
Using Actuate BIRT Designer Professional

This documentation has been created for software version 11.0.5.
It is also valid for subsequent software versions as long as no new document version is shipped
with the product or is published at https://knowledge.opentext.com.

Open Text Corporation
275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1
Tel: +1-519-888-7111
Toll Free Canada/USA: 1-800-499-6544 International: +800-4996-5440
Fax: +1-519-888-0677
Support: https://support.opentext.com
For more information, visit https://www.opentext.com

Copyright © 2017 Actuate. All Rights Reserved.
Trademarks owned by Actuate
“OpenText” is a trademark of Open Text.

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in
this publication. However, Open Text Corporation and its affiliates accept no responsibility and
offer no warranty whether expressed or implied, for the accuracy of this publication.

Document No. 170215-2-745301 February 15, 2017

https://knowledge.opentext.com
https://support.opentext.com
https://www.opentext.com

i

Contents
About Using Actuate BIRT Designer Professional xiii

Part 1
Retrieving data for reports

Chapter 1
Accessing data . 3
Supported data sources . 4
How a report accesses data . 5

Chapter 2
Accessing data in a JDBC database . 7
Using database data in a report . 8
Accessing data using the SQL query builder . 8

Connecting to a database . 8
Specifying the data to retrieve . 10

Creating computed columns and complex expressions . 13
Filtering data rows . 14
Grouping data . 15
Filtering groups . 15

Chapter 3
Creating data objects . 17
About data objects . 18
Design considerations . 18

Designing data objects for dashboards . 19
Designing data objects for reports created with Actuate BIRT Studio 21
Designing data objects for reports created with Actuate BIRT Designer 21

Building a data object . 21
Creating new items for a data object . 22
Exporting items to a data object . 23
Creating a shared dimension for cubes . 25
Configuring data set columns for summary tables . 27
Creating hyperlinks to provide drill-down capability . 30
Hiding data sets from users . 33

Providing cached data . 34
Publishing a data object . 34
Enabling incremental updates . 35

ii

Managing user access .37
Maintaining a data object .37

Chapter 4
Accessing data in a data object . 39
Using data object data in a report .40
Connecting to a data object .40
Specifying the data to retrieve from a data object .42
Using a cube in a data object .43

Chapter 5
Accessing data in an information object . 45
Using information object data in a report .46
Connecting to an information object .46
Specifying the data to retrieve from an information object .49

Chapter 6
Accessing data in a report document . 53
Using report document data .54
Creating a report document .54

Specifying bookmark names .57
Specifying element names .58

Connecting to a report document .58
Specifying the data to retrieve from a report document .60

Chapter 7
Accessing data in an e.report . 63
Using ActuateOne for e.Reports Data Connector .64

About ActuateOne for e.Reports Data Connector functionality .64
Accessing an e.report using Page Level Security .64
Accessing an e.report having multiple sections .64

Connecting to an e.report .65
Specifying the data to retrieve from an e.report .66

Chapter 8
Accessing data in Amazon DynamoDB . 71
Using Amazon DynamoDB data in a report .72
Connecting to Amazon DynamoDB .72
Specifying the data to retrieve from Amazon DynamoDB .74

Filtering data .76
Filtering by a composite primary key .76
Filtering by an attribute .77

iii

Chapter 9
Accessing data in Amazon Relational Database Service 81
Using Amazon RDS data in a report . 82
Connecting to Amazon RDS . 82
Specifying the data to retrieve from Amazon RDS . 83

Chapter 10
Accessing data in a Hadoop system . 85
Using Hadoop data in a report . 86
Connecting to a Hadoop system . 86
Specifying the data to retrieve from a Hadoop system . 87

Chapter 11
Accessing data in Salesforce.com . 91
Using Salesforce.com data in a report . 92
Connecting to Salesforce.com . 92
Specifying the data to retrieve from Salesforce.com . 94

Chapter 12
Accessing data in a POJO . 97
Using POJO data in a report . 98
Connecting to a POJO . 98
Specifying the data to retrieve from a POJO . 100

Chapter 13
Combining data from multiple data sources . 105
Ways to combine data . 106
Creating a union data set . 106
Creating a joined data set .110

Joining on more than one key .114
Specifying a join condition not based on equality .115

Part 2
Designing reports

Chapter 14
Formatting a report . 121
Formatting features in Actuate BIRT Designer . 122
Removing the default themes . 122
Hiding columns in a table . 124
Using a Quick Response (QR) code to link to content . 125
Designing for optimal viewer performance . 126

iv

Chapter 15
Building HTML5 charts . 129
About HTML5 charts .130

Comparing HTML5, Flash, and BIRT charts .130
Rendering platform .131

Creating an HTML5 chart .131
Formatting an HTML5 chart .132

Applying a chart theme .133
Creating a chart theme .133

Creating a general chart theme .135
Creating a JavaScript chart theme .136

Writing event handlers .139
Writing event handlers that respond to user interactions .140
Writing event handlers that respond to chart events .143

About the HTML5 chart events .144
Setting chart options through scripting .144
Scripting example 1 .146
Scripting example 2 .148
Scripting example 3 .150

Chapter 16
Using Flash objects in a report . 153
About Flash .154
Software requirements .154
Ways to add Flash objects in a report .155
Output formats that support Flash .155

Chapter 17
Using built-in Flash charts and gadgets . 157
About Flash charts and gadgets .158
Creating a Flash chart and gadget .158
Formatting a Flash chart .159
Formatting a Flash gadget .160

General properties .160
Scale properties .163
Needle properties .165
Needle base or pivot properties .166
Number formatting properties .168
Region properties .169
Tick properties .170
Threshold properties .172
Anchor properties .174
Plot properties .175

v

Value indicator properties . 177
Tooltip properties . 178
Font properties . 179
Padding and margin properties . 179
AddOn properties . 180

Using animation and other visual effects . 184
Creating effects . 185
Managing effects . 187
Animation effect . 188
Bevel effect . 191
Blur effect . 192
Font effect . 192
Glow effect . 193
Shadow effect . 194

Tutorial 1: Creating a Flash chart . 195
Task 1: Create a new report . 195
Task 2: Build a data source . 195
Task 3: Build a data set . 196
Task 4: Add a Flash chart to the report . 197
Task 5: Select data for the Flash chart . 197
Task 6: Animate the x-axis labels . 199
Task 7: Animate the y-axis labels . 201
Task 8: Change the animation effect of the columns . 201

Tutorial 2: Creating a Flash gadget . 202
Task 1: Add a Flash gadget to the report . 203
Task 2: Select data for the linear gauge . 203
Task 3: Divide the data area into regions . 205
Task 4: Add thresholds . 206
Task 5: Animate the region labels . 207
Task 6: Animate the sales value . 209
Task 7: Add a glow effect to the needle . 209

Limitations . 210

Chapter 18
Using the Flash object library . 211
About the Flash object library . 212

About Flash charts . 212
About Flash gadgets . 212
About Flash maps . 213
About Flash power charts . 214
Flash object components . 214

Inserting a Flash object in a report . 214
Providing data to a Flash object . 216

vi

Generating the XML data .219
Using the dataXML variable to pass XML data .220
Using the dataURL variable to pass XML data .221

Using the Flash object library documentation .222
Tutorial 3: Creating a Flash map that gets data through the dataXML variable. 223

Task 1: Create a new report .224
Task 2: Build a data source .224
Task 3: Build a data set .224
Task 4: Find a suitable Flash map .226
Task 5: Review the map specifications .226
Task 6: Map the data set values to the Flash map entity values .227
Task 7: Add the Flash map to the report .228
Task 8: Generate an XML data string .229
Task 9: Create the dataXML variable and pass the data .230
Task 10: Format the Flash map .232

Display sales values in a more readable format .232
Building the XML string in readable pieces .233
Change the colors used in the map .234
Define data ranges and apply different colors to each range .234
Create city markers .234

Tutorial 4: Creating a Flash chart that gets data through the dataURL variable 236
Task 1: Create a new report .237
Task 2: Build a data source .237
Task 3: Build a data set .237
Task 4: Add a Flash chart to the report .239
Task 5: Create a plug-in .240
Task 6: Define an extension .243
Task 7: Create a Java class .245
Task 8: Implement methods in the class .247

