")
If statement Is Nothing Then

MsgBox "Failed to prepare the statement"

C h a p t e r 7 , A F C c l a s s e s 553

AcDBStatement

MsgBox connection.GetSpecificErrorText()
Exit Sub

End If

' Assign values to the variables.
val1 = 100
val2 = 200

' Bind each parameter to a variable.
Statement.BindParameter(1, val1)
Statement.BindParameter(2, val2)

' Execute the statements.
If Not statement.Execute() Then

MsgBox "Failed to insert data"
MsgBox connection.GetSpecificErrorText()
Exit Sub

End If

' Execute the statement again with different parameter
' values.
val1 = 500
val2 = 600
' Again, bind each parameter to a variable.
Statement.BindParameter(1, val1)
Statement.BindParameter(2, val2)

If Not statement.Execute() Then
MsgBox "Failed to insert data"
MsgBox connection.GetSpecificErrorText()
Exit Sub

End If
' When this function exits, the framework deletes the
' statement, freeing the statement resources.

End Sub

See also AcDBStatement::Prepare method

AcDBStatement::DefineProcedureInputParameter
method
Defines parameter information for an input parameter used by a stored
procedure. If your report accesses a stored procedure that uses only input
parameters, you must call the DefineProcedureInputParameter() method for
each parameter to specify the parameter name and Basic data type that matches
the parameter’s type. If the parameter both accepts an input value and returns an
output value, specify the input and output parameters using the method,
AcDBStatement::DefineProcedureOutputParameter method.

554 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBStatement

Syntax Function DefineProcedureInputParameter(pname As String, value as Variant)
As Boolean

Parameters pname
The name of the input parameter.

value
The value to pass to the stored procedure.

Returns True if input parameter is defined successfully.
A database error is raised if errors are found.

See also AcDBStatement::DefineProcedureOutputParameter method

AcDBStatement::DefineProcedureOutputParameter
method
Provides parameter information for an output parameter used by a stored
procedure. If your report accesses a stored procedure that uses output
parameters, you must call the DefineProcedureOutputParameter() method for
each parameter to specify the parameter name and Actuate Basic data type that
matches the parameter’s type. If the parameter both accepts an input value and
returns an output value, you must additionally specify the input value to pass.

After defining the stored procedure’s output parameters and executing the stored
procedure, call GetOutputParameter() to get the value of each output parameter.
Output parameters with a V_CPOINTER data type cannot be accessed using
GetOutputParameter(). To get a reference to the cursor, call the
AcDBStatement::AllocateCursor method.

Syntaxes For parameters that only return output:

Function DefineProcedureOutputParameter(pname As String, tcode As Integer)
As Boolean

For parameters that receive input values and return output:

Function DefineProcedureOutputParameter(pname As String, tcode As Integer,
val as Variant) As Boolean

Parameters pname
The name of the output parameter.

tcode
The Actuate Basic type code that maps to the data type of the stored procedure
input or output parameter. Valid data types are:

■ V_CPOINTER

■ V_CURRENCY

■ V_DATE

C h a p t e r 7 , A F C c l a s s e s 555

AcDBStatement

■ V_DOUBLE

■ V_INTEGER

■ V_LONG

■ V_SINGLE

■ V_STRING

val
The value to pass to a stored procedure output parameter that also takes input.

Returns True if input parameter is defined successfully.
A database error is raised if errors are found.

Example The following statement shows how to define an output parameter. Stmt contains
a reference to the database statement:

stmt.DefineProcedureOutputParameter("deptAcct", V_INTEGER)

The following statement shows how to declare an input and output parameter on
an Oracle stored procedure as a cursor variable:

stmt.DefineProcedureOutputParameter("empCursor", V_CPOINTER,
NULL)

See also AcDBStatement::DefineProcedureInputParameter method
AcDBStatement::GetOutputParameter method

AcDBStatement::DefineProcedureReturnParameter
method
Specifies the data type of a return parameter.

Syntax Function DefineProcedureReturnParameter(pname As String, tcode As Integer)
As Boolean

Parameters pname
The name of the return parameter.

tcode
The Actuate Basic type code that maps to the data type of the stored procedure
return parameter. Valid data types are:

■ V_CPOINTER

■ V_CURRENCY

■ V_DATE, V_DOUBLE

■ V_INTEGER

■ V_LONG

556 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBStatement

■ V_SINGLE

■ V_STRING

Returns True if the return parameter is defined successfully.
A database error is raised if errors are found.

Example The following statement shows how to define a cursor variable as a return
parameter for an Oracle stored procedure:

stmt.DefineProcedureReturnParameter("mgrCursor", V_CPOINTER)

See also AcDBStatement::DefineProcedureInputParameter method
AcDBStatement::DefineProcedureOutputParameter method

AcDBStatement::Delete method
The destructor method.

Syntax Sub Delete()

AcDBStatement::Execute method
Executes the SQL statement that does not return data. Examples of such SQL
statements include CREATE TABLE, INSERT, and UPDATE. When executing
statements that do not return data, do not call AllocateCursor() and
OpenCursor() after calling Execute(). To execute a SQL statement, such as
SELECT, that returns data, you must use a cursor instead of Execute(). For
information about creating and using a cursor, see Class AcDBCursor.

Typically, you call Execute() for each SQL statement you created and prepared
with the connection’s Prepare() method. You can, however, call Execute() any
number of times for the same statement if the statement contains parameters. For
example, if you want to insert 15 rows into a database, you can use one of two
techniques:

■ Create 15 INSERT statements using Prepare(), then call Execute() to execute
each statement. The following code snippet creates and executes two INSERT
statements:

Set stmt1 = connection.Prepare("INSERT INTO MyTable
(fName, lName) VALUES ("John", "Smith")")

stmt1.Execute()

Set stmt2 = connection.Prepare("INSERT INTO MyTable
(fName, lName) VALUES ("Nancy", "Alvarez")")

stmt2.Execute()

■ Create one INSERT statement with parameters using Prepare(), bind each
parameter to a variable, then call Execute() 15 times after assigning different

C h a p t e r 7 , A F C c l a s s e s 557

AcDBStatement

values to the variables. The following code snippet creates one INSERT
statement and executes it twice, each time with different parameter values:

Dim firstName As String
Dim lastName As String
Set stmt = connection.Prepare("INSERT INTO MyTable

(fName, lName) VALUES (:param1, :param2)")

stmt.BindParameter(1, firstName)
stmt.BindParameter(2, lastName)

firstName = "John"
lastName = "Smith"
stmt.Execute()

firstName = "Nancy"
lastName = "Alvarez"
stmt.Execute()

Both techniques achieve the same results. The second technique, however,
executes more efficiently.

Syntax Function Execute() As Boolean

Returns True if the statement executed successfully.
False if an error occurred. You can call the error-handling methods on
AcDBConnection to return the error that occurred.

See also AcDBConnection::Prepare method
AcDBStatement::BindParameter method

AcDBStatement::GetOutputCount method
Returns the number of columns. Use the GetOutputCount() method in
conditional code that requires the number of columns in the rows returned by the
SQL statement. GetOutputCount() is also useful if you prepared a SQL statement
that returns all columns in a table, such as SELECT * FROM Customers, and you
need to know how many columns will be returned. You can call
GetOutputCount() any time after the statement is prepared with Prepare().

Syntax Function GetOutputCount() As Integer

Returns The number of columns in the rows that the SQL statement returns.

AcDBStatement::GetOutputParameter method
Returns the value of a stored procedure’s output parameter. You should already
have defined each output parameter using DefineProcedureOutputParameter().

GetOutputParameter() returns a single value. To get rows of data, use the
cursor’s Fetch method.

558 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBStatement

Syntaxes Function GetOutputParameter(columnName As String) As Variant

Function GetOutputParameter(columnIndex As Integer) As Variant

Parameters columnName
The name of the database column from which the data for the output parameter is
fetched. Output parameters with a data type of V_CPOINTER cannot be used.

columnIndex
The position of the column from which the data for the output parameter is
fetched. This argument cannot be used for Oracle stored procedures.

Returns Value of the output parameter.

Example The procedure in the following example executes an Oracle stored procedure that
returns two output values. DefineProcedureOutputParameter() is called to
define the name and type of each output parameter. After executing the stored
procedure with Execute(), GetOutputParameter() is called to return the value of
each output parameter.

Sub GetSPValues(connection As AcDBConnection)
Dim stmt As AcDBStatement
Dim id As Long
Dim newId As Long
Dim name As Variant
' Prepare the statement to execute the OracleProc stored
' procedure
Set stmt = connection.Prepare("BEGIN OracleProc (:id,

:name); END;")
If stmt Is Nothing Then

Print #1 "Failed to prepare statement"
Print #1 connection.GetSpecificErrorText()
Exit Sub

End If

' Define the first parameter that is both an input and output
' parameter
id = 20
If stmt.DefineProcedureOutputParameter("id", V_INTEGER, id)

= 0 Then
Print #1 "Failed to define input/output parameter"
Print #1 connection.GetSpecificErrorText()
Exit Sub

End If
' Define the second output parameter
If stmt.DefineProcedureOutputParameter("name", V_STRING) =

0 Then
Print #1 "Failed to define output parameter"
Print #1 connection.GetSpecificErrorText()
Exit Sub

C h a p t e r 7 , A F C c l a s s e s 559

AcDBStatement

End If

' Execute the stored procedure
If stmt.Execute() = 0 Then

Print #1 "Failed to execute OracleProc stored procedure"
Print #1 connection.GetSpecificErrorText()

Else
Print #1 "OracleProc executed"

End If

' Get the values of the output parameters and write the
' information to a file
name = stmt.GetOutputParameter("name")
newId = stmt.GetOutputParameter("id")

Print #1, "Output: name = ", name
Print #1, "Output: id = ", newId

End Sub

See also AcDBStatement::DefineProcedureOutputParameter method
AcDBStatement::Execute method

AcDBStatement::GetParameterCount method
Returns the number of parameters used in the SQL statement. Use
GetParameterCount() in conditional code that requires the number of parameters
used in the SQL statement. You can call GetParameterCount() any time after the
statement is prepared.

Syntax Function GetParameterCount() As Integer

Returns The number of parameters in the SQL statement.

See also AcDBStatement::BindParameter method

AcDBStatement::GetProcedureStatus method
Returns the return value or status from a stored procedure. GetProcedureStatus()
is typically used to monitor the proper execution and termination of the stored
procedure.

Syntax Function GetProcedureStatus() As Variant

Returns A return or status value from a stored procedure.

AcDBStatement::GetStatementText method
Returns the text of the prepared SQL statement. You can call GetStatementText()
to check that the prepared statement is in the form you intended. You can call
GetStatementText() any time after the statement is prepared.

560 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDBStatement

Syntax Function GetStatementText() As String

Returns The text of the prepared SQL statement.

See also AcDBConnection::Prepare method
AcDBStatement::Prepare method

AcDBStatement::OpenCursor method
Allocates and opens a database cursor.

Another way to allocate and open a cursor is to use the statement’s
AllocateCursor method followed by the cursor’s OpenCursor method. If you
need to reuse the cursor multiple times on the same database, or if you are using
Oracle stored procedures, you must call AllocateCursor() before calling
OpenCursor().

Syntax Function OpenCursor() As AcDBCursor

Example The following example illustrates two ways to allocate and open a cursor. The
example assumes the statement is created and prepared.

Dim cursor1 As AcDBCursor
Dim cursor2 As AcDBCursor

' Using the statement’s OpenCursor() method
Set cursor2 = stmt.OpenCursor()

' Using the cursor’s AllocateCursor() and OpenCursor()
' methods
Set cursor1 = stmt.AllocateCursor()
cursor.OpenCursor()

Returns The instantiated database cursor.

See also AcDBCursor::OpenCursor method
AcDBStatement::AllocateCursor method

AcDBStatement::Prepare method
Prepares a SQL statement for execution. Call the Prepare() method to initialize
the statement object to work with the SQL statement you provide. Before calling
Prepare(), you must instantiate the statement with New().

Another way to create and prepare a statement is to use the connection’s
Prepare() method. The following example illustrates the two ways to create and
prepare a statement:

Sub Example(connection As AcDBConnection)
Dim stmt1 As AcDBStatement
Dim stmt2 As AcDBStatement

C h a p t e r 7 , A F C c l a s s e s 561

AcDBStatement

' Using the statement’s New() and Prepare() methods
Set stmt2 = New AcDBStatement(connection)
stmt2.Prepare("DROP TABLE MyTable")

' Using the connection’s Prepare() method
Set stmt1 = connection.Prepare("DROP TABLE MyTable")

End Sub

Syntax Function Prepare(statement As String) As Boolean

Parameters statement
The text of the SQL statement.

Returns True if the statement executed successfully.
False if an error occurred.

See also AcDBConnection::Prepare method

562 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDoubleControl

Class AcDoubleControl
Displays a Double value in a report. Figure 7-41 shows the class hierarchy of
AcDoubleControl.

Figure 7-41 AcDoubleControl

Description Use the AcDoubleControl class to display a Double value. You can also use a
currency control or integer control to display numeric values.

See also Class AcControl
Class AcCurrencyControl
Class AcDataControl
Class AcIntegerControl
Class AcTextualControl

Variable
Table 7-36 describes the variable for AcDoubleControl.

Methods for Class AcDoubleControl

Methods inherited from Class AcDataControl

Format, GetGroupKey, IsSummary

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcDataControl

AcDoubleControl

AcTextualControl

Table 7-36 AcDoubleControl variable

Variable Type Description

DataValue Double Stores the value of the control

C h a p t e r 7 , A F C c l a s s e s 563

AcDoubleControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

564 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawing

Class AcDrawing
A control that displays a drawing. Figure 7-42 shows the class hierarchy of
AcDrawing.

Figure 7-42 AcDrawing

Description Use AcDrawing to display a dynamically created image that scales smoothly on
screen and in print.

A drawing contains zero or more drawing planes, represented by
AcDrawingPlane objects. To define the contents of a drawing, you must override
one or more of AcDrawing’s methods to create and populate drawing planes.

AcDrawing is the parent class of AcChart.

Example In the following example, a drawing’s Finish() method has been overridden to
draw a rectangle in an SVG drawing plane:

Sub Finish()
' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint
Dim svg As String
' Scale the drawing to use points as the default units
svg = "<svg viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h)

+ & "'preserveAspectRatio='none'>"

' Draw a rectangle with a 2pt border
svg = svg

+ & "<rect x='10%' y='10%' width='80%' height='80%'"
+ & " fill='red' stroke='black' stroke-width='2'/>"
+ & "</svg>"

' Create an SVG drawing plane
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

AcComponent

AcReportComponent

AcControl

AcDrawing

AcVisualComponent

C h a p t e r 7 , A F C c l a s s e s 565

AcDrawing

Super::Finish()
End Sub

See also Class AcChart
Class AcDrawingPlane

Variables
Table 7-37 describes the AcDrawing variable.

Properties
Table 7-38 lists AcDrawing properties.

Table 7-37 AcDrawing variables

Variable Type Description

Antialias Boolean Antialias property

BackgroundColor AcColor BackgroundColor property

RenderIn24BitColor Boolean RenderIn24BitColor property

Table 7-38 AcDrawing properties

Property Type Description

Antialias Boolean Specifies whether the drawing will be rendered with
antialiasing. Antialiasing improves the appearance of
diagonal and curved lines, but increases the cost of
rendering a drawing.
The default value is False.

BackgroundColor AcColor The background color of the drawing.
The default value is Transparent.

DesignTimeSVG String SVG code used to draw a sample image in e.Report
Designer Professional at design time.
The default value is "".

RenderIn24BitColor Boolean Specifies whether the drawing will be rendered as a 24-bit
color bitmap, using 8 bits per color. If this property’s value
is False, the drawing will be rendered as an indexed color
bitmap using a palette of 256 colors.
24-bit color often produces smoother gradient fills. It may
also improve performance when using antialiasing.
However, 24-bit color images may be considerably larger
than indexed color images.
The default value is False.

(continues)

566 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawing

Methods for Class AcDrawing

Methods defined in Class AcDrawing

AddDrawingPlane, GetAntialias, GetBackgroundColor, GetDrawingPlane,
GetNumberOfDrawingPlanes, GetRenderIn24BitColor, InsertDrawingPlane,
RemoveDrawingPlane, RenderToFile, SetAntialias, SetRenderIn24BitColor

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,

Volatile Boolean Specifies whether the drawing component defines a
drawing that is the same in every instance. If False, the
drawing component defines a drawing that is always the
same in every instance, such as rotated text. If True, the
drawing component defines a set of different drawings
based on data. The default is True. This property is hidden
in charts.
AcDrawing::Volatile is used by the PDF Writer only.
Volatile has no effect on any other behavior.

Table 7-38 AcDrawing properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 567

AcDrawing

GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDrawing::AddDrawingPlane method
Call this method to add a drawing plane to the end of a drawing’s list of drawing
planes. Drawing planes within a drawing are rendered sequentially so that a
drawing plane whose index is 2 is rendered in front of a drawing plane whose
index is 1.

Syntax Function AddDrawingPlane(drawingPlaneType As AcDrawingPlaneType)
As AcDrawingPlane

Parameters drawingPlaneType
The type of drawing plane to create. The valid value is DrawingPlaneTypeSVG.

Returns A handle to the new drawing plane object.

Example In the following example, a chart’s DrawOnChart() method has been overridden
to add some translucent text in front of the chart:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint

' Create SVG to draw some translucent text
Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"

' Define the font style
Dim sampleFont As AcFont
sampleFont.Bold = True

568 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawing

sampleFont.Color = Red
sampleFont.FaceName = "Arial"
sampleFont.Size = 80
svg = svg + & "<defs>"

+ & SVGFontStyle("Sample", sampleFont)
+ & "</defs>"

' Draw the text
svg = svg + & "<text class='Sample'"

+ & " transform='translate(60,250) rotate(-30)'"
+ & " fill-opacity='0.35'>"
+ & SVGStr("SAMPLE")
+ & "</text>"
+ & "</svg>"

' Add the text in front of the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

See also Class AcDrawingPlane
AcChart::DrawOnChart method
AcDrawing::GetDrawingPlane method
AcDrawing::InsertDrawingPlane method
AcDrawing::RemoveDrawingPlane method

AcDrawing::GetAntialias method
Determines whether a drawing will be rendered with antialiasing.

Syntax Function GetAntialias() As Boolean

Returns True if the drawing will be rendered with antialiasing.
False if the drawing will be rendered without antialiasing.

See also AcDrawing::SetAntialias method

AcDrawing::GetBackgroundColor method
Returns the background color of a drawing. The background color always fills the
entire area of the drawing, regardless of the positions and sizes of individual
drawing planes within the drawing.

Syntax Function GetBackgroundColor() As AcColor

Returns The background color of the drawing.

C h a p t e r 7 , A F C c l a s s e s 569

AcDrawing

AcDrawing::GetDrawingPlane method
Returns a reference to the specified drawing plane within a drawing. To
determine the number of drawing planes in a drawing, call the drawing’s
GetNumberOfDrawingPlanes() method.

Syntax Function GetDrawingPlane(index As Integer) As AcDrawingPlane

Parameter index
An index into the drawing’s list of drawing planes. The first drawing plane is
index 1.

Returns A reference to the specified drawing plane within the drawing.

See also Class AcDrawingPlane
AcDrawing::AddDrawingPlane method
AcDrawing::GetNumberOfDrawingPlanes method
AcDrawing::InsertDrawingPlane method
AcDrawing::RemoveDrawingPlane method

AcDrawing::GetNumberOfDrawingPlanes method
Determines the number of drawing planes in a drawing.

Syntax Function GetNumberOfDrawingPlanes() As Integer

Returns The number of drawing planes in the drawing.

See also AcDrawing::AddDrawingPlane method
AcDrawing::GetDrawingPlane method
AcDrawing::InsertDrawingPlane method
AcDrawing::RemoveDrawingPlane method

AcDrawing::GetRenderIn24BitColor method
Determines whether a drawing will be rendered in 24-bit color. Note that not all
image formats support 24-bit color. If a drawing is rendered to an image format
that does not support 24-bit color, this setting will be ignored.

Syntax Function GetRenderIn24BitColor() As Boolean

Returns True if the drawing will be rendered in 24-bit color.
False if the drawing will not be rendered in 24-bit color.

See also AcDrawing::SetRenderIn24BitColor method

AcDrawing::InsertDrawingPlane method
Call this method to insert a drawing plane at a specific position within a
drawing’s list of drawing planes. Drawing planes within a drawing are rendered

570 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawing

sequentially so that a drawing plane whose index is 2 is rendered in front of a
drawing plane whose index is 1.

When you insert a new drawing plane, the original drawing plane at the insertion
point and all the drawing planes above the insertion point move up one place.

Syntax Function InsertDrawingPlane(index As Integer,
drawingPlaneType As AcDrawingPlaneType) As AcDrawingPlane

Parameters index
The position in the drawing’s list of drawing planes at which the new drawing
plane will be inserted. The first drawing plane is index 1.

Must be greater than or equal to one. Must be less than or equal to the current
number of drawing planes in the drawing plus one.

drawingPlaneType
The type of drawing plane to create. The valid value is DrawingPlaneTypeSVG.

Returns A handle to the new drawing plane object.

Example In the following example, a chart’s DrawOnChart() method has been overridden
to draw a filled rectangle with rounded corners behind the chart drawing plane:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint

Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"

' Draw the background rectangle
svg = svg

+ & "<rect"
+ & SVGColorAttr("fill", RGB(255, 255, 204))
+ & SVGColorAttr("stroke", Black)
+ & SVGAttr("stroke-width", 3.0)
+ & SVGAttr("x", 1.5)
+ & SVGAttr("y", 1.5)
+ & SVGAttr("width", w - 3.0)

C h a p t e r 7 , A F C c l a s s e s 571

AcDrawing

+ & SVGAttr("height", h - 3.0)
+ & SVGAttr("rx", 9.0)
+ & "/>"
+ & "</svg>"

' Insert the background rectangle behind the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = InsertDrawingPlane(1, DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

See also Class AcDrawingPlane
AcChart::DrawOnChart method
AcDrawing::AddDrawingPlane method
AcDrawing::GetDrawingPlane method
AcDrawing::RemoveDrawingPlane method

AcDrawing::RemoveDrawingPlane method
Call this method to remove a drawing plane from a drawing. When you remove a
drawing plane from a drawing, all the drawing planes above that move down
one place.

You cannot remove a chart’s own chart drawing plane. To hide a drawing plane
without removing it from a drawing, use the AcDrawingPlane::SetHidden()
method.

Syntax Sub RemoveDrawingPlane(index As Integer)

Parameters index
The position in the drawing’s list of drawing planes from the drawing plane will
be removed. The first drawing plane is index 1.

Must be greater than or equal to one. Must be less than or equal to the current
number of drawing planes in the drawing.

drawingPlaneType
The type of drawing plane to create. The only value allowed is
DrawingPlaneTypeSVG.

Returns A handle to the new drawing plane object.

See also Class AcDrawingPlane
AcDrawing::AddDrawingPlane method
AcDrawing::GetDrawingPlane method
AcDrawing::InsertDrawingPlane method
AcDrawingPlane::SetHidden method

572 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawing

AcDrawing::RenderToFile method
Call this method to render a drawing into a file. The recommended place from
which to call this method is a drawing’s Finish() method.

Note that rendering drawings with high dpi or scale values may result in high
CPU usage and very long rendering times.

Syntaxes Sub RenderToFile(fileName As String)

Sub RenderToFile(fileName As String, dpi As Double, scale As Double)

Parameters fileName
The name of the file into which the drawing will be rendered. The file extension is
used to determine the image format. The following image formats are supported:

■ BMP

■ GIF

■ PNG

The recommended image format is PNG. GIF is larger than PNG and cannot
support 24-bit color. BMP is much larger than both GIF and PNG.

dpi
The number of dots per inch at which the drawing will be rendered. Must be in
the range 72 through 768. If this parameter is omitted, a value of 96 will be used.

The following values are recommended to ensure accurate alignment when
drawing onto charts:

■ 96

■ 192

■ 288

■ 384

■ 576

■ 768

scale
The scale at which the drawing will be rendered. Must be in the range 0.25
through 4. If this parameter is omitted, a value of 1.0 will be used.

Example In the following example, a drawing’s Finish() method has been overridden to
render the drawing into a file:

Sub Finish()
Super::Finish()
RenderToFile("C:\Temp\Drawing Test.png", 96.0, 1.5)

End Sub

C h a p t e r 7 , A F C c l a s s e s 573

AcDrawing

AcDrawing::SetAntialias method
Call this method to specify whether a drawing will be rendered with antialiasing.

Syntax Sub SetAntialias(antialias As Boolean)

Parameter antialias
True causes the drawing to be rendered with antialiasing. False causes the
drawing to be rendered without antialiasing.

See also AcDrawing::GetAntialias method

AcDrawing::SetRenderIn24BitColor method
Call this method to specify whether a drawing will be rendered in 24-bit color.
Note that not all image formats support 24-bit color. If a drawing is rendered to
an image format that does not support 24-bit color, this setting will be ignored.

Syntax Sub SetRenderIn24BitColor(renderIn24BitColor As Boolean)

Parameter renderIn24BitColor
True causes the drawing to be rendered in 24-bit color. False causes the drawing
not to be rendered in 24-bit color.

See also AcDrawing::GetRenderIn24BitColor method

574 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingChartPlane

Class AcDrawingChartPlane
A chart drawing plane within a drawing. Figure 7-43 shows the class hierarchy of
AcDrawingChartPlane.

Figure 7-43 AcDrawingChartPlane

Description AcDrawingChartPlane represents a drawing plane whose contents are a chart.
You cannot create AcDrawingChartPlane objects. A single AcDrawingPlaneChart
objects is created automatically by each chart. To get a handle to a chart’s chart
drawing plane, use the AcChart::GetChartDrawingPlane() method.

Example In the following example, a chart’s DrawOnChart() method has been overridden
to move the chart to the right, reduce its width so that it still fits within the
drawing, and add a rotated title at the left side:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Move the chart drawing plane to the right and resize it
Dim chartPlane As AcDrawingChartPlane
Set chartPlane = GetChartDrawingPlane()
Dim offset As AcTwips
offset = 48 * OnePoint
chartPlane.SetSize(Size.Width - (offset), Size.Height)
chartPlane.SetPosition(offset, 0)

' Get the size of the drawing in points
Dim w As Double
w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint

Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"

' Define the font style
Dim titleFont As AcFont
titleFont.Bold = True

AcDrawingPlane

AcDrawingChartPlane

C h a p t e r 7 , A F C c l a s s e s 575

AcDrawingChartPlane

titleFont.Color = Red
titleFont.FaceName = "Arial"
titleFont.Size = 56
svg = svg

+ & "<defs>"
+ & SVGFontStyle("Title", titleFont)
+ & "</defs>"

' Draw the text
svg = svg

+ & "<text class='Title'"
+ & " transform='translate(12,12) rotate(90)'>"
+ & SVGStr("My Chart")
+ & "</text>"
+ & "</svg>"

' Add the text in front of the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

See also Class AcChart
Class AcDrawing
Class AcDrawingPlane
Class AcDrawingSVGPlane
AcChart::GetChartDrawingPlane method

Methods for Class AcDrawingChartPlane

Methods inherited from Class AcDrawingPlane

GetDrawingPlaneType, IsHidden, SetHidden, SetPosition, SetSize

576 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingPlane

Class AcDrawingPlane
Abstract class that represents a single drawing plane within a drawing.
Figure 7-44 shows the class hierarchy of AcDrawingPlane.

Figure 7-44 AcDrawingPlane

Description AcDrawingPlane represents a drawing plane within a drawing. Use drawing
planes to define drawing elements such as lines, rectangles, and text.

Drawing planes within a drawing are rendered sequentially so that a drawing
plane whose index is 2 is rendered in front of a drawing plane whose index is 1.
You can set the size and position of each drawing plane within a drawing
independently.

AcDrawingPlane is an abstract class. You cannot create and use objects of this
class. Instead, use concrete subclasses of AcDrawingPlane, such as
AcDrawingSVGPlane.

Example For an example of how to work with a drawing plane, see the example for the
AcDrawing class.

See also Class AcDrawing
Class AcDrawingChartPlane
Class AcDrawingSVGPlane

Methods for Class AcDrawingPlane

Methods defined in Class AcDrawingPlane

GetDrawingPlaneType, IsHidden, SetHidden, SetPosition, SetSize

AcDrawingPlane::GetDrawingPlaneType method
Returns the drawing plane type of a drawing plane. A drawing plane’s drawing
plane type is set when the drawing plane is created and cannot be changed.

Syntax Function GetDrawingPlaneType() As AcDrawingPlaneType

Returns The drawing plane type of the drawing plane.

See also AcDrawing::AddDrawingPlane method
AcDrawing::InsertDrawingPlane method

AcDrawingPlane

C h a p t e r 7 , A F C c l a s s e s 577

AcDrawingPlane

AcDrawingPlane::IsHidden method
Determines whether a drawing plane is hidden. A hidden drawing plane is
ignored when its parent drawing is rendered.

Syntax Function IsHidden() As Boolean

Returns True if the drawing plane is hidden.
False if the drawing plane is not hidden.

See also AcDrawingPlane::SetHidden method

AcDrawingPlane::SetHidden method
Call this method to specify whether a drawing plane is hidden. A hidden
drawing plane is ignored when its parent drawing is rendered.

Syntax Sub SetHidden(hidden As Boolean)

Parameter hidden
True causes the drawing plane to be ignored when its parent drawing is rendered.
False causes the drawing plane to be rendered when its parent drawing is
rendered.

Example In the following example, a chart’s DrawOnChart() method has been overridden
to replace the chart with the words “No Data!” if the chart has no data points:

Sub DrawOnChart(baseLayer As AcChartLayer,
+ overlayLayer As AcChartLayer, studyLayers() As AcChartLayer)
' Check for empty chart
Dim hasData As Boolean
Dim numberOfSeries As Integer
numberOfSeries = baseLayer.GetNumberOfSeries()
Dim seriesIndex As Integer
For seriesIndex = 1 To numberOfSeries
Dim series As AcChartSeries
Set series = baseLayer.GetSeries(seriesIndex)
If Series.GetNumberOfPoints() > 0 Then
hasData = True
Exit For

End If
Next seriesIndex
If hasData Then
Exit Sub

End If

' Hide empty chart
GetChartDrawingPlane().SetHidden(True)

' Get the size of the drawing in points
Dim w As Double

578 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingPlane

w = Size.Width / OnePoint
Dim h As Double
h = Size.Height / OnePoint

Dim svg As String
svg = "<svg version='1.1'"

+ ' Standard SVG 1.1 namespaces
+ & " xmlns='http://www.w3.org/2000/svg'"
+ & " xmlns:xlink='http://www.w3.org/1999/xlink'"
+ ' Do not collapse whitespace in text
+ & " xml:space='preserve'"
+ ' Scale the SVG to use points as the default units
+ & " viewBox='0 0 " & SVGDbl(w) & " " & SVGDbl(h) & "'>"

' Define the font style
Dim messageFont As AcFont
messageFont.Bold = True
messageFont.Color = Red
messageFont.FaceName = "Arial"
' Font size is 25% of chart height
messageFont.Size = h * 0.25
svg = svg

+ & "<defs>"
+ & SVGFontStyle("Message", messageFont, "text-anchor:middle;")
+ & "</defs>"

' Draw the text
svg = svg

+ & "<text class='Message'"
+ ' Center text horizontally and vertically
+ & SVGAttr("x", w * 0.5)
+ & SVGAttr("y", (h * 0.5) + (messageFont.Size * 0.35))
+ & ">"
+ & SVGStr("No Data!")
+ & "</text>"
+ & "</svg>"

' Add the text in front of the chart
Dim svgPlane As AcDrawingSVGPlane
Set svgPlane = AddDrawingPlane(DrawingPlaneTypeSVG)
svgPlane.SetSVG(svg)

End Sub

See also AcChart::DrawOnChart method
AcDrawingPlane::IsHidden method

AcDrawingPlane::SetPosition method
Call this method to set the position of a drawing plane within its parent drawing.

C h a p t e r 7 , A F C c l a s s e s 579

AcDrawingPlane

Syntax Sub SetPosition(x As AcTwips, y As AcTwips)

Parameters x
The x-coordinate of the drawing plane, measured from the left edge of the
drawing.

y
The y-coordinate of the drawing plane, measured from the top of the drawing.

Example For an example of how to use this method, see the example for the
AcDrawingChartPlane class.

See also Class AcDrawingChartPlane
AcDrawingPlane::SetSize method

AcDrawingPlane::SetSize method
Call this method to set the size of a drawing plane.

Syntax Sub SetSize(width As AcTwips, height As AcTwips)

Parameters width
The width of the drawing plane.

height
The height of the drawing plane.

Example For an example of how to use this method, see the example for the
AcDrawingChartPlane class.

See also Class AcDrawingChartPlane
AcDrawingPlane::SetPosition method

580 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDrawingSVGPlane

Class AcDrawingSVGPlane
An SVG drawing plane within a drawing. Figure 7-45 shows the class hierarchy
of AcDrawingSVGPlane.

Figure 7-45 AcDrawingSVGPlane

Description AcDrawingSVGPlane represents a drawing plane whose contents are defined
using Scalable Vector Graphics (SVG).

To add SVG drawing planes to a drawing, use the
AcDrawing::AddDrawingPlane() or AcDrawing::InsertDrawingPlane()
methods. You cannot use the New keyword, or the NewInstance() or
NewPersistentInstance() methods to create AcDrawingSVGPlane objects.

Example For an example of how to work with an SVG drawing plane, see the example for
the AcDrawing class.

See also Class AcDrawing
Class AcDrawingChartPlane
Class AcDrawingPlane

Methods for Class AcDrawingSVGPlane

Methods defined in Class AcDrawingSVGPlane

GetSVG, SetSVG

Methods defined in Class AcDrawingPlane

GetDrawingPlaneType, IsHidden, SetHidden, SetPosition, SetSize

AcDrawingSVGPlane::GetSVG method
Returns the SVG code for an SVG drawing plane.

Syntax Function GetSVG() As String

Returns The SVG code for the SVG drawing plane.

See also AcDrawingSVGPlane::SetSVG method

AcDrawingSVGPlane::SetSVG method
Call this method to set the SVG code for an SVG drawing plane.

AcDrawingPlane

AcSVGDrawingPlane

C h a p t e r 7 , A F C c l a s s e s 581

AcDrawingSVGPlane

Syntax Sub SetSVG(svg As String)

Parameter svg
The SVG code for the SVG drawing plane.

Example For an example of how to use this method, see the example for the AcDrawing
class.

See also Class AcDrawing
AcDrawingSVGPlane::GetSVG method

582 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDynamicTextControl

Class AcDynamicTextControl
Displays text that uses more than one format style and varying amounts of data.
Figure 7-46 shows the class hierarchy of AcDynamicTextControl.

Figure 7-46 AcDynamicTextControl

Description AcDynamicTextControl is the AFC class that provides the ability to display text
with multiple style formats and varying amounts of data. A dynamic text control
adjusts its size and the size of the frame containing it to accommodate varying
amounts of data. If necessary, a dynamic text control may split over multiple
flows.

A single AcDynamicTextControl supports one of the following text formats:

■ Plaintext
Plaintext has no format tags but can contain ASCII control codes for specifying
carriage returns, line feeds, tabs, and so on. AcDynamicTextControl supports
only the CR, LF, and TAB control codes.

■ HTML
AcDynamicTextControl supports a subset of the HTML 4 standard. The
Dynamic Text Control ignores HTML tags it does not recognize.

■ RTF
AcDynamicTextControl supports a subset of the RTF 1.6 standard. The
Dynamic Text Control ignores RTF tags it does not recognize.

Properties
Table 7-39 lists AcDynamicTextControl properties.

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcDataControl

AcDynamicTextControl

AcTextualControl

C h a p t e r 7 , A F C c l a s s e s 583

AcDynamicTextControl

Table 7-39 AcDynamicTextControl properties

Property Group Type Description

AutoSplit
Vertical

Pagination AcAutoSplit Specifies how the control may be split vertically.
The default value is DefaultSplitting.

Justified
LineWidth
Padding

Text
Layout

AcPercentage The percentage by which the line width used to
determine line breaks for fully justified lines is
less than the actual width of the line. This
padding can prevent clipping when report
output is scaled.
The default value is 2.5%.

KeepTagged
Text

N/A Boolean Specifies whether to retain the tagged text once it
has been processed.
The default value is False.

LineSpacing Text
Layout

Double The multiplier to be applied to determine the
amount of vertical space between lines. The
value is multiplied by the line height to calculate
line spacing.
The default value is 1.

LineWidth
Padding

Text
Layout

AcPercentage The percentage by which the line width used to
determine line breaks for lines that are not fully
justified is less than the actual width of the line.
This padding can prevent clipping when report
output is scaled.
The default value is 7.5%.

Minimum
LineHeight

Text
Layout

AcTwips The minimum height of a line in the control.
The default value is 0pt.

NoSplit
Bottom

Pagination AcTwips The height of the area that must not be split at the
bottom of the control.
The default value is 0pt.

NoSplitTop Pagination AcTwips The height of the area that must not be split at the
top of the control.
The default value is 0pt.

Space
Between
Lines

Text
Layout

AcTwips The fixed amount of space to add between lines
within a paragraph.
The default value is 0pt.

Space
Between
Paragraphs

Text
Layout

AcTwips The amount of vertical space between
paragraphs.
The default value is 6pt.

(continues)

584 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDynamicTextControl

Methods for Class AcDynamicTextControl

Methods defined in Class AcDynamicTextControl

AutoSplitVertical, BuildText, GetAvailableHeight, GetAvailableWidth,
GetFixedWidthFontFaceName, GetPlainText, GetTaggedText,
KeepTaggedText, LineSpacing, LineWidthPadding, MinimumLineHeight,
NoSplitBottom, NoSplitTop, ProcessText, SetTaggedText,
SpaceBetweenLines, SpaceBetweenParagraphs, SplitMarginBottom,
SplitMarginTop,TabPadding, TabSpacing, TextFormat,
WidowAndOrphanControl

Methods inherited from Class AcDataControl

Format, GetGroupKey, IsSummary

SplitMargin
Bottom

Pagination AcTwips The margin between the bottom edge and the
contents of segments of split controls. This
setting does not apply to the last segment.
The default value is 0pt.

SplitMargin
Top

Pagination AcTwips The margin between the top edge and the
contents of segments of split controls. This
setting does not apply to the first segment.
The default value is 0pt.

TabPadding Text
Layout

AcPercentage The percentage by which the width of the text
chunk is increased when calculating the text
chunk’s end position to determine the next tab
stop.
The default value is 7.5%.

TabSpacing Text
Layout

AcTwips The default spacing between tab stops, and the
default indentation of bulleted and numbered
lists.
The default value is 36pt.

TextFormat N/A AcTextFormat The tagging format of the text.
The default value is TextFormatPlain.

WidowAnd
Orphan
Control

Pagination Boolean True prevents the last line of a paragraph from
appearing at the top of a page by itself and
prevents the first line of a paragraph from
appearing at the bottom of the page by itself.
The default value is True.

Table 7-39 AcDynamicTextControl properties (continued)

Property Group Type Description

C h a p t e r 7 , A F C c l a s s e s 585

AcDynamicTextControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcDynamicTextControl::AutoSplitVertical method
Returns the value of the AutoSplitVertical property for a dynamic text control.

Syntax Function AutoSplitVertical() As AcAutoSplit

Returns The value of the control’s AutoSplitVertical property.

AcDynamicTextControl::BuildText method
Parses tagged text and populates the internal data structure of the control. If the
operation is unsuccessful, report execution fails.

586 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDynamicTextControl

Syntax Function BuildText() As Boolean

Returns True if the operation is successful.
False if the operation is unsuccessful.

AcDynamicTextControl::GetAvailableHeight method
Returns the height of the area in which text can be placed within the control. This
value is the height of the control after resizing, less the top and bottom margins.

Syntax Function GetAvailableHeight() As AcTwips

Returns The height of the area in which text can be placed within the control in twips.

AcDynamicTextControl::GetAvailableWidth method
Returns the width of the area in which text can be placed within the control. This
value is the width of the control, less the left and right margins.

Syntax Function GetAvailableWidth() As AcTwips

Returns The width of the area in which text can be placed within the control.

AcDynamicTextControl::GetFixedWidthFontFaceName
method
Returns the name of the font to use as the default fixed-width font.

Syntax Function GetFixedWidthFontFaceName() As String

Returns The value of the name of the font to use as the default fixed-width font.

AcDynamicTextControl::GetPlainText method
Returns the Plaintext variable value. The Plaintext value is the tagged text
without the text formatting tags.

Syntax Function GetPlainText() As String

Returns The value of the control’s Plaintext variable.

AcDynamicTextControl::GetTaggedText method
Returns the TaggedText value. The TaggedText value is the tagged text including
the text formatting tags.

Syntax Function GetTaggedText() As String

Returns The value of the control’s TaggedText variable.

C h a p t e r 7 , A F C c l a s s e s 587

AcDynamicTextControl

AcDynamicTextControl::KeepTaggedText method
Returns the value of the KeepTaggedText property.

Syntax Function KeepTaggedText() As Boolean

Returns The value of the control’s KeepTaggedText property.

AcDynamicTextControl::LineSpacing method
Returns the value of the LineSpacing property.

Syntax Function LineSpacing() As Double

Returns The value of the control’s LineSpacing property.

AcDynamicTextControl::LineWidthPadding method
Returns the value of the LineWidthPadding property.

Syntax Function LineWidthPadding() As AcPercentage

Returns The value of the control’s LineWidthPadding property.

AcDynamicTextControl::MinimumLineHeight method
Returns the value of the MinimumLineHeight property.

Syntax Function MinimumLineHeight() As AcTwips

Returns The value of the control’s MinimumLineHeight property.

AcDynamicTextControl::NoSplitBottom method
Returns the value of the NoSplitBottom property.

Syntax Function NoSplitBottom() As AcTwips

Returns The value of the control’s NoSplitBottom property.

AcDynamicTextControl::NoSplitTop method
Returns the value of the NoSplitTop property.

Syntax Function NoSplitTop() As AcTwips

Returns The value of the control’s NoSplitTop property.

588 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcDynamicTextControl

AcDynamicTextControl::ProcessText method
Creates the internal data structure for the control and calls the BuildText()
method.

Syntax Sub ProcessText()

See also AcDynamicTextControl::BuildText method

AcDynamicTextControl::SetTaggedText method
Sets the TaggedText value.

Syntax Sub SetTaggedText(newText As String)

Parameter newText
The value to set.

AcDynamicTextControl::SpaceBetweenLines method
Returns the value of the SpaceBetweenLines property.

Syntax Function SpaceBetweenLines() As AcTwips

Returns The value of the control’s SpaceBetweenLines property.

AcDynamicTextControl::SpaceBetweenParagraphs
method
Returns the value of the SpaceBetweenParagraphs property.

Syntax Function SpaceBetweenParagraphs() As AcTwips

Returns The value of the control’s SpaceBetweenParagraphs property.

AcDynamicTextControl::SplitMarginBottom method
Returns the value of the SplitMarginBottom property.

Syntax Function SplitMarginBottom() As AcTwips

Returns The value of the control’s SplitMarginBottom property.

AcDynamicTextControl::SplitMarginTop method
Returns the value of the SplitMarginTop property.

Syntax Function SplitMarginTop() As AcTwips

Returns The value of the control’s SplitMarginTop property.

C h a p t e r 7 , A F C c l a s s e s 589

AcDynamicTextControl

AcDynamicTextControl::TabPadding method
Returns the value of the TabPadding property.

Syntax Function TabPadding() As AcPercentage

Returns The value of the control’s TabPadding property.

AcDynamicTextControl::TabSpacing method
Returns the value of the TabSpacing property.

Syntax Function TabSpacing() As AcTwips

Returns The value of the control’s TabSpacing property.

AcDynamicTextControl::TextFormat method
Returns the value of the TextFormat property.

Syntax Function TextFormat() As AcTextFormat

Returns The value of the x property.

AcDynamicTextControl::WidowAndOrphanControl
method
Returns the value of the WidowAndOrphanControl property.

Syntax Function WidowAndOrphanControl() As Boolean

Returns The value of the control’s WidowAndOrphanControl property.

590 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelApp

Class AcExcelApp
Creates an Excel object within a report design. Figure 7-47 shows the class
hierarchy of AcExcelApp.

Figure 7-47 AcExcelApp

Description AcExcelApp is the root class that contains all instances of classes you use to
generate and work with Excel files. You create other objects using methods in
AcExcelApp or methods in other objects created from AcExcelApp.

For information about how the report gets font information for rendering Excel
files, see Developing Reports using e.Report Designer Professional.

Methods for Class AcExcelApp

Methods defined in Class AcExcelApp

AddWorkbook, DeleteWorkbook, FindWorkbook, New, SetFontScalingFactor

AcExcelApp::AddWorkbook method
Adds a new workbook. The framework assigns a default file name to the
workbook, such as Book1.xls. The default path to the workbook is the directory
that contains the report object instance (.roi) file. For reports generated on iServer,
the path listed in the AC_VIEWSERVER_EXCELOUTPUTDIR environment
variable is the default path. To change either the file name or the default path for
the file, use the AcExcelWorkbook::SaveAs method. To set a default directory for
all Excel output, use the AC_VIEWSERVER_EXCELOUTPUTDIR environment
variable.

Syntax AddWorkbook() As AcExcelWorkbook

Returns The handle to the workbook if the workbook is added.
An empty handle if an error occurred.

Example Dim excelWorkbook As AcExcelWorkbook
Set excelWorkbook = excelApp.AddWorkbook()

AcExcelApp::DeleteWorkbook method
Deletes a workbook, using either the workbook name or a reference to the
workbook.

AcExcelApp

AcExcelObject

C h a p t e r 7 , A F C c l a s s e s 591

AcExcelApp

Syntaxes Function DeleteWorkbook(wbName As String) As Integer

Function DeleteWorkbook(workbook As AcExcelWorkbook) As Integer

Parameters wbName
The fully qualified name of the workbook to delete.

workbook
The handle to the workbook to delete.

Example excelApp.DeleteWorkbook(workbookName);
excelApp.DeleteWorkbook (excelWorkbook)

AcExcelApp::FindWorkbook method
Finds the specified workbook that was created using AddWorkbook(). You can
not use FindWorkbook() to find an existing Excel file on disk.

Syntaxes Function FindWorkbook(wbName As String) As AcExcelWorkbook

Function FindWorkbook(index As Integer) As AcExcelWorkbook

Parameters wbName
The fully qualified name of the workbook to find.

index
The index of the workbook to find.

Returns The handle to the workbook if found.
An empty handle if the workbook is not found or if an error occurred.

Example The following example shows how to find the workbook myWorkbook:

Dim excelWorkbook As AcExcelWorkbook
excelWorkbook = excelApp.FindWorkbook("myWorkbook")

See also AcExcelApp::AddWorkbook method

AcExcelApp::New method
Creates a new Excel application instance. Call New() before calling any other
method.

Syntax Sub New()

Returns The handle to the class.

Example The following example creates a new Excel application instance:

Dim excelApp As AcExcelApp
Set excelApp = New AcExcelApp

592 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelApp

AcExcelApp::SetFontScalingFactor method
Specifies a scaling factor to apply to the specified font.

SetFontScalingFactor() applies the scaling factor to font sizes between startSize to
endSize. If either startSize or endSize is zero, the scaling factor is applied to every
font size. If either startSize or endSize is less than zero, the scaling factor is not
applied.

Syntax Sub SetFontScalingFactor(face As String, scalingFactor As Double, startSize As
Integer, endSize As Integer)

Parameters face
The font to which to apply the scaling factor.

scalingFactor
The scaling factor. Column width is adjusted if scalingFactor is greater than one.

startSize
The smallest font size for which to apply the font scaling factor.

endSize
The largest font size for which to apply the font scaling factor.

C h a p t e r 7 , A F C c l a s s e s 593

AcExcelCel l

Class AcExcelCell
Represents a cell in a worksheet. Figure 7-48 shows the class hierarchy of
AcExcelCell.

Figure 7-48 AcExcelCell

Description The AcExcelCell class represents a cell in a worksheet.

An AcExcelCell object is an AcExcelRange object in which
rowNumTop=rowNumBottom, columnNumLeft=columnNumRight. The cell can
contain up to 4,000 characters.

AcExcelCell does not override any methods of the AcExcelRange class.

Methods for Class AcExcelCell

Methods inherited from Class AcExcelRange

AddImage, DrawLine, GetBackgroundColor, GetBorder, GetFont,
GetHorizontalAlignment, GetIndent, GetMergeCells, GetNumberFormat,
GetValue, GetValueAsDate, GetVerticalAlignment, GetWrapText,
SetBackgroundColor, SetBorder, SetBorderAround, SetFont,
SetHorizontalAlignment, SetIndent, SetMergeCells, SetNumberFormat,
SetValue, SetVerticalAlignment, SetWrapText

AcExcelRange

AcExcelCell

AcExcelObject

594 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelColumn

Class AcExcelColumn
Represents a column in a worksheet. Figure 7-49 shows the class hierarchy of
AcExcelColumn.

Figure 7-49 AcExcelColumn

Methods inherited from Class AcExcelRange

AddImage, DrawLine, GetBackgroundColor, GetBorder, GetFont,
GetHorizontalAlignment, GetIndent, GetMergeCells, GetNumberFormat,
GetValue, GetValueAsDate, GetVerticalAlignment, GetWrapText,
SetBackgroundColor, SetBorder, SetBorderAround, SetFont,
SetHorizontalAlignment, SetIndent, SetMergeCells, SetNumberFormat,
SetValue, SetVerticalAlignment, SetWrapText

Description The AcExcelColumn class represents a column in a worksheet.

An AcExcelColumn object is an AcExcelRange object in which columnNumLeft is
equal to columnNumRight.

Methods for Class AcExcelColumn

Methods defined in Class AcExcelColumn

Autofit, GetColumnWidth, SetAutofitFont, SetAutofitString, SetColumnWidth

AcExcelColumn::Autofit method
Adjusts the column width to fit the contents of the tallest cell in the column.

Syntax Function Autofit() As Integer

Returns The column width expressed as an integer.

AcExcelColumn::GetColumnWidth method
Returns the column width, in number of characters that can be displayed in a
column. The default value is 8.43 characters.

Syntax Function GetColumnWidth() As Double

AcExcelRange

AcExcelColumn

AcExcelObject

C h a p t e r 7 , A F C c l a s s e s 595

AcExcelColumn

Returns The column width if it was explicitly set.
The default column width if the column width was not explicitly set.

AcExcelColumn::SetAutofitFont method
Sets the font to use to calculate column width.

Syntax Sub SetAutofitFont(font As AcFont)

Parameter font
The font to use.

AcExcelColumn::SetAutofitString method
Sets the string to use to calculate column width.

Syntax Sub SetAutofitString(val As String)

Parameter val
The string to use.

AcExcelColumn::SetColumnWidth method
Sets the number of characters that can appear in a column when you use a
standard font. The default column width is 8.43 characters. The standard font is
Arial size 10. The default value is assigned when the column is created.

Syntax Sub SetColumnWidth(width As Double)

Parameter width
The number of characters that can be appear in the column. Must be 0-255.

596 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelObject

Class AcExcelObject
The abstract base class for creating Excel objects in a report. Figure 7-50 shows the
class hierarchy of AcExcelObject.

Figure 7-50 AcExcelObject

Description Classes derived from AcExcelObject create and manage the Excel workbooks,
worksheets, ranges, rows, columns, and cells you use in an Actuate report.

Methods for Class AcExcelObject
There are no public methods for this class.

AcExcelObject

C h a p t e r 7 , A F C c l a s s e s 597

AcExcelRange

Class AcExcelRange
The abstract base class for the AcExcelCell, AcExcelColumn, and AcExcelRow
classes. Figure 7-51 shows the class hierarchy of AcExcelRange.

Figure 7-51 AcExcelRange

Description AcExcelRange class is the base class for the AcExcelCell, AcExcelColumn, and
AcExcelRow classes.

Unless otherwise stated, all Set() methods for this class set the properties for
every cell in the range. If all cells contain the same property values, Get()
methods for this class return the property value. If any cell contains different
property values, Get() methods for this class return null.

See also Class AcExcelCell
Class AcExcelColumn
Class AcExcelRow

Methods for Class AcExcelRange

Methods defined in Class AcExcelRange

AddImage, DrawLine, GetBackgroundColor, GetBorder, GetFont,
GetHorizontalAlignment, GetIndent, GetMergeCells, GetNumberFormat,
GetValue, GetValueAsDate, GetVerticalAlignment, GetWrapText,
SetBackgroundColor, SetBorder, SetBorderAround, SetFont,
SetHorizontalAlignment, SetIndent, SetMergeCells, SetNumberFormat,
SetValue, SetVerticalAlignment, SetWrapText

AcExcelRange::AddImage method
Adds an image to the range.

Syntax Sub AddImage(fName As String)

Parameter fName
The file name of the image to add.

AcExcelRange::DrawLine method
Sets properties of a line in the range.

AcExcelRange

AcExcelObject

598 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelRange

Syntax Sub DrawLine(which As Integer, style As Integer, weight As Integer, color As
AcColor)

Parameters which
The line to draw.

style
The style of the line.

weight
The weight of the line.

color
The color of the line.

AcExcelRange::GetBackgroundColor method
Returns the background color of the range.

Syntax Function GetBackgroundColor() As AcColor

Returns The background color if it is the same for all cells in the range.
Null if the background color is different for any cells in the range.

AcExcelRange::GetBorder method
Returns the border of the range.

Syntax Function GetBorder(which As Integer) As AcExcelBorder

Parameter which
The side of the border to access. Values are:

■ ExcelBorderTop

■ ExcelBorderBottom

■ ExcelBorderLeft

■ ExcelBorderRight

Returns The border if the border attribute for the specified border is the same for all cells
in the range.
Null if the border attribute for the specified border is different for any cells in the
range.

AcExcelRange::GetFont method
Returns the font used for the range.

Syntax Function GetFont() As AcFont

C h a p t e r 7 , A F C c l a s s e s 599

AcExcelRange

Returns The font used for the range if all cells in the range use the same font.
Null if cells in the range use different fonts.

AcExcelRange::GetHorizontalAlignment method
Returns the setting of the horizontal alignment option.

Syntax Function GetHorizontalAlignment() As AcExcelHorizontalAlignment

Returns The horizontal alignment setting if it is the same for all cells in the range.
Null if the horizontal alignment setting of any cell in the range is different.

AcExcelRange::GetIndent method
Returns the number of characters that the text in the range is indented from the
left edge of the cell.

Syntax Function GetIndent() As Integer

Returns The number of indent characters if the indent is set and is the same for all cells in
the range.
0 if the indent for any cell is not set.
Null if the indent is different for any cells in the range.

AcExcelRange::GetMergeCells method
Returns the setting of the merge cells option.

Syntax Function GetMergeCells() As Boolean

Returns True if cells in the range are merged.
False if the merge cells option is set to False for all cells in the range or if the
merge cells option is set to True for all cells but the cells are not merged.
Null if the merge cells setting of any cell in the range is different.

AcExcelRange::GetNumberFormat method
Returns the string used for formatting numbers in the range. The string can be
different from the string passed in SetNumberFormat() method.

Syntax Function GetNumberFormat() As String

Returns The string used for formatting the range if all cells in the range use the same
format string.
Null if cells in the range use different format strings.

600 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelRange

AcExcelRange::GetValue method
Returns the contents of the range. If the return value is not a String or Date,
Actuate Basic converts return values into the appropriate format. If the return
value is a Date, use the GetValueAsDate() method instead of the GetValue()
method.

Syntax Function GetValue() As Variant

Returns The contents of the range if all cells in the range contain the same value.
Null if calls in the range contain different values.

See also AcExcelRange::GetValueAsDate method

AcExcelRange::GetValueAsDate method
Converts the contents of the range into date format.

Syntax Function GetValueAsDate() As Date

Returns The date value of the range if all cells in the range contain the same value.
Null if cells in the range contain different values.

AcExcelRange::GetVerticalAlignment method
Returns the vertical alignment setting.

Syntax Function GetVerticalAlignment() As AcExcelVerticalAlignment

Returns The vertical alignment setting if it is the same for all cells in the range.
Null if the vertical alignment setting of any cell in the range is different.

AcExcelRange::GetWrapText method
Returns the setting of the wrap text option.

Syntax Function GetWrapText() As Boolean

Returns The wrap text setting if it is the same for all cells in the range.
Null if the wrap text setting of any cell in the range is different.

AcExcelRange::SetBackgroundColor method
Sets the background color for the range. You can use up to 48 custom colors in a
workbook. This includes background, font, and border colors. If the color is
invalid, SetBackgroundColor() sets the background color to white.

Syntax Sub SetBackgroundColor(color As AcColor)

Parameter color
The color to set.

C h a p t e r 7 , A F C c l a s s e s 601

AcExcelRange

AcExcelRange::SetBorder method
Sets the border for one or more sides of the range.

If the border color is invalid, SetBorder() sets the border color to black.

If the border style value is greater than zero, SetBorder() sets the border style to
zero, ExcelBorderNone. If the border style value is greater than 13, SetBorder()
sets the border style to 13, ExcelBorderSlantedDashDot.

Syntax Sub SetBorder(border As AcExcelBorder, which As Integer)

Parameters border
The side of the border to set. Values are:

■ ExcelBorderTop

■ ExcelBorderBottom

■ ExcelBorderLeft

■ ExcelBorderRight

The default setting is no border.

which
The border to set.

AcExcelRange::SetBorderAround method
Sets a border around the range.

Syntax Sub SetBorderAround(border As AcExcelBorder)

Parameter border
The border to set.

AcExcelRange::SetFont method
Sets the font properties for the range. You can use up to 512 fonts in a single file,
including default Excel fonts. You can use up to 48 custom colors. These limits
include background, font, and border colors.

If the font color is invalid, SetFont() sets the font color to black.

If the font size is less than one, SetFont() sets the font size to one. If the font size is
greater than 409, SetFont() sets the font size to 409.

If the font name is an empty string, SetFont() sets the font to Arial.

Syntax Sub SetFont(font As AcFont)

Parameters font
The font to set.

602 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelRange

AcExcelRange::SetHorizontalAlignment method
Sets horizontal alignment option for the range.

If the value of the alignment option is less than zero, SetHorizontalAlignment()
sets horizontal alignment to ExcelHAlignmentGeneral. If the value of the
alignment option is greater than six, SetHorizontalAlignment() sets horizontal
alignment to ExcelHAlignmentCenterAcrossSelection.

Syntax Sub SetHorizontalAlignment(h As AcExcelHorizontalAlignment)

Parameter h
The horizontal alignment option to set. Values are:

■ ExcelHAlignGeneral

■ ExcelHAlignLeft

■ ExcelHAlignCenter

■ ExcelHAlignRight

■ ExcelHAlignFill

■ ExcelHAlignJustify

■ ExcelHAlignCenterAcrossSelection

AcExcelRange::SetIndent method
Sets the indent property for the range. Specify the indent as an integer denoting
the number of characters to indent. If indent is set, the horizontal alignment type
automatically changes to left indent.

If indent is less than 0, SetIndent() sets the indent to 0. If indent is greater than 15,
SetIndent() sets the indent to 15.

Syntax Sub SetIndent(indent As Integer)

Parameter indent
The number of characters to indent. Must be 0-15.

AcExcelRange::SetMergeCells method
Turns the merge cells option on and off. When the merge cells option is on, the
top leftmost cell contains the option settings and all other cells contain the default
settings. These settings include value, font, and alignment of the first cell in the
range with a set value.

Setting <mergeCells> to True on both a column and a row in a single worksheet
causes all cells in the worksheet to be created. This setting can use all virtual
memory in a system.

C h a p t e r 7 , A F C c l a s s e s 603

AcExcelRange

Syntax Sub SetMergeCells(mergeCells As Boolean)

Parameter mergeCells
True turns on the merge cells option.
False turns off the merge cells option.

AcExcelRange::SetNumberFormat method
Sets the number format properties for the range.

To display numbers in a specific format, use SetNumberFormat() in conjunction
with SetValue(). When you use SetNumberFormat() with SetValue(), you must
call SetValue() before SetNumberFormat().

You specify the format using the constants in Table 7-40 or an explicit format
string.

Table 7-40 Number formats

Constant Format

ExcelCurrencyFloat $0.00

ExcelCurrencyFloatWithSeparator $#,##0.00

ExcelCurrencyInt $0

ExcelCurrencyIntWithSeparator $#,##0

ExcelExp 0.00E+00

ExcelFixed 0.00

ExcelFloat 0.00

ExcelFloatWithSeparator #,##0.00

ExcelGeneralDate mm/dd/yyyy hh:mm:ss AM/PM

ExcelGeneralNumber General

ExcelInt 0

ExcelIntWithSeparator #,##0

ExcelLongDate dddd, mmmm dd, yyyy

ExcelLongTime hh:mm:ss AM/PM

ExcelMediumDate dd-mmm-yy

ExcelMediumTime h:mm AM/PM

ExcelPercent 0.00%

ExcelShortDate mm/dd/yyyy

ExcelShortTime hh:mm

ExcelStandard 0.00

604 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelRange

Syntax Sub SetNumberFormat(numFormat As String)

Parameter numFormat
The format to set.

Example The following example shows how to use SetNumberFormat() and SetValue() to
display a date in the mm-yyyy format:

Dim date As Date
date=DateValue ("11-1982")
Cell.SetValue (date)
Cell.SetNumberFormat ("mm-yyyy")

See also AcExcelRange::SetValue method

AcExcelRange::SetValue method
Sets the contents for every cell in the range. If the numeric value is of Date or
Currency type, SetValue() displays the number in the default Date or Currency
Format. To display numbers in a different format, use SetValue() in conjunction
with SetNumberFormat(). When using SetNumberFormat() with SetValue(),
you must call SetValue() before SetNumberFormat().

The maximum number of characters for a cell string value is 255.

Syntax Sub SetValue(val As Variant)

Parameter val
The value to set.

See also AcExcelRange::SetNumberFormat method

AcExcelRange::SetVerticalAlignment method
Sets the vertical alignment option for the range.

If the value of the alignment option is less than zero, SetHorizontalAlignment()
sets vertical alignment to ExcelVAlignmentTop. If the value of the alignment
option is greater than three, SetVerticalAlignment() sets vertical alignment to
three, which equals ExcelVAlignJustify.

Syntax Sub SetVerticalAlignment(v As AcExcelVerticalAlignment)

Parameter v
The vertical alignment option to set. Values are:

■ ExcelVAlignTop

■ ExcelVAlignCenter

■ ExcelVAlignBottom

■ ExcelVAlignJustify

C h a p t e r 7 , A F C c l a s s e s 605

AcExcelRange

AcExcelRange::SetWrapText method
Turns the wrap text option on and off.

Syntax Sub SetWrapText(wrapText As Boolean)

Parameter wrapText
True turns on the wrap text option.
False turns off the wrap text option.

606 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelRow

Class AcExcelRow
Represents a row in a workbook. Figure 7-52 shows the class hierarchy of
AcExcelRow.

Figure 7-52 AcExcelRow

Description The AcExcelRow class represents a row in a workbook. An AcExcelRow object is
an AcExcelRange object in which rowNumTop is equal to rowNumBottom.

See also Class AcExcelCell
Class AcExcelColumn
Class AcExcelRange

Methods for Class AcExcelRow

Methods defined in Class AcExcelRow

GetRowHeight, SetRowHeight

Methods inherited from Class AcExcelRange

AddImage, DrawLine, GetBackgroundColor, GetBorder, GetFont,
GetHorizontalAlignment, GetIndent, GetMergeCells, GetNumberFormat,
GetValue, GetValueAsDate, GetVerticalAlignment, GetWrapText,
SetBackgroundColor, SetBorder, SetBorderAround, SetFont,
SetHorizontalAlignment, SetIndent, SetMergeCells, SetNumberFormat,
SetValue, SetVerticalAlignment, SetWrapText

AcExcelRow::GetRowHeight method
Returns the row height, in points.

Syntax Function GetRowHeight() As Double

Returns The row height if explicitly set.
The default row height, 12.75 points, if not explicitly set.

AcExcelRange

AcExcelRow

AcExcelObject

C h a p t e r 7 , A F C c l a s s e s 607

AcExcelRow

AcExcelRow::SetRowHeight method
Sets the row height. The default row height is 12.75 points. The default value is
assigned when the row is created. Excel adjusts row height to fit row contents. As
such, you typically do not need to call SetRowHeight().

Syntax Sub SetRowHeight(height As Double)

Parameter height
The row height in points. Must be 0-409.

608 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelWorkbook

Class AcExcelWorkbook
Provides the logic for adding and removing worksheets and getting information
about a specific workbook. Figure 7-53 shows the class hierarchy of
AcExcelWorkbook.

Figure 7-53 AcExcelWorkbook

Description Use AcExcelWorkbook to add, find, save, and delete worksheets in a workbook in
Microsoft Excel 97-2003 format.

See also AcExcelApp::AddWorkbook method

Methods for Class AcExcelWorkbook

Methods defined in Class AcExcelWorkbook

AddWorksheet, DeleteWorksheet, FindWorksheet, GetFullName, Save, SaveAs

AcExcelWorkbook::AddWorksheet method
Adds a worksheet to the workbook. The new worksheet is added after the most
recently created worksheet. AddWorksheet() assigns a unique label to the
worksheet, such as Sheet1.

Syntax Function AddWorksheet() As AcExcelWorksheet

Returns The handle to the added worksheet.
An empty handle if an error occurred.

Example The following code shows how to add a worksheet to an existing workbook:

Dim excelWorksheet As AcExcelWorksheet
Set excelWorksheet = excelWorkbook.AddWorksheet()

AcExcelWorkbook::DeleteWorksheet method
Deletes a worksheet from the workbook if the worksheet exists.

Syntaxes Function DeleteWorksheet(wsName As String)

Function DeleteWorksheet(worksheet As AcExcelWorksheet)

Parameters wsName
The fully qualified name of the worksheet to delete.

AcExcelWorkbook

AcExcelObject

C h a p t e r 7 , A F C c l a s s e s 609

AcExcelWorkbook

worksheet
The handle to the worksheet to delete.

Example The following code shows how to delete a worksheet by using its name or a
handle to a worksheet object:

excelWorkbook.DeleteWorksheet(worksheetName);
excelApp.DeleteWorksheet(excelWorksheet)

AcExcelWorkbook::FindWorksheet method
Finds the specified worksheet in the workbook.

Syntaxes Function FindWorksheet(wsName As String) As AcExcelWorksheet

Function FindWorksheet(index As Integer) As AcExcelWorksheet

Parameters wsName
The unique name of the worksheet to find.

index
The index of the worksheet to find.

Returns The handle to the worksheet if found.
An empty handle if the worksheet is not found or if an error occurred.

Example The following example shows how to find the worksheet Sheet1:

Dim excelWorksheet As AcExcelWorksheet
Set excelWorksheet = excelWorkbook.FindWorksheet("Sheet1")

AcExcelWorkbook::GetFullName method
Returns the fully qualified name of the workbook.

Syntax Function GetFullName() As String

Returns The name of the workbook.

AcExcelWorkbook::Save method
Saves the workbook. When testing a report design in e.Report Designer
Professional, the workbook saves in the directory that contains the report object
instance (.roi) file.

For reports that run on iServer, the workbook saves in the directory specified in
the AC_VIEWSERVER_EXCELOUTPUTDIR environment variable. If the
AC_VIEWSERVER_EXCELOUTPUTDIR environment variable is not set, reports
that run on iServer save in the $AC_SERVER_HOME/Excel directory.

610 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelWorkbook

If the workbook is successfully saved, the report runs without an error. If an error
occurs during this operation, an error message to signal an I/O error is logged
and the Excel file is not saved.

Syntax Function Save()

AcExcelWorkbook::SaveAs method
Saves the workbook with a specified name. The specified name overwrites the
default name assigned when the workbook is created. For reports generated on
the local machine, the workbook saves in the directory that contains the .roi file.

For reports generated on iServer, the workbook saves in directory specified in the
AC_VIEWSERVER_EXCELOUTPUTDIR environment variable. If the
AC_VIEWSERVER_EXCELOUTPUTDIR environment variable is not set, reports
generated on iServer save in the $AC_SERVER_HOME/Excel directory.

If the workbook is successfully saved, the report generates without an error. If an
error occurs during this operation, an error message to signal an I/O error is
logged and the Excel file is not saved.

Syntax Function SaveAs(wbName As String) As Integer

Parameter wbName
The file name. Can be fully qualified or only the file name.
If only the file name is specified, the workbook is saved in the default directory.
Can not be an empty string or a Null value.

C h a p t e r 7 , A F C c l a s s e s 611

AcExcelWorksheet

Class AcExcelWorksheet
Contains information about a specific worksheet. Figure 7-54 shows the class
hierarchy of AcExcelWorksheet.

Figure 7-54 AcExcelWorksheet

Description A worksheet contains cells that can be identified by the cell’s unique coordinate
composed of a row number and a column number. Use AcExcelWorksheet to
manipulate cells in a worksheet. Use the AcExcelWorkbook::AddWorksheet
method to obtain the handle to the worksheet.

The worksheet can contain up to 65,536 rows and up to 256 columns.

See also Class AcExcelWorkbook

Methods for Class AcExcelWorksheet
AutoFit, GetCell, GetColumn, GetDisplayGridlines, GetName, GetRange,

GetRow, SetDisplayGridlines, SetName

AcExcelWorksheet::AutoFit method
Adjusts the column width of all cells in the worksheet to fit the contents of the
tallest cell.

Use AcExcelColumn::SetAutofitString() and AcExcelColumn::SetAutofitFont()
to set the string and font to use to calculate column width.

Syntax Function AutoFit() As Integer

See also AcExcelColumn::SetAutofitFont method
AcExcelColumn::SetAutofitString method

AcExcelWorksheet::GetCell method
Returns the handle to the cell to access. GetCell() creates the cell if the cell does
not exist.

Syntax Function GetCell(row As Integer, col As Integer) As AcExcelCell

Parameters row
The row number of the cell to access. Must be 1-65,536.

col
The column number of the cell to access. Must be 1-256.

AcExcelWorksheet

AcExcelObject

612 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExcelWorksheet

Returns The handle to the cell if successful.
An empty handle if the row or column is out of range.

Example The following example returns a handle to cell 2 in row 1:

Dim cell As AcExcelCell
Set cell = excelWorksheet.GetCell(1, 2)

AcExcelWorksheet::GetColumn method
Returns the handle to the column to access.

Syntax Function GetColumn(col As Integer) As AcExcelColumn

Parameter col
The column number to access. Must be 1-256.

Returns The handle to the column if successful.
An empty handle if the column is out of range.

Example The following example returns a handle to column 1:

Dim range As AcExcelColumn
Set range = excelWorksheet.GetColumn(1)

AcExcelWorksheet::GetDisplayGridlines method
Determines whether the gridline setting is turned on.