Import the required packages .247
Implement the initialize() method .248
Implement the output() method .248
Implement the release() method .251

Task 9: Deploy the plug-in .251
Task 10: Create the dataURL variable .252

Debugging a Flash object .253
Using the Flash object’s debug mode .253
Resolving errors .254

Chapter 19
Writing expressions using EasyScript . 257
About EasyScript .258

Choosing between EasyScript and JavaScript .258

vii

Syntax rules . 258
Using the EasyScript expression builder . 259
Changing the default expression syntax . 260
Functions . 260
ABS() . 261
ADD_DAY() . 261
ADD_HOUR() . 261
ADD_MINUTE() . 262
ADD_MONTH() . 262
ADD_QUARTER() . 263
ADD_SECOND() . 263
ADD_WEEK() . 264
ADD_YEAR() . 264
BETWEEN() . 264
CEILING() . 265
DAY() . 266
DIFF_DAY() . 266
DIFF_HOUR() . 267
DIFF_MINUTE() . 267
DIFF_MONTH() . 268
DIFF_QUARTER() . 268
DIFF_SECOND() . 269
DIFF_WEEK() . 270
DIFF_YEAR() . 270
FIND() . 271
IF() . 272
IN() . 272
ISNULL() . 273
LEFT() . 273
LEN() . 274
LIKE() . 275
LOWER() . 276
MATCH() . 276
MOD() . 277
MONTH() . 278
NOT() . 279
NOTNULL() . 279
NOW() . 279
QUARTER() . 280
RIGHT() . 280
ROUND() . 281
ROUNDDOWN() . 282
ROUNDUP() . 282

viii

SEARCH() .283
SQRT() .284
TODAY() .285
TRIM() .285
TRIMLEFT() .285
TRIMRIGHT() .286
UPPER() .286
WEEK() .286
WEEKDAY() .287
YEAR() .287
Operators .288

Chapter 20
Specifying filter conditions at report run time . 289
About report parameters and filters .290
Enabling the user to specify a filter condition .290

Creating a dynamic filter report parameter .291
Making a filter parameter optional .293
Accepting multiple values .293

Creating a dynamic filter .293
Getting information about queries .295

Chapter 21
Displaying cross tab data by relative time periods 299
About relative time periods .300
Aggregating data by a relative time period .301

Examples of relative time period aggregations .303
Supported time periods .308
Using the * to Date and Trailing N * time periods .313

Chapter 22
Adding HTML buttons to a report . 315
About HTML buttons .316
Creating an HTML button .317
Writing code for an HTML button .319

Accessing report data .320
Using the Actuate JavaScript API .324
Testing an HTML button .325

Changing the appearance of an HTML button .325

Chapter 23
Controlling user access to report pages and data 329
About the security model .330

ix

About access control lists (ACLs) and security IDs . 330
ACL expression syntax . 331

Controlling user access to report pages . 331
Adding page-level security to a report . 335
Enabling and disabling page-level security . 338
Configuring page numbers . 339
Testing page-level security . 340

Controlling user access to data . 341
Adding security to a data object . 341

Adding security to a data set . 341
Adding security to a cube . 347

Enabling and disabling data security . 350
Testing data security . 350

Chapter 24
Accessing iServer environment information . 353
Writing event handlers to retrieve iServer environment information . 354

Writing a JavaScript event handler . 354
Writing a Java event handler . 355
About the serverContext object . 356
JavaScript event handler example . 356
Java event handler example . 357

Debugging event handlers that use the iServer API . 358
iServer API reference . 360
appendToJobStatus() . 360
getAuthenticationId() . 360
getServerWorkingDirectory() . 361
getUserAgentString() . 361
getUserRoles() . 362
getVolumeName() . 362
setHeadline() . 363
setVersionName() . 363

Chapter 25
Performing impact analysis . 365
About impact analysis . 366
Searching for database items used in BIRT objects . 366
Identifying the files impacted by a BIRT object . 368
Viewing the relationships among files in a project . 368
Assessing the impact of changes in an Actuate BIRT iServer volume . 370

x

Part 3
Deploying reports and resources

Chapter 26
Deploying BIRT reports to iServer . 377
About deploying BIRT reports .378
Publishing a report to iServer .378
Publishing a report resource to iServer .381
Deploying Java classes used in BIRT reports .383
Installing a custom JDBC driver .385
Installing custom ODA drivers and custom plug-ins .385

Chapter 27
Configuring data source connections in iServer 387
About data source connection properties .388
Using a connection profile .388

Creating a connection profile .388
Managing a connection profile .397

Exporting connection profiles .397
Importing connection profiles .398
Editing connection profile properties .399

Deploying a connection profile .400
Encrypting connection profile properties .401
Binding connection profile properties . 402

Binding Connection Profile Store URL property .402
Binding a connection profile name to a report parameter .403

Using a connection configuration file .408
Setting up the connection configuration file .408
Understanding how iServer uses the connection configuration file .410
Setting the location of a connection configuration file .410
Encrypting the connection properties . 411
Externalizing the connection profile properties on the iServer .414

Understanding externalization precedence .414
Referencing an external connection profile .415

Accessing BIRT report design and BIRT resource path in custom ODA plug-ins416
Accessing resource identifiers in the run-time ODA driver .416
Accessing resource identifiers in the design ODA driver .417

Chapter 28
Configuring fonts in iServer . 419
About configuring fonts .420
Understanding font configuration file priorities .420

xi

Understanding how the BIRT engine locates a font . 421
Understanding the font configuration file structure . 422

<font-aliases> section . 422
<composite-font> section . 423
<font-paths> section . 423

Chapter 29
Working with BIRT encryption in iServer . 425
About BIRT encryption . 426
About the BIRT default encryption plug-in . 426

About supported encryption algorithms . 427
About the components of the BIRT default encryption plug-in . 427
About acdefaultsecurity.jar . 428
About encryption.properties . 428
About META-INF/MANIFEST.MF . 430
About plugin.xml . 430

Creating a BIRT report that uses the default encryption . 432
Deploying multiple encryption plug-ins . 433
Deploying encryption plug-ins to iServer . 437
Generating encryption keys . 437
Creating a custom encryption plug-in . 439
Using encryption API methods . 440

Chapter 30
Using custom emitters in iServer . 441
About custom emitters . 442
Deploying custom emitters to iServer and Information Console . 443
Rendering in custom formats . 444
Configuring the default export options for a BIRT report . 449

Part 4
Using Actuate BIRT APIs

Chapter 31
Using the BIRT data object API . 453
About generating data objects from an application . 454
Generating data object elements for BIRT report designs . 454

Creating data object data sets for BIRT report designs . 456
Creating data object data cubes for BIRT report designs . 456

Tutorial 5: Creating a data element using the Design Engine API . 456
Task 1: Set up a project . 457
Task 2: Create a GenerateDataObject Java class . 460

xii

Task 3: Create the main() method to test the code .460
Task 4: Run the code .462

Index . 465

A b o u t U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l xiii

A b o u t U s i n g A c t u a t e B I R T
D e s i g n e r P r o f e s s i o n a l

Using Actuate BIRT Designer Professional describes how to use Actuate BIRT
Designer to create reports, and the Actuate BIRT option to configure and
distribute BIRT reports.

Using Actuate BIRT Designer Professional describes the additional functionality
available in Actuate BIRT Designer that is not available in the open-source BIRT
Report Designer. Actuate provides this functionality as extra Eclipse features that
integrate into the Eclipse BIRT report designer environment. For information
about the functionality shared with the open-source BIRT Report Designer, see
BIRT: A Field Guide and Integrating and Extending BIRT, both published by
Addison-Wesley.

Using Actuate BIRT Designer Professional includes the following chapters:

■ About Using Actuate BIRT Designer Professional. This chapter provides an
overview of this guide.

■ Part 1. Retrieving data for reports. This part explains how to connect to various
data sources and retrieve data for use in reports.

■ Chapter 1. Accessing data. This chapter lists all the types of data sources that
Actuate BIRT Designer supports, and provides an overview of how reports
access data.

■ Chapter 2. Accessing data in a JDBC database. This chapter describes how to
connect to and retrieve data from a database using the SQL query builder.

■ Chapter 3. Creating data objects. This chapter describes how to create data
objects to provide data for dashboards and reports.