Syntax Function GetDisplayGridlines() As Boolean

Returns True if the gridlines are turned on.
False if the gridlines are turned off.

AcExcelWorksheet::GetName method
Returns the unique name of the worksheet.

Syntax Function GetName() As String

Returns The name of the worksheet.

AcExcelWorksheet::GetRange method
Returns the handle to the cells to access. GetRange() creates the range if the range
does not exist.

Syntax Function GetRange(cell1 As AcExcelCell, cell2 As AcExcelCell) As
AcExcelRange

Parameters cell1
The handle to the first cell to access.

C h a p t e r 7 , A F C c l a s s e s 613

AcExcelWorksheet

cell2
The handle to the last cell to access.

Returns The handle to the range if successful.
An empty handle if an error occurred.

Example The following example returns a range of cells A1 through C3:

Dim cell1 As AcExcelCell
Dim cell2 As AcExcelCell
Set cell1 = excelWorksheet.GetCell (1,1)
Set cell2 = excelWorksheet.GetCell (3,3)
range = excelWorksheet.GetRange (cell1, cell2)

AcExcelWorksheet::GetRow method
Returns a handle to the row to access. GetRow() creates the row if the row does
not exist.

Syntax Function GetRow(row As Integer) As AcExcelRow

Parameter row
The row number to access. Must be 1-65,536.

Returns A handle to the row if execution is successful.
An empty handle if the row is out of range.

Example The following example returns a handle to column 1:

Dim row As AcExcelRow
Set row = excelWorksheet.GetRow(1)

AcExcelWorksheet::SetDisplayGridlines method
Turns the gridlines on and off. The default setting is True.

Syntax Sub SetDisplayGridlines(bGrid As Boolean)

Parameter bGrid
True turns on the gridlines. False turns off the gridlines.

AcExcelWorksheet::SetName method
Sets the name of the worksheet. The name of the worksheet must be unique in a
workbook. If the worksheet with the specified name exists in the workbook, the
name remains unchanged.

Syntax Function SetName(wsName As String)

Parameter wsName
The name to set.

614 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcExternalDataSource

Class AcExternalDataSource
An abstract base class for generic data source objects that use a command to
retrieve a single result set through an associated connection. Figure 7-55 shows
the class hierarchy of AcExternalDataSource.

Figure 7-55 AcExternalDataSource

Description AcExternalDataSource is an abstract base class for generic data source objects that
use a command to retrieve a single result set through an associated connection.
Derived classes define how to specify the command. The data source then
allocates a cursor to read rows from the command’s result data.

See also Class AcDataAdapter
Class AcDatabaseSource
Class AcDataSource

Methods for Class AcExternalDataSource

Methods defined in Class AcExternalDataSource

ObtainCommand

Methods inherited from Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
GetPreparedStatement, OpenCursor, SetStatementProperty

Methods inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

AcExternalDataSource

C h a p t e r 7 , A F C c l a s s e s 615

AcExternalDataSource

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcExternalDataSource::ObtainCommand method
Obtains the command that retrieves the result set from the database. Derived
classes must override ObtainCommand() to provide a custom command.

Syntax Function ObtainCommand() As String

616 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFlow

Class AcFlow
An abstract base class that defines the logic for placing frames in a flow, the
printable area of a page. Figure 7-56 shows the class hierarchy of AcFlow.

Figure 7-56 AcFlow

Description AcFlow is the abstract base class for AcTopDownFlow, the default flow in a report
design. AcFlow defines the protocol that specifies how to add subpages, content,
and header and footer frames to a flow. This class also specifies how to allocate
flow space. Its derived class, AcTopDownFlow, implements the details for
executing those tasks.

Class protocol
Table 7-41 lists the order of execution of AcFlow protocol methods.

Subclassing AcFlow
Create a subclass directly from AcFlow if your report requires a flow other than a
top-down flow. For example, you might need a grid layout that flows from left to
right. AcFlow defines several methods that you must override to specify
implementation details. These methods, called pure virtual methods, are empty
in AcFlow.

AcComponent

AcReportComponent

AcVisualComponent

AcFlow

Table 7-41 Class protocol for AcFlow

Method Task

Start() Prepares the flow for receiving frames

AddFrame() Adds each frame to the flow

Finish() Identifies that the flow has received all the frames that it
will get

C h a p t e r 7 , A F C c l a s s e s 617

AcFlow

Variables
Table 7-42 lists AcFlow variables.

Properties
Table 7-43 lists AcFlow properties.

See also Class AcBasePage
Class AcTopDownFlow

Methods for Class AcFlow

Methods defined in Class AcFlow

AddFooter, AddFrame, AddHeader, AddSubpage, AdjustFooter, CanFitFrame,
CanFitHeight, GetFirstDataFrame, GetFreeSpace, GetInsideSize,
GetLastDataFrame, IsEmpty, ReleaseSpace, ReserveSpace, ResetSpace,
ResizeByConstrainedByContents, ShiftFooterUp

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,

Table 7-42 AcFlow variables

Variable Type Description

BackgroundColor AcColor Specifies the background color of the
flow. The default value is Transparent.

Border AcBorder Specifies the border, if any, to draw
around the flow.

Table 7-43 AcFlow properties

Property Type Description

BackgroundColor AcColor Specifies the background color of the
flow. The default value is Transparent.

Border AcBorder Specifies the border, if any, to draw
around the flow.

618 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFlow

IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcFlow::AddFooter method
Adds a frame to the flow as a footer.

Syntax Function AddFooter(footer As AcFrame) As Boolean

Parameter footer
The footer frame to add to the flow.

AcFlow::AddFrame method
Adds the frame to the flow. Derived classes override the AddFrame() method, a
pure virtual method in AcFlow, to specify how frames are placed in the flow. If
you create a subclass from AcFlow, you must override AddFrame() to specify the
implementation details.

Syntax Sub AddFrame(frame As AcFrame)

Parameter frame
The frame to add to the flow.

See also AcPageList::EjectPage method

AcFlow::AddHeader method
Adds a page header frame to the flow. Derived classes override the AddHeader()
method, a pure virtual method in AcFlow, to specify how header frames are

C h a p t e r 7 , A F C c l a s s e s 619

AcFlow

placed at the top of the flow. If you create a subclass from AcFlow, you must
override AddHeader() to specify the implementation details.

Syntax Function AddHeader(header As AcFrame) As Boolean

Parameter header
The page header frame to add.

Returns True if the page header was added to the flow.
False if the page header was not added to the flow.

AcFlow::AddSubpage method
Adds a subpage to the flow. Derived classes override the AddSubPage() method,
a pure virtual method in AcFlow, to specify how subpages are placed in the flow.
If you create a subclass from AcFlow, you must override AddSubPage() to
specify the implementation details.

Syntax Function AddSubpage(subpage As AcSubpage) As Boolean

Parameter subpage
The subpage to add to the flow.

Returns True if the subpage was added to the flow.
False if the subpage was not added to the flow.

AcFlow::AdjustFooter method
Changes the available space in the flow to the correct amount of space for the
page footer. Derived classes override AdjustFooter() to modify the amount of
space in the flow reserved for the page footer. When the AFC starts the flow, it
reserves space for the page footer in the flow. Later, the size of the page footer can
change based on the data row processing. AdjustFooter can modify the space
reserved for the page footer to account for size differences between the estimate
made by the AFC at flow start time and the final size of the page footer.

Syntax Sub AdjustFooter(footer As AcFrame)

Parameter footer
The page footer to add.

AcFlow::CanFitFrame method
Checks if the flow contains enough space to contain a frame. Derived classes
override the CanFitFrame() method, a pure virtual method in AcFlow, to specify
how to determine if a frame fits in a flow. If you create a subclass from AcFlow,
you must override CanFitFrame() to specify the implementation details.

Syntax Function CanFitFrame(frame As AcBaseFrame) As Boolean

620 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFlow

Parameter frame
The frame to check for fit.

Returns True if the frame will fit into the flow.
False if the frame will not fit into the flow.

AcFlow::CanFitHeight method
Checks if the flow contains enough vertical space to contain a frame. Derived
classes override the CanFitHeight() method, a pure virtual method in AcFlow, to
specify how to determine if a frame fits in a flow. If you create a subclass from
AcFlow, you must override CanFitHeight() to specify the implementation details.

Syntax Function CanFitHeight (height As Integer) As Boolean

Parameter height
The height of the component.

Returns True if the frame will fit into the flow.
False if the frame will not fit into the flow.

AcFlow::GetFirstDataFrame method
Returns the first data frame associated with the current flow.

Syntax Function GetFirstDataFrame() As AcFrame

Returns A handle to the first frame in the flow.

AcFlow::GetFreeSpace method
Returns the free space in the flow. Free space is the area of the flow minus the
space occupied by frames in the flow. Derived classes override the
GetFreeSpace() method, a pure virtual method in AcFlow, to specify how to
return the available space. If you create a subclass from AcFlow, you must
override GetFreeSpace() to specify the implementation details.

Syntax Function GetFreeSpace() As AcSize

Returns The amount of unused space, in twips, available in the flow.

AcFlow::GetInsideSize method
Returns the size, in twips, of the content rectangle of the flow.

Syntax Function GetInsideSize() As AcSize

Returns The size of the content rectangle of the flow.

C h a p t e r 7 , A F C c l a s s e s 621

AcFlow

AcFlow::GetLastDataFrame method
Returns the last data frame associated with the current flow.

Syntax Function GetLastDataFrame() As AcFrame

Returns A handle to the last frame in the flow.

AcFlow::IsEmpty method
Indicates whether the flow contains a data frame, such as a Content, Before, or
After frame.

Syntax Function IsEmpty() As Boolean

Returns True if the flow is empty.
False if the flow contains a data frame.

AcFlow::ReleaseSpace method
In derived classes, ReleaseSpace() releases back to the flow all or part of the space
reserved using ReserveSpace(). Derived classes override ReleaseSpace(), a pure
virtual method in AcFlow, to specify how to release space. If you create a subclass
from AcFlow, you must override ReleaseSpace() to specify the implementation
details.

Be careful when using ReleaseSpace(). If you release too much space, the next
frame added to the flow might overlap with the contents of the existing flow.

Syntax Sub ReleaseSpace(width As Integer, height As Integer)

Parameters width
The width of the space to release.

height
The height of the space to release.

See also AcFlow::ReserveSpace method

AcFlow::ReserveSpace method
Reserves a part of the available space within the flow. Derived classes override
ReserveSpace(), a pure virtual method in AcFlow, to specify how to reserve
space. If you create a subclass from AcFlow, you must override ReserveSpace() to
specify the implementation details.

In derived classes, you can call ReserveSpace() to expand a frame or subpage, or
to leave a gap between frames.

Syntax Sub ReserveSpace(width As Integer, height As Integer)

622 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFlow

Parameters width
The width of the space to reserve.

height
The height of the space to reserve.

See also AcFlow::ReleaseSpace method

AcFlow::ResetSpace method
Sets the amount of space in the flow to zero. Derived classes can override
ResetSpace(), a pure virtual method in AcFlow, to reset the amount of space
available for frames remaining in the flow to zero. If you create a subclass from
AcFlow, you must override ResetSpace() only if you want the AFC to perform
automatic balancing of the contents between multiple flows. You request
automatic balancing by setting the BalanceFlows property on the page or
subpage.

Syntax Sub ResetSpace()

See also AcFlow::ReleaseSpace method
AcFlow::ReserveSpace method

AcFlow::ResizeByConstrainedByContents method
Calls the ResizeByConstrained() method of AcVisualComponent. Subclasses of
AcFlow must implement ResizeByConstrainedByContents() to ensure that the
flow’s contents constrain the amount by which the flow is resized.

Syntax ResizeByConstrainedByContents(deltaWidth As AcTwips, deltaHeight As
AcTwips)

Parameters deltaHeight
The amount, in twips, by which to resize the height of the flow.

deltaWidth
The amount, in twips, by which to resize the width of the flow.

See also AcVisualComponent::ResizeByConstrained method

AcFlow::ShiftFooterUp method
Moves the footer so it appears immediately after the last content frame in the
flow. Derived classes override ShiftFooterUp(), a pure virtual method in AcFlow,
to specify where to place a footer frame in the flow. If you create a subclass of
AcFlow, you must override ShiftFooterUp() to specify the implementation
details.

Syntax Sub ShiftFooterUp(footer As AcFrame)

C h a p t e r 7 , A F C c l a s s e s 623

AcFlow

Parameter footer
The page footer frame.

624 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFrame

Class AcFrame
The base class for frames in a report design. Figure 7-57 shows the class hierarchy
of AcFrame.

Figure 7-57 AcFrame

Description A frame is a container for visual components such as controls, charts, and other
nested frames. Data controls must be placed in a frame. Constant controls can be
placed in a frame or on a page.

In a report design, a frame and its contents are typically associated with a data
row. For example, if a data row contains name, address, and telephone number,
you can place in your report design a frame that contains three data controls for
the data.

The framework uses a standard protocol for creating frames. For example, you
can easily move a frame from the Content slot to the PageHeader slot of a report
section.

Class protocol
A frame is contained by another component, such as a section or another frame.
The frame’s container calls the methods in AcFrame as shown in Table 7-44.

AcComponent

AcReportComponent

AcVisualComponent

AcBaseFrame

AcDataFrame

AcFrame

Table 7-44 Class protocol for AcFrame

Method Task

New() Container instantiates the frame.

Start() Container starts the frame.

N/A Frame instantiates all of its controls and nested
frames.

Build() or
BuildFromRow()

Container builds the frame.

C h a p t e r 7 , A F C c l a s s e s 625

AcFrame

Subclassing AcFrame
Each time you drag a frame from a toolbox and drop it into the report design,
e.Report Designer Professional creates a subclass of AcFrame. You can override
methods in the subclass to do special processing or change default properties of
the frame.

Properties
Table 7-45 lists AcFrame properties.

Finish() Container finishes the frame and does any
cleanup work.

N/A Container places the frame on the page.

Table 7-44 Class protocol for AcFrame

Method Task

Table 7-45 AcFrame properties

Property Type Description

AutoSplit
Vertical

AcAutoSplit Specifies how the frame or control is split vertically over
multiple pages:
■ DefaultSplitting. The default setting. If the frame contains

a dynamic text control, splits the frame to maximize use of
space within a flow. Otherwise, the frame is not split.

■ DoNotSplit. Does not split. Text that does not fit within a
flow is truncated.

■ SplitIfNecessary. Splits the frame if it cannot fit as the first
non-decoration frame in a flow.

■ SplitIfPossible. Splits to maximize use of space within a
flow.

CanIncrease
Height

Not
applicable

Determines whether the height of the frame can increase as
the height of its contents increases.

CanIncrease
Width

Not
applicable

Determines whether the width of the frame can increase as
the width of its contents increases.

CanMoveLeft Not
applicable

Determines whether the frame can move left.

CanMoveUp Not
applicable

Determines whether the frame can move up.

(continues)

626 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFrame

Methods for Class AcFrame

Methods defined in Class AcFrame

AdjustContentVerticalGeometry, AutoSplitVertical, CustomDTMLFooter,
CustomDHTMLHeader, GetBorderOrigin, GetBorderRect, GetBorderSize,
NoSplitBottom, NoSplitTop, PageBreakAfter, PageBreakBefore,
SplitMarginBottom, SplitMarginTop

Methods inherited from ClassAcBaseFrame

AddToAdjustSizeList, BindToFlow, FindContentByClass, FindContentByClassID,
GetControl, GetControlValue, GetPageNumber, GetSearchValue,

CanReduce
Height

Not
applicable

Determines whether the height of the frame can decrease as
the height of its contents decreases.

CanReduce
Width

Not
applicable

Determines whether the width of the frame can decrease as
the width of its contents decreases.

Custom
DHTMLFooter

String Enables use of custom browser scripting control in an HTML
form.
The PDF Converter ignores CustomDHTMLFooter.

Custom
DHTML
Header

String Enables use of custom browser scripting control in an HTML
form.
The PDF Converter ignores CustomDHTMLHeader.

NoSplitBottom AcTwips The height of the area that must not be split at the bottom of
the frame.
The default value is 1".

NoSplitTop AcTwips The height of the area that must not be split at the top of the
frame.
The default value is 1".

SplitMargin
Bottom

AcTwips The margin between the bottom edge and the contents of
segments of split frames.
The margin is not applied to the last segment.
The default value is 0".

SplitMargin
Top

AcTwips The margin between the top edge and the contents of
segments of split frames. The margin is not applied to the
first segment.
The default value is 0".

Table 7-45 AcFrame properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 627

AcFrame

IsDataFrame, IsFooter, IsHeader, MakeContents, RebindToFlow,
SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcFrame::AdjustContentVerticalGeometry method
Adjusts the height of the frame and the vertical position and height of the frame’s
contents.

Syntax Sub AdjustContentVerticalGeometry()

628 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFrame

AcFrame::AutoSplitVertical method
Returns the value of the AutoSplitVertical property, with which you can modify
how the factory splits a frame or a dynamic text control. Table 7-46 lists the valid
values for the AutoSplitVertical property.

Syntax Function AutoSplitVertical() As AcAutoSplit

AcFrame::CustomDHTMLFooter method
Enables use of custom browser scripting control in an HTML form.
CustomDHTMLFooter() is called for report viewing using the DHTML viewer.

Syntax Function CustomDHTMLFooter() As String

See also AcFrame::CustomDHTMLHeader method

AcFrame::CustomDHTMLHeader method
Enables use of custom browser scripting control in an HTML form.
CustomDHTMLHeader() is called for report viewing using the DHTML viewer.

Syntax Function CustomDHTMLHeader() As String

See also AcFrame::CustomDHTMLFooter method

Table 7-46 Valid values for the AutoSplitVertical property

Property Description

DefaultSplitting The factory’s default behavior is to split a frame and its contents only if the
frame contains at least one dynamic text control. This setting splits the
frame contents and places the segments in the most space-efficient manner,
ensuring that no segments are too small at the top and bottom of pages
when the frame splits over multiple pages. For frames that contain
dynamic text controls, this setting yields the same results as SplitIfPossible.

DoNotSplit Only data that fits in the flow appears. The remaining data does not
appear in the report. Use this setting to limit the frame to one page.

SplitIfNecessary Splits the frame, excluding header and footer, only if the frame is the first
one in the flow. Subsequent frames are placed on the next page, where
again only the first frame is split, if necessary. Use this setting to minimize
the number of split frames. This setting increases the amount of empty
space on pages and, therefore, the number of pages.

SplitIfPossible Splits the frame and its contents to maximize the use of space in the flow.
Use this setting to minimize the number of pages. Using this setting, more
frames split across pages.

C h a p t e r 7 , A F C c l a s s e s 629

AcFrame

AcFrame::GetBorderOrigin method
Returns the origin coordinates of the border. The origin coordinates define the
upperleft position of the border.

Syntax Function GetBorderOrigin() As AcPoint

See also AcFrame::GetBorderRect method
AcFrame::GetBorderSize method

AcFrame::GetBorderRect method
Returns the origin, or upperleft, coordinates and size of the border. In the user
interface, a rectangle defines the size and position of the border.

Syntax Function GetBorderRect() As AcRectangle

Returns A rectangle that defines the border of the frame.

See also AcFrame::GetBorderOrigin method
AcFrame::GetBorderSize method

AcFrame::GetBorderSize method
Returns the size of the content area of the frame.

Syntax Function GetBorderSize () As AcSize

Returns The size, in twips, of the frame.

See also AcFrame::GetBorderOrigin method
AcFrame::GetBorderRect method

AcFrame::NoSplitBottom method
Returns the value of the NoSplitBottom property. NoSplitBottom specifies the
height of the area that must not be split at the bottom of the frame, or the
minimum height of the last segment.

Syntax Function NoSplitBottom() As AcTwips

Returns The value of the frame’s NoSplitBottom property.

AcFrame::NoSplitTop method
Returns the value of the frame’s NoSplitTop property. NoSplitTop specifies the
height of the area that must not be split at the top of the frame, or the minimum
height of the first segment.

Syntax Function NoSplitTop() As AcTwips

630 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcFrame

Returns The value of the frame’s NoSplitTop property.

AcFrame::PageBreakAfter method
Determines whether the frame is the last one on the current page.

Syntax Function PageBreakAfter() As Boolean

Returns True if the frame is the last one on the current page.
Otherwise, False.

AcFrame::PageBreakBefore method
Determines whether the frame is the first one on the current page.

Syntax Function PageBreakBefore() As Boolean

Returns True if the frame is the first one on the current page.
Otherwise, False.

AcFrame::SplitMarginBottom method
Returns the value of the frame’s SplitMarginBottom property. When a dynamic
text control is split to fit on multiple pages, SplitMarginBottom specifies a blank
area between the bottom edge of each segment, except the last, and its contents.

Syntax Function SplitMarginBottom() As AcTwips

Returns The value of the frame’s SplitMarginBottom property.

AcFrame::SplitMarginTop method
Returns the value of the frame’s SplitMarginTop property. When a dynamic text
control is split to fit on multiple pages, SplitMarginTop specifies a blank area
between the top edge of each segment, except the first, and its contents.

Syntax Function SplitMarginTop() As AcTwips

Returns The value of the frame’s SplitMarginTop property.
Chapter 7AFC classes

C h a p t e r 7 , A F C c l a s s e s 631

AcGroupSection

Class AcGroupSection
Chapter 7AFC classes Groups related rows into a section based on a key column. Figure 7-58 shows the

class hierarchy of AcGroupSection.

Figure 7-58 AcGroupSection

Description Reports often contain grouped data and can display subtotals for each group. For
example, a report of customers can group the customers by state and provide a
year-to-date summary of customer expenditures. AcGroupSection is the report
component that creates groups in a report.

Grouping is based on a key column in your data row, which you identify by
setting the Key property, and optionally, the GroupOn and GroupInterval
properties. You use the GroupOn and GroupInterval properties to convert a key
column in a data row into a value that is more suitable for your report. For
example, if a key column contains the full date of sale for an item and you need to
produce a quarterly sales report, use the GroupOn property to group the data by
quarter. The framework extracts the date information from the key column,
converts it to a calendar quarter, and creates groups based on calendar quarter. If
you need to produce a bimonthly report, set GroupOn to GroupOnMonth and set
GroupInteval to 2.

Because a group section is a data section, the group section inherits the Before,
After, Page Header, Page Footer, and Content slots. Use the After slot to create
subtotals over your group. Use the Content slot to process each row in the group.
The Content can be a frame or another group section to create a nested group.

You always use a group section with a report section. If the report section uses a
query data stream, the report section ensures that the query sorts the data rows as
needed for the group sections. Specifically, the report section tells the query data
stream to sort the data based on the columns identified in the Key properties of
group sections associated with the report. If you had specified an Order By clause
in your query, then the columns you specified appear after the key columns in the
modified Order By clause.

To specify a group to use with a query data source, set the Key property to the
name of a column in your data row. You must use the database column name, not
the Basic variable name in the data row. The framework ensures the rows are
sorted correctly.

AcComponent

AcReportComponent

AcSection

AcDataSection

AcGroupSection

632 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcGroupSect ion

If the data stream is other than a query, you must ensure that the data stream
returns the rows sorted in the correct order as needed by the group sections. The
framework cannot automatically sort the rows for you unless you specify the Key
property for each group section. The Key property must be the name of an
Actuate Basic variable in the data row.

To do a level break on a computed value, such as a range of account numbers, or a
substring within a field, such as the area code portion of a phone number, you
must create a column that represents the computed value in the data stream. For
example, if you use a query data stream, you must create a computed column to
hold the computed value that you want to be the key.

You can nest group sections. Each group is identified not only by its own key, but
by the entire set of keys of any enclosing group sections. As such, when an outer
group ends, all nested groups end also. For example, suppose you want a list of
customers and their orders by state. You create the query, then create an outer
group for states and an inner group for customers. Assume that the database
contains both Alabama and Alaska, that both states have only one customer, each
having the name “Smith.” The framework treats the customers as belonging to
different groups. That is, the full key of the first customer is (“Alabama,”
“Smith”) and the full key of the second customer is (“Alaska,” “Smith”).

Building a group section
Group sections nest within a report section that reads rows from a data stream.
The report section passes each group section its contents by calling the content’s
BuildFromRow() method. The group section uses this method to build up the
group, one row at a time. When the enclosing section calls BuildFromRow() on a
group section for the first time, the group section creates the Before and,
optionally, the Page Header components. On the first row, BuildFromRow() calls
the generated GetKey() method to identify and store the key value for this group.

For each row after the first, BuildFromRow() again calls GetKey() to determine
the key value for that row. If the key value differs from the value that identifies
the group, then the row is the first row of the next group. In this case,
BuildFromRow() produces its After component, and returns False without
processing the data row. When the enclosing section sees the return value False,
the section starts a new group section to represent the new data group and passes
the data row to the new group.

In summary, BuildFromRow() uses the following sequence of events:

■ If the row is the first row, BuildFromRow() produces the Page Header and
Before components as described in Class AcDataSection. BuildFromRow()
records the row’s key value.

■ If the row is not the first row, BuildFromRow() compares the row’s key value
with the recorded key value. If the key values differ, BuildFromRow()
produces the After and Page Footer components and returns False.

C h a p t e r 7 , A F C c l a s s e s 633

AcGroupSection

■ If there is no current content component, BuildFromRow() calls
NewContent() to create a content component.

■ BuildFromRow() passes the row to the content’s BuildFromRow() method. If
the content accepts the row, then BuildFromRow() returns True.

■ BuildFromRow() finishes the current content and instantiates a new one by
calling NewContent().

■ BuildFromRow() calls the content’s BuildFromRow() method. This time, the
content must accept the row. Then, BuildFromRow() returns True.

Variables
Table 7-47 lists AcGroupSection variables.

Properties
Table 7-48 lists AcGroupSection properties.

Table 7-47 AcGroupSection variables

Variable Type Description

KeyValue Variant The value of the key column for the group

KeyColumnName String The name of the key column for the group

Table 7-48 AcGroupSection properties

Property Type Description

GroupInterval Function GroupInterval works with GroupOn to control how
data is grouped in the report. GroupInterval contains
the number of values to group together. If you specify
GroupOnPrefix, set GroupInterval to the number of
characters in the prefix.
The default value is 1.

GroupOn AcGroupOn
Type

GroupOn controls how data is grouped in the report.
Valid values are:
■ GroupOnCustom. The developer builds a custom

group key in the GetKeyValue() method.
■ GroupOnDay. Group key is the date excluding the

time. Valid for key columns of Date data type only.
■ GroupOnHour. Group key is the full date and time

excluding minutes and seconds. Valid for key
columns of Date data type only.

(continues)

634 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcGroupSect ion

Methods for Class AcGroupSection

Methods defined in Class AcGroupSection

GetKeyString, IsSameKey

Methods inherited from Class AcDataSection

GetAfter, GetBefore, GetFirstPageFooter, GetFirstPageHeader, GetPageFooter,
GetPageHeader, NewAfter, NewBefore, NewContent, NewPageFooter,
NewPageHeader, OnEmptyGroup

Methods inherited from Class AcSection

CommittedToFlow, DeletePageFrame, FinishConnection, FinishFlow,
FinishPage, GetComponentACL, GetCurrentRow, GetSearchValue,
NewPage, ObtainConnection, PageBreakAfter, PageBreakBefore,
SetSearchValue, SetSecurity, StartFlow, StartPage, StopAfterCurrentFrame,
StopAfterCurrentRow, StopNow, TocAddComponent, TocAddContents

GroupOn
 (continued)

AcGroupOn
Type

 (continued)

■ GroupOnInterval. Provides grouping for keys
with data types other than Currency, Date,
Double, Integer, Single, or String.

■ GroupOnMinute. Group key is the full date and
time excluding seconds. Valid for key columns of
the Date data type only.

■ GroupOnMonth. Group key is year and month.
Valid for key columns of the Date data type only.

■ GroupOnPrefix. Group key is the first n characters
of a key. Valid for columns of the String data type
only.

■ GroupOnQuarter. Group key is a calendar quarter.
Valid for key columns of the Date data type only.

■ GroupOnWeek. Group key is the full date
converted to a week within a year. Valid for key
columns of the Date data type only.

■ GroupOnYear. Group key is the year. Valid for key
columns of the Date data type only.

The default value is GroupOnEveryValue.

Key Expression The database column that identifies the group.

Table 7-48 AcGroupSection properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 635

AcGroupSection

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcGroupSection::GetKeyString method
Returns the key value as a string.

Syntax Function GetKeyString() As String

Returns The string containing the group’s key value.

Example In the following example, the user-defined method, GetKeyValue, on a control,
returns the value of the group section key. This method calls GetKeyString() to
return the key as a string value after the group section is located.

Function GetKeyValue() As String
' Get the key value of the Group Section containing this control.

Dim myGroupSection As AcGroupSection
Dim component As AcReportComponent
Set component = GetContainer()
Do While Not component Is Nothing

If IsKindOf(component, "AcGroupSection") Then
Exit Do

End If
Set component = component.GetContainer()

Loop
If Not component Is Nothing Then

Set myGroupSection = component
GetKeyValue = myGroupSection.GetKeyString()

End If
End Function

AcGroupSection::IsSameKey method
Checks whether the group section key has changed by comparing the value of the
current group section key and the prior group section key. Call IsSameKey() to
use the results of a computation to determine whether to do a level break.

636 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcGroupSect ion

Syntax Function IsSameKey(curKey As Variant, prevKey As Variant) As Boolean

Parameters curKey
The current group section key.

prevKey
The prior group section key.

Returns True if the keys are equal.
False if the keys are not equal.

C h a p t e r 7 , A F C c l a s s e s 637

AcImageControl

Class AcImageControl
Displays external images in a report. Figure 7-59 shows the class hierarchy of
AcImageControl.

Figure 7-59 AcImageControl

Description Use AcImageControl to display an image in a report. You can display a static
image file. Alternatively, if the image file name is in a data column, you can direct
Actuate software to present different images for each data row, based on the
contents of the data column. In this case, the size of the images must be the same.

If you distribute a report to users using e-mail or an Encyclopedia volume, use
the Embedded property to include the image in the report at image design time or
image run time. If you do not embed the image with the report you distribute, an
X appears in place of the image. Table 7-49 lists the types of images that are
supported.

To use an image in your report, complete the following tasks:

■ Describe how to get the file name for the image.

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcImageControl

Table 7-49 Supported image types

File type Supported formats

BMP 1 bit per pixel.

4, 8, or 24 bits per pixel (RLE encoding).

GIF 4 or 8 bits per pixel. Appears in DHTML reports only.

JPG 24 bits per pixel.

PCX 1, 4, 8, or 24 bits per pixel.

TGA 8, 16, or 24 bits per pixel (RLE encoding).

32 bits per pixel with alpha channel.

TIFF 1 bit per pixel (uncompressed). Appears on Windows only.

8, 16, or 24 bits per pixel (LZW compression).

CCITT Fax Groups 3 and 4 compression.

638 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcImageContro l

■ If the image file name or URL is accessed from a data column, set the
FileNameExp property to the name of the data column containing the
image file name or URL or use the column in an expression.

■ If the name or URL of the image file is a static value, set the FileName
property to the file name or URL of the image to display.

■ Set the Embedded property to direct the framework when to include the
image in the report. Valid values are:

■ ImageDesignTime. Include the image when the report object design (.rod)
file compiles.

■ ImageFactoryTime. Include the image when the report object instance (.roi)
file builds

■ ImageFactoryTimeSingle. Include the image only once when the report
object instance (.roi) file builds, resulting in faster report generation and
smaller ROI and PDF files.

■ ImageViewTime. Include the image when the ROI appears in the report
viewer.

■ ImageViewTimeSingle. Include the image only once when the ROI appears
in the report viewer, making PDF generation faster, and PDF files smaller.

If you distribute a report to users through e-mail or through an Encyclopedia
volume, set the image control’s Embedded property to ImageDesignTime or
ImageFactoryTime. If you do not set one of these values, an X appears in place
of the image.

Properties
Table 7-50 lists AcImageControl properties.

Table 7-50 AcImageControl properties

Property Type Description

Embedded AcImage
EmbedType

The point at which to embed the image. Valid values are:
■ ImageDesignTime. e.Report Designer Professional retrieves

the image and embeds it in the report object executable (.rox)
file.

■ ImageFactoryTime. The Factory retrieves the image and
embeds it in the report object instance (.roi) file. Use the
FileName property to specify the name of the image file.

■ ImageFactoryTimeSingle. Embeds images that are used
multiple times only once in an ROI file.

C h a p t e r 7 , A F C c l a s s e s 639

AcImageControl

Methods for Class AcImageControl

Methods defined in Class AcImageControl

GetFileName

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents,
IsContainer, IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag,
SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Embedded
 (continued)

AcImage
EmbedType

 (continued)

■ ImageViewTime. The view and print process retrieves the
image when the user views or prints the report.

■ ImageViewTimeSingle. Images that are used more than once
are retrieved only one time instead of multiple times.

The default value is ImageDesignTime.

FileName String The name or URL of an image file to display.

FileName
Exp

Expression If the image is derived from a data column type the name of the
data column enclosed in brackets. For example, type
"http://" + [catalog.itempic]
to use the itempic data column from the catalog table as the
source for a URL to the image.

Table 7-50 AcImageControl properties

Property Type Description

640 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcImageContro l

AcImageControl::GetFileName method
Returns the file name for the image to be displayed when the report is viewed or
printed. Override GetFileName() to specify a custom file name for the image to
be displayed. The default return value for GetFileName() is the value of the
FileName member variable.

If the report runs locally, the file name can be relative or absolute. A relative file
name must be relative to the directory that contains the report object instance
(.roi) file. If the report runs on iServer, the file name must be absolute.

Syntax Function GetFileName() As String

Returns Name of the file containing the image.

C h a p t e r 7 , A F C c l a s s e s 641

AcIntegerControl

Class AcIntegerControl
Displays an Integer value in a report. Figure 7-60 shows the class hierarchy of
AcIntegerControl.

Figure 7-60 AcIntegerControl

Description Use AcIntegerControl to display an Integer value. You can also use a currency
control or double control to display numeric values.

See also Class AcControl
Class AcCurrencyControl
Class AcDataControl
Class AcDoubleControl
Class AcTextualControl

Variable
Table 7-51 describes the AcIntegerControl variable.

Methods for Class AcIntegerControl

Methods inherited from Class AcDataControl

Format, GetGroupKey, IsSummary

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcDataControl

AcIntegerControl

AcTextualControl

Table 7-51 AcIntegerControl variable

Variable Type Description

DataValue Integer Stores the value of the control

642 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcIntegerContro l

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 643

AcIterator

Class AcIterator
The base class for all iterators. Figure 7-61 shows the class hierarchy of AcIterator.

Figure 7-61 AcIterator

Description AcIterator provides the methods needed to work with iterators. Typically, you
create an iterator in one of the following two ways:

■ Call the NewIterator() method on your collection.

■ Call the GetContentIterator() method on your report component.

These methods can return specialized iterators derived from AcIterator. Always
handle the returned iterator as an instance of AcIterator.

Traversing a list
AcIterator provides two techniques for traversing a list of objects. You can use the
GetNext() method to advance the iterator and return objects. You call the
methods HasMore() and IsDone() to test whether more objects exist or you have
reached the end of the list. You can also use MoveNext() to move the iterator and
GetItem() to retrieve the item. The return value from MoveNext() tells you when
you have reached the end of the list. The latter technique improves list processing
because positioning is independent of retrieval. You can also combine
MoveNext() with the SkipTo() method to position the iterator anywhere in the
list.

You can position the iterator at a specific item in a list by specifying the item’s
position number. Items in the list are numbered sequentially starting with 1.

Updating items in a list
Iterators are valid only when iterating over a list that does not change. If you
create an iterator over a list, then change the list, the operation of the iterator is
unpredictable. If you must iterate over a list as it changes, you can create a copy
of the list and iterate over the copy until the changes are complete. Alternatively,
you can call the Restart() method on the iterator after you finish updating the list.

Examples The following example shows how to create a list and traverse it in sequential
order:

Dim iter As AcIterator
Dim obj As MyClass
Set iter = aCollection.NewIterator()
Do While iter.HasMore()

Set obj = iter.GetNext()
Loop

AcIterator

644 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcIterator

The following example shows how to create a list and traverse it using methods
that help you process the list sequentially or randomly. The code calls the
NewIterator() method on the collection to create the iterator.

Dim iter As AcIterator
Dim obj As MyClass
Set iter = aCollection.NewIterator()
Do While iter.MoveNext()

Set obj = iter.GetItem()
Loop

See also Class AcCollection
Class AcReportComponent

Methods for Class AcIterator

Methods defined in Class AcIterator

Copy GetItem, GetNext, GetPosition, HasMore, IsDone, MoveNext, Restart,
SkipForwardTo, SkipTo, SkipToItem

AcIterator::Copy method
Copies this iterator. Use Copy() when the report must retain the state of the
iterator. The copy has the same state as the original iterator.

Syntax Function Copy() As AcIterator

AcIterator::GetItem method
Returns the item to which the iterator points. GetItem() does not change the
position of the iterator. This method can be called multiple times to retrieve the
item at a given position.

You must not process lists using both GetNext() and GetItem() because the
iterator positioning logic is different for the two methods.

Syntax Function GetItem() As AnyClass

Returns The object to which the iterator points.
Nothing if the iterator is not pointing to an object.

See also AcIterator::GetNext method
AcIterator::MoveNext method

AcIterator::GetNext method
Returns the next item in the list. After GetNext() returns the object, it advances
the iterator to point to the next item in the list.

C h a p t e r 7 , A F C c l a s s e s 645

AcIterator

You must not process lists using both GetNext() and GetItem() because the
iterator positioning logic is different for the two methods.

Syntax Function GetNext() As AnyClass

Returns The next item in the list.

See also AcIterator::GetItem method

AcIterator::GetPosition method
Returns the current position of the iterator. The items in the list have position
number 1, 2, and so on. The framework positions new or restarted iterators before
the start of the list, at position 0. GetPosition() returns the number of items in the
list plus one if the iterator is positioned past the end of the list.

Syntax Function GetPosition() As Integer

Returns An integer indicating the item number in the list.

AcIterator::HasMore method
Determines whether there are more items in the list. This method is the inverse of
IsDone(). You can use HasMore() to detect if there are more items when you use
GetNext() to retrieve items.

Syntax Function HasMore() As Boolean

Returns True if there are other items in the list.
False if there are no more items in the list.

See also AcIterator::GetNext method
AcIterator::IsDone method

AcIterator::IsDone method
Determines if there are more items in the list. This method is the inverse of
HasMore(). You can use IsDone() to detect if there are more items when you use
GetNext() to retrieve items.

Syntax Function IsDone() As Boolean

Returns True if there are no more items in the list.
False if there are more items in the list.

See also AcIterator::HasMore method
AcIterator::GetNext method

AcIterator::MoveNext method
Moves the iterator to the next position in the list.

646 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcIterator

After you create or restart the iterator, you can call MoveNext() to position the
iterator at the first item in the list. Then, you can call GetItem() to retrieve the
item from the list.

Syntax Function MoveNext() As Boolean

Returns True if the next position is in the list.
False if the next position is past the end of the list.

See also AcIterator::GetItem method

AcIterator::Restart method
Positions the iterator before the first item in the list.

Syntax Sub Restart()

AcIterator::SkipForwardTo method
Skips forward from the current node to the node that contains the specified
object. Searches from the current node to the end of the list. The next call to
GetNext() or GetItem() returns either the object or Nothing if the object is not in
the list.

The preferred method is SkipToItem(), which searches the entire list.

Syntax Sub SkipForwardTo(obj As AnyClass)

Parameter obj
The object to locate.

See also AcIterator::SkipTo method
AcIterator::SkipToItem method

AcIterator::SkipTo method
Places the iterator at the position of a specified object. The next call to GetItem()
returns the object. If the object is not in the list, the position of the iterator does not
change.

Syntax Sub SkipTo(obj As AnyClass)

Parameter obj
The object to locate.

Returns True if the object is in the list.
False if the object is in the list.

See also AcIterator::GetItem method

C h a p t e r 7 , A F C c l a s s e s 647

AcIterator

AcIterator::SkipToItem method
Searches the entire index to locate the object at which to reposition the iterator. If
the object is not in the list, returns False and the position of the iterator does not
change.

To search only from the current iterator position forward, use SkipForwardTo().

Syntax Function SkipToItem(obj As AnyClass) As Boolean

Parameter obj
The object to locate.

Returns True if the object is in the list.
False if the object is not in the list.

See also AcIterator::SkipForwardTo method
AcIterator::SkipTo method

Chapter 7AFC classes

648 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcLabelContro l

Class AcLabelControl
Chapter 7AFC classes Displays static, non-searchable text labels in a report. Figure 7-62 shows the class

hierarchy of AcLabelControl.

Figure 7-62 AcLabelControl

Description A label control is a constant control that is fully defined at design time. Use it to
display a title or textual information that does not come from a data row. You
specify the text to display using the Text property. To display string data from a
data row, use AcTextControl instead.

There are no public methods defined specifically for AcLabelControl.

Variable
Table 7-52 describes the AcLabelControl variable.

Property
Table 7-53 describes the AcLabelControl property.

See also Class AcBaseFrame
Class AcDataFrame

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcTextualControl

AcLabelControl

Table 7-52 AcLabelControl variable

Variable Type Description

Text String Stores the text of the control

Table 7-53 AcLabelControl property

Property Type Description

Text String Stores the text of the control

C h a p t e r 7 , A F C c l a s s e s 649

AcLabelControl

Methods for Class AcLabelControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

650 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcLef tRightPageList

Class AcLeftRightPageList
Builds a page list with alternating left-right pages. Figure 7-63 shows the class
hierarchy of AcLeftRightPageList.

Figure 7-63 AcLeftRightPageList

Description The AcLeftRightPageList class provides a report format that has alternating left
and right pages. AcLeftRightPageList has two component relationships, LeftPage
and RightPage.

This class also has a FirstIsRight property that you can set in the Properties
window. When you set FirstIsRight to True, AcLeftRightPageList starts the first
page as a right-hand page. When you set FirstIsRight to False,
AcLeftRightPageList starts the first page as a left-hand page.

There are no public methods defined specifically for AcLeftRightPageList.

Properties
Table 7-54 lists AcLeftRightPageList properties.

See also AcPageList
AcTitleBodyPageList

Methods for Class AcLeftRightPageList

Methods inherited from Class AcPageList

AddFrame, EjectPage, Finish, GetContentIterator, GetContents, GetCurrentFlow,
GetCurrentPage, GetCurrentPageACL, GetEstimatedPageCount,
GetFirstPage, GetLastPage, GetPage, GetPageCount, GetPageList,

AcComponent

AcPageList

AcLeftRightPageList

Table 7-54 AcLeftRightPageList properties

Property Type Description

FirstIsRight Boolean True if the first page in the page list is a
right-hand page

LeftPage AcPage The page style to use for left-hand pages

RightPage AcPage The page style to use for right-hand pages

C h a p t e r 7 , A F C c l a s s e s 651

AcLeftRightPageList

GetReport, HasPageSecurity, NeedCheckpoint, NeedHeight, NewPage, Start,
UseAcceleratedCheckpoints

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

652 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcLinearFlow

Class AcLinearFlow
Provides logic for adding frames to a flow that fills in one direction, either
top-down or left-to-right. Figure 7-64 shows the class hierarchy of AcLinearFlow.

Figure 7-64 AcLinearFlow

Description AcLinearFlow is the abstract base class for flows that fill in one direction, either
top-down or left-to-right. Top-down flows fill with frames in the standard
top-down order, as described in AcTopDownFlow. The left-to-right flow fills with
frames starting on the left side of the flow, with each subsequent frame placed to
the right of the previous frame. When the report receives a frame that does not fit
in the remaining space in the flow, the report advances to the next flow or page.

Variable
Table 7-55 describes the AcLinearFlow variable.

AcComponent

AcReportComponent

AcVisualComponent

AcFlow

AcLinearFlow

Table 7-55 AcLinearFlow variable

Variable Type Description

Alignment AcFlowPlacement Specifies how to align a frame within
a flow. Values are:
■ FlowAlignLeftOrTop. Causes the

frame to appear left-justified
within the flow.

■ FlowAlignRightOrBottom.
Causes the frame to appear
right-justified.

■ FlowAlignCenter. Centers the
frame in the flow.

■ FlowAlignCustom. Supports
custom alignment. The
framework uses the value of x in
the Position property to align the
frame in the flow.

C h a p t e r 7 , A F C c l a s s e s 653

AcLinearFlow

Property
Table 7-56 describes the AcLinearFlow property.

See also Class AcTopDownFlow

Methods for Class AcLinearFlow

Methods defined in Class AcLinearFlow

GetFreeSpace, GetInsideOrigin, GetInsideRect, GetInsideSize

Methods inherited from Class AcFlow

AddFooter, AddFrame, AddHeader, AddSubpage, AdjustFooter, CanFitFrame,
CanFitHeight, GetFirstDataFrame, GetLastDataFrame, GetFreeSpace,
GetInsideSize, IsEmpty, ReleaseSpace, ReserveSpace, ResetSpace,
ResizeByConstrainedByContents, ShiftFooterUp

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,

Table 7-56 AcLinearFlow property

Property Type Description

Alignment AcFlowPlacement Specifies how to align frames. Valid
values are:
■ FlowAlignLeftOrTop. Use this

setting to cause the frame to
appear left-justified within the
flow.

■ FlowAlignRightOrBottom. Use
this setting to cause the frame to
appear right-justified in the flow.

■ FlowAlignCenter. Use this
setting to center the frame in the
flow.

■ FlowAlignCustom. Use this
setting to do custom alignment.
If you use custom alignment, the
framework uses the value of x in
the Position property to align the
frame in the flow.

654 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcLinearFlow

ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcLinearFlow::GetFreeSpace method
Returns the free space in the flow. Free space is the area of the flow minus the
space occupied by frames in the flow. Derived classes override the
GetFreeSpace() method, a pure virtual method in AcLinearFlow, to specify how
to return the available space. If you create a subclass from AcLinearFlow, you
must override GetFreeSpace() to specify the implementation details.

Syntax Function GetFreeSpace() As AcSize

Returns The amount of unused space, in twips, available in the flow.

AcLinearFlow::GetInsideOrigin method
Gets the position of the inside area of the flow, relative to the upper left corner, or
origin, of the flow.

Syntax Function GetInsideOrigin() As AcPoint

Returns The origin coordinates, in twips.

C h a p t e r 7 , A F C c l a s s e s 655

AcLinearFlow

AcLinearFlow::GetInsideRect method
Gets the rectangle that defines the inside space of the flow, relative to the upper
left corner, or origin, of the flow.

Syntax Function GetInsideRect() As AcRectangle

Returns A rectangle that defines the size of the flow’s content.

AcLinearFlow::GetInsideSize method
Returns the size, in twips, of the content rectangle of the flow.

Syntax Function GetInsideSize() As AcSize

Returns The size of the flow’s content.

656 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcLineControl

Class AcLineControl
Displays a line in a report design. Figure 7-65 shows the class hierarchy of
AcLineControl.

Figure 7-65 AcLineControl

Description A line control is a constant control that is fully defined at design time. The
properties you are likely to set are Position, EndPosition, and LineStyle. Position
specifies the starting coordinates of the line. EndPosition specifies the end
coordinates. The x-coordinate is measured from the top left corner of the frame
that contains the line control. The y-coordinate is measured from the top of the
enclosing frame.

The Line Style properties support specifying the color, style, and width of the line.
The length of the line is determined by the Position and EndPosition properties
and the width by the width property under LineStyle.

There are no public methods defined specifically for AcLineControl.

Variables
Table 7-57 lists AcLineControl variables.

Properties
Table 7-58 lists AcLineControl properties.

See also Class AcControl

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcLineControl

Table 7-57 AcLineControl variables

Variable Type Description

EndPosition AcPoint The end point of the line

LineStyle AcLineStyle The style of the line

C h a p t e r 7 , A F C c l a s s e s 657

AcLineControl

Methods for Class AcLineControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Table 7-58 AcLineControl properties

Property Type Description

EndPosition AcPoint The end point of the line

LineStyle AcLineStyle The style of the line

658 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcList

Class AcList
A base class that defines the list interface. Figure 7-66 shows the class hierarchy of
AcList.

Figure 7-66 AcList

Description The AcList class is an abstract class that defines the list interface. Using inherited
methods, this class provides a complete set of list functions, including the ability
to add an item anywhere in the list, remove an item anywhere in the list, or obtain
statistics about the contents of the list.

The framework defines one concrete subclass of AcList, AcSingleList, which
implements a singly-linked list.

There are no public methods defined specifically for AcList.

Example The following example shows how to create a list and traverse it with a list
iterator:

Class MyClass
Dim counter As Integer

End Class

Sub Main ()
Dim list As AcList
Dim obj As MyClass
Dim count As Integer
Dim iterator As AcIterator

'Create a list
Set list = New AcSingleList
'Create an object and add it to the list
Set obj = New MyClass
obj.counter = 1
list.AddToTail(obj)
'Create a second object and append it to the list
Set obj = New MyClass
obj.counter = 2
list.AddToTail(obj)
'Count the number of objects in the list
count = list.GetCount()
MsgBox "Number of objects in the list: " & count

AcCollection

AcOrderedCollection

AcList

C h a p t e r 7 , A F C c l a s s e s 659

AcList

'Create a list iterator and get each object in the list
Set iterator = New AcSingleListIterator(list)
Do While iterator.HasMore()

Set obj = iterator.GetNext()
MsgBox "The position of this object in the list:" &

obj.counter
Loop

'Delete the objects from the list
list.RemoveHead()
list.RemoveHead()

End Sub

See also Class AcCollection
Class AcOrderedCollection
Class AcSingleList

Methods for Class AcList

Methods inherited from Class AcOrderedCollection

AddToHead, AddToTail, Copy, GetAt, GetHead, GetIndex, GetTail, InsertAfter,
InsertAt, InsertBefore, RemoveHead, RemoveTail, SetAt

Methods inherited from Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
Remove, RemoveAll

660 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcMSSQLConnect ion

Class AcMSSQLConnection
Establishes a connection to a DB2 database. Figure 7-67 shows the class hierarchy
of AcMSSQLConnection.

Figure 7-67 AcMSSQLConnection

Description Use the AcMSSQLConnection class to establish a connection to a Microsoft SQL
database. The report must set the server name, user name, and password prior to
connecting. After connecting, the report must not change these values.

There are no public methods defined specifically for AcMSSQLConnection.

Variables
Table 7-59 lists AcMSSQLConnection variables.

Properties
Table 7-60 lists AcMSSQLConnection properties.

AcComponent

AcConnection

AcDBConnection

AcMSSQLConnection

Table 7-59 AcMSSQLConnection variables

Variable Type Description

DllPath String The name of the DLL providing the client database

Password String The client password for the connection

ServerName String The client server name for the connection

UserName String The client user name for the connection

Table 7-60 AcMSSQLConnection properties

Property Type Description

DllPath String The name of the DLL providing the client database

Password String The client password for the connection

ServerName String The client server name for the connection

UserName String The client user name for the connection

C h a p t e r 7 , A F C c l a s s e s 661

AcMSSQLConnect ion

About MS-SQL data types
Table 7-61 describes the default conversion between MS-SQL and Actuate data
types.

Actuate software accesses MS-SQL databases using the DB-library API. The
DB-library API returns 255 characters of data. If the data column size exceeds 255
characters, the remainder of the database column is truncated.

About queries
MS-SQL uses identifiers to name SQL server objects, such as servers and
databases, and database objects, such as tables, views, columns, and procedures.
Identifiers can include special characters and reserved words. You must enclose
any identifier that contains a special character or reserved word in quotation

Table 7-61 Default mapping of MS-SQL to Actuate data types

DB2 data type Maps to

Binary Actuate String.

Bit Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Char Actuate String.

DateTime Actuate Date. Can also map to Actuate String.

Decimal Actuate Double. Can also map to Actuate Integer,
Long, Single, or String.

Int Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Moneyc Actuate Currency. Can also map to Actuate Double,
Integer, Long, Single, or String.

Numeric Actuate Double. Can also map to Actuate Integer,
Long, Single, or String.

Smallint Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

SmallDateTime Actuate Date. Can also map to Actuate String.

SmallMoney Actuate Currency. Can also map to Actuate Double,
Integer, Long, Single, or String.

Tinyint Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Varbinary Actuate String.

Varchar Actuate String.

662 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcMSSQLConnect ion

marks. For example, if your table name contains blanks, enclose the table name
identifier with quotation marks in the SQL query, as shown in the following
example:

SELECT * FROM "New York office"

To enable the use of quoted identifiers by MS-SQL DB-library API, Actuate
software issues the following command at the start of each session:

Set QUOTED_IDENTIFIER ON

Methods for Class AcMSSQLConnection

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Methods inherited from Class AcConnection

Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcDBConnection

GetGeneralError, GetGeneralErrorText, GetSpecificError, GetSpecificErrorText,
Prepare

C h a p t e r 7 , A F C c l a s s e s 663

AcMult ipleInputFi l ter

Class AcMultipleInputFilter
A base class for data filters, one type of data adapter. AcMultipleInputFilter
accepts input from any number of data adapters, processes the data, then passes
the data to the next data adapter or to the report. Figure 7-68 shows the class
hierarchy of AcMultipleInputFilter.

Figure 7-68 AcMultipleInputFilter

Description AcMultipleInputFilter defines the mechanism for filtering and sorting data from
multiple data sources. Multi-input data filters work with data sources to produce
and deliver data rows to the report.

A multi-input data filter receives input from other data adapters, either data
sources or other data filters. You can use the design perspective to specify the
input adapters that provide input rows to the filter.

As Figure 7-69 shows, the data sources can retrieve data from multiple input
sources. For example, one data source can receive data from an SQL database
while another data source receives data from an ODBC database.

To implement the filter algorithm, you must override the Fetch() method.

Working with the input adapters
The multiple input filter creates, opens, reads, and closes a set of one or more
input adapters. You specify these adapters by dropping them into the Input slot
in Report Structure. The multiple input filter instantiates, opens, and closes the
adapters. You must write code in the Fetch() method to work with the input
adapters.

The Start() method of the multiple input filter instantiates each of the input
adapters you specify in the Input slot in Report Structure. These adapters are in
an AcList called InputAdapters. You can also add adapters programmatically by
using the methods on AcList. Start() then iterates over these adapters to give
each adapter its connection, then starts the adapter. Similarly, Finish() iterates
over each adapter to close the input adapter.

You must implement the Fetch() method to work with the adapters. When you
implement Fetch(), you can use the methods on AcList to work with the list of
adapters. Also, you can use an iterator to loop over the adapters. The adapters
appear in the list in the same order that they appeared in Report Structure.

AcComponent

AcDataAdapter

AcDataFilter

AcMultipleInputFilter

664 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcMult ipleInputFi l ter

Figure 7-69 Retrieving data from multiple data sources

You can build many kinds of filters using this class. For example, you can create a
subclass to:

■ Concatenate the rows from each of the input filters. This type of filter is a
union filter.

■ Join or merge rows from one input adapter with those from a second input
adapter. This type of filter is a merge filter.

■ Return all rows from one adapter, except those that appear in another adapter.
This type of filter is a subtraction filter.

Subclassing AcMultipleInputFilter
Typically, you subclass AcMultipleInputFilter and take the following steps to
create a custom filter:

■ Override Fetch() to specify how to process the data.

■ Optionally, override Start() to specify a different way to create the input
adapters.

Data source
(such as

customers)
Data row 1

Data row 2

Data row 3

Data row

Multi-input
data filter

Data stream

Input Source

Data

Data source
(such as
orders)

Data source
(such as
items)

C h a p t e r 7 , A F C c l a s s e s 665

AcMult ipleInputFi l ter

Variable
Table 7-62 describes the AcMultipleInputFilter variable.

Example The following example overrides Start(), Fetch(), and Finish() to create a union
filter. It also defines two variables. The first variable is UnionIter of type
AcIterator. The second variable is CurrentInput of type AcDataAdapter.

Function Start() As Boolean
' Start the multiple input filter
Start = Super::Start()
If Not Start Then

Exit Function
End If

' Keep track of the input adapter from which to read.
Set UnionIter = InputAdapters.NewIterator()
Set CurrentInput = UnionIter.GetNext()

End Function

Function Fetch() As AcDataRow
Do While True

' If all the adapters have been read, then just return
' Nothing.
If CurrentInput Is Nothing Then

Exit Function
End If

' Try to read the next row from the current input adapter.
Set Fetch = CurrentInput.Fetch()

' If there is a row available, then return it.
If Not Fetch Is Nothing Then

Exit Function
End If

' Move to the next input adapter.
Set CurrentInput = UnionIter.GetNext()

Loop
End Function

Sub Finish()
' Delete the iterator created earlier
Set UnionIter = Nothing
' Finish the multiple input filter.

Table 7-62 AcMultipleInputFilter variable

Variable Type Description

InputAdapters AcList A list of the input adapters

666 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcMult ipleInputFi l ter

Super::Finish()
End Sub

See also Class AcDataAdapter
Class AcSingleInputFilter

Methods for Class AcMultipleInputFilter

Methods defined in Class AcMultipleInputFilter

GetInputCount, NewInputAdapter

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcMultipleInputFilter::GetInputCount method
Counts the number of adapters that provide input.

Syntax Function GetInputCount() As Integer

Returns The number as an integer.

AcMultipleInputFilter::NewInputAdapter method
Creates an input adapter. The Start() method calls NewInputAdapter() to create
the input adapters. Override NewInputAdapter() to specify a different way to
create an input adapter. The default behavior for this method is to instantiate the
adapters you place in the Input slot in Report Structure.

Syntax Sub NewInputAdapter()

C h a p t e r 7 , A F C c l a s s e s 667

AcObjectArray

Class AcObjectArray
Creates a dynamic array of objects. Figure 7-70 shows the class hierarchy of
AcObjectArray.

Figure 7-70 AcObjectArray

Description An object array is an ordered collection implemented as an array. AcObjectArray
creates a resizable array of objects. The object array can be more efficient than an
AcSingleList collection if a report traverses the objects in the collection frequently.
Random access, additions to the end of the array and removals from the end of
the array are efficient. Additions or removals at the head of the array are not
efficient. This collection is not efficient for use as a queue.

Array indexes start at 1 and end at the GetCount() value. If you try to retrieve a
value beyond the bounds of an array using GetAt(), the framework returns a
run-time error. You can, however, use SetAt() to set the value of an array beyond
its current upper bound. SetAt() resizes the array as needed.

To reduce memory allocations, the array expands its internal storage in
predefined increments. The default increment value is 10. Whenever the object
array needs to expand, the framework allocates 10 slots. If you expect an array to
grow in larger amounts, you can use SetGrowthIncrement() to increase the
increment value.

See also Class AcCollection
Class AcIterator
Class AcOrderedCollection

Methods for Class AcObjectArray

Methods defined in Class AcObjectArray

RemoveAt, RemoveEmptyEntries, ResizeBy, ResizeTo,
SetGrowthIncrementMethod

Methods inherited from Class AcOrderedCollection

AddToHead, AddToTail, Copy, GetAt, GetHead, GetIndex, GetTail, InsertAfter,
InsertAt, InsertBefore, RemoveHead, RemoveTail, SetAt

AcCollection

AcOrderedCollection

AcObjectArray

668 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcObjectArray

Methods inherited from Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
Remove, RemoveAll

AcObjectArray::RemoveAt method
Removes the object at a specific location in the array.

Syntax Function RemoveAt(posn As Integer) As AnyClass

Parameter posn
The location in the array of the object to remove.

See also AcObjectArray::RemoveEmptyEntries method

AcObjectArray::RemoveEmptyEntries method
Scans through the array to remove slots that contain Nothing. Reduces the count
by the number of empty slots removed. This method expedites removing a group
of items from the array. Iterate through the array and replace the items to remove
with Nothing. Then call RemoveEmptyEntries() to remove those entries. This
technique is much faster than calling Remove() or RemoveAt() for each item.

Syntax Sub RemoveEmptyEntries()

AcObjectArray::ResizeBy method
Resets the size of the array by a specific number of slots.

Syntax Sub ResizeBy(delta As Integer)

Parameter delta
The amount by which to resize the array.

AcObjectArray::ResizeTo method
Resets the size of the array to a specific number of slots. You typically do not need
to explicitly resize the array because the array methods do so automatically. For
example, when you use SetAt() to place an object in an array location and you
specify a location beyond the current size, SetAt() automatically resizes the array.

To increase or decrease the array size by a specific amount, use ResizeBy().

Syntax Sub ResizeTo(newSize As Integer)

Parameter newSize
The new size of the array.

See also AcObjectArray::ResizeBy method
AcOrderedCollection::SetAt method

C h a p t e r 7 , A F C c l a s s e s 669

AcObjectArray

AcObjectArray::SetGrowthIncrement method
Sets the number of slots to add to the array each time the array expands. By
default, the array expands its internal storage by 10 when the array grows. Use
the SetGrowthIncrement() method to increase the default increment value if you
expect your array to expand in larger amounts.

Syntax Sub SetGrowthIncrement(incr As Integer)

Parameter incr
The number of slots to add to the array whenever the array expands.

670 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOdaConnect ion

Class AcOdaConnection
Establishes a connection to an Open Data Access (ODA) driver. Figure 7-71 shows
the class hierarchy of AcOdaConnection.

Figure 7-71 AcOdaConnection

Description Use the AcOdaConnection class to establish a connection to an open data access
driver.

For information about converting from a native ODA data type to an Actuate
ODA data type, see “About ODA data types,” later in this chapter.

Properties
Table 7-63 lists AcOdaConnection properties.

Methods for Class AcOdaConnection

Methods defined in Class AcOdaConnection

SetProperties, SetRuntimeProperties

AcComponent

AcConnection

AcDBConnection

AcOdaConnection

Table 7-63 AcOdaConnection properties

Property Type Description

DriverName String The name of the ODA driver for the
connection. This name is specified in the
ODA configuration file.

OdaInterfaceName String The run-time interface name for the
connection type as defined in the ODA
driver. The ODA driver uses this value
during report generation to create an
instance of the connection. The property
is optional. If the ODA driver supports
only one type of connection, the value is
an empty string.

C h a p t e r 7 , A F C c l a s s e s 671

AcOdaConnect ion

Methods inherited from Class AcDBConnection

GetGeneralError, GetGeneralErrorText, GetSpecificError, GetSpecificErrorText,
Prepare

Methods inherited from Class AcConnection

Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcOdaConnection::SetProperties method
Sets the value of a property variable to the value the user sets.

Syntax Sub SetProperties()

AcOdaConnection::SetRuntimeProperties method
Calls the SetConnectionProperty() method to assign a value to each run-time
property of the connection.

You typically call this method before opening a connection.

If you override SetRuntimeProperties(), you must specify all properties required
for report generation before the connection is established.

Syntax Sub SetRuntimeProperties()

672 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOdaSource

Class AcOdaSource
Creates an Open Data Access (ODA) source object. Figure 7-72 shows the class
hierarchy of AcOdaSource.

Figure 7-72 AcOdaSource

Description Use the AcOdaSource class to create an object for an ODA data source.

Variables
Table 7-64 lists AcOdaSource variables.

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

AcOdaSource

AcExternalDataSource

Table 7-64 AcOdaSource variables

Variable Type Description

CommandText String The text of the data stream’s command or query
to execute.

FetchLimit Integer The maximum number of rows to retrieve from
a data source. To retrieve all rows, specify 0. The
default value is 0 rows.
Applies only if the ODA driver supports a fetch
limit.

OdaSourceType String The type of ODA data source as defined in the
ODA driver. The ODA driver uses this value to
create an instance of a statement for report
generation.

ResultSetName String The name of the primary result set of the data
source.
Applies only if the ODA driver supports
referencing a result set by name. If the ODA
driver does not support referencing a result set
by name, the value is an empty string.

C h a p t e r 7 , A F C c l a s s e s 673

AcOdaSource

About ODA data types
The ODA driver must specify the conversion between its native data types and
ODA data types. Actuate software converts each ODA data type to an Actuate
data type. Table 7-65 describes the default conversion between ODA and Actuate
data types.

Methods for Class AcOdaSource

Methods defined in Class AcOdaSource

ClearSortKeys, Commit, GetOutputParameter, GetOutputParameterAsType,
GetOutputParameters, Rollback, SetInputParameter, SetInputParameters,
SetRuntimeProperties, SetStatementAttributes, StartNextSet

Method inherited from Class AcExternalDataSource

ObtainCommand

Methods inherited from Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
GetPreparedStatement, OpenCursor, SetStatementProperty

Methods inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,

Table 7-65 Default mapping of ODA data types to Actuate data types

ODA data type Maps to

Char Actuate String.

Date Actuate Date. Also maps to Actuate String.

Decimal Actuate Currency. Also maps to the Actuate Double and
String data types.

Double Actuate Double. Also maps to the Actuate Currency and
Integer data types.

Integer Actuate Integer. Also maps to the Actuate Double,
Currency, and String data types.

Time Actuate String.

674 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOdaSource

NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcOdaSource::ClearSortKeys
Removes all previously assigned dynamic sort keys.

Syntax Sub ClearSortKeys()

AcOdaSource::Commit method
Commits all outstanding transactions on the specified ODA connection. This
method applies only if the ODA driver supports this feature.

Syntax Sub Commit(connection As AcDBConnection)

Parameter connection
The ODA connection object on which to commit the transactions.

AcOdaSource::GetOutputParameter method
Retrieves the output value of a scalar, structure, or table output parameter in its
default Actuate Basic data type.

For a table parameter that returns multiple rows, allocate a cursor to the
parameter to retrieve the data.

For a structure or table parameter, you must use the same type of reference for the
parameter and the field. For example, you cannot refer to the parameter by name
and the field by position.

If you call GetOutputParameter() multiple times for a structure or table
parameter of a command, you must use the same type of reference in every call
for all structure or table parameters. For example, you cannot call
GetOutputParameter() referring to a parameter and field by name, then call
GetOutputParameter() again referring to the parameter or field by position.

You must use a type of reference the ODA driver supports.

Syntaxes For a scalar parameter:

Function GetOutputParameter(parameterName As String) As Variant

Function GetOutputParameter(parameterId As Integer) As Variant

For a structure or table parameter:

C h a p t e r 7 , A F C c l a s s e s 675

AcOdaSource

Function GetOutputParameter(groupParamName As String, fieldName
As String) As Variant

Function GetOutputParameter(groupParamId As Integer, fieldId As Integer)
As Variant

Parameters parameterName
The name of the scalar parameter whose value to retrieve.

parameterId
The position of the scalar parameter whose value to retrieve. The position is
1-based.

groupParamName
The name of the structure or table parameter.

fieldName
The name of the field of a structure parameter or the column of a table parameter
whose value to retrieve.

groupParamId
The position of the structure or table parameter. The position is 1-based.

fieldId
The position of the field of a structure parameter or the column of a table
parameter whose value to retrieve. The position is 1-based.

AcOdaSource::GetOutputParameterAsType method
Retrieves the output value of a scalar, structure, or table output parameter and
converts that value to the specified Actuate data type. For a structure or table
parameter, you must use the same type of reference for the parameter and the
field. For example, you cannot refer to the parameter by name and the field by
position.

If you call GetOutputParameterAsType() multiple times for a structure or table
parameter of a command, you must use the same type of reference in every call
for all structure or table parameters. For example, you cannot call
GetOutputParameterAsType() referring to the parameter and field by name, then
callGetOutputParameterAsType() again referring to the parameter or field by
position.

You must use a type of reference that the ODA driver supports.

Syntaxes For a scalar parameter:

Function GetOutputParameterAsType(parameterName As String, vbType
As Integer) As Variant

Function GetOutputParameterAsType(parameterId As Integer, vbType
As Integer) As Variant

676 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOdaSource

For a structure or table parameter:

Function GetOutputParameterAsType(groupParamName As String, fieldName
As String, vbType As Integer) As Variant

Function GetOutputParameterAsType(groupParamId As Integer, fieldId
As Integer, vbType As Integer) As Variant

Parameters parameterName
The name of the scalar parameter whose value to retrieve.

parameterId
The position of the scalar parameter whose value to retrieve. The position is
1-based.

groupParamName
The name of the structure or table parameter.

fieldName
The name of the field of a structure parameter or the column of a table parameter
whose value to retrieve.

groupParamId
The position of the structure or table parameter. The position is 1-based.

fieldId
The position of the field of a structure parameter or the column of a table
parameter whose value to retrieve. The position is 1-based.

vbType
The Actuate type to which to convert the output value. Valid values are:

■ V_CURRENCY

■ V_DATE

■ V_DOUBLE

■ V_INTEGER

■ V_SINGLE

■ V_STRING

For information about converting ODA data types to Actuate data types, see
“About ODA data types,” earlier in this chapter.

AcOdaSource::GetOutputParameters method
Calls GetOutputParameter() to retrieve the output value of each scalar, structure,
and table output parameter of the data stream’s statement. These parameters are
defined in the last ODA design session response.

C h a p t e r 7 , A F C c l a s s e s 677

AcOdaSource

If you override GetOutputParameters(), you must specify the processing of each
applicable output parameter. The output value of each parameter should be
available after the Start() method executes, which makes the values available in
the Fetch() method.

Syntax Sub GetOutputParameters()

AcOdaSource::Rollback method
Rolls back all outstanding transactions on the specified ODA connection. This
method applies only if the ODA driver supports rollbacks.

Syntax Sub Rollback(connection As AcDBConnection)

Parameter connection
The ODA connection object.

AcOdaSource::SetInputParameter method
Assigns an input value to a specified scalar input parameter, a field of a structure
input parameter, or a column of a table input parameter. For a structure or table
parameter, you must use the same type of reference for the parameter and the
field. For example, you cannot refer to the parameter by name and the field by
position.

If you call SetInputParameter() multiple times for a structure or table parameter
of a command, you must use the same type of reference in every call for every
structure or table parameter. For example, you cannot call SetInputParameter()
referring to the parameter and field by name, then call SetInputParameter() again
referring to the same or a different parameter and field by position.

You must use a type of reference that the ODA driver supports.

Syntaxes For a scalar parameter:

Sub SetInputParameter(parameterName As String, value As Any)

Sub SetInputParameter(parameterId As Integer, value As Any)

For a structure or table parameter:

Sub SetInputParameter(groupParamName As String, fieldName As String,
value As Any)

Sub SetInputParameter(groupParamId As Integer, fieldId As Integer, value
As Any)

Parameters parameterName
The name of the scalar parameter to which to assign a value.

678 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOdaSource

parameterId
The position of the scalar parameter to which to assign a value. The position is
1-based.

groupParamName
The name of the structure or table parameter.

fieldName
The name of the field of a structure parameter or the column of a table parameter
to which to assign a value.

groupParamId
The position of the structure or table parameter. The position is 1-based.

fieldId
The position of the field of a structure parameter or the column of a table
parameter to which to assign a value. The position is 1-based.

value
The value to assign.

AcOdaSource::SetInputParameters method
Calls SetInputParameter() to assign an input value to each scalar, structure, and
table input parameter. These parameters are defined in the last ODA design
session response. You typically call this method before executing the command or
allocating a cursor.

If you override this method, you must specify all input parameter values before
the command executes.

Syntax Sub SetInputParameters()

AcOdaSource::SetRuntimeProperties method
Calls the SetStatementProperty() method to assign a value to run-time
properties. You typically call this method before executing the command or
allocating a cursor.

If you override SetRuntimeProperties(), you must specify all properties and their
values required at run time.

Syntax Sub SetRuntimeProperties()

AcOdaSource::SetStatementAttributes method
Sets attributes on the prepared statement before executing the statement or
allocating a cursor.

Syntax Sub SetStatementAttributes()

C h a p t e r 7 , A F C c l a s s e s 679

AcOdaSource

AcODASource::StartNextSet method
Starts the next result set on the allocated cursor if the result set is not referenced
by name. This method implicitly closes the current result set and removes any
cursor bindings that the BindColumn() method set. You must bind columns
again and fetch from the cursor after starting the next result set.

Syntax Function StartNextSet(aCursor As AcDBCursor) As Boolean

Parameter aCursor
The cursor for which to start the result set.

680 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcODBCConnect ion

Class AcODBCConnection
Establishes a connection to an Open Database Connectivity (ODBC) database.
Figure 7-73 shows the class hierarchy of AcODBCConnection.

Figure 7-73 AcODBCConnection

Description Use the AcODBCConnection class to establish a connection to an ODBC database.
The report must set the connection string, data source, user name, and password
prior to connecting. After connecting, the report must not change these values.

There are no public methods defined specifically for AcODBCConnection.

Variables
Table 7-66 lists AcODBCConnection variables.

Properties
Table 7-67 lists AcODBCConnection properties.

AcComponent

AcConnection

AcDBConnection

AcODBCConnection

Table 7-66 AcODBCConnection variables

Variable Type Description

Connection
String

String Any additional text that ODBC needs to establish
its connection

DataSource String The ODBC data source

DllPath String The name of the DLL providing the client database

Password String The client password for the connection

UserName String The client user name for the connection

Table 7-67 AcODBCConnection variables

Property Type Description

Connection
String

String
Variable

Any additional text that ODBC needs to establish
its connection.

C h a p t e r 7 , A F C c l a s s e s 681

AcODBCConnect ion

About ODBC data types
Table 7-68 describes the default conversion between ODBC and Actuate data
types.

DataSource String
Variable

The ODBC data source.

DllPath String The name of the .dll providing client database.
Default is the most common name used for the
connectivity .dll provided by ODBC.

Password String
Variable

The client password for the connection.

UserName String
Variable

The client user name for the connection.

Table 7-68 Default mapping between ODBC and Actuate data types

ODBC data type Maps to

Bigint Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, or String.

Binary Actuate String.

Bit Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

Char Actuate String.

Date Actuate Date. Can also map to Actuate String.

Decimal Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, or String.

Double Actuate Double. Can also map to Actuate Currency,
Single, or String.

Float Actuate Double. Can also map to Actuate Currency,
Single, or String.

Guid Actuate String.

Integer Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Interval_Day Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

(continues)

Table 7-67 AcODBCConnection variables

Property Type Description

682 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcODBCConnect ion

Interval_Day_
To_Hour

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Interval_Day_
To_Minute

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Interval_Day_
To_Second

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Interval_Hour Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

Interval_Hour_
To_Minute

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Interval_Hour_
To_Second

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Interval_Minute Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

Interval_Minute_
To_Second

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Interval_Month Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

Interval_Second Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

Interval_Year Actuate Integer. Can also map to Actuate Double, Long,
Single, or String.

Interval_Year_
To_Month

Actuate String. Can also map to Actuate Double, Integer,
Long, or Single.

Longvarbinary Actuate String.

Longvarchar Actuate String.

Numeric Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, or String.

Real Actuate Single. Can also map to Actuate Currency,
Double, or String.

Small_Int Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Time Actuate String.

Timestamp Actuate Date. Can also map to Actuate String.

Tinyint Actuate Integer. Can also map to Actuate Currency,
Double, Long, Single, or String.

Table 7-68 Default mapping between ODBC and Actuate data types (continued)

ODBC data type Maps to

C h a p t e r 7 , A F C c l a s s e s 683

AcODBCConnect ion

Methods for Class AcODBCConnection

Methods inherited from Class AcDBConnection

GetGeneralError, GetGeneralErrorText, GetSpecificError, GetSpecificErrorText,
Prepare

Methods inherited from Class AcConnection

Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Type_Date Actuate Date. Can also map to Actuate String.

Type_Time Actuate String.

Type_Timestamp Actuate Date. Can also map to Actuate String.

Varbinary Actuate String.

Varchar Actuate String.

Wchar Actuate String.

Wlongvarchar Actuate String.

Wvarchar Actuate String.

Table 7-68 Default mapping between ODBC and Actuate data types (continued)

ODBC data type Maps to

684 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOracleConnect ion

Class AcOracleConnection
Establishes a connection to an Oracle database. Figure 7-74 shows the class
hierarchy of AcOracleConnection.

Figure 7-74 AcOracleConnection

Description Use the AcOracleConnection class to establish a connection to an Oracle database.
The report must set the server name, user name, and password prior to
connecting. After connecting, the report must not change these values.

There are no public methods defined specifically for AcOracleConnection.

Variables
Table 7-69 lists AcOracleConnection variables.

Properties
Table 7-70 lists AcOracleConnection properties.

AcComponent

AcConnection

AcDBConnection

AcOracleConnection

Table 7-69 AcOracleConnection variables

Variable Type Description

DllPath String The name of the DLL providing the client database

Password String The client password for the connection

HostString String The Oracle server name for the connection

UserName String The client user name for the connection

Table 7-70 AcOracleConnection properties

Property Type Description

DbInterface String The name of the DLL providing the client database,
acorcl90.dll

Password String
Variable

The client password for the connection

C h a p t e r 7 , A F C c l a s s e s 685

AcOracleConnect ion

About Oracle data types
Table 7-71 describes the conversion between Oracle and Actuate data types.

Methods for Class AcOracleConnection

Methods inherited from Class AcDBConnection

GetGeneralError, GetGeneralErrorText, GetSpecificError, GetSpecificErrorText,
Prepare

HostString String
Variable

The client server name for the connection

UserName String
Variable

The client user name for the connection

Table 7-71 Default mapping between Oracle and Actuate data types

Oracle data type Maps to

Char Actuate String.

Date Actuate Date. Can also map to Actuate String.

Float Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, or String.

Integer Actuate Integer. Can also map to Actuate Double,
Currency, Long, Single, or String.

Interval Day To Second Actuate String.

Interval Year To Month Actuate String.

Long Actuate String.

Number Actuate Double. Can also map to Actuate Currency,
Integer, Long, Single, and String.

Rowid Actuate String.

String Actuate String.

Timestamp Actuate Date. Can also map to Actuate String.

Timestamp With Local
Time Zone

Actuate Date. Can also map to Actuate String.

Timestamp With Time
Zone

Actuate Date. Can also map to Actuate String.

Urowid Actuate String.

Table 7-70 AcOracleConnection properties

Property Type Description

686 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOracleConnect ion

Methods inherited from Class AcConnection

Connect, Disconnect, IsConnected, RaiseError

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 687

AcOrderedCollect ion

Class AcOrderedCollection
The abstract base class for the Actuate ordered collection classes. Figure 7-75
shows the class hierarchy of AcOrderedCollection.

Figure 7-75 AcOrderedCollection

Description A collection contains objects of any type. An ordered collection enables you to
control the order in which objects appear in a collection.

See also Class AcCollection
Class AcIterator

Methods for Class AcOrderedCollection

Methods defined in Class AcOrderedCollection

AddToHead, AddToTail, GetAt, GetHead, GetIndex, GetTail, InsertAfter, InsertAt,
InsertBefore, RemoveHead, RemoveTail, SetAt

Methods inherited from Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
Remove, RemoveAll

AcOrderedCollection::AddToHead method
Adds an item to the beginning of the collection. If you create an iterator over the
collection immediately after calling AddToHead(), the object you just added is
the first object the iterator returns.

Syntax Sub AddToHead(item As Anyclass)

Parameter item
The object to add to the collection.

See also Class AcIterator

AcOrderedCollection::AddToTail method
Adds an item to the end of the collection. If you create an iterator over the
collection immediately after calling AddToTail(), the object you just added is the
last object the iterator returns.

Syntax Sub AddToTail(item As Anyclass)

AcCollection

AcOrderedCollection

688 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOrderedCol lect ion

Parameter item
The object to add to the collection.

See also Class AcIterator

AcOrderedCollection::GetAt method
Returns a reference to the item at the specified location in the collection. If you
specify an invalid index, the framework returns a run-time error.

Syntax Function GetAt(index As Integer) As AnyClass

Parameter index
The position of the object to retrieve.

Returns A reference to the object at the specified location in the collection.

See also AcOrderedCollection::GetHead method
AcOrderedCollection::GetTail method

AcOrderedCollection::GetHead method
Returns a reference to the first object in the collection. If the collection is empty,
Actuate returns a run-time error. Therefore, if you do not know if the collection
contains any objects, call IsEmpty() first.

Syntax Function GetHead() As AnyClass

Returns A reference to the first object in the collection.

See also AcCollection::IsEmpty method
AcOrderedCollection::GetTail method

AcOrderedCollection::GetIndex method
Returns the position of an object in the collection.

Syntax Function GetIndex(item As AnyClass) As Integer

Returns The object’s position expressed as an integer.

AcOrderedCollection::GetTail method
Returns the last object in the collection. If the collection is empty, the framework
returns a run-time error. If you do not know whether the collection contains any
objects, call IsEmpty() first.

Syntax Function GetTail() As AnyClass

Returns A reference to the last object in the collection.

C h a p t e r 7 , A F C c l a s s e s 689

AcOrderedCollect ion

See also AcCollection::IsEmpty method
AcOrderedCollection::GetHead method

AcOrderedCollection::InsertAfter method
Inserts an object after another object in the collection. Both objects remain in the
collection. To replace an object with another object, use the SetAt() method.

Syntax Function InsertAfter(item As AnyClass, after As AnyClass)

Parameters item
The object to insert.

after
The object after which to insert a new object.

See also AcOrderedCollection::SetAt method

AcOrderedCollection::InsertAt method
Inserts an object at a specific location in the collection. The object currently at that
location and all objects above it move up one position in the collection. To replace
an object with the object you are inserting, use the SetAt() method.

Syntax Sub InsertAt(index As Integer, newItem As AnyClass)

Parameters index
The location at which to insert the object.

newItem
The object to add.

See also AcOrderedCollection::SetAt method

AcOrderedCollection::InsertBefore method
Inserts an object before another object in the collection. Both objects remain in the
collection. To replace an object with another object, use the SetAt() method.

Syntax Function InsertBefore(item As AnyClass, after As AnyClass)

Parameters item
The object to insert.

after
The object before which to insert a new object.

See also AcOrderedCollection::SetAt method

690 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcOrderedCol lect ion

AcOrderedCollection::RemoveHead method
Removes the first item in the collection. If the collection is empty, the framework
returns a run-time error. If you do not know if the collection contains any objects,
call IsEmpty() first.

Syntax Function RemoveHead() As AnyClass

Returns A reference to the deleted object.

See also AcCollection::IsEmpty method
AcOrderedCollection::AddToHead method

AcOrderedCollection::RemoveTail method
Removes the last item in the collection. If the collection is empty, the framework
returns a run-time error. If you do not know if the collection contains any objects,
call IsEmpty() first.

Syntax Function RemoveTail() As AnyClass

Returns A reference to the deleted object.

See also AcCollection::IsEmpty method
AcOrderedCollection::AddToTail method

AcOrderedCollection::SetAt method
Sets an object at a specified position, replacing the object at that position. To insert
an object into a collection without replacing the current object, see the
InsertAfter(), InsertAt(), and InsertBefore() methods.

Use SetAt() to store an object in a particular location in the connection. If the
index you specify is beyond the current collection size, SetAt() resizes the
collection accordingly. If the index you specify is within the current collection
size, SetAt() places the specified object in the existing location, replacing any
object that might be stored there.

To store an object to the end of the collection, use AddToTail().

Syntax Sub SetAt(index As Integer, obj As AnyClass)

Parameters index
The position at which to set the object.

obj
The object to set at the specified position.

See also AcOrderedCollection::AddToTail method
AcOrderedCollection::InsertAfter method
AcOrderedCollection::InsertAt method
AcOrderedCollection::InsertBefore method

C h a p t e r 7 , A F C c l a s s e s 691

AcPage

Class AcPage
The base class for all pages. Figure 7-76 shows the class hierarchy of AcPage.

Figure 7-76 AcPage

Description The AcPage class represents pages in a report. When you instantiate a page, you
set the size and orientation of the page. The Factory creates pages one at a time as
needed. Pages are persistent in the report object instance (.roi) file. Pages can
contain flows and other page decoration controls. Pages do not work with data
rows.

Two numbers identify each page. The first number is the page index, which
identifies the position of the page within the report, starting with 1. The second
number is the page number, which you can display on the page in a variety of
formats, including Page 2 of 25 and Page 3:42.

You can number and display pages in your report by using the functionality of
the AcPageNumberControl class.

Resizing the page
Pages provide the ability to grow or shrink depending on the number of frames
that appear within them. Pages can always grow as large as the flow in which
they appear. To shrink a page, set the CanShrink property to True. Then, set the
MinimumHeight property to specify how small the subpage can get.

A page provides a simple model for moving and resizing its contents based on
where contents appear relative to the flows in that page. Consider Figure 7-77.

Flow 1 and Flow 2 are flows. Lettered items indicate various controls. Controls
belong to one of three groups depending on how changes in a page size affect the
controls.

The controls in the first group remain constant in size and position. A control
remains constant if its top is above the flow midpoint and its bottom is above the
flow bottom. In the diagram, controls X, C, D, and F remain unchanged as the
page resizes.

AcComponent

AcReportComponent

AcVisualComponent

AcBaseFrame

AcBasePage

AcPage

692 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPage

Figure 7-77 Overview of page flow features

The controls in the second group maintain the same size but their top position
changes to maintain a constant distance from the bottom of the page. A control
belongs to this group if its top is below the flow midpoint. In the diagram,
controls E, G, and Y belong to this group.

The controls in the third group maintain a constant position but change in size by
the same amount as the flow. A control belongs to this group if its top is at or
above the flow top and its bottom is at or below the flow bottom. Using controls
in this group allows you to create lines alongside the flows. In the preceding
diagram, controls A and B belong to this group.

To make a line grow or shrink with the flow but remain somewhat shorter than
the flow, set the ResizeRegion property to indicate the tolerance for resizing. If
you set this property, the page adds its value to the flow top and subtracts it from
the flow bottom to shrink the region that a control must span to be resized.

Class protocol
Table 7-72 describes the class protocol for AcPage.

Table 7-72 Class protocol for AcPage

Method Task

Start() Instantiates and start the contents of the frame

FormatPageNumber() Creates the formatted page number

AddFrame() Adds each frame to the page

A B D

C

E

F

G

X

Y

Flow1 Flow2
Flow top

Flow
height

Flow midpoint

Flow bottom

C h a p t e r 7 , A F C c l a s s e s 693

AcPage

Variables
Table 7-73 lists AcPage variables.

Properties
Table 7-74 lists AcPage properties.

Finish() Finishes each of the content objects

Table 7-73 AcPage variables

Variable Type Description

PageIndex Integer The number of the page within the
report, starting at 1

PageNumber String The formatted page number

Table 7-72 Class protocol for AcPage

Method Task

Table 7-74 AcPage properties

Property Type Description

HorizontalOverlap AcTwips The amount of horizontal overlap between
adjacent page fragments.
Set this property to select the appropriate place to
join multiple pages.
The setting of this property applies only if
SmartSplitHorizontally is set to False.
The default value is 1 inch.

MaximumHeight Integer The maximum page height before a page break is
forced. If CanShrink and CanExpand are both
False, MaximumHeight is ignored. If
MaximumHeight is smaller than the page height,
the page height is used as the maximum height.
The default value is 200 inches.

PrintSize AcSize The default page size to use for printing the page
or exporting the page to PDF.
If a source external to the report, such as a printer
driver, specifies a different value, the value of
PrintSize is ignored.

(continues)

694 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPage

PrintSize (continued) AcSize
(continued)

If the height or width is set to 0, the Factory
service substitutes this value with the initial
height or width of the page during report
generation.
The default value is 0, 0.

SmartSplitHorizontally Boolean Applies only to a cross-tab report.
If True, the Factory service splits a page
horizontally at a boundary of an element in the
report. The Factory service splits the page at the
left edge of a column with a horizontal overlap of
0.5 point.
The default value is True.

SmartSplitVertically Boolean Applies only to a cross-tab report and a dynamic
text control.
If True, the page splits vertically according to the
following rules:
■ A cross-tab report splits at the top edge of a

row with a vertical overlap of 0.5 point.
■ A dynamic text control splits between lines

with no vertical overlap.
■ A page splits between top-level frames within

a flow.
■ If a frame overruns the bottom of a page

fragment and fits completely on the next page
fragment, the page splits at the top of the
frame with no overlap.

■ Splitting between frames takes priority over
splitting within a frame.

The default value is True.

SplitMarginBottom AcTwips The margin between the bottom edge of a page
fragment and its contents. This setting does not
apply to the last page fragment.
The default value is 0.75 inch.

SplitMarginLeft AcTwips The margin between the left edge of a page
fragment and its contents. This setting does not
apply to the rightmost page fragment.
The default value is 0.75 inch.

Table 7-74 AcPage properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 695

AcPage

See also Class AcPageNumberControl

Methods for Class AcPage

Methods defined in Class AcPage

FormatPageNumber, GetVisiblePageIndex, SplitMarginBottom, SplitMarginLeft,
SplitMarginRight, SplitMarginTop

Methods inherited from Class AcBasePage

BalanceFlows, GetFirstDataFrame, GetLastDataFrame

Methods inherited from Class AcBaseFrame

AddToAdjustSizeList, BindToFlow, FindContentByClass, FindContentByClassID,
GetControl, GetControlValue, GetPageNumber, GetSearchValue,
IsDataFrame, IsFooter, IsHeader, MakeContents, RebindToFlow,
SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,

SplitMarginRight AcTwips The margin between the right edge of a page
fragment and its contents. This setting does not
apply to the leftmost page fragment.
The default value is 0.75 inch.

SplitMarginTop AcTwips The margin between the top edge of a page
fragment and its contents. This setting does not
apply to the first page fragment.
The default value is 0.75 inch.

VerticalOverlap AcTwips The amount of vertical overlap between adjacent
page fragments.
Set this property to select the appropriate place to
join multiple pages.
The setting of this property applies only if
SmartSplitVertically is set to False.
The default value is 0.5 inch.

Table 7-74 AcPage properties (continued)

Property Type Description

696 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPage

GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcPage::FormatPageNumber method
Returns the formatted page number when the report uses custom page number
formatting. Override FormatPageNumber() to perform custom page number
formatting.

Syntax Function FormatPageNumber(pageIndex As Integer) As String

Parameter pageIndex
The index of the current page.

Returns The formatted page number.

AcPage::GetVisiblePageIndex method
Returns the index for a visible page. A visible page is one that the current user is
authorized to view.

Syntax Function GetVisiblePageIndex() As Integer

Returns The index for a visible page.

C h a p t e r 7 , A F C c l a s s e s 697

AcPage

AcPage::SplitMarginBottom method
Implements the SplitMarginBottom property. The SplitMarginBottom property
specifies the margin between the bottom edge of a page fragment and its
contents.

Syntax Function SplitMarginBottom() As AcTwips

AcPage::SplitMarginLeft method
Implements the SplitMarginLeft property. The SplitMarginLeft property specifies
the margin between the left edge of a page fragment and its contents.

Syntax Function SplitMarginLeft() As AcTwips

AcPage::SplitMarginRight method
Implements the SplitMarginRight property. The SplitMarginRight property
specifies the margin between the right edge of a page fragment and its contents.

Syntax Function SplitMarginRight() As AcTwips

AcPage::SplitMarginTop method
Implements the SplitMarginTop property. The SplitMarginTop property specifies
the margin between the top edge of a page fragment and its contents.

Syntax Function SplitMarginTop() As AcTwips

698 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageList

Class AcPageList
Instantiates and holds the report pages. Figure 7-78 shows the class hierarchy of
AcPageList.

Figure 7-78 AcPageList

Description AcPageList is an abstract class whose methods apply to all types of page lists.
Derived classes provide the organization of the pages within the page list.

About page structure
A report’s page structure consists of a page list, pages, flows, and frames. A page
list can contain multiple pages, a page can contain multiple flows, and a flow can
contain multiple frames. Figure 7-79 shows the page structure of page list, page,
flow, and frame.

Figure 7-79 Overview of page creation

The page structure creation process is:

■ A page list receives a frame from a section.

■ The page list then attempts to place that frame on the current page.

■ The page attempts to place the frame in the current flow:

AcReportComponent

AcPageList

AcComponent

PageList

Frame

Data stream

Page

Section

Flow

Frames

Events

C h a p t e r 7 , A F C c l a s s e s 699

AcPageList

■ If there is room for the frame on the current page, the flow places the frame
on the page.

■ If there is no space on the page for the frame, the page list builds another
page. The framework then places the frame on the new page.

Figure 7-79 also shows the roles of a data stream and section in building a report.
The data stream supplies data rows to the section. The data stream does not
control how the section places those data rows in a frame.

The section builds frames from the data rows that the data stream supplies and
passes them to the page list. The section does not control how the page list places
those frames on the page. In the simplest case, the section does not respond to
events. The section only feeds frames to the page list. In a more advanced case,
the section can respond to events such as a page break and send special frames
such as headers and footers to the page list.

A section can contain logic that causes the page list to eject a page. For example,
the section can generate a blank even-numbered page at the end of the section if
one is needed for double-sided printing.

Adding frames to the page
The AddFrame() method adds a frame to the page list. If there is a current page
and the frame fits on that page, AddFrame() places the frame on the page. If the
frame does not fit, the page list ejects the current page, instantiates a new page,
and places the frame on the new page.

The page list must also determine whether the frame requires a page break. If the
frame’s PageBreakAfter property is set to True, the page list ejects the page after
adding the frame. If PageBreakAfter is set to False, the process of adding frames
to the page continues.

When the page list does not have a page, AddFrame() instantiates a new page.
AddFrame() sends a request to each active component in the structure hierarchy,
starting with the frame passed to AddFrame(). AddFrame() instantiates a page
by calling each component’s NewPage() method.

A frame can contain information about the page on which the frame appears. For
example, if the frame’s PageBreakBefore property is set to True, AddFrame()
ejects the current page and instantiates a new page before placing the frame on
the new page. When the frame does not contain information about where to place
the page, the page list traverses up the content structure searching for page
placement information from successively higher nodes. If the search reaches the
top, the page list instantiates the default page defined in the page list subclass.

Page and structure hierarchies
The page hierarchy is connected to the structure hierarchy at both the top and
bottom ends. Figure 7-80 illustrates how the page hierarchy and content

700 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageList

hierarchy relate to each other. The hierarchies are connected at the top by a report
object and at the bottom by frames.

Figure 7-80 Relationship of page hierarchy and content hierarchy

About the current page
The page list always has references to the first and last pages. Typically, the page
list also has a reference to the current page. The current page is the page on which
the Factory is currently placing and filling flows. At some times, the page list does
not have a current page. For example, when a page is ejected and before another
page builds, the page list does not have a current page. The page list delays
building another page as long as possible. Specifically, if a frame or section has its
PageBreakAfter property set to True, the page list does not have a current page
until it receives another frame. Figure 7-81 illustrates the state of the page list
after page 4 is ejected. The page list that no longer refers to a current page appears
broken.

Subclassing AcPageList
AcPageList is an abstract class for all types of page lists. The derived classes
define the organization of the pages in the page list. The Actuate framework
provides the following derived classes from AcPageList:

■ AcSimplePageList builds a page list of body pages all of the same style.

■ AcLeftRightPageList builds a page list of alternating left and right pages.

Report section

Group section

Report object

Frames

Page list

Page

Flow

Controls

Content structure

Page structure

C h a p t e r 7 , A F C c l a s s e s 701

AcPageList

■ AcTitleBodyPageList builds a page list of a title page followed by a simple
page list.

Figure 7-81 The page list

Variable
Table 7-75 describes the AcPageList variable.

Property
Table 7-76 describes the AcPageList property.

Methods for Class AcPageList

Methods defined in Class AcPageList

AddFrame, EjectPage, GetCurrentFlow, GetCurrentPage, GetCurrentPageACL,
GetEstimatedPageCount, GetFirstPage, GetLastPage, GetPageCount,
HasPageSecurity, NeedCheckpoint, NeedHeight, NewPage,
UseAcceleratedCheckpoints

Table 7-75 AcPageList variable

Variable Type Description

Pages AcList The list of all pages in the page list

Table 7-76 AcPageList property

Property Type Description

SplitOversizePages
WhenPrinting

Boolean Specifies whether all pages in the page list
split to print to an output format that is
smaller than the page. If True, the page splits.
The default value is True.

PageList

Page 1 Page 2 Page 3 Page 4

702 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageList

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcPageList::AddFrame method
Adds a frame to the page list and places the frame in a flow. This method creates
new pages as needed to accommodate the frame. This method also splits frames
over multiple flows if necessary. For additional information about AddFrame(),
see “Adding frames to the page,” earlier in this section.

Syntax Sub AddFrame(frame As AcFrame)

Parameter frame
The frame to add to the page list.

AcPageList::EjectPage method
Finishes the currently active page. If no page is active, EjectPage() does nothing.

Syntax Sub EjectPage()

AcPageList::GetCurrentFlow method
Returns the active flow on the current page. The active flow is the flow in which
the Factory is currently placing components.

Syntax Function GetCurrentFlow() As AcFlow

Returns The currently active flow, if any, on the current page, if any.
Nothing if no flow is active.

AcPageList::GetCurrentPage method
Returns the current page in the page list. The current page is the page on which
the Factory is currently placing and filling flows.

Syntax Function GetCurrentPage() As AcPage

C h a p t e r 7 , A F C c l a s s e s 703

AcPageList

Returns The current page.

AcPageList::GetCurrentPageACL method
Call GetCurrentPageACL() to retrieve the access control list (ACL) for the current
page. Developers define ACLs to restrict access to pages. For information about
ACLs, see “Customizing page-level security.” To help debug reports that use
page-level security, define a text control that has its ValueExp property set to
GetPageList().

Syntax Function GetCurrentPageACL() As String

Returns A comma-separated list of security IDs that comprise the ACL.
An empty string if page security is not defined for this page.

AcPageList::GetEstimatedPageCount method
Provides an estimate of the number of pages needed for this report.
GetEstimatedPageCount() supports optimizing the layout of data in the report.
Override this method to provide an estimate of the number of pages that the
report will contain. The Factory pre-allocates parts of the report. Pre-allocating
parts of the report reduces the number of reads required to view the report.

The estimate is accurate to a power of 50. For example, provide a value of 1 for
reports up to 50 pages long. Provide a value of 51 for reports up to 2500 pages
long. Try to be as accurate as possible when you provide the estimate.

Syntax Function GetEstimatedPageCount() As Integer

Example Function GetEstimatedPageCount()
GetEstimatedPageCount = 100

End Function

AcPageList::GetFirstPage method
The page list holds all the pages in the report. Returns the first page in the page
list.

Syntax Function GetFirstPage() As AcPage

Returns The first page in the page list.

AcPageList::GetLastPage method
Returns the last page in the page list.

Syntax Function GetLastPage() As AcPage

Returns If you call GetLastPage() when viewing a complete report, GetLastPage() returns
the last page of the page list.

704 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageList

If you call GetLastPage() during report generation, GetLastPage() returns the
last page that currently exists. For example, if you call GetLastPage() when the
report is partially built, it returns the current page.

AcPageList::GetPageCount method
Returns the number of pages in the page list. If called before the page list is
complete, GetPageCount() returns the number of pages processed so far.

Syntax Function GetPageCount() As Integer

Returns The number of pages in the page list.

AcPageList::HasPageSecurity method
Indicates whether a page in the page list uses page-level security.

Syntax Function HasPageSecurity() As Boolean

Returns True if the page uses page-level security.
False if the page does not use page-level security.

AcPageList::NeedCheckpoint method
Override this method to control how frequently to flush persistent objects to the
report object instance (.roi) file. Flushing too frequently can cause significant
performance degradation and can increase the size of the ROI.

Syntax Function NeedCheckpoint(pageCount As Integer) As Boolean

Parameter pageCount
The page number to act on, usually the page whose generation has just been
completed.

Returns True if a checkpoint is required. The Factory then flushes the page to persistent
storage and the viewer can render the page.
False if no checkpoint is required.

AcPageList::NeedHeight method
Ensures that a specified amount of vertical space is available in the current flow,
and if not, starts a new flow. NeedHeight() requests a certain amount of vertical
space in the current flow. NeedHeight() requests a new flow if the requested
vertical space cannot fit in the current flow. Space is measured in twips.

Syntax Sub NeedHeight (Height As Integer)

Parameter Height
The amount of required vertical space in twips.

C h a p t e r 7 , A F C c l a s s e s 705

AcPageList

AcPageList::NewPage method
The page list calls NewPage() to instantiate each new page. If you use one of the
predefined page classes, the framework creates the page for you based on the
components you add to the page list in Report Structure. If you create a custom
page list class, you must override this method.

Syntax Function NewPage() As AcPage

Example The following example shows how to create different page designs for two
reports that run in sequence: a customer list and an order list.

In the following code example, the custom variable TestIndex has a value of 1
when the first of the two sequential reports runs. When the second report runs,
TestIndex has a value of 2.

Function NewContent(index As Integer) As AcReportComponent
Set NewContent = Super::NewContent(index)
TestIndex = index

End Function

The following code example passes the value of TestIndex to the NewPage()
method, so that the NewPage() method knows whether to instantiate either the
CustomerPage or the OrderPage component.

The call to Super::NewPage() is commented out:

Function NewPage() As AcPage
' Set NewPage = Super::NewPage()

Select Case TestIndex
Case 1

Set NewPage = New Persistent CustomerPage
Case 2

Set NewPage = New Persistent OrderPage
End Select

End Function

Returns The new page instance.

AcPageList::UseAcceleratedCheckpoints method
Creates additional page checkpoints in the report. Override
UseAcceleratedCheckpoints() to return True if you want the Factory to increase
the number of page checkpoints written to the report. Additional checkpoints
improve report viewing performance.

Syntax Function UseAcceleratedCheckpoints() As Boolean

Returns True if more checkpoints are to be created.
False if no additional checkpoints are to be created.

706 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageNumberControl

Class AcPageNumberControl
Calculates and displays page numbers. Figure 7-82 shows the class hierarchy of
AcPageNumberControl.

Figure 7-82 AcPageNumberControl

Description Use the page number control to calculate and display the current page number or
the total number of pages in the report. You can use the page number control to
display relative page numbers in the form, 1 of n. The page number control can
number pages for secure reports considering the visibility of pages to the user.
Pages in secure reports are visible to the user only if the user is granted access to
the page. For information about granting access to pages, see “Using page-level
security,” later in this chapter.

About page number types
The PageNumberType property of AcPageNumberControl determines how to
calculate and display the page number value. The available page number types
are:

■ ActualPageCount

■ ActualPageNofM

■ ActualPageNumber

■ FormattedPageNumber

■ VisiblePageCount

■ VisiblePageNofM

■ VisiblePageNumber

ActualPageCount and ActualPageNumber show the total and current page
numbers, respectively, without considering page security. ActualPageNofM
shows the actual page number relative to the actual page count in the report.
VisiblePageCount and VisiblePageNumber show the total and current page
numbers, respectively, considering page security. VisiblePageNofM shows the

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcPageNumberControl

C h a p t e r 7 , A F C c l a s s e s 707

AcPageNumberControl

visible page number relative to the visible page count in the report. For nonsecure
reports, the values for visible and actual page number types are the same.

The FormattedPageNumber displays page numbers using the format specified in
the PageNumberFormat property on the component, AcPage. Page numbers
displayed using this type do not consider page security.

Selecting the page numbering type
Visible page numbers and counts can result in different page numbers on the
same report for users with different access to pages. The total number of pages in
a secure report can be different for users with different access to pages. Use actual
page numbers and counts when users with different access to pages need to refer
to the report by page number.

Property
Table 7-77 describes the AcPageNumberControl property.

Table 7-77 AcPageNumberControl property

Property Type Description

PageNumber
Type

AcPage
Number
Style

PageNumberType can be set to the following values:
■ ActualPageCount. The total number of pages in the report,

including those not visible to the user.
■ ActualPageNofM. The current page number, N, relative to

the total page count, M, displayed in the following form:
Page N of M
The page number and count include pages that are not
visible to the user.

■ ActualPageNumber. The current page number considering
all pages, including those not visible to the user.

■ FormattedPageNumber. Page number is presented using the
format string specified in the PageNumberFormat property.
The value presented here does not consider page security.

■ VisiblePageCount. The total number of pages in the report
that the user can see considering page security.

■ VisiblePageNofM. The current page number, N, relative to
the total page count, M, displayed in the form: Page N of M.
The page number and count considers page security.

■ VisiblePageNumber. The current page number considering
only the pages that the user can see considering page
security.

The default value is VisiblePageNumber.

708 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageNumberControl

See also Class AcPage
Class AcPageList

Methods for Class AcPageNumberControl

Methods defined in Class AcPageNumberControl

GetActualPageCount, GetActualPageNumber, GetFormattedPageNumber,
GetVisiblePageCount, GetVisiblePageNumber, PageN, PageNOfM,
PageNumberType

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 709

AcPageNumberControl

AcPageNumberControl::GetActualPageCount method
Returns the total page count for the report without considering page security. If
the report is secure, the total page count considers pages that are not visible to the
user because the user has not been granted access to the page.

Syntax Function GetActualPageCount() As Integer

Returns The page number.

See also AcPageNumberControl::GetVisiblePageCount method

AcPageNumberControl::GetActualPageNumber
method
Returns the current page number for the report without considering page
security. If the report is secure, the page number considers pages that are not
visible to the user because the user has not been granted access to the page.

Syntax Function GetActualPageNumber() As Integer

Returns The page number.

See also AcPageNumberControl::GetVisiblePageNumber method

AcPageNumberControl::GetFormattedPageNumber
method
Returns the current page number without considering page security, using the
format specified in the PageNumberFormat property for the page. Call
GetFormattedPageNumber() to retrieve the page number as a string formatted
according to the information in the PageNumberFormat property for the page.
The string returned is the same string as the one returned by PageNo$().

Syntax Function GetFormattedPageNumber() As String

Returns The current page number.

AcPageNumberControl::GetVisiblePageCount method
Returns the total page count for the report considering page security. If the report
is secure, the total page count excludes any pages that are not visible to the user
because the user has not been granted access to the page or pages.

Syntax Function GetVisiblePageCount() As Integer

Returns The page count of visible pages.

See also AcPageNumberControl::GetActualPageCount method

710 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcPageNumberControl

AcPageNumberControl::GetVisiblePageNumber
method
Returns the current page number for the report considering page security. The
page number excludes any pages that are not visible because the user cannot
access the pages.

Syntax Function GetVisiblePageNumber() As Integer

Returns The page number of a visible page.

See also AcPageNumberControl::GetActualPageNumber method

AcPageNumberControl::PageN method
Formats controls that have the page number types ActualPageN or VisiblePageN.

Syntax Function PageN(pageNo As Integer) As String

Returns The value of the page number format.

Parameter pageNo
The page number.

AcPageNumberControl::PageNOfM method
Formats page number controls that have the type ActualPageNofM or
VisiblePageNofM.

Syntax Function PageNOfM(pageNo As Integer, pageCount As Integer) As String

Returns The value of the page number format.

Parameters pageNo
The page number.

pageCount
The page count.

AcPageNumberControl::PageNumberType method
Returns the value of the PageNumberType property for a page number control.
The enumerated type AcPageNumberStyle defines the available values for this
property.

Syntax Function PageNumberType() As AcPageNumberStyle

Returns The value of the PageNumberType property.

C h a p t e r 7 , A F C c l a s s e s 711

AcParallelSect ion

Class AcParallelSection
A class that fills two or more flows on the page. Figure 7-83 shows the class
hierarchy of AcParallelSection.

Figure 7-83 AcParallelSection

Description A parallel section contains two or more report sections, group sections, or
sequential sections that appear in different flows on the same page. A parallel
section can present two different reports side by side.

On a page that has multiple flows, AcParallelSection fills each flow using a
different data stream. When each flow on a page is full, a new page builds and the
process of filling each flow continues until all data streams are processed.

When designing a parallel section, you must establish the relationship between
reports in the parallel section and flows on the page. You do so by setting the
report section’s FlowName property to the name of the flow in which the report
should appear. For example, if you create a page with two flows, Flow1 and
Flow2, set the FlowName property of the first report to Flow1 and the FlowName
property of the second report to Flow2.

The parallel section class is complex. It is recommended not to override its
methods.

Setting up pages for a parallel section
The parallel section must have access to the page that contains the necessary
flows. You can provide this page in one of three ways:

■ If the only item in your report is the parallel section, you can use a simple page
list. Ensure that the page in that page list has the correct number of flows with
the correct tags.

■ You can override NewPage() to instantiate the page you want to use within
the parallel section. This page takes precedence over any page the page list
provides. If you override NewPage(), be sure to set the PageBreakBefore and
PageBreakAfter properties to True so that the parallel section starts on the
correct page and no other components use the special page.

■ You can provide a subpage that fits inside the flow on your standard page.

AcComponent

AcReportComponent

AcSection

AcParallelSection

712 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcParal lelSect ion

Building the nested reports
The nested reports are built in the parallel section’s Build() method. The Factory
performs the following tasks in sequence to build the section:

■ Instantiate and start all of the nested reports.

■ Locate the first page.

■ For each report that still has rows to produce, locate the corresponding flow
using the report and flow’s Tag property.

■ Run the report until the flows fill.

■ Eject the page.

■ If any reports have more rows to produce, loop back to locate the next page
and repeat the process.

Property
Table 7-78 describes the AcParallelSection property.

Methods for AcParallelSection

Methods defined in Class AcParallelSection

AddReport

Methods inherited from Class AcSection

CommittedToFlow, DeletePageFrame, FinishConnection, FinishFlow,
FinishPage, GetComponentACL, GetCurrentRow, GetSearchValue,
NewPage, ObtainConnection, PageBreakAfter, PageBreakBefore,
SetSearchValue, SetSecurity, StartFlow, StartPage, StopAfterCurrentFrame,
StopAfterCurrentRow, StopNow, TocAddComponent, TocAddContents

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,

Table 7-78 AcParallelSection property

Property Type Description

Reports AcReport
Section

The list of nested reports to appear in the parallel
report

C h a p t e r 7 , A F C c l a s s e s 713

AcParallelSect ion

GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcParallelSection::AddReport method
Adds a subreport to the Reports slot of a parallel section.

Syntax Sub AddReport(report As AcReportSection)
Chapter 7AFC classes

714 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcQuerySource

Class AcQuerySource
Chapter 7AFC classes Processes a SQL query that you build using Query Editor or Textual Query

Editor. Figure 7-84 shows the class hierarchy of AcQuerySource.

Figure 7-84 AcQuerySource

Description AcQuerySource is an abstract base class that defines the methods for executing a
SQL SELECT statement including:

■ Processing ad hoc parameters

■ Handling dynamic ordering established by group sections

■ Preparing the SQL statement and opening a cursor

■ Binding static parameters

■ Binding the data row to the database cursor

Figure 7-85 illustrates the operation of an AcQuerySource object.

Figure 7-85 A query data source

Typically, you create a query data source using Query Editor or Textual Query
Editor. You also can create the query data source programmatically. If you use
programming, you must override ObtainSelectStatement() to return the complete
statement. You also must override BindStaticParameters() to bind static
parameters and BindDataRow() to bind the data row to the cursor.

See also Class AcDataAdapter
Class AcDatabaseSource
Class AcDataRow
Class AcDataSource
Class AcDBConnection
Class AcSqlQuerySource
Class AcTextQuerySource

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

AcQuerySource

Query source

Data rows
SQL database

Data

Rows

SELECT
statement

C h a p t e r 7 , A F C c l a s s e s 715

AcQuerySource

Methods for Class AcQuerySource

Methods defined in Class AcQuerySource

GetStatementText, ObtainSelectStatement, SetupAdHocParameters

Methods inherited from Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
GetPreparedStatement, OpenCursor, SetStatementProperty

Methods inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcQuerySource::GetStatementText method
Returns the text of the SELECT statement for the SQL query source. You can call
this method only after calling Start().

Syntax Function GetStatementText() As String

Returns The current SELECT statement as a string.

AcQuerySource::ObtainSelectStatement method
Returns the SELECT statement of the query source. Override
ObtainSelectStatement() to create custom SQL SELECT statements.

Syntax Function ObtainSelectStatement() As String

Returns A SQL SELECT statement as a string.

AcQuerySource::SetupAdHocParameters method
Adds ad hoc parameters to the query. The AcQuerySource class calls
SetupAdHocParameters() to enable a derived class to set the value of its ad hoc
parameters. The framework typically generates this method for you. If you

716 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcQuerySource

programmatically create a class that provides ad hoc parameters in the Requester,
you must override this method. Your override calls SetAdHocParameters() to set
the value of each parameter. For a date parameter, you must specify the date
format. An example of using SetAdHocParameter() for a date parameter is:

SetAdHocParameter("DATE_DIM.DATEDATE", "Date", Format(today,"yyyy/
mm/dd"))

Syntax Sub SetupAdHocParameters()

C h a p t e r 7 , A F C c l a s s e s 717

AcRectangleControl

Class AcRectangleControl
Displays a rectangle in a report. Figure 7-86 shows the class hierarchy of
AcRectangleControl.

Figure 7-86 AcRectangleControl

Description A rectangle is a content control that is fully defined at design time. You can
specify its color, size, geometry, and line style.

Variables
Table 7-79 lists AcRectangleControl variables.

Properties
Table 7-80 lists AcRectangleControl properties.

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcRectangleControl

Table 7-79 AcRectangleControl variables

Variable Type Description

FillColor AcColor The color with which to fill the shape.

ForcePage
HeightTo
Fit

Boolean Determines whether to keep the text of a
dynamic text control on a single page. Overrides
the CanIncreaseHeight property.

ForcePage
WidthToFit

Boolean Determines whether to keep the text of a
dynamic text control within specified margins.
Overrides the CanIncreaseWidth property.

LineStyle AcLineStyle The style of line to draw around the shape.

Table 7-80 AcRectangleControl properties

Property Type Description

FillColor AcColor The color with which to fill the shape.

(continues)

718 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcRectangleContro l

Methods for Class AcRectangleControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Horizontal
Size

AcHorizontal
Size

Determines how the horizontal size of the
control changes dynamically.

LineStyle AcLineStyle The style of line to draw around the shape.

IsFrame
Decoration

Boolean If True, the control can split across multiple
pages when necessary.

Vertical
Size

AcVerticalSize Determines how the vertical size of the control
changes dynamically.

Table 7-80 AcRectangleControl properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 719

AcRectangleControl

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

720 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

Class AcReport
The root object that contains all components in a report. Figure 7-87 shows the
class hierarchy of AcReport.

Figure 7-87 AcReport

Description AcReport is the root object that contains all other components in a report. Like the
main method in a program, the AcReport object is the entry point to the report. In
Report Structure, the report object appears at the top, as shown in Figure 7-88.

Figure 7-88 A report object

The following components are contained immediately within the report object:

■ A section component, the topmost container of the content elements. The
section can be a report section, conditional section, sequential section, parallel
section, or group section.

■ A PageList component, the topmost container of the display components.

About content and page creation
The report section starts the processes for building, running, and displaying the
report. To build the report, the report object:

■ Starts the PageList creation process

■ Starts the content creation process

Because the report object controls the report-building process, exercise caution
when overriding AcReport methods. Use Start() to add startup code that, for
example, initializes global variables. The Factory calls Start() before it begins
generating the report.

For more information about content or page creation, see Chapter 5,
“Understanding report generation.”

AcComponent

AcReportComponent

AcReport

AcReport object

Report section
PageList component

C h a p t e r 7 , A F C c l a s s e s 721

AcReport

Writing cleanup code
Use Finish() to add cleanup code or additional processing. For example, use
Finish() to close files, send completion notices, or write statistics to a log file. The
Factory calls Finish() after it generates the report but before closing the report
file. Call Super::Finish() after your custom code to ensure that the Factory
executes the original code.

Subclassing AcReport
e.Report Designer Professional generates a subclass of AcReport for every new
report. You can subclass this subclass to make a copy of the original report.

Assigning and customizing a report name
The framework assigns a name to a report based on the value of the Output File
Name parameter in Requester or a value you specify in the SuggestRoiName()
method of AcReport.

When a report runs on iServer, Actuate software stores the report object instance
(.roi) file in the Encyclopedia volume folder that contains the corresponding
report object executable (.rox) file. If the report runs on a local machine, Actuate
software uses the file protocol and stores the ROI in the current working
directory. The ROI name is the value of the Output File Name parameter in
Requester.

If you change the location of the ROI and the report runs on a local machine, the
new directory must exist in the file system when the report runs. If the report
runs on iServer, Actuate software creates the directory if it does not exist.

You can specify the ROI name using an absolute path in SuggestRoiName().
When you set a path, the Factory uses the name you set in SuggestRoiName() for
the ROI. If you use a relative path in SuggestRoiName(), the Factory adds path
information from SuggestRoiName() to any path information from the Output
File Name parameter. For example, if the Output File Name parameter contains:

file:C:\Forecast\East\Quarterly.roi

and SuggestRoiName() returns:

Q1\Forecast.roi

The generated ROI name is:

file:C:\Forecast\East\Q1\Forecast.roi

Setting autoarchive rules for an AcReport object
An Encyclopedia volume administrator sets autoarchive rules for the files stored
in the Encyclopedia volume. The iServer uses the autoarchive rules to determine
when to delete files, how many versions of a report to keep, whether to archive

722 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

the file before it is deleted, and whether to delete any dependent files at the same
time. Autoarchive rules can be set for a file, folder, or the entire Encyclopedia
volume. The framework searches the containment hierarchy for an autoarchive
rule to use if no rule is specified for the file.

A user can enter parameter values at the Requester prompt to set autoarchive
rules for the report object. For example, the user can specify that a report be
deleted 10 days after it is created.

You can customize your report design to set autoarchive rules for the ROI files.
The framework makes the autoarchive rules set by the user available as public
variables on the AcReport component. You can change user-specified autoarchive
rules in the following two ways:

■ Override the Start() or Finish() method for the report and modify the
autoarchive public variables.

■ Override the SetROIAgingProperties() method.

You modify the public variables when the autoarchive rules are the same for all
report objects generated by the report. If your report uses report bursting to
produce multiple ROI files and you must specify different autoarchive rules for
the individual files, override the SetROIAgingProperties() method to set the
autoarchive rules. This method is called for each ROI file.

For more information about setting autoarchive rules, see Managing an
Encyclopedia Volume. For information about using and creating an archive driver,
see Using BIRT iServer Integration Technology.

Examples The following example shows how to change the autoarchive rules for a report.
Overriding the Finish() method modifies the rule to automatically delete the ROI
four hours after it is created. This code converts the amount of time from hours to
minutes and sets the public variable ExpirationAge to the result.

Sub Finish
' Force the file to expire 4 hours after creation
ExpirationAge = 4 * 60

End Finish

The following example shows how to ensure that the ROI is not removed as part
of the aging and archiving process. The code sets the Aging_Options variable to
the constant Age_NoExpiration.

Sub Finish
' Never delete the file during aging and archiving
AgingOptions = Age_NoExpiration

End Finish

C h a p t e r 7 , A F C c l a s s e s 723

AcReport

Variables
Table 7-81 lists AcReport variables.

Table 7-81 AcReport variables

Variable Type Description

Aging_Options Integer The autoarchive rules for this file. Contains a value
corresponding to one of the following public variables:
■ Age_ArchiveBeforeDelete. File must be archived

before it is deleted. If no archive driver is installed,
this option is ignored.

■ Age_DeleteDependencies. When this file is deleted,
delete any files that depend on it.

■ Age_NoExpiration. Do not delete this file.
■ Age_NoOptions. No autoarchive rules have been set

for this file. The file inherits its autoarchive rules.
Actuate software searches the Encyclopedia volume
folder hierarchy to find autoarchive rules for the file.

BundleRox Boolean A parameter variable that indicates whether to bundle
the report object executable (.rox) file with the report
object instance (.roi) file.

DataFont AcFont Provided for backwards compatibility.

ExpirationAge Integer The number of minutes after creation that the file should
be deleted. Null indicates that the file should not be
deleted based on the elapsed time after creation.

ExpirationDate Date The date and time after which the file should be deleted.
Null indicates that the file should not be deleted based on
a specific date and time.

GlobalDHTML
Code

String Global custom browser code to append to every DHTML
page the DHTML converter converts.
The PDF converter ignores GlobalDHTMLCode.

Headline String A parameter variable. At report generation time,
Headline appears in Requester for reports that use
parameters.

Keywords String Defines the Keywords metadata for a rendered report.

LabelFont AcFont Provided for backwards compatibility.

Language String The default language of the report.

Layout
Orientation

AcLayout
Orientation

The layout orientation of the report.

(continues)

724 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

Properties
Table 7-82 lists AcReport properties.

Locale String The locale of the report.

MaxVersCount Integer The maximum number of versions of the report to keep.
Null indicates that no limit exists.

PageDecoration
Font

AcFont Provided for backwards compatibility.

PageHeight AcTwips Provided for backwards compatibility.

Pages AcPageList The object that holds the list of pages.

ReportType AcReportType Provided for backwards compatibility.

ROIName String The name of the report object instance (.roi) file.

Root AcReport
Component

A reference to the first element in the report. From this
element, the application can traverse down to all other
frame records in the report.

Summary String Defines the Subject metadata for a rendered report.

Title String Defines the Title metadata for a rendered report.

TitleFont AcFont Provided for backwards compatibility.

VersionName String The name to use for a version of the current report.

VersionRoi Boolean The version number to use for a version of the report.

Table 7-81 AcReport variables (continued)

Variable Type Description

Table 7-82 AcReport properties

Property Type Description

Content AcReport
Component

The topmost report section for a report.

DataFont AcFont Provided for backwards compatibility.

GlobalDHTML
Code

String Global custom browser code to append to every DHTML
page the DHTML converter converts.
The PDF converter ignores GlobalDHTMLCode.

Keywords String Defines the Keywords metadata for a rendered report.

LabelFont AcFont Provided for backwards compatibility.

C h a p t e r 7 , A F C c l a s s e s 725

AcReport

Layout
Orientation

AcLayout
Orientation

The layout orientation of the report, regardless of the
operating system or locale. Available settings are:
■ LeftToRight
■ RightToLeft
The default value is LeftToRight.

Locale String The locale to use for the report. If an empty string, the
current run-time locale is used.
The default value is an empty string.

PageDecoration
Font

AcFont Provided for backwards compatibility.

PageHeight AcTwips Provided for backwards compatibility.

PageList AcPageList The PageList style to use when creating pages for a report.

PrintSize AcSize Provided for backwards compatibility.

RenderProfileId String Specifies which Render profile is to be used when report
content is rendered to an output document.

Report
Encoding

String The encoding to use for report generation, viewing, and
printing. The default value is the encoding of the current
run-time locale.

ReportType AcReportType Provided for backwards compatibility.

SortParamsBy
Alias

Boolean Defines how the Requester orders the parameters.
True if Requester sorts parameters by alias name.
False if Requester sorts parameters by parameter name.
The default value is False.

Summary String Defines the Subject metadata for a rendered report.

Title String Defines the Title metadata for a rendered report. Appears
as the Title document property in PDF documents created
using the PDF Writer. This value is also displayed as the
window title when you view a PDF document in the
Adobe Acrobat Reader.

TitleFont AcFont Provided for backwards compatibility.

XMLCharSet String The encoding declaration to be inserted in the XML
prolog. If XMLCharSet is not specified, Actuate does not
include an encoding declaration in the XML prolog.

XMLDocType String The declaration to appear after the XML DOCTYPE
keyword.

(continues)

Table 7-82 AcReport properties (continued)

Property Type Description

726 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

See also Class AcPageList

Methods for Class AcReport

Methods defined in Class AcReport

GenerateXMLDataFile, GetContent, GetCustomFormat, GetFactoryLocale,
GetGlobalDHTMLCode, GetLanguage, GetLayoutOrientation, GetPrintLocale,
GetReport, GetUserACL, GetViewLocale, HasPageSecurity, NewContent,
NewPageList, OnFinishPrint, OnStartPrint, RoiIsTemporary,
SetBurstReportPrivileges, SetGlobalDHTMLCode, SetLayoutOrientation,
SetROIAgingProperties, SuggfestRoiName, TocAddComponent,
XMLDataProlog

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

XMLFile
Description

String The description of the XML file to build.
The default value is XML Files.

XMLFile
Extension

String The file extension of the XML file to build.
The default value is xml.

XMLIndent Integer The number of spaces to indent each level in the XML file.
Set the value to 0 to improve the performance of XML
generation and reduce the XML file size.
The default value is 4. Use the default value when you
view and debug the XML report.

XMLMimeType String The MIME type for the XML file.
The default value is text/xml.

Table 7-82 AcReport properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 727

AcReport

AcReport::AfterFinishingReport method
Performs work after the report has finished generating and the ROI file has been
closed. When AfterFinishingReport is executed, the value of AcReport’s
ROIName member variable will include the file version number. Use IDAPI to
manipulate the properties of the ROI file from within this method.

Syntax Sub AfterFinishingReport()

AcReport::BeforeStartingReport method
Performs work before the ROI file is opened and the report has begun generating.

Syntax Sub BeforeStartingReport()

AcReport::GenerateXMLDataFile method
Builds an XML file from the report, using the XML Data Group.

Syntax Function GenerateXMLDataFile(fileName As String) As Boolean

Parameter fileName
The name of the XML file to be generated.

Returns True if the XML file builds successfully.
False if the XML file cannot be built.

AcReport::GetContent method
Returns the component in the Content slot of the root report component.

Syntax Function GetContent() As AcReportComponent

AcReport::GetCustomFormat method
You use the Actuate Basic Excel classes to export report data to an Excel
spreadsheet. Use GetCustomFormat() to retrieve the generated Excel file.

Syntax Sub GetCustomFormat()

AcReport::GetFactoryLocale method
Specifies the locale to use for report generation. The value of the Locale property
is used for report generation. Override GetFactoryLocale() to set a different locale
for report generation.

The value this method returns replaces the value of the Locale property of the
generated report.

728 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

Syntax Function GetFactoryLocale(defaultLocale As String) As String

Parameter defaultLocale
The locale to use for report generation.

Returns The locale name.

AcReport::GetGlobalDHTMLCode method
Returns the custom code from a browser scripting control and makes it available
to every DHTML page the DHTML converter generates.

Syntax Function GetGlobalDHTMLCode() As String

AcReport::GetLanguage method
Returns the language of the report as a string.

Syntax Function GetLanguage() As String

Returns The language of the locale.

AcReport::GetLayoutOrientation method
Returns the report orientation. You can call GetLayoutOrientation() at report
generation time but not for report viewing.

Syntax Function GetLayoutOrientation() As AcLayoutOrientation

Returns One of the following orientations for the report:

■ LeftToRight

■ RightToLeft

AcReport::GetPrintLocale method
Specifies the locale to use for printing the report on iServer. Override
GetPrintLocale() to set a different locale for printing. The value this method
returns is only for report printing on iServer. The return value does not replace
the value of the Locale property of the generated report.

Syntax Function GetPrintLocale(defaultLocale As String) As String

Parameter defaultLocale
The locale to use for report printing.

Returns The locale name.

C h a p t e r 7 , A F C c l a s s e s 729

AcReport

AcReport::GetReport method
Returns a reference to the root report component.

Syntax Function GetReport() As AcReport

AcReport::GetUserACL method
Returns the access control list (ACL) for the current user.

The view process or print process calls GetUserACL() to retrieve the list of
security identifiers for the current user. Actuate software builds an ACL for the
user that consists of his user ID, the roles associated with his group, and
optionally, any security IDs the Report Server Security Extension (RSSE) supplies.

Override GetUserACL() if you want to modify or replace the ACL that Actuate
software builds.

The AcReportComponent, AcReport, and AcSection components implement
page-level security. For more information about page-level security, see
AcReportComponent and AcSection.

Syntax Function GetUserACL(acl As String) As String

Parameter acl
The list of security IDs for the current user.

Returns The list of security identifiers separated by commas.
Nothing if no security identifiers are defined.

Example You can add virtual security IDs as well as valid roles or user IDs. A virtual
security ID is a combination of valid roles in the Encyclopedia volume. Virtual
security IDs help you create additional security IDs without having to update the
Encyclopedia volume with additional roles. For example, you can restrict access
to all sales managers that sell four-wheel drive vehicles. In this case, you create a
virtual security ID that is represented by the sales manager role and a four-wheel
drive vehicle product category role, as shown in the following example. This code
combines the actual security IDs Manager and Product Category to create the
virtual security ID Manager_Product Category.

Function GetUserACL(acl As String) As String
 GetUserACL = Super::GetUserACL(acl)

Dim tail As String
Dim mgr As String
Dim prod As String
Dim posn As Integer
Dim sid As String
' Loop to get each SID and check if we want it.
tail = acl

730 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

Do While tail <> ""
posn = InStr(tail, ",")
If posn = 0 Then

sid = Trim$(tail)
tail = ""

Else
sid = Trim$(Left$(tail, posn - 1))
tail = Trim$(Mid$(tail, posn + 1))

End If
' Check if it is a manager SID or a product
' category SID.
If InStr(sid, "Manager") > 0 Then

mgr = sid
ElseIf InStr(sid, "Product Category") > 0 Then

prod = sid
End If

Loop
' Build the special ACL and add it to the list.
If mgr <> "" And prod <> "" Then

acl = acl & ", " & mgr & " " & prod
End If
GetUserACL = acl

End Function

See also Class AcReportComponent
Class AcSection

AcReport::GetViewLocale method
Specifies the locale to use for report viewing. The value of the Locale property is
for report viewing. To set a different locale for report viewing, override
GetViewLocale().

The value this method returns is used only for report viewing. The return value
does not replace the value of the Locale property of the generated report.

Syntax Function GetViewLocale(defaultLocale As String) As String

Parameter defaultLocale
The locale to use for report viewing.

Returns The view locale.

AcReport::HasPageSecurity method
Returns True if the report uses page-level security. A report uses page-level
security if the access control list associated with any of its pages is not empty.

C h a p t e r 7 , A F C c l a s s e s 731

AcReport

Page-level security is a technique for controlling user access to a report on a
page-by-page basis. In a report that uses page-level security, a report user can
view, search, and print only pages to which he has access.

Syntax Function HasPageSecurity() As Boolean

Returns True if the report uses page security.
False if the report does not use page security.

AcReport::NewContent method
A generated method that creates the top-level section. Typically, you do not need
to override NewContent().

Syntax Function NewContent() As AcReportComponent

Returns A reference to the AcReportComponent object it creates.

AcReport::NewPageList method
A generated method that creates the page list for the report. Using the page list
specified in e.Report Designer Professional, NewPageList() creates an instance of
a subclass of AcPageList.

Typically, you do not override NewPageList(). Instead, you use e.Report
Designer Professional to specify the PageList class to use for the report.
Alternatively, you can override NewPageList() to create the page list with a
different page style. If you override this method, replace it. Do not call the
superclass method.

Syntax Function NewPageList() As AcPageList

Returns A reference to the AcPageList object it creates.

See also Class AcPageList

AcReport::OnFinishPrint method
Override this method to perform tasks after printing, such as logging or sending a
completion notification.

Syntax Sub OnFinishPrint()

AcReport::OnStartPrint method
Called at the start of a print operation to perform custom tasks.

Syntax Sub OnStartPrint()

732 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

AcReport::RoiIsTemporary method
Determines whether to keep the report object instance (.roi) file after the Factory
generates the report. The default setting is to keep the ROI.

Syntax Function RoiIsTemporary() As Boolean

Returns True to discard the ROI.
False to keep the ROI.

AcReport::SetBurstReportPrivileges method
Override the SetBurstReportPrivileges() method of a burst report component to
set all privileges on the current burst report. This method is called when each
burst report begins building. The default setting is that the burst report has the
same privileges as the report from which it originates.

Syntax Sub SetBurstReportPrivileges(row As AcDataRow)

Parameter row
The current data row instance.

AcReport::SetGlobalDHTMLCode method
Sets the custom code in a browser scripting control.

Syntax Function SetGlobalDHTMLCode(newValue As String)

AcReport::SetLayoutOrientation method
Sets the orientation of the report layout. Use the SetLayoutOrientation() method
for right-to-left language support. This method sets the report and its subreports
to right-to-left or left-to-right layout. The orientation is set regardless of the
operating system or locale.

SetLayoutOrientation() can be called during report generation but not during
report viewing.

Syntax Sub SetLayoutOrientation(newValue As AcLayoutOrientation)

Parameter newValue
The report orientation to set. Valid values are:

■ RightToLeft

■ LeftToRight

Example This example shows how to override the Finish method of a text control to set the
report layout to right to left for an Arabic report. The layout is set at generation
time.

C h a p t e r 7 , A F C c l a s s e s 733

AcReport

Sub Finish()
Super::Finish()
' Set Report layout to Right to left for Arabic data
If DataValue = "Arabic" Then

Container.GetReport().SetLayoutOrientation(RightToLeft)
Else

Container.GetReport().SetLayoutOrientation(LeftToRight)
 End If
End Sub

AcReport::SetROIAgingProperties method
Sets the autoarchive rules for a report object instance (.roi) file. Override
SetROIAgingProperties() to change the autoarchive rules. You override
SetROIAgingProperties() to set the autoarchive rules when you use report
bursting to produce multiple ROIs and the individual files have different deletion
or archive requirements.

To apply the rule to the individual file, call the Actuate Basic function
SetStructuredFileExpiration, identifying the ROI to change. For additional
information about SetStructuredFileExpiration, see Programming with Actuate
Basic.

SetROIAgingProperties() affects only for reports running on iServer. The output
file must be stored in an Encyclopedia volume.

Syntax Sub SetROIAgingProperties(fileID As Integer)

Parameter fileID
An identifier for the ROI.

Example The following example shows how to override the SetROIAgingProperties
method to modify the file deletion rule for an ROI file. The file should be
automatically deleted four hours after it is created. SetROIAgingProperties passes
the identity of the file and the file deletion rule to the Actuate Basic function
SetPOSMFileExpiration.

Sub SetROIAgingProperties(fileID As Integer)
Dim expHours
' Force the file to expire 10 days after creation
expHours = 10 * (24 * 60)
SetPOSMFileExpiration(fileID, Age_NoOptions, Null, Null,

expHours)
End Sub

734 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReport

AcReport::SuggestRoiName method
Specifies a name for the report object instance (.roi) file. The ROI name can
include the protocol and path for this report. The ROI name also can include a
value for a run-time parameter or data row variable, or the date the report runs.

The ROI name syntax is:

Syntaxes [<protocol>:]/<path>/<report name>

Function SuggestRoiName() As String

Function SuggestRoiName(row As AcDataRow) As String

Parameters <protocol>
The protocol to use to store the ROI. Table 7-83 lists the supported protocols.

<path>/<report name>
The ROI path name. Paths can be absolute or relative.

Returns The suggested ROI name specified using an absolute or relative path.

Examples In the following example, the ROI name includes the value of the parameter,
StateParam:

Function SuggestRoiName() As String
SuggestRoiName = "State_" & CustQuery::StateParam & ".roi"

End Function

Custom ROI names generated by running this report application have names
such as State_ca.roi or State_ny.roi.

Table 7-83 Supported protocols for storing an ROI

Protocol Description

file The destination is in a file system. The destination report
appears in the viewing tool appropriate for the file type.
For example, if the destination file is a PDF file, the report
appears in Acrobat Reader. If the destination file is an
Actuate report object instance (.roi) file, it appears in the
view perspective.

http The destination is on the web. The report appears in a web
browser window.

none If the source and destination are in the file system, the
destination appears in the view perspective. If the
destination is on the web, the destination appears in the
web browser window.

other The destination appears in a web browser window. Other
protocols include FTP.

C h a p t e r 7 , A F C c l a s s e s 735

AcReport

In the following example, the report application uses report bursting to generate
multiple ROIs from a single executable file. Each ROI contains a census report for
a different state. Each state’s report must be stored in an Encyclopedia volume
folder named for the geographical region that contains the state. The Output File
Parameter includes a folder name that shows the type of report, such as census
reports.

Function SuggestRoiName(row As AcDataRow) As String
SuggestRoiName = row.GetValue("Region") & "/" & "State_" &

row.GetValue("State") & ".roi"
End Function

Custom ROI names have the following form:

file:\C:\Census\Region\State.roi

where

■ Region is the value of the region data row variable.

■ State is the value of the state data row variable.

AcReport::TocAddComponent method
Adds the report to the table of contents.

Syntax Function TocAddComponent() As AcTocNodeType

AcReport::XMLDataProlog method
Creates the XML prolog for a custom XML data file. Override XMLDataProlog()
to create a custom XML prolog in an XML data file. You can either completely
replace the standard prolog or extend the standard prolog. To replace the
standard prolog, do not call the superclass method. To extend the prolog, call the
superclass method first and use the Actuate Basic Print statement to write
additional prolog information to the channel.

Syntax Sub XMLDataProlog(channel As Integer)

Parameter channel
The Basic channel to which the XML prolog is written.

736 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

Class AcReportComponent
The base class for all sections, pages, frames, and controls. Figure 7-89 shows
AcReportComponent.

Figure 7-89 AcReportComponent

Description AcReportComponent is the base class for all reports, sections, frames, controls,
page lists, flows, and pages. AcReportComponent establishes the core protocol
for how components in a report are created and how they fit together in the
report’s containment structure. Build methods are key protocol elements. They
specify the logic for creating the components and the components’ contents. The
container component calls Build(). At the topmost level of the structure, the Build
method for the report object creates the next level component, the report, and
calls Build() for the report to create the report’s contents. Each container
component performs this task until all components and their contents are built.

Many Actuate report components, such as sections and frames, can contain one
or more content components. AcReportComponent provides methods to identify
containers and their contents. References to all these objects are stored in a list
object. The AFC framework can easily traverse the list using the AcIterator class.
Figure 7-90 shows the relationships between components in a report. It shows a
group section, but the relationships are true for other types of sections as well.

Figure 7-90 Relationships between report components

Customizing page-level security
The AcReportComponent, AcReport, and AcSection components implement
page-level security. Page-level security is based on access control lists (ACLs),

AcComponent

AcReportComponent

Report

Group section

Frame1

Control1

Frame2

Control2

Container

Container

Container

FirstContent

FirstContent

Successor

Successor
FirstContent

Container

C h a p t e r 7 , A F C c l a s s e s 737

AcReportComponent

which are lists of security IDs. The Factory creates an ACL for the page and the
view or print process creates an ACL for the current user. The view or print
process determines whether the current user can view the page by comparing the
page’s ACL with the current user’s ACL. If a page security ID matches a user’s
security ID, the page is visible to the current user. Developers modify the list
of security IDs in the ACL for the page or the current user to customize page
security.

Typically, you create an ACL by entering security IDs directly in the GrantExp
property on the section or by entering an expression that evaluates to a list of
security IDs. Nested sections inherit page security from their container
components. The Factory builds an ACL for a page from the frame component’s
ACL. The Factory provides methods to dynamically change the contents of an
ACL for a page. The view or print process provides a method to modify the
content of the current user’s ACL. The following process highlights the methods
used by the Factory and the view process to build the ACL for the page and the
current user.

About the Factory’s role in page-level security
As the Factory builds a section, it passes the frames contained in the section to the
page list. The Factory builds the ACL for the page in the following way:

■ The Factory calls GetFullACL for the frame.

■ The frame calls GetFullACL for its container section.

■ The section calls GetComponentACL to get its own ACL and appends it to the
ACL for the frame.

■ Most of the time, the ACL corresponds to the GrantExp property for the
section. If you want to customize the ACL for the section, override the
SetSecurity method or create your own Actuate Basic function to do this.

■ If the CascadeSecurity property is set to True (default), the section calls
GetFullACL on its container section (if any). The section appends its ACL to
the one returned by GetFullACL.

■ The previous step is repeated until all container sections are processed. The
ACL resulting from steps 1 through 4 is the ACL for the frame.

■ If the ACL for the frame is different from the ACL for the previous frame, the
Factory inserts a page break.

■ The resulting ACL is assigned to the page.

To customize an ACL for a section and preserve the inheritance of security IDs
from its containers, override the GetComponentACL() method. To customize an
ACL for a section and prevent it from inheriting security IDs from its containers,
set the CascadeSecurity property on the section to False.

738 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

About the view or print process roles in page-level security
■ The view or print process obtains the current user’s ACL.

The view or print process obtains the current user’s ACL from the
Encyclopedia. The current user’s ACL consists of the user’s user ID, any roles
associated with the user’s group, and optionally, any security IDs supplied by
the Report Server Security Extension (RSSE.) To create a custom ACL for the
current user, override the GetUserACL method.

■ The view or print process builds a list of visible pages for the current user.
The view or print process compares the ACL for the current user to the ACL
for the page to determine whether to add the page to the list of visible pages. If
one of the security IDs for the current user is in the page’s ACL, the view or
print process adds the page to the list.

The view or print process uses the list of visible pages to build the table of
contents and support display, print, and search operations.

Converting a report into XML
Actuate provides two ways to generate XML data from Actuate reports:

■ Standard XML generation

■ Custom XML generation

Generating standard XML
The XML Data property group on all content components, such as reports,
sections, frames, and controls, specifies how to generate XML data for the
component. The XML Data property group for the report component contains
XML properties to generate the XML prolog and common characteristics for the
XML file. The XML Data group for sections, frames, and control components
consists of XMLAddContents, XMLAttributes, XMLTag, and XMLType. When
you view a report containing XML data, you can select Save As XML Data to have
the framework build an XML data output file.

Generating custom XML
Use AcReportComponent’s GenerateXML() method to build XML elements,
attributes, and text.

Subclassing AcReportComponent
Typically, you do not derive directly from AcReportComponent or override
methods in this class. AcReportComponent establishes the containment and
build protocols for all classes of persistent objects.

C h a p t e r 7 , A F C c l a s s e s 739

AcReportComponent

Variables
Table 7-84 lists AcReportComponent variables.

Properties
Table 7-85 lists AcReportComponent properties.

Table 7-84 AcReportComponent variables

Variable Type Description

Container AcReport
Component

The component that contains the current component.

RowCount Integer Counts the number of rows the section has processed. This
variable is incremented at the start of BuildFromRow(). Do not
reset this counter. It is used internally by the section.

SearchTag String Identifies the component to search.

TocEntry String The table of contents entry text.