■ Chapter 4. Accessing data in a data object. This chapter describes how to connect
to and retrieve data from a data object.

■ Chapter 5. Accessing data in an information object. This chapter describes how to
connect to and retrieve data from an information object.

■ Chapter 6. Accessing data in a report document. This chapter describes how to
connect to and retrieve data from a report document.

xiv U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ Chapter 7. Accessing data in an e.report. This chapter describes how to connect to
and retrieve data from a report developed with Actuate e.Report Designer
Professional.

■ Chapter 8. Accessing data in Amazon DynamoDB. This chapter describes how to
connect to and retrieve data from a database store in Amazon DynamoDB.

■ Chapter 9. Accessing data in Amazon Relational Database Service. This chapter
describes how to connect to and retrieve data from a database instance in
Amazon RDS.

■ Chapter 10. Accessing data in a Hadoop system. This chapter describes how to
connect to and retrieve data from a Hadoop system.

■ Chapter 11. Accessing data in Salesforce.com. This chapter describes how to
connect to and retrieve data from Salesforce.com.

■ Chapter 12. Accessing data in a POJO. This chapter describes how to connect to
and retrieve data from a POJO.

■ Chapter 13. Combining data from multiple data sources. This chapter describes
how to combine data from different data sets.

■ Part 2. Designing reports. This part describes the additional design functionality
available in Actuate BIRT Designer.

■ Chapter 14. Formatting a report. This chapter describes the additional report
formatting options in Actuate BIRT Designer.

■ Chapter 15. Building HTML5 charts. This chapter describes the requirements
and methods for adding and formatting HTML5 charts in a report.

■ Chapter 16. Using Flash objects in a report. This chapter describes the
requirements and methods for adding Flash objects in a report.

■ Chapter 17. Using built-in Flash charts and gadgets. This chapter describes how to
create and format Flash charts and gadgets using the Flash chart and Flash
gadget builders.

■ Chapter 18. Using the Flash object library. This chapter describes how to add
Flash objects from the InfoSoft Flash object library to a report.

■ Chapter 19. Writing expressions using EasyScript. This chapter describes how to
write expressions using EasyScript, which is an expression syntax similar to
the syntax used in Excel formulas. The chapter also provides a reference to the
EasyScript functions and operators.

■ Chapter 20. Specifying filter conditions at report run time. This chapter describes
how to create dynamic filters and report parameters, which provide users
more control over what data they see in a report.

■ Chapter 21. Displaying cross tab data by relative time periods. This chapter
describes how to aggregate cross tab data by relative time periods, such as
year-to-date, current quarter, or trailing 30 days.

A b o u t U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l xv

■ Chapter 22. Adding HTML buttons to a report. This chapter describes how to use
HTML buttons to run JavaScript code.

■ Chapter 23. Controlling user access to report pages and data. This chapter describes
how to use the page-level security and data security features in Actuate
iServer to control user access to particular sections in a report and a particular
set of data in a data object.

■ Chapter 24. Accessing iServer environment information. This chapter describes
how to write event handlers in a report to retrieve iServer environment
information.

■ Chapter 25. Performing impact analysis. This chapter describes how to assess the
impact of changes in a database and in BIRT objects.

■ Part 3. Deploying reports and resources. This part explains how to deploy reports
and resources to an Actuate iServer encyclopedia.

■ Chapter 26. Deploying BIRT reports to iServer. This chapter describes how to use
the Actuate BIRT Report option to run and distribute BIRT reports in Actuate
iServer.

■ Chapter 27. Configuring data source connections in iServer. This chapter describes
how to set up and use a data source configuration file using Actuate iServer.

■ Chapter 28. Configuring fonts in iServer. This chapter describes how to set up
and use custom fonts in Actuate BIRT reports using Actuate iServer.

■ Chapter 29. Working with BIRT encryption in iServer. This chapter describes how
to set up and use report encryption using Actuate iServer.

■ Chapter 30. Using custom emitters in iServer. This chapter describes how to
provide custom output formats for Actuate BIRT reports on Actuate iServer.

■ Part 4. Using Actuate BIRT APIs. This part explains how to use classes in the
com.actuate.birt.* public packages.

■ Chapter 31. Using the BIRT data object API. This chapter describes how to work
with BIRT data objects and report designs programmatically.

xvi U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Part 1Retrieving data for reports

PartOne1

C h a p t e r 1 , A c c e s s i n g d a t a 3

C h a p t e r

1
Chapter 1Accessing data

This chapter contains the following topics:

■ Supported data sources

■ How a report accesses data

4 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Supported data sources
Actuate BIRT Designer supports all the types of data sources that open-source
BIRT Report Designer supports, and more. Table 1-1 lists the types of data sources
that each product supports.

Actuate data objects, Actuate information objects, and BIRT report documents are
data files that report developers or data architects create with Actuate BIRT
Designer. These files contain the information to connect to and retrieve data from
enterprise data sources, such as databases and web applications.

The Actuate JDBC Salesforce.com data source enables a connection to a
Salesforce.com database through JDBC.

ActuateOne for e.Reports is a data driver that supports the retrieval of data from
reports developed using Actuate e.Report Designer Professional.

The Amazon DynamoDB data source enables a connection to Amazon’s NoSQL
(non-relational) database in the cloud.

Table 1-1 Supported data source types

Data source type
Actuate BIRT

Designer
BIRT Report

Designer

Actuate data object ✓

Actuate information object ✓

Actuate JDBC Salesforce.com ✓

ActuateOne for e.Reports ✓

Amazon DynamoDB ✓

Amazon RDS ✓

BIRT report document ✓

Flat file ✓ ✓

Hive ✓ ✓

JDBC ✓ ✓

JDBC connection for Query
Builder

✓

Plain Old Java Object (POJO) ✓

Scripted ✓ ✓

Static ✓

Web service ✓ ✓

XML document ✓ ✓

C h a p t e r 1 , A c c e s s i n g d a t a 5

The Amazon RDS (Relational Database Service) data source enables a connection
to Amazon’s web service, which provides access to a relational database in the
cloud.

The Hive data source enables a connection to Hadoop through Hive, an open-
source data warehouse infrastructure for facilitating data summarization, queries,
and analysis.

Like the JDBC data source, the JDBC connection for Query Builder data source
supports the retrieval of data from JDBC databases. However, instead of typing a
SQL query to select the data to retrieve, you use a graphical query builder to
construct the SQL query.

A static data source is a set of data that you create in Actuate BIRT Designer. This
type of data is useful when you need to create sample data quickly for testing
purposes.

How a report accesses data
A report uses the same mechanism to access data from any of the sources listed in
Table 1-1. First, you create a data source, which is a BIRT object that contains the
information to connect to an underlying data source. Each type of data source
requires different connection information. For a JDBC data source, for example,
you specify the driver, URL, and user login to connect to a database. An XML
data source requires the location of the XML file and, optionally, the location of
the XML schema.

Next, you create a data set, which is a BIRT object that specifies and returns all the
data that is available to a report. For a JDBC data source, for example, you write a
SQL query or run a stored procedure to retrieve specific data from a database. For
an XML data source, you use XPath expressions to specify the XML elements and
attributes from which to retrieve data.

This book provides instructions for accessing data from data sources that only
Actuate BIRT Designer supports. For information about accessing data from data
sources that both BIRT products support, see BIRT: A Field Guide.

6 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 2 , A c c e s s i n g d a t a i n a J D B C d a t a b a s e 7

C h a p t e r

2
Chapter 2Accessing data in a

JDBC database
This chapter contains the following topics:

■ Using database data in a report

■ Accessing data using the SQL query builder

8 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using database data in a report
Like the open-source BIRT Report Designer, Actuate BIRT Designer supports
connecting to many relational databases, such as Oracle, Sybase, Informix, DB2,
SQL Server, and Derby, through database-specific JDBC drivers. Actuate BIRT
Designer provides these JDBC drivers, whereas, users of the open-source
designer must download and install the appropriate JDBC drivers.

Both designers provide a query editor for typing the SQL statement to specify the
data to retrieve. In addition, Actuate BIRT Designer includes a SQL query builder
that you can use to create SQL statements graphically. The query builder provides
two advantages over the query editor:

■ The ability to create and edit SQL statements quickly without typing SQL
code. This feature is particularly useful when creating multiple joins, using
SQL functions, or writing complex expressions.