Table 7-85 AcReportComponent properties

Property Type Description

SearchTag String Uniquely identifies the component to search. To search multiple
components as one group, specify the same value for each
component.
SearchTag is used in the user interface only if a value is
specified and SearchAlias is not specified.
If you specify a value for a report component, you can no longer
use the scoped class name to identify the component in a search,
such as in a URL.
The default value is an empty string.

TocAdd
Component

AcTOC
NodeType

Determines whether the component name is added to the
report’s table of contents. The values are:
■ TOCAlwaysAdd. Always add the component to the table of

contents.
■ TOCIfAllVisible. Add component name to the table of

contents only if the user can view at least one page
generated from the component based on page security.

■ TOCIfAnyVisible. Add component to table of contents even
if the user cannot view any pages generated from the
component based on page security.

(continues)

740 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

TocAdd
Component

 (continued)

AcTOC
NodeType
 (continued)

■ TOCSkip. Never add the component to the table of contents.
Use this property to hide components such as parallel or
sequential sections or detail frames from the user.

The default value is TOCIfAllVisible.

TocAdd
Contents

Boolean Determines whether the component’s contents are added to the
report’s table of contents.

TocValueExp String
expression

Returns a string to show as the table of contents entry for this
object.

XMLAdd
Contents

Boolean Determines whether the Actuate XML includes the
component’s contents.
The default value is True.

XML
Attributes

String A set of attribute values to add to the current XML element. You
add attributes here instead of creating a control. These
attributes are constant. They do not change based on data in the
report. The following XMLType property settings determine
where to add the attributes:
■ XMLElement. The attribute values are generated as

attributes of the element before any attributes provided by
controls.

■ XMLAttribute. The attribute values appear before the
component’s attribute value.

■ XMLIgnore. e.Report Designer Professional examines the
value of the container’s XMLType property. If the
container’s XMLType property is XMLElement, the attribute
values generate as attributes of the container’s element.

XMLTag String The name of the XML element or attribute for this component.

XMLType String The type of XML object, if any, the component represents. The
values are:
■ XMLAttribute. The component is an XML attribute.
■ XMLCustom. A custom XML element. AFC calls

GenerateXML() to generate the custom element.
■ XMLElement. The component is an XML element.
■ XMLEmptyElement. The component is an empty XML

element.
■ XMLIgnore. The default setting. Do not generate XML for

the component.
■ XMLText. The component is a text element.

Table 7-85 AcReportComponent properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 741

AcReportComponent

See also Class AcPageList
Class AcSection
Class AcVisualComponent

Methods for Class AcReportComponent

Methods defined in AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcReportComponent::Abandon method
Removes a component that the report no longer needs. Abandon() removes and
unpins the current component.

Syntax Sub Abandon()

AcReportComponent::AddContent method
Adds a content component to the current component. This method raises an error
if the current component does not allow contents.

Syntax Sub AddContent(component As AcVisualComponent)

Parameter component
The visual component to add to a container.

See also AcReportComponent::GetContainer method
AcReportComponent::GetContentIterator method
AcReportComponent::GetContents method
AcReportComponent::IsContainer method
AcReportComponent::IsLeaf method

AcReportComponent::Build method
Container objects call Build() and derived content classes override Build() to
create their contents.

742 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

A report, for example, overrides Build() to create the pages in the report.
Similarly, a frame overrides Build() to create the controls it contains.

Syntax Sub Build()

See also AcReportComponent::BuildFromRow method

AcReportComponent::BuildFromRow method
Override this method to manipulate the data rows a report component processes.
The framework calls BuildFromRow() so report components can use data from
data rows to build themselves. This method is called for each data row a
component is to contain. When BuildFromRow() returns False, the component
did not process the row. You can override BuildFromRow() to change the way a
report component processes data rows.

The framework calls BuildFromRow() in a report component’s parent data
section once with dataRow set to Nothing to tell a report component to finish
building itself.

Within BuildFromRow() you can:

■ Skip data rows by not calling Super::BuildFromRow() and returning
ContinueBuilding.

■ Create dynamic content based on values in a data row.

■ Use calculated data in a component by creating your own data rows and
calling Super::BuildFromRow() repeatedly.

Typically, it is easier to override a component’s OnRow method instead of
BuildFromRow() because OnRow() provides a simpler programming model.
Only override BuildFromRow() if you cannot use OnRow().

When you override BuildFromRow(), you must:

■ Always handle the case where dataRow is Nothing.

■ Always call Super::BuildFromRow(Nothing) to finish building the
component.

■ Always return FinishedBuilding when the component is done processing data
rows.

■ Always return FinishedBuilding if dataRow is Nothing.

Within BuildFromRow(), you can use GetRowCount() to check how many rows
the report component processes. The row count is incremented automatically
when you call Super::BuildFromRow().

Syntax Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus

C h a p t e r 7 , A F C c l a s s e s 743

AcReportComponent

Parameter dataRow
A reference to a data row. If dataRow is Nothing, the report component must
finish building itself.

Returns The build status of the report component:

■ ContinueBuilding if the report component wishes to process further data
rows. For example, a data control that is calculating an aggregate will return
ContinueBuilding to indicate that it needs to see all the data rows in its parent
section.

■ FinishedBuilding if the report component is done processing data rows. For
example, a data control that is not calculating an aggregate will return
FinishedBuilding to indicate that it only needs to process a single data row.

■ RejectedRow if dataRow does not belong to the report component. For
example, a group section uses RejectedRow to indicate that a data row does
not match its group key value.

■ RejectedRow if dataRow is Nothing.

Examples By default, charts process multiple data rows. If a chart is placed in a Content
frame, the result is a single chart that displays all the data rows for the Content
frame’s parent section.

In the following example, BuildFromRow() is overridden to make a chart process
just one row. If the chart is in a Content frame, the result will be that a separate
chart is displayed for each data row:

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
' Process the first data row.
BuildFromRow = Super::BuildFromRow(dataRow)
If Not dataRow Is Nothing Then

' Force the chart to finish building itself.
BuildFromRow = Super::BuildFromRow(Nothing)

End If
End Function

In the following example, a frame’s BuildFromRow() method has been
overridden to add a data control to the frame if a customer’s account is overdue.
OverdueAmountControl is a control defined in a library; this control’s value
expression gets the overdue amount from the data row. GetRowCount() is used
to avoid adding the control multiple times if the frame processes multiple data
rows. The call to Super::BuildFromRow() must come after you add the control, to
give the control a chance to process the data row:

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
If Not dataRow Is Nothing Then

Dim myRow As DataRow

744 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

If (myRow.Customer_AccountStatus = "Overdue")
+ And (GetRowCount() = 0) Then

' This is the first row - add the overdue amount
' control.
Dim o As OverdueAmountControl
Set o = New Persistent OverdueAmountControl
' Add the control to the frame.
AddContent(o)
' Initialize the control.
o.Start()

End If
End If
' Pass the row to all the frame's contents (including the new
' control).
BuildFromRow = Super::BuildFromRow(dataRow)

End Function

In the following example, BuildFromRow() filters out data rows for
Massachusetts:

Function BuildFromRow(dataRow As AcDataRow) As AcBuildStatus
If Not dataRow Is Nothing Then

Dim myRow As DataRow
If (myRow.customers_state = "MA") Then

' Do not process the row.
BuildFromRow = ContinueBuilding
Exit Function

End If
End If
' Process the row as usual.
BuildFromRow = Super::BuildFromRow(dataRow)

End Function

See also AcReportComponent::GetRowCount method
AcReportComponent::OnRow method

AcReportComponent::DetachContent method
Most components are contained within another component. DetachContent() lets
the container component, such as a frame, drop a contained component, such as a
control. This method does not delete the component. The detached component
remains in memory, which can lead to large amounts of memory consumption.
The detached component remains in the report object instance (.roi) file but no
longer appears in the report viewer.

Syntax Sub DetachContent(content As AcReportComponent)

Parameter content
The contained component to remove.

C h a p t e r 7 , A F C c l a s s e s 745

AcReportComponent

AcReportComponent::DetachFromContainer method
A content object, such as a control, calls DetachFromContainer() to detach the
content object from its container, such as a frame. DetachFromContainer() does
not delete the component. The component remains in the persistent report object
instance (.roi) file but no longer appears in the report viewer.

Syntax Sub DetachFromContainer()

AcReportComponent::FindContainerByClass method
Returns a reference to the named container object in the structure hierarchy. Use
FindContainerByClass() to search the structure hierarchy for the container object
with the named class. The class can be a member of the AFC library or a user-
defined class. The search starts with the component initiating the search. If you
search for the class corresponding to the component initiating the search,
FindContainerByClass returns this component. To start the search on a higher
level component, use the GetContainer method to position to the right level in the
structure hierarchy.

Syntax Function FindContainerByClass(className As String) As AcReportComponent

Parameter className
The class name of the container object.

Returns A reference to the container object in the structure hierarchy with the named
class.
Nothing if the container cannot be found.

See also For information about finding a container object in the page hierarchy, see
AcVisualComponent::FindPageContainerByClass method.

AcReportComponent::FindContentByClass method
Use FindContentByClass() to search the structure hierarchy for a content
component, such as a control or a section, by class name. The class can be a
member of the AFC library or a user-defined class.

A search for the class name AcTextControl yields all the following components:

■ TextControl

■ PageHeaderFrame::TextControl

■ OfficeGroup::PageHeaderFrame::TextControl

The search starts with the component initiating the search. For example, if a frame
initiates the search, the framework looks first for controls within the frame. If the
class is not represented in the current frame, the search extends outward to nested
frames until either a matching class is found or there are no more objects to
search.

746 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

To start the search on a higher level component, use GetContents() to position to
the right level in the structure hierarchy.

Syntax Function FindContentByClass(className As String) As AcVisualComponent

Parameter className
The name of the class on which to base the search.

Returns Content components by class.

Example In the following example, FindContentByClass() finds a control within a flow
and deletes it from the first page:

' Override the flow’s Finish() method to remove the control from
the first page.

Sub Finish()
Super::Finish()
Dim iter As AcIterator
Dim content As AcReportComponent
Set iter = GetContentIterator()
Do while iter.HasMore()

Set content = iter.GetNext()
Dim control As AcControl
Set control = content.FindContentByClass("LabelControl")
If (GetPageIndex() = 1) And Not (control Is Nothing)Then

control.DetachFromContainer()
control.Abandon()

End If
Loop

End Sub

See also AcReportComponent::GetContents method

AcReportComponent::Finish method
Contains the logic for completing an object.

Derived classes can override Finish() to do additional work when the Factory
finishes processing the component. The derived version must always call the
superclass version after doing the custom work.

After Finish() has finished processing, the Persistent Object Storage Mechanism
(POSM) writes the objects to the report instance (.roi) file as needed. POSM
optimizes memory usage by swapping objects in and out of memory.

Objects that are pinned to memory are not written to disk. Objects that hold
references to transient objects must be pinned so they are not written to disk,
maintaining the reference to the transient object. When an object is finished and
ready to be written to disk, Finish() calls UnpinObject() to release the object.

C h a p t e r 7 , A F C c l a s s e s 747

AcReportComponent

UnpinObject() is an Actuate Basic function that works with POSM.
UnpinObject() releases an object that was previously pinned to memory by
PinObject().

Example See AcBaseFrame::GetControl method for an example showing how to use the
Finish() method.

Syntax Sub Finish()

See also AcBaseFrame::GetControl method
AcReportComponent::Start method

AcReportComponent::GenerateXML method
Generates XML for components that have an XMLCustom XML type. Override
this method to generate custom XML for a component. You can build the XML
attributes and elements by using the Actuate Basic Print statement to write the
custom XML to the channel directly.

Syntax Sub GenerateXML(visitor As AcXMLDataVisitor)

Parameter visitor
The visitor component.

Example In this example, the code adds a comment to the custom XML that provides the
date when the XML data was generated:

Sub GenerateXML(visitor As AcXMLDataVisitor)
Dim channel As Integer
channel = visitor.XMLFile
Print #channel, "<!- Generated on "
Print #channel, Today(); " -!>"

End Sub

AcReportComponent::GetComponentACL method
Returns the access control list (ACL) for this component. Override
GetComponentACL to modify the component’s ACL. The ACL contains the
security identifiers for users that can view pages built from the component. Most
of the time, you enter the ACL in the GrantExp property for the section.

Syntax Function GetComponentACL() As String

Returns The ACL associated with the section component.
An empty string if the component is not a section.

See also AcReportComponent::GetFullACL method

748 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

AcReportComponent::GetConnection method
Returns the connection associated with this component. The GetConnection()
method locates the connection by starting with the current component and
looking upward through the structure hierarchy to find the first available
connection. Sections can explicitly define a connection by placing the connection
in the Connection slot, or implicitly by placing the connection inside the
Connection slot of the data stream for that section. If a section does not have a
connection available through one of these two means, then the framework
continues searching with the next enclosing section until either a connection is
found or until the search reaches the root of the report.

The framework uses this method to locate the connection to use for a data stream
when you do not explicitly specify a connection. This allows you to create a
sequential report that will print five subreports about your customer database. If
you place the database connection on the topmost sequential section, then all the
nested reports share this connection by using this method to search upward
through the hierarchy to find the connection.

Syntax Function GetConnection() As AcConnection

Returns The connection associated with this component.

AcReportComponent::GetContainer method
Returns a reference to the container object for this component.

Syntax Function GetContainer() As AcReportComponent

Returns A reference to the container object for this component.
Nothing if this component does not have a container object.

See also AcVisualComponent::GetPageContainer method

AcReportComponent::GetContentCount method
Returns the number of content items in a component. For example, if the
component is a section, GetContentCount() returns the number of content
components in the section, including any in the Before or After slots. If the
component is a frame, GetContentCount returns the number of controls and
nested frames in the frame. If a component does not have contents, for example, a
control, GetContentCount() returns 0.

Syntax Function GetContentCount() As Integer

Returns An integer greater than 0 if the component has contents.
0 if the component does not have contents.

C h a p t e r 7 , A F C c l a s s e s 749

AcReportComponent

AcReportComponent::GetContentIterator method
Returns an iterator over the contents of this component. The returned value is
never Nothing. If the component cannot have contents, the default behavior is to
create an iterator over an empty list. This behavior supports creating iterators
over all components in a uniform manner.

Syntax Function GetContentIterator() As AcIterator

Returns An iterator over the contents of this component.

AcReportComponent::GetContents method
Returns a handle to the collection of contents for this component.

Syntax Function GetContents() As AcOrderedCollection

Returns A handle to the collection of contents for this component.
Nothing if this component does not support contents.

AcReportComponent::GetDataStream method
Returns the data stream that is associated with this component. The
GetDataStream() method locates the data stream by starting with the current
component and looking upward in the structure hierarchy to find the first
available data stream. The search stops when either it finds a section that has a
data stream defined or when it reaches the root of the report.

You can use this method to make multiple passes over data. For example, you can
have a report of orders for a customer in which you want to both chart the orders
and print them in detail. First, create a grouped orders-by-customer report. Then,
add a custom nested report that makes a second pass over the data to create the
chart. You must ensure that the data stream can be rewound by inserting a
memory buffer filter. Also, be sure that a nested report leaves the data stream
positioned at the same row as it was before the nested report started or the outer
report produces incorrect results.

Syntax Function GetDataStream() As AcDataStream

Returns The data stream associated with this component.

AcReportComponent::GetFirstContent method
Retrieves the first content component. GetFirstContent() looks for and returns
the first content component, such as a control or a section, of a report component
or the AcReport component. You can then perform an action on the first
component.

750 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

All report components can have contents. The type of contents depends on the
component type. A frame, for example, contains controls and other frames. A
section can contain frames and other sections. If multiple content components
exist, GetFirstContent() returns the first one.

Syntax Function GetFirstContent() As AcReportComponent

Returns The first content component.

AcReportComponent::GetFirstContentFrame method
Retrieves the first Content frame, if any, for the current component.
GetFirstContentFrame() looks for and returns the first Content frame, if any, for a
component of a report. This method returns Nothing if there is no Content frame.

If the current component is a report or group section, GetFirstContentFrame()
returns the first Content frame in that component, skipping the Before frame.

Syntax Function GetFirstContentFrame() As AcFrame

Returns The first content frame.
Nothing if there are no content frames.

AcReportComponent::GetFlow method
Returns a handle to the flow for this component.

Syntax Function GetFlow() As AcFlow

Returns A handle to the flow for this component.
Nothing if this component has no flow.

AcReportComponent::GetFullACL method
Returns the access control list (ACL) for this component combined with the other
container components in the structure hierarchy. Call this method to retrieve a
combined ACL for the component and all the other container components in the
structure hierarchy. For example, if the report contains multiple group sections
nested in a report section, the report section and each group section can have a
separate ACL. If you call GetFullACL() on the first group section, GetFullACL()
returns the union of the ACL for that group section and the report section because
the report section is a container component in the group section’s structure
hierarchy. The other group sections are not included because they are not in the
first group section’s structure hierarchy.

Syntax Function GetFullACL() As String

Returns The ACL for the component and any other container component in the structure
hierarchy. The result is a list of security IDs separated by commas.
Nothing if the component is not a section.

C h a p t e r 7 , A F C c l a s s e s 751

AcReportComponent

AcReportComponent::GetPage method
Returns the page that contains the component, then displays the page for an
object that the user selects in the table of contents. You can also use GetPage() to
get the page for a structural object, such as a section. Because a section is not
visual, GetPage() retrieves the page that shows the header for that section.

To retrieve only the number of the page that contains the component, use
GetPageIndex().

Syntax Function GetPage() As AcBaseFrame

Returns The page that contains the component.

See also AcReportComponent::GetPageIndex method

AcReportComponent::GetPageIndex method
Returns the number of the page that contains the component. GetPageIndex()
returns the page number in the report, starting with 1. To retrieve the page that
contains the component, use the GetPage() method.

Syntax Function GetPageIndex() As Integer

Returns The number of the page that contains the object.

See also AcReportComponent::GetPage method

AcReportComponent::GetPageList method
Returns the page list associated with the report that contains this component. The
framework uses this method to add a new frame to the page list. You can use this
method to get the page list if you want to start a new page or add a custom frame
to the page list.

Syntax Function GetPageList() As AcList

Returns The page list associated with the report that contains this component.

AcReportComponent::GetReport method
Returns the report that contains this component. You can use this method if you
create variables on the report that you want to access elsewhere in your
application. The procedure is:

■ Declare a variable of the type of the report.

■ Call GetReport() to get the report and assign it to the new variable.

■ Use that object reference variable to access the report variables.

Syntax Function GetReport() As AcReport

752 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

Returns The report that contains this component.

Example Dim rptAs MyReport
Set rpt = GetReport ()
BackgroundColor = rpt.NextColor

AcReportComponent::GetRowCount method
Returns the number of rows that this component has processed. For example, call
this method if you need to perform custom processing if a row is the first row.

Syntax Function GetRowCount() As Integer

Returns The number of rows this component has processed.

AcReportComponent::GetSearchTag method
Returns the value of the SearchTag property.

Syntax Function GetSearchTag() As String

Returns The value of the SearchTag property if it is set.
An empty string if the value is not set.

AcReportComponent::GetTocEntry method
Retrieves the text of the TOC entry for a component.

Syntax Function GetTocEntry() As String

AcReportComponent::GetVisiblePageIndex method
Returns the page number of the visible page that contains the object. To retrieve
the page that contains the component, use GetPage().

Syntax Function GetVisiblePageIndex() As Integer

Returns The number of the visible page that contains the object.

See also AcReportComponent::GetPage method

AcReportComponent::GetXMLText method
Returns the value for an XML attribute or element. If the component is a data
control, GetXMLText() returns the value of the GetText() method formatted for
XML. Override GetXMLText() to modify the data value for a custom XML
format. For example, you can encode numbers as strings or translate codes from
one set of values to another. If you override GetXMLText(), you must return the
XML value as a string using the standard XML quotes. Call ConvertToXML() at

C h a p t e r 7 , A F C c l a s s e s 753

AcReportComponent

the end of your code to escape characters within strings that have special
meanings in XML.

Syntax Function GetXMLText() As String

Example The following example shows one way to translate codes from one set of values
to another. A control in the report design displays transaction type as Credit or
Debit. The XML DTD defines the" transaction format as TransType="C & D" or
"E & F".

The following code translates the data values to be consistent with the DTD:

Function GetXMLText() As String
If DataValue = "Credit" Then

GetXMLText = ConvertToXML("C & D")
Else

GetXMLText = ConvertToXML("E & F")
End If

End Function

Returns The XML value in string format. The default return value is the value of GetText()
formatted for XML if the control is a data control.
If the component is not a data control, returns a blank string.

See also For information about ConvertToXML(), see Programming with Actuate Basic.

AcReportComponent::HasContents method
Determines whether the component has at least one content object.

Syntax Function HasContents() As Boolean

Returns True if the component has at least one content.
False if either the component cannot have contents or the list of contents is empty.

AcReportComponent::IsContainer method
Determines whether a component can have contents. This method is the opposite
of IsLeaf().

Syntax Function IsContainer() As Boolean

Returns True if the component can have contents.
False if the component cannot have contents.

See also AcReportComponent::IsLeaf method

AcReportComponent::IsFlow method
Determines whether the component is a flow.

754 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

Syntax Sub IsFlow() As Boolean

Returns True if the component is a flow.
False if the component is not a flow.

AcReportComponent::IsFrame method
Determines whether the component is a frame.

Syntax Sub IsFrame() As Boolean

Returns True if the component is a frame.
False if the component is not a frame.

AcReportComponent::IsLeaf method
Determines whether a component cannot contain contents. This method is the
opposite of IsContainer().

Syntax Function IsLeaf() As Boolean

Returns True if the component cannot have contents.
False if the component can have contents.

See also AcReportComponent::IsContainer method

AcReportComponent::IsPage method
Determines whether the component is a page.

Syntax Sub IsPage() As Boolean

Returns True if the component is a page.
False if the component is not a page.

AcReportComponent::IsSubpage method
Determines whether the component is a subpage.

Syntax Sub IsSubpage() As Boolean

Returns True if the component is a subpage.
False if the component is not a subpage.

AcReportComponent::IsVisual method
Determines whether the component is a visual component such as an image or a
data control.

Syntax Function IsVisual() As Boolean

C h a p t e r 7 , A F C c l a s s e s 755

AcReportComponent

Returns True if the component is a visual component.
False if the component is not a visual component.

AcReportComponent::OnRow method
Called for each new row. The Factory calls OnRow() to assign the expression
entered in the ValueExp property to the data control. Override the OnRow()
method to implement custom code to assign a value to a data control.

Controls fall into the following three categories, depending on their relationship
to a data row:

■ Need no data. Controls such as graphic images and lines require no data from
the data row. These controls are called constant controls.

■ Use data from a single row. The most common control is a data control that
displays data from a single data row.

■ Use data from multiple rows. Some controls summarize data from a set of
rows. These controls are called aggregate controls.

Table 7-86 summarizes how OnRow() is called.

Override OnRow() only when you need to take control of the process for setting
values.

Syntax Sub OnRow()

Example The following example shows how to create a distinctive look for the sales reports
of three sales offices within the same company.

The following code sets a custom variable, ContentsFrame, in OfficeGroup. When
the code is finished executing, the variable ContentsFrame contains one of three
possible frames, BostonFrame, NewYorkFrame, or PhiladelphiaFrame. The choice
of the correct frame depends on the value of the offices_officeID variable of the
current row. For instance, if offices_officeID is 1, the variable ContentsFrame
contains BostonFrame.

This code example does not instantiate a frame as content for the OfficeGroup
group section in Condtnl.rod. Instead, the code merely identifies which frame to
instantiate as content. The OfficeGroup component’s NewContent() method

Table 7-86 Calling OnRow()

If the number of rows
the control uses is… OnRow() is called…
0 Once with row = Nothing

1 Once with a single row

n n times, each time with a different row

756 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportComponent

determines the correct frame to instantiate by inspecting the ContentsFrame
variable you set in OnRow().

Sub OnRow(row As AcDataRow)
Dim currentRow As ConditionalExampleDataRow
Set currentRow = row
Select Case currentRow.offices_officeID

Case 1
Set ContentsFrame = New Persistent BostonFrame

Case 2
Set ContentsFrame = New Persistent NewYorkFrame

Case 3
Set ContentsFrame = New Persistent PhiladelphiaFrame

End Select

' Notice that the call to the superclass occurs here, at the
' end of the custom code

Super::OnRow(row)
End Sub

AcReportComponent::SetSearchTag method
Sets the value of the SearchTag property. SearchTag uniquely identifies the
component to search. To search multiple components as one group, specify the
same value for each component.

SearchTag is used in the search interface only if a value is specified and
SearchAlias is not specified.

Syntax Sub SetSearchTag(newTag As String)

AcReportComponent::SetTocEntry method
A generated method that sets the text of a TOC entry. This method uses the
TocValueExp property value to assign table of contents names.

Syntax Sub SetTocEntry()

AcReportComponent::Start method
The Start() method calls the PinObject function and prepares an object for the
build process.

Derived classes can override Start() to do additional work when the Factory
starts processing the component. The derived version must always call the
superclass version before doing the custom work.

PinObject is an Actuate Basic function that works with the Persistent Object
Storage Mechanism (POSM). POSM writes persistent objects to the report

C h a p t e r 7 , A F C c l a s s e s 757

AcReportComponent

instance (.roi) file. It also optimizes memory usage by swapping objects in and
out of memory as needed.

PinObject pins an object to memory so that it is not written to disk. Objects that
hold references to transient objects must be pinned so that they maintain their
references to the transient object.

Syntax Sub Start()

See also AcReportComponent::Finish method

758 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportSect ion

Class AcReportSection
A class that builds a report section from a data stream. Figure 7-91 shows the class
hierarchy of AcReportSection.

Figure 7-91 AcReportSection

Description AcReportSection builds a report using rows from a data stream. The report
section is a type of data section. The report section provides Before and After
slots, a Content slot, and page header and footer slots. The report section inherits
a connection slot from AcSection and adds the slot to the specified data stream.

Class protocol
Table 7-87 shows how a report section works in the Factory.

Preparing the report section
Start() prepares the report section for processing each row. Start() manages the
following tasks:

■ Instantiates and opens the connection, if any, from AcSection::Start()

AcComponent

AcReportComponent

AcSection

AcDataSection

AcReportSection

Table 7-87 Class protocol for AcReportSection

Method Task

New() Initializes the section.

Start() Prepares the report section for Factory processing.
Start() instantiates and opens the connection, if any,
and instantiates the data stream.

Build() Opens the data stream, builds the report by reading
each row from the data stream, then processes it as
described for AcDataSection.

BuildFromRow() Similar to Build(), but provides the capability to create
a nested report as described below.

Finish() Closes the data stream and connection.

C h a p t e r 7 , A F C c l a s s e s 759

AcReportSect ion

■ Obtains the data adapter by calling ObtainDataStream()

■ Sets the sort key by calling SetSortKey()

Building the report
The Build() method builds the report using the following sequence:

■ Starts the data stream by calling StartDataStream().

■ Produces the PageHeader and Before components as described in
AcDataSection.

■ Reads a row from the data stream by calling its Fetch method. If there is no
row, this method skips to the final step, producing the After and PageFooter
components.

■ If there is no current content, Build() calls NewContent() to create one.

■ Passes the row to the content’s BuildFromRow() method. If the content
accepts the row, then loops back to step 3.

■ Finishes the current content and instantiates a new one by calling
NewContent().

■ Calls the content’s BuildFromRow() method. This time, the content must
accept the row.

■ Loops back to read the next row.

■ Produces the After and PageFooter components as described in
AcDataSection.

Build() is available for all reports except parallel reports. A parallel report calls
BuildIntoFlow(), not Build().

Working with data streams and connections
The report section centers on a data stream. Many data streams need a
connection. The report section provides many options for assembling these
components. This topic explains some options for placing a connection and
controlling when the data stream is opened and closed.

Placing a connection

Typically when you create a report section, you place the connection in the
Connection slot of the data stream itself. To share the connection with nested
sections, you place the connection in the Connection slot of the report section.

If you place a connection in the Connection slot of a report section, the report
opens the connection using the Start() method of the report section. To share a
connection defined in a section that appears above the current report section in
the structure hierarchy, leave both the report section and data stream Connection

760 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportSect ion

slots empty. The framework searches to find the shared connection. As described
in AcSection, you can customize how the report obtains and opens the
connection. For more information on this task, see the
AcSection::ObtainConnection method.

Controlling the data stream

A report should contain a data adapter component in the Data Stream slot. If the
report does not have a data adapter component, the report can still output the
Before and After components but it produces no data rows.

A report’s default behavior is to instantiate and opens the data adapter that
appears in the Data Stream slot. To customize this behavior, you can override
ObtainDataStream(). Be sure the override returns an instantiated, started data
adapter. If you override ObtainDataStream(), you can also override
FinishDataStream() to prevent the report from closing the data stream if your
data stream is shared with other report sections.

Table 7-88 describes the life cycle of a data stream. You can override any of the
methods in the middle column to customize the section or data adapter.

Table 7-88 Data stream life cycle

Protocol
Method Calls... To...

Start() AcSection::
ObtainConnection()

Create or locate the connection for this
report.

AcReportSection::
ObtainDataStream()

Create or locate the data stream for this
report. By default, this method calls
NewDataStream() to instantiate the data
stream.

AcReportSection::
NewDataStream()

Instantiate the data stream. By default,
this method instantiates the data adapter
specified in the Data Stream slot in
Report Structure.

AcReportComponent::
GetConnection()

Called by ObtainDataStream(), by
default, to locate the connection to
associate with the data stream.

Build() AcReportSection::
StartDataStream()

Start the data stream, if any, returned by
ObtainDataStream().

AcDataAdapter::Fetch() Fetch each row from the data stream.

Finish() AcReportSection::
FinishDataStream()

Finish processing the data stream, if any.
By default, closes the data stream.

AcSection::
FinishConnection()

Finish processing the connection, if any.
By default, closes the connection.

C h a p t e r 7 , A F C c l a s s e s 761

AcReportSect ion

Creating nested reports
You sometimes need to create one report that nests inside another, even though
the reports require different data sources. For example, suppose you have an
Access database that lists the customers. You want to create a report that displays
a list of the open orders for each customer. The orders reside in an Oracle
database. To access data from both databases, take the following steps:

■ Create a report section to query your Access database.

■ In the Content slot of the outer report section, create another report section to
query the orders you want to retrieve and print.

The inner report section opens its data stream at the beginning of its Build()
method. To set a parameter on the inner query based on a value in the current
data row in the outer query, override the BuildFromRow() method to get the
customer ID from the outer data row, then pass this value to the query you
created in the inner report section.

Properties
Table 7-89 lists AcReportSection properties.

Table 7-89 AcReportSection properties

Property Type Description

DataStream AcDataAdapter The data stream that provides rows for this report.

Sorting AcSortingOptions Determine whether the report section puts a sort filter
in front of the data source in a particular report section.
Valid values are:
■ AutoSort. The default setting. If AutoSort is set, the

report section determines if the data source can sort
data dynamically according to AddSortKey() calls.
If the data source cannot sort dynamically, the
report section instantiates a sort filter and places
that filter in the chain of data adapters. The report
section determines whether the data source yields
data in the order expected by the group sections.

■ CompatibleSort. CompatibleSort provides
backward compatibility with the AutoSort property
of previous Actuate releases. If that AutoSort
property is set to True to indicate that the data
source can sort dynamically, Sorting is set to
CompatibleSort. CompatibleSort means that the
report section calls AddSortKey() but does not

(continues)

762 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportSect ion

Example The following examples show how to build nested reports using
BuildFromRow():

Function BuildFromRow(row As AcDataRow) As AcBuildStatus
If Not row Is Nothing Then

CustomQuery::StateParam = row.GetValue("state")
End If
BuildFromRow = Super::BuildFromRow(row)

End Function

You can use a parameter with a connection as well as a query for a nested report.
For example, you can have five department databases, each with the same
schema, but with different names. You want to run an outer query that lists the
server for each department, then an inner report that queries some data on that
server. The report section normally opens its connection in the Start() method.
For this example, you must write custom code that postpones opening the
connection until your code reaches a call to BuildFromRow(). To do so, you have
to override two methods, ObtainConnection() and BuildFromRow().

Function ObtainConnection() As AcConnection
'Instantiate, but do not open, the connection
Set ObtainConnection = NewConnection()

End Function

Function BuildFromRow(row As AcDataRow) As Boolean
Dim server As ServerRow
Dim deptConn As DepartmentConnection
'Get the data row
Set server = row
'Get the connection
Set deptConn = GetConnection()
'Parameterize and open the connection.
deptConn.ServerName = server.ServerName
Verify(deptConn.Connect())
'Let the super class method do the actual building
BuildFromRow = Super::BuildFromRow(row)

End Function

Sorting
 (continued)

AcSortingOptions
 (continued)

invoke a sort filter. If the AutoSort property is set to
False, the Sorting property is set to PreSorted.

■ PreSorted. If PreSorted is set, the data arrives from
the data source already sorted in the order that data
sections require the data. No attempt is made to tell
the data source how to sort. The report section does
not instantiate a sort filter.

Table 7-89 AcReportSection properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 763

AcReportSect ion

See also Class AcSection
AcReportComponent::GetConnection method

Methods for Class AcReportSection

Methods defined in Class AcReportSection

FinishDataStream, NewDataStream, ObtainDataStream, SetSortKey,
StartDataStream

Methods inherited from Class AcDataSection

GetAfter, GetBefore, GetFirstPageFooter, GetFirstPageHeader, GetPageFooter,
GetPageHeader, NewAfter, NewBefore, NewContent, NewPageFooter,
NewPageHeader, OnEmptyGroup

Methods inherited from Class AcSection

CommittedToFlow, DeletePageFrame, FinishConnection, FinishFlow,
FinishPage, GetComponentACL, GetCurrentRow, GetSearchValue,
NewPage, ObtainConnection, PageBreakAfter, PageBreakBefore,
SetSearchValue, SetSecurity, StartFlow, StartPage, StopAfterCurrentFrame,
StopAfterCurrentRow, StopNow, TocAddComponent, TocAddContents

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcReportSection::FinishDataStream method
The default setting for FinishDataStream() closes the data stream for this report
section by calling the data stream’s Finish() method. You can override
FinishDataStream() to keep the data stream open.

Syntax Sub FinishDataStream()

See also AcReportSection::NewDataStream method

764 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportSect ion

AcReportSection::ObtainDataStream method
AcReportSection::StartDataStream method

AcReportSection::NewDataStream method
Instantiates the component in the DataStream slot of the report section. The data
stream component is transient. If you override NewDataStream(), use the New
keyword, not New Persistent.

Syntax Function NewDataStream() As AcDataAdapter

Returns The data adapter that was instantiated.

See also AcReportSection::FinishDataStream method
AcReportSection::ObtainDataStream method
AcReportSection::StartDataStream method

AcReportSection::ObtainDataStream method
Creates or locates the data stream to use for this report. The default setting for
ObtainDataStream() instantiates the data adapter that you place in the
DataStream slot. You can override this method to use another data stream.

ObtainDataStream() does not also open the data stream. To open the data stream,
use StartDataStream().

Syntax Function ObtainDataStream() As AcDataAdapter

Example The following example shows how to query a database once and use the result set
for more than one report or subreport. To view the code used in this example in a
fuller context, open \Actuate11\eRDPro\Examples\DataAccess\ReuseQuery
\ReuseQuery.rod. The example shows how a number of related methods work
together in an Actuate report, in particular the ObtainDataStream(),
StartDataStream(), and FinishDataStream() methods.

The report design in ReuseQuery.rod has a sequential section with two
subreports, StateReport and CategoryReport. StateReport and CategoryReport
use data from the same database query. So instead of each subreport making its
own individual query, StateReport makes the query for both reports, stores the
resulting data stream in BufDStream, and uses it. Then, CategoryReport picks up
the data stream from BufDStream and reuses it.

In report component StateReport, override the Finish() method as shown in the
following example:

Sub Finish()
' At this point, we need to keep the data stream open.
' First instantiate sApp::BufDStream. BufDStream is a static
' variable of the sApp class. It is of type DataRowBuffer.
' Here, we prepare the variable to provide the datasource

C h a p t e r 7 , A F C c l a s s e s 765

AcReportSect ion

' for CategoryReport later.
Set sApp::BufDStream = DataSource
'Rewind sApp::BufDStream now, so that when CategoryReport
'uses it later, CategoryReport will start from the first row
'of the buffer
sApp::BufDStream.Rewind()
Super::Finish()

End Sub

To see BufDStream, open the Properties window on the sApp component, and
choose the Variables tab. BufDStream is what holds the data for CategoryReport.

In CategoryReport, override the ObtainDataStream, StartDataStream, and
FinishDataStream methods. The call to Super::ObtainDataStream() has been
deleted in the following code, so that the overridden methods do not inherit the
original ObtainDataStream() behavior:

Function ObtainDataStream() As AcDataAdapter
' CategoryReport will use sApp::BufDStream as its datastream.
Set ObtainDataStream = sApp::BufDStream

End Function

The call to Super::StartDataStream() has been removed in the following code so
that the method does not inherit the superclass’ StartDataStream() behavior. The
method intentionally does nothing.

Sub StartDataStream(stream As AcDataAdapter)
' We do not need to start the datastream since we are
' using sApp::BufDStream as CategoryReport's datastream.

End Sub

The following code performs cleanup tasks:

Sub FinishDataStream(stream As AcDataAdapter)
 Super::FinishDataStream(stream)

' We no longer need sApp::BufDStream, so set it
' to nothing.
Set sApp::BufDStream = Nothing

End Sub

Returns The data adapter.

See also AcReportSection::FinishDataStream method
AcReportSection::NewDataStream method
AcReportSection::StartDataStream method

AcReportSection::SetSortKey method
Sorts the data rows by the keys specified in the data adapter. For example, you
could have the data adapter sort first by customer ID, then by order number, and
finally by line number. The default setting for SetSortKey() sets the sort key to the

766 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcReportSect ion

columns you specified in the Key property for any group sections in this report.
You can override SetSortKey() to provide additional processing.

Syntax Sub SetSortKey (adapter As AcDataAdapter)

Parameters adapter
The data adapter that supplies the data rows.

AcReportSection::StartDataStream method
Opens the data stream for this report section. StartDataStream() prepares the
data stream for reading. The default behavior for this method is to call the data
stream’s Start() method to open the data stream. You can override
StartDataStream(). For example, you can instruct StartDataStream() to do
nothing if the data stream already exists and is open.

Syntax Sub StartDataStream(stream As AcDataAdapter)

Parameter stream
The data stream to use for this report section.

See also AcReportSection::FinishDataStream method
AcReportSection::NewDataStream method
AcReportSection::ObtainDataStream method

Chapter 7AFC classes

C h a p t e r 7 , A F C c l a s s e s 767

AcSection

Class AcSection
Chapter 7AFC classes The base class for all sections. Figure 7-92 shows the class hierarchy of AcSection.

Figure 7-92 AcSection

Description A section is a structural component that builds the logical structure of the report.
When you look at the report design in the layout window, or run and view the
report, you do not see the sections. The visible sign of a section in a report is the
effect it has on the organization of the visual components, such as frames and
controls. In e.Report Designer Professional, sections appear in Report Structure.

A section has high-level control of the overall design of the report. It defines the
structure of the report by determining when to open a data stream, what kind of
processing to perform based on the rows in the data stream, and how and when
to create frames. A section supports organizing data. It also supports viewing
tasks such as searching, generating XML data, and extracting data from the
report. Sections are persistent objects. They are written to the report object
instance (.roi) file.

Using page-level security
The GrantExp property of AcSection and all the sections derived from AcSection
determines which users can view a page the section produces. Using GrantExp, a
report developer can specify an access control list (ACL) that consists of one
security ID, a list of security IDs, or an expression that evaluates to one or more
security IDs. A security ID can be either a user ID or a security role. Security IDs
limit the visibility of pages to a certain user or set of users. If GrantExp is empty,
any report user can view the pages that the section produces. An example of a
GrantExp expression is

"Mgr" & [customers.State]

In this example, the roles on the Encyclopedia include managers at the state level,
such as MgrCa and MgrFl for California and Florida, respectively. Using this page
security scheme, managers can view pages showing data for their state only.

You can override the SetSecurity() method on AcSection to build a custom ACL.
The default setting for SetSecurity() returns the security IDs in the GrantExp
property. SetSecurity() provides access to the current data row to help you decide
how to build the security IDs for the section.

If a report has nested sections, the default behavior is that nested sections inherit
the ACL from their container sections. The CascadeSecurity property prevents

AcComponent

AcReportComponent

AcSection

768 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection

page security on a section from being inherited from the section’s container
sections, if any. To define an ACL for a nested section and prevent container
sections inheriting the ACL, take the following steps:

■ Set the CascadeSecurity property of the container section to False.

■ Set the GrantExp property to the security IDs for the nested section.

Understanding the types of sections
AcSection is the base class from which the Actuate framework sections are
derived. Table 7-90 summarizes the types of sections. More detailed information
about each type of section is provided in the individual class descriptions.

Class protocol
AcSection provides a specific protocol for derived classes to follow. This protocol
follows that set by AcReportComponent. The task descriptions in Table 7-91
identify the specific ways in which AcSection uses the standard protocol.

Table 7-90 Types of sections

Section type Description Example use

Report Produces a series of frames from rows
obtained from a data stream. Provides slots
to create a connection and data stream.
Contents are usually group sections,
frames, or nested report sections.

Print a list of customers from a
query against an ODBC
database.

Group Groups data on a common field, such as
customers grouped by state.

Print orders for customers in
various states.

Sequential Contains several frames, charts, subreports,
or sections that appear in a specified order.

Print two related reports, such as
a sales history and a staffing
history, one after the other.

Conditional Uses a conditional expression to determine
which of several frames, charts, subreports,
or sections to include in the report.

Print a different frame for
salaried, hourly, or commission
employees.

Parallel Contains two or more subreports that are
displayed or printed simultaneously in
different flows on the same page.

Present two related reports, such
as employee addresses and
salary histories, printed
side-by-side for easy
comparison.

Table 7-91 Class protocol for AcSection

Method Task

New() Initializes the section.

C h a p t e r 7 , A F C c l a s s e s 769

AcSection

Assigning a database connection to a section
The standard way to work with a database connection is to create the connection
directly inside a data stream. This technique works if your report has a single data
stream, or if each data stream uses a different connection, or if the data stream
needs no connection. This technique is inefficient if your report has multiple data
streams that work with the same connection and the connection is capable of
processing multiple queries. It is more efficient to open the connection once and
use it for multiple data streams. You do so by assigning the connection to a
section instead of a data stream.

To determine the section to which to attach a connection, look in Report Structure.
Find the section that is the common parent of all the data streams that need this
connection. The common parent is often the topmost section of the report. Then,
move the connection from the Connection slot of the data stream into the
Connection slot of the parent section.

The section instantiates and opens the connection in its Start() method and closes
the connection in its Finish() method. All nested sections call GetConnection() to
search for this connection up the structure hierarchy. The connection is valid as
long as its section is active.

Some reports use more than one type of connection. For example, in creating a
sales report, you can find that most queries work for an Oracle sales database
while one query requires an Access database. To use both databases, you can
connect to the Oracle database in the topmost section, then, in the query that
works with the Access database, create an ODBC connection specifically for that
query. The local connection takes precedence over any connection defined higher
in the structure hierarchy.

To keep two connections open, you must write custom code to maintain the
second connection. In the preceding example, you can define a static variable to
hold the connection, override the Start() method of your topmost section to open
the additional ODBC connection, and override the Finish() method to close it. In
the section where you need the second connection, override ObtainConnection()

Start() Prepares the section for Factory processing.

Build()
or

Builds the contents of the section. Called for the
topmost section in a report and when no data row is
available.

BuildFromRow() Builds the contents of the section when a data row is
available. Called for sections nested inside a report or
group section.

Finish() Finishes Factory processing.

Table 7-91 Class protocol for AcSection

Method Task

770 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection

to return this second connection from the static variable you defined earlier, and
override FinishConnection() to do nothing so that the nested section does not
close this shared connection.

Interrupting a section
A section typically runs until it processes all the available data rows or section
contents. In some circumstances, you want to stop processing early. For example,
you can stop output after the first page or after a certain number of rows. The
section class gives you three methods to stop processing. They differ in the
amount of cleanup they perform, as follows:

■ StopAfterCurrentRow() processes the current data row to completion before
stopping. The section outputs the frame or frames, if any, for the row and
outputs totals and other aggregates, depending on the kind of frame. You use
this method to stop processing a section after a specific row or a specific
number of rows. The resulting report looks as if the input data stream
contained only rows up to the current row. All subsequent rows are silently
ignored.

■ StopAfterCurrentFrame() finishes the current frame by placing it on a page
and produces no further output. The section does not display any totals. Note
that finishing the frame can entail creating a new page to contain the frame.

■ StopNow() stops the section. This method discards partially completed
frames or partially processed data rows. Use this method to stop output at the
end of a page. Do not create aggregates if you use this method because the
aggregates will be incorrect.

Variables
Table 7-92 lists AcSection variables.

Properties
Table 7-93 lists AcSection properties.

Table 7-92 AcSection variables

Variable Type Description

ContentList AcList The list of content component instances
created for this section

SearchValue String The expression in the SearchValueExp
property

C h a p t e r 7 , A F C c l a s s e s 771

AcSection

Methods for Class AcSection

Methods defined in Class AcSection

CommittedToFlow, DeletePageFrame, FinishConnection, FinishFlow,
FinishPage, GetCurrentRow, GetSearchValue, NewPage, ObtainConnection,
PageBreakAfter, PageBreakBefore, SetSearchValue, SetSecurity, StartFlow,
StartPage, StopAfterCurrentFrame, StopAfterCurrentRow, StopNow,
TocAddComponent, TocAddContents

Table 7-93 AcSection properties

Property Type Description

Cascade
Security

Boolean Determines whether the subsection inherits the ACL(s)
from its containers. Default is True. To enable or disable
cascading page security, set the CascadeSecurity
property of the container section.
You can also disable cascading page security by
overriding the AcReportComponent::GetFullACL
method.

Connection AcConnection
Structure
Reference

The connection, if any, to instantiate for this section.

GrantExp Expression The ACL for the section. The ACL can contain one or
more security identifiers or an expression that evaluates
to one or more security identifiers. If it contains multiple
security identifiers, each security identifier must be
separated by a comma. Spaces before or after a security
identifier are ignored. The default for GrantExp is blank.
Blank indicates that the section does not have any
unique security restrictions. The section still inherits
security restrictions, if any, from its containers in the
structure hierarchy.

PageBreakAfter Boolean
Function

True if the following section or frame should start at the
top of a new page.

PageBreakBefore Boolean
Function

True if the Factory should start a new page before
starting this section. That is, True if this section should
appear at the top of a new page.

SearchValueExp Expression The value to use to retrieve data. SearchValueExp can be
a single data row or an aggregate expression.

Subpage AcSubpage The optional subpage to use with the parallel report. If
there is no subpage, the report assumes that the flows
are available on the page itself.

772 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, BuildTocInfo, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcSection::CommittedToFlow method
The page list calls CommittedToFlow() for each registered section when the page
list determines that the section is committed to the flow. The section is committed
if the flow contains at least one content frame that is not a page decoration from
the section or one of the section’s content components, and there is no longer the
possibility that the decoration can be removed and restarted on another flow.

Note that there is at least one call to StartFlow() before a call to
CommittedToFlow() but there can be two calls, the first of which represents a
failed attempt to start the section on an existing flow.

Syntax Sub CommittedToFlow(flow As AcFlow)

Parameter flow
The flow to which the section is committed.

AcSection::DeletePageFrame method
Deletes a frame in the section.

Syntax Sub DeletePageFrame(frame As AcFrame)

Parameter frame
The frame to delete.

AcSection::FinishConnection method
Closes the connection if the section has a connection. You override this method to
do nothing if you override ObtainConnection() to return a shared connection. If
the connection is shared, you can leave it connected so that a later section can
continue to use it.

Syntax Sub FinishConnection(connection As AcConnection)

C h a p t e r 7 , A F C c l a s s e s 773

AcSection

Parameter connection
The connection to close.

See also AcSection::ObtainConnection method

AcSection::FinishFlow method
Called at the end of each flow. The page list calls FinishFlow() for each active
section at the end of each flow. There is one call to FinishFlow() for each call to
StartFlow(). This is the place to add page footers.

Syntax Sub FinishFlow()

See also AcSection::FinishPage method
AcSection::StartFlow method
AcSection::StartPage method

AcSection::FinishPage method
Tells a section that a new page is finishing and provides an opportunity to insert
custom code. If you override FinishPage(), call the superclass version first.

In derived classes, the page list calls each component’s FinishPage() method to
check if the components add information to a page before the page finishes.

Syntax Sub FinishPage(page As AcBasePage)

Parameter page
A reference to the page that is ending.

See also AcSection::FinishFlow method
AcSection::StartFlow method
AcSection::StartPage method

AcSection::GetCurrentRow method
Returns the data row that the section is currently processing.

Syntax Function GetCurrentRow() As AcDataRow

Returns A reference to the current data row.

AcSection::GetSearchValue method
Gets the expression in the SearchValueExp property of the section.

Syntax Function GetSearchValue() As String

Returns The expression as a string.

774 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection

AcSection::NewPage method
Determines which page type to use in this section. Page types include Letter,
Legal, A4, A5, B4, B5, and custom types. The page you instantiate using this
method takes precedence over the default page that the page list supplies.

Syntax Function NewPage() As AcPage

Returns An AcPage component that you subclass to choose the page type that conforms to
your data set.

AcSection::ObtainConnection method
Creates a connection for this section. By default ObtainConnection() instantiates
and opens the connection, if any, in the Connection slot of this section. You can
override this method to return a shared connection.

Syntax Function ObtainConnection() As AcConnection

Returns The connection obtained for this section.

AcSection::PageBreakAfter method
Returns the value of the PageBreakAfter property. You can override this method
to take control of the return value.

Syntax Function PageBreakAfter() As Boolean

Returns The value of the PageBreakAfter property.

See also AcSection::PageBreakBefore method

AcSection::PageBreakBefore method
Returns the value of the PageBreakBefore property. You can override this method
to take control of the return value.

Syntax Function PageBreakBefore() As Boolean

Returns The value of the PageBreakBefore property.

Example This example shows how to conditionally set a page break. To view the code used
in this example in a fuller context, perform the following steps:

1 Open Actuate11\eRDPro\Examples\DesignAndLayout\Detail\Detail.rod.

2 Choose View➛Libraries.

3 On Libraries, double-click PageBreakFrame.

4 On PageBreakFrame—Properties, choose Methods.

5 Scroll to find and inspect the frame’s overridden PageBreakBefore method.

C h a p t e r 7 , A F C c l a s s e s 775

AcSection

The OfficeTitleFrame, SalesRepTitleFrame, CustomerTitleFrame, and
OrderTitleFrame in the report design are all subclassed from this single
PageBreakFrame component.

Suppose that there are many sales reps for any given office, and that in your sales
report you want a page break before each new sales rep except the first. You want
the first rep’s information to appear on the same page as the office information.

The Detail report design uses the same logic to display information for each
office, for sales reps, for customers, and for orders.

The sample report design performs the same kind of processing in four different
contexts. For efficiency, it creates a new class that has the desired behavior, then
subclasses it as needed. The code can be maintained in one place.

In this example, put the logic into a frame. The new class is called
PageBreakFrame, and it is defined in the Sales.rol library.

The PageBreakBefore() method returns the value of the PageBreakBefore
property. That means you can put conditional logic into the PageBreakBefore()
method, and return True or False depending on whether or not this is the first
frame instance for the current group. The following example shows how to make
your report ignore the property setting and use only the programmed setting.

The call to Super::PageBreakBefore() is commented out.

Function PageBreakBefore() As Boolean
'PageBreakBefore = Super::PageBreakBefore()
Dim myparent As AcDataSection

PageBreakBefore = True

'Inspect the parent of the containing group.
'First assign an object reference.
Set myparent = GetContainer().GetContainer()

'If it is the first row, do not perform a page break.
If myparent.RowCount = 1 Then

PageBreakBefore = False
End If

End Function

The expression GetContainer(). GetContainer() returns the container two levels
up in the structure hierarchy.

When an instance of the frame OrderTitleFrame (subclassed from
PageBreakFrame) evaluates this expression, the result is a handle to a
CustomerGroup instance. When an instance of the frame SalesRepTitleFrame
evaluates the same expression, the result is a handle to an OfficeGroup instance.

For example, in CustomerGroup, the variable RowCount tells how many orders
that CustomerGroup instance has seen. The function of a CustomerGroup
instance is to process all the orders for a single customer. If RowCount is 1, this is

776 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection

the first order. You do not want to set a page break before the first order. The same
logic works for each of the four title frames you subclass from PageBreakFrame.

See also AcSection::PageBreakAfter method

AcSection::SetSearchValue method
Sets the value of the SearchValueExp property, using a data row as an argument.

Syntax Sub SetSearchValue(row As AcDataRow)

Parameter row
The data row on which to base the value of the SearchValueExp property.

AcSection::SetSecurity method
Generates the ACL from the GrantExp property for the section. Override
SetSecurity() to generate a custom list of security identifiers. Set the ACL variable
in SetSecurity() to a list of security IDs separated by commas. If no security
restrictions exist, set the ACL variable to blank. The current data row is provided
as input for generating the security identifiers.

Syntax Sub SetSecurity(row As AcDataRow)

Parameter row
The current data row for use in generating the ACL.

Example In the following example, the account type of the data row is used to determine if
users having the role called MajorAccts, PrivateBanking, or Accounting can view
the pages resulting from the section’s content:

Sub SetSecurity(row As AcDataRow)
Dim myRow As MyDataRow
Set myRow = row

If myRow.AccountType = "Commercial" Then
ACL = "MajorAccts"

ElseIf myRow.AccountType = "Private" Then
ACL = "PrivateBanking"

Else
ACL = "Accounting"

End If
End Sub

AcSection::StartFlow method
Called at the beginning of each flow. The page list calls StartFlow() for each
registered section at the top of each new flow. There are one or more calls to
StartFlow() for each call to StartPage(). Override this method to add page
headers and reserve space for page footers.

C h a p t e r 7 , A F C c l a s s e s 777

AcSection

StartFlow() returns True if the section was successfully started on the flow, False
if there was not enough room in the flow to contain the header, footer, or subpage
for the section. In this case, the page list ends the current flow, starts a new flow,
and calls this method again for the new flow.

Syntax Sub StartFlow(flow As AcFlow) As Boolean

Parameter flow
The flow that is starting.

See also AcSection::FinishFlow method
AcSection::FinishPage method
AcSection::StartPage method

AcSection::StartPage method
Called at the start of each new page.

Syntax Sub StartPage(page As AcBasePage)

Parameter page
A reference to the page that is starting.

See also AcSection::FinishFlow method
AcSection::FinishPage method
AcSection::StartFlow method

AcSection::StopAfterCurrentFrame method
Stops processing after the current frame is added to a page.
StopAfterCurrentFrame() finishes the current frame by placing it on a page but
then produces no more output. The section does not display totals. Finishing the
frame can entail creating a new page to contain the frame.

Syntax Sub StopAfterCurrentFrame()

See also AcSection::StopAfterCurrentRow method
AcSection::StopNow method

AcSection::StopAfterCurrentRow method
Stops processing after the current row is complete. The section processes the
current data row before stopping. The section outputs the frame or frames, if any,
for the row and totals, and so on, depending on the kind of frame. Call this
method to stop processing a section after a given row or a given number of rows.

Syntax Sub StopAfterCurrentRow()

See also AcSection::StopAfterCurrentFrame method
AcSection::StopNow method

778 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSection

AcSection::StopNow method
Stops the section from processing a data row. This method discards any partially
completed frames or partially processed data rows. Use StopNow() when you
want to stop output at the end of a page. Do not create aggregates if you use this
method because the aggregates will be incorrect.

Syntax Sub StopNow()

See also AcSection::StopAfterCurrentFrame method
AcSection::StopAfterCurrentRow method

AcSection::TocAddComponent method
TocAddComponent() adds the section to the table of contents.

Syntax Function TocAddComponent() As AcTOCNodeType

AcSection::TocAddContents method
If True, TocAddContents() adds the contents of a section to the table of contents.

Syntax Function TocAddContents() As Boolean

C h a p t e r 7 , A F C c l a s s e s 779

AcSequentialSect ion

Class AcSequentialSection
A class that generates multiple, sequential components. Figure 7-93 shows the
class hierarchy for AcSequentialSection.

Figure 7-93 AcSequentialSection

Description Use AcSequentialSection to produce multiple reports within a single report
object. The reports appear one after the other. For example, you can create a
report that lists customer orders, followed by a report that shows overdue
accounts. You can also produce multiple components for a single data row, such
as a frame that displays customer information followed by a nested report that
lists the customer’s current orders.

The sequential section is a converter. It converts a slot that takes a single
component, such as the Content slot of the top-level AcReport, into a slot that
takes multiple components. The contents of a sequential section can be any kind
of report component, including frames or other sections. The sequential section
generates its contents in the order in which they appear in Report Structure.

You can write custom code that selects which components to generate and which
components to skip by overriding the SelectContent() method.

Building a sequential section
The component that contains the sequential section calls Build() or
BuildFromRow() for the sequential section. The container calls the Build()
method if the container has no data row available, and calls BuildFromRow() if a
data row is available. Within the sequential section, these two methods perform
identical processing, except that Build() in turn calls the Build() method on its
contents, and BuildFromRow() calls BuildFromRow() on its contents.

Constructing sections without input from data rows
Build() generates the contents of the sequential section in the order in which they
appear in Report Structure. Because Build() takes no data rows, Build() calls the
Build() method on each of the contents it builds. The following is the process that
Build() uses to build the contents for the sequential section:

■ Calls SelectContent() to determine whether to generate the first component

AcComponent

AcReportComponent

AcSection

AcSequentialSection

780 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSequent ialSect ion

■ Calls NewContent() to instantiate the component

■ Calls the component’s Start() method

■ Calls the component’s Build() method

■ Calls the component’s Finish() method

■ Adds the component to the output page if necessary

■ Loops back to process the next component

You typically do not override the Build() method. Instead, override
SelectContent() or NewContent() on your subclass of AcSequentialSection, or
override the Start(), Build(), or Finish() methods of the contained components.

Constructing sections with input from data rows
The processing for BuildFromRow() is identical to that for Build() except that
this method calls the content’s BuildFromRow() method instead of Build(). It
calls BuildFromRow() on the contents twice, once with the row passed to
BuildFromRow(), and a second time with a null data row to inform the content
that no additional rows are available. Each sequential section can process only
one data row. As a result, BuildFromRow() accepts the first row it receives,
returning True. It rejects the second row, returning False.

You typically do not override BuildFromRow(). Instead, override NewContent()
or SelectContent() on the subclass of AcSequentialSection. Alternatively, you can
override the Start(), Build(), or Finish() methods of the contents.

Property
Table 7-94 describes the AcSequentialSection property.

See also Class AcSection

Methods for Class AcSequentialSection

Methods defined in Class AcSequentialSection

NewContent, SelectContent, StopAfterCurrentSection

Table 7-94 AcSequentialSection property

Property Type Description

Content AcReportComponent Lists the sequential components to produce

C h a p t e r 7 , A F C c l a s s e s 781

AcSequentialSect ion

Methods inherited from Class AcSection

CommittedToFlow, DeletePageFrame, FinishConnection, FinishFlow,
FinishPage, GetComponentACL, GetCurrentRow, GetSearchValue,
NewPage, ObtainConnection, PageBreakAfter, PageBreakBefore,
SetSearchValue, SetSecurity, StartFlow, StartPage, StopAfterCurrentFrame,
StopAfterCurrentRow, StopNow, TocAddComponent, TocAddContents

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, BuildTocInfo, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcSequentialSection::NewContent method
Instantiates one of the list of content components for the current section. The
sequential section identifies its contents in order from 1 to the number of
contents. The index passed to NewContent() corresponds to the position of the
content component in the content list in Report Structure. The default behavior
for NewContent() is to instantiate the component at the position given by index.

You can override NewContent() to decide which component to instantiate for a
given index position. Note that overriding this method takes control of the
component to instantiate for each index location. Any contents you specify in
Report Structure are ignored. To change the set of components that the sequential
section generates, you must change your code in this method. To indicate that
there are no further contents in the sequential section, NewContent() returns
Nothing. You therefore cannot instantiate components for indexes 1 and 2, none
for 3, and instantiate a component for index 4. The sequential section never calls
this method with index 4 if index 3 returns Nothing.

You do not need to completely replace the default behavior. You can, for example,
control which component to instantiate for index 1 and call the superclass method
to handle all other components.

Syntax Function NewContent(index As Integer) As AcReportComponent

Parameter index
The number of the content component in the content list.

782 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSequent ialSect ion

Returns The component instance.
Nothing if the index is one greater than the number of contents in the section.

AcSequentialSection::SelectContent method
Supports conditionally selecting the contents of the sequential section to generate.
The index passed to SelectContent() has the same meaning and value as the
index passed to NewContent(). The sequential section calls SelectContent() to
determine whether the section must call NewContent() to instantiate the indexed
component. SelectContent() returns True to instantiate the component, False to
skip the component. If False, the sequential section increments the index and calls
SelectContent() again. As a result, if you override SelectContent(), you must
ensure that it returns True for at least one index value for which NewContent()
returns Nothing. Otherwise, the sequential section is locked in an infinite loop.

As an alternative to using SelectContent() to decide whether to produce a specific
content, you can insert a conditional section between the sequential section and
the component to conditionally select.

Syntax Function SelectContent(index As Integer, row As AcDataRow) As Boolean

Parameters index
The index of the sequential section.

row
If the sequential section is built using BuildFromRow(), the row parameter gives
you access to the data row provided by the container. If the section is built using
Build(), the row variable is Nothing.

Returns True if the section can include the specified component in the report.
False if the section cannot include the specified component in the report.

AcSequentialSection::StopAfterCurrentSection
method
Stops processing the sequential section after the current frame.

Syntax Sub StopAfterCurrentSection()

Example To stop after the current frame, you must tell the nested section, if there is one, to
terminate, as shown in the following example:

Sub StopAfterCurrentFrame()
AcSection::StopAfterCurrentFrame()
If Not CurrentContent Is Nothing Then

CurrentContent.Terminate()
End If
StopAfterCurrentSection()

End Sub

C h a p t e r 7 , A F C c l a s s e s 783

AcSimplePageList

Class AcSimplePageList
Builds a page list that has pages of a single style. Figure 7-94 shows the class
hierarchy for AcSimplePageList.

Figure 7-94 AcSimplePageList

Description Provides a report style in which all pages have the same layout.

Property
Table 7-95 describes the AcSimplePageList property.

Methods for Class AcSimplePageList

Methods inherited from Class AcPageList

AddFrame, EjectPage, Finish, GetContentIterator, GetContents, GetCurrentFlow,
GetCurrentPage, GetCurrentPageACL, GetEstimatedPageCount,
GetFirstPage, GetLastPage, GetPage, GetPageCount, GetPageList,
GetReport, HasPageSecurity, NeedCheckpoint, NeedHeight, NewPage, Start,
UseAcceleratedCheckpoints

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcComponent

AcPageList

AcSimplePageList

Table 7-95 AcSimplePageList property

Property Type Description

PageStyle AcPage Specifies the single page style to use when
creating the report

784 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSingleInputFi l ter

Class AcSingleInputFilter
A data filter that accepts input from one data adapter, processes the data, then
passes it to the next data adapter or the report. Figure 7-95 shows the class
hierarchy for AcSingleInputFilter.

Figure 7-95 AcSingleInputFilter

Description AcSingleInputFilter is a data filter that accepts one data adapter as its input and
filters each data row. You can create a derived class to define the filtering.

You can create filters to:

■ Select certain rows and reject others. This type of filter is a selection filter.

■ Convert a row from one format to another. This type of filter is a projection
filter.

■ Split large input rows into smaller rows needed by your report. For example, if
an input row gives twelve months of financial data for each data row but your
report needs the data organized as one month for each row, you can create a
filter to split up the row.

■ Combine data rows into a larger aggregate row. For example, you can combine
data rows that contain one month of financial data for each row into a large
row that contains twelve months of data.

■ Add to fields in a data row by doing a lookup on an in-memory or disk-based
table. This type of filter is a lookup filter. For example, you can do an in-
memory lookup of a transaction code on each row to find its description, then
copy the description into the data row.

■ Sort rows. This type of filter is a sort filter.

There are many uses of a single input filter. If a report needs to combine several of
the above transformations into a single data stream, report is easier to build,
maintain, and understand if you create a separate filter for each transformation,
then chain these transformations together to form the data stream.

If the data source is an SQL query, you can increase the performance of the report
by doing as much filtering as possible in the SQL query. Note that data filters are
optional, and that a data stream can have multiple data filters, as shown in
Figure 7-96.

AcComponent

AcDataAdapter

AcDataFilter

AcSingleInputFilter

C h a p t e r 7 , A F C c l a s s e s 785

AcSingleInputFil ter

Figure 7-96 A data stream with multiple data filters

Using the input adapter
A data filter reads data from another data adapter called the input adapter. You
can specify the input adapter in one of two ways. You can place the input adapter
in the Input slot of the data filter in Report Structure. Alternatively, you can call
SetInput() from code.

If you place the input adapter in the Input slot, the single input filter instantiates
the input adapter. The filter provides the input adapter with a connection, starts
the input adapter when the filter starts, and finishes the input adapter when the
filter finishes.

If you set the input adapter with a call to SetInput(), you can pass either an open
or unopened data adapter. If you pass an opened data adapter, the single input
filter assumes that the report will close this adapter, so the single input filter does
not close the input adapter for you. If you pass an unopened input adapter, the
single input filter takes responsibility for starting the input adapter when the
filter starts and for finishing the input adapter when the filter finishes. If you call
SetInput(), do so before calling the Start() method for the filter.

Regardless of how you specify the input adapter, use the GetInput() method to
access the input adapter.

If you specify an input adapter in Report Structure and also call SetInput() in
your code, the input adapter passed to SetInput() takes precedence.

Creating a filter
To define a filter, override the Fetch() method of the data adapter. For more
information on using this method, see the AcDataAdapter::Fetch method.

Data source

Data row 1

Data filter

Data row 2

Data stream

Input source

Data

Report section

786 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSingleInputFi l ter

Variable
Table 7-96 describes the AcSingleInputFilter variable.

See also Class AcDataAdapter
Class AcDataSource
Class AcMultipleInputFilter

Methods for Class AcSingleInputFilter

Methods defined in Class AcSingleInputFilter

GetInput, NewInputAdapter, SetInput

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcSingleInputFilter::GetInput method
Returns the input adapter associated with this data filter.

Syntax Sub GetInput() As AcDataAdapter

Returns The input adapter for this data filter.

AcSingleInputFilter::NewInputAdapter method
Instantiates the input adapter. The NewInputAdapter() method instantiates the
data adapter class, if any, that you dropped into the Input slot of the single input
filter in Report Structure. You can override this method to programmatically
decide which adapter to instantiate.

Syntax Function NewInputAdapter() As AcDataAdapter

Returns The new data adapter, if any.

Table 7-96 AcSingleInputFilter variable

Variable Type Description

InputAdapter AcDataAdapter Refers to the data adapter that
supplies input to this data filter

C h a p t e r 7 , A F C c l a s s e s 787

AcSingleInputFil ter

AcSingleInputFilter::SetInput method
Sets the input adapter for this data filter. The adapter specified here takes
precedence over the adapter in the Input slot in Report Structure.

Syntax Sub SetInput(adapter As AcDataAdapter)

Parameters adapter
The data adapter that supplies data rows to this filter.

788 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSingleList

Class AcSingleList
Implements a singly-linked list. Figure 7-97 shows the class hierarchy for
AcSingleList.

Figure 7-97 AcSingleList

Description AcSingleList, which derives from AcList, implements a singly-linked list. Use
AcSingleList to process ordered lists, stacks, and queues. To randomly access
collections of objects, use the AcObjectArray class. You should declare variables
as AcList, then set them to AcSingleList to carry out the implementation of the
singly-linked list methods.

You must subclass AcSingleList to look up items in a list by value. Override the
inherited Compare() method to specify how to locate the objects by value. For an
example of how to subclass AcSingleList, see AcList.

See also Class AcList

Methods for Class AcSingleList

Methods inherited from Class AcOrderedCollection

AddToHead, AddToTail, Copy, GetAt, GetHead, GetIndex, GetTail, InsertAfter,
InsertAt, InsertBefore, RemoveHead, RemoveTail, SetAt

Methods inherited from Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
Remove, RemoveAll

AcCollection

AcOrderedCollection

AcList

AcSingleList

C h a p t e r 7 , A F C c l a s s e s 789

AcSqlQuerySource

Class AcSqlQuerySource
A class that retrieves data from an SQL SELECT statement. Figure 7-98 shows the
class hierarchy for AcSqlQuerySource.

Figure 7-98 AcSqlQuerySource

Description AcSqlQuerySource is the base class for query data sources that you build in the
query editor.

AcSqlQuerySource returns True from a call to CanSortDynamically() to indicate
that custom sorting is supported. The AcDataAdapter class defines
CanSortDynamically(). If your custom subclass cannot support custom sorting,
override CanSortDynamically() to return False.

You can create a query data source programmatically. You must either set the
variables that hold the fragments of the SELECT statement or override
ObtainSelectStatement() to return the complete statement. You must also
override BindStaticParameters() to bind static parameters and BindDataRow() to
bind the data row to the cursor.

Variables
Table 7-97 lists AcSqlQuerySource variables.

AcSqlQuerySource

AcQuerySource

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

Table 7-97 AcSqlQuerySource variables

Variable Type Description

FromClause String The FROM clause

GroupByClause String The GROUP BY clause

HavingClause String The HAVING clause

OrderByClause String The ORDER BY clause

SelectClause String The SELECT clause

WhereClause String The WHERE clause

790 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSqlQuerySource

Property
Table 7-98 describes the AcSqlQuerySource property

See also Class AcDataAdapter
Class AcDatabaseSource
Class AcDataRow
Class AcDataSource
Class AcDBConnection

Methods inherited from Class AcQuerySource

GetStatementText, ObtainSelectStatement, SetupAdHocParameters

Methods inherited from Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
GetPreparedStatement, OpenCursor, SetStatementProperty

Methods inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Table 7-98 AcSqlQuerySource property

Property Type Description

Query Pointer An internal representation of the query that this
query source class uses. The report developer uses
Query Editor to assemble the query.

C h a p t e r 7 , A F C c l a s s e s 791

AcStat icIndex

Class AcStaticIndex
Implements a multi-layer n-way tree. Figure 7-99 shows the class hierarchy for
AcStaticIndex.

Figure 7-99 AcStaticIndex

Description AcStaticIndex provides fast indexing into a large collection of data. The primary
use for AcStaticIndex is to index the list of pages for a report. The index is static
because the number of contents must be known when you build the index and
because you cannot insert objects into or remove objects from the index. You can,
however, replace the object at a given index using the inherited SetAt() method.

In a static index, each node has a fixed number of child nodes. The default
number is 100. You can change the default value. To ensure adequate
performance, keep the node size reasonable.