■ The ability for BIRT to modify a SQL query when you sort, group, or filter data
using the graphical tools. BIRT maps these user-interface actions to the
equivalent SQL expressions, and because the database processes the data, the
report’s performance improves.

This chapter describes how to access database data using the query builder. For
information about using the query editor, see BIRT: A Field Guide.

Accessing data using the SQL query builder
As with other types of data sources, for a report to retrieve data from a database
using the query builder, you must create the following BIRT objects:

■ A data source that contains the information to connect to the database

■ A data set that specifies the data to retrieve from the database

Connecting to a database
The connection properties vary depending on the specific database, but the
following information is typically required:

■ The database type

■ The JDBC driver to use

■ The database name and URL

■ Login credentials

C h a p t e r 2 , A c c e s s i n g d a t a i n a J D B C d a t a b a s e 9

How to connect to a database

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select JDBC Database Connection for Query Builder from the list of data
source types, as shown in Figure 2-1.

2 In Data Source Name, type a name for the data source.

Figure 2-1 Selecting JDBC Database Connection for Query Builder

3 Choose Next.

3 In New JDBC Database Connection for Query Builder, select the database to
which to connect. To connect to the Classic Models sample database, select
Derby. Choose Next.

4 In New Connection Profile, select a driver, and provide the information to
connect to the database. Figure 2-2 shows an example of the properties to
connect to the sample database. These properties are supplied by default
when you select Derby as the connection profile type. To connect to a different
Derby database, select a different driver and specify the appropriate
connection information.

10 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 2-2 Connection properties for the sample database

Choose Test Connection to check the connection to the database. Choose
Finish.

Specifying the data to retrieve
When you create a JDBC Database Connection for Query Builder data source, as
described in the previous section, you have access to the SQL query builder. This
graphical tool provides access to your database schema and objects, and wizards
that help you select and join tables, sort, group, and filter data.

How to create a query using the query builder

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the JDBC Database Connection for Query
Builder data source to use. Data Set Type displays SQL Select Query
[Query Builder].

2 In Data Set Name, type a name for the data set.

3 Choose Next.

C h a p t e r 2 , A c c e s s i n g d a t a i n a J D B C d a t a b a s e 11

The query builder appears, as shown in Figure 2-3. The top pane displays a
SELECT statement. You can type a query here, or use the tools in the middle
and bottom panes to create the query. The rest of this procedure describes the
steps for creating a query graphically.

Figure 2-3 Query Builder

3 Select the tables and columns that contain the data to use in the report.

1 Right-click in the middle pane, and choose Add Table.

2 Expand a database schema, and select the desired table. The table and its
columns appear in the middle pane.

3 Select the desired columns.

4 Repeat the previous steps to select columns in other tables.

4 Join the tables.

1 Right-click in a table, then choose Create Join.

2 In Create Join, specify the tables and columns to join, and the join type.
Figure 2-4 shows an example of an inner join on the CUSTOMERNUMBER
columns in the CUSTOMERS and ORDERS tables.

12 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 2-4 An inner join between two tables

3 Repeat the previous steps to join all the tables. Figure 2-5 shows three
tables that are joined. The SELECT statement in the top pane is updated to
reflect the selected columns and table joins. The bottom pane lists the
selected columns and their properties.

Figure 2-5 Query Builder showing three joined tables

C h a p t e r 2 , A c c e s s i n g d a t a i n a J D B C d a t a b a s e 13

5 If necessary, use the tabs in the bottom pane to do the following:

■ Choose Columns to edit column properties, create computed columns or
complex expressions.

■ Choose Conditions to filter data rows.

■ Choose Groups to group aggregate data.

■ Choose Group Conditions to filter groups.

The following sections provide more information about each task.

Creating computed columns and complex expressions
Using SQL, you can manipulate data to return it in the format that you require.
You can create computed columns that return values derived from multiple
fields, for example:

QuantityOrdered * PriceEach
ContactFirstName || ' ' || ContactLastName

You can aggregate data using SQL functions, for example:

SUM(OrderAmount)
AVG(OrderTotal)

You can create statements that provide if-then-else logic, for example:

CASE WHEN QuantityInStock > 0 THEN 'In Stock' ELSE 'Out of Stock'
END

How to create a computed column

1 Choose Columns.

2 In Column, click in an empty cell. Click the arrow button, scroll down the list
of available columns, and choose Build Expression.

3 Click outside the cell to open the expression builder.

4 In Expression Builder, select the type of expression to build and choose Next.
Expression Builder displays different properties depending on the expression
type.

Figure 2-6 shows an example of a function expression. The expression uses an
aggregate function, SUM, to calculate order totals. The expression,
SUM(QUANTITYORDERED * PRICEEACH), is created by selecting the SUM
function, and the required columns and operator to use in the calculation.

14 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 2-6 Example of a function expression

Choose Finish. The computed column appears under Columns.

5 In Alias, type an alias for the computed column so that it is easily identified.

Filtering data rows
Databases typically contain vast amounts of data. Reports, however, typically use
a small subset of the data, so SQL queries often contain filter conditions to limit
the rows returned.

How to filter data rows

1 Choose Conditions.

2 Create a filter condition.

1 In Column, select a column or Build Expression to create an expression.

2 In Operator, select an operator.

3 In Value, select a column or type a value.

4 In AND/OR, optionally select AND or OR to specify another filter
condition.

C h a p t e r 2 , A c c e s s i n g d a t a i n a J D B C d a t a b a s e 15

Figure 2-7 shows an example of a filter condition.

Figure 2-7 Filter condition on data rows

The following WHERE clause is added to the SELECT statement in the top
pane:

WHERE CLASSICMODELS.ORDERS.ORDERDATE > '2004-06-30'

Grouping data
If you use aggregate functions, such SUM or AVG, you typically have to group
the results by one or more columns. For example, an Orders table contains order
records and some customers have multiple orders. To get the order totals for each
customer, you would use the GROUP BY clause to group the customers, and the
SUM function to aggregate the order totals by customer.

How to group data

1 Choose Groups.

2 Under Column, click in an empty row. Click the arrow button, and select the
column whose aggregate data to group. Figure 2-8 shows an example in which
results are grouped on the CUSTOMERNAME column.

Figure 2-8 Grouping on the CUSTOMERNAME column

The following GROUP BY clause is added to the SELECT statement:

GROUP BY CLASSICMODELS.CUSTOMERS.CUSTOMERNAME

Filtering groups
You can specify filter conditions for data that is grouped. For example, if order
records are grouped by customer, you can select only customers whose order
totals exceed $150000. The filter condition for a group is specified using the
HAVING clause. This clause behaves like the WHERE clause, but is applicable to
groups. The WHERE clause, on the other hand, applies to individual rows.

A SELECT statement can contain both WHERE and HAVING clauses. For
example, you can select customers whose order totals exceed $150000, factoring

16 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

only orders placed after 06/30/2004. The SELECT statement would look like the
following:

SELECT CustomerName, SUM(OrderAmount) FROM Orders
WHERE OrderDate > '2004-06-30'
GROUP BY CustomerName
HAVING SUM(OrderAmount) > 150000

How to filter groups

1 Choose Group Conditions.

2 Create a filter condition.

1 In Column, select a column or Build Expression to create an expression.

2 In Operator, select an operator.

3 In Value, select a column or type a constant value.

4 In AND/OR, optionally select AND or OR to specify another filter
condition.

Figure 2-9 shows an example of a filter condition specified for groups.

Figure 2-9 A filter condition specified for groups

The following HAVING clause is added to the SELECT statement:

HAVING SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED *
CLASSICMODELS.ORDERDETAILS.PRICEEACH) >= 150000

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 17

C h a p t e r

3
Chapter 3Creating data objects

This chapter contains the following topics:

■ About data objects

■ Design considerations

■ Building a data object

■ Providing cached data

■ Publishing a data object

■ Enabling incremental updates

■ Managing user access

■ Maintaining a data object

18 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About data objects
A data object is a BIRT object that contains all the information necessary to
connect to an external data source, retrieve data from that data source, and
structure the data in a way that supports business analysis. Data objects are
similar to data marts, which are simplified repositories of data gathered from
corporate data sources and designed to address specific business queries.

Data architects or report developers create data objects to provide data for the
following items:

■ Dashboards, which users create using Actuate BIRT 360 Studio, a dashboard
application on Actuate BIRT iServer

■ BIRT reports that are created using either Actuate BIRT Designer or Actuate
BIRT Studio on iServer

Data objects use Actuate’s in-memory analytics technology, which loads data in
memory to speed up the processing of data.

Design considerations
A data object is a collection of the following BIRT objects:

■ Data sources

■ Data sets

■ Data cubes

■ Report parameters

A data object can include any number of data sources, data sets, data cubes, and
report parameters. Although it is possible to create a single data object that
contains all the data that dashboard users or report developers could possibly
need, a data object that provides too much data can be confusing for users. In
addition, the amount of memory that a data object uses increases with the
number of data rows returned by data sets and the number of aggregations
calculated by cubes.

If creating data objects for diverse groups of users or reports, evaluate how best to
organize data into data objects and how much data to include in each data object.

The objects to include in a data object depend on which item—dashboard or BIRT
report—is using the data object. Table 3-1 lists the objects that you typically
include when creating a data object for a dashboard and for a report.

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 19

The following sections describe in more detail the guidelines for designing data
objects for dashboards and reports.

Designing data objects for dashboards
Actuate BIRT 360 is a web application designed for business users who want
to measure the effectiveness of their business processes and have this
decision-support information displayed graphically in a dashboard. The data
objects you create for dashboards need to extract the right data and provide it in a
structure suitable for dashboard gadgets.

Use the following guidelines when designing data objects for dashboard users:

■ Identify the users and create a data object or series of data objects for each user
group.
A typical approach is to create data objects by groups of users, where each
data object fulfills a different business need. For example, executives, sales
managers, and customer support managers represent three distinct user
groups with different data requirements. Executives might be interested in
viewing revenue by month or quarter. Sales managers might need to evaluate
the sales numbers of individual sales representatives by month or quarter.
Customer support managers might need to monitor support call volume by
days. Depending on how iServer user accounts are set up, you might be able
to leverage the defined user roles and groups to identify the user groups by
which to organize data objects. Contact the iServer administrator for this
information.

■ Provide users with sufficient data that they can use to analyze by different
dimensions and at different levels of detail.
Users often need to view data from different dimensions. For example, sales
managers might need to view sales by product line, by region, or by sales
representative, and by different time periods. If viewing sales data by region,
sales managers might need to drill down to view sales by cities within each
region.

■ Design data sets and cubes to provide data that is suitable for the gadgets that
will be used to display data.
The dashboard provides a suite of gadgets for displaying data. Each gadget
accesses data in the same way as the corresponding element does in a BIRT
report.

■ All chart gadgets use data from either a data set or a cube.

Table 3-1 Typical objects in a data object for a dashboard and a report

Data source Data set Cube Report parameter

Dashboard ✓ ✓ ✓ ✓

BIRT report ✓ ✓ ✓

20 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ The cross tab gadget uses data from a cube.

■ The table and summary table gadgets use data from a data set. In addition,
summary tables require that each column in the data set be assigned the
appropriate analysis type to provide the expected functionality. For more
information, see “Configuring data set columns for summary tables,” later
in this chapter.

■ Design data sets or report parameters to provide lists of values to display in
data selector gadgets. Just as a report parameter supports run-time filtering of
data in a report, a data selector gadget enables a dashboard user to filter data
in a chart, cross tab, table, or any other gadget that displays data.

Figure 3-1 shows a dashboard that uses five gadgets to display sales data.
Descriptions of each gadget follow the illustration.

■ The data selector gadget displays a list of countries. The data selector is linked
to the column chart next to it. Dashboard users select values from the data
selector to filter the data to display in the column chart. The data selector gets
its values from a data set, a cube, or a report parameter.

■ The column chart gadget is linked to the data selector, as described previously.
The column chart derives its data from a data set or a cube.

■ The line chart gadget derives its data from a data set or a cube.

■ The linear gauge gadget derives its data from a data set or a cube.

■ The cross tab gadget derives its data from a cube.

Column chart Line chartLinear gauge Cross tabData selector

Figure 3-1 Sample dashboard displaying five gadgets

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 21

Designing data objects for reports created with
Actuate BIRT Studio
Actuate BIRT Studio is a web-based report design tool on iServer designed for
users who want to create reports quickly and easily without deep understanding
of database architecture or report design techniques. BIRT Studio users create
reports using predefined data sources and templates that provide the data and
basic layout for their reports.

The data objects you create should provide the data in a structure that is
appropriate for business users and for the report elements that users can add to a
report. The design guidelines discussed in the previous section apply here as
well, except for the following:

■ In BIRT Studio, a chart uses data from a table in a report. The chart does not
use data directly from a data set or a cube.

■ Report parameters in a data object do not link to parameters created in BIRT
Studio, so you typically do not include report parameters in a data object that
you create for BIRT Studio users.

Designing data objects for reports created with
Actuate BIRT Designer
A data object can be used as a data source for BIRT reports. As an alternative to
defining data sources and data sets for each report, you can create a data object
that multiple reports share. This principle is similar to reports sharing data
sources and data sets stored in a library. One design option is to create data
objects by types of reports. For example, if creating a set of sales reports and a set
of customer reports, create one data object to provide data for the first set of
reports and another for the second set of reports.

Report parameters in a data object cannot be reused in a report. A report
parameter in a data object acts as a filter. You are prompted to specify a parameter
value when you create a data source based on the data object, and the data source
returns only the rows that meet the filter criteria.

Building a data object
Building a data object entails creating a data object file, then adding data sources,
data sets, and cubes to the data object. To add these data items, you can:

■ Create new data items within the data object.

■ Export data items in reports or libraries to the data object.

22 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

How to create a data object

1 In the Report Design perspective, choose File➛New➛Data Object.

2 In New Data Object, do the following:

1 Select the folder in which to store the data object.

2 Edit the default file name to specify a new name. The extension must be
.datadesign and the file name must not contain the following characters:

[] * / \ : & ?

Use a descriptive name that enables users to determine the contents of the
data object. A descriptive name is particularly important if users have
access to multiple data objects.

3 Choose Finish. The report editor displays a blank data object design.

3 Start adding data sources, data sets, and cubes to the data object.

Creating new items for a data object
The procedures for creating data sources, data sets, cubes, and report parameters
for a data object are the same as the procedures for creating these items for a
report. Use Data Explorer to create, edit, and delete data items in a data object.
Figure 3-2 shows a data object that contains one data source, two data sets, and
two cubes.

Figure 3-2 Contents of a data object

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 23

In this data object example, the Corporate_db data source connects to a corporate
database. The ds_Revenue and ds_Expenses data sets retrieve data from the
database. The Revenue and Expenses cubes use data from the ds_Revenue and
ds_Expenses data sets, respectively. For information about creating data sources,
data sets, and cubes, see BIRT: A Field Guide.

Exporting items to a data object
An organization that creates and uses BIRT reports has data sources, data sets,
and cubes on hand. As a data object designer, you can reuse these items by
exporting them from a report or a library to a data object.

The export utility copies the items to the data object. The exported items do not
reference the original items in the report or the library. The export utility also
detects and copies dependent items. For example, if you export a cube, the utility
also exports the data source and data set that the cube uses.

Be careful when exporting multiple data sources, data sets, or cubes from
different sources. If the data object contains an item with the same name, BIRT
warns of the name conflict and asks whether or not to overwrite the item in the
data object. Overwrite the item only if you want to replace it. The overwrite
action cannot be undone. If you select a data set or a cube to export, and BIRT
displays the name-conflict message, the duplicate names apply not only to the
selected data set or cube, but to any dependent item. For a cube, for example, the
data set or data source used by the cube might have the same name as a data set
or data source in the target data object.

How to export data items to a data object

1 Open the report or library that contains the data items to export to a data
object.

2 In Data Explorer, right-click a data item, then choose Export to Data Object, as
shown in Figure 3-3.

Figure 3-3 Exporting a data source to a data object

24 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Export Elements to Data Object—Select Data Object displays the data objects
(.datadesign files) in the resource folder, if any exists, as shown in Figure 3-4.
By default, BIRT uses the current project folder as the resource folder.

Figure 3-4 Export Elements displaying the data objects in the resource folder

3 Perform one of the following steps:

■ Select an existing data object to which to export data items.