You can create a static index by copying an existing collection into the index or
building a new index. When you start from an existing collection, the index takes
its size from the collection. When you build a new static index, you must specify
the size.

See also Class AcCollection
Class AcOrderedCollection

Methods for Class AcStaticIndex

Methods defined in Class AcStaticIndex

AddLevel, New

Methods inherited from Class AcOrderedCollection

AddToHead, AddToTail, Copy, GetAt, GetHead, GetIndex, GetTail, InsertAfter,
InsertAt, InsertBefore, RemoveHead, RemoveTail, SetAt

Methods inherited from Class AcCollection

Compare, Contains, Copy, FindByValue, GetCount, IsEmpty, NewIterator,
Remove, RemoveAll

AcCollection

AcOrderedCollection

AcStaticIndex

792 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcStat icIndex

AcStaticIndex::AddLevel method
Called if necessary when building a static index of a particular size.

Syntax Sub AddLevel()

AcStaticIndex::New method
Creates a new static index, setting the default size for each child node in the tree.

Syntax Sub New(theNodeSize As Integer)

Parameter theNodeSize
The default size for each child node in the tree.

C h a p t e r 7 , A F C c l a s s e s 793

AcStoredProcedureSource

Class AcStoredProcedureSource
Retrieves data from a stored procedure. Figure 7-100 shows the class hierarchy for
AcStoredProcedureSource.

Figure 7-100 AcStoredProcedureSource

Description AcStoredProcedureSource is the base class for creating stored procedure data
sources. You can access a result set returned from stored procedures on Oracle10g
and higher clients using AcStoredProcedureSource. For information about using
Actuate Basic to access complex result sets or execute stored procedures in other
database environments, see Accessing Data using e.Report Designer Professional.

AcStoredProcedureSource contains the framework for executing a stored
procedure including:

■ Creating and managing parameters

■ Creating and managing row variables

■ Executing the stored procedure

About result sets
AcStoredProcedureSource supports procedures that return one result set. If your
stored procedure returns multiple result sets and you need to process a result set
other than the first one, you must override the OpenCursor() method to select a
result set to be returned by name.

About parameters
AcStoredProcedureSource handles input, output and input-output stored
procedure parameters. Stored procedure input parameters are similar to static
parameters in the WHERE clause of a query.

If a stored procedure parameter has output parameters,
AcStoredProcedureSource creates separate variables for these parameters. These
parameter output variables are cleared when the data source is initialized and
started to allow repeated execution of the stored procedure.
AcStoredProcedureSource sets the variables as soon as the data is available from

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

AcStoredProcedureSource

794 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcStoredProcedureSource

the stored procedure. From the standpoint of Actuate Basic, the data is available
after the Finish() method on AcStoredProcedureSource completes.

The DefineInputParameter(), DefineOutputParameter(),
DefineProcedureReturnParameter(), GetOutputCount(), and
GetOutputParameter() methods help you define parameters and set and retrieve
their values. These methods are only available if you are using a stored procedure
data source. The methods are defined on AcDBCursor and AcDBStatement
classes to support maximum programming flexibility.

About row variable creation
The AFC framework creates and names variables in the AcDataRow class for a
stored procedure in a manner that is similar to the way that the variables are
created when you use the AcSqlQuerySource class. When columns in the result
set have no name, the framework creates variables in the AcDataRow class and
names them sequentially starting with column1.

Variables
Table 7-99 lists AcStoredProcedureSource variables.

Property
Table 7-100 describes the AcStoredProcedureSource property.

Table 7-99 AcStoredProcedureSource variables

Variable Type Description

CursorParameter String Specifies the name of the cursor for the
result set to process. This name is only
valid for Oracle stored procedures that use
named cursors.

OwnerName String A database user name.

ProcedureName String Name of the stored procedure.

ProcedureStatus Variant Contains the return value or status for the
stored procedure. Its value is available
after the stored procedure source
component’s Finish() method is complete.

QualificationOption String Specifies how the stored procedure call is
to be qualified at report generation time.

QualifierName String A database qualifier for the stored
procedure.

C h a p t e r 7 , A F C c l a s s e s 795

AcStoredProcedureSource

After you select a stored procedure using the stored procedure browser,
AcStoredProcedureSource retrieves the definition of the stored procedure from
the database and stores the definition in StoredProcedureDef. This property is a
complex structure that you can edit only by using the Stored Procedure Builder.
AcStoredProcedureSource retrieves the following information from the database
when a connection and stored procedure are specified:

■ Procedure name. The name of the procedure.

■ Owner name. A user name for the database within which the stored procedure
is scoped.

■ Qualifier name. A qualifier for the database within which the procedure is
scoped. For Oracle10g stored procedures, the qualifier is the name of the
database schema.

■ Qualification option. Specifies how to qualify the stored procedure call at run
time. The following three options are available:

■ Procedure name only

■ Owner.procedurename

■ Qualifiename.ownername.procedurename

■ Return type information. The return type of the stored procedure’s return
value. Some stored procedures do not use a return value.

■ Column information. Contains the following column information:

■ Column name. The name of an output column. This name is used to create
a name for a variable in the row class.

■ Column type. Information about the data type of the column.

■ Parameter information. Contains the following parameter information:

■ Parameter name. The name of a parameter in the stored procedure. This
name is used to create a name for a parameter variable on the stored
procedure class.

■ Parameter type. Information about the data type of the parameter.

■ Column kind. Parameters can be used for input, output, or both.

AcStoredProcedureSource uses column and parameter information to specify
report data rows.

Table 7-100 AcStoredProcedureSource property

Property Type Description

StoredProcedureDef N/A An internal representation of the stored
procedure. You can edit this property only
by using the Stored Procedure Builder.

796 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcStoredProcedureSource

See also Class AcDataAdapter
Class AcDatabaseSource
Class AcDataRow
Class AcDataSource
Class AcDBConnection
Class AcSqlQuerySource

Methods for Class AcStoredProcedureSource

Method defined in Class AcStoredProcedureSource

GetOutputParameters

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
GetPreparedStatement, OpenCursor, SetStatementProperty

AcStoredProcedureSource::GetOutputParameters
Gets the output parameters for the stored procedure. Does nothing if there are no
output parameters.

Syntax Sub GetOutputParameters(cursor as AcDBCursor)

Parameter cursor
The cursor associated with the stored procedure’s output parameters.

C h a p t e r 7 , A F C c l a s s e s 797

AcSubPage

Class AcSubPage
A subpage fits inside a flow. Figure 7-101 shows the class hierarchy for
AcSubPage.

Figure 7-101 AcSubPage

Description AcSubpage supports a report developer using more than one set of flows within a
page. Use a subpage to switch dynamically from one column to two columns on
the same page. For example, consider a report that lists orders and the items on
the order. You need the order information to fill the full width of the page. If the
item information is short enough to list in two columns, you can add a subpage to
the design and create two flows within the subpage. e.Report Designer
Professional places the subpage inside the flow in the original page and all
subsequent output goes into the subpage. You can ensure that the contents of
each flow are as close as possible to the same height by setting the subpage’s
BalanceFlows property to True.

Methods for Class AcSubpage

Methods inherited from Class AcBasePage

BalanceFlows, GetFirstDataFrame, GetLastDataFrame

Methods inherited from Class AcBaseFrame

AddToAdjustSizeList, BindToFlow, FindContentByClass, FindContentByClassID,
GetControl, GetControlValue, GetPageNumber, GetSearchValue,
IsDataFrame, IsFooter, IsHeader, MakeContents, RebindToFlow,
SearchAttributeName

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,

AcComponent

AcReportComponent

AcVisualComponent

AcBaseFrame

AcBasePage

AcSubPage

798 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcSubPage

ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, BuildTocInfo, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 799

AcTextControl

Class AcTextControl
Displays a String value. Figure 7-102 shows the class hierarchy for AcTextControl.

Figure 7-102 AcTextControl

Description Use the text control to display a String value. You can also use a dynamic text
control or label control to display text.

See also Class AcControl
Class AcDataControl
Class AcDynamicTextControl
Class AcLabelControl
Class AcTextualControl

Variable
Table 7-101 describes the AcTextControl variable.

Methods for Class AcTextControl

Methods inherited from Class AcDataControl

Format, GetGroupKey, IsSummary

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcDataControl

AcTextControl

AcTextualControl

Table 7-101 AcTextControl variable

Variable Type Description

DataValue String Holds the string value

800 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTextContro l

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, BuildTocInfo, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 801

AcTextQuerySource

Class AcTextQuerySource
Provides a way to write a textual SQL SELECT query. Figure 7-103 shows the
class hierarchy for AcTextQuerySource.

Figure 7-103 AcTextQuerySource

Description AcTextQuerySource is the class for query data sources that you build in the
textual query editor.

You can create the query data source programmatically. In this case, you must
override ObtainSelectStatement() to return the complete statement.
ObtainSelectStatement() is inherited from AcQuerySource. You must also
override BindStaticParameters() to bind static parameters and BindDataRow() to
bind the data row to the cursor. BindStaticParameters() and BindDataRow() are
defined in AcDatabaseSource.

Properties
Table 7-102 lists AcTextQuerySource properties.

AcTextQuerySource

AcQuerySource

AcComponent

AcDataAdapter

AcDataSource

AcDatabaseSource

Table 7-102 AcTextQuerySource properties

Property Type Description

CanModifyOrderByClause Boolean Specifies whether the application
can modify the SELECT
statement’s Order By clause to
provide custom sorting used by
the corresponding report section.
The default value is True.

Query Pointer An internal representation of the
query that this query source class
uses. The report user uses the
textual query editor to specify the
query.

802 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTextQuerySource

Example The following example specifies ad hoc conditions by overriding the SQL
statement. Then, the code overrides SetupAdHocParameters() to call
SetAdHocCondition() with the appropriate input arguments.

Function ObtainSelectStatement() As String
SelectStatement = "SELECT * from offices WHERE :?myOffice"
Super::ObtainSelectStatement()

End Function

Sub SetupAdHocParameters()
' myOfficeID is a parameter defined in this class
SetAdHocCondition("myOffice", "officeID", "Integer",

+ myOfficeID)
End Sub

Methods for Class AcTextQuerySource

Methods inherited from Class AcQuerySource

GetStatementText, ObtainSelectStatement, SetupAdHocParameters

Methods inherited from Class AcDatabaseSource

BindDataRow, BindStaticParameters, GetCursor, GetDBConnection,
GetPreparedStatement, OpenCursor, SetStatementProperty

Methods inherited from Class AcDataSource

HasFetchedLast

Methods inherited from Class AcDataAdapter

AddRow, AddSortKey, CanSeek, CanSortDynamically, CloseConnection, Fetch,
Finish, FlushBuffer, FlushBufferTo, GetConnection, GetPosition, IsStarted,
NewConnection, NewDataRow, OpenConnection, Rewind, SeekBy, SeekTo,
SeekToEnd, SetConnection, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 803

AcTextualControl

Class AcTextualControl
The base class for label controls and data controls. Figure 7-104 shows the class
hierarchy for AcTextualControl.

Figure 7-104 AcTextualControl

Description AcTextualControl is the base class for label controls and data controls.

Properties
Table 7-103 lists AcTextualControl properties.

Methods for Class AcTextualControl

Methods inherited from Class AcControl

BalloonHelp, GetControlValue, GetText, GetValue, PageNo, PageNo$,
SetDataValue

AcComponent

AcReportComponent

AcVisualComponent

AcControl

AcTextualControl

Table 7-103 AcTextualControl properties

Property Type Description

BackgroundColor AcColor The background color of the control

Border AcLineStyle Defines the border, if any, around the
control

Font AcFont The default font for text in the control

Margins AcMargins The margins around the text in the
control

TextPlacement AcTextPlacement Specifies where to place the text within
the control, and how wrapping and
truncation are to be applied

804 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTextualControl

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, BuildTocInfo, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

C h a p t e r 7 , A F C c l a s s e s 805

AcTit leBodyPageList

Class AcTitleBodyPageList
Builds a page list with a title page, followed by a simple page list. Figure 7-105
shows the class hierarchy for AcTitleBodyPageList.

Figure 7-105 AcTitleBodyPageList

Description The AcTitleBodyPageList class builds a page list with a title page, followed by all
other pages of another style.

You can insert title pages into your report. For example, you can design a report
that prints the customer name in a large font on a single page, then produce body
pages as necessary for that customer. You can repeat the title page for all
customers.

Properties
Table 7-104 lists AcTitleBodyPageList properties.

Methods for Class AcTitleBodyPageList

Methods inherited from Class AcPageList

AddFrame, EjectPage, Finish, GetContentIterator, GetContents, GetCurrentFlow,
GetCurrentPage, GetCurrentPageACL, GetEstimatedPageCount,
GetFirstPage, GetLastPage, GetPage, GetPageCount, GetPageList,
GetReport, HasPageSecurity, NeedCheckpoint, NeedHeight, NewPage, Start,
UseAcceleratedCheckpoints

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcComponent

AcPageList

AcTitleBodyPageList

Table 7-104 AcTitleBodyPageList properties

Property Type Description

BodyPage AcPage The page style to use for all pages other than
the first page

TitlePage AcPage The page style to use for the first page

806 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTopDownFlow

Class AcTopDownFlow
Adds frames to a flow from the top to the bottom. Figure 7-106 shows the class
hierarchy for AcTopDownFlow.

Figure 7-106 AcTopDownFlow

Description The top-down flow fills with frames in the standard top-down order. The first
frame starts at the top of the flow. Each subsequent frame is placed just below the
previous frame. When the framework receives a frame that does not fit in the
remaining space in the flow, the frame advances to the next flow or page.

You subclass AcTopDownFlow when you drag a flow component from the
toolbox and drop it in the report design.

Property
Table 7-105 describes the AcTopDownFlow property.

AcComponent

AcReportComponent

AcVisualComponent

AcFlow

AcLinearFlow

AcTopDownFlow

Table 7-105 AcTopDownFlow property

Property Type Description

Alignment AcFlowPlacement Specifies how to align a frame within a flow. Values are:
■ FlowAlignLeftOrTop. Causes the frame to appear

left-justified within the flow.
■ FlowAlignCenter. Centers the frame in the flow.
■ FlowAlignCustom. Supports custom alignment. If you

choose custom alignment, e.Report Designer
Professional uses the value of the X property in the
Position property group to align the frame in the flow.

■ FlowAlignRightOrBottom. Causes the frame to appear
right-justified.

C h a p t e r 7 , A F C c l a s s e s 807

AcTopDownFlow

Methods for Class AcTopDownFlow

Method defined in Class AcTopDownFlow

AdjustFooter

Methods inherited from Class AcLinearFlow

GetInsideOrigin, GetInsideRect

Methods inherited from Class AcFlow

AddFooter, AddFrame, AddHeader, AddSubpage, AdjustFooter, CanFitFrame,
CanFitHeight, GetFirstDataFrame, GetLastDataFrame, GetFreeSpace,
GetInsideSize, IsEmpty, ReleaseSpace, ReserveSpace, ResetSpace,
ResizeByConstrainedByContents, ShiftFooterUp

Methods inherited from Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, BuildTocInfo, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

808 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcTopDownFlow

AcTopDownFlow::AdjustFooter method
Adjusts the position of the top of the page footer frame to allow for size changes.
If you use AdjustFooter(), it is possible that some footer text is still not visible if
the footer changes size. The best practice is to set the footer to the largest size
necessary to accommodate all possible information.

Syntax Sub AdjustFooter(footer as AcFrame)

Parameter footer
The page footer frame to adjust.

Chapter 7AFC classes

C h a p t e r 7 , A F C c l a s s e s 809

AcVisi tor

Class AcVisitor
Chapter 7AFC classes Provides a mechanism for creating a utility to visit and perform an action on

report components. Figure 7-107 shows the class hierarchy for AcVisitor.

Figure 7-107 AcVisitor

Description The AcVisitor class creates a mechanism that visits and performs an action on a
report component. For example, use AcVisitor to perform data extraction or save
the report to a different format, such as PostScript or a text file. AcVisitor methods
provide subroutines to process a report component and its contents in
hierarchical order. Override AcVisitor methods to provide specialized behavior
for each component.

A report has the following two parallel structures:

■ The structure hierarchy, composed of the report, sections, frames, and controls

■ The page hierarchy, composed of the report, page list, pages, flows, frames,
and controls

When you use the AcVisitor class, you determine which hierarchy to visit. The
default behavior is to visit each component in the hierarchy you specify. If the
component contains other components, the visitor also visits each of those
components in the order in which they appear in Report Structure. You can derive
AcVisitor classes that skip certain components or add behavior to specific
components.

To use the AcVisitor methods, perform the following tasks:

■ Open a report design in e.Report Designer Professional.

■ Set up the visitor class:

■ Create a new Actuate Basic source file.

■ Create a new subclass of the AcVisitor class and instantiate it. The visitor
class provides a visit method for each type of component. You can override
the method for a particular component if you want to perform operations
on it.

■ Decide which report component is the visitor’s starting point. For example,
to visit every component in a report, call the AcReport component.

■ Call ApplyVisitor() on the starting point. The default behavior for a
component is to call Visit() for the superclass of the component. For
example, VisitTextControl() calls VisitDataControl(). Similarly, every
method ultimately calls VisitComponent().

■ Decide which components to visit:

AcVisitor

810 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

■ If the application will visit the entire report, the derived visitor class must
know which of the report’s hierarchies to visit. Override VisitReport() to
call either VisitContents() to visit the data hierarchy or VisitPage() to visit
the page hierarchy. The default call is to VisitContents().

■ If the application will not visit the entire report, decide which components
to include or exclude from processing. If the component has contents, the
visit method for the contents is called by default. If you want to exclude the
contents from being processed, override the component’s visit method to
inhibit the call to the component’s superclass method.

■ Add special behavior for the visited components.
Override each component’s visit method to add special behavior as needed.
For example, suppose that you want to generate Postscript for a report.
Override VisitPage() to eject each page, and override Visit() for each control
to generate Postscript for that control.

■ Establish a mechanism to trigger visitor subroutines.

Example The following example shows how to design a utility to perform data extraction
using the AcVisitor class. The example uses visit methods to traverse the
structure hierarchy in the Sales Detail report component to extract the data
controls for each frame to a spreadsheet that can be viewed using Microsoft Excel.
The user selects a visual control in the report component to initiate the extraction
process. When data extraction is complete, the example application starts
Microsoft Excel, which displays the spreadsheet.

The example features a report design that includes an Actuate Basic source file.
The Actuate Basic source file performs the following programming actions:

■ Initializes the Basic program environment by performing the following
actions:

■ Declaring the class, AcDetailCsvVisitor, as a subclass of AcVisitor

■ Declaring state variables needed for internal processing

■ Creating an instance of the output text file (spreadsheet)

■ Declaring text file fields corresponding to the Sales Detail controls to be
extracted

■ Declaring subroutines that convert the values of the data controls to the
form needed in the output text file

■ Declaring subroutines to do special processing for different kinds of
frames:

Class AcDetailCsvVisitor Subclass Of AcVisitor
'State variables:
'Channel contains system file number
'NeedComma is needed to determine when to write a comma

to the file FileName contains output text file name

C h a p t e r 7 , A F C c l a s s e s 811

AcVisi tor

Dim Channel As Integer
Dim NeedComma As Boolean
Dim FileName As String

' Variables that make up the data row.
Dim TotalSalesForecast As Currency
Dim OfficeName As String
Dim OfficePhone As String
Dim OfficeAddress1 As String
Dim OfficeAddress2 As String
Dim OfficeTotalForecast As Currency
Dim RepTotalForecast As Currency
Dim RepExtension As String
Dim RepEmail As String
Dim RepName As String
Dim CustomerContactName As String
Dim CustomerContactPhone As String
Dim CustomerName As String
Dim CustomerAddress1 As String
Dim CustomerAddress2 As String
Dim CustomerCreditRank As String
Dim CustomerPurchPattern As String
Dim CustomerTotalForecast As String
Dim OrderNumber As Integer
Dim OrderForecastDate1 As String
Dim OrderNeededDate As String
Dim OrderNote As String
Dim OrderForecastDate2 As String
Dim OrderStatus As String
Dim ItemCategory As String
Dim ItemCode As String
Dim ItemDescription As String
Dim ItemQuantity As Integer
Dim ItemPrice As Currency
Dim ItemExtension As Currency
Dim OrderTotalQuantity As Integer
Dim OrderTotal As Currency
Dim CustomerTotalQuantity As Integer
Dim RepTotalQuantity As Integer
Dim OfficeTotalQuantity As Integer
Dim TotalQuantity As Integer

' Create instance of output text file
Sub New()

FileName = "extract.csv"
End Sub

812 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

' Convert a number to a field in the output line.
Sub NumericField(value As Variant)

If NeedComma Then
Print #Channel, ",";

End If
Print #Channel, CStr(Value);
NeedComma = True

End Sub

' Convert a string to a field in the output line. The
' string field is enclosed by quotation marks. Any
' quotation mark in the string is replaced by a two
' quotation marks. Newline characters are converted to
' spaces. So, a value of He said "Hi!" becomes:
' "He said ""Hi!!"""

Sub TextField(value As String)
Dim i As Integer
Dim length As Integer
Dim c As String
If NeedComma Then

Print #Channel, ",";
End If
Print #Channel, """";
length = Len(value)
For i = 1 to length

c = Mid$(value, i, 1)
Select Case c

Case """"
Print #Channel, """""";

Case Chr$(13)
Print #Channel, " ";

Case Chr$(10)
Print #Channel, " ";

Case Else
Print #Channel, c;

End Select
Next
Print #Channel, """";
NeedComma = True

End Sub

■ Overrides the VisitReportSection() method to perform the following actions:

■ Opening the text file for output

■ Writing labels for the text fields

■ Calling the VisitDataSection() method to start the extraction

C h a p t e r 7 , A F C c l a s s e s 813

AcVisi tor

■ Closing the text file after VisitDataSection() has completed data extraction:

Sub VisitReportSection(obj As AcReportSection)
' Open output text file

Channel = FreeFile()
Open FileName For Output As #Channel

' Write column labels
Print #Channel, "OfficeName,";
Print #Channel, "SalesRepName,";
Print #Channel, "ContactName,";
Print #Channel, "ContactPhone,";
Print #Channel, "CompanyName,";
Print #Channel, "CreditRank,";
Print #Channel, "PurchasingPattern,";
Print #Channel, "OrderNumber,";
Print #Channel, "ForecastOrderDate,";
Print #Channel, "NeededOrderDate,";
Print #Channel, "ForecastOrderShipDate,";
Print #Channel, "OrderStatus,";
Print #Channel, "ItemCategory,";
Print #Channel, "ItemDescription,";
Print #Channel, "ItemQuantity,";
Print #Channel, "ItemPrice,";
Print #Channel, "ItemExtendedPrice,";
Print #Channel

' Start data extraction from report component to
' outputtext file

VisitDataSection(obj)
' Close output text file and end processing after
' extraction is complete

Close #Channel
End Sub

■ Overrides VisitDataFrame() to detect the kind of frame being visited and calls
a specialized subroutine to process the frame. This example creates special
subroutines to extract data from each kind of frame, such as
CustomerTitleFrame or ItemFrame. The example code for the VisitItemDetail
subroutine is shown after the code that overrides the VisitDataFrame()
method. The logic for the other kinds of frames is similar to the code in the
VisitItemDetail subroutine.

' Map a generic data frame into one of types specific to
' the report. Note that we use a Case statement here,which
' is different from the way the Visitor handles AFC-provided
' classes. A Case statement is slower at run time, but keeps
' data extraction code out of report component classes.

814 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

Sub VisitDataFrame(obj As AcDataFrame)
Dim frameName As String
Dim i As Integer

frameName = GetClassName(obj)
i = Len(frameName)
Do While i > 1 And Mid$(frameName, i, 1) <> ":"

i = i - 1
Loop
If i > 1 Then

frameName = Mid$(frameName, i + 1)
End If
Select Case frameName

Case "ReportTitle1"
VisitReportBefore(obj)

Case "ReportTotals"
VisitReportAfter(obj)

Case "OfficeTitleFrame"
VisitOfficeTitleFrame(obj)

Case "OfficeGroupTotals"
VisitOfficeGroupTotals(obj)

Case "SalesRepTitleFrame"
VisitSalesRepTitleFrame(obj)

Case "SalesRepTotalsFrame"
VisitSalesRepTotalsFrame(obj)

Case "CustomerTitleFrame"
VisitCustomerTitleFrame(obj)

Case "CustomerGroupTotals"
VisitCustomerGroupTotals(obj)

Case "OrderTitleFrame"
VisitOrderTitleFrame(obj)

Case "OrderTotalsFrame"
VisitOrderTotalsFrame(obj)

Case "ItemFrame"
VisitItemDetail(obj)

End Select
End Sub

The following code sample extracts data from the content frame, ItemFrame.
GetControlValue() accesses the data control’s DataValue property. TextField
and NumericField are data extraction utility functions that convert the format
of each control’s value before writing the value to the output text file. The
subroutines, TextField and NumericField, are shown in the sample code for
step 1.

C h a p t e r 7 , A F C c l a s s e s 815

AcVisi tor

Sub VisitItemDetail(frame As AcDataFrame)
ItemCategory = frame.GetControlValue("ItemCategory")
ItemCode = frame.GetControlValue("ItemCode")
ItemDescription = frame.GetControlValue("ItemCategory")
ItemQuantity = frame.GetControlValue("IntegerControl")
ItemPrice = frame.GetControlValue("IntegerControl1")
ItemExtension = frame.GetControlValue("IntegerControl2")

' Convert the control to the format required for the
' output text file
TextField(OfficeName)
TextField(RepName)
TextField(CustomerContactName)
TextField(CustomerContactPhone)
TextField(CustomerName)
TextField(CustomerCreditRank)
TextField(CustomerPurchPattern)
NumericField(OrderNumber)
TextField(OrderForecastDate1)
TextField(OrderNeededDate)
TextField(OrderForecastDate2)
TextField(OrderStatus)
TextField(ItemCategory)
TextField(ItemDescription)
NumericField(ItemQuantity)
NumericField(ItemPrice) \
NumericField(ItemExtension)

' Write converted field to output text file
Print #Channel
NeedComma = False

End Sub

■ Overrides visit methods to prevent processing for the following components:
sequential, parallel, and conditional sections. The example application
excludes these components from being processed by overriding the visit
method for the excluded component and by not calling the superclass. The
following code sample shows how to prevent processing sequential sections:

Sub VisitSequentialSection(obj As AcSequentialSection)
End Sub

■ Start the data extraction utility. The Visitor should be invoked during report
generation, in the report root component’s Finish() method, after
Super::Finish():

■ Instantiate the report’s visitor class, AcDetailCsvVisitor.

■ Set the text output file name.

816 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

■ After data extraction is complete, start Microsoft Excel and display the
spreadsheet, as follows:

Sub Finish()
Dim visitor As AcDetailCsvVisitor
Super::Finish()
Set visitor = New AcDetailCsvVisitor
visitor.FileName = "C:\Temp\Extract.csv"
ApplyVisitor(visitor)
Shell("D:\Program Files\Microsoft Office\Office\Excel.exe
C:\Temp\Extract.csv", 1)

End Sub

Methods for Class AcVisitor

Methods defined in Class AcVisitor

VisitBaseFrame, VisitBasePage, VisitChart, VisitComponent,
VisitConditionalSection, VisitContents, VisitControl, VisitCurrencyControl,
VisitDataControl, VisitDataFrame, VisitDataSection, VisitDateTimeControl,
VisitDoubleControl, VisitDynamicTextControl, VisitFlow, VisitFrame,
VisitGroupSection, VisitImageControl, VisitIntegerControl, VisitLabelControl,
VisitLeftRightPageList, VisitLeftToRightFlow, VisitLinearFlow,
VisitLineControl, VisitPage, VisitPages, VisitPageList,
VisitPageNumbercontrol, VisitParallelSection, VisitRectangleControl,
VisitReport, VisitReportComponent, VisitReportSection, VisitSection,
VisitSequentialSection, VisitSimplePageList, VisitSubpage, VisitTextControl,
VisitTextualControl, VisitTitleBodyPageList, VisitTopDownFlow,
VisitVisualComponent

AcVisitor::VisitBaseFrame method
Visits an AcBaseFrame component.

Syntax Sub VisitBaseFrame(obj As AcBaseFrame)

Parameter obj
The AcBaseFrame component to visit.

AcVisitor::VisitBasePage method
Visits an AcBasePage component.

Syntax Sub VisitBasePage(obj As AcBasePage)

Parameter obj
The AcBasePage component to visit.

C h a p t e r 7 , A F C c l a s s e s 817

AcVisi tor

AcVisitor::VisitChart method
Visits an AcChart component.

Syntax Sub VisitChart(obj As AcChart)

Parameter obj
The AcChart component to visit.

AcVisitor::VisitComponent method
Visits the components of a report.

Syntax Sub VisitComponent(obj As AcReportComponent)

Parameter obj
The AcReportComponent component to visit.

AcVisitor::VisitConditionalSection method
Visits the AcConditionalSection component.

Syntax Sub VisitConditionalSection(obj As AcConditionalSection)

Parameter obj
The AcConditionalSection component to visit.

AcVisitor::VisitContents method
Visits the contents of a report’s data hierarchy components. Use VisitContents()
to recursively traverse all the components that comprise a report’s data hierarchy.
VisitContents() uses the AcIterator class methods to traverse the data hierarchy.
VisitContents() calls ApplyVisitor() for each component in the data hierarchy.

Syntax Sub VisitContents(obj As AcReportComponent)

Parameter obj
The AcReportComponent component to visit.

AcVisitor::VisitControl method
Visits the AcControl component.

Syntax Sub VisitControl(obj As AcControl)

Parameter obj
The AcControl component to visit.

818 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

AcVisitor::VisitCurrencyControl method
Visits the AcCurrencyControl component.

Syntax Sub VisitCurrencyControl(obj As AcCurrencyControl)

Parameter obj
The AcCurrencyControl component to visit.

AcVisitor::VisitDataControl method
Visits the AcDataControl component.

Syntax Sub VisitDataControl(obj As AcDataControl)

Parameter obj
The AcDataControl component to visit.

AcVisitor::VisitDataFrame method
Visits the AcDataFrame component.

Syntax Sub VisitDataFrame(obj As AcDataFrame)

Parameter obj
The AcDataFrame component to visit.

Example This code sample overrides the VisitDataFrame() method to extract the contents
of three different frames in the report component: OfficeTitleFrame,
OfficeGroupTotals, and OfficeFrame. GetClassName() returns the name of the
frame being visited. Then, a specialized subroutine that knows about the contents
of the frame is called to perform the extraction. The code of this subroutine is
provided in the class Example:

' Map a generic data frame into one of the report-specific
' types handled in the class example. This code uses a Case
' statement, which is different from the way the Visitor
' handles AFC-provided classes. The Case statement approach is
' slower at run time, but keeps data extraction code out
' of the report component classes.

Sub VisitDataFrame(obj As AcDataFrame)
Dim frameName As String
Dim i As Integer

frameName = GetClassName(obj)
i = Len(frameName)
Do While i > 1 And Mid$(frameName, i, 1) <> ":"

i = i - 1

C h a p t e r 7 , A F C c l a s s e s 819

AcVisi tor

Loop
If i > 1 Then

frameName = Mid$(frameName, i + 1)
End If
Select Case frameName

Case "OfficeTitleFrame"
VisitOfficeTitleFrame(obj)

Case "OfficeGroupTotals"
VisitOfficeGroupTotals(obj)

Case "OfficeFrame"
VisitOfficeFrame(obj)

End Select
End Sub

AcVisitor::VisitDataSection method
Visits an AcDataSection component.

Syntax Sub VisitDataSection(obj As AcDataSection)

Parameter obj
The AcDataSection component to visit.

AcVisitor::VisitDateTimeControl method
Visits an AcDateTimeControl component.

Syntax Sub VisitDateTimeControl(obj As AcDateTimeControl)

Parameter obj
The AcDateTimeControl component to visit.

AcVisitor::VisitDoubleControl method
Visits an AcDoubleControl component.

Syntax Sub VisitDoubleControl(obj As AcDoubleControl)

Parameter obj
The AcDoubleControl component to visit.

AcVisitor::VisitDynamicTextControl method
Visits an AcDynamicTextControl component.

Syntax Sub VisitDynamicTextControl(obj As AcTextControl)

Parameter obj
The AcTextControl component to visit.

820 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

AcVisitor::VisitFlow method
Visits an AcFlow component.

Syntax Sub VisitFlow(obj As AcFlow)

Parameter obj
The AcFlow component to visit.

AcVisitor::VisitFrame method
Visits an AcFrame component.

Syntax Function VisitFrame(obj As AcFrame)

Parameter obj
The AcFrame component to visit.

AcVisitor::VisitGroupSection method
Visits an AcGroupSection component.

Syntax Sub VisitGroupSection(obj As AcGroupSection)

Parameter obj
The AcGroupSection component to visit.

AcVisitor::VisitImageControl method
Visits an AcImageControl component.

Syntax Sub VisitImageControl(obj As AcImageControl)

Parameter obj
The AcImageControl component to visit.

AcVisitor::VisitIntegerControl method
Visits an AcIntegerControl component.

Syntax Sub VisitIntegerControl(obj As AcIntegerControl)

Parameter obj
The AcIntegerControl component to visit.

AcVisitor::VisitLabelControl method
Visits an AcLabelControl component.

Syntax Sub VisitLabelControl(obj As AcLabelControl)

C h a p t e r 7 , A F C c l a s s e s 821

AcVisi tor

Parameter obj
The AcLabelControl component to visit.

AcVisitor::VisitLeftRightPageList method
Visits an AcLeftRightPageList component.

Syntax Sub LeftRightPageList(obj As AcLeftRightPageList)

Parameter obj
The AcLeftRightPageList component to visit.

AcVisitor::VisitLeftToRightFlow method
Visits an AcLeftToRightFlow component.

Syntax Sub VisitLeftToRightFlow(obj As AcLeftToRightFlow)

Parameter obj
The AcLeftToRightFlow component to visit.

AcVisitor::VisitLinearFlow method
Visits an AcLinearFlow component.

Syntax Sub VisitLinearFlow(obj As AcLinearFlow)

Parameter obj
The AcLinearFlow component to visit.

AcVisitor::VisitLineControl method
Visits an AcLineControl component.

Syntax Sub VisitLineControl(obj As AcLineControl)

Parameter obj
The AcLineControl component to visit.

AcVisitor::VisitPage method
Visits an AcPage component.

Syntax Sub VisitPage(obj As AcPage)

Parameter obj
The AcPage component to visit.

822 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

AcVisitor::VisitPages method
Visits the contents of the report’s page hierarchy components.

Syntax Sub VisitPages(obj As AcReport)

Parameter obj
The AcReport component to visit.

AcVisitor::VisitPageList method
Recursively traverses all the components that comprise a report’s page hierarchy.
VisitPageList uses the AcIterator class methods to traverse the page hierarchy.
VisitPageList calls ApplyVisitor for each component in the page hierarchy.

Syntax Sub VisitPageList(obj As AcPageList)

Parameter obj
The AcPageList component to visit.

AcVisitor::VisitPageNumberControl method
Visits an AcPageNumberControl component.

Syntax Sub VisitPageNumberControl(obj As AcPageNumberControl)

Parameter obj
The AcPageNumberControl component to visit.

AcVisitor::VisitParallelSection method
Visits an AcParallelSection component.

Syntax Sub VisitParallelSection(obj As AcParallelSection)

Parameter obj
The AcParallelSection component to visit.

AcVisitor::VisitRectangleControl method
Visits an AcRectangleControl component.

Syntax Sub VisitRectangleControl(obj As AcRectangleControl)

Parameter obj
The AcRectangleControl component to visit.

AcVisitor::VisitReport method
Visits the report component.

C h a p t e r 7 , A F C c l a s s e s 823

AcVisi tor

Syntax Sub VisitReport(obj As AcReport)

Parameter obj
The AcReport component to visit.

AcVisitor::VisitReportComponent method
Visits an AcReportComponent component.

Syntax Sub VisitReportComponent(obj As AcReportComponent)

Parameter obj
The AcReportComponent component to visit.

AcVisitor::VisitReportSection method
Visits an AcReportSection component.

Syntax Sub VisitReportSection(obj As AcReportSection)

Parameter obj
The AcReportSection component to visit.

AcVisitor::VisitSection method
Visits an AcSection component.

Syntax Sub VisitSection(obj As AcSection)

Parameter obj
The AcSection component to visit.

AcVisitor::VisitSequentialSection method
Visits an AcSequentialSection component.

Syntax Sub VisitSequentialSection(obj As AcSequentialSection)

Parameter obj
The AcSequentialSection component to visit.

AcVisitor::VisitSimplePageList method
Visits an AcSimplePageList component.

Syntax Sub VisitSimplePageList(obj As AcSimplePageList)

Parameter obj
The AcSimplePageList component to visit.

824 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisi tor

AcVisitor::VisitSubpage method
Visits an AcSubpage component.

Syntax Sub VisitSubpage(obj As AcSubpage)

Parameter obj
The AcSubpage component to visit.

AcVisitor::VisitTextControl method
Visits an AcTextControl component.

Syntax Sub VisitTextControl(obj As AcTextControl)

Parameter obj
The AcTextControl component to visit.

AcVisitor::VisitTextualControl method
Visits an AcTextualControl component.

Syntax Sub VisitTextualControl(obj As AcTextualControl)

Parameter obj
The AcTextualControl component to visit.

AcVisitor::VisitTitleBodyPageList method
Visits an AcTitleBodyPageList component.

Syntax Sub VisitTitleBodyPageList(obj As AcTitleBodyPageList)

Parameter obj
The AcTitleBodyPageList component to visit.

AcVisitor::VisitTopDownFlow method
Visits an AcTopDownFlow component.

Syntax Sub VisitTopDownFlow(obj As AcTopDownFlow)

Parameter obj
The AcTopDownFlow component to visit.

AcVisitor::VisitVisualComponent method
Visits an AcVisualComponent component.

Syntax Sub VisitVisualComponent(obj As AcVisualComponent)

C h a p t e r 7 , A F C c l a s s e s 825

AcVisi tor

Parameter obj
The AcVisualComponent component to visit.

826 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

Class AcVisualComponent
AcVisualComponent is the base class for all classes in which the components are
visual. Data controls and static controls are the primary visual components in a
report. Figure 7-108 shows the class hierarchy of AcVisualComponent.

Figure 7-108 AcVisualComponent

Description AcVisualComponent defines the characteristics common to all visual components
in a report. A report’s visual components are:

■ Frames

■ Charts

■ Controls

■ Pages

■ Flows

The primary characteristics that AcVisualComponent adds to those it inherits
from AcReportComponent are visual attributes, such as position and size.

AcVisualComponent also defines a property, componentVariable, that supports
access to visual components. When you assign a value to componentVariable, the
framework generates a function to access the component. For example, if you set
a control’s componentVariable property to MyControl, the frame that contains
that control provides a function called myControl() to access the control. The
following statement is an example of how to access and modify the control using
code you write for the containing frame:

MyControl.BackgroundColor = Teal

You can access the control only from its containing frame, not from another
control. When you assign a value to componentVariable, if you use the name of
an existing method, a compile-time error occurs.

Subclassing AcVisualComponent
Do not subclass from AcVisualComponent. Instead, subclass from classes derived
from AcVisualComponent, such as AcFrame, and the classes derived from
AcDataControl or other concrete control classes.

AcComponent

AcReportComponent

AcVisualComponent

C h a p t e r 7 , A F C c l a s s e s 827

AcVisualComponent

Variables
Table 7-106 lists AcVisualComponent variables.

Properties
Table 7-107 lists AcVisualComponent properties.

Table 7-106 AcVisualComponent variables

Variable Type Description

Content
Offset

AcOffset The offset to apply to the positions of all components the
visual component contains during rendering. The effect of
this setting on nested containers is cumulative. The default
value is {0, 0}.

LinkTo String The value of the hyperlink, defined in the LinkExp property.

Position AcPoint The x- and y-coordinates, in twips, that specify the location of
the component, relative to the top-left corner of its container
component, as shown in Figure 7-109.

Figure 7-109 Positioning a visual component in its container
component

Size AcSize The height and width of the component in twips. If the
component is a circle or a line, the component’s size is the size
of the box that bounds it.

TextControl

Frame

TextControl

407, 195 1000, 195

TextControl
407, 450

Table 7-107 AcVisualComponent properties

Property Type Description

AnalysisType AcAnalysis
Type

Specifies how data is analyzed. The values are:
■ AnalyzeAsAutomatic. Numeric values are analyzed as

measures. Non-numeric values are analyzed as
dimensions. This is the default setting.

■ AnalyzeAsDimension. Numeric values are analyzed as
dimensions. For example, a ZIP code can be analyzed as a
dimension to enable sorting by ZIP codes.

■ AnalyzeAsMeasure. Numeric values are analyzed as
measures.

(continues)

828 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

CanIncrease
Height

Boolean Specifies whether the component can increase in height. The
height cannot exceed 200 inches.
The default value is True.

CanIncrease
Width

Boolean Specifies whether the component can increase in width.
The default value is True.

CanMoveLeft Boolean Specifies whether the component can move left.
The default value is False.

CanMoveUp Boolean Specifies whether the component can move up. For example,
use CanMoveUp in conjunction with CanReduceHeight to
suppress blank lines in addresses.
The default value is False.

CanReduce
Height

Boolean Specifies whether the component can decrease in height.
The default value is False.

CanReduce
Width

Boolean Specifies whether the component can decrease in width.
The default value is False.

ForcePage
HeightToFit

Boolean Specifies whether the page resizes vertically to fit the height
of the component.

ForcePage
WidthToFit

Boolean Specifies whether the page resizes horizontally to fit the
width of the component.

Horizontal
Position

Ac
Horizontal
Position

Specifies how the component’s horizontal position is
adjusted:
■ HorizontalPositionDefault. If the component’s left edge is

at or to the right of the horizontal midpoint of the
reference component, the component is repositioned to
keep the distance between its left edge and the right edge
of the reference component constant. Otherwise, the
component is not moved or resized.

■ HorizontalPositionFrameCenter. The component is
repositioned to keep the distance between its horizontal
midpoint and the horizontal midpoint of the frame
constant.

■ HorizontalPositionFrameLeft. The component is not
moved.

■ HorizontalPositionFrameRight. The component is
repositioned to keep the distance between its right edge
and the right edge of the frame constant.

Table 7-107 AcVisualComponent properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 829

AcVisualComponent

Horizontal
Position

 (continued)

Ac
Horizontal
Position

 (continued)

■ HorizontalPositionLeft. If the component’s left edge is to
the left of the reference component’s right edge, the
component is not moved. Otherwise, the component is
repositioned to keep the distance between its left edge and
the right edge of the reference component constant.

■ HorizontalPositionRight. If the component’s left edge is to
the left of the reference component’s left edge, the
component is not moved. Otherwise, the component is
repositioned to keep the distance between its left edge and
the right edge of the reference component constant.

Regardless of the HorizontalPosition setting, the component
does not move if the HorizontalSize property is set to
HorizontalSizeFrameRelative.
The component does not move left if the CanMoveLeft
property is set to False.

HorizontalSize Ac
Horizontal
Size

Specifies how the component’s horizontal size is adjusted:
■ HorizontalSizeFixed. The component is not resized.
■ HorizontalSizeFrameRelative. The component’s width is

adjusted to keep the distance between its right edge and
the right edge of the frame constant. In this case, the
component’s HorizontalPosition property is ignored.

■ HorizontalSizeRelative. If the component’s left edge is at
or to the left of the reference component’s left edge and its
right edge is at or to the right of the reference component’s
right edge, the component’s width is increased by the
amount that the reference component’s width has
increased. If more than one dynamic content component
exists, the component’s width is increased in one of the
following ways to give the greatest width increase:
■ The distance between the component’s right edge and

the right edge of the reference component remains
constant.

■ The component’s width is increased by the amount the
reference component’s width has increased. In this
case, the component is also moved left if the
component’s CanMoveLeft property is set to True. The
distance the component moves is the smallest of the
following distances:

(continues)

Table 7-107 AcVisualComponent properties (continued)

Property Type Description

830 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

HorizontalSize
 (continued)

Ac
Horizontal
Size

 (continued)

❏ The component is moved left by the amount its
width was increased.

❏ The distance between the component’s right edge
and the reference component’s right edge remains
constant.

Regardless of the HorizontalSize setting:
■ The component does not decrease in width if

CanDecreaseWidth is set to False or if MinimumWidth is
greater than or equal to the component’s initial width.

■ The component does not increase in width if
CanIncreaseWidth is set to False or if MaximumWidth is
less than or equal to the component’s initial width but is
not zero.

LinkExp String The expression defining a hyperlink for this component.

Maximum
Height

AcTwips Specifies the maximum height to which the component can
grow automatically.
If the component’s initial height, specified by its Height
property, is greater than MaximumHeight, the control does
not shrink. In this case, the behavior is as if MaximumHeight
is set to the initial height.
Regardless of the MaximumHeight value, the component
does not increase in height if CanInreaseHeight is set to False.
The default value is zero, which means that the component
can grow indefinitely.

Maximum
Width

AcTwips Specifies the maximum width to which the component can
grow automatically.
If the component’s initial width, specified by its Width
property, is greater than MaximumWidth, the control does
not shrink. In this case, the behavior is as if MaximumWidth
is set to the initial width.
Regardless of the MaximumWidth setting, the component
does not increase in width if CanInreaseWidth is set to False.
The default value is zero, which means that the component
can grow indefinitely.

Minimum
Height

AcTwips Specifies the minimum height to which the component can
shrink automatically. If the component’s initial height,
specified by its Height property, is less than MinimumHeight,
the control does not shrink. In this case, the behavior is as if
MinimumHeight is set to the initial height.

Table 7-107 AcVisualComponent properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 831

AcVisualComponent

Minimum
Height

 (continued)

AcTwips
 (continued)

Regardless of the MinimumHeight value, the component’s
height does not shrink if CanReduceHeight is set to False.
The default value is zero, which means that the component
height can shrink to zero.

Minimum
Width

AcTwips Specifies the minimum width to which the component can
shrink automatically. If the component’s initial width,
specified by its Width property, is smaller than
MinimumWidth, the control does not shrink. In this case, the
behavior is as if MinimumWidth is set to the initial width.
Regardless of the MinimumWidth value, the component’s
width does not shrink if CanReduceWidth set to False.
The default value is zero, which means that the component
width can shrink to zero.

Component
Variable

Value The name of an optional method in the frame that points to
this component.

Position AcPosition The position of the component in its enclosing frame.

Searchable AcSearch
Type

The searching options for the component. Values for this
property are:
■ NotSearchable. A search does not include this component.
■ SearchNoIndex. e.Report Designer Professional includes

this component in a search and uses an indexed search to
improve performance.

■ SearchWithIndex. e.Report Designer Professional includes
this component in a search.

To support selecting a component to add it to a search, set
Selectable to True.
The default value is SearchNoIndex.

SearchAlias String The name to display to the user when building a search for
this component. Used only if the default value is used and
SearchTag is not specified.
The default value is the class name for the component.

Selectable Boolean True if the user can select this component.

ShowIn
DHTML

Boolean Determines whether to show the control when the report is
displayed in DHTML format. False hides the control when
the report displays in DHTML format.

(continues)

Table 7-107 AcVisualComponent properties (continued)

Property Type Description

832 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

ShowInPDF Boolean Determines whether to show the control when the report is
displayed in PDF format. False hides the control when the
report is printed in PDF format.

ShowIn
Reportlet

Boolean Determines whether to show the control when the report is
displayed as a Reportlet.

ShowWhen
Printing

Boolean Sets whether to show the control when the report is printed.
The default value is True.

ShowWhen
Viewing

Boolean Determines whether the user sees the control when the report
appears in the report viewer.
The default value is True.

Size AcSize The size of the visual component.

Target
WindowName

String The name of a target window in which the contents of a
hyperlink appear.

Vertical
Position

AcVertical
Position

Specifies how the component’s vertical position is adjusted:
■ VerticalPositionBottom. If the top of the component is

above the top of the reference component, it is not moved.
Otherwise, the component is repositioned to keep the
distance between its bottom and the bottom of the
reference component constant.

■ VerticalPositionDefault. If the top of the component is at
or below the midpoint of the reference component, the
behavior is the same as VerticalPositionBottom.
Otherwise, the component is not moved.

■ VerticalPositionFrameBottom. The component is
repositioned to keep the distance between its bottom and
the bottom of the frame constant.

■ VerticalPositionFrameMiddle. The component is
repositioned to keep the distance between its middle and
the middle of the frame constant.

■ VerticalPositionFrameTop. The component is not moved.
■ VerticalPositionTop. If the top of the component is above

the bottom of the reference component, it is not moved.
Otherwise, the component is repositioned to keep the
distance between its top and the bottom of the reference
component constant.

Regardless of the VerticalPosition setting:
■ The component does not move if the VerticalSize property

is set to VerticalSizeFrameRelative.

Table 7-107 AcVisualComponent properties (continued)

Property Type Description

C h a p t e r 7 , A F C c l a s s e s 833

AcVisualComponent

Vertical
Position

 (continued)

AcVertical
Position

 (continued)

■ The component does not move up if CanMoveUp
property is set to False.

VerticalSize AcVertical
Size

Specifies how the component’s vertical size is adjusted:
■ VerticalSizeFixed. The component is not resized in

response to changes of its parent or content components.
■ VerticalSizeFrameRelative. The component is resized to

keep the distance between its bottom and the bottom of
the frame constant.

■ VerticalSizeRelative. If the top of the component is at or
above the top of the reference component and its bottom is
at or below the bottom of the reference component, the
component’s height is increased by the same amount as
the reference component’s height increased. If more than
one dynamic content component exists, the component’s
height is increased in one of the following ways to give the
greatest height increase:
■ The distance between the component’s bottom and the

bottom of the reference component remains constant.
■ The component height is increased by the same

amount as the reference component’s height increase. If
the component’s CanMoveUp property is set to True,
the component is also moved up in one of the
following ways to give the smallest movement:

❏ The distance between the component’s bottom edge
and the reference component’s bottom edge
remains constant.

❏ The component is moved up by the amount its
height was increased.

If the top of the component is below the top of the reference
component or its bottom is above the bottom of the reference
component, the component moves according to the value of
its VerticalPosition property. Regardless of the VerticalSize
setting:
■ The component does not decrease in height if

CanDecreaseHeight is set to False or if MinimumHeight is
greater than or equal to the component’s initial height.

■ If CanIncreaseHeight is set to False or if MaximumHeight
is less than or equal to the component’s initial height but is
not zero, the component does not increase in height.

Table 7-107 AcVisualComponent properties (continued)

Property Type Description

834 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

See also Class AcControl
Class AcFrame
Class AcReportComponent

Methods for Class AcVisualComponent

Methods defined in Class AcVisualComponent

AdjustHorizontalGeometry, AdjustSize, AdjustVerticalGeometry,
CanIncreaseHeight, CanIncreaseWidth, CanMoveLeft, CanMoveUp,
CanReduceHeight, CanReduceWidth, CanSplitVertically,
ComputeLowestSplit, FindLowestSplit, FindPageContainerByClass,
GetBottom, GetFirstSlave, GetFrame, GetHeight, GetLastSlave, GetLeft,
GetLinkTo, GetMaster, GetPageContainer, GetPixelSize, GetRect, GetRight,
GetTop, GetVisualComponent, GetWidth, HorizontalPosition, HorizontalSize,
IsFirstSlave, IsFrameDecoration, IsLastSlave, IsMaster, IsNormal, IsSlave,
IsVisible, MaximumHeight, MaximumWidth, MinimumHeight, MinimumWidth,
MoveBy, MoveByConstrained, MoveTo, MoveToConstrained, ResizeBy,
ResizeByConstrained, ResizeTo, ResizeToConstrained, Searchable,
SearchAlias, Selectable, SplitVertically, StatusText, TargetWindowName,
VerticalPosition, VerticalSize

Methods inherited from Class AcReportComponent

Abandon, AddContent, Build, BuildFromRow, DetachContent,
DetachFromContainer, FindContainerByClass, FindContentByClass, Finish,
GenerateXML, GetComponentACL, GetConnection, GetContainer,
GetContentCount, GetContentIterator, GetContents, GetDataStream,
GetFirstContent, GetFirstContentFrame, GetFullACL, GetPage,
GetPageIndex, GetPageList, GetReport, GetRowCount, GetSearchTag,
GetTocEntry, GetVisiblePageIndex, GetXMLText, HasContents, IsContainer,
IsFlow, IsFrame, IsLeaf, IsVisual, OnRow, SetSearchTag, SetTocEntry, Start

Methods inherited from Class AcComponent

ApplyVisitor, Delete, IsPersistent, New

AcVisualComponent::AdjustHorizontalGeometry
method
Adjusts the width and horizontal position of the component relative to the width
and horizontal position of a reference component, such as a frame.

Syntax Sub AdjustHorizontalGeometry(relativeTo As AcVisualComponent, hP As
AcHorizontalPosition, hS As AcHorizontalSize)

C h a p t e r 7 , A F C c l a s s e s 835

AcVisualComponent

Parameters relativeTo
The reference component.

vP
The required horizontal positioning behavior.

vS
The required horizontal sizing behavior.

AcVisualComponent::AdjustSize method
Changes the size of the component. Override AdjustSize() to change the size of a
component after it is built but before it is added to a page. For example, you can
use AdjustSize() to perform the following actions:

■ Expand a frame to show additional controls

■ Contract a frame to hide empty controls

If the component is a control or a nested frame, you must add the component to
its container’s list of components to be resized using the AddToAdjustSizeList()
method. This causes the AdjustSize() method to be called automatically.

Syntax Sub AdjustSize()

Example In this example, the frame size is large enough to hold four controls. If more than
four controls are needed to display the information, then AdjustSize dynamically
changes the frame size based on the additional space requirements.

Sub AdjustSize()
' Every frame can hold at least four controls. If there
' are more than four, widen the frame.
If RowCount > 4 Then

Size.Width = Size.Width + Offset * (RowCount - 4)
End If

End Sub

See also AcBaseFrame::AddToAdjustSizeList method

AcVisualComponent::AdjustVerticalGeometry
method
Adjusts the height and vertical position of the component relative to the height
and vertical position of a reference component, such as a frame.

Syntax Sub AdjustVerticalGeometry(relativeTo As AcVisualComponent, vP As
AcVerticalPosition, vS As AcVerticalSize)

Parameters relativeTo
The reference component.

836 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

vP
The required vertical positioning behavior.

vS
The required vertical sizing behavior.

AcVisualComponent::CanIncreaseHeight method
Implements the CanIncreaseHeight property. The CanIncreaseHeight property
determines whether the height of the component can increase when necessary.

Syntax Function CanIncreaseHeight() As Boolean

Returns True if the height of the component can increase.
False if the height of the component cannot increase.

AcVisualComponent::CanIncreaseWidth method
Implements the CanIncreaseWidth property. The CanIncreaseWidth property
determines whether the width of the component can increase when necessary.

Syntax Function CanIncreaseWidth() As Boolean

Returns True if the width of the component can increase.
False if the width of the component cannot increase.

AcVisualComponent::CanMoveLeft method
Implements the CanMoveLeft property. The CanMoveLeft property specifies
whether the component can move left when necessary.

Syntax Function CanMoveUp() As Boolean

Returns True if the component can move to the left.
False if the component cannot move to the left.

AcVisualComponent::CanMoveUp method
Implements the CanMoveUp property. The CanMoveUp property specifies
whether the component can move up when necessary.

You can use CanMoveUp() in conjunction with CanReduceHeight() to suppress
blank lines in an address.

Syntax Function CanMoveUp() As Boolean

Returns True if the component can move up.
False if the component cannot move up.

See also AcVisualComponent::CanReduceHeight method

C h a p t e r 7 , A F C c l a s s e s 837

AcVisualComponent

AcVisualComponent::CanReduceHeight method
Implements the CanReduceHeight property. The CanReduceHeight property
determines whether the height of the component can decrease when necessary.

Syntax Function CanReduceHeight() As Boolean

Returns True if the height of the component can decrease.
False if the height of the component cannot decrease.

AcVisualComponent::CanReduceWidth method
Implements the CanReduceWidth property. The CanReduceWidth property
determines whether the width of the component can decrease when necessary.

Syntax Function CanReduceWidth() As Boolean

Returns True if the width of the component can decrease.
False if the width of the component cannot decrease.

AcVisualComponent::CanSplitVertically method
Determines whether the component can split across multiple pages.

Syntax Function CanSplitVertically() As Boolean

Returns True if the component can split vertically.
False if the component cannot split vertically.

AcVisualComponent::ComputeLowestSplit method
Determines the lowest point at which the component can be split. If the
component can be split, ComputeLowestSplit() prepares the component to be
split.

Syntax Function ComputeLowestSplit(upperLimit As AcTwips, lowerLimit As AcTwips,
splitIsNecessary As Boolean) As Boolean

Parameters upperLimit
The highest point at which the component can split.

lowerLimit
The lowest point at which the component can split.

splitIsNecessary
Determines whether it is necessary to split the visual component.

Returns True if the component can split.
False if the component cannot split.

838 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

AcVisualComponent::FindLowestSplit method
Establishes the lowest vertical point at which the component can split. You must
implement FindLowestSplit() in all components that can split vertically. You
must call FindLowestSplit() before calling SplitVertically().

Syntax Function FindLowestSplit(upperLimit As AcTwips, lowerLimit As ActTwips,
splitIsNecessary As Boolean, fragment1Bottom As AcTwips, fragment2Top As
AcTwips) As Boolean

Parameters upperLimit
The highest point at which the component can split.

lowerLimit
The lowest point at which the component can split.

splitIsNecessary
Determines if the visual component must be split if possible.

fragment1Bottom
Set to the position of the bottom of the first fragment after the component is split,
relative the internal coordinate space of the component’s container.

fragment2Top
Set to the position of the top of the second fragment after the component is split,
relative the internal coordinate space of the component’s container.

Returns True if the component can split.
False if the component cannot split.

See also AcVisualComponent::SplitVertically method

AcVisualComponent::FindPageContainerByClass
method
Returns a reference to the named container component in the page hierarchy. Use
FindPageContainerByClass() to search up the page hierarchy for the container
component with the named class. The class can be an AFC or user-defined class.
The search starts with the component initiating the search. If you search for the
class corresponding to the component initiating the search, the return value is a
reference to this component. If you start the search on a higher level component,
use the GetPageContainer() method to position to the right level in the page
hierarchy.

Syntax Function FindPageContainerByClass(className As String) As
AcReportComponent

Returns A reference to the container component in the page hierarchy with the named
class.
Nothing if the container component cannot be found.

C h a p t e r 7 , A F C c l a s s e s 839

AcVisualComponent

Example In this example, the report design calls FindPageContainerByClass() to return a
handle to the page list component before updating each page in the report with
relative page numbers:

Function GetValue() As Variant
Dim pageListAs AcPageList
Set pageList = FindPageContainerByClass("AcPageList")
If pageList Is Nothing Then

GetValue = Null
Else

GetValue = pageList.GetPageCount()
End If

End Function

See also AcReportComponent::FindContainerByClass method

AcVisualComponent::GetBottom method
Returns the position of the bottom of the component, in twips, relative to the top
of its container frame.

Syntax Function GetBottom() As Integer

AcVisualComponent::GetFirstSlave method
Returns the handle to the component’s first slave component. A master
component is a component that has been split across multiple pages. A slave
component is a fragment that results from the split.

Syntax Function GetFirstSlave() As AcVisualComponent

Returns If the component is a master component, returns the handle to the component’s
first slave visual component.
If the component is not a master component, returns Nothing.

AcVisualComponent::GetFrame method
Returns a reference to the frame containing the visual component. A visual
component is typically contained in a frame. In a derived class, you can call
GetFrame() to find out which frame contains the current component.

Syntax Function GetFrame() As AcFrame

Returns A reference to the frame if the current component is a control.
A reference to itself if the current component is a frame.

AcVisualComponent::GetHeight method
Returns the height of the component in twips.

840 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

Syntax Function GetHeight() As Integer

AcVisualComponent::GetLastSlave method
Returns the handle to the component’s last slave component. A master
component is a component that splits across multiple pages. A slave component
is a fragment that results from the split.

Syntax Function GetLastSlave() As AcVisualComponent

Returns If the component is a master component, returns the handle to the component’s
first slave visual component.
If the component is not a master component, returns Nothing.

AcVisualComponent::GetLeft method
Returns the position of the left edge of the component, in twips, relative to the left
edge of the container frame.

Syntax Function GetLeft() As Integer

AcVisualComponent::GetLinkTo method
Returns the value of the hyperlink expression contained in the LinkTo variable.
The LinkExp property generates the LinkTo variable’s value.

Syntax Function GetLinkTo() As String

AcVisualComponent::GetMaster method
Returns a handle to the component’s master component. A master component is a
component that splits across multiple pages. A slave component is a fragment
that results from the split.

Syntax Function GetMaster() As AcVisualComponent

Returns If the component is a slave component, returns the handle to the component’s
master component.
If the component is not a slave component, returns Nothing.

AcVisualComponent::GetPageContainer method
Returns a reference to the container component in the page hierarchy for this
component.

At report generation time, the Factory builds two component hierarchies: the
structure hierarchy and the page hierarchy. When report generation begins,
components in the report design are stored in the structure hierarchy and the

C h a p t e r 7 , A F C c l a s s e s 841

AcVisualComponent

page hierarchy is empty. As frames are built, the Factory places the visual
components in the page hierarchy. The frame’s container component in the page
hierarchy is different from its container component in the structure hierarchy. For
example, in the structure hierarchy, a frame’s component container may be
another frame, section, or report component. When the Factory builds the frame,
the flow component in the page hierarchy contains the frame.

Syntax Function GetPageContainer() As AcVisualComponent

Returns A reference to the container component in the page hierarchy.
Nothing if the frame has not yet been assigned to a page by the Factory.

See also AcReportComponent::GetContainer method

AcVisualComponent::GetPixelSize method
Gets the size of the component in pixels.

Syntax Function GetPixelSize(twipsPerPixel As Integer) As AcSize

Parameter twipsPerPixel
The number of twips per pixel.

AcVisualComponent::GetRect method
Returns right, left, top, and bottom coordinates of the component, in twips,
relative to its container frame. GetRect() uses the GetTop(), GetBottom(),
GetLeft(), and GetRight() methods to calculate the coordinates.

Syntax Function GetRect() As AcRectangle

Returns The coordinates in a structure that has the data type AcRectangle.

See also Class AcRectangleControl

AcVisualComponent::GetRight method
Returns the position of the right edge of the component, in twips, relative to the
left edge of its container frame.

Syntax Function GetRight() As Integer

AcVisualComponent::GetTop method
Returns the position of the top of the component, in twips, relative to the top of its
container frame.

Syntax Function GetTop() As Integer

842 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

AcVisualComponent::GetVisualComponent method
Returns a reference to the current visual component.

Syntax Function GetVisualComponent() As AcVisualComponent

AcVisualComponent::GetWidth method
Returns the width of the component in twips.

Syntax Function GetWidth() As Integer

AcVisualComponent::HorizontalPosition method
Implements the HorizontalPosition property. The HorizontalPosition property
determines how to position the component horizontally.

Syntax Function HorizontalPosition() As AcHorizontalPosition

AcVisualComponent::HorizontalSize method
Implements the HorizontalSize property. The HorizontalSize property
determines how to adjust the component’s horizontal size.

Syntax Function HorizontalSize() As AcHorizontalPosition

AcVisualComponent::IsFirstSlave method
Determines whether the component is the first slave of the master component. A
master component is a component that splits across multiple pages. A slave
component is a fragment that results from the split.

Syntax Function IsFirstSlave() As Boolean

Returns True if the component is the first slave of its master component.
False if the component is not the first slave of its master component.

AcVisualComponent::IsFrameDecoration method
Determines whether the component is a frame decoration. Frame decoration
components include controls, such as a page number or date, that appear on a
page. For more information about IsFrameDecoration, see Developing Reports
using e.Report Designer Professional.

Syntax Function IsFrameDecoration() As Boolean

C h a p t e r 7 , A F C c l a s s e s 843

AcVisualComponent

AcVisualComponent::IsLastSlave method
Determines whether the component is the last slave of the master component. A
master component is a component that splits across multiple pages. The last slave
component is the last fragment that results from the split.

Syntax Function IsLastSlave() As Boolean

Returns True if the component is the last slave of its master component.
False if the component is not a slave or is not the last slave of its master
component.

AcVisualComponent::IsMaster method
Determines whether the component is a master component. A master component
is a component that splits across multiple pages. A master component can have
slave components, or fragments, that result from the split.

Syntax Function IsMaster() As Boolean

Returns True if the component is a master component.
False if the component is not a master component.

AcVisualComponent::IsNormal method
Determines that the component is neither a master component nor a slave
component. A component is normal if it does not split across multiple pages.

Syntax Function IsNormal() As Boolean

Returns True if the component does not split across multiple pages.
False if the component is either a master or a slave component.

AcVisualComponent::IsSlave method
Determines whether the component is a slave component. A master component is
a component that splits across multiple pages. A master component can have
slave components, or fragments, that result from the split.

Syntax Function IsSlave() As Boolean

Returns True if the component is a slave component.
False if the component is not a slave component.

AcVisualComponent::IsVisible method
Determines whether the component is completely or partially visible to the user.
For example, if you set the TocIfAnyVisible property on a component to True,
then IsVisible returns True for the component.

844 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

Syntax Function IsVisible() As Boolean

Returns True if the component is visible.
False if the component is not visible.

AcVisualComponent::MaximumHeight method
Implements the MaximumHeight property. The MaximumHeight property
specifies the maximum height to which the component can grow automatically.

Syntax Function MaximumHeight() As AcTwips

AcVisualComponent::MaximumWidth method
Implements the MaximumWidth property. The MaximumWidth property
specifies the maximum width to which the component can increase when
necessary.

Syntax Function MaximumWidth() As AcTwips

AcVisualComponent::MinimumHeight method
Implements the MinimumHeight property. The MinimumHeight property
specifies the minimum height to which the component can shrink when
necessary.

Syntax Function MinimumHeight() As AcTwips

AcVisualComponent::MinimumWidth method
Implements the MinimumWidth property. The MinimumWidth property
specifies the minimum width to which the component can shrink when necessary.

Syntax Function MinimumWidth() As AcTwips

AcVisualComponent::MoveBy method
Moves a control or nested frame within its container frame or flow by the given
distances. The distances can be positive or negative.

Syntax Sub MoveBy(deltaX As Integer, deltaY As Integer)

Parameters deltaX
The horizontal distance, in twips, to move the component. The distance is relative
to the current position.

deltaY
The vertical distance, in twips, to move the component. The distance is relative to
the current position.

C h a p t e r 7 , A F C c l a s s e s 845

AcVisualComponent

See also AcVisualComponent::MoveTo method

AcVisualComponent::MoveByConstrained method
Specifies the horizontal and vertical distances by which to move the component.
This method also uses the value of the component’s CanMoveUp property to
determine the amount by which to move the component.

Syntax Sub MoveByConstrained(deltaX As Integer, deltaY As Integer)

Parameters deltaX
The horizontal distance, in twips, to move the component. The distance is relative
to the component’s current position.

deltaY
The vertical distance, in twips, to move the component. The distance is relative to
the component’s current position.

See also AcVisualComponent::MoveToConstrained method

AcVisualComponent::MoveTo method
Changes the position of a control or nested frame within its container frame or
flow.

Syntax Sub MoveTo(newX As Integer, newY As Integer)

Parameters newX
The new x-position of the control, in twips, relative to the left edge of the
enclosing frame.

newY
The new y-position of the control, in twips, relative to the top edge of the
enclosing frame.

See also AcVisualComponent::MoveBy method

AcVisualComponent::MoveToConstrained method
Moves the component within the container frame. This method also uses the
value of the component’s CanMoveUp property to determine the amount by
which to move the component.

Syntax Sub MoveToConstrained(newX As Integer, newY As Integer)

Parameters newX
The new x-position of the component, in twips, relative to the left edge of the
container frame.

846 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

newY
The new y-position of the control, in twips, relative to the top edge of the
container frame.

See also AcVisualComponent::MoveByConstrained method

AcVisualComponent::ResizeBy method
Resizes a component by the given distances. Negative amounts make the
component smaller. Positive amounts make the component larger.

Syntax Sub ResizeBy(deltaWidth As Integer, deltaHeight As Integer)

Parameters deltaWidth
The amount, in twips, by which to resize the width of the component.

deltaHeight
The amount, in twips, by which to resize the height of the component.

See also AcVisualComponent::ResizeTo method
AcVisualComponent::ResizeByConstrained method

AcVisualComponent::ResizeByConstrained method
Specifies the amount by which to resize a component. This method also uses the
values of the component’s CanIncreaseHeight, CanReduceHeight,
MinimumHeight, and MaximumHeight properties to determine the amount by
which the component is resized. Negative amounts make the component smaller.
Positive amounts make the component larger.

Syntax Sub ResizeByConstrained(deltaX As Integer, deltaY As Integer)

Parameters deltaX
The amount, in twips, by which to resize the width of the component.

deltaY
The amount, in twips, by which to resize the height of the component.

See also AcVisualComponent::ResizeToConstrained method

AcVisualComponent::ResizeTo method
Resizes a frame or control to the specified size.

Syntax Sub ResizeTo(newWidth As Integer, newHeight As Integer)

Parameters newWidth
The new width of the component in twips.

newHeight
The new height of the component in twips.

C h a p t e r 7 , A F C c l a s s e s 847

AcVisualComponent

See also AcVisualComponent::ResizeBy method

AcVisualComponent::ResizeToConstrained method
Resizes the component to the given size. This method also uses the values of the
component’s CanIncreaseHeight, CanReduceHeight, MinimumHeight, and
MaximumHeight properties to determine the amount by which the component is
resized.

Syntax Sub ResizeToConstrained(newWidth As Integer, newHeight As Integer)

Parameters newWidth
The new width of the component in twips.

newHeight
The new height of the component in twips.

See also AcVisualComponent::MoveToConstrained method

AcVisualComponent::Searchable method
Implements the Searchable property. This method specifies whether and how a
user can search for a component. You can disable searching, enable searching, or
enable high performance searching using an indexed search.

Syntax Function Searchable() As AcSearchType

See also AcVisualComponent::SearchAlias method

AcVisualComponent::SearchAlias method
Implements the SearchAlias property. The SearchAlias property specifies the
name to display in the Search dialog when a user creates a search criteria for a
component. The default value is the component’s class name.

Syntax Function SearchAlias() As String

See also AcVisualComponent::Searchable method

AcVisualComponent::Selectable method
Implements the Selectable property. The Selectable property specifies whether a
user can select the visual component in the report viewer.

Syntax Function Selectable() As Boolean

Returns True if the component is selectable.
False if the component is not selectable.

See also AcVisualComponent::Searchable method

848 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

AcVisualComponent::SplitVertically method
Overridden by AFC classes to split visual components vertically. SplitVertically()
throws a ClassProtocolError. It is overridden in other AFC classes to split the
component vertically so that it can be spread across multiple flows.

Before calling SplitVertically() you must successfully call the component’s
FindLowestSplit() or ComputeLowestSplit() method.

When overridden, SplitVertically() sets the values of the arguments to two slave
components. A slave component is a fragment that is produced after a master
component has been split. The first slave component is placed in the current flow
and the second slave component is placed in a subsequent flow.

If the original component is neither a master nor a slave component, it must first
be converted to a master component. The two returned components become its
slaves.

If the original component is a master component, SplitVertically() must return a
ClassProtocolError. If the original component is a slave component,
SplitVertically() must return that component in either the first or the second
argument.

Syntax Sub SplitVertically(fragment1 As AcVisualComponent, fragment2 As
AcVisualComponent)

Parameters fragment1
The fragment to fit into the current flow.

fragment2
The fragment to fit into the subsequent flow.

AcVisualComponent::StatusText method
Returns the value of GetLinkTo() if there is a hyperlink or the help text associated
with this component.

Syntax Function StatusText() as String

Returns The value of the hypertext link if one exists.
Help text if any exists.
An empty string if neither a hypertext link nor help text exist.

AcVisualComponent::TargetWindowName method
Implements the TargetWindowName property. Override TargetWindowName()
to specify a target window in which to display the new report. When you
hyperlink from the current report to a new report, you can display the new report
in the same window or in a different window. To display the new report in a

C h a p t e r 7 , A F C c l a s s e s 849

AcVisualComponent

different window, set TargetWindowName to the name of the window. If the
target window name is blank, the new report displays in the current window.

Syntax Function TargetWindowName() As String

Returns The name of the target window.
Blank to display the report in the current window.

AcVisualComponent::VerticalPosition method
Implements the VerticalPosition property. The VerticalPosition property specifies
how to adjust the component’s vertical position.

Syntax Function VerticalPosition() As AcVerticalPosition

AcVisualComponent::VerticalSize method
Implements the VerticalSize property. The VerticalSize property specifies how to
adjust the component’s vertical size.

Syntax Function VerticalSize() As AcVerticalSize

Chapter 7AFC classes

850 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcVisualComponent

I n d e x 851

Index
Symbols
:: operator 20, 51
. (dot) operator 49, 513
… (ellipsis) character 192, 193
* overflow character 192
< operator 158
<= operator 158
= operator 52
> operator 157
>= operator 157
– operator 157

Numerics
24-bit color images 565, 569, 573
2-D charts. See charts
3-D charts

displaying 251, 258
getting back wall fill 346
getting bar shape for 323
getting floor fill style 347
getting side wall fill 347
placing data series in 164
setting bar shapes for 362
setting floor fill style 398
setting wall fill styles 399

3-dimensional bars 157

A
Abandon method 216, 741
absolute paths 721
abstract base classes 6, 19, 60
AC_VIEWSERVER_EXCELOUTPUTDIR

variable 590, 609, 610
AcAutoSplit data type 155
AcBaseFrame class 8, 71, 200
AcBasePage class 8, 72, 209
AcBrowserClipping data type 155
AcBrowserScriptingControl class 10, 90, 212
AcBTree class 11, 12, 122, 215
access control lists

building page-specific 730, 737
building user-specific 737, 738

changing 729, 747
creating 737, 776
customizing 737, 767
getting 703, 729, 747, 750
inheriting 767, 771
specifying 767

access restrictions 731, 736
accessing

classes 19, 50
data 40, 486, 489, 495
method editor 39, 42
methods 49
objects 18
variables 49, 511, 513

AcChart class 10, 85, 220
AcChartAxis class 10, 93, 261
AcChartAxisLabelPlacement data type 155
AcChartAxisLetter data type 156
AcChartAxisPlacement data type 156
AcChartBarShape data type 157
AcChartCategory class 10, 99, 310
AcChartComparisonOperator data type 157
AcChartDefaultMarkerSettings type 158
AcChartGridLine class 100, 314
AcChartLayer class 10, 101, 319
AcChartLayerType data type 158
AcChartLegendPlacement data type 158
AcChartMarkerShape data type 159
AcChartMissingPoints data type 160
AcChartPieExplode data type 160
AcChartPoint class 10, 110, 403
AcChartPointHighlight data type 161
AcChartPointLabelPlacement data type 161
AcChartPointLabelSource data type 162
AcChartPointStyle class 10, 112, 418
AcChartSeries class 10, 114, 431
AcChartSeriesPlacement data type 164
AcChartSeriesStyle class 113, 443
AcChartStatus data type 164
AcChartTickCalculation data type 165
AcChartTickPlacement data type 165
AcChartTrendline class 115, 452
AcChartType data type 166

852 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

AcCollection class 11, 12, 122, 462
AcColor data type 167
AcComponent class 4, 7, 61, 466
AcConditionalSection class 7, 68, 469
AcConnection class 10, 118, 472
AcControl class 10, 83, 474
AcControlValueType data type 169
AcCrosstab class 10, 84, 480
AcCrosstabBorderStyle data type 169
AcCrosstabTotalColumnPlacement data

type 170
AcCrosstabTotalRowPlacement data

type 170
AcCrosstabValueLayout data type 170
AcCurrencyControl class 10, 90, 484
AcDataAdapter class 5, 12, 126, 486
AcDatabaseSource class 12, 129, 497
AcDataControl class 10, 90, 501
AcDataFilter class 12, 127, 506
AcDataFrame class 8, 74, 507
AcDataGroupingMode data type 171
AcDataGroupingUnit data type 171
AcDataRow class 12, 132, 509
AcDataRow variable. See data row variables
AcDataRowBuffer class 12, 128, 516
AcDataRowSorter class 12, 129, 518
AcDataSection class 7, 521
AcDataSource class 12, 129, 529
AcDataType data type 172
AcDateTimeControl class 10, 90, 531
AcDay data type 173
AcDB2Connection class 10, 119, 537, 660
AcDBConnection class 10, 118, 533
AcDBCursor class 10, 119, 540
AcDBStatement class 10, 121, 550
AcDoubleControl class 10, 91, 562
AcDrawing class 10, 84, 564
AcDrawingBorderStyle data type 173
AcDrawingChartPlane class 117, 574
AcDrawingFillPattern data type 174
AcDrawingFillStyle data type 178
AcDrawingLinePen data type 179
AcDrawingLineStyle data type 179
AcDrawingPlane class 117, 576
AcDrawingSVGPlane class 117, 580
AcDrawingTextOrientation data type 180
AcDrawingTextStyle data type 180

AcDynamicTextControl class 91, 582
AcExcelApp class 14, 133, 590
AcExcelBorder data type 181
AcExcelBorderType data type 181
AcExcelCell class 14, 135, 593
AcExcelColumn class 14, 135, 594
AcExcelHorizontalAlignment data type 182
AcExcelObject class 14, 133, 596
AcExcelRange class 14, 133, 597
AcExcelRow class 14, 135, 606
AcExcelVerticalAlignment data type 182
AcExcelWorkbook class 14, 136, 608
AcExcelWorksheet class 14, 136, 611
AcExternalDataSource class 12, 130, 614
AcFlow class 5, 8, 76, 616
AcFlowPlacement data type 182
AcFont data type 183
AcFrame class 9, 74, 624
AcGroupOnType data type 183
AcGroupSection class 7, 69, 631
AcHorizontalPosition data type 184
AcHorizontalSize data type 185
AcImageControl class 10, 89, 637
AcImageEmbedType data type 186
AcIntegerControl class 10, 92, 641
AcIterator class 11, 12, 125, 643
ACL variable 776
AcLabelControl class 10, 93, 648
AcLayoutOrientation data type 186
AcLeftRightPageList class 9, 79, 149, 650
AcLinearFlow class 77, 652
AcLineControl class 10, 89, 656
AcLinePen data type 186
AcLineStyle data type 187
AcList class 11, 12, 124, 658
ACLs. See access control lists
AcMargins data type 187
AcMonth data type 188
AcMSSQLConnection class 10, 119
AcMultipleInputFilter class 12, 128, 663
AcObjectArray class 11, 12, 124, 667
AcOdaConnection class 10, 119, 670
AcOdaSource class 130, 672
AcODBCConnection class 10, 119, 680
AcOracleConnection class 10, 119, 684
AcOrderedCollection class 11, 12, 123, 687
AcPage class 8, 73, 691

I n d e x 853

AcPageHeaderOptions data type 188
AcPageList class 8, 78, 149, 698
AcPageNumberControl class 10, 93, 706
AcPageNumberStyle data type 188
AcParallelSection class 7, 70, 711
AcPercentage data type 189
AcPoint data type 189
AcProgressSQL92Connection class 10
AcQuerySource class 12, 131, 714
AcRectangle data type 190
AcRectangleControl class 10, 89, 717
AcReport class 7, 64, 142, 720
AcReportComponent class 4, 7, 61, 143, 736
AcReportSection class 7, 70, 145, 758
AcSearchType data type 190
AcSection class 5, 7, 66, 767
AcSequentialSection class 7, 71, 779
AcSimplePageList class 8, 79, 149, 783
AcSingleInputFilter class 12, 128, 784
AcSingleList class 11, 12, 124, 788
AcSize data type 191
AcSortingOptions data type 191
AcSqlQuerySource class 12, 131, 789
AcStaticIndex class 12, 125, 791
AcStoredProcedureSource class 12, 132, 793
AcSubPage class 8, 74, 797
AcTextClipStyle data type 191
AcTextControl class 10, 799
AcTextFormat data type 192
AcTextJustify data type 192
AcTextPlacement data type 193
AcTextQuerySource class 12, 132, 801
AcTextualControl class 90, 92, 803
AcTextVerticalPlacement data type 193
AcTitleBodyPageList class 9, 79, 149, 805
activating hyperlinks 207
AcTOCNodeType data type 194
AcTopDownFlow class 8, 78, 806
ActualPageCount value 189, 707
ActualPageN value 189
ActualPageNofM value 189, 707
ActualPageNumber value 189, 707
Actuate Basic

ambiguous method calls and 51
class documentation for 199
developing with 4, 16, 49
duplicate names and 20, 42, 43

editing restrictions for 36, 42
naming conventions for 41
scoping conventions for 20, 21, 24

Actuate Foundation Class Library 4
Actuate Foundation Class Reference xi, 199
Actuate Foundation Classes

See also classes
alphabetical listing of 199
categorized 6
data types specific to 154
determining availability of 24
extending functionality of 6
hierarchy described 5–6
instantiating 6
overview 4, 16, 17
predefined methods in 37, 60
programming language for 16
subclassing 6, 7, 18
summary of 60

AcTwips conversion constants 195
AcTwips data type 194
AcVerticalPosition data type 195
AcVerticalSize data type 196
AcVisitor class 14, 137, 809
AcVisualComponent class 80, 826
AcWordWrapStyle data type 196
AcXMLType data type 197
ad hoc conditions 802
ad hoc parameters 715
Add Method dialog 41
AddCategory method 320
AddContent method 741
AddCustomStyle method 404
AddDrawingPlane method 567
AddEmptyPoint method 431
AddFooter method 618
AddFrame method

AcFlow 618
AcPageList 148, 149, 702

AddGridLine method 263
AddHeader method 618
AddImage method 597
adding

browser scripting controls 90, 212
charts 220, 227
classes to designs 23
comments to code 41

854 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

adding (continued)
components to designs 20, 466, 720, 736
components to sections 469, 779, 781
components to slots 526, 527, 528, 779
connections 10, 472, 493
content components 142, 143, 741
cross-tab controls 84, 480
data controls 479, 507, 624
drawing planes 117, 567, 569, 576, 580
frames 9
hyperlinks 244
images 89, 564, 597, 637
page breaks 149, 523, 771, 774
page footers 148, 522, 618, 773
page headers 148, 523, 618, 776
parameters to queries 32, 499, 715, 761
persistent objects 47
report objects 720
sort keys 488, 489, 765
title pages 805, 824
titles to charts 221, 259, 308, 574
variables to designs 35
web functionality 10, 90

AddLevel method 792
AddPoint method 432
AddReport method 713
addresses, references as 48
AddressStruct structure 512
AddRow method 488
AddRowToBuffer method 517
AddSeries method 322
AddSortKey method 488
AddSubpage method 619
AddToAdjustSizeList method 203
AddToHead method 687
AddToTail method 687
AddTrendline method 433
AddWorkbook method 590
AddWorksheet method 608
AdjustChart method 225
AdjustContentVerticalGeometry method 627
AdjustFooter method

AcFlow 619
AcTopDownFlow 808

AdjustHorizontalGeometry method 834
AdjustSize method

AcFrame 203

AcVisualComponent 835
AdjustVerticalGeometry method 835
Advanced Chart Options dialogs 220, 224
AFC. See Actuate Foundation Classes
afc.rol 4
After components 524
After frames 145, 147, 522, 526
After slots

adding group sections to 631
getting number of items in 748
getting specific components in 524
instantiating components in 526
placing data sections in 522

Age_ArchiveBeforeDelete variable 723
Age_DeleteDependencies variable 723
Age_NoExpiration variable 723
Age_NoOptions variable 723
aggregate controls

computing values for 148, 169
creating 503
defined 502, 755
defining unique keys for 171
placing in data sections 522
retrieving content for 148

aggregate functions 169, 478
aggregate rows 478, 784
aggregate values. See aggregate controls
Aging_Options variable 723
aliased types 154
aliases 154, 511, 514, 831, 847
alignment constants

frames 182
objects in frames 184
spreadsheets 182
text 192, 193

Alignment property
AcLinearFlow 653
AcTopDownFlow 806

Alignment variable 652
AllocateCursor method 551
allocating database cursors 548, 551, 560
alternate text 212, 213
AlternateText property 212, 214
alternating colors 204
alternating pages 650
ambiguous methods calls 51
AnalysisType property 827

I n d e x 855

AnalyzeAsAutomatic value 827
AnalyzeAsDimension value 827
AnalyzeAsMeasure value 827
analyzing data 827
annual costs (example) 490, 492
annual reports 172, 184
Antialias property 565
Antialias variable 565
antialiasing 565, 568, 573
AnyClass type 46, 47, 462
applets 212
ApplyVisitor method 60, 467
archiving

changing rules for 722
setting rules for 721, 723, 733

area charts
See also charts
adding chart layers for 366
getting border styles for 339, 420
labeling points 161
plotting missing points for 375
plotting multiple series for 164
plotting values for 261, 306
setting point background color for 423
setting point border styles for 388, 425
setting point fill styles for 425
specifying as type 166

array names 35
arrays

creating 124, 667
incrementing 669
resizing 668

ASCII control codes 582
AsColumnHeader value 188, 523
AsPageHeader value 188, 523
assigning data types

to methods 41
to variables 35

assigning objects to variables 52–53
assigning values

to controls 148
to properties 26, 27, 32
to variables 26, 35, 53, 515

assigning variables
to classes 24, 35, 47
to objects 48
to variables 48, 52

attaching to data sources. See connections
attributes. See properties; property values
auto split constants 155
autoarchive rules

changing 722
setting 721, 723, 733

AutoFit method 611
Autofit method 594
AutoScrollbar value 155
AutoSort value 191, 761
AutoSplitVertical method 585, 628
AutoSplitVertical property

AcDynamicTextControl 583, 585
AcFrame 625, 628

AutoValueControl value 169
averages 221, 455, 460
axes labels

changing styles for 289
getting format patterns for 270
getting formatted text for 271
getting number of 279
getting placement of 270
getting styles for 270, 342
getting values for 271
placing 155, 288
setting format patterns for 287
setting styles for 289
setting values of 289

axes values
See also charts; specific axis type
adding grid lines for 263, 318
adding to charts 93, 156, 252
calculating major ticks for 273, 293, 295
changing line styles for 272
clearing crossing points for 266
clearing fixed 265
clearing tick intervals for 264
computing range for 269, 280, 285, 305
computing scale for 231, 267
computing single 261
crossing 157, 279, 304
customizing 221, 231
determining placement of 279, 305
displaying as stacked percentages 235
displaying side-by-side 235
fixing highest 281, 285, 297, 298
fixing lowest 281, 285, 299

856 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

axes values (continued)
forcing identical 257
forcing major ticks for 268, 285
generating sample data for 228, 229
getting axis type 268, 282, 283, 351
getting grid lines for 269, 278
getting highest 275, 330
getting line styles for 272
getting lower bounds for 276
getting number of ticks for 274, 277
getting origins of 279
getting parent layer for 272
getting specific 409, 410
getting tick intervals for 274
getting tick placement for 274, 278
getting titles for 280, 281
getting trendline values for 103, 275, 276,

332, 333
getting upper bounds for 275
grouping 261
initializing 221
labeling. See axes labels
placing automatically 156
resetting tick intervals for 284
reversing 242, 255
scaling 97, 281, 285, 286, 297, 299
setting data type for 284
setting inner margin ratio for 286
setting line styles for 291
setting number of ticks for 294, 301
setting tick placement for 296, 302
setting title styles for 307
setting titles for 308
suppressing zero values for 278, 303

axis crossing points 266, 279, 304
axis letter constants 156
axis placement constants 156

B
background colors

changing flow 202
defining frame 201, 202
defining text 180
filling drawing areas with 176, 565
getting chart legend 247
getting drawing 568
getting spreadsheet 598

resetting chart 366
setting chart 236, 253, 381, 423
setting chart legend 255
setting crosstab 480, 481
setting flow 617
setting spreadsheet 600

background fill styles
getting 3-D floor 347
getting 3-D wall 346, 347
getting chart 243, 337, 420
setting 3-D floor 398
setting 3-D wall 399
setting as solid color 423
setting chart 254, 382, 425

BackgroundColor member 180
BackgroundColor property

AcBaseFrame 202
AcCrosstab 481
AcDrawing 565
AcFlow 617
AcTextualControl 803

BackgroundColor variable
AcBaseFrame 201
AcCrosstab 480
AcDrawing 565
AcFlow 617

backward compatibility 761
balanced tree collections 215, 218
balanced trees 215
BalanceFlows method 211
BalanceFlows property 209, 211
balloon help 475, 476
BalloonHelp method 476
BalloonHelp property 475
bar border styles 326, 348, 368, 400
bar chart layers 261
bar charts

See also charts
adding chart layers for 366
adjusting bar widths for 246
creating 222
determining bar heights for 286, 305
determining if stacked series in 357
drawing lines between points in 358, 385,

446, 449
getting bar shape for 323
getting border styles for 339, 420

I n d e x 857

getting gap ratio for 324
getting line styles for 445
getting line widths for 329
getting overlap ratio for 344
labeling points 161
plotting bars as lines in 358, 383, 446, 448
plotting missing points for 375
plotting multiple series for 164
plotting values for 261
resetting overlap for 395
reversing axes values for 255
setting bar shapes for 157, 362
setting gap ratio for 364
setting line styles for 447
setting line widths for 372
setting marker size for 373
setting overlap ratio for 394, 395
setting point border styles for 388
setting point styles for 423, 425
specifying as type 166
stacking data series for 323

bar fill styles 327, 349, 369, 401
bar shape constants 157
bar shapes 323, 362
base classes 4, 6, 18, 19
base layers

See also chart layers
adding categories to 320
adding data series 343, 355, 395, 396, 437
adding down bars 326, 327, 369, 387
adding drop lines to 327
adding high-low lines to 328, 371, 385
adding up bars to 348, 349, 387
adjusting layouts for 225
changing appearance of 234
changing bar borders in 400
changing chart types for 391, 392
changing line colors in 447
changing line styles for 390
changing line widths for 372
changing point border colors in 388
computing axes values for 261
creating 253
customizing axes values for 231
customizing data values in 232
determining axis type for 350, 351
forcing identical axes scales for 257

formatting labels in 288, 342, 365, 393
getting categories in 324, 334
getting labels for 325
getting plot area border styles for 337
getting plot area fill styles for 337
getting references to 242, 246
grouping data categories for 324
labeling data points in 389, 393
limiting number of points in 374
localizing 251
plotting missing points for 376
removing categories from 360
setting chart type for 367
setting drop line styles for 370
setting gaps for bars in 394
setting marker size for 373
setting plot area border styles in 382
setting plot area fill styles in 381
specifying as type 158
testing for 356

BaseAndOverlayScalesAreMatched
method 226

Basic reports. See reports
Before components 525
Before frames 145, 147, 521, 526
Before slots

getting components in 525
getting number of items in 748
instantiating components in 526
placing data sections in 521

binary searches 215
BindColumn method 541
BindDataRow method 498
BindParameter method

AcDBCursor 543
AcDBStatement 552

BindStaticParameters method 499
BindToFlow method 204
bitmaps 565, 572
blank-numbered pages 699
BMP files 637
BMP formats 572
BodyPage property 805
Bold attribute 183
Boolean operators 157
Border member 180

858 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

Border property
AcBaseFrame 202
AcFlow 617
AcTextualControl 803

border style constants 169, 173
border type constants (Excel) 181
Border variable

AcBaseFrame 201
AcFlow 617

borders
adding spreadsheet 181, 601
changing color of 247, 337, 340
defining frame 201, 202
drawing 173
getting bar 326, 348
getting chart 243
getting chart plot area 337
getting data point 420
getting default style for 339
getting legend 247
getting origins of 629
getting spreadsheet 598
resetting 367
setting bar 368, 400
setting chart 253, 382, 387, 424
setting crosstab 169, 480, 481
setting flow 617
setting legend 255
turning off 368, 382, 387

Bottom member
AcMargins 187
AcRectangle 190

bounding rectangles. See enclosing rectangles
bracket notation 512
browser clipping constants 155
browser code

appending 723, 724
defining 213, 732
displaying 213
getting 214, 728
inserting in designs 212

Browser Options dialog 24
browser scripting controls

adding to HTML forms 626, 628
adding to reports 90, 212
controlling clipping in 155, 213
displaying text in 155, 213

selecting 213
BrowserClipping property 213
BrowserCode method 214
BrowserCode property 212, 213, 214
browsers. See web browsers
bubble charts

See also charts
getting bubble size for 323
labeling data points in 163
setting bubble size for 363
setting values for 417
specifying as type 166

buffering data 128, 516
buffers

adding rows to 517
creating 516
data sorter for 518
flushing 492, 516
getting first row in 517
getting number of rows in 517

Build method 5, 143, 145, 741
BuildFromRow method

AcChart 226
AcReportComponent 742
content creation and 5, 143, 147, 148

building reports 140, 142, 741, 742, 759
See also reports

BuildSampleCategoryScaleData method 228
BuildSampleValueScaleData method 229
BuildText method 585
bulleted lists 584
BundleRox variable 723
bundling report files 723
bursting 722, 732, 735

C
calculations 148, 512

See also computed values
callable methods 60
cancellation messages 41
CanFitFrame method 619
CanFitHeight method 620
CanIncreaseHeight method 836
CanIncreaseHeight property

AcFrame 625
AcVisualComponent 828, 836

I n d e x 859

CanIncreaseWidth method 836
CanIncreaseWidth property

AcBasePage 209
AcFrame 625
AcVisualComponent 828, 836

CanModifyOrderByClause property 801
CanMoveLeft method 836
CanMoveLeft property

AcFrame 625
AcVisualComponent 828, 836

CanMoveUp method 836
CanMoveUp property

AcFrame 625
AcVisualComponent 828, 836

CanReduceHeight method 837
CanReduceHeight property

AcFrame 626
AcVisualComponent 828, 837

CanReduceWidth method 837
CanReduceWidth property

AcFrame 626
AcVisualComponent 828, 837

CanSeek method 489
CanSortDynamically method 489
CanSplitVertically method 837
CascadeSecurity property 771
cascading page security 771
case statements 469
categories

See also charts
accessing chart layer 310
adding to chart layers 310, 320, 352
adjusting gaps between 246
customizing 221, 232
drawing up or down bars for 387
empty chart layers and 321
empty points and 403
generating sample data for 228
getting index of 310
getting number of 334
getting parent layer for 311
getting specified 324
getting sum of values in 311
getting unique keys for 311
grouping values for 324
labeling. See category labels
linking to 245

plotting between ticks 283, 306
plotting values for 232, 261
removing 360, 411
setting unique keys for 312

category axis
See also axes values; charts
adding grid lines for 264, 282, 318
described 261
getting data points for 331, 407
getting gap ratio for 324
labeling 290
setting gap ratio for 364
testing for 282, 351

category keys 311, 312, 324
category label source constants 162
category labels

changing 312
formatting 287, 365
getting format patterns for 270, 325
getting formatted text for 271, 311
getting number of 279
getting value of 271, 311
localizing 312
placing 161
setting values for 290, 312

category lists 310, 320, 352
categoryLabelValue parameter 321
cells. See cross-tab controls; Excel

spreadsheets
centering frames 183
centering text 192, 193
centimeters 195
changes, undoing 37
changing

access control lists 729, 747
autoarchive rules 722
axes line styles 272
category groupings 325
chart backgrounds 243
chart borders 243
chart label formats 287
chart label styles 270, 289, 342
chart label values 289, 312
chart titles 250, 259
components 19
data point borders 420
data point fill styles 420

860 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

changing (continued)
data point label placement 413
data point label styles 423
data types 36
data values 502, 503
drop line styles 327
grid lines 273, 277, 316
high-low line styles 328
legend appearance 247, 248
object values 49
plot area borders 337
property values 476, 502, 503
security IDs 737
series key values 440
series labels 441
series line colors 447
sort key values 146

character conversions 212
chart axis label placement constants 155
chart axis letter constants 156
chart axis placement constants 156
chart bar shape constants 157
Chart Builder 220, 224
chart categories. See categories
chart comparison operator constants 157
chart components 10, 220, 817

See also charts
chart definitions 224
chart layer type constants 158
chart layers

See also specific types
accessing 101, 261
accessing categories for 99, 310
accessing data series for 431
adding categories to 310, 320, 352
adding data points to 374
adding data series to 322, 354, 375, 395
building 221, 253, 319
changing appearance of 221
checking for identical y-axis scales in 226
computing values for 93, 230
creating 3-D charts and 258
creating series styles and 443
customizing 234
defining series keys for 343
determining axis type for 351
disabling 234, 237

enabling 220, 241
getting border styles for 337
getting categories in 311, 324, 334
getting chart type for 326
getting data series for 331, 334, 342
getting default border styles for 339
getting default label styles for 342
getting default marker size for 329
getting grouping definitions for 324, 343
getting index of 329
getting label formats for 325, 340, 343
getting label placement for 341
getting line styles for 340
getting number of 248, 249
getting number of points in 331
getting overlap ratio for 344
getting parent 272, 434
getting parent chart for 325
getting plot area border styles for 337
getting plot area fill styles for 337
getting plot areas for 338, 339
getting point label values for 341
getting references to 242, 246, 249
getting series placement for 344
getting series styles for 344
getting trendline values for 103, 332, 333
getting type of 329, 356, 357
getting x-axis for 350
getting y-axis for 350
initializing 260
labeling categories in 365
labeling data points in 389, 390, 391, 392
plotting missing points for 334, 375, 376
removing categories from 360
removing data series from 361
reversing axes values and 255
setting border styles for 368, 382, 387, 400
setting category gap ratio for 364
setting chart type for 366
setting marker size for 373
setting plot area fill styles for 381, 382
specifying type 158
testing for 250

chart legend placement constants 158
chart marker constants 158
chart marker shape constants 159
chart missing points constants 160

I n d e x 861

chart objects 85, 220, 227, 749
See also charts

chart pie explode constants 160
chart point highlight constants 161
chart point label placement constants 161
chart point label source constants 162
chart series. See data series
chart series placement constants 164
chart status constants 164
chart tick calculation constants 165
chart tick placement constants 165
chart type constants 166
ChartAxisLabelPlacementLeftOrBottom

value 156
ChartAxisLabelPlacementNextToAxis

value 156
ChartAxisLabelPlacementNone value 156
ChartAxisLabelPlacementRightOrTop

value 156
ChartAxisLetterX value 156
ChartAxisLetterY value 156
ChartAxisLetterZ value 156
ChartAxisPlacementAuto value 156
ChartAxisPlacementCustom value 157
ChartAxisPlacementLeftOrBottom value 157
ChartAxisPlacementRightOrTop value 157
ChartBarShapeElliptical value 157
ChartBarShapeFlat value 157
ChartBarShapeHexagonal value 157
ChartBarShapeOctagonal value 157
ChartBarShapeRectangular value 157
ChartBarShapeTriangular value 157
ChartComparisonOperatorEQ value 157
ChartComparisonOperatorGE value 157
ChartComparisonOperatorGT value 157
ChartComparisonOperatorLE value 158
ChartComparisonOperatorLT value 158
ChartComparisonOperatorNone value 158
charting accumulated and actual costs 490
ChartLayerTypeBase value 158
ChartLayerTypeOverlay value 158
ChartLayerTypeStudy value 158
ChartLegendPlacementBottom value 159
ChartLegendPlacementBottomLeft value 159
ChartLegendPlacementBottomRight

value 159
ChartLegendPlacementLeft value 159

ChartLegendPlacementNone value 159
ChartLegendPlacementRight value 159
ChartLegendPlacementTop value 159
ChartLegendPlacementTopLeft value 159
ChartLegendPlacementTopRight value 159
ChartMarkerShapeCircle value 159
ChartMarkerShapeClose value 159
ChartMarkerShapeCross value 159
ChartMarkerShapeDiamond value 159
ChartMarkerShapeHigh value 159
ChartMarkerShapeLow value 159
ChartMarkerShapeNone value 159
ChartMarkerShapeOpen value 160
ChartMarkerShapePlus value 160
ChartMarkerShapeSquare value 160
ChartMarkerShapeStar value 160
ChartMarkerShapeTriangleDown value 160
ChartMarkerShapeTriangleUp value 160
ChartMissingPointsDoNotPlot value 160
ChartMissingPointsInterpolate value 160
ChartMissingPointsPlotAsZero value 160
ChartPieExplodeAllSlices value 160
ChartPieExplodeNone value 161
ChartPieExplodeSpecificSlices value 161
ChartPointHighlightExplode value 161
ChartPointHighlightNone value 161
ChartPointLabelPlacementAbove value 161
ChartPointLabelPlacementAuto value 161
ChartPointLabelPlacementBelow value 161
ChartPointLabelPlacementCenter value 161,

162
ChartPointLabelPlacementInsideBase

value 162
ChartPointLabelPlacementInsideEnd

value 162
ChartPointLabelPlacementLeft value 162
ChartPointLabelPlacementNone value 162
ChartPointLabelPlacementOutsideEnd

value 162
ChartPointLabelPlacementRight value 162
ChartPointLabelSourceCategory value 162
ChartPointLabelSourceCategoryAnd

Percentage value 163
ChartPointLabelSourceCustom value 163
ChartPointLabelSourcePercentage value 163
ChartPointLabelSourceSeries value 163

862 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

ChartPointLabelSourceSeriesAndPercentage
value 163

ChartPointLabelSourceXValue value 163
ChartPointLabelSourceYValue value 163
ChartPointLabelSourceYValueAnd

Percentage value 163, 164
ChartPointLabelSourceZValue value 164
charts

See also specific types
adding grid lines to 263, 282, 314
adding titles to 221, 259, 308, 574
adding translucent text to 567
building dynamically 220, 258, 260
building with no data sources 228, 229,

230
changing borders for 337, 340
changing data displayed in 221, 227
changing grid lines for 273, 277
changing layouts for 221, 225, 234
changing plot area backgrounds for 337
changing point label line styles for 341
changing titles for 250
changing type displayed 221
clearing values 265
comparing values in 157
computing minimum/maximum values

for 230, 297, 299
cost-accounting example for 490, 492
creating 85, 220, 227, 749
customizing 231, 232, 234
defining trendlines for 115, 452
determining layout of 236
disabling/enabling links for 237, 240
displaying 220, 222
drawing 84, 117, 238, 243, 572, 574
generating sample data for 228, 229
getting border styles for 243
getting data types for 268
getting fill styles for 243
getting parent 325
getting titles for 250, 280, 281
getting type 326
grouping data for 171, 324
highlighting data points in 161
initializing 220, 260
life cycle for 220
limiting size of 331, 374, 375

localizing 222, 251
missing points in 160, 577
overriding data types for 284
placing multiple series in 395
placing tick marks in 165
plotting empty points for 406, 431, 436
plotting multiple series for 164
plotting values for 220, 226, 261, 577
providing specialized processing for 817
reversing axes values for 242
setting background colors for 236, 253,

381, 423
setting borders for 253, 382, 387, 424
setting data types for 284
setting fill styles for 253, 254, 425
setting label styles for 289
setting status of 164, 258
setting title styles for 259, 307
setting type 166, 366
specifying axes type for 156
specifying marker shape for 158, 159
suppressing zero values for 278, 303
testing for links in 251

ChartSeriesPlacementAsPercentages
value 164

ChartSeriesPlacementOnZAxis value 164
ChartSeriesPlacementSideBySide value 164
ChartSeriesPlacementStacked value 164
ChartStatusBuilding value 165
ChartStatusFinished value 165
ChartStatusFinishedBuilding value 165
ChartStatusUninitialized value 165
ChartTickCalculationAuto value 165, 293
ChartTickCalculationExactInterval

value 165, 295
ChartTickCalculationMinimumInterval

value 165, 293
ChartTickPlacementAcross value 166
ChartTickPlacementInside value 166
ChartTickPlacementNone value 166, 296, 302
ChartTickPlacementOutside value 166
ChartTypeArea value 166
ChartTypeBar value 166
ChartTypeBubble value 166
ChartTypeIsStackable method 323
ChartTypeLine value 166
ChartTypeNone value 166

I n d e x 863

ChartTypePie value 166
ChartTypeScatter value 166
ChartTypeStep value 166
ChartTypeStock value 166
checkerboard fill patterns 177
checkpoints (page lists) 704, 705
class hierarchy 5–6
class IDs 205
class library. See Actuate Foundation Class

Library
class names 20, 50, 205
Class page 23
class protocols 5–6
class scope 19, 20
Class statement 16
Class Variable page 34, 35, 36
class variables 24, 34, 36
classes

accessing 19, 50
alphabetical listing of 199
assigning as AnyClass type 47
associating variables with 24, 35
building charts and 220
building reports and 4, 5
calling destructors for 467
declaring 16–17
declaring methods for 37
declaring variables as 47, 53
defining object attributes for 24, 26
defining private 23
defining structure of 61
deleting methods in 43
deleting variables for 37
deriving 6, 18
developing report components and 4, 16
displaying information about 22–24
displaying methods in 38
displaying properties for 22
displaying variables for 26, 34
extending functionality of 6, 37
getting objects in 53
inheriting from 18
instantiating 16, 19
nesting 16, 19, 21
overriding methods in 39
overview 16
referencing 18, 19, 20

referencing methods in 50
relationships described 17
reusing 21
scope-resolution operator for 20
scoping conventions for 19, 20
visibility of 18, 19, 20

cleanup code 141, 721, 765
ClearCustomLabelFormat method 405
ClearCustomLabelValue method 405
ClearIntercept method 453
ClearMajorTickInterval method 264
ClearMaximumValue method 265
ClearMinimumValue method 265
ClearOtherAxisCrossesAt method 266
ClearSortKeys method 674
ClearValues method 406
Clip member 193
ClipLeading value 192
clipped data points 293, 298, 300
clipped frames 149
clipping text 155, 191, 193, 213
ClipToControlSize value 155
ClipTrailing value 192
Close symbols (charts) 159
CloseConnection method 489
CloseCursor method 543
closing

connections 143, 146, 473, 489, 492, 772
data adapters 491
data streams 143, 146, 763
database cursors 543
input sources 491

closing values 397, 402
code

adding browser scripting controls and 212
adding comments to 41
adding to designs 145
bracket notation in 512
changing control attributes and 474
creating 16
designing reports and 16
editing restrictions for 36, 42
generating DHTML 214, 732
getting values for 40
handling invalid methods in 41
opening multiple connections and 769
overriding methods and 39

864 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

code (continued)
proprietary language for 4
referencing methods and 50
retrieving data from 490, 540
reusing 18
writing cleanup 141, 721, 765
writing startup 141, 496, 720

collection classes 11, 12, 122
collections

accessing content components in 749, 750
accessing objects in 464, 667
adding objects to 216, 217, 218, 687, 689
comparing objects in 462
copying contents of 463
counting objects in 463
creating 122, 215, 462
defined 462
defining list interface for 658, 788
finding objects in 217, 463
getting object keys for 217
getting position of objects in 688
getting specific items in 688
indexing large 791
iterating through 464, 643, 658
organizing objects in 123, 215, 687
removing items from 464, 690
setting maximum size of 215
setting positions for items in 690

Color attribute 183
color constants 167
Color member

AcCrosstabBorderStyle 169
AcDrawingBorderStyle 173
AcDrawingLineStyle 179
AcExcelBorder 181
AcLineStyle 187

Color1 member 178
Color2 member 178
colors 175, 204, 565

See also background colors; fill colors
column headers 188
column headings 480, 481, 523
column names 146, 511
columnar report layouts 74, 209, 797
ColumnHeadingsBorder property 481
ColumnHeadingsBorder variable 480

columns
adding to cross tabs 170
adding to spreadsheets 135, 594
binding to data rows 541
containing two key values 520
counting 557
defining as group keys 633, 634
defining maximum lengths of 534
defining report 510
defining sort key 488, 489, 765
displaying images and 89, 637
enabling auto-fit option for 611
getting values of 511
getting widths 594
labeling cross tab 481
looking up values for 784
mapping to rows 511
methods as 512
referencing with aliases 511
returning from data streams 632
setting date/time values from 531
setting values for 515
setting widths 595
sorting on 146, 489, 631

CommandText variable 672
comments 41
Commit method 674
CommittedToFlow method 772
committing transactions 674
Compare method

AcCollection 462
AcDataRowSorter 519

CompareKey method 216
CompareKeys method 520
comparing

data 157, 519
key values 216
objects 462

comparison operators 157
CompatibleSort value 191, 761
compiling 16, 43
completion notices 142
component classes 16, 466, 826
component palette. See Component Toolbox
component references 521
component relationship map 141

I n d e x 865

Component Toolbox 6
components

See also visual components
accessing contents 205, 749
adding to designs 20, 466, 720, 736
adding to sections 469, 779, 781
adding to slots 526, 527, 528, 779
aligning in frames 184
assigning variables to 35
changing 19
controls vs. 474
creating 143, 736
customizing 6, 809
defining characteristics of 80
defining offset for 827
detaching from containers 744
determining if container 753
determining if persistent or transient 467
generating XML data for 738
getting associated data stream for 749
getting associated report for 751
getting content 749, 750
getting current page for 751
getting number of items in 748
getting top-level frame for 750
instantiating multiple 470
instantiating top-level 143
instantiating with conditions 145, 469
pinning/unpinning 741, 747, 756
providing specialized processing for 809,

817, 824
recursively traversing 817
referencing 19, 144–145
removing 741
resizing 185, 203
searching for 190, 739, 831, 847
searching multiple 756
selecting 831, 847
specifying position of 831
testing for content objects in 753

componentVariable property 826, 831
computed columns 632
computed values 480, 512, 514, 632, 742
ComputeLowestSplit method 837
ComputeMinMaxDataValues method 230
ComputeScale method 267
ComputeScales method 231

concatenation 664
concrete classes 6
conditional section components 68, 469
conditional sections

adding components to 469
creating 68, 469
defined 768
nesting between sequential sections 782
providing specialized processing for 817
setting properties for 470

conditional statements 471
ConditionIsTrue method 471
confetti fill patterns 177
ConfigKey property 534
Connect method 472
connection classes 10, 118, 533
connection components

See also connections
adding 758, 759, 769, 774
instantiating 118, 472, 493, 533, 774

connection objects 55
See also connections

Connection property
AcDataAdapter 487
AcSection 771

Connection slot
adding components to 493
creating report sections and 759, 769
instantiating components in 774
opening connections in 759, 774

connections
closing 143, 146, 473, 489, 492, 772
creating 10, 472, 493, 774
customizing 492, 494
displaying error messages for 533
establishing database 472, 533, 769
establishing ODA driver 670
failing 473
getting associated cursor for 546
getting data adapter 492
getting database 500
getting error conditions for 534, 535, 536
getting error messages for 535
getting report-specific 748
getting shared 774
initializing 145
multiple data streams and 769

866 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

connections (continued)
opening 494, 769, 774
overview 759
selecting 493
setting run-time properties for 534
setting up DB2 database 537, 660
setting up ODBC database 680
setting up Oracle database 684
sharing 494, 759, 769
specifying data adapter 487, 496
testing 473

ConnectionString property 680
ConnectionString variable 680
constant controls 474, 624, 755
constants 19
constructors 468
Container variable 739
containers

building reports and 736
components as 144
dropping components in 744, 745
embedding objects in 61
finding 745
frames as 9
getting component position in 839, 840,

841
getting references to 748, 838, 840
instantiating contents 145
moving components in 844, 845
nesting objects in 466
removing components from 467
reports as 7
retrieving data rows from 146, 147
testing for 753
unpinning components in 741

Contains method 463
content components

adding 142, 143, 741
building dynamic 742
conditionally selecting 782
creating nested groups and 631
finding 745
generating XML data for 738
getting first 749
getting from collections 749, 750
getting number of items in 748
instantiating 522, 781, 782

iterating through 749
providing specialized processing for 817
testing for 753, 754

Content frames 527, 750
content hierarchy 699
content objects 142, 143
Content property

AcReport 724
AcSequentialSection 780

Content slots
adding chart controls to 227
adding group sections to 631
getting components in 727
instantiating components in 527
placing data sections in 522

content-creation protocol 143–147
ContentList variable 770
ContentOffset variable 827
context blocks 212
ContiguousPageFooter property 523
ContiguousPageFooter variable 522
ContinueBuilding value 148, 743
control classes 9, 10, 80, 474
control codes 582
control names 21
controls

See also specific type
accessing 826
accessing variables and methods for 49
adding 9, 201, 474, 507, 624
assigning values to 148, 479
building 10, 502
changing page size and 691
changing properties for 476
changing values of 476
customizing 10
declaring variables for 52
default scope for 21
defined 474
defining appearance of 26, 83
detaching from containers 745
determining number of rows in 169
displaying 832, 835
displaying graphical elements and 656,

717
displaying hints for 475, 476
formatting values for 477

I n d e x 867

getting number of 748
getting references to 205
getting values of 476
hiding 835
moving 844, 845
nesting 21
providing specialized processing for 817
relationship to data rows 502
resizing 846
retrieving content for 146, 147, 502

converters 212
coordinates 189
Copy method

AcCollection 463
AcIterator 644

copying
chart series styles 443
iterators 644
reports 721
variables 48

cost-accounting example 490, 492
counters 25
counting

columns 557
controls 748
data rows 739, 752
parameters in SQL statements 559
report pages 704, 709

CREATE TABLE statements 556
CreateNode method 216
creating

access control lists 737, 776
aggregate rows 784
charts 85, 220, 227, 749
collections 215, 462
components 143, 736
connections 10, 472, 493, 774
cross tabs 84, 480
data buffers 516
data filters 127, 506, 663, 665, 785
data rows 129, 493, 509, 784
data sources 129
data streams 12, 145, 764
database cursors 540, 547, 551
database statements 533, 536, 550, 560
Excel spreadsheets 13, 133, 590, 591
hierarchical object lists 215, 219

hyperlinks 830
labels 47, 48
lists 658, 788
nested groups 631, 632
objects 5, 7, 16, 46, 47
page layouts 148
persistent objects 47
queries 132, 498, 509, 801
reports 748, 755, 761, 779
sort keys 488, 489
stored procedures 793
subreports 712, 713
table of contents 735, 778
trendlines 115, 452
user-defined methods 40
variables 35–36
web pages 10, 90
XML documents 738

cross-tab border style constants 169
Crosstab Builder 481
cross-tab column placement constants 170
cross-tab controls

formatting data in 172
grouping data in 171
including summary data in 170
instantiating 84, 480
placing multiple values in 170
setting page breaks for 694

cross-tab row placement constants 170
cross-tab value layout constants 170
crosstabulation. See cross-tab controls
currency controls 90, 484, 818
Currency values 484
current page 700, 702
current page number 189, 706, 709, 710
cursor variables 551, 556
CursorParameter variable 794
cursors (SQL)

accessing 119, 540
accessing ODA data sources and 678
allocating 548, 551, 560
assigning variables to 543, 552
binding to data rows 498
binding to SQL statements 499
closing 543
creating 540, 547, 551
defined 119, 540

868 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

cursors (SQL) (continued)
deleting 545
getting associated data source 499
getting connections for 546
getting statements for 500, 547
opening 500, 548, 560

example for 548, 551, 560
retrieving data rows from 129, 497, 546
testing if opened 547

curved lines 565
See also drawing elements

custom browser code
See also browser scripting controls
appending 723, 724
defining 213, 732
displaying 213
getting 214, 728
inserting in designs 212

custom data types 36
custom point label values 163
CustomAngle member 180
CustomDHTMLFooter method 628
CustomDHTMLFooter property 626
CustomDHTMLHeader method 628
CustomDHTMLHeader property 626
CustomizeAxes method 231
CustomizeCategoriesAndSeries method 232
CustomizeChart method 234
CustomizeLayers method 234
CustomizeSeriesStyles method 235
customizing

access control lists 737, 767
chart layers 234
charts 231, 232, 234
components 6, 809
connections 492, 494
controls 10
data adapters 488, 760
data filters 490, 506, 509, 664
data point labels 412, 413
data points 403, 404, 418, 443
data rows 493, 509
data series 443
data sources 490, 509, 529
data streams 760
frames 528
page layouts 71

queries 715
report sections 760
reports 39, 60, 137, 145
sort order 488

D
DashDotDotLine value 187
DashDotLine value 187
dashed line styles 176, 179, 186
DashLine value 186
data

See also data controls
accessing 40, 486, 489, 495
adding to group sections 146
adding to reports 142, 143, 741
analyzing 827
buffering 128, 516
comparing 157, 519
displaying 10, 142, 501, 755
extracting 810, 814
filtering. See data filters
formatting 172, 477, 504
generating sample 228, 229
grouping 171, 183, 521, 631
making multiple passes over 749
organizing 7, 767
plotting chart 220, 226, 261, 577
processing 12
retrieving from data sources 12, 509, 529
retrieving from external sources 12, 614
returning formatted 509
returning from queries 12, 540
setting values for 90
sorting 146, 488, 489, 631, 663
summarizing 503

data adapter classes 486, 506, 529
data adapter components 126, 760
data adapters

advancing fetch position for 495
closing 491
closing connections for 489
counting 666
creating 486, 663, 764, 784
customizing 488, 760
defining connections for 487, 493, 496
defining input filters for 506
enabling dynamic sorting for 489

I n d e x 869

fetching data from 490, 495
flushing data buffers for 492, 516
getting connections for 492
getting fetch position for 493
instantiating data rows for 493
opening 487, 493, 496, 785
opening connections for 494
overview 663, 785
reading from multiple 128
reading input for 663, 784
setting input position for 487
setting properties for 487
specifying 663, 785
specifying data rows for 488
specifying random access for 489
specifying sort keys for 488, 489, 765

data buffers. See buffers
data categories. See categories
data collector 483
data controls

See also controls
adding to frames 479, 507, 624
building if no data rows 501, 503
building multiple data rows and 503
building single data rows and 503
defined 474
displaying currency values and 484
displaying date and time values in 531
displaying numeric values in 562, 641
formatting values for 477
getting format patterns for 505
getting values for 206, 478
instantiating 10, 90, 501
providing specialized processing for 818
setting properties for 504
setting values for 501, 502, 504, 755

data extraction subroutines 810, 814
data filter algorithms 663
data filter classes 12, 506, 663, 784
data filters

accessing data and 516
buffering data rows for 516
building for multiple data sources 663
closing input adapters for 491
creating 127, 506, 518, 665, 785
customizing 490, 506, 509, 664
defined 486

getting input adapters for 786
opening input adapters for 496
retrieving run-time values and 32
setting input adapters for 787
sorting with 761
specifying parameters as 32

data frames
See also frames
adding 74
customizing processing for 818
getting 211, 620
testing for 207, 621

data grouping mode constants 171
data grouping unit constants 171
data point labels

adding 161, 406
changing placement of 413
checking for custom 407, 410
clearing formats for 405
customizing 413
formatting 388, 412, 450
getting formats for 340, 407, 445
getting placement of 341, 423
getting source 341, 446
getting styles 342, 423
getting text for 408
removing custom 405
setting line styles for 389
setting placement of 390, 430
setting source for 391, 450
setting styles for 392, 430
turning off 390

data points
See also charts
adding grid lines to 315, 316
adding to charts 110, 112, 220, 319, 320
appending to series lists 432, 437
calculating values for 162, 230
changing border colors for 340
changing decimal places in 389
changing line styles for 340
checking for custom styles for 410
clearing values for 406
creating series styles for 443
customizing 403, 404, 418, 443
deleting 439
determining if empty 411

870 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

data points (continued)
drawing bars between 261, 359
drawing markers at 359, 386, 447, 449
fitting trendlines to 456, 460
fixed values and clipped 298, 300
getting background fill for 420
getting border styles for 339, 420
getting chart category for 407
getting custom styles for 408
getting highest values for 330
getting line styles for 340, 445
getting line widths for 329
getting lowest values for 332, 333
getting marker fill colors for 421
getting marker line colors for 421
getting marker shapes for 422
getting marker size for 422
getting missing 334
getting number of 331, 434
getting references to 435
getting series for 409
getting values for 409
handling missing 160
highlighting 161
labeling. See data point labels
placing for multiple series 344
plotting empty 406, 431, 436
plotting lines between 358, 385, 446, 449
plotting missing 375, 376
plotting single 403, 418
setting background colors for 423
setting border styles for 387, 424
setting chart categories and 261, 359
setting fill styles for 425
setting line styles for 389, 447
setting line widths for 372
setting marker fill colors for 426
setting marker line colors for 426
setting marker shape for 158, 159, 427
setting marker size for 428
setting maximum number of 374
setting values for 416, 417
tick intervals and clipped 293

data ranges
accessing 612
adding to spreadsheets 597, 604, 612
charting 238, 261, 269, 285

defining level breaks for 632
getting contents of 600
grouping data for 171

data row components 132
See also rows

data row variables
accessing 513
binding to columns 541
building frames and 526, 527, 528
defining 509
getting values of 511
manipulating 514
mapping to 511
overview 511

data rows. See rows
data section components 521
data sections

See also group sections; report sections
conditionally building frames for 527
creating 521
customizing processing for 528
defined 521
getting headers or footers in 525, 526
providing specialized processing for 819
setting properties for 523

data series
See also charts
accessing 431
adding to chart layers 114, 322, 354, 395,

437
adding trendlines for 452
changing fill patterns for 345
changing line colors for 447
creating styles for 221, 443
customizing 113, 221, 232, 235, 344, 443
deleting 361
determining if stacked 357
empty chart layers and 322
generating data points for 220
getting data points for 435
getting grouping definitions for 343
getting label formats for 343
getting labels for 434
getting line styles for 445
getting number of 331, 334
getting number of points for 331, 434
getting overlap ratio for 344

I n d e x 871

getting parent chart layer for 434
getting placement for 344
getting references to 342, 409
getting styles for 344, 435
getting sum of values in 435
getting trendlines in 434
getting unique values for 433
highlighting points for 404, 418
labeling 393, 441
plotting single point for 403, 418
removing data points from 439
removing trendlines from 440
setting line styles for 447
setting maximum number of 375
setting number of points for 374
setting overlap for 394, 395
setting unique keys for 440
stacking 323

data series keys 433, 440
data series placement constants 164
data sets. See result sets
data sorter component 518
data source classes 497, 529, 614
data source components 129, 497, 529

See also data sources
data sources

See also input sources
accessing external 130, 614, 670, 672
accessing multiple 494, 663
building generic 614
connecting to. See connections
creating 129
customizing 490, 509, 529
defined 486
defining custom sorting for 488
determining state of 529
getting cursors for 499
reading from 12, 516, 529, 793
returning formatted data from 509
tracking position in 529, 530

data stream classes 12, 126
data stream components 764

See also data streams
data streams

as transient objects 55
building reports and 699, 711, 784
closing 143, 146, 763

connecting to 145, 748
converting to random access 516
creating for SQL queries 511
creating for stored procedures 793
customizing 760
defining adapters for 126, 486, 663, 784
filtering 506, 518, 663, 784
functionality of 486
getting 749, 764
instantiating 12, 145, 764
life cycle for 760
locating connections for 748
opening 145, 766
overview 759
placing connections in 759, 769
reading rows from 145, 632, 758

data structures. See structures
data type constants 172
data type mappings

DB2 databases 538, 661
input parameters 554
ODBC database 681
Oracle databases 685
output parameters 544, 554

data types
assigning to methods 41
assigning to variables 35
changing 36
converting ODA 673, 675
declaring object reference variables and 52
defining return values for 545, 555
getting chart scale 268
listed 154
overriding 284
overview 154
selecting externally defined 36
setting chart 284
setting values for columns and 515
stored procedures and 543, 544, 553, 554
subclassing data controls and 501

database classes 497
database cursors

accessing 119, 540
accessing ODA data sources and 678
allocating 548, 551, 560
assigning variables to 543, 552
binding to data rows 498

872 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

database cursors (continued)
binding to SQL statements 499
closing 543
creating 540, 547, 551
defined 119, 540
deleting 545
getting associated data source 499
getting connections for 546
getting statements for 500, 547
opening 500, 548, 560

example for 548, 551, 560
retrieving data rows from 129, 497, 546
testing if opened 547

database statement objects 533, 550
See also database statements

database statements
accessing ODA data sources and 678
allocating cursors for 548, 551, 560
creating 533, 536, 550, 560
defining data types for 555
defining parameters for 552, 553, 554
deleting 556
getting 547, 559
getting number of parameters in 559
initializing 560
preparing 536, 560
providing interface for 121

databases
accessing DB2 537, 660
accessing ODBC 680
accessing Oracle 684
connecting to 472, 533, 769
creating reports from multiple 761
disconnecting from 473, 533
getting connections for 500
getting error conditions for 534, 535
getting error messages for 535, 536
mapping columns to rows 511
retrieving data from 494, 497, 540, 793
running stored procedures for 795

DataFont property 724
DataFont variable 723
DataGroupingModeInterval value 171
DataGroupingModeNone value 171
DataGroupingModeRanges value 171
DataGroupingModeUniqueKey value 171
DataGroupingUnitDay value 171

DataGroupingUnitHalf value 172
DataGroupingUnitHour value 172
DataGroupingUnitInteger value 172
DataGroupingUnitMinute value 172
DataGroupingUnitMonth value 172
DataGroupingUnitNone value 172
DataGroupingUnitQuarter value 172
DataGroupingUnitSecond value 172
DataGroupingUnitWeek value 172
DataGroupingUnitYear value 172
DataRow property 487
DataRow slot 493
DataSource property

AcDB2Connection 537
AcODBCConnection 681

DataSource variable
AcDB2Connection 537
AcODBCConnection 680

DataStream property 761
DataStream slot 760, 764
DataTypeAutomatic value 173
DataTypeDateTime value 173, 268, 284
DataTypeNumber value 173, 268, 284
DataTypeText value 173
DataValue property 190
DataValue variable

AcCurrencyControl 484
AcDateTimeControl 531
AcDoubleControl 562
AcIntegerControl 641
AcTextControl 799

date constants 173, 188
date controls 90, 531

See also dates
Date data types 531
Date$() function 531
dates

changing colors for 502
displaying 90
formatting 600
grouping on 172, 184, 325, 343, 633
providing specialized processing for 819
setting as data series labels 393
setting as x-axis labels 288, 365
specifying 173, 188
valid ranges for 531

DateTime controls 531, 819

I n d e x 873

day constants 173
DB_BadParamTypeForFunc constant 534
DB_CannotLoadDLL constant 534
DB_CantConvertParameter constant 534
DB_CursorNotOpen constant 534
DB_CursorOnSprocStmtErr constant 534
DB_DescNotAvailable constant 534
DB_EndOfLife constant 534
DB_EndOfResults constant 534
DB_FuncNotForDB constant 534
DB_FuncNotForDBServer constant 534
DB_FuncNotForDS constant 534
DB_IncompatibleClient constant 535
DB_InternalError constant 535
DB_Invalid_DataType constant 535
DB_InvalidColumn constant 535
DB_InvalidConnProperty constant 535
DB_InvalidDescId constant 535
DB_InvalidLogin constant 535
DB_InvalidParameter constant 535
DB_InvalidParamId constant 535
DB_InvalidProcedure constant 534
DB_InvalidStatement constant 534
DB_LoginFailed constant 534
DB_MaxCursorsOnParm constant 534
DB_MaxCursorsOnStatement constant 534
DB_NoColumnInfo constant 534
DB_NoCurrentConnection constant 534
DB_NoError constant 534
DB_NoResultSetAvailable constant 534
DB_NotSupportedPlatform constant 534
DB_OutOfCursors constant 534
DB_OutOfMemory constant 535
DB_OverloadedStoredProc constant 535
DB_ParameterNotBound constant 535
DB_Specific constant 535
DB_TimeOut constant 535
DB_UnauthorizedConnection constant 535
DB_UnboundVariable constant 535
DB_VariableDescMismatch constant 535
DB2 data types 538, 661
DB2 database connections 10, 537, 660
DBInterface property 684
debugging reports 486, 703
DebugOption property 213
decimal places 389

declarations
class 16–17
dot notation in 49
instance variables 25
object reference variables 46–47
scope and 19
static variables 25

default data values 501
default file-naming conventions 141
default scope 20, 21, 24
DefaultSplitting value 155, 628
DefineProcedureInputParameter method

AcDBCursor 543
AcDBStatement 553

DefineProcedureOutputParameter method
AcDBCursor 544
AcDBStatement 554

DefineProcedureReturnParameter method
AcDBCursor 545
AcDBStatement 555

Definition property
AcChart 224
AcCrosstab 481

Delete method
AcComponent 467
AcDBCursor 545
AcDBStatement 556

DeletePageFrame method 772
DeleteWorkbook method 590
DeleteWorksheet method 608
deleting

components 741
database cursors 545
database statements 556
drawing planes 571
frames 772
hierarchical trees 215
methods 43
report files 721, 723, 733
sort keys 674
transient objects 464, 467
variables 37
workbooks 590
worksheets 608

derived classes 6
DescribeLayout method 236

874 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

design environment. See e.Report Designer
Professional

designs
See also page layouts
adding components to 20, 466, 720, 736
adding controls to 624
defining structure of 767, 809
defining variables in 35
placing code in 145
referencing components and 144
reusing classes for 21
testing 486

DesignTimeSVG property 565
desktop file systems 734
destructors 467
DetachContent method 744
DetachFromContainer method 745
detaching from databases. See disconnecting
development languages 16
development tasks 16
DHTML converter 212
DHTML reports

developing browser scripting controls
and 212, 728

displaying 140
generating code for 214
hiding controls in 831
showing controls in 831

diagonal lines 565
diamond fill patterns 177
Dim statements 25, 46, 47
DisableHyperchart method 237
DisableOverlayLayer method 237
DisableStudyLayers method 237
Disconnect method 473
disconnecting from databases 473, 533
displaying

alternate text 212, 213
charts 220, 222
class information 22–24
currency values 484
data 10, 142, 501, 755
dates 90, 531
DHTML reports 140
formatted page numbers 478
help text 848
images 89, 564, 637

methods 38, 42
numeric values 91, 92, 562, 641
property values 22
reports 703, 705, 738
specific report pages 767
string values 92, 799
text 10, 92, 212, 213, 582, 648, 799
time values 90, 531
variables 26, 34

DisplayName property
AcComponent 466

DllPath property
AcDB2Connection 537, 660
AcODBCConnection 681

DllPath variable
AcDB2Connection 537, 660
AcODBCConnection 680
AcOracleConnection 684

document files. See report object instance files
DoNotSplit value 155, 628
dot notation 49, 513
DotLine value 187
double controls 562, 819
Double values 562
DoubleLine value 187
down bar border styles 368
down bar fill styles 369
dpi settings 572
DrawInFrontOfPoints method 315
drawing border style constants 173
drawing controls 84, 564

See also image controls; images
drawing elements

See also drawing planes
adding to charts 84, 238, 572, 574
creating 10, 637, 656, 717
defining contents of 564
defining dpi settings for 572
getting background colors for 568
rendering with antialiasing 568, 573
saving 572

drawing fill pattern constants 174
drawing fill style constants 178
drawing line pen constants 179
drawing line style constants 179
drawing plane objects 576, 580

I n d e x 875

drawing planes
adding 117, 567, 569, 576, 580
creating images and 564
getting 243, 569
hiding 577
removing 571
returning number of 569
returning type 576
setting position of 578
setting size of 579

drawing text orientation constants 180
drawing text style constants 180
DrawingFillGradientCenter value 174
DrawingFillGradientCenterDiagonal

value 174
DrawingFillGradientCornerBottomLeft

value 174
DrawingFillGradientCornerBottomRight

value 174
DrawingFillGradientCornerTopLeft

value 174
DrawingFillGradientCornerTopRight

value 174
DrawingFillGradientDiagonalDown

value 174
DrawingFillGradientDiagonalDownMiddle

value 174
DrawingFillGradientDiagonalUp value 175
DrawingFillGradientDiagonalUpMiddle

value 175
DrawingFillGradientHorizontal value 175
DrawingFillGradientHorizontalMiddle

value 175
DrawingFillGradientVertical value 175
DrawingFillGradientVerticalMiddle

value 175
DrawingFillPattern05Percent value 175
DrawingFillPattern10Percent value 175
DrawingFillPattern20Percent value 175
DrawingFillPattern25Percent value 175
DrawingFillPattern30Percent value 175
DrawingFillPattern40Percent value 176
DrawingFillPattern50Percent value 176
DrawingFillPattern60Percent value 176
DrawingFillPattern70Percent value 176
DrawingFillPattern75Percent value 176
DrawingFillPattern80Percent value 176

DrawingFillPattern90Percent value 176
DrawingFillPatternBrickDiagonalUp

value 177
DrawingFillPatternBrickHorizontal

value 177
DrawingFillPatternCheckerBoardLarge

value 177
DrawingFillPatternCheckerBoardSmall

value 177
DrawingFillPatternConfettiLarge value 177
DrawingFillPatternConfettiSmall value 177
DrawingFillPatternDiagonalDownDark

value 176
DrawingFillPatternDiagonalDownDash

value 176
DrawingFillPatternDiagonalDownLight

value 176
DrawingFillPatternDiagonalDownWide

value 176
DrawingFillPatternDiagonalUpDark

value 176
DrawingFillPatternDiagonalUpDash

value 176
DrawingFillPatternDiagonalUpLight

value 176
DrawingFillPatternDiagonalUpWide

value 176
DrawingFillPatternDiamond value 177
DrawingFillPatternDiamondDotted

value 177
DrawingFillPatternDiamondSolid value 177
DrawingFillPatternDivot value 177
DrawingFillPatternGridDotted value 177
DrawingFillPatternGridLarge value 178
DrawingFillPatternGridSmall value 178
DrawingFillPatternHorizontalDark

value 177
DrawingFillPatternHorizontalDash

value 177
DrawingFillPatternHorizontalLight

value 177
DrawingFillPatternHorizontalNarrow

value 177
DrawingFillPatternNone value 175
DrawingFillPatternPlaid value 178
DrawingFillPatternShingle value 178
DrawingFillPatternSolid value 176, 423

876 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

DrawingFillPatternSphere value 178
DrawingFillPatternTrellis value 178
DrawingFillPatternVerticalDark value 177
DrawingFillPatternVerticalDash value 177
DrawingFillPatternVerticalLight value 177
DrawingFillPatternVerticalNarrow value 177
DrawingFillPatternWave value 178
DrawingFillPatternWeave value 178
DrawingFillPatternZigzag value 178
DrawingLinePenDash value 179
DrawingLinePenDashDot value 179
DrawingLinePenDashDotDot value 179
DrawingLinePenDot value 179
DrawingLinePenNone value 179
DrawingLinePenSolid value 179
DrawingTextOrientationAuto value 180
DrawingTextOrientationCustom value 180
DrawingTextOrientationHorizontal

value 180
DrawingTextOrientationVertical value 180
DrawLine method 597
DrawOnChart method 238
DriverName property 670
drivers

connecting to ODA data sources and 670
setting properties for 500, 671, 678

drop line styles 327, 370
drop shadows 173
drop-down lists 212
duplicate names 20, 42, 43, 514
dynamic arrays 667, 668, 669
dynamic charts 220, 258, 260
dynamic content 742
dynamic images 564
dynamic sort keys 674
dynamic text controls

adding 582
building contents for 585, 588
controlling paragraph breaks for 584, 589
defining line spacing for 583
defining margins for 584
getting default font for 586
getting line heights for 587
getting line spacing for 587, 588
getting paragraph spacing for 588
getting size of 586
instantiating 91

padding 587, 589
providing specialized processing for 819
retaining tags for 583
setting properties for 582
specifying paragraph spacing for 583
splitting contents in 155, 583, 628, 630, 694

E
e.Report Designer Professional

displaying class information and 22
displaying methods with 38
displaying properties and 154
editing variables with 36
programming with 16
transient objects and 55
viewing program variables and 26, 34

e.Spreadsheet reports. See spreadsheet
reports

EjectPage method 702
ellipses as truncated text 192, 193
Ellipsis member 193
Else keyword 471
Else property 470
Else slots 470, 471
e-mail 637
Embedded property 637, 638
embedding images 186, 637, 638
empty data points 403, 406, 411, 431, 436
empty variables, testing for 54
EnableHyperchart method 240
EnableOverlayLayer method 241
EnableStudyLayers method 241
enclosing rectangles 190, 841
encoding 725
EndPosition property 657
EndPosition variable 656
error codes 534, 535
error messages 535, 536
errors 473, 534, 535
events 150
Excel application objects 133, 590, 591
Excel border constants 181
Excel border type constants 181
Excel classes 13, 14, 133
Excel horizontal alignment constants 182
Excel spreadsheets

accessing cells in 611, 612

I n d e x 877

accessing columns in 612
accessing rows in 613
adding borders to 181, 598, 601
adding cells to 593
adding columns to 594
adding data ranges to 597, 604
adding rows to 606
adding workbooks to 590, 608
adding worksheets to 608, 611
aligning data in 182
creating 13, 133, 590, 591
deleting workbooks for 590
displaying grid lines in 612, 613
finding workbooks for 591
finding worksheets in 609
formatting dates in 600
formatting numbers in 599, 603
generating 133, 467
getting background colors for 598
getting cell alignment for 599, 600
getting column widths 594
getting fonts for 598
getting ranges in 600
getting workbook names 609
getting worksheet names for 612
indenting text in 599, 602
merging cells in 599, 602
naming worksheets in 613
removing worksheets from 608
resizing columns in 611
retrieving 727
saving workbooks for 609, 610
scaling fonts for 592
setting background colors for 600
setting column widths for 595
setting fonts for 601
setting range alignment in 602, 604
wrapping text values in 600, 605

Excel vertical alignment constants 182
ExcelBorderBottom value 598, 601
ExcelBorderDashDot value 181
ExcelBorderDashDotDot value 181
ExcelBorderDashed value 181
ExcelBorderDotted value 181
ExcelBorderDouble value 181
ExcelBorderHair value 181
ExcelBorderLeft value 598, 601

ExcelBorderMedium value 181
ExcelBorderMediumDashDot value 181
ExcelBorderMediumDashDotDot value 181
ExcelBorderMediumDashed value 181
ExcelBorderNone value 181
ExcelBorderRight value 598, 601
ExcelBorderSlantedDashDot value 181
ExcelBorderThick value 181
ExcelBorderThin value 181
ExcelBorderTop value 598, 601
ExcelCurrencyFloat constant 603
ExcelCurrencyFloatWithSeparator

constant 603
ExcelCurrencyInt constant 603
ExcelCurrencyIntWithSeparator constant 603
ExcelExp constant 603
ExcelFixed constant 603
ExcelFloat constant 603
ExcelFloatWithSeparator constant 603
ExcelGeneralDate constant 603
ExcelGeneralNumber constant 603
ExcelHAlignCenter value 182, 602
ExcelHAlignCenterAcrossSelection

value 602
ExcelHAlignFill value 602
ExcelHAlignGeneral value 182, 602
ExcelHAlignJustify value 182, 602
ExcelHAlignLeft value 182, 602
ExcelHAlignRight value 182, 602
ExcelInt constant 603
ExcelIntWithSeparator constant 603
ExcelLongDate constant 603
ExcelLongTime constant 603
ExcelMediumDate constant 603
ExcelMediumTime constant 603
ExcelPercent constant 603
ExcelShortDate constant 603
ExcelShortTime constant 603
ExcelStandard constant 603
ExcelVAlignBottom value 182, 604
ExcelVAlignCenter value 182, 604
ExcelVAlignJustify value 182, 604
ExcelVAlignTop value 182, 604
executable files 140, 721, 723
Execute method 556
executing queries 550, 552, 556, 714
executing stored procedures 558

878 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

expandable group of values 154
ExpirationAge variable 723
ExpirationDate variable 723
ExplodeSlice method 406
external data sources 12, 130, 614, 670, 672
Externally Defined Data Type option 36

F
FaceName attribute 183
Factory 4
Factory method 141
Factory service

accessing specific pages and 737
building report sections and 758
building reports and 142, 144, 474, 509,

703, 721
content creation protocol for 143–147
embedding images and 638
generating reports and 140–143, 721, 727,

840
getting active flow for 702
getting current page for 702
getting last page for 704
page-creation process for 148–150, 691
page-level security and 737
setting locales for 727
setting page checkpoints for 705

Fetch method
AcDataAdapter 490
AcDBCursor 546

FetchLimit property
AcDataAdapter 487, 490

FetchLimit variable
AcDataAdapter 487
AcOdaSource class 672

fields. See columns
file names 141, 721, 734
file systems 734
file types 140
FileName property 639
FileNameExp property 639
files

See also specific type
archiving 721, 723, 733
bundling report 723
changing location of 721

deleting 721, 723, 733
distributing 637
generating report 37, 140, 141
generating XML 738
naming report 721, 724, 734
running executable 140
specifying as temporary 732
writing drawing elements to 572

fill colors 158, 421, 423, 426
fill pattern constants 174
fill patterns 193
fill style constants 178
fill styles

changing data series 345
getting bar 327, 349
getting chart 243, 337, 420
setting 3-D floor 398
setting 3-D wall 399
setting bar 369, 401
setting chart 253, 254, 382, 425
setting to solid color 423

FillColor property 717
FillColor variable 717
Filled value 158
FillPattern member 193
filter algorithms 663
filter classes 12
filtering methods 38
filters

accessing data and 516
buffering data rows for 516
building for multiple data sources 663
closing input adapters for 491
creating 127, 506, 518, 665, 785
customizing 490, 506, 509, 664
defined 486
getting input adapters for 786
opening input adapters for 496
retrieving run-time values and 32
setting input adapters for 787
sorting with 761
specifying parameters as 32

Find method 217
FindByValue method 463
FindContainerByClass method 745
FindContentByClass method 745
FindContentByClassID method 205