■ Create a new data object by specifying a file name in New File Name. BIRT
saves the data object in the resource folder.

4 Choose Next.

5 In Export Elements to Data Object—Select Elements, shown in Figure 3-5,
select one or multiple data items to export. If you select a data set, BIRT also
exports the data source that the data set uses. Similarly, if you select a cube, the
associated data set and data source are exported.

Figure 3-5 Export Elements displaying the data items that you can export

6 Choose Finish.

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 25

If BIRT does not detect any name conflicts between the items selected for
export and the items in an existing data object, BIRT exports the items and
asks if you want to open the data object.

7 Open the data object to review its contents. The exported data items appear in
the data object.

Creating a shared dimension for cubes
If designing multiple cubes that contain the same dimension, create a shared
dimension. For example, if one cube contains sales data by country, state, and city,
and another cube contains budget data by country, state, and city, you can create a
shared multi-level dimension that provides country, state, and city data. By using
a shared dimension, you define and maintain dimension data in one place, and
reuse the dimension in multiple cubes. Reusing a dimension also speeds up data
processing.

There are two ways to create a shared dimension. You can:

■ Create a new shared dimension.

■ Convert an existing cube dimension into a shared dimension.

How to create a shared dimension

This procedure assumes that you have already created a data object, as well as,
the data set that provides the data for the dimension.

1 Open the data object.

2 In Data Explorer, right-click Shared Dimensions, then choose New Shared
Dimension.

3 In Dimension Builder, specify the following information:

■ In Dataset, select the data set that contains the columns to use in the
dimension.

■ In Available Columns, drag a column and drop it in the following location:

(Drop a field here to create a group)

■ In Add Group, type a name for the group.

■ If creating a multi-level dimension, drag and drop additional columns.
Figure 3-6 shows an example of a multi-level dimension that contains
country, state, and city data.

26 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 3-6 Dimension Builder displaying a defined shared dimension

Choose OK. The shared dimension appears under Shared Dimensions in Data
Explorer and in the data object design.

How to convert a cube dimension into a shared dimension

This procedure assumes that you have already included cubes in a data object.

1 Open the data object.

2 In Data Explorer, expand the cube that contains the dimension to convert to a
shared dimension, then right-click the dimension and choose Convert to
Shared Dimension, as shown in Figure 3-7.

Figure 3-7 Converting a dimension to a shared dimension

The converted dimension appears under Shared Dimensions in Data Explorer
and in the data object design, as shown in Figure 3-8. BIRT also replaces the
original cube dimension with the shared dimension.

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 27

Figure 3-8 Data Explorer and data object showing the shared dimension

Configuring data set columns for summary tables
Summary tables are commonly used in dashboards and BIRT Studio reports to
display key summary information. Figure 3-9 shows an example of a summary
table created in BIRT Studio. Order data is grouped by date, in quarterly
intervals, and by product line. The price of each order is summed to display
subtotals for each quarter and product line, as well as, a grand total.

Figure 3-9 Summary table

28 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

To create a summary table quickly, users select a table’s auto-summarize feature,
then select the data set columns whose data to group and aggregate. When the
auto-summarize feature is enabled, the software performs the grouping and
aggregating. To support this feature, you must configure each data set column to
provide the software with the appropriate information to perform these tasks. For
example, it makes sense to group sales data by order date or product line, but not
by revenue. Conversely, it makes sense to aggregate revenue values, but not order
date or product line values.

To provide the appropriate information to generate a summary table, set the
Analysis Type property of each data set column to one of the following values:

■ Dimension

Use this analysis type to support the grouping of data in the column. For
example, to display revenue by product line, set the product line column as a
dimension.

■ Attribute

An attribute describes the items associated with a dimension. For a product
dimension, for example, attributes might include color, size, and price. When
you set a column as an attribute, you must also specify the dimension column
of which it is an attribute. The summary table cannot group data in an
attribute column.

■ Measure

Use this analysis type to support the aggregating of values in the column. For
example, to calculate revenue totals, set the revenue column as a measure.

If you do not set a column’s analysis type, Actuate BIRT Designer assigns a value
using the following criteria:

■ If the column contains numeric values, the analysis type is measure.

■ If the column contains string, date, or Boolean values, the analysis type is
dimension.

■ If the column is a primary key, a foreign key, or an indexed column in a
database, the analysis type is dimension even if the column contains numeric
values.

Sometimes, the default analysis type values do not provide sensible data for a
summary table. To create a well-designed data object, it is necessary to review the
analysis type for every column in the data set. The following are examples of
problems with the default values:

■ Not all numeric columns are suitable as measures. Sometimes, it makes sense
to group on numeric values, such as order numbers or customer numbers. In
these cases, you would change the column’s analysis type to dimension.
Sometimes, it does not make sense to aggregate numeric data, such as MSRP

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 29

(Manufacturer’s Suggested Retail Price), which might be more appropriate as
an attribute of a product dimension.

■ Not all string columns are suitable as dimensions. For example, if each value
in a column, such as product code, is unique, it does not make sense to group
on this column. Such a column is better defined as an attribute of a product
dimension.

How to set the analysis type of a data set column

This procedure assumes that you have already created a data object and added a
data set to it.

1 Open the data object.

2 In Data Explorer, double-click the data set to edit it.

3 In Edit Data Set, choose Output Columns, then double-click the column whose
analysis type to set. Edit Output Column displays the properties of the
selected column, as shown in Figure 3-10.

Figure 3-10 Properties of a data set column

4 In Analysis Type, select Dimension, Attribute, or Measure. If you select
Attribute, in the list box that displays <Select Field Name...>, select a column
of which this column is an attribute. The column you select must be a
dimension column.

30 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Creating hyperlinks to provide drill-down capability
Hyperlinks are commonly used in reports to enable users to find related
information or drill down to more detailed data. For example, a summary report
that displays sales totals by region can use hyperlinks to link each region to
another report that displays detailed sales data. To provide this functionality in a
dashboard or in a report, create hyperlinks in the following items in a data object:

■ Data set columns

■ Dimensions and measures in a cube

You can create the following types of hyperlinks:

■ Drill-through, to link to a bookmarked location in a report

■ URI, to link to a document or a web page

Figure 3-11 shows an example of a drill-through hyperlink definition that
specifies a link to a bookmark, row["COUNTRY"], in a target report named
SalesByCountryAndProduct.rptdesign.

Figure 3-11 Definition of a drill-through hyperlink to link to a report

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 31

Figure 3-12 shows an example of a URI hyperlink definition that specifies a link
to a document.

Figure 3-12 Definition of a hyperlink that uses a URI to link to a document

How to create a hyperlink from a data set column

This procedure assumes that you have already created a data object and added a
data set to it.

1 Open the data object.

2 In Data Explorer, double-click the data set to edit it.

3 In Edit Data Set, choose Output Columns, then double-click the column to
which to add a hyperlink. Edit Output Column displays the properties of the
selected column, as shown in Figure 3-13.

Figure 3-13 Edit Output Columns displaying the properties of a column

32 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

4 Choose Edit next to the Link To property.

5 In Hyperlink Options, select the type of hyperlink to create, then set the
properties of the hyperlink. These steps are the same as the steps for defining a
hyperlink in a report, and are described in BIRT: A Field Guide.

How to create a hyperlink from a dimension or measure in a cube

This procedure assumes that you have already created a data object and added a
cube to it.

1 Open the data object.

2 In Data Explorer, double-click the cube to edit it.

3 In the cube builder, choose Groups and Summaries.

4 Under Groups and Summaries, double-click the dimension or measure to
which to add a hyperlink.

The properties of the selected dimension or measure appear. Figure 3-14
shows the properties of a measure.

Figure 3-14 Edit Summary Field displaying the properties of a measure

5 Choose Edit next to the Link To property.

6 In Hyperlink Options, select the type of hyperlink to create, then set the
properties of the hyperlink. These steps are the same as the steps for defining a
hyperlink in a report, and are described in BIRT: A Field Guide.

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 33

Hiding data sets from users
When you publish a data object in iServer, dashboard and BIRT Studio users who
are granted access to the data object can select any of the data sets and cubes in
the data object as a source of data for their dashboard gadget or report. However,
not all data sets return data that is suitable for a dashboard or a report.