I n d e x 879

FindLowestSplit method 838
FindOrCreate method 217
FindPageContainerByClass method 838
FindWorkbook method 591
FindWorksheet method 609
Finish method

AcDataAdapter 491
AcReportComponent 746
content creation and 143, 146, 147, 148
developing report components and 5
report generation and 142

FinishBuilding method 483
FinishConnection method 772
FinishDataStream method 763
FinishedBuilding value 148, 743
FinishFlow event 150
FinishFlow method 773
FinishPage event 150
FinishPage method 773
FirstIsLeft property 650
fixed-size constants 185, 196
FlipAxes method 242
flow (page layouts)

adding background colors to 617
adding borders to 617
adding frames to 76, 618, 702
adding headers and footers to 618, 619,

622, 808
adding multiple 797
aligning frames in 182
attaching to subpages 619
balancing 207, 209, 211, 622
binding frames to 204, 207
building 76, 616, 776
changing colors of 202
checking space in 619, 620, 654
committing sections to 772, 773
creating one-directional 77, 652
creating top-down 78, 806
freeing space in 621
getting active 702
getting current header/footer for 525, 526
getting current page for 702
getting frames associated with 620, 621
getting size of 620, 655
nesting 209
page size and 691

page structures and 698, 700
parallel sections and multiple 711
providing specialized processing for 820,

821, 824
reserving space in 621, 704
resetting available space in 622
resizing 622
setting properties for 617, 806
splitting components in 155
testing for 753

flow classes 77, 616, 652, 806
flow components 616, 652, 806
flow placement constants 182
FlowAlignCenter value

AcFlowPlacement 183
AcLinearFlow 652, 653
AcTopDownFlow 806

FlowAlignCustom value
AcFlowPlacement 183
AcLinearFlow 652, 653
AcTopDownFlow 806

FlowAlignLeftOrTop value
AcFlowPlacement 183
AcLinearFlow 652, 653
AcTopDownFlow 806

FlowAlignRightOrBottom value
AcFlowPlacement 183
AcLinearFlow 652, 653
AcTopDownFlow 806

FlushBuffer method 492
FlushBufferTo method 492
flushing

data buffers 492, 516
persistent objects 704

Font member 180
Font property

AcCrosstab 481
AcTextualControl 803

fonts
defining attributes for 183
drawing text 180
getting chart legend 248
getting dynamic text control 586
getting spreadsheet 598
scaling 592
setting chart legend 256
setting spreadsheet 595, 601

880 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

footer frames 522, 618
footers

adding page numbers to 478, 479
adding to reports 148
adding to sections 773
building 522, 618
getting 525
placing in HTML forms 626, 628
reserving space for 619, 776, 808
resizing 619, 808
setting placement of 522, 523, 622
testing for 207

ForceMajorTickCount method 268
ForcePageHeightToFit property 828
ForcePageHeightToFit variable 717
ForcePageWidthToFit property 828
ForcePageWidthToFit variable 717
Format method 505
format patterns

customizing chart label 412
deleting custom chart 405
getting chart label 270, 325, 340, 343, 445
getting custom 407
getting data 505
setting chart label 287, 388, 393, 450
testing for custom 410

Format property 504
format tags 586, 588
Format$ function 477
FormatPageNumber method 696
formatted page numbers 478
FormattedPageNumber value 189, 707
formatting

axes labels 287, 365
data 172, 477, 504
data point labels 388, 450
data series labels 393, 441
dates 600
numeric values 599, 603
page numbers 693, 696, 710
text 192, 477, 582
XML data 752

frame classes 200, 507, 624
frame components 74, 507, 624

See also frames
frame decoration components 842

frames
accessing contents of 200, 205
adding controls to 19, 201, 474, 507, 624,

742
adding page numbers to 478, 479
adding to designs 9, 74, 624
adding to flows 76, 618, 702
adding to page lists 702
adding to specific pages 148, 699
aligning 182, 652, 653, 806
alternating colors in 204
binding to flow 204, 207
building custom controls for 476
building for data rows 74, 143, 201, 507
building from data row values 526, 527,

528
building page footers and 522, 527
building page headers and 521, 528
clipped 149
creating based on conditions 527
customizing 528
defining background colors for 201, 202
defining borders for 201, 202
deleting 772
determining position of 630
extracting contents of 818
finding contents of 205
getting border origins for 629
getting component position in 839, 840,

841
getting first 211, 620
getting for specific components 839
getting last 211, 621
getting number of controls in 748
getting size of 629
getting top-level 750
instantiating content for 71, 146, 200, 201,

207
moving 625, 844, 845
nesting controls in 21
one-directional flows and 652
page size and 691
page structures and 698
placing charts in 227
placing multiple 21
placing text controls in 193
positioning objects in 184

I n d e x 881

providing specialized processing for 201,
816, 818, 820

referencing controls in 205
resizing 203, 627, 835, 846
resizing content in 203, 627, 846
resizing dynamically 625, 626, 835
setting properties for 625
specifying position of components in 831
splitting dynamic text controls in 155, 628,

694
splitting over multiple pages 155, 625, 626,

629
testing content in 54
testing for 207, 754
testing position of 630
top-down flows and 806
verifying page styles for 149

FromClause variable 789
FTP protocols 734
fully qualified names 20
function properties 27, 28
functions

See also methods
accessing visual components and 826
aggregating data and 169, 478
associating with classes 16
building charts and 284
instantiating classes and 16
order of evaluation for 514
returning object information from 53
revisiting components and 467

G
GenerateXML method 747
GenerateXMLDataFile method 727
generating

access control lists 776
Basic reports 37, 140, 141
DHTML code 214
Excel spreadsheets 133, 467
PDF documents 214
reportlets 207, 208
sample data 228, 229
source files 16
XML data 738

generic data sources 614

GetActualPageCount method 709
GetActualPageNumber method 709
GetAfter method 524
GetAntialias method 568
GetAt method 688
GetAvailableHeight method 586
GetAvailableWidth method 586
GetAxis method 315
GetAxisLetter method 268
GetAxisLetterText method 268
GetBackgroundColor method

AcDrawing 568
AcExcelRange 598

GetBarShape method 323
GetBaseLayer method 242
GetBefore method 525
GetBorder method 598
GetBorderOrigin method 629
GetBorderRect method 629
GetBorderSize method 629
GetBorderStyle method

AcChart 243
AcChartPointStyle 420

GetBottom method 839
GetBubbleSize method 323
GetBufferCount method 517
GetBufferStart method 517
GetCategory method

AcChartLayer 324
AcChartPoint 407

GetCategoryGapRatio method 324
GetCategoryGrouping method 324
GetCategoryLabelFormat method 325
GetCell method 611
GetChart method 325
GetChartDrawingPlane method 243
GetChartType method 326
GetClassID function 54
GetClassName function 54
GetColumn method 612
GetColumnWidth method 594
GetComponentACL method 747
GetConnection method

AcDataAdapter 492
AcDBCursor 546
AcReportComponent 748

GetContainer method 748

882 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GetContent method 727
GetContentCount method 748
GetContentIterator method 749
GetContents method 40, 749, 750
GetControl method 205
GetControlValue method

AcBaseFrame 206
AcControl 476

GetCount method 463
GetCurrentFlow method 702
GetCurrentPage method 40, 702
GetCurrentPageACL method 703
GetCurrentRow method 773
GetCursor method 499
GetCustomFormat method 727
GetCustomLabelFormat method 407
GetCustomLabelValue method 407
GetCustomStyle method 408
GetDataStream method 749
GetDataType method 268
GetDBConnection method 500
GetDefaultRangeRatio method 269
GetDisplayGridlines method 612
GetDownBarBorderStyle method 326
GetDownBarFillStyle method 327
GetDrawingPlane method 569
GetDrawingPlaneType method 576
GetDropLineStyle method 327
GetEndYValue method 453
GetEstimatedPageCount method 703
GetFactoryLocale method 727
GetFileName method 640
GetFillStyle method

AcChart 243
AcChartPointStyle 420

GetFirstContent method 749
GetFirstContentFrame method 750
GetFirstDataFrame method

AcBasePage 211
AcFlow 620

GetFirstPage method 40, 703
GetFirstPageFooter method 525
GetFirstPageHeader method 525
GetFirstSlave method 839
GetFixedWidthFontFaceName method 586
GetFont method 598
GetFormattedPageNumber method 709

GetFrame method 839
GetFreeSpace method

AcFlow 620
AcLinearFlow 654

GetFullACL method 750
GetFullName method 609
GetGeneralError method 534
GetGeneralErrorText method 535
GetGlobalDHTMLCode method 728
GetGridLine method 269
GetGroupKey method 505
GetHead method 688
GetHeight method 839
GetHighLowLineStyle method 328
GetHorizontalAlignment method 599
GetHyperchartLink method 244
GetIndent method 599
GetIndex method

AcChartCategory 310
AcChartGridLine 315
AcChartLayer 329
AcChartPoint 408
AcChartSeries 433
AcChartTrendline 454
AcOrderedCollection 688

GetInnerMarginRatio method 269
GetInput method 786
GetInputCount method 666
GetInsideOrigin method 654
GetInsideRect method 655
GetInsideSize method

AcFlow 620
AcLinearFlow 655

GetIntercept method 454
GetItem method 644
GetKey method 217
GetKeyString method 635
GetKeyValue method

AcChartCategory 311
AcChartSeries 433

GetLabelFormat method 270
GetLabelPlacement method 270
GetLabelStyle method 270
GetLabelText method

AcChartAxis 271
AcChartCategory 311
AcChartGridLine 316

I n d e x 883

AcChartPoint 408
AcChartSeries 434
AcChartTrendline 454

GetLabelValue method
AcChartAxis 271
AcChartCategory 311
AcChartSeries 434

GetLanguage method 728
GetLastDataFrame method

AcBasePage 211
AcFlow 621

GetLastPage method 703
GetLastSlave method 840
GetLayer method

AcChart 246
AcChartAxis 272
AcChartCategory 311
AcChartSeries 434

GetLayerType method 329
GetLayoutOrientation method 728
GetLeft method 840
GetLegendBackgroundColor method 247
GetLegendBorderStyle method 247
GetLegendFont method 248
GetLegendPlacement method 248
GetLineStyle method

AcChartAxis 272
AcChartGridLine 316
AcChartSeriesStyle 445
AcChartTrendline 454

GetLineWidth method 329
GetLinkTo method 840
GetMajorGridLineStyle method 273
GetMajorTickCalculation method 273
GetMajorTickCount method 274
GetMajorTickInterval method 274
GetMajorTickPlacement method 274
GetMarkerFillColor method 421
GetMarkerLineColor method 421
GetMarkerShape method 422
GetMarkerSize method

AcChartLayer 329
AcChartPointStyle 422

GetMaster method 840
GetMaximumDataValue method 275
GetMaximumDataXValue method 330
GetMaximumDataYValue method 330

GetMaximumNumberOfPoints method 331
GetMaximumNumberOfPointsPerSeries

method 331
GetMaximumNumberOfSeries method 331
GetMaximumTrendlineValue method 275
GetMaximumTrendlineYValue method 332
GetMaximumValue method 275
GetMaximumYValue method 455
GetMergeCells method 599
GetMinimumDataValue method 276
GetMinimumDataXValue method 332
GetMinimumDataYValue method 333
GetMinimumTrendlineValue method 276
GetMinimumTrendlineYValue method 333
GetMinimumValue method 276
GetMinimumYValue method 455
GetMinorGridLineStyle method 277
GetMinorTickCount method 277
GetMinorTickPlacement method 278
GetMissingPoints method 334
GetName method 612
GetNext method 644
GetNoZeroRatio method 278
GetNumberFormat method 599
GetNumberOfCategories method 334
GetNumberOfDrawingPlanes method 569
GetNumberOfGridLines method 278
GetNumberOfLabels method 279
GetNumberOfLayers method 248
GetNumberOfPoints method 434
GetNumberOfSeries method 334
GetNumberOfStudyLayers method 249
GetNumberOfTrendlines method 434
GetOrder method 455
GetOriginValue method 279
GetOtherAxisCrossesAt method 279
GetOtherAxisPlacement method 279
GetOuterMarginRatio method 280
GetOutputCount method 557
GetOutputParameter method

AcDBCursor 546
AcDBStatement 557
AcOdaSource 674

GetOutputParameterAsType method 675
GetOutputParameters method

AcOdaSource 676
AcStoredProcedureSource 796

884 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GetOverlayLayer method 249
GetPage method 751
GetPageContainer method 840
GetPageCount method 40, 704
GetPageFooter method 525
GetPageHeader method 526
GetPageIndex method 751
GetPageList method 751
GetPageNumber method 206
GetParameterCount method 559
GetPeriod method 455
GetPieCenter method 334
GetPieExplosion method 335
GetPieExplosionAmount method

AcChartLayer 335
AcChartPointStyle 422

GetPieExplosionTestOperator method 336
GetPieExplosionTestValue method 336
GetPieRadius method 336
GetPixelSize method 841
GetPlainText method 586
GetPlotAreaBorderStyle method 337
GetPlotAreaFillStyle method 337
GetPlotAreaPosition method 338
GetPlotAreaSize method 339
GetPoint method 435
GetPointBorderStyle method 339
GetPointLabelFormat method

AcChartLayer 340
AcChartSeriesStyle 445

GetPointLabelLineStyle method 340
GetPointLabelPlacement method

AcChartLayer 341
AcChartPointStyle 423

GetPointLabelSource method
AcChartLayer 341
AcChartSeriesStyle 446

GetPointLabelStyle method
AcChartLayer 342
AcChartPointStyle 423

GetPosition method
AcDataAdapter 493
AcIterator 645

GetPreparedStatement method 500
GetPrintLocale method 728
GetProcedureStatus method

AcDBCursor 547

AcDBStatement 559
GetRange method 612
GetRect method 841
GetRenderIn24BitColor method 569
GetReport method

AcReport 729
AcReportComponent 751

GetRight method 841
GetRow method 613
GetRowCount method 752
GetRowHeight method 606
GetSearchTag method 752
GetSearchValue method

AcBaseFrame 207
AcSection 773

GetSeries method
AcChartLayer 342
AcChartPoint 409

GetSeriesGrouping method 343
GetSeriesLabelFormat method 343
GetSeriesOverlapRatio method 344
GetSeriesPlacement method 344
GetSeriesStyle method 344
GetSpecificError method 535
GetSpecificErrorText method 536
GetStartAngle method 345
GetStartYValue method 456
GetStatement method 547
GetStatementText method

AcDBStatement 559
AcSqlQuerySource 715

GetStudyHeightRatio method 346
GetStudyLayer method 249
GetStyle method 435
GetSumOfPointValues method 311, 435
GetSumOfSliceValues method 435
GetSVG method 580
GetTaggedText method 586
GetTail method 688
GetText method

AcBrowserScriptingControl 214
AcControl 477

GetThreeDBackWallFillStyle method 346
GetThreeDFloorFillStyle method 347
GetThreeDSideWallFillStyle method 347
GetTitleStyle method

AcChart 250

I n d e x 885

AcChartAxis 280
GetTitleText method

AcChart 250
AcChartAxis 281

GetTocEntry method 752
GetTop method 841
GetTrendline method 436
GetTrendlineType method 456
GetUpBarBorderStyle method 348
GetUpBarFillStyle method 349
GetUserACL method 729
GetValue method

AcChartGridLine 316
AcControl 478
AcDataRow 511
AcExcelRange 600

GetValueAsDate method 600
GetVariableCount function 513
GetVerticalAlignment method 600
GetViewLocale method 730
GetVisiblePageCount method 709
GetVisiblePageIndex method

AcPage 696
AcReportComponent 752

GetVisiblePageNumber method 710
GetVisualComponent method 842
GetWidth method 842
GetWrapText method 600
GetXAxis method 350
GetXMLText method

AcControl 477
AcReportComponent 752

GetXValue method 409
GetYAxis method 350
GetYValue method 409
GetZValue method 410
GIF files 637
GIF formats 572
global scope 19, 21
Global statement 46
global variables 142, 720, 751
GlobalDHTMLCode property 724
GlobalDHTMLCode variable 723
gradient fills 565
GrantExp property 767, 771
graphical elements. See drawing elements
graphics files. See image files

graphs. See charts
grid fill styles 177
grid lines

adding to charts 100, 263, 314
changing styles for 273, 277, 316
getting axes values for 316
getting chart axis 269
getting index for 315
getting labels for 316
getting number of 278
getting parent axis for 315
getting style of 273, 277, 316
labeling 317
setting axes value for 318
setting style of 292, 300, 317
turning on spreadsheet 612, 613

group keys 146, 184, 505, 633, 634
group on type constants 183
group section components 69, 631
group sections

adding to reports 631, 632
changing sort keys for 146
comparing key values for 635
creating 69, 631, 632
defined 521, 768
defining grouping intervals for 633
defining sort keys for 488
getting group keys for 505, 635
getting page footers for 525
getting page headers for 525
grouping data in 146, 183, 528, 633
initializing 147
nesting 632
providing specialized processing for 820
setting properties for 633
sorting data in 146

GroupByClause variable 789
grouping constants 633
grouping data 171, 183, 521, 631
grouping intervals 184, 633
grouping mode constants 171
grouping unit constants 171
GroupInterval property 633
GroupOn property 505, 633
GroupOnCustom value 183, 633
GroupOnDay value 184, 633
GroupOnEveryValue value 184

886 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

GroupOnHour value 184, 633
GroupOnInterval value 184, 634
GroupOnMinute value 184, 634
GroupOnMonth value 184, 634
GroupOnPrefix value 184, 634
GroupOnQuarter value 184, 634
GroupOnWeek value 184, 634
GroupOnYear value 184, 634

H
HasCategoryScaleXAxis method 351
HasContents method 40, 753
HasCustomLabelFormat method 410
HasCustomLabelValue method 410
HasCustomStyle method 410
HasFetchedLast method 530
HasFixedMaximum method 281
HasFixedMinimum method 281
HasIntercept method 456
HasMore method 645
HasOverlayLayer method 250
HasPageSecurity method

AcPageList 704
AcReport 730

HasValueScaleXAxis method 351
HasXAxis method 352
HasYAxis method 352
HavingClause variable 789
header frames 521, 618
headers

adding 148, 188, 521, 618, 776
adding page numbers to 478, 479
disabling 523
getting page 525, 526
getting specific page for 751
placing in HTML forms 626, 628
setting placement of 188, 523
testing for 207

Headline variable 723
Height member 191
help (control-specific) 475, 476
help text 848
hiding empty controls 835
hierarchical trees

adding items to 216, 217, 218
creating balanced 215, 219
getting items 217

removing objects from 216
High symbols (charts) 159
high-low line styles 328, 371, 384
hints 475, 476
horizontal alignment (reports) 184
horizontal alignment (spreadsheets) 182, 602
horizontal coordinates 190
Horizontal member 193
horizontal position constants 184
horizontal size constants 185
HorizontalOverlap property 693
HorizontalPosition method 842
HorizontalPosition property 828, 842
HorizontalPositionDefault value 184, 828
HorizontalPositionFrameCenter value 184,

828
HorizontalPositionFrameLeft value 184, 828
HorizontalPositionFrameRight value 184,

828
HorizontalPositionLeft value 184, 829
HorizontalPositionRight value 185, 829
HorizontalSize method 842
HorizontalSize property

AcRectangleControl 718
AcVisualComponent 829, 842

HorizontalSizeFixed value 185, 829
HorizontalSizeFrameRelative value 185, 829
HorizontalSizeRelative value 185, 829
HostString property 685
HostString variable 684
HTML code 212
HTML context blocks 212
HTML formats 582
HTML forms 626, 628
HTML tags 192, 582
http protocol 734
hypercharts

checking for 251
disabling links for 237
enabling links for 240, 244

hyperlinks
activating 207
adding to charts 244
creating 830
getting 244, 840, 848
specifying targets for 832, 848

I n d e x 887

I
IBM DB2 databases. See DB2 database

connections
identifiers 19
If conditional expressions 470, 471
If keyword 471
IfExp property 470, 471
IgnoreTrendlines method 281
image controls

See also images
adding to reports 89, 637
providing specialized processing for 820
setting properties for 638

image embed type constants 186
image files 637, 639, 640
image formats 572
image types 637
ImageDesignTime value 186, 638
ImageFactoryTime value 186, 638
images

See also image controls
adding text to 180
adding to spreadsheets 597
building dynamically 564
defining dpi settings for 572
displaying 89, 637
embedding 186, 637, 638
getting background colors for 568
getting file names for 640
rendering in 24-bit color 569, 573
saving 572
scaling 572

ImageViewTime value
AcImageControl 639
AcImageEmbedType 186

inches 195
indenting text 584, 599, 602
indexed searches 190
indexing large collections 791
inheritance 6, 18, 51
inherited methods 43, 51, 199
inherited variables 26, 36, 37
inner groups 632
inner margin (value axes) 262, 269, 286
inner queries 761

input
sending to data adapters 663, 784
setting autoarchive rules with 722
verifying 142

input adapters
See also data adapters
closing 491
counting 666
creating 666, 786
defined 491
fetching data from 490, 495
getting 786
moving read position for 492, 495
opening 496
overview 663, 785
specifying 663, 785, 787

input filters 506, 663, 784
input parameters

getting number of 559
mapping data types for 554
running stored procedures and 543, 553,

793
setting ODA data source 677, 678
setting properties for 548

input records 129
Input slot 663, 666, 785, 786
input sources

See also data sources
adding data controls for 501
advancing input position for 488
closing 491
connecting to 472
defined 486
defining current position for 487
disconnecting from 472
filtering 506, 663, 784
opening 496
retrieving data from 490, 493, 509, 529
splitting large rows in 784

InputAdapter variable 786
InputAdapters components 663, 785

See also input adapters
InputAdapters variable 665
Insert method 218
INSERT statements 556
InsertAfter method 689
InsertAt method 689

888 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

InsertBefore method 689
InsertCategory method 352
InsertDrawingPlane method 569
InsertEmptyPoint method 436
InsertGridLine method 282
InsertPoint method 437
InsertSeries method 354
InsertTrendline method 438
InsideFrameBorder value 187
instance variables 25, 26, 35, 49
instantiation 16
integer controls 562, 641, 820

See also numeric controls
Integer values 641
interfaces 18
invalid methods 41
Is operator 54
IsAtEnd variable 529, 530
IsBaseLayer method 356
IsCategoryScale method 282
IsConnected method 473
IsContainer method 40, 753
IsDataFrame method 207
IsDone method 645
IsEmpty method

AcCollection 463
AcFlow 621

IsFirstSlave method 842
IsFlow method 753
IsFooter method 207
IsFrame method 754
IsFrameDecoration method 842
IsFrameDecoration property 718
IsHeader method 207
IsHidden method 577
IsHyperchart method 251
IsKindOf function 54
IsLastSlave method 843
IsLeaf method 40, 754
IsMaster method 843
IsMissing method 411
IsNormal method 843
IsOpen method 547
IsOpen variable

AcConnection 472
AcDataAdapter 487

IsOverlayLayer method 357

IsPersistent method 467
IsSameKey method 635
IsSlave method 843
IsStacked method 357
IsStarted method 493
IsStudyLayer method 357
IsSummary method 478
IsThreeD method 251
IsValueScale method 282
IsVisible method 843
IsVisual method 40, 754
IsXAxis method 283
IsYAxis method 283
IsZAxis method 283
Italic attribute 183
iterator classes 11
iterator objects 125
iterators

arrays vs. 667
copying 644
creating 464, 643, 658, 749
getting current position of 645
getting items for 644
moving 643, 645, 646, 647
restarting 646
testing for additional items 645
variable indexes and 513

J
Java applets 212
JavaScript 212
joining multiple pages 693, 695
joins 664
JPG files 637
JustifiedLineWidthPadding property 583
justifying text 192, 193

K
KeepTaggedText method 587
KeepTaggedText property 583, 587
key columns 631
Key property 31, 146, 631, 632, 634
key values

comparing 216
getting 311, 433
setting 312, 440

I n d e x 889

KeyColumnName variable 31, 633
KeyValue variable 633
Keywords property 724
Keywords variable 723

L
label controls 648, 820

See also labels
label placement constants 155, 161
label source constants 162
LabelFont property 724
LabelFont variable 723
LabelMultipleValues property 481
labels

adding to pie sectors 406
adding to reports 93, 648
changing 49
clearing custom 405
creating 47, 48
customizing data point 412, 413
disabling 390
displaying crosstab 481
formatting chart axis 270, 287
formatting chart category 325, 365
formatting chart series 343, 393
formatting data point 340, 388
formatting text values for 477
getting chart axis 271
getting chart category 311
getting data point 407, 408, 445
getting data series 434
getting default source for 341, 446
getting grid line 316
getting number of 279
getting placement of 270, 341, 423
getting styles for 270, 342, 423
getting trendline 454
providing specialized processing for 820
returning references to 53
setting chart axis 289
setting chart category 290, 312
setting chart series 441
setting data point 450
setting grid line 317
setting placement of 288, 430
setting source of 391, 450

setting styles for 289, 392, 430
setting trendline 457
testing for custom 410

Language variable
AcReport 723

layout orientation constants 186
LayoutOrientation property 725
LayoutOrientation variable 723
layouts. See page layouts
leading truncation 191
leaf components 754
Left member

AcMargins 187
AcRectangle 190

LeftPage property 650
left-to-right orientation 186, 652, 732, 821
LeftToRight value 186, 725, 732
legend placement constants 158
legends (chart)

adding borders to 255
adding trendlines to 457, 458
disabling grid line labels in 317
getting background colors for 247
getting border style for 247
getting fonts for 248
getting placement of 248
hiding 257
setting background color for 255
setting placement of 158, 257
specifying fonts for 256

Let statement 52
level breaks 632
libraries 21, 25

See also Actuate Foundation Class Library
line charts

See also charts
adding chart layers for 366
drawing drop lines for 327, 370
drawing high-low lines for 384
drawing lines between points in 446
drawing up/down bars for 387
getting bar border styles for 326, 348
getting bar fill styles for 327, 349
getting line styles for 327, 328, 445
getting line widths for 329
getting marker fill colors for 421
getting marker line colors for 421

890 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

line charts (continued)
getting marker shapes for 422
getting marker size for 329, 422
labeling points 161
plotting categories for 306
plotting data points for 358, 385, 449
plotting missing points for 160, 375
plotting multiple series for 164
plotting points as bars for 359
setting bar borders for 368, 400
setting bar fill styles for 369, 401
setting line styles for 370, 371, 447
setting line widths for 372
setting marker color for 426
setting marker shape for 427
setting marker size for 428
setting markers for 373, 386, 447, 449
specifying as type 166

line controls
adding to reports 89, 656
adding to spreadsheets 597
defining pens for 179, 186
placing in charts 238
providing specialized processing for 821
resizing pages and 692

line pen constants 179, 186
line spacing 583, 587
line style constants 179, 187
line styles

changing 272
defining fill pattern for 176
getting chart 272, 340, 445
getting drop 327
getting grid line 316
getting high/low 328
getting tick mark 273, 277
getting trendline 454
setting chart 291, 370, 389, 447
setting high/low 371
setting tick mark 292, 300
setting trendline 458
specifying 179

line widths 329, 371, 372
linear flow components 652, 821
lines, drawing 576

See also line controls
LineSpacing method 587

LineSpacing property 583, 587
LineStyle property

AcLineControl 657
AcRectangleControl 718

LineStyle variable
AcLineControl 656
AcRectangleControl 717

LineWidthPadding method 587
LineWidthPadding property 583, 587
link expressions 240, 244, 830, 840
linked lists 11
LinkExp property 830
links

See also hyperlinks
disabling hyperchart 237
enabling hyperchart 240, 244
testing for 251

LinkTo variable 827, 840
list components 658, 788
list interface (collections) 124, 658, 788
list iterators. See iterators
lists

accessing contents 11
adding presorted 215
adding to web pages 212
copying 643
creating 632, 644, 658, 788
defining tab spacing for 584
expanding values in 154
getting tab spacing for 589
iterating through 643
updating items in 643

local variables 26
Locale property 725, 730
Locale variable 724
locales

building charts for specific 222, 251
changing chart labels for 287, 289
changing chart titles for 307, 308
exploding pie sectors for 415
formatting chart labels for 441
getting print-specific 728
getting view-specific 730
setting chart labels for 290, 312, 441
setting default 724, 725
specifying 727

Localize method 251

I n d e x 891

log files 142
lookahead aggregates 522
lookup filters 784
Low symbols (charts) 159

M
major grid line styles 273, 292
major tick intervals 264, 274, 284, 293, 295
major tick marks 268, 285
MakeAxes method 252
MakeContents method 207
MakeLayers method 253
margins

dynamic text controls and 584
page components and 209, 694, 695, 697
split frames and 626, 630
text controls and 187

Margins property 803
marker colors 158
marker fill colors 421, 426
marker line colors 421, 426
marker shape constants 159
marker shapes 158, 159, 422, 427
marker size (charts) 329, 373, 422, 428
master component 839, 840, 843
MaximumHeight method 844
MaximumHeight property

AcPage 693
AcVisualComponent 830, 844

MaximumStringLength property 534
MaximumWidth method 844
MaximumWidth property 830, 844
MaxVersCount variable 724
measurement units 194
members 154, 512
memory

arrays and allocating 667
deleting hierarchical trees and 215
generating reports and 55, 467
pinning objects to 747, 756
reclaiming 492, 516

memory buffers
adding rows to 517
creating 516
data sorter for 518
flushing 492, 516

getting first row in 517
getting number of rows in 517

merge cells options 599, 602
merge filters 664
method editor 39, 42

See also Methods page
methods

See also functions
accessing 49
assigning data types to 41
associating with classes 16
building charts and 220
building reports and 4, 6, 18
calling 47, 60
computing values and 512
containing no arguments 18
creating 40–41
deleting 43
displaying 38, 42
extending functionality of 37, 40
filtering 38
naming 41, 51
overloading 43
overriding 50, 60, 220, 720

caution for 39, 60
overview 37, 40
recovering deleted 43
redefining 18
referencing 49, 50
referencing components and 144
resolving ambiguous calls to 51
storing values for 32
summary of 60
viewing class documentation for 199
viewing information about 23
visibility of 18

Methods page 23, 38, 41, 42
Microsoft Excel applications. See Excel

spreadsheets
millimeters 195
MIME type 726
MinimumHeight method 844
MinimumHeight property 830, 844
MinimumLineHeight method 587
MinimumLineHeight property 583, 587
MinimumWidth method 844
MinimumWidth property 831, 844

892 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

minor grid line styles 300
miscellaneous properties 28, 31
missing data points 403, 406, 411, 431, 436
missing images 637
missingPoints parameter 376
monetary values. See currency controls;

Currency values
month constants 188
Month types 188
monthly reports 184, 188
MoveBy method 844
MoveByConstrained method 845
MoveNext method 645
MoveTo method 845
MoveToConstrained method 845
moving

controls 844
fetch position 495
frames 625, 844
iterators 643, 645, 647
read position 492
row position 548
visual components 828, 836, 844, 845

moving averages 455, 460
multicolumnar page layouts 74, 209, 797
multi-layer n-way trees 791
MultiLine member 193
multi-line text controls

See also dynamic text controls; text controls
adding 92, 193
word wrapping in 193, 196

multi-page reports 625, 693, 695
multiple data adapters 128
multiple input filters 506, 663

N
named values 154
names

accessing components and 205
building searches and 831, 847
defining duplicate 514
getting workbook 609
getting worksheet 612
nesting controls and 21
referencing class 20
referencing controls and 205

resolving duplicate 51
retrieving customer 512
symbols as 19

naming
methods 41, 51
report files 721, 724, 734
result sets 672
variables 35
worksheets 613

naming conflicts 21
naming conventions 20, 21, 41
naming restrictions 41
NeedCheckpoint method 704
NeedHeight method 704
negative overlap (charts) 344, 394
nested data groups 631, 632
nesting

classes 16, 19, 21
controls 21
reports 712, 749, 761, 762
sections 632
structures 154

New keyword 47
New method

AcBTree 219
AcComponent 468
AcDBCursor 547
AcExcelApp 591
AcStaticIndex 792
content creation and 143
developing report components and 5

NewAfter method 526
NewBefore method 526
NewConnection method 493
NewContent method

AcDataSection 527
AcReport 143, 731
AcSequentialSection 781

NewDataRow method 493
NewDataStream method 764
NewInputAdapter method

AcMultipleInputFilter 666
AcSingleInputFilter 786

NewIterator method 464
NewPage method

AcPageList 149, 705
AcSection 774

I n d e x 893

NewPageFooter method 527
NewPageHeader method 528
NewPageList method 143, 731
NoClipping value 155
NodeSize variable 215
NoHeaderOnFirst value 188, 523
nonsearchable components 190
NoSplitBottom method

AcDynamicTextControl 587
AcFrame 629

NoSplitBottom property
AcDynamicTextControl 583, 587
AcFrame 626, 629

NoSplitTop method
AcDynamicTextControl 587
AcFrame 629

NoSplitTop property
AcDynamicTextControl 583, 587
AcFrame 626, 629

Nothing keyword 53, 54
notifications 142
NoTotalColumn value 170
NoTotalRow value 170
NotSearchable value 190, 831
Now() function 531
null values 53
NullLine value 187
number formats 599, 603
numbered lists 584
numeric controls

coloring specific values for 503
displaying as percentages 189
formatting values for 477
instantiating 91, 92
providing specialized processing for 819,

820
numeric values. See numeric controls
numeric variables 48
n-way trees 791

O
object keys 215, 216, 217
object reference variables

accessing report variables and 751
assigning objects to 52–53
comparing 54

declaring 46–47
dot notation and 50, 513
instantiating classes and 16
overview 46, 47
passing to procedures 53
referencing objects with 50
restrictions for 53
setting to Nothing 53
testing 54

objects
accessing 11, 18, 464, 513, 667
accessing variables and methods in 49
adding to collections 123, 218, 462, 687,

689
adding to hierarchical trees 216, 217
aligning 184
allocating memory for 16
altering behavior of 40
assigning to variables 52–53
assigning variables to 48
building content for 143
calling methods for 47
changing values 49
comparing 216, 462
creating 5, 7, 16, 46, 47
defining attributes of 24, 26
defining persistent 47, 55
defining transient 55
deleting 467
executing tasks on 50
finding by value 463
finding in collections 217
finishing 746
flushing persistent 704
getting information about 53
getting keys for 217
getting number of 463
initializing 143
iterating through 643
lifetime of 55
nesting classes in 21
nesting in containers 466
order of evaluation for 514
ordering in collections 687
overview 46
pinning/unpinning 747, 756
referencing 18, 46, 47, 48, 462, 746

894 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

objects (continued)
releasing from memory 55
removing from collections 464, 690
removing from hierarchical lists 216
retrieving values in 49
setting hierarchical relationships for 215
setting properties for 27, 46
sizing 53
specifying actions for 37
storing 11
storing values in 49
testing collections for 463
testing references to 54
tracking 142

ObtainCommand method 615
ObtainConnection method 774
ObtainDataStream method 764
ObtainSelectStatement method 715
ODA data sources 10, 130, 672
ODA data types 673
ODA drivers

connecting to 670
setting properties for 500, 671, 678

OdaInterfaceName property 670
OdaSourceType variable 672
ODBC data types 681
ODBC database connections 10, 494, 680
offset (components) 827
OneCM value 195
OneInch value 195
OneMM value 195
OnEmptyGroup method 528
one-pass aggregates. See running aggregates
OnePoint value 195
OnFinishPrint method 731
OnRead method 514
OnRow method 5, 755
OnStartPrint method 731
open data access. See ODA data sources;

ODA drivers
Open symbols (charts) 160
OpenConnection method 494
OpenCursor method

AcDatabaseSource 500
AcDBCursor 548
AcDBStatement 560

opening
connections 494, 769, 774
data adapters 487, 493, 496, 785
data connections 472
data streams 145, 766
database cursors 500, 548, 560

example for 548, 551, 560
log files 142

opening values 397, 402
operators 20, 157
Oracle data types 685
Oracle database connections 10, 494, 684
Order By clause 631
OrderByClause variable 789
ordered collections 667, 687
ordered lists 12, 788
orientation (reports) 186, 723, 725, 728, 732
orientation (text) 180
Orientation member 180
orphans 584, 589
outer groups 632
outer margin (value axes) 262, 280, 305
OuterBorder property 481
OuterBorder variable 480
output

clipping text 155, 213
creating XML 738
generating 214

Output File Name parameter 721
output file names 141
output parameters

getting number of 559
getting ODA data source 674, 675, 676
getting stored procedure 546, 557, 796
getting values 558
mapping data types for 544, 554
running stored procedures and 544, 554,

793
setting properties for 548

overflow characters 192
overlay layers

See also chart layers
adding categories to 321, 352
adjusting layouts for 225
changing appearance of 234
computing axes values for 261
customizing values in 231, 232

I n d e x 895

defining 241, 253
disabling 234, 237
enabling 241
forcing identical axes scales for 257
getting 246, 249
limiting number of series for 375
localizing 251
plotting bars as lines in 384
plotting data points for 319
plotting lines between points in 386
removing categories from 360
specifying as type 158
testing for 250, 357

overloading methods 43
Override option 39
overriding methods 50, 60, 220, 720

caution for 39, 60
oversize pages 701
OwnerName variable 794

P
padding 587, 589
page attributes 209
page breaks

adding 149, 523, 771, 774
conditionally setting 774

page checkpoints 704, 705
page classes 209, 691, 797
page components

See also page layouts
accessing contents of 200, 205
adding to reports 72, 209, 691, 699
customizing processing for 201
getting current 702
getting information about 73
instantiating 691, 699, 705, 774
providing specialized processing for 816,

821
resizing 203, 691, 828
setting margins for 694, 697
setting properties for 693
splitting contents for 701, 837, 839, 840,

842, 843, 848
page containers 838, 840
page count

estimating 703

getting 704, 709
page number types and 706, 707

page designs 8, 79
See also page layouts

page footer components 207, 522, 525, 527
page footer frames 522, 618
page footer slots 478, 479, 527
page header components 207, 521, 525
page header frames 521, 618
page header options constants 188
page header slots 478, 479, 528
page headers and footers

adding page numbers to 478, 479
adding to flows 618
adding to reports 148
adding to sections 521, 522, 773, 776
adjusting position of 622, 808
disabling 523
getting 525, 526
getting page for 751
reserving space for 619, 776
specifying placement of 188, 522, 523
testing for 207

page hierarchy 699, 838, 840
page hierarchy components 822
page indexes

defined 691
getting 696, 751, 752
specifying 693

page layout classes 7, 8, 71
page layout styles 149
page layouts

See also designs
accessing contents 205
adding frames to 71, 148, 200, 699
adding report objects to 8, 720, 806
adding subpages to 209, 619, 797
adding title pages to 79, 805
adjusting headers and footers in 622, 808
alternating left/right formats for 79, 650
balancing flows in 207, 209, 211
building 201, 720, 773, 777
building pages for 691, 700, 702
calculating page numbers for 93, 706
creating multicolumnar 74, 209, 797
creating page lists for 149
creating simple 79, 783

896 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

page layouts (continued)
customizing 71
defining page heights for 693, 704
defining page structure for 698, 699
defining printable area of 8
displaying data and 142
displaying page numbers in 188, 691, 706
finding controls in 746
getting visible page for 696
instantiating 7, 148
multiple flows in 711, 797
providing content for 72, 200, 201, 209,

691, 742
removing components in 741
resizing pages for 691, 828
splitting oversize pages for 701
starting new pages for 149
tracking number of pages in 142

page list classes 650, 783, 805
page list components 650, 698, 720, 783, 805
page list styles 149, 725
page lists

adding checkpoints to 704, 705
adding frames to 699, 702
building for alternating pages 650
building title pages for 805
creating 698, 731, 783
defining objects for 724
defining page structures for 698, 699
generating current page and 700, 702
getting 751
getting current flow for 702
getting current page for 702
getting first page for 703
getting last page for 703
getting page counts for 703, 704
instantiating new pages for 705
instantiating specified 143
page-creation process and 148, 149
page-level security and 737
providing specialized processing for 821,

822, 823, 824
recursively traversing 822
returning handles to 839

page number controls 706, 822
page number style constants 188
page number types 706, 707

page numbers
adding to table of contents 751
calculating 93, 706
disabling 699
displaying 188, 691, 706
formatting 693, 696, 710
getting current 709, 710
getting formatted 206, 478, 696, 709
getting specific 478
providing specialized processing for 822
returning for specific component 751

page structures 142, 698, 699
See also page layouts

page styles 8, 74
page types 774
page widths 209
PageBreakAfter method

AcFrame 630
AcSection 774

PageBreakAfter property 149, 771, 774
PageBreakBefore method

AcFrame 630
AcSection 774

PageBreakBefore property 149, 771, 774
PageBreakBetween property 523
page-creation protocol (Factory) 148–150
PageDecorationFont property 725
PageDecorationFont variable 724
PageFooter components 207, 522, 525, 527
PageFooter slots 478, 479, 527
PageHeader components 207, 521, 526
PageHeader slots 478, 479, 528
PageHeight property 725
PageHeight variable 724
PageIndex variable 693
page-level security

customizing 736
example for 729
getting access control lists for 703, 729,

747, 750
numbering pages for 706, 707
overview 737, 738, 767
testing for 704, 730

PageList components. See page list
components

PageList property 725
PageN method 710

I n d e x 897

PageNo method 478
PageNo$ method 478
PageNOfM method 710
PageNumber variable 693
PageNumberFormat property 707, 709
PageNumberType method 710
PageNumberType property 706, 707, 710
Pages variable

AcPageList 701
AcReport 724

page-specific methods 200
PageStyle property 783
parallel reports 759, 771
parallel section components 70, 711
parallel sections

creating 70, 711
defined 768
nesting reports in 712
providing specialized processing for 822
setting properties for 712

Parameter option 34
parameterized queries

allocating cursors for 551
counting parameters in 559
creating 119, 793
defining data types for 545, 555
defining input parameters for 543, 553
defining output parameters for 544, 554
defining return parameters for 556
executing 552, 558
getting output parameters for 546, 557,

796
getting return values for 559
getting status of 547, 559
moving row position for 548
retrieving data with 540, 549
selecting 795
setting properties for 548

parameters
adding to queries 32, 499, 715, 761
binding to cursors 499
changing border colors and 256
defining as static variables 26
overview 32
passing variables as 53
retrieving ODA data source 674, 675, 676
setting background colors with 255

setting values for 715
sorting 725
verifying user-defined 142

parent chart axis 315
parent chart layer 272, 311
passing object reference variables 53
Password property

AcDB2Connection 537, 660
AcODBCConnection 681
AcOracleConnection 684

Password variable
AcDB2Connection 537, 660
AcODBCConnection 680
AcOracleConnection 684

paths 721, 734
Pattern member 178
patterned backgrounds 244, 254, 338, 383
patterned floors (charts) 399
patterned walls (charts) 399
patterns (border styles) 173
patterns (fill styles) 174
PCX files 637
PDF reports 214, 693
Pen member

AcDrawingBorderStyle 173
AcDrawingLineStyle 179
AcLineStyle 187

pens 173, 179, 186
percentages

adding to reports 189
charting 163, 164, 357, 395, 396
displaying as stacked 235

PerRowControl value 169
persistent components 467
Persistent keyword 47
Persistent Object Storage Mechanism 746
persistent objects 47, 55, 61, 704
pie charts

See also charts
axes values and 261
building sample data for 228
coloring unexploded sectors in 424
customizing slices for 235
displaying percentages in 357
exploding sectors for 160, 335, 336, 376,

377, 414, 422, 428
getting border styles for 339, 420

898 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

pie charts (continued)
getting center of 334
getting maximum sector values for 330
getting minimum sector values for 333
getting point label styles for 340
getting radius of 336
getting series styles for 345, 435
getting starting angle for 345
getting sum of values in 435
highlighting points in 161
labeling data points in 161, 162, 406
setting line styles for 389
setting point background colors for 423
setting point border styles for 388, 425
setting point fill styles for 425
setting starting angle for 396
specifying as type 166
testing for exploding sectors in 336, 378,

379, 380, 406
pie explode constants 160
PieExplosionTestValueIsPercentage

method 357
pinning components 747, 756
PinObject function 747, 756
plain text formats 582, 586
plot area border styles 382
plot area fill styles 381, 382
PlotBarsAsLines method

AcChartLayer 358
AcChartSeriesStyle 446

PlotCategoriesBetweenTicks method 283
plotHighLowLines parameter 384
PlotLinesBetweenPoints method

AcChartLayer 358
AcChartSeriesStyle 446

PlotMarkersAtPoints method
AcChartLayer 359
AcChartSeriesStyle 447

PlotUpDownBars method 359
PNG formats 572
point label placement constants (charts) 161
point label source constants (charts) 162
pointLabelPlacement value 390
points (chart). See data points
points (printer) 195
polynomial trendlines 455, 459
position 189

Position property 831
Position variable

AcDataAdapter 487
AcVisualComponent 827

POSM (Persistent Object Storage
Mechanism) 746

predefined methods 38
Prepare method

AcDBConnection 536
AcDBStatement 560

PreSorted value 191, 762
print processes 737, 738
printing

reports 693, 731
PrintSize property

AcPage 693
AcReport 725

Private check box 23
private classes 23
private methods 40
private variables 34
private visibility 33
privileges 732
ProcedureName variable 794
procedures

methods as 37
object reference variables and 47
passing object reference variables to 53
returning values from 53
testing for empty variables from 54

ProcedureStatus variable 794
ProcessText method 588
programming languages 16
programming tasks 16
Project Browser 22, 24
projected costs (example) 490, 492
projection filters 784
properties

See also property values
AcBaseFrame 202
AcBasePage 209
AcBrowserScriptingControl 212
AcChart 224
AcComponent 466
AcConditionalSection 470
AcControl 475
AcCrosstab 481

I n d e x 899

AcDataAdapter 487
AcDataControl 504
AcDataSection 523
AcDB2Connection 537, 660
AcDBConnection 533
AcDrawing 565
AcDynamicTextControl 582
AcFlow 617
AcFrame 625
AcGroupSection 633
AcImageControl 638
AcLabelControl 648
AcLeftRightPageList 650
AcLinearFlow 653
AcLineControl 656
AcOdaConnection 670
AcODBCConnection 680
AcOracleConnection 684
AcPage 693
AcPageList 701
AcPageNumberControl 707
AcParallelSection 712
AcRectangleControl 717
AcReport 724
AcReportComponent 739
AcReportSection 761
AcSection 770
AcSequentialSection 780
AcSimplePageList 783
AcSqlQuerySource 790
AcStoredProcedureSource 794
AcTextQuerySource 801
AcTextualControl 803
AcTitleBodyPageList 805
AcTopDownFlow 806
AcVisualComponent 827
ODA drivers and 500, 671, 678
viewing class documentation for 199

Properties page 22, 35, 468
Properties window

accessing class information from 22
creating methods from 41
creating variables from 35
deleting methods in 43
deleting variables from 37
displaying methods from 38
displaying variables from 26, 34

editing methods in 42
editing variables in 36

property sheets. See Properties page
property values

accessing variables and methods for 49
assigning at run time 32
associating with variables 27, 28, 31
changing 476, 502, 503
constructing objects and 46
displaying 22, 154
expanding 154
initializing 468
setting 27, 36

property variables 26, 27, 37
public classes 23
public variables 26, 34, 722, 723
publishing executable files 140

Q
QualificationOption variable 794
qualified names 20, 51
QualifierName variable 794
quarterly reports 172, 184
queries

accessing database cursors for 540
adding parameters to 32, 499, 715, 761
binding to cursors 499
building subreports with 764
building text-based 132, 801
creating 498, 509
customizing 715
defining cursors for 119
external data sources and 672
filtering with 784
getting number of columns for 557
getting statements for 500, 559, 715
nested reports and 761
not returning data rows 550
preparing for execution 536, 560
retrieving data from 12, 789
running 550, 552, 556, 714
setting ad hoc parameters for 715
setting properties for 790, 801
sorting data with 191, 488, 631

query data source components 131, 132, 714,
789, 801

900 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

query data sources
creating 131, 714, 789, 801
defining sort keys for 488
filtering 784
retrieving data from 540, 550

query data streams 511, 631, 632
Query Editor 509, 511, 714
Query property

AcSQLQuerySource 790
AcTextQuerySource 801

queues 12, 788

R
RaiseError method 473
random access 489, 495, 516
range of values in reports. See data ranges
ReBindToFlow method 207
record buffers 492

See also memory buffers
record structures 132, 509

See also rows
rectangle constants 190
rectangle controls 717, 822

See also rectangles
rectangles

adding to reports 717
defining bounding points for 190
drawing 564, 570, 576
placing in charts 238
providing specialized processing for 822
setting properties for 717
setting size of 191

ReDim statement 46
references

as addresses 48
chart axes values and 231
chart layers and 246
data sections and component 521
embedded images and 639
overview 18
testing 54
transient objects and 55

referencing
classes 18, 19, 20
components 19, 144–145
controls 205
instance variables 49

methods 49, 50
objects 18, 46, 47, 48, 462, 746

RejectedRow value 743
relational databases 473

See also databases
relationship map (components) 141
relationships 144
relative page numbers 706
relative paths 721
relative size constants 185, 196
ReleaseSpace method 621
Remove method 464
RemoveAll method 464
RemoveAt method 668
RemoveCategory method 360
RemoveDrawingPlane method 571
RemoveEmptyEntries method 668
RemoveHead method 690
RemovePoint method 439
RemoveSeries method 361
RemoveTail method 690
RemoveTrendline method 440
RenderIn24BitColor property 565
RenderIn24BitColor variable 565
RenderToFile method 572
report bursting 722, 732, 735
report components

See also reports
developing 4
getting root 729
instantiating 61, 736
processing 809

report design environment. See e.Report
Designer Professional

report designs
See also page layouts
adding components to 20, 466, 720, 736
adding controls to 624
defining structure of 767, 809
defining variables in 35
placing code in 145
referencing components and 144
reusing classes for 21
testing 486

report files
See also specific type
archiving 721, 723, 733

I n d e x 901

bundling 723
changing location of 721
deleting 721, 723, 733
distributing 637
generating 37, 140, 141
naming 721, 724, 734
specifying as temporary 732

report generation process 140–143
report object design files 16, 141
report object executable files 140, 721, 723
report object instance files

archiving 722, 733
creating 140
flushing persistent objects for 704
getting persistent components in 467
keeping copies of 732
naming 721, 724, 734
preparing content for 143
storing 721, 734
writing to 746

report object web files 722
report objects 7, 64, 142, 720

See also reports
report section components 70, 720, 758
report sections

See also data sections; sections
adding group sections to 631, 632
building reports and 720
closing data streams for 763
creating 70, 731, 758
customizing 760
defined 521, 768
defining sort keys for 488, 765
defining sorting rules for 191
generating content for 145
getting data streams for 764
instantiating data streams for 764
opening data streams for 766
placing connections in 759
processing data groups in 528
providing specialized processing for 823
setting properties for 761

report structure classes 7, 61
ReportController class 10
ReportEncoding property 725
reportlets 207, 208, 832

reports
adding title pages to 79, 805
building 140, 142, 741, 742, 759
building interfaces for 18
copying 721
creating 748, 755, 761, 779
customizing 39, 60, 137, 145
displaying 703, 705, 738
finding contents of 205
generating 37, 140, 141
generating content for 142, 143–147, 741
getting content of 727
getting estimated page count for 703
getting first page for 703
getting language of 728
getting last page for 703
getting number of pages in 704, 709
getting orientation of 728
getting page footers for 525
getting page headers for 525
getting page numbers for 206
getting root component for 729
getting values at run time 32
nesting 712, 749, 761, 762
printing 693, 731
providing specialized processing for 809,

822, 823
securing 736
setting properties for 724, 739
specifying default locale for 724, 725
specifying orientation of 186, 723, 725, 732
specifying version 724
splitting contents for 625, 628
storing values for 26
structuring 7, 61, 711, 767, 809
viewing classes for 24

Reports property 712
ReportType property 725
ReportType variable 724
Requester dialog 26, 34
ReserveSpace method 621
ResetMajorTickInterval method 284
ResetSpace method 622
resizable arrays 667
ResizeBy method

AcObjectArray 668
AcVisualComponent 846

902 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

ResizeByConstrained method 846
ResizeByConstrainedByContents

method 622
ResizeTo method

AcObjectArray 668
AcVisualComponent 846

ResizeToConstrained method 847
resizing

columns in worksheets 611
controls 846
flow 622
frames 203, 625, 626, 627, 835, 846
page components 691, 828
page footers 619, 808
spreadsheet fonts 592
visual components 185, 203, 828, 833, 835,

846, 847
resolving ambiguous method calls 51
Restart method 646
result sets

accessing external data sources and 12,
614, 672

defining variables for 510
generating multiple reports and 764
moving row position for 549
moving to next 679
naming 672
overview 793
retrieving 540, 615

ResultSetName variable 672
return values 53
ReuseQuery.rod 764
Rewind method 40, 495
RGB color values 167
rich text formats 192, 582
Right member

AcMargins 187
AcRectangle 190

RightPage property 650
right-to-left orientation 186, 732
RightToLeft value 186, 725, 732
.rod files. See report object design files
.roi files. See report object instance files
RoiIsTemporary method 732
ROIName variable 724
roles 767

RollbackTran method
AcOdaSource 677

rolling back transactions 677
root elements 724
Root variable 724
rounded rectangles 570
rounding errors 90
.row files. See report object web files
row headings 481
RowCount variable 739
RowHeadingsBorder property 481
RowHeadingsBorder variable 481
RowNumber variable 488, 510
rows

accessing data in 511, 513
accessing nested objects in 513
accessing randomly 516
accessing spreadsheet 613
adding multiple components for 779
adding to group sections 147
adding to reports 742, 755
adding to spreadsheets 135, 606
aggregating data and 784
associating with cursors 498, 540
binding to columns 541
building 507
building data controls from 502, 503
constructing sequential sections and 780
counting 739, 752
creating 129, 784
customizing 493, 509
defining characteristics of 132, 509
defining columns for 510
defining data adapters for 486, 487
determining number of 169, 478
fetching 490, 495
filtering 663, 784
getting current 773
getting key values for 632
getting number of variables in 513
getting values at run time 511
getting with cursors 540, 546, 548
grouping 146
grouping data and 631
instantiating 12, 493, 509
limiting number retrieved 487, 490
processing groups of 521, 528

I n d e x 903

returning from data adapters 486, 488, 514
returning from data streams 145, 632, 758
returning from databases 497, 540, 793
returning from ODA data sources 672
returning from stored procedures 793
returning subset of 784
setting number of retrievable 487
sorting 191, 631, 632, 784
specifying random access for 489
testing for last 530

RTF formats 582
RTF tags 192, 582
running aggregates 522
running queries 550, 552, 556, 714
running stored procedures 558
run-time properties 32
run-time values 26

S
sample data 228, 229, 487
Save method 609
SaveAs method 610
saving

images 572
spreadsheet workbooks 609, 610
XML data 738

Scalable Vector Graphics. See SVG drawing
planes

scalar parameters
getting 674, 675, 676
setting 677, 678

scaling fonts 592
scaling images 572
scatter charts

See also charts
adding chart layers for 366
building sample data for 229
customizing data series for 444
drawing lines between points in 358, 385,

446, 449
getting line styles for 445
getting line widths for 329
getting lowest values for 332
getting marker fill colors for 421
getting marker line colors for 421
getting marker shapes for 422

getting marker size for 329, 422
getting maximum values for 330
labeling data points in 161, 163
plotting missing points for 375
setting data point values for 416
setting line styles for 447
setting line widths for 372
setting marker color for 426
setting marker line color for 426
setting marker shape for 427
setting marker size for 373, 428
setting markers at points for 386, 447, 449
specifying as type 166

scope 18, 19–21, 24
scope-resolution operator (::) 20, 51
Script attribute 183
scripting 212
scripting control class 212
scripting controls. See browser scripting

controls
Scrollbar value 155
scrollbars 155
search conditions 847
search criteria 847
search expressions 771, 773, 776
search options 831
search type constants 190
Searchable method 847
Searchable property 831, 847
SearchableNoIndex value 190
SearchableWithIndex value 190
SearchAlias method 847
SearchAlias property 831, 847
SearchAttributeName method 208
searching balanced trees 215, 217
searching for components 190, 739, 756, 831,

847
searching for values 207
searching page footer controls 525
searching page header controls 525
SearchNoIndex value 831
SearchTag property 739, 752, 756
SearchTag variable 739
SearchValue variable 31, 32, 770
SearchValueExp property 31, 32, 771, 773,

776
SearchWithIndex value 831

904 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

secondary indexes 519, 520
section classes

building reports with 758
conditionally creating components

with 469
deriving from 768
filling multiple flows with 711
generating sequential components

with 779
grouping related rows with 631
organizing visual components with 767
processing data groups with 521

section components 66, 767
sections

See also specific type
adding components to 469, 779, 781
adding connections to 758, 769, 774
adding for multiple flows 711
adding to reports 767
building reports and 699, 700, 720
building security IDs for 767
closing connections for 772
committing to flows 772, 773
constructing without input 779
creating for data groups 521, 631
creating for non-visual classes 66
creating top-level 731
customizing 760
defined 767
defining page styles for 149
enabling page-level security and 737
generating content for 145, 146
getting access control lists for 750
getting current row for 773
initializing 147
inserting page breaks in 149, 771, 774
interrupting builds for 770, 777, 778, 782
nesting 632
opening connections for 774
page styles for 149
processing data groups in 528
processing frames in 148
providing specialized processing for 817,

819, 820, 822, 823
removing frames from 772
retrieving data for 771
setting page type for 774

setting properties for 770
sorting data in 146, 191, 488, 765
types described 768
verifying page styles for 149

sectors. See pie charts
security

customizing 736
enabling cascading page 771
example for 729
generating access control lists for 776
getting access control lists for 703, 729,

747, 750
overview 737, 738, 767
page numbers and 706, 707
testing for 704

security IDs
See also access control lists
building 767
changing 737
creating 729, 737
customizing 776
defined 767
defining multiple 771
getting component 750
getting page-specific 703
getting user 729
preserving 737

security roles 767
SeekBy method 40, 495
SeekTo method 40, 495
SeekToEnd method 40, 495
SELECT statements 540, 556

See also SQL statements
Selectable method 847
Selectable property

AcBrowserScripting Control 213
AcVisualComponent 831, 847

selectable report elements 831
SelectClause variable 789
SelectContent method 782
selection filters 784
sending completion notices 142
sequential reports 705, 748

See also sequential sections
sequential section components 71, 779
sequential sections

building contents for 779, 781

I n d e x 905

building multiple reports and 779
creating 71, 779
defined 768
interrupting builds for 782
providing specialized processing for 823
selecting content for 782
setting properties for 780

series
See also charts
accessing 431
adding to charts 114, 322, 354, 395, 437
adding trendlines for 452
changing fill patterns for 345
changing line colors for 447
creating styles for 221, 443
customizing 113, 221, 232, 235, 344, 443
deleting 361
determining if stacked 357
empty chart layers and 322
generating data points for 220, 403, 418
getting data points for 435
getting grouping definitions for 343
getting line styles for 445
getting number of 331, 334
getting number of points for 331, 434
getting overlap ratio for 344
getting parent chart layer for 434
getting placement for 344
getting references to 342, 409
getting style of 344, 435
getting sum of values in 435
getting trendlines in 434
getting unique values for 433
highlighting points for 404, 418
labeling. See series labels
plotting single point for 403, 418
removing data points from 439
removing trendlines from 440
setting line styles for 447
setting maximum number of 375
setting number of points for 374
setting overlap for 394, 395
setting unique keys for 440
stacking 323

series keys 343, 433, 440
series label source constants 163

series labels
getting format patterns for 343
getting formatted text for 434
getting values for 434
setting format patterns for 393
setting values for 441

series placement constants 164
series styles 344, 435, 443
seriesLabelValue parameter 322
Set statement

creating objects with 47
Nothing keyword and 53
object reference variables in 52

SetAntialias method 573
SetAt method 690
SetAutofitFont method 595
SetAutofitString method 595
SetBackgroundColor method

AcChart 253
AcChartPointStyle 423
AcExcelRange 600

SetBarShape method 362
SetBorder method 601
SetBorderAround method 601
SetBorderStyle method

AcChart 253
AcChartPointStyle 424

SetBubbleSize method 363
SetBurstReportPrivileges method 732
SetCategoryGapRatio method 364
SetCategoryLabelFormat method 365
SetChartType method 366
SetColumnWidth method 595
SetConnection method 496
SetCustomLabelFormat method 412
SetCustomLabelValue method 413
SetDataType method 284
SetDataValue method 479
SetDefaultRangeRatio method 285
SetDisplayGridlines method 613
SetDownBarBorderStyle method 368
SetDownBarFillStyle method 369
SetDrawInFrontOfPoints method 316
SetDropLineStyle method 370
SetExplodeSlice method 414
SetFillStyle method

AcChart 254

906 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

SetFillStyle method (continued)
AcChartPointStyle 425

SetFlipAxes method 255
SetFont method 601
SetFontScalingFactor method 592
SetForceMajorTickCount method 285
SetGlobalDHTMLCode method 732
SetGrowthIncrement method 669
SetHidden method 577
SetHighLowLineStyle method 371
SetHorizontalAlignment method 602
SetIgnoreTrendlines method 286
SetIndent method 602
SetInnerMarginRatio method 286
SetInput method 787
SetInputParameter method 677
SetInputParameters method 678
SetIntercept method 456
SetKeyValue method

AcChartCategory 312
AcChartSeries 440

SetLabelFormat method 287
SetLabelPlacement method 288
SetLabelStyle method 289
SetLabelText method

AcChartGridLine 317
AcChartTrendline 457

SetLabelValue method
AcChartAxis 289
AcChartCategory 312
AcChartSeries 441

SetLayoutOrientation method 732
SetLegendBackgroundColor method 255
SetLegendBorderStyle method 255
SetLegendFont method 256
SetLegendPlacement method 257
SetLineStyle method

AcChartAxis 291
AcChartGridLine 317
AcChartSeriesStyle 447
AcChartTrendline 458

SetLineWidth method 372
SetMajorGridLineStyle method 292
SetMajorTickCalculation method 293
SetMajorTickCount method 294
SetMajorTickInterval method 295
SetMajorTickPlacement method 296

SetMarkerFillColor method 426
SetMarkerLineColor method 426
SetMarkerShape method 427
SetMarkerSize method

AcChartLayer 373
AcChartPointStyle 428

SetMatchBaseAndOverlayScales method 257
SetMaximumDataValue method 297
SetMaximumNumberOfPoints method 374
SetMaximumNumberOfPointsPerSeries

method 374
SetMaximumNumberOfSeries method 375
SetMaximumValue method 298
SetMinimumDataValue method 299
SetMinimumValue method 299
SetMinorGridLineStyle method 300
SetMinorTickCount method 301
SetMinorTickPlacement method 302
SetMissingPoints method 375
SetName method 613
SetNoZeroRatio method 303
SetNumberFormat method 603
SetOrder method 459
SetOtherAxisCrossesAt method 304
SetOtherAxisPlacement method 305
SetOuterMarginRatio method 305
SetPeriod method 460
SetPieExplosion method 376
SetPieExplosionAmount method

AcChartLayer 377
AcChartPointStyle 428

SetPieExplosionTestOperator method 378
SetPieExplosionTestValue method 379
SetPieExplosionTestValueIsPercentage

method 380
SetPlotAreaBackgroundColor method 381
SetPlotAreaBorderStyle method 382
SetPlotAreaFillStyle method 382
SetPlotBarsAsLines method

AcChartLayer 383
AcChartSeriesStyle 448

SetPlotCategoriesBetweenTicks method 306
SetPlotHighLowLines method 384
SetPlotLinesBetweenPoints method

AcChartLayer 385
AcChartSeriesStyle 449

I n d e x 907

SetPlotMarkersAtPoints method
AcChartLayer 386
AcChartSeriesStyle 449

SetPlotUpDownBars method 387
SetPointBorderStyle method 387
SetPointLabelFormat method

AcChartLayer 388
AcChartSeriesStyle 450

SetPointLabelLineStyle method 389
SetPointLabelPlacement method

AcChartLayer 390
AcChartPointStyle 430

SetPointLabelSource method
AcChartLayer 391
AcChartPointStyle 450

SetPointLabelStyle method
AcChartLayer 392
AcChartPointStyle 430

SetPosition method 578
SetProperties method 671
SetProperty method 548
SetRenderIn24BitColor method 573
SetROIAgingProperties method 733
SetRowHeight method 607
SetRuntimeProperties method

AcOdaConnection 671
AcOdaSource 678

SetSearchTag method 756
SetSearchValue method 776
SetSecurity method 776
SetSeriesLabelFormat method 393
SetSeriesOverlapRatio method 394
SetSeriesPlacement method 395
SetSize method 579
SetSortKey method 765
SetStartAngle method 396
SetStatementAttributes method

AcOdaSource 678
SetStatementProperty method 500
SetStatus method 258
SetStockHasClose method 397
SetStockHasOpen method 397
SetStudyHeightRatio method 398
SetSVG method 580
SetTaggedText method 588
SetThreeD method 258
SetThreeDFloorFillStyle method 398

SetThreeDWallFillStyle method 399
SetTitleStyle method

AcChart 259
AcChartAxis 307

SetTitleText method
AcChart 259
AcChartAxis 308

SetTocEntry method 756
SetTrendlineType method 460
SetupAdHocParameters method 715
SetUpBarBorderStyle method 400
SetUpBarFillStyle method 401
SetValue method

AcChartGridLine 318
AcDataRow 515
AcExcelRange 604

SetValues method 416
SetVerticalAlignment method 604
SetWrapMergeCellsOption method 602
SetWrapText method 605
SetXValue method 416
SetYValue method 417
SetZValue method 417
shaded fill patterns 175
shadow effects 173
Shadow member 173
Shape value 158
sharing connections 494, 759, 769
sheets. See worksheets
ShiftFooterUp method 622
ShortDotLine value 187
ShowFooterOnLast property 523
ShowFooterOnLast variable 522
ShowHeaderOnFirst property 523
ShowHeaderOnFirst variable 523
ShowInDHTML property 831
ShowInPDF property 832
ShowInReportlet property 832
ShowOverflowChar value 192
ShowWhenPrinting property 832
ShowWhenViewing property 832
side-by-side reports 711
simple page list components 783, 823
single input filters 506, 784
single page styles 783
single-line text controls 92, 192, 193

See also text controls

908 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

SingleLine value 187
singly-linked lists 788
Size attribute 183
size constants (rectangles) 191
Size property 832
Size variable 827
SkipForwardTo method 646
SkipTo method 646
SkipToItem method 647
slave components 839, 840, 842, 843
slots

See also specific slots
adding components to 526, 527, 528, 779
adding frames to 201
adding report sections and 758
getting components in 524, 525
getting number of items in 748
inheriting 631
instantiating components for 471
placing connections in 759
placing multiple components in 779

SmartSplitHorizontally property 694
SmartSplitVertically property 694
sort algorithm 129, 518
sort filters 761, 784
sort keys

adding 488, 489, 765
comparing 520
computing values for 632
defined 519
initializing 145
removing 674
specifying 146, 765

sort order
customizing 488
setting 129, 518
specifying preferred 488

sorting constants 191
sorting data 146, 488, 489, 518, 631, 663
Sorting property 761
sorting rules 191
SortParamsByAlias property 725
source code

See also Actuate Basic
adding browser scripting controls and 212
adding comments to 41
adding to designs 145

bracket notation in 512
changing control attributes and 474
creating 16
designing reports and 16
editing restrictions for 36, 42
generating DHTML 214, 732
getting values for 40
handling invalid methods in 41
opening multiple connections and 769
overriding methods and 39
proprietary language for 4
referencing methods and 50
retrieving data from 490, 540
reusing 18
writing cleanup 141, 721, 765
writing startup 141, 496, 720

source files 16
SpaceBetweenLines method 588
SpaceBetweenLines property 583, 588
SpaceBetweenParagraphs method 588
SpaceBetweenParagraphs property 583, 588
special characters 212
SplitIfNecessary value 155, 628
SplitIfPossible value 155, 628
SplitMarginBottom method

AcDynamicTextControl 588
AcFrame 630
AcPage 697

SplitMarginBottom property
AcDynamicTextControl 584, 588
AcFrame 626, 630
AcPage 694, 697

SplitMarginLeft method 697
SplitMarginLeft property 694, 697
SplitMarginRight method 697
SplitMarginRight property 695, 697
SplitMarginTop method

AcDynamicTextControl 588
AcFrame 630
AcPage 697

SplitMarginTop property
AcDynamicTextControl 584, 588
AcFrame 626, 630
AcPage 695, 697

SplitOversizePagesWhenPrinting
property 701

SplitVertically method 848

I n d e x 909

spreadsheet classes 13, 14, 133
spreadsheet reports 133, 596, 727
spreadsheets. See worksheets
SQL database connections 10
SQL statements

accessing database cursors for 540
adding parameters to 32, 499, 715, 761
binding to cursors 499
building subreports with 764
building text-based 132, 801
counting parameters in 559
creating 498, 509
customizing 715
defining cursors for 119
executing 550, 552, 556, 714
external data sources and 672
filtering with 784
getting 500, 559, 715
getting number of columns for 557
not returning data rows 550
preparing for execution 536, 560
retrieving data from 12, 789
sorting with 488, 631

SQL-specific errors 535, 536
stacked bar charts

See also bar charts
drawing lines between points in 358, 385,

446, 449
getting line styles for 445
getting line widths for 329
labeling data points in 162
setting line styles for 447
setting line widths for 372
setting marker size for 373
testing data series for 323, 357

stacked percentages 235
stacked series chart layers 323, 357
stacks 12, 788
Start method

AcDataAdapter 496
AcReportComponent 756
content creation and 143, 145, 147, 148
developing report components and 5
report generation and 142

StartDataStream method 766
StartEmpty method 260
StartFlow event 150

StartFlow method 776
StartLayers method 260
StartNextSet method

AcDBCursor 548
AcODASource 679

StartPage event 150
StartPage method 777
startup code 141, 496, 720
state 24
statements

See also database statements
class declarations in 16
creating objects with 47
instance variables in 25
instantiating classes and 16
object reference variables in 46, 52, 53
referencing methods and 50
specifying specific classes from 51
static variables in 25

static images 89, 637
static indexes 791
static parameters 499
Static statements 25, 46
static text controls 10, 648
static variables 25, 26, 769
statistical information 142
StatusText method 848
step charts

See also charts
adding chart layers for 366
getting border styles for 339, 420
labeling points 161
plotting missing points for 375
plotting multiple series for 164
plotting values for 261
setting point background colors for 423
setting point border styles for 388, 425
setting point fill styles for 425
specifying as type 166

stock charts
See also charts
adding chart layers for 366
drawing drop lines for 327, 370
drawing high-low lines for 371, 384
drawing up or down bars for 387
getting bar border styles for 326, 348
getting bar fill styles for 327, 349