Some data sets are created to provide data specifically for a cube or a report
parameter, and the data usually is not useful for a dashboard or report. For
example, a data set created for a report parameter that displays a list of countries
would return only values from a country column. For some cubes, multiple data
sets are linked to provide data for the cube, and the individual data sets do not
provide sufficient data for a dashboard or report.

To present to users only data sets and cubes that are designed to provide data for
dashboards and reports, you should hide data sets that only provide limited data
for a report parameter or a cube.

How to hide data sets from users

1 In the data object design, right-click the data set to hide, and choose Edit.

2 In the data set editor, choose Settings.

3 In Visibility, deselect Include this data set in the generated data object store, as
shown in Figure 3-15.

Figure 3-15 Data set editor displaying the Settings page

34 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Providing cached data
When a dashboard or a report uses a data object, each time the dashboard is
refreshed or the report is run, the data object connects to the underlying data
source and retrieves data from it. This operation is typically resource-intensive.
For a more efficient data access alternative, cache the data in a data object store,
and provide dashboard and report users with access to the data object store.

How to create a data object store

1 In Navigator, right-click the data object design (.datadesign) file, then choose
Generate Data Objects.

2 In Generate Data Objects, type a file name for the data object store. The file
name must have a .data extension. Choose OK.

BIRT creates a data object store (.data file) that contains the materialized data.
The file is saved in the same folder in which the data object design file resides.

Publishing a data object
To make data objects available to report developers using Actuate BIRT Designer,
place the data objects in a shared resource folder, just as you do with other shared
resources, such as libraries and style sheets.

To make data objects available to dashboard and BIRT Studio users, you must
publish the data objects in an iServer Encyclopedia volume. From the iServer
perspective, a data object is a resource, similar to Java classes, image files, or
libraries, which are resources for reports published in iServer.

You can publish data object design (.datadesign) files or data object stores (.data).
A common strategy is to publish the design files, then schedule those files to be
run regularly to generate the data object stores. To manage system resources
effectively, iServer volume administrators can make the data object stores
generally available to users while limiting access to the data object design files.

How to publish a data object in an iServer volume

1 Create an iServer profile, which specifies the information to connect to an
iServer volume.

2 Place the data object in the BIRT resource folder. The location of the resource
folder is specified in the Preferences page, which you access by choosing
Windows➛Preference from the main menu, then choosing Report Design—
Resource. The default location is the current project folder.

3 Choose File➛Publish to iServer. Select Publish Resources, then select the data
object to publish.

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 35

For more information about creating an iServer profile, assigning a resource
folder in iServer, and publishing items to an iServer volume, see “Deploying BIRT
reports to iServer,” later in this book. For information about managing files in
iServer, see Managing an Encyclopedia Volume.

Enabling incremental updates
Data object stores (.data) containing cached data are typically updated regularly
to provide the latest data to dashboards and reports. In some cases, you can speed
up the generation process by using the incremental updates option. Instead of
retrieving the full set of data rows each time the data object store is generated, the
incremental updates option retrieves only additional data rows that meet
specified criteria.

Use this option to add new data rows on a regular basis to a large set of legacy
data. For example, a data object retrieves order information. When the data object
is generated initially, it contains all the order information to date. Each week, a
new data object store is generated to capture new order data. For cases like this,
adding only the new data each week improves performance significantly.

Observe the following guidelines when designing a data object that uses the
incremental update option:

■ For each update, you must specify which data rows to add to an existing data
object store. To accomplish this task, create a parameter in the data object. In
the example described previously, the data object would use a date-time
parameter to specify which week of data to retrieve.

■ Data rows can only be added to the result set returned by a data set, provided
that the data set definition does not change between updates. If you change
the definition of a data set, for example, by adding or deleting a column, you
must generate a new data object store without using the incremental updates
option.

■ If the data object contains a cube and you want the cube to include the new
data set rows, or if you change the cube definition, you must also generate a
new data object store without the incremental updates option.

How to enable incremental updates

This procedure assumes that you have already created the data object design
(.datadesign).

1 In the layout editor, right-click in an empty area of the data object design.

2 Choose Enable Incremental Update.

After you publish this data object to iServer, incremental updates occur each time
the data object is generated. Depending on the job properties that you specify,
iServer replaces the existing .data file with the updated version or maintains

36 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

multiple versions of the .data file. Dashboards and BIRT Studio reports
configured to use the latest .data file display the new data when users refresh the
dashboard or report.

If you share the data object in a file system with other report developers using
Actuate BIRT Designer, you replace the .data file manually.

How to apply incremental updates to a .data file stored in the file system

This procedure assumes that you have already created the data object design
(.datadesign) and generated the initial data object store (.data).

1 In the layout editor, right-click in an empty area of the data object design, then
choose Enable Incremental Update.

2 In Navigator, right-click the data object design, then choose Generate Data
Objects.

3 In Incremental Update, do the following:

1 Select Use incremental update.

2 Select the .data file to update.

3 In Target data file name, type a temporary .data file to which to write the
new data. This step is required because a file saved in the file system
cannot be read and written to at the same time.

Figure 3-16 shows an example of values specified in Incremental Update.
In this example, Employees.data is the file to update, and
Employees_Temp.data is the temporary file to which to write the new data.

Figure 3-16 Incremental Update

4 Choose OK.

4 In Input Parameters, provide the parameter values to specify which data to
add to the .data file. Figure 3-17 shows an example of a parameter that

C h a p t e r 3 , C r e a t i n g d a t a o b j e c t s 37

displays a list of values from which you select a year or years whose data
to add.

Figure 3-17 Input Parameters

5 In Navigator, delete the original .data file. In the example shown in
Figure 3-16, you would delete Employees.data.

6 Rename the temporary .data file to the name of the original .data file. In the
example shown in Figure 3-16, you would rename Employees_Temp.data as
Employee.data.

Managing user access
When you publish a data object to an iServer Encyclopedia volume, you grant
specific users or user groups access to the data object. This type of security is
implemented in iServer, and users either have access to all the items in the data
object, or none at all. For information about implementing security in iServer, see
Managing an Encyclopedia Volume.

Using Actuate BIRT Designer in conjunction with iServer, you can apply more
granular security rules to control user access to individual items in a data object,
down to which data set columns, cube dimensions and measures, and data rows
are available to particular groups of users. For information about implementing
this type of security, see Chapter 23, “Controlling user access to report pages and
data,” later in this book.

Maintaining a data object
Changes you make to any item in a data object propagate to the reports and
dashboard gadgets that use that item. For example, if you add a dimension to a
cube in a data object, all reports and gadgets that use that cube have access to the

38 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

new dimension. This automatic-update functionality is useful for applying
necessary updates, such as connection properties in a data source, to all reports
and gadgets.

However, the automatic-update functionality also means that you have to be
careful with the type of change that you make. The following changes can cause
errors in reports and gadgets:

■ Renaming a data object, data source, data set, or cube

■ Deleting a data object, data source, data set, or cube

■ Deleting items within a data set or a cube, such as a column, dimension, or
measure

To fix errors resulting from a renamed or deleted data object item, the user has to
recreate the report element or dashboard gadget to use a different data object
item.

Before changing a data object, run an impact analysis report to determine how
many files, and which files, are affected. For information about this process, see
Chapter 25, “Performing impact analysis.”

C h a p t e r 4 , A c c e s s i n g d a t a i n a d a t a o b j e c t 39

C h a p t e r

4
Chapter 4Accessing data in a

data object
This chapter contains the following topics:

■ Using data object data in a report

■ Connecting to a data object

■ Specifying the data to retrieve from a data object

■ Using a cube in a data object

40 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using data object data in a report
A data object provides a report access to predesigned data sources, data sets, and
cubes. Report developers create data objects to streamline the report creation
process. Data objects provide the following benefits:

■ Simplified data access and retrieval. The predesigned data sources, data sets,
and cubes in a data object enable report developers to select the data to use in
a report without knowledge of the underlying data source, how to connect to
it, and how to extract data from it.

■ Reusability across multiple reports. If a suite of reports require the same data,
designing the data sources, data sets, and cubes once in a shared data object
eliminates the need to design the same elements repeatedly for each report.

■ Dynamic updates to data items. Changes to data items in a data object
propagate to reports that use the data object, ensuring that reports have the
latest updates, such as connection properties.