910 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

stock charts (continued)
getting line styles for 327, 328
getting marker fill colors for 421
getting marker line colors for 421
getting marker shapes for 422
getting marker size for 329, 422
grouping categories for 325
labeling points 161
plotting points as bars for 359
setting bar borders for 368, 400
setting bar fill styles for 369, 401
setting closing values for 397, 402
setting marker color for 426
setting marker line color for 426
setting marker shape for 159, 427
setting marker size for 428
setting markers at points for 386, 447, 449
setting opening values for 397, 402
specifying as type 166

StockHasClose method 402
StockHasOpen method 402
stocks, tracking 166
StopAfterCurrentFrame method 777
StopAfterCurrentRow method 777
StopAfterCurrentSection method 782
StopNow method 778
Stored Procedure Builder 795
stored procedure data sources 132
stored procedures

allocating cursors for 551
creating 119, 793
defining data types for 545, 555
defining input parameters for 543, 553
defining output parameters for 544, 554
defining return parameters for 556
executing 552, 558
getting output parameters for 546, 557,

796
getting return values for 559
getting status of 547, 559
moving row position for 548
retrieving data with 540, 549
selecting 795
setting properties for 548

StoredProcedureDef property 795
StrikeThrough attribute 183
string variables 48

strings
changing values of 502
customizing label formats and 412
defining level breaks for 632
displaying as help text 848
getting chart labels and 271, 311
getting data series labels and 434
returning format patterns as 505
returning page numbers as 478
setting chart axes labels and 287
setting chart category labels and 365
setting chart layer labels and 388, 393
setting point labels and 450
truncating 191, 193, 197

structure parameters
getting 674, 676
setting 677, 678

structure properties 154
structures 154, 512, 514
study layers

See also chart layers
adding categories to 321, 352
adding multiple 241
adjusting layouts for 225
adjusting upper limits for 226
changing appearance of 234
computing axes values for 261
customizing values for 231, 232
defining 241, 253
disabling 237
enabling 241
getting height ratio for 346
getting number of 249
getting references to 246, 249
limiting number of points in 374
localizing 251
plotting data points for 319
plotting markers at points in 386
removing categories from 360
setting height ratio for 398
specifying as type 158
testing for 357

Style member 181
subclasses

assigning as variable type 47
calling methods for 5
creating 6

I n d e x 911

declaring 16
getting objects in 54
inheritance and 18
object references and 19
redefining methods in 18
setting properties for 26

subclassing
AcBaseFrame 201
AcBasePage 209
AcBTree 215
AcCollection 462
AcComponent 466
AcControl 474
AcDataAdapter 487
AcDataControl 501
AcDataFilter 506
AcDataFrame 508
AcDataRow 509
AcDataSection 522
AcDataSource 529
AcFlow 616
AcFrame 625
AcMultipleInputFilter 664
AcPageList 700
AcReport 721
AcReportComponent 738
AcSingleList 788
AcVisualComponent 826
base classes 6

subpage components 797, 824
Subpage property 771
subpages

adding 74, 209, 619, 797
balancing flow for 207
defined 209
providing specialized processing for 824
specifying 771

subreports 712, 713, 748, 764
subroutines 16, 809
substrings 632
subtotals 631
subtraction filters 664
SuggestRoiName method 734
summarizing data 503
summary columns 170
Summary property 725
summary rows 170, 478

summary values. See summarizing data;
aggregate controls

Summary variable 724
SummaryControl value 169
Super keyword 50
Super statement 40
superclasses

inheritance and 18
overriding methods in 39
referencing methods in 50
restrictions for 19

SVG code 565
SVG drawing planes 564, 580
symbols 19

T
tab stops 584
table names 511
table of contents

adding entries to 194, 739, 756
adding page numbers to 751
creating 735, 778
getting entries in 752

table of contents node-type constants 194
table parameters

getting 674, 676
setting 677, 678

tables 511, 784
TabPadding method 589
TabPadding property 584, 589
TabSpacing method 589
TabSpacing property 584, 589
TaggedText value 586, 588
tags 192, 582, 586
TargetWindowName method 848
TargetWindowName property 832, 848
templates 16
temporary files 732
temporary objects. See transient objects
testing report designs 486
text

See also text controls; textual controls
centering 192, 193
clipping 155, 191, 193, 213
defining background colors for 180
defining border styles for 180

912 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

text (continued)
defining fonts for 180
defining orientation of 180
displaying 10, 212, 213, 582, 648
drawing 576
formatting 192, 477, 582
getting alternate 214
implementing help 848
indenting 584, 599, 602
justifying 192, 193
specifying placement of 193
wrapping 193, 196, 600, 605

text attributes 183
text clip style constants 191
text controls

See also dynamic text controls; text
adding 92, 648, 799
changing values of 502
defining fill patterns for 193
getting object keys for 218
grouping data in 184
placing in charts 238
placing in frames 193
providing specialized processing for 824
setting margins for 187
word wrapping in 193, 196

text files 467
text formats 192, 582
text justify constants 192
text placement constants 193
Text property 648
Text variable 648
text vertical placement constants 193
TextAlignBottom value 193
TextAlignCenter value 192
TextAlignLeft value 192
TextAlignMiddle value 193
TextAlignRight value 192
TextAlignTop value 193
text-based queries 132, 801
TextCharacterWrap value 197
text-drawing constants 180
text-drawing styles 180
TextFormat method 589
TextFormat property 584, 589
TextFormatHTML value 192
TextFormatPlain value 192

TextFormatRTF value 192
TextPlacement property 803
TextTruncateLines value 197
textual controls

for labels and data 803
providing specialized processing for 824

Textual Query Editor 132, 509, 511, 714, 801
TextWordWrap value 197
TGA files 637
Then keyword 471
Then property 470
Then slots 470, 471
Thickness member 169
3-D charts

displaying 251, 258
getting back wall fill 346
getting bar shape for 323
getting floor fill style 347
getting side wall fill 347
placing data series in 164
setting bar shapes for 362
setting floor fill style 398
setting wall fill styles 399

3-dimensional bars 157
tick calculation constants 165
tick marks

See also grid lines
computing major 268, 273, 285, 293
disabling 292, 296, 302
getting intervals between 274
getting line styles for 273
getting number of 274, 277
getting placement of 274, 278
getting size of 329
placing 165, 264, 296, 302
plotting categories between 283, 306
resetting intervals for 264, 284
setting intervals between 295
setting line styles for 292, 300
setting number of 294, 301
spacing 165

tick placement constants 165
TIFF files 637
time controls

grouping on values for 172, 184, 633
instantiating 90, 531
providing specialized processing for 819

I n d e x 913

time values 531
title pages 805, 824
Title property 725
Title variable 724
TitleFont property 725
TitleFont variable 724
TitlePage property 805
titles

adding to reports 648
changing chart 250, 259
getting chart 250, 281
getting defaults for 250
getting styles for 280
localizing 307, 308
setting chart 221, 259, 308, 574
setting styles of 259, 307

TOC node type constants 194
TocAddComponent method

AcReport 735
AcSection 778

TocAddComponent property 739
TocAddContents method 778
TocAddContents property 740
TOCAlwaysAdd value 194, 739
TocEntry variable 739
TOCIfAllVisible value 194, 739
TOCIfAnyVisible value 194, 739
TOCSkip value 194, 740
TocValueExp property 740
Toolbox 6
Top member

AcMargins 187
AcRectangle 190

top-down flows 652, 806, 824
TotalColumnLeft value 170
TotalColumnRight value 170
TotalRowAbove value 170
TotalRowBelow value 170
totals 480
trailing truncation 191
transactions 674, 677
transient components 467
transient objects

creating 55
deleting 464, 467
pinning/unpinning 747, 756
referencing 746

transparent fill patterns 175
tree objects 122, 125
trees

adding items to 216, 217, 218
creating balanced 215, 219
getting items 217
removing objects from 216

trendlines
See also charts
appending to series lists 433, 438
changing color of 458
clearing intercept values for 453
defining 115, 452
fitting to data points 456, 460
getting end values for 453
getting index of 454
getting intercept values for 454
getting labels for 454
getting line styles for 454
getting maximum values for 95, 275, 332,

455
getting minimum values for 103, 276, 333,

455
getting number of 434
getting specified 436
getting starting value for 456
ignoring 97, 281, 286
labeling 457
removing 440
setting intercept values for 456
setting line styles for 458
testing for intercept values for 456

truncation 191, 193, 197
twips 194
two-pass aggregates. See lookahead

aggregates
type conversion functions 284
types. See data types

U
Underline attribute 183
Undo command 36, 37, 43
union filters 664, 665
unique key values 312, 440
unique names 21
units of measurement 194
unpinning components 741, 747

914 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

UnpinObject function 747
UPDATE statements 556
URLs 244, 739
UseAcceleratedCheckpoints method 705
user IDs 767
user interfaces 18
user-defined methods 40–41
user-defined values 142
user-defined variables 468
UserName property

AcDB2Connection 537, 660
AcODBCConnection 681
AcOracleConnection 685

UserName variable
AcDB2Connection 537, 660
AcODBCConnection 680
AcOracleConnection 684

utility classes 14, 137, 809

V
V_CPOINTER type 554, 555
V_CURRENCY type 544, 545, 554, 555, 676
V_DATE type 544, 545, 554, 555, 676
V_DOUBLE type 544, 545, 555, 676
V_INTEGER type 544, 545, 555, 676
V_LONG type 544, 545, 555
V_SINGLE type 544, 545, 555, 556, 676
V_STRING type 544, 545, 555, 556, 676
value axis

See also axes values; charts
adding grid lines for 264, 282
calculating major ticks for 273, 293, 294
calculating minor ticks for 301
calculating origin of 262, 269
clearing fixed crossing points from 266
clearing fixed values for 265
clearing tick intervals for 264
computing maximum/minimum values

for 297, 299
computing scale for 267
described 261
forcing major ticks for 268, 285
getting data types for 268
getting lower bounds of 276, 281, 285
getting major tick intervals for 274
getting number of ticks on 274, 277

getting origin of 279
getting range ratio for 269, 280
getting upper bounds of 275, 281, 285
plotting 262
resetting tick intervals for 264, 284
setting data types for 284
setting lower bounds of 299
setting major tick intervals for 295
setting range ratio for 285, 286, 305
setting upper bounds of 298
suppressing zero values for 278, 303
testing for 282, 351

value expressions
bracket notation in 512
setting data values with 501, 755
setting date/time values with 531

ValueExp property 504
ValuePlacement property 482
values

See also data
accessing 511
assigning to controls 148, 479
assigning to variables 26, 35, 53
changing 49, 502, 503
clearing chart 265
defining level breaks for 632
defining null 53
displaying currency 484
expanding groups of 154
getting at run-time 32
getting for code elements 40
missing in charts 160
plotting range of 238, 261, 269, 285
retrieving object 49
searching for 207
selecting 34
setting 501, 502, 507, 515
storing 26, 32, 49
suppressing zero 278, 303
verifying user-defined 142

ValuesHorizontal value 170, 482
ValuesVertical value 171, 482
ValueType property 504
Variable Filtering dialog 26
variable indexes 513
variable names 19, 35
variable types 24

I n d e x 915

variable-length text controls 582
variables

See also data row variables
accessing 49, 511, 513, 751
assigning data types to 35
assigning objects to 52–53
assigning to objects 48
assigning to parameters 32
assigning to variables 48, 52
assigning values to 26, 35, 53, 515
associating with classes 16, 24, 35, 47
autoarchive rules and 722
binding to cursors 543, 552
binding to data rows 511
calculating values and 512, 514
comparing object reference 54
copying 48
creating 35–36
default scope for 24
defining global 720, 751
defining instance 25, 35, 36
defining object reference 46–47
defining private 34
defining static 25, 36
deleting 37
determining visibility of 18, 33, 34
displaying 26, 34
filtering 26
functional types of 25
getting values of 511
initializing 19, 142, 468, 720
instantiating classes and 16
iterating over 513
naming 35
opening multiple connections and 769
order of evaluation for 514
overview 24, 48
passing to procedures 53
recovering deleted 37
referencing instance 49
referencing objects and 46, 47, 48
restrictions for 53
running queries and 510, 631
running stored procedures 794
scope-resolution operator for 20
setting properties and 27, 28, 31
sorting data and 632

storing values in 32
testing 54
undoing changes to 36
viewing class documentation for 199
viewing information about 23

Variables page 23, 26, 35, 36, 37
VBScript 212
vector graphic images 580
version numbers 724
VersionName variable 724
VersionRoi variable 724
vertical alignment options (reports) 195
vertical alignment options

(spreadsheets) 182, 604
vertical coordinates 190
Vertical member 193
vertical position constants 195
vertical size constants 196
VerticalOverlap property 695
VerticalPosition method 849
VerticalPosition property 832, 849
VerticalPositionBottom value 195, 832
VerticalPositionDefault value 195, 832
VerticalPositionFrameBottom value 195, 832
VerticalPositionFrameMiddle value 195, 832
VerticalPositionFrameTop value 195, 832
VerticalPositionTop value 195, 832
VerticalSize method 849
VerticalSize property

AcRectangleControl 718
AcVisualComponent 833, 849

VerticalSizeFixed value 196, 833
VerticalSizeFrameRelative value 196, 833
VerticalSizeRelative value 196, 833
view processes 738
View service 737
viewing

alternate text 212, 213
charts 220, 222
class information 22–24
currency values 484
data 10, 142, 501, 755
dates 90, 531
DHTML reports 140
formatted page numbers 478
help text 848
images 89, 564, 637

916 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

viewing (continued)
methods 38, 42
numeric values 91, 92, 562, 641
property values 22
reports 703, 705, 738
specific report pages 767
string values 92, 799
text 10, 92, 212, 213, 582, 648, 799
time values 90, 531
variables 26, 34

virtual security IDs 729
visibility 19
VisiblePageCount value 189, 707
VisiblePageN value 189
VisiblePageNofM value 189, 707
VisiblePageNumber value 189, 707
VisitBaseFrame method 816
VisitBasePage method 816
VisitChart method 817
VisitComponent method 817
VisitConditionalSection method 817
VisitContents method 817
VisitControl method 817
VisitCurrencyControl method 818
VisitDataControl method 818
VisitDataFrame method 818
VisitDataSection method 819
VisitDateTimeControl method 819
VisitDoubleControl method 819
VisitDynamicTextControl method 819
VisitFlow method 820
VisitFrame method 820
VisitGroupSection method 820
VisitImageControl method 820
VisitIntegerControl method 820
VisitLabelControl method 820
VisitLeftRightPageList method 821
VisitLeftToRightFlow method 821
VisitLinearFlow method 821
VisitLineControl method 821
visitor classes 14, 137, 809
visitor functions 467
visitor objects 809
VisitPage method 821
VisitPageList method 822
VisitPageNumberControl method 822
VisitPages method 822

VisitParallelSection method 822
VisitRectangleControl method 822
VisitReport method 822
VisitReportComponent method 823
VisitReportSection method 823
VisitSection method 823
VisitSequentialSection method 823
VisitSimplePageList method 823
VisitSubpage method 824
VisitTextControl method 824
VisitTextualControl method 824
VisitTitleBodyPageList method 824
VisitTopDownFlow method 824
VisitVisualComponent method 824
visual attributes 826
Visual Basic 4
visual classes 80
visual components

See also controls
accessing 826
adding containers for 624
adding to reports 826
adjusting position of 828, 832, 834, 835
aligning 184
controls as 474
determining if visible 843
getting containers for 838
getting current 842
getting enclosing rectangle for 841
getting frame containing 839
getting help text for 848
getting position of 839, 840, 841
getting size of 839, 841, 842
moving 828, 836, 844, 845
providing specialized processing for 824
resizing 828, 833, 835, 846, 847
searching for 847
setting properties for 827
specifying location of 184, 195, 827
specifying maximum height 830
specifying maximum width 830
specifying minimum height 830
specifying minimum width 831
specifying size of 185, 196, 827, 832
splitting across multiple pages 837, 838,

839, 840, 842, 843, 848
testing for 754

I n d e x 917

visual controls. See visual components
visual objects. See visual components

W
warning messages 41
web browsers

See also browser scripting controls
adding custom code for 90, 212
controlling clipping for 155, 213
sending reports to 734

web pages
converting character for 212
creating 10, 90
developing for 10, 90
linking charts to 244

weekly reports 173, 184
WhereClause variable 789
whole numbers 92
WidowAndOrphanControl method 589
WidowAndOrphanControl property 584, 589
widows 584, 589
Width member

AcDrawingBorderStyle 173
AcDrawingLineStyle 179
AcLineStyle 187
AcSize 191

word wrap style constants 196
word wrapping 193, 196, 600, 605
WordWrap member 193
workbooks

See also Excel spreadsheets
adding 590, 608
deleting 590
finding specific 591
getting names of 609
saving 609, 610

worksheets
See also Excel spreadsheets
adding 608
deleting 608
developing 136
finding 609
getting names 612
inserting cells in 593
manipulating cells in 611
naming 613

wrap text options. See word wrapping

X
X member 190
x-axis

See also axes values; category axis
adding chart layers and 352, 354
adding titles to 307
building categories for 232
calculating point label values for 163
changing thickness of 350
clearing fixed crossing points from 266
creating 252, 261
disabling labels for 288
disabling tick marks for 296
flipping 242, 255
generating sample data for 228
getting data points for 407
getting values of 330, 332, 409
labeling 161, 270, 288, 289, 365
localizing 290
positioning relative to y-axis 305
setting values for 416, 432, 437
specifying 156
testing for 268, 283, 350, 352

XML documents
creating 197, 727, 738
customizing 747
formatting 752
getting attributes 752
setting properties for 725, 738
specifying MIME type for 726

XML elements
adding attributes to 740
converting components to 197
getting formatted text values for 752

XML files 726
XML objects 740
XML prologs 725, 735, 738
XML type constants 197
XMLAddContents property 740
XMLAttribute value

AcReportComponent 740
AcXMLType 197

XMLAttributes property 740
XMLCharSet property 725

918 P r o g r a m m i n g w i t h A c t u a t e F o u n d a t i o n C l a s s e s

XMLCustom value
AcReportComponent 740
AcXMLType 197

XMLDataProlog method 735
XMLDocType property 725
XMLElement value

AcReportComponent 740
AcXMLType 197

XMLEmptyAttribute value 740
XMLEmptyElement value 197
XMLFileDescription property 726
XMLFileExtension property 726
XMLIgnore value

AcReportComponent 740
AcXMLType 197

XMLIndent property 726
XMLMimeType property 726
XMLTag property 740
XMLText value 197
XMLType property 477, 740

Y
Y member 190
y-axis

See also axes values; value axis
adding ticks to 351
adding titles to 290, 308
adjusting upper bounds of 267
building bar charts and 261
calculating point label values for 163
charting zero values on 303
checking for identical scales on 226
clearing fixed crossing points for 266
clearing fixed intervals for 265, 266

creating 252
defining fixed intervals for 264
flipping 242, 255
generating sample data for 229
getting sum of values for 311, 435
getting values of 330, 333, 409
labeling 161, 290
plotting percentages for 164
scaling 231
setting default range ratio for 285
setting grid line styles for 301
setting identical values for 257
setting inner margin ratios for 287
setting lower bounds for 300
setting major ticks for 286, 292, 293, 294
setting minor ticks for 301, 302
setting outer margin for 306
setting tick intervals for 295
setting upper bounds for 298
setting values for 417, 432, 437
specifying 156
symmetrically scaling 297
testing for 268, 283, 350, 352

year constants 172, 184

Z
z-axis

calculating point label values for 164
getting values of 410
plotting percentages for 164
setting values for 417, 432, 437
specifying 156
testing for 268, 283

zero values 160, 262, 278, 303

	Contents
	About Programming with Actuate Foundation Classes
	Working with Actuate Foundation Classes
	Understanding Actuate Foundation Classes
	About the Actuate Foundation Class architecture
	About the core protocol
	About class protocols
	About abstract base classes
	About concrete classes

	Understanding the AFC by functional category
	About report structure classes
	About report structure abstract base classes
	About report structure concrete classes

	About page layout classes
	About page layout abstract base classes
	About page layout concrete classes

	About control classes
	About control abstract base classes
	About control concrete classes

	About connection classes
	About connection abstract base classes
	About connection concrete classes

	About collection classes
	About collection abstract base classes
	About collection concrete classes

	About data stream classes
	About data stream abstract base classes
	About data stream concrete classes

	About Excel classes
	About Excel abstract base classes
	About Excel concrete classes

	About the visitor class

	Working with a class
	About classes
	About class declaration
	Understanding class relationships
	About inheritance
	About references
	About scope
	Understanding class scope naming conventions
	About the default scope of a class in a report design
	About the default scope of a class in a library

	Getting information about classes in a report
	Getting information about a specific class
	Getting information about all classes in a report

	Working with a class variable
	About the functional categories of variables
	Defining properties
	About function properties
	About miscellaneous properties

	Using a parameter
	Using a regular variable
	About variable visibility
	Creating a variable
	Editing a variable
	Deleting a variable

	Working with a method
	About methods you can override
	About methods you can call
	About private methods
	About user-defined methods
	Creating a method
	Naming a method
	Editing a method
	Deleting a method
	Overloading a method

	Working with an object
	About objects and object reference variables
	Creating an object
	Declaring an object reference variable
	Declaring an object reference variable as a specific class
	Declaring an object reference variable as AnyClass type

	Using Actuate Basic to create an object

	Using an object reference variable
	Working with a simple variable
	Working with an object reference variable
	Referring to an object’s variables and methods
	Referencing a method of a class
	Referencing a method in a superclass
	Referencing a method using a class name
	Resolving an ambiguous method call

	Assigning an object to an object reference variable
	Setting an object reference variable to Nothing

	Passing an object reference to a procedure
	Getting information about an object
	Testing an object reference using the Is operator
	Testing for Nothing
	Comparing object reference variables

	About object lifetime
	About transient objects
	About persistent objects
	About pinned objects

	Actuate Foundation Class library
	Summary of classes and methods
	Report structure classes and methods
	AcComponent
	AcReportComponent
	AcReport
	AcSection
	AcConditionalSection
	AcDataSection
	AcGroupSection
	AcParallelSection
	AcReportSection
	AcSequentialSection

	Page layout classes and methods
	AcBaseFrame
	AcBasePage
	AcPage
	AcSubPage
	AcDataFrame
	AcFrame
	AcFlow
	AcLinearFlow
	AcTopDownFlow
	AcPageList
	AcLeftRightPageList
	AcSimplePageList
	AcTitleBodyPageList

	Control classes and methods
	AcVisualComponent
	AcControl
	AcCrosstab
	AcDrawing
	AcChart
	AcImageControl
	AcLineControl
	AcRectangleControl
	AcTextualControl
	AcBrowserScriptingControl
	AcDataControl
	AcCurrencyControl
	AcDateTimeControl
	AcDoubleControl
	AcDynamicTextControl
	AcIntegerControl
	AcTextControl
	AcLabelControl
	AcPageNumberControl
	AcChartAxis
	AcChartCategory
	AcChartGridLine
	AcChartLayer
	AcChartPoint
	AcChartPointStyle
	AcChartSeriesStyle
	AcChartSeries
	AcChartTrendline
	AcDrawingPlane
	AcDrawingChartPlane
	AcDrawingSVGPlane

	Connection classes and methods
	AcConnection
	AcDBConnection
	AcDB2Connection
	AcMSSQLConnection
	AcOdaConnection
	AcODBCConnection
	AcOracleConnection
	AcDBCursor
	AcDBStatement

	Collection classes and methods
	AcCollection
	AcBTree
	AcOrderedCollection
	AcList
	AcSingleList
	AcObjectArray
	AcStaticIndex
	AcIterator

	Data stream classes and methods
	AcDataAdapter
	AcDataFilter
	AcMultipleInputFilter
	AcSingleInputFilter
	AcDataRowBuffer
	AcDataRowSorter
	AcDataSource
	AcDatabaseSource
	AcExternalDataSource
	AcOdaSource
	AcQuerySource
	AcSqlQuerySource
	AcTextQuerySource
	AcStoredProcedureSource
	AcDataRow

	Excel classes and methods
	AcExcelObject
	AcExcelApp
	AcExcelRange
	AcExcelCell
	AcExcelColumn
	AcExcelRow
	AcExcelWorkbook
	AcExcelWorksheet

	Visitor class and methods
	AcVisitor

	Understanding report generation
	Understanding the report generation process
	Generating a report
	Adding startup and cleanup code
	Starting the build process

	Creating content
	Understanding how the core protocol creates content
	Understanding how a component reference creates content
	Understanding how a report section creates content
	Understanding how a group section creates content
	Understanding how a frame creates content
	Understanding how a control creates content

	Understanding page creation
	Determining the page on which a frame appears
	About page list styles
	About page list events

	Actuate Foundation Class Reference
	AFC data types
	About the AFC data types
	About AFC aliased types
	About AFC structures
	About AFC enums
	AFC data types

	AcAutoSplit
	AcBrowserClipping
	AcChartAxisLabelPlacement
	AcChartAxisLetter
	AcChartAxisPlacement
	AcChartBarShape
	AcChartComparisonOperator
	AcChartDefaultMarkerSettings
	AcChartLayerType
	AcChartLegendPlacement
	AcChartMarkerShape
	AcChartMissingPoints
	AcChartPieExplode
	AcChartPointHighlight
	AcChartPointLabelPlacement
	AcChartPointLabelSource
	AcChartSeriesPlacement
	AcChartStatus
	AcChartTickCalculation
	AcChartTickPlacement
	AcChartType
	AcColor
	AcControlValueType
	AcCrosstabBorderStyle
	AcCrosstabTotalColumnPlacement
	AcCrosstabTotalRowPlacement
	AcCrosstabValueLayout
	AcDataGroupingMode
	AcDataGroupingUnit
	AcDataType
	AcDay
	AcDrawingBorderStyle
	AcDrawingFillPattern
	AcDrawingFillStyle
	AcDrawingLinePen
	AcDrawingLineStyle
	AcDrawingTextOrientation
	AcDrawingTextStyle
	AcExcelBorder
	AcExcelBorderType
	AcExcelHorizontalAlignment
	AcExcelVerticalAlignment
	AcFlowPlacement
	AcFont
	AcGroupOnType
	AcHorizontalPosition
	AcHorizontalSize
	AcImageEmbedType
	AcLayoutOrientation
	AcLinePen
	AcLineStyle
	AcMargins
	AcMonth
	AcPageHeaderOptions
	AcPageNumberStyle
	AcPercentage
	AcPoint
	AcRectangle
	AcSearchType
	AcSize
	AcSortingOptions
	AcTextClipStyle
	AcTextFormat
	AcTextJustify
	AcTextPlacement
	AcTextVerticalPlacement
	AcTOCNodeType
	AcTwips
	AcVerticalPosition
	AcVerticalSize
	AcWordWrapStyle
	AcXMLType

	AFC classes
	Class AcBaseFrame
	AcBaseFrame::AddToAdjustSizeList method
	AcBaseFrame::AdjustSize method
	AcBaseFrame::BindToFlow method
	AcBaseFrame::FindContentByClassID method
	AcBaseFrame::GetControl method
	AcBaseFrame::GetControlValue method
	AcBaseFrame::GetPageNumber method
	AcBaseFrame::GetSearchValue method
	AcBaseFrame::IsDataFrame method
	AcBaseFrame::IsFooter method
	AcBaseFrame::IsHeader method
	AcBaseFrame::MakeContents method
	AcBaseFrame::RebindToFlow method
	AcBaseFrame::SearchAttributeName method

	Class AcBasePage
	AcBasePage::BalanceFlows method
	AcBasePage::GetFirstDataFrame method
	AcBasePage::GetLastDataFrame method

	Class AcBrowserScriptingControl
	AcBrowserScriptingControl::BrowserCode method
	AcBrowserScriptingControl::GetText method

	Class AcBTree
	AcBTree::Abandon method
	AcBTree::CompareKey method
	AcBTree::CreateNode method
	AcBTree::Find method
	AcBTree::FindOrCreate method
	AcBTree::GetKey method
	AcBTree::Insert method
	AcBTree::New method

	Class AcChart
	AcChart::AdjustChart method
	AcChart::BaseAndOverlayScalesAreMatched method
	AcChart::BuildFromRow method
	AcChart::BuildSampleCategoryScaleData method
	AcChart::BuildSampleValueScaleData method
	AcChart::ComputeMinMaxDataValues method
	AcChart::ComputeScales method
	AcChart::CustomizeAxes method
	AcChart::CustomizeCategoriesAndSeries method
	AcChart::CustomizeChart method
	AcChart::CustomizeLayers method
	AcChart::CustomizeSeriesStyles method
	AcChart::DescribeLayout method
	AcChart::DisableHyperchart method
	AcChart::DisableOverlayLayer method
	AcChart::DisableStudyLayers method
	AcChart::DrawOnChart method
	AcChart::EnableHyperchart method
	AcChart::EnableOverlayLayer method
	AcChart::EnableStudyLayers method
	AcChart::FlipAxes method
	AcChart::GetBaseLayer method
	AcChart::GetBorderStyle method
	AcChart::GetChartDrawingPlane method
	AcChart::GetFillStyle method
	AcChart::GetHyperchartLink method
	AcChart::GetLayer method
	AcChart::GetLegendBackgroundColor method
	AcChart::GetLegendBorderStyle method
	AcChart::GetLegendFont method
	AcChart::GetLegendPlacement method
	AcChart::GetNumberOfLayers method
	AcChart::GetNumberOfStudyLayers method
	AcChart::GetOverlayLayer method
	AcChart::GetStudyLayer method
	AcChart::GetTitleStyle method
	AcChart::GetTitleText method
	AcChart::HasOverlayLayer method
	AcChart::IsHyperchart method
	AcChart::IsThreeD method
	AcChart::Localize method
	AcChart::MakeAxes method
	AcChart::MakeLayers method
	AcChart::SetBackgroundColor method
	AcChart::SetBorderStyle method
	AcChart::SetFillStyle method
	AcChart::SetFlipAxes method
	AcChart::SetLegendBackgroundColor method
	AcChart::SetLegendBorderStyle method
	AcChart::SetLegendFont method
	AcChart::SetLegendPlacement method
	AcChart::SetMatchBaseAndOverlayScales method
	AcChart::SetStatus method
	AcChart::SetThreeD method
	AcChart::SetTitleStyle method
	AcChart::SetTitleText method
	AcChart::StartEmpty method
	AcChart::StartLayers method

	Class AcChartAxis
	AcChartAxis::AddGridLine method
	AcChartAxis::ClearMajorTickInterval method
	AcChartAxis::ClearMaximumValue method
	AcChartAxis::ClearMinimumValue method
	AcChartAxis::ClearOtherAxisCrossesAt method
	AcChartAxis::ComputeScale method
	AcChartAxis::ForceMajorTickCount method
	AcChartAxis::GetAxisLetter method
	AcChartAxis::GetAxisLetterText method
	AcChartAxis::GetDataType method
	AcChartAxis::GetDefaultRangeRatio method
	AcChartAxis::GetGridLine method
	AcChartAxis::GetInnerMarginRatio method
	AcChartAxis::GetLabelFormat method
	AcChartAxis::GetLabelPlacement method
	AcChartAxis::GetLabelStyle method
	AcChartAxis::GetLabelText method
	AcChartAxis::GetLabelValue method
	AcChartAxis::GetLayer method
	AcChartAxis::GetLineStyle method
	AcChartAxis::GetMajorGridLineStyle method
	AcChartAxis::GetMajorTickCalculation method
	AcChartAxis::GetMajorTickCount method
	AcChartAxis::GetMajorTickInterval method
	AcChartAxis::GetMajorTickPlacement method
	AcChartAxis::GetMaximumDataValue method
	AcChartAxis::GetMaximumTrendlineValue method
	AcChartAxis::GetMaximumValue method
	AcChartAxis::GetMinimumDataValue method
	AcChartAxis::GetMinimumTrendlineValue method
	AcChartAxis::GetMinimumValue method
	AcChartAxis::GetMinorGridLineStyle method
	AcChartAxis::GetMinorTickCount method
	AcChartAxis::GetMinorTickPlacement method
	AcChartAxis::GetNoZeroRatio method
	AcChartAxis::GetNumberOfGridLines method
	AcChartAxis::GetNumberOfLabels method
	AcChartAxis::GetOriginValue method
	AcChartAxis::GetOtherAxisCrossesAt method
	AcChartAxis::GetOtherAxisPlacement method
	AcChartAxis::GetOuterMarginRatio method
	AcChartAxis::GetTitleStyle method
	AcChartAxis::GetTitleText method
	AcChartAxis::HasFixedMaximum method
	AcChartAxis::HasFixedMinimum method
	AcChartAxis::IgnoreTrendlines method
	AcChartAxis::InsertGridLine method
	AcChartAxis::IsCategoryScale method
	AcChartAxis::IsValueScale method
	AcChartAxis::IsXAxis method
	AcChartAxis::IsYAxis method
	AcChartAxis::IsZAxis method
	AcChartAxis::PlotCategoriesBetweenTicks method
	AcChartAxis::ResetMajorTickInterval method
	AcChartAxis::SetDataType method
	AcChartAxis::SetDefaultRangeRatio method
	AcChartAxis::SetForceMajorTickCount method
	AcChartAxis::SetIgnoreTrendlines method
	AcChartAxis::SetInnerMarginRatio method
	AcChartAxis::SetLabelFormat method
	AcChartAxis::SetLabelPlacement method
	AcChartAxis::SetLabelStyle method
	AcChartAxis::SetLabelValue method
	AcChartAxis::SetLineStyle method
	AcChartAxis::SetMajorGridLineStyle method
	AcChartAxis::SetMajorTickCalculation method
	AcChartAxis::SetMajorTickCount method
	AcChartAxis::SetMajorTickInterval method
	AcChartAxis::SetMajorTickPlacement method
	AcChartAxis::SetMaximumDataValue method
	AcChartAxis::SetMaximumValue method
	AcChartAxis::SetMinimumDataValue method
	AcChartAxis::SetMinimumValue method
	AcChartAxis::SetMinorGridLineStyle method
	AcChartAxis::SetMinorTickCount method
	AcChartAxis::SetMinorTickPlacement method
	AcChartAxis::SetNoZeroRatio method
	AcChartAxis::SetOtherAxisCrossesAt method
	AcChartAxis::SetOtherAxisPlacement method
	AcChartAxis::SetOuterMarginRatio method
	AcChartAxis::SetPlotCategoriesBetweenTicks method
	AcChartAxis::SetTitleStyle method
	AcChartAxis::SetTitleText method

	Class AcChartCategory
	AcChartCategory::GetIndex method
	AcChartCategory::GetKeyValue method
	AcChartCategory::GetLabelText method
	AcChartCategory::GetLabelValue method
	AcChartCategory::GetLayer method
	AcChartCategory::GetSumOfPointValues method
	AcChartCategory::SetKeyValue method
	AcChartCategory::SetLabelValue method

	Class AcChartGridLine
	AcChartGridLine::DrawInFrontOfPoints method
	AcChartGridLine::GetAxis method
	AcChartGridLine::GetIndex method
	AcChartGridLine::GetLabelText method
	AcChartGridLine::GetLineStyle method
	AcChartGridLine::GetValue method
	AcChartGridLine::SetDrawInFrontOfPoints method
	AcChartGridLine::SetLabelText method
	AcChartGridLine::SetLineStyle method
	AcChartGridLine::SetValue method

	Class AcChartLayer
	AcChartLayer::AddCategory method
	AcChartLayer::AddSeries method
	AcChartLayer::ChartTypeIsStackable method
	AcChartLayer::GetBarShape method
	AcChartLayer::GetBubbleSize method
	AcChartLayer::GetCategory method
	AcChartLayer::GetCategoryGapRatio method
	AcChartLayer::GetCategoryGrouping method
	AcChartLayer::GetCategoryLabelFormat method
	AcChartLayer::GetChart method
	AcChartLayer::GetChartType method
	AcChartLayer::GetDownBarBorderStyle method
	AcChartLayer::GetDownBarFillStyle method
	AcChartLayer::GetDropLineStyle method
	AcChartLayer::GetHighLowLineStyle method
	AcChartLayer::GetIndex method
	AcChartLayer::GetLayerType method
	AcChartLayer::GetLineWidth method
	AcChartLayer::GetMarkerSize method
	AcChartLayer::GetMaximumDataXValue method
	AcChartLayer::GetMaximumDataYValue method
	AcChartLayer::GetMaximumNumberOfPoints method
	AcChartLayer::GetMaximumNumberOfPointsPer Series method
	AcChartLayer::GetMaximumNumberOfSeries method
	AcChartLayer::GetMaximumTrendlineYValue method
	AcChartLayer::GetMinimumDataXValue method
	AcChartLayer::GetMinimumDataYValue method
	AcChartLayer::GetMinimumTrendlineYValue method
	AcChartLayer::GetMissingPoints method
	AcChartLayer::GetNumberOfCategories method
	AcChartLayer::GetNumberOfSeries method
	AcChartLayer::GetPieCenter method
	AcChartLayer::GetPieExplosion method
	AcChartLayer::GetPieExplosionAmount method
	AcChartLayer::GetPieExplosionTestOperator method
	AcChartLayer::GetPieExplosionTestValue method
	AcChartLayer::GetPieRadius method
	AcChartLayer::GetPlotAreaBorderStyle method
	AcChartLayer::GetPlotAreaFillStyle method
	AcChartLayer::GetPlotAreaPosition method
	AcChartLayer::GetPlotAreaSize method
	AcChartLayer::GetPointBorderStyle method
	AcChartLayer::GetPointLabelFormat method
	AcChartLayer::GetPointLabelLineStyle method
	AcChartLayer::GetPointLabelPlacement method
	AcChartLayer::GetPointLabelSource method
	AcChartLayer::GetPointLabelStyle method
	AcChartLayer::GetSeries method
	AcChartLayer::GetSeriesGrouping method
	AcChartLayer::GetSeriesLabelFormat method
	AcChartLayer::GetSeriesOverlapRatio method
	AcChartLayer::GetSeriesPlacement method
	AcChartLayer::GetSeriesStyle method
	AcChartLayer::GetStartAngle method
	AcChartLayer::GetStudyHeightRatio method
	AcChartLayer::GetThreeDBackWallFillStyle method
	AcChartLayer::GetThreeDFloorFillStyle method
	AcChartLayer::GetThreeDSideWallFillStyle method
	AcChartLayer::GetUpBarBorderStyle method
	AcChartLayer::GetUpBarFillStyle method
	AcChartLayer::GetXAxis method
	AcChartLayer::GetYAxis method
	AcChartLayer::HasCategoryScaleXAxis method
	AcChartLayer::HasValueScaleXAxis method
	AcChartLayer::HasXAxis method
	AcChartLayer::HasYAxis method
	AcChartLayer::InsertCategory method
	AcChartLayer::InsertSeries method
	AcChartLayer::IsBaseLayer method
	AcChartLayer::IsOverlayLayer method
	AcChartLayer::IsStacked method
	AcChartLayer::IsStudyLayer method
	AcChartLayer::PieExplosionTestValueIsPercentage method
	AcChartLayer::PlotBarsAsLines method
	AcChartLayer::PlotLinesBetweenPoints method
	AcChartLayer::PlotMarkersAtPoints method
	AcChartLayer::PlotUpDownBars method
	AcChartLayer::RemoveCategory method
	AcChartLayer::RemoveSeries method
	AcChartLayer::SetBarShape method
	AcChartLayer::SetBubbleSize method
	AcChartLayer::SetCategoryGapRatio method
	AcChartLayer::SetCategoryLabelFormat method
	AcChartLayer::SetChartType method
	AcChartLayer::SetDownBarBorderStyle method
	AcChartLayer::SetDownBarFillStyle method
	AcChartLayer::SetDropLineStyle method
	AcChartLayer::SetHighLowLineStyle method
	AcChartLayer::SetLineWidth method
	AcChartLayer::SetMarkerSize method
	AcChartLayer::SetMaximumNumberOfPoints method
	AcChartLayer::SetMaximumNumberOfPointsPer Series method
	AcChartLayer::SetMaximumNumberOfSeries method
	AcChartLayer::SetMissingPoints method
	AcChartLayer::SetPieExplosion method
	AcChartLayer::SetPieExplosionAmount method
	AcChartLayer::SetPieExplosionTestOperator method
	AcChartLayer::SetPieExplosionTestValue method
	AcChartLayer::SetPieExplosionTestValuesIs Percentage method
	AcChartLayer::SetPlotAreaBackgroundColor method
	AcChartLayer::SetPlotAreaBorderStyle method
	AcChartLayer::SetPlotAreaFillStyle method
	AcChartLayer::SetPlotBarsAsLines method
	AcChartLayer::SetPlotHighLowLines method
	AcChartLayer::SetPlotLinesBetweenPoints method
	AcChartLayer::SetPlotMarkersAtPoints method
	AcChartLayer::SetPlotUpDownBars method
	AcChartLayer::SetPointBorderStyle method
	AcChartLayer::SetPointLabelFormat method
	AcChartLayer::SetPointLabelLineStyle method
	AcChartLayer::SetPointLabelPlacement method
	AcChartLayer::SetPointLabelSource method
	AcChartLayer::SetPointLabelStyle method
	AcChartLayer::SetSeriesLabelFormat method
	AcChartLayer::SetSeriesOverlapRatio method
	AcChartLayer::SetSeriesPlacement method
	AcChartLayer::SetStartAngle method
	AcChartLayer::SetStockHasClose method
	AcChartLayer::SetStockHasOpen method
	AcChartLayer::SetStudyHeightRatio method
	AcChartLayer::SetThreeDFloorFillStyle method
	AcChartLayer::SetThreeDWallFillStyle method
	AcChartLayer::SetUpBarBorderStyle method
	AcChartLayer::SetUpBarFillStyle method
	AcChartLayer::StockHasClose method
	AcChartLayer::StockHasOpen method

	Class AcChartPoint
	AcChartPoint::AddCustomStyle method
	AcChartPoint::ClearCustomLabelFormat method
	AcChartPoint::ClearCustomLabelValue method
	AcChartPoint::ClearValues method
	AcChartPoint::ExplodeSlice method
	AcChartPoint::GetCategory method
	AcChartPoint::GetCustomLabelFormat method
	AcChartPoint::GetCustomLabelValue method
	AcChartPoint::GetCustomStyle method
	AcChartPoint::GetIndex method
	AcChartPoint::GetLabelText method
	AcChartPoint::GetSeries method
	AcChartPoint::GetXValue method
	AcChartPoint::GetYValue method
	AcChartPoint::GetZValue method
	AcChartPoint::HasCustomLabelFormat method
	AcChartPoint::HasCustomLabelValue method
	AcChartPoint::HasCustomStyle method
	AcChartPoint::IsMissing method
	AcChartPoint::SetCustomLabelFormat method
	AcChartPoint::SetCustomLabelValue method
	AcChartPoint::SetExplodeSlice method
	AcChartPoint::SetValues method
	AcChartPoint::SetXValue method
	AcChartPoint::SetYValue method
	AcChartPoint::SetZValue method

	Class AcChartPointStyle
	AcChartPointStyle::GetBorderStyle method
	AcChartPointStyle::GetFillStyle method
	AcChartPointStyle::GetMarkerFillColor method
	AcChartPointStyle::GetMarkerLineColor method
	AcChartPointStyle::GetMarkerShape method
	AcChartPointStyle::GetMarkerSize method
	AcChartPointStyle::GetPieExplosionAmount method
	AcChartPointStyle::GetPointLabelPlacement method
	AcChartPointStyle::GetPointLabelStyle method
	AcChartPointStyle::SetBackgroundColor method
	AcChartPointStyle::SetBorderStyle method
	AcChartPointStyle::SetFillStyle method
	AcChartPointStyle::SetMarkerFillColor method
	AcChartPointStyle::SetMarkerLineColor method
	AcChartPointStyle::SetMarkerShape method
	AcChartPointStyle::SetMarkerSize method
	AcChartPointStyle::SetPieExplosionAmount method
	AcChartPointStyle::SetPointLabelPlacement method
	AcChartPointStyle::SetPointLabelStyle method

	Class AcChartSeries
	AcChartSeries::AddEmptyPoint method
	AcChartSeries::AddPoint method
	AcChartSeries::AddTrendline method
	AcChartSeries::GetIndex method
	AcChartSeries::GetKeyValue method
	AcChartSeries::GetLabelText method
	AcChartSeries::GetLabelValue method
	AcChartSeries::GetLayer method
	AcChartSeries::GetNumberOfPoints method
	AcChartSeries::GetNumberOfTrendlines method
	AcChartSeries::GetPoint method
	AcChartSeries::GetStyle method
	AcChartSeries::GetSumOfPointValues method
	AcChartSeries::GetSumOfSliceValues method
	AcChartSeries::GetTrendline method
	AcChartSeries::InsertEmptyPoint method
	AcChartSeries::InsertPoint method
	AcChartSeries::InsertTrendline method
	AcChartSeries::RemovePoint method
	AcChartSeries::RemoveTrendline method
	AcChartSeries::SetKeyValue method
	AcChartSeries::SetLabelValue method

	Class AcChartSeriesStyle
	AcChartSeriesStyle::GetLineStyle method
	AcChartSeriesStyle::GetPointLabelFormat method
	AcChartSeriesStyle::GetPointLabelSource method
	AcChartSeriesStyle::PlotBarsAsLines method
	AcChartSeriesStyle::PlotLinesBetweenPoints method
	AcChartSeriesStyle::PlotMarkersAtPoints method
	AcChartSeriesStyle::SetLineStyle method
	AcChartSeriesStyle::SetPlotBarsAsLines method
	AcChartSeriesStyle::SetPlotLinesBetweenPoints method
	AcChartSeriesStyle::SetPlotMarkersAtPoints method
	AcChartSeriesStyle::SetPointLabelFormat method
	AcChartSeriesStyle::SetPointLabelSource method

	Class AcChartTrendline
	AcChartTrendline::ClearIntercept method
	AcChartTrendline::GetEndYValue method
	AcChartTrendline::GetIndex method
	AcChartTrendline::GetIntercept method
	AcChartTrendline::GetLabelText method
	AcChartTrendline::GetLineStyle method
	AcChartTrendline::GetMaximumYValue method
	AcChartTrendline::GetMinimumYValue method
	AcChartTrendline::GetOrder method
	AcChartTrendline::GetPeriod method
	AcChartTrendline::GetStartYValue method
	AcChartTrendline::GetTrendlineType method
	AcChartTrendline::HasIntercept method
	AcChartTrendline::SetIntercept method
	AcChartTrendline::SetLabelText method
	AcChartTrendline::SetLineStyle method
	AcChartTrendline::SetOrder method
	AcChartTrendline::SetPeriod method
	AcChartTrendline::SetTrendlineType method

	Class AcCollection
	AcCollection::Compare method
	AcCollection::Contains method
	AcCollection::Copy method
	AcCollection::FindByValue method
	AcCollection::GetCount method
	AcCollection::IsEmpty method
	AcCollection::NewIterator method
	AcCollection::Remove method
	AcCollection::RemoveAll method

	Class AcComponent
	AcComponent::ApplyVisitor method
	AcComponent::Delete method
	AcComponent::IsPersistent method
	AcComponent::New method

	Class AcConditionalSection
	AcConditionalSection::ConditionIsTrue method

	Class AcConnection
	AcConnection::Connect method
	AcConnection::Disconnect method
	AcConnection::IsConnected method
	AcConnection::RaiseError method

	Class AcControl
	AcControl::BalloonHelp method
	AcControl::GetControlValue method
	AcControl::GetXMLText method
	AcControl::GetText method
	AcControl::GetValue method
	AcControl::IsSummary method
	AcControl::PageNo method
	AcControl::PageNo$ method
	AcControl::SetDataValue method

	Class AcCrosstab
	AcCrosstab::FinishBuilding method

	Class AcCurrencyControl
	Class AcDataAdapter
	AcDataAdapter::AddRow method
	AcDataAdapter::AddSortKey method
	AcDataAdapter::CanSeek method
	AcDataAdapter::CanSortDynamically method
	AcDataAdapter::CloseConnection method
	AcDataAdapter::Fetch method
	AcDataAdapter::Finish method
	AcDataAdapter::FlushBuffer method
	AcDataAdapter::FlushBufferTo method
	AcDataAdapter::GetConnection method
	AcDataAdapter::GetPosition method
	AcDataAdapter::IsStarted method
	AcDataAdapter::NewConnection method
	AcDataAdapter::NewDataRow method
	AcDataAdapter::OpenConnection method
	AcDataAdapter::Rewind method
	AcDataAdapter::SeekBy method
	AcDataAdapter::SeekTo method
	AcDataAdapter::SeekToEnd method
	AcDataAdapter::SetConnection method
	AcDataAdapter::Start method

	Class AcDatabaseSource
	AcDatabaseSource::BindDataRow method
	AcDatabaseSource::BindStaticParameters method
	AcDatabaseSource::GetCursor method
	AcDatabaseSource::GetDBConnection method
	AcDatabaseSource::GetPreparedStatement method
	AcDatabaseSource::OpenCursor method
	AcDatabaseSource::SetStatementProperty method

	Class AcDataControl
	AcDataControl::Format method
	AcDataControl::GetGroupKey method

	Class AcDataFilter
	Class AcDataFrame
	Class AcDataRow
	AcDataRow::GetValue method
	AcDataRow::OnRead method
	AcDataRow::SetValue method

	Class AcDataRowBuffer
	AcDataRowBuffer::AddRowToBuffer method
	AcDataRowBuffer::GetBufferCount method
	AcDataRowBuffer::GetBufferStart method

	Class AcDataRowSorter
	AcDataRowSorter::Compare method
	AcDataRowSorter::CompareKeys method

	Class AcDataSection
	AcDataSection::GetAfter method
	AcDataSection::GetBefore method
	AcDataSection::GetFirstPageFooter method
	AcDataSection::GetFirstPageHeader method
	AcDataSection::GetPageFooter method
	AcDataSection::GetPageHeader method
	AcDataSection::NewAfter method
	AcDataSection::NewBefore method
	AcDataSection::NewContent method
	AcDataSection::NewPageFooter method
	AcDataSection::NewPageHeader method
	AcDataSection::OnEmptyGroup method

	Class AcDataSource
	AcDataSource::HasFetchedLast method

	Class AcDateTimeControl
	Class AcDBConnection
	AcDBConnection::GetGeneralError method
	AcDBConnection::GetGeneralErrorText method
	AcDBConnection::GetSpecificError method
	AcDBConnection::GetSpecificErrorText method
	AcDBConnection::Prepare method

	Class AcDB2Connection
	Class AcDBCursor
	AcDBCursor::BindColumn method
	AcDBCursor::BindParameter method
	AcDBCursor::CloseCursor method
	AcDBCursor::DefineProcedureInputParameter method
	AcDBCursor::DefineProcedureOutputParameter method
	AcDBCursor::DefineProcedureReturnParameter method
	AcDBCursor::Delete method
	AcDBCursor::Fetch method
	AcDBCursor::GetConnection method
	AcDBCursor::GetOutputParameter method
	AcDBCursor::GetProcedureStatus method
	AcDBCursor::GetStatement method
	AcDBCursor::IsOpen method
	AcDBCursor::New method
	AcDBCursor::OpenCursor method
	AcDBCursor::SetProperty method
	AcDBCursor::StartNextSet method

	Class AcDBStatement
	AcDBStatement::AllocateCursor method
	AcDBStatement::BindParameter method
	AcDBStatement::DefineProcedureInputParameter method
	AcDBStatement::DefineProcedureOutputParameter method
	AcDBStatement::DefineProcedureReturnParameter method
	AcDBStatement::Delete method
	AcDBStatement::Execute method
	AcDBStatement::GetOutputCount method
	AcDBStatement::GetOutputParameter method
	AcDBStatement::GetParameterCount method
	AcDBStatement::GetProcedureStatus method
	AcDBStatement::GetStatementText method
	AcDBStatement::OpenCursor method
	AcDBStatement::Prepare method

	Class AcDoubleControl
	Class AcDrawing
	AcDrawing::AddDrawingPlane method
	AcDrawing::GetAntialias method
	AcDrawing::GetBackgroundColor method
	AcDrawing::GetDrawingPlane method
	AcDrawing::GetNumberOfDrawingPlanes method
	AcDrawing::GetRenderIn24BitColor method
	AcDrawing::InsertDrawingPlane method
	AcDrawing::RemoveDrawingPlane method
	AcDrawing::RenderToFile method
	AcDrawing::SetAntialias method
	AcDrawing::SetRenderIn24BitColor method

	Class AcDrawingChartPlane
	Class AcDrawingPlane
	AcDrawingPlane::GetDrawingPlaneType method
	AcDrawingPlane::IsHidden method
	AcDrawingPlane::SetHidden method
	AcDrawingPlane::SetPosition method
	AcDrawingPlane::SetSize method

	Class AcDrawingSVGPlane
	AcDrawingSVGPlane::GetSVG method
	AcDrawingSVGPlane::SetSVG method

	Class AcDynamicTextControl
	AcDynamicTextControl::AutoSplitVertical method
	AcDynamicTextControl::BuildText method
	AcDynamicTextControl::GetAvailableHeight method
	AcDynamicTextControl::GetAvailableWidth method
	AcDynamicTextControl::GetFixedWidthFontFaceName method
	AcDynamicTextControl::GetPlainText method
	AcDynamicTextControl::GetTaggedText method
	AcDynamicTextControl::KeepTaggedText method
	AcDynamicTextControl::LineSpacing method
	AcDynamicTextControl::LineWidthPadding method
	AcDynamicTextControl::MinimumLineHeight method
	AcDynamicTextControl::NoSplitBottom method
	AcDynamicTextControl::NoSplitTop method
	AcDynamicTextControl::ProcessText method
	AcDynamicTextControl::SetTaggedText method
	AcDynamicTextControl::SpaceBetweenLines method
	AcDynamicTextControl::SpaceBetweenParagraphs method
	AcDynamicTextControl::SplitMarginBottom method
	AcDynamicTextControl::SplitMarginTop method
	AcDynamicTextControl::TabPadding method
	AcDynamicTextControl::TabSpacing method
	AcDynamicTextControl::TextFormat method
	AcDynamicTextControl::WidowAndOrphanControl method

	Class AcExcelApp
	AcExcelApp::AddWorkbook method
	AcExcelApp::DeleteWorkbook method
	AcExcelApp::FindWorkbook method
	AcExcelApp::New method
	AcExcelApp::SetFontScalingFactor method

	Class AcExcelCell
	Class AcExcelColumn
	AcExcelColumn::Autofit method
	AcExcelColumn::GetColumnWidth method
	AcExcelColumn::SetAutofitFont method
	AcExcelColumn::SetAutofitString method
	AcExcelColumn::SetColumnWidth method

	Class AcExcelObject
	Class AcExcelRange
	AcExcelRange::AddImage method
	AcExcelRange::DrawLine method
	AcExcelRange::GetBackgroundColor method
	AcExcelRange::GetBorder method
	AcExcelRange::GetFont method
	AcExcelRange::GetHorizontalAlignment method
	AcExcelRange::GetIndent method
	AcExcelRange::GetMergeCells method
	AcExcelRange::GetNumberFormat method
	AcExcelRange::GetValue method
	AcExcelRange::GetValueAsDate method
	AcExcelRange::GetVerticalAlignment method
	AcExcelRange::GetWrapText method
	AcExcelRange::SetBackgroundColor method
	AcExcelRange::SetBorder method
	AcExcelRange::SetBorderAround method
	AcExcelRange::SetFont method
	AcExcelRange::SetHorizontalAlignment method
	AcExcelRange::SetIndent method
	AcExcelRange::SetMergeCells method
	AcExcelRange::SetNumberFormat method
	AcExcelRange::SetValue method
	AcExcelRange::SetVerticalAlignment method
	AcExcelRange::SetWrapText method

	Class AcExcelRow
	AcExcelRow::GetRowHeight method
	AcExcelRow::SetRowHeight method

	Class AcExcelWorkbook
	AcExcelWorkbook::AddWorksheet method
	AcExcelWorkbook::DeleteWorksheet method
	AcExcelWorkbook::FindWorksheet method
	AcExcelWorkbook::GetFullName method
	AcExcelWorkbook::Save method
	AcExcelWorkbook::SaveAs method

	Class AcExcelWorksheet
	AcExcelWorksheet::AutoFit method
	AcExcelWorksheet::GetCell method
	AcExcelWorksheet::GetColumn method
	AcExcelWorksheet::GetDisplayGridlines method
	AcExcelWorksheet::GetName method
	AcExcelWorksheet::GetRange method
	AcExcelWorksheet::GetRow method
	AcExcelWorksheet::SetDisplayGridlines method
	AcExcelWorksheet::SetName method

	Class AcExternalDataSource
	AcExternalDataSource::ObtainCommand method

	Class AcFlow
	AcFlow::AddFooter method
	AcFlow::AddFrame method
	AcFlow::AddHeader method
	AcFlow::AddSubpage method
	AcFlow::AdjustFooter method
	AcFlow::CanFitFrame method
	AcFlow::CanFitHeight method
	AcFlow::GetFirstDataFrame method
	AcFlow::GetFreeSpace method
	AcFlow::GetInsideSize method
	AcFlow::GetLastDataFrame method
	AcFlow::IsEmpty method
	AcFlow::ReleaseSpace method
	AcFlow::ReserveSpace method
	AcFlow::ResetSpace method
	AcFlow::ResizeByConstrainedByContents method
	AcFlow::ShiftFooterUp method

	Class AcFrame
	AcFrame::AdjustContentVerticalGeometry method
	AcFrame::AutoSplitVertical method
	AcFrame::CustomDHTMLFooter method
	AcFrame::CustomDHTMLHeader method
	AcFrame::GetBorderOrigin method
	AcFrame::GetBorderRect method
	AcFrame::GetBorderSize method
	AcFrame::NoSplitBottom method
	AcFrame::NoSplitTop method
	AcFrame::PageBreakAfter method
	AcFrame::PageBreakBefore method
	AcFrame::SplitMarginBottom method
	AcFrame::SplitMarginTop method

	Class AcGroupSection
	AcGroupSection::GetKeyString method
	AcGroupSection::IsSameKey method

	Class AcImageControl
	AcImageControl::GetFileName method

	Class AcIntegerControl
	Class AcIterator
	AcIterator::Copy method
	AcIterator::GetItem method
	AcIterator::GetNext method
	AcIterator::GetPosition method
	AcIterator::HasMore method
	AcIterator::IsDone method
	AcIterator::MoveNext method
	AcIterator::Restart method
	AcIterator::SkipForwardTo method
	AcIterator::SkipTo method
	AcIterator::SkipToItem method

	Class AcLabelControl
	Class AcLeftRightPageList
	Class AcLinearFlow
	AcLinearFlow::GetFreeSpace method
	AcLinearFlow::GetInsideOrigin method
	AcLinearFlow::GetInsideRect method
	AcLinearFlow::GetInsideSize method

	Class AcLineControl
	Class AcList
	Class AcMSSQLConnection
	Class AcMultipleInputFilter
	AcMultipleInputFilter::GetInputCount method
	AcMultipleInputFilter::NewInputAdapter method

	Class AcObjectArray
	AcObjectArray::RemoveAt method
	AcObjectArray::RemoveEmptyEntries method
	AcObjectArray::ResizeBy method
	AcObjectArray::ResizeTo method
	AcObjectArray::SetGrowthIncrement method

	Class AcOdaConnection
	AcOdaConnection::SetProperties method
	AcOdaConnection::SetRuntimeProperties method

	Class AcOdaSource
	AcOdaSource::ClearSortKeys
	AcOdaSource::Commit method
	AcOdaSource::GetOutputParameter method
	AcOdaSource::GetOutputParameterAsType method
	AcOdaSource::GetOutputParameters method
	AcOdaSource::Rollback method
	AcOdaSource::SetInputParameter method
	AcOdaSource::SetInputParameters method
	AcOdaSource::SetRuntimeProperties method
	AcOdaSource::SetStatementAttributes method
	AcODASource::StartNextSet method

	Class AcODBCConnection
	Class AcOracleConnection
	Class AcOrderedCollection
	AcOrderedCollection::AddToHead method
	AcOrderedCollection::AddToTail method
	AcOrderedCollection::GetAt method
	AcOrderedCollection::GetHead method
	AcOrderedCollection::GetIndex method
	AcOrderedCollection::GetTail method
	AcOrderedCollection::InsertAfter method
	AcOrderedCollection::InsertAt method
	AcOrderedCollection::InsertBefore method
	AcOrderedCollection::RemoveHead method
	AcOrderedCollection::RemoveTail method
	AcOrderedCollection::SetAt method

	Class AcPage
	AcPage::FormatPageNumber method
	AcPage::GetVisiblePageIndex method
	AcPage::SplitMarginBottom method
	AcPage::SplitMarginLeft method
	AcPage::SplitMarginRight method
	AcPage::SplitMarginTop method

	Class AcPageList
	AcPageList::AddFrame method
	AcPageList::EjectPage method
	AcPageList::GetCurrentFlow method
	AcPageList::GetCurrentPage method
	AcPageList::GetCurrentPageACL method
	AcPageList::GetEstimatedPageCount method
	AcPageList::GetFirstPage method
	AcPageList::GetLastPage method
	AcPageList::GetPageCount method
	AcPageList::HasPageSecurity method
	AcPageList::NeedCheckpoint method
	AcPageList::NeedHeight method
	AcPageList::NewPage method
	AcPageList::UseAcceleratedCheckpoints method

	Class AcPageNumberControl
	AcPageNumberControl::GetActualPageCount method
	AcPageNumberControl::GetActualPageNumber method
	AcPageNumberControl::GetFormattedPageNumber method
	AcPageNumberControl::GetVisiblePageCount method
	AcPageNumberControl::GetVisiblePageNumber method
	AcPageNumberControl::PageN method
	AcPageNumberControl::PageNOfM method
	AcPageNumberControl::PageNumberType method

	Class AcParallelSection
	AcParallelSection::AddReport method

	Class AcQuerySource
	AcQuerySource::GetStatementText method
	AcQuerySource::ObtainSelectStatement method
	AcQuerySource::SetupAdHocParameters method

	Class AcRectangleControl
	Class AcReport
	AcReport::AfterFinishingReport method
	AcReport::BeforeStartingReport method
	AcReport::GenerateXMLDataFile method
	AcReport::GetContent method
	AcReport::GetCustomFormat method
	AcReport::GetFactoryLocale method
	AcReport::GetGlobalDHTMLCode method
	AcReport::GetLanguage method
	AcReport::GetLayoutOrientation method
	AcReport::GetPrintLocale method
	AcReport::GetReport method
	AcReport::GetUserACL method
	AcReport::GetViewLocale method
	AcReport::HasPageSecurity method
	AcReport::NewContent method
	AcReport::NewPageList method
	AcReport::OnFinishPrint method
	AcReport::OnStartPrint method
	AcReport::RoiIsTemporary method
	AcReport::SetBurstReportPrivileges method
	AcReport::SetGlobalDHTMLCode method
	AcReport::SetLayoutOrientation method
	AcReport::SetROIAgingProperties method
	AcReport::SuggestRoiName method
	AcReport::TocAddComponent method
	AcReport::XMLDataProlog method

	Class AcReportComponent
	AcReportComponent::Abandon method
	AcReportComponent::AddContent method
	AcReportComponent::Build method
	AcReportComponent::BuildFromRow method
	AcReportComponent::DetachContent method
	AcReportComponent::DetachFromContainer method
	AcReportComponent::FindContainerByClass method
	AcReportComponent::FindContentByClass method
	AcReportComponent::Finish method
	AcReportComponent::GenerateXML method
	AcReportComponent::GetComponentACL method
	AcReportComponent::GetConnection method
	AcReportComponent::GetContainer method
	AcReportComponent::GetContentCount method
	AcReportComponent::GetContentIterator method
	AcReportComponent::GetContents method
	AcReportComponent::GetDataStream method
	AcReportComponent::GetFirstContent method
	AcReportComponent::GetFirstContentFrame method
	AcReportComponent::GetFlow method
	AcReportComponent::GetFullACL method
	AcReportComponent::GetPage method
	AcReportComponent::GetPageIndex method
	AcReportComponent::GetPageList method
	AcReportComponent::GetReport method
	AcReportComponent::GetRowCount method
	AcReportComponent::GetSearchTag method
	AcReportComponent::GetTocEntry method
	AcReportComponent::GetVisiblePageIndex method
	AcReportComponent::GetXMLText method
	AcReportComponent::HasContents method
	AcReportComponent::IsContainer method
	AcReportComponent::IsFlow method
	AcReportComponent::IsFrame method
	AcReportComponent::IsLeaf method
	AcReportComponent::IsPage method
	AcReportComponent::IsSubpage method
	AcReportComponent::IsVisual method
	AcReportComponent::OnRow method
	AcReportComponent::SetSearchTag method
	AcReportComponent::SetTocEntry method
	AcReportComponent::Start method

	Class AcReportSection
	AcReportSection::FinishDataStream method
	AcReportSection::NewDataStream method
	AcReportSection::ObtainDataStream method
	AcReportSection::SetSortKey method
	AcReportSection::StartDataStream method

	Class AcSection
	AcSection::CommittedToFlow method
	AcSection::DeletePageFrame method
	AcSection::FinishConnection method
	AcSection::FinishFlow method
	AcSection::FinishPage method
	AcSection::GetCurrentRow method
	AcSection::GetSearchValue method
	AcSection::NewPage method
	AcSection::ObtainConnection method
	AcSection::PageBreakAfter method
	AcSection::PageBreakBefore method
	AcSection::SetSearchValue method
	AcSection::SetSecurity method
	AcSection::StartFlow method
	AcSection::StartPage method
	AcSection::StopAfterCurrentFrame method
	AcSection::StopAfterCurrentRow method
	AcSection::StopNow method
	AcSection::TocAddComponent method
	AcSection::TocAddContents method

	Class AcSequentialSection
	AcSequentialSection::NewContent method
	AcSequentialSection::SelectContent method
	AcSequentialSection::StopAfterCurrentSection method

	Class AcSimplePageList
	Class AcSingleInputFilter
	AcSingleInputFilter::GetInput method
	AcSingleInputFilter::NewInputAdapter method
	AcSingleInputFilter::SetInput method

	Class AcSingleList
	Class AcSqlQuerySource
	Class AcStaticIndex
	AcStaticIndex::AddLevel method
	AcStaticIndex::New method

	Class AcStoredProcedureSource
	AcStoredProcedureSource::GetOutputParameters

	Class AcSubPage
	Class AcTextControl
	Class AcTextQuerySource
	Class AcTextualControl
	Class AcTitleBodyPageList
	Class AcTopDownFlow
	AcTopDownFlow::AdjustFooter method

	Class AcVisitor
	AcVisitor::VisitBaseFrame method
	AcVisitor::VisitBasePage method
	AcVisitor::VisitChart method
	AcVisitor::VisitComponent method
	AcVisitor::VisitConditionalSection method
	AcVisitor::VisitContents method
	AcVisitor::VisitControl method
	AcVisitor::VisitCurrencyControl method
	AcVisitor::VisitDataControl method
	AcVisitor::VisitDataFrame method
	AcVisitor::VisitDataSection method
	AcVisitor::VisitDateTimeControl method
	AcVisitor::VisitDoubleControl method
	AcVisitor::VisitDynamicTextControl method
	AcVisitor::VisitFlow method
	AcVisitor::VisitFrame method
	AcVisitor::VisitGroupSection method
	AcVisitor::VisitImageControl method
	AcVisitor::VisitIntegerControl method
	AcVisitor::VisitLabelControl method
	AcVisitor::VisitLeftRightPageList method
	AcVisitor::VisitLeftToRightFlow method
	AcVisitor::VisitLinearFlow method
	AcVisitor::VisitLineControl method
	AcVisitor::VisitPage method
	AcVisitor::VisitPages method
	AcVisitor::VisitPageList method
	AcVisitor::VisitPageNumberControl method
	AcVisitor::VisitParallelSection method
	AcVisitor::VisitRectangleControl method
	AcVisitor::VisitReport method
	AcVisitor::VisitReportComponent method
	AcVisitor::VisitReportSection method
	AcVisitor::VisitSection method
	AcVisitor::VisitSequentialSection method
	AcVisitor::VisitSimplePageList method
	AcVisitor::VisitSubpage method
	AcVisitor::VisitTextControl method
	AcVisitor::VisitTextualControl method
	AcVisitor::VisitTitleBodyPageList method
	AcVisitor::VisitTopDownFlow method
	AcVisitor::VisitVisualComponent method

	Class AcVisualComponent
	AcVisualComponent::AdjustHorizontalGeometry method
	AcVisualComponent::AdjustSize method
	AcVisualComponent::AdjustVerticalGeometry method
	AcVisualComponent::CanIncreaseHeight method
	AcVisualComponent::CanIncreaseWidth method
	AcVisualComponent::CanMoveLeft method
	AcVisualComponent::CanMoveUp method
	AcVisualComponent::CanReduceHeight method
	AcVisualComponent::CanReduceWidth method
	AcVisualComponent::CanSplitVertically method
	AcVisualComponent::ComputeLowestSplit method
	AcVisualComponent::FindLowestSplit method
	AcVisualComponent::FindPageContainerByClass method
	AcVisualComponent::GetBottom method
	AcVisualComponent::GetFirstSlave method
	AcVisualComponent::GetFrame method
	AcVisualComponent::GetHeight method
	AcVisualComponent::GetLastSlave method
	AcVisualComponent::GetLeft method
	AcVisualComponent::GetLinkTo method
	AcVisualComponent::GetMaster method
	AcVisualComponent::GetPageContainer method
	AcVisualComponent::GetPixelSize method
	AcVisualComponent::GetRect method
	AcVisualComponent::GetRight method
	AcVisualComponent::GetTop method
	AcVisualComponent::GetVisualComponent method
	AcVisualComponent::GetWidth method
	AcVisualComponent::HorizontalPosition method
	AcVisualComponent::HorizontalSize method
	AcVisualComponent::IsFirstSlave method
	AcVisualComponent::IsFrameDecoration method
	AcVisualComponent::IsLastSlave method
	AcVisualComponent::IsMaster method
	AcVisualComponent::IsNormal method
	AcVisualComponent::IsSlave method
	AcVisualComponent::IsVisible method
	AcVisualComponent::MaximumHeight method
	AcVisualComponent::MaximumWidth method
	AcVisualComponent::MinimumHeight method
	AcVisualComponent::MinimumWidth method
	AcVisualComponent::MoveBy method
	AcVisualComponent::MoveByConstrained method
	AcVisualComponent::MoveTo method
	AcVisualComponent::MoveToConstrained method
	AcVisualComponent::ResizeBy method
	AcVisualComponent::ResizeByConstrained method
	AcVisualComponent::ResizeTo method
	AcVisualComponent::ResizeToConstrained method
	AcVisualComponent::Searchable method
	AcVisualComponent::SearchAlias method
	AcVisualComponent::Selectable method
	AcVisualComponent::SplitVertically method
	AcVisualComponent::StatusText method
	AcVisualComponent::TargetWindowName method
	AcVisualComponent::VerticalPosition method
	AcVisualComponent::VerticalSize method

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