A report accesses data from a data object through either a data object design
(.datadesign) file or a data object store (.data). The data design file retrieves data,
on demand, each time the report is run. A data object store contains cached, or
materialized, data, and provides much more efficient access to data. If getting
real-time data is more important than report generation speed, use the data object
design file. If data in the underlying data source does not change constantly, or if
a data object store is generated regularly, use the data object store.

As with other types of data sources, for a report to use data from a data object,
you must create the following BIRT objects:

■ A data source that contains the information to connect to a data object

■ A data set that specifies the data to use from the data object

Connecting to a data object
When creating a data source to connect to a data object, the only information
required is the name of the data object.

How to connect to a data object

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Actuate Data Object Data Source from the list of data source types, as
shown in Figure 4-1.

2 In Data Source Name, type a name for the data source.

C h a p t e r 4 , A c c e s s i n g d a t a i n a d a t a o b j e c t 41

Figure 4-1 Selecting BIRT data object as a data source type

3 Choose Next.

3 In New Actuate Data Object Data Source, next to Data Object, choose Browse.
Select Data Object File displays all the data objects (.datadesign and .data files)
in the resource folder. Select the data object to use in the report, then choose
OK.

Figure 4-2 shows an example of a data object data source that connects to a
data object named Revenue.data.

Figure 4-2 Data object selected

4 Choose Next. This button is enabled if the data object contains report
parameters. Provide the parameter values.

42 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

5 Choose Finish.

The data source appears under Data Sources in Data Explorer. The report now
has access to all the data sets and cubes defined in the data object.

Specifying the data to retrieve from a data object
Because a data object contains predesigned data sets, all you do is select a data set
from the data object and the columns from the selected data set.

How to specify what data to retrieve from a data object

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the data object data source to use. Data Set
Type displays Actuate Data Object Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In New Actuate Data Object Data Set, in Available Data Sets, select one of the
data sets defined in the data object.

4 Select the columns to retrieve, and move them to the right pane.

5 Choose Finish to save the data set. Edit Data Set displays the columns in the
data set, as shown in Figure 4-3.

Figure 4-3 Columns in a data set

6 Choose Preview Results to view the data rows that the data set returns.

7 Choose OK to close the data set editor.

C h a p t e r 4 , A c c e s s i n g d a t a i n a d a t a o b j e c t 43

Using a cube in a data object
To add a cross tab to the report, a cube is required to provide data for the cross
tab. You can create a cube, using data from a data set, or you can use a
predesigned cube in the data object. The option you choose depends on how
familiar you are with creating cubes, whether you want modifications to the
original cube to propagate to the cross tab, or whether you need control over the
cube data. You cannot edit a cube from a data object.

How to use a cube in a data object

1 In Data Explorer, right-click Data Cubes, then choose Use Data Object Cube.

2 In Use Data Object Cube, specify the following information. Then choose OK.

1 In Name, type a name for the cube.

2 In Select Data Source, select the data source that connects to the data object
that contains the cube.

3 In Available Data Cubes, select a cube.

Figure 4-4 shows the selection of a cube named Revenue from a data object
data source named Revenue Expenses Data Object.

Figure 4-4 Cube selected from a data object

44 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 5 , A c c e s s i n g d a t a i n a n i n f o r m a t i o n o b j e c t 45

C h a p t e r

5
Chapter 5Accessing data in an

information object
This chapter contains the following topics:

■ Using information object data in a report

■ Connecting to an information object

■ Specifying the data to retrieve from an information object

46 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using information object data in a report
An information object is an encapsulated SQL query designed for use with report
design applications, such as Actuate BIRT Designer and Actuate BIRT Studio.
Created using the IO Design perspective in Actuate BIRT Designer, information
objects can extract and integrate data from a variety of sources, including
relational databases, stored procedures, web services, and XML documents. For
information about creating information objects, see Designing BIRT Information
Objects.

Information objects provide the following benefits that data objects also provide:

■ Simplified data access and retrieval. Report developers select the data to use
without knowledge of the underlying data source, how to connect to it, and
how to extract data from it.

■ Reusability across multiple reports. Reports can use the same set of data, yet
can use different columns, sorting and grouping rules, filters, and parameters.

■ Dynamic updates to data properties. Changes to an information object
propagate to reports that use the information object, ensuring that reports
have the latest updates, such as modified connection properties and queries.

As with other types of data sources, for a report to use data from an information
object, you must create the following BIRT objects:

■ A data source that contains the information to connect to an information object

■ A data set that specifies the data to use from the information object

Connecting to an information object
Information objects are stored locally or in an Actuate BIRT iServer volume. To
use an information object as a source of data for a report, you specify the location
of the information object.

To connect to an information object published in iServer, you must have a user
account on an iServer volume with the privileges that are required to access and
run the information object. You need the following information to access an
information object:

■ The URL to the iServer and the name of the iServer volume that contains the
information object

■ Your login credentials

Contact the iServer administrator for this information.

C h a p t e r 5 , A c c e s s i n g d a t a i n a n i n f o r m a t i o n o b j e c t 47

How to connect to an information object

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Actuate Information Object Data Source from the list of data source
types, as shown in Figure 5-1.

2 In Data Source Name, type a name for the data source.

Figure 5-1 Selecting information object as a data source type

3 Choose Next.

3 In New Actuate Information Object Connection Profile, select one of the
options to specify whether to use information objects stored locally or in an
iServer volume. If you select Use Local Information objects, choose Finish.

4 If you select Use Published Information Objects, provide the following
information to connect to the iServer volume on which the information object
is stored:

1 In Server URI, type the URL to the iServer, using the following syntax:

http://<server name>:<port>

The following is an example of a URL:

http://Athena:8700

48 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

2 In Volume, type the name of the iServer volume that contains the
information object.

3 In User Name, type the user name required to log in to the volume.

4 In Password, type the password required to log in to the volume.

5 In Use logged in user credentials on iServer, select Yes or No.

❏ Select Yes to use the credentials of the user specified at login when the
report is run on iServer. This option enables other users to run and view
the report.

❏ Select No to use the iServer URI, volume, user name, and password
specified in the report design when the report is run on iServer. This
option restricts access to the report.

Figure 5-2 shows an example of connection information specified for an
information object data source that uses information objects published in an
iServer volume.

Figure 5-2 Information to connect to an information object in an iServer
volume

5 Choose Finish.

The data source appears under Data Sources in Data Explorer.

C h a p t e r 5 , A c c e s s i n g d a t a i n a n i n f o r m a t i o n o b j e c t 49

Specifying the data to retrieve from an information
object

An information object returns data rows in the structure required by BIRT
reports. To specify what data rows to retrieve from an information object, you
create a query using the Information Object Query Builder, which is integrated
with the data set editor. The query builder provides a graphical interface that you
use to select an information object, select data columns, specify group, sort, and
filter criteria, and view the resulting query. Alternatively, if you are familiar with
the content of an information object and are well-versed in Actuate SQL (based
on the ANSI SQL-92 standard), you can type the query.

How to specify what data to retrieve from an information object

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the information object data source to use.
Data Set Type displays Actuate Information Object Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

New Data Set—Actuate Information Object Query appears, as shown in
Figure 5-3.

Figure 5-3 Information Object Query Builder

50 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

3 Create a query to specify the data to retrieve from the information object. Use
either the graphical tools to create the query or the SQL Editor to type the
query. For information about creating an information object query and using
Actuate SQL syntax, see Designing BIRT Information Objects. The query builder
integrated with the data set editor has the same user interface and
functionality as the query builder in the Information Object Designer.

Figure 5-4 shows an example of a graphical query in which three information
objects are joined. Only a few columns from each information object are
selected.

4 Choose Next. New Data Set—Actuate Information Object Query displays a
message indicating the status of the query.

5 If the query contains errors, choose Back to fix the query. If the query is valid,
choose Finish. Edit Data Set displays the columns in the data set, as shown in
Figure 5-5.

Figure 5-4 Information Object Query Builder displaying a graphical query

C h a p t e r 5 , A c c e s s i n g d a t a i n a n i n f o r m a t i o n o b j e c t 51

Figure 5-5 Columns in a data set

6 Choose OK to close the data set editor.

52 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 6 , A c c e s s i n g d a t a i n a r e p o r t d o c u m e n t 53

C h a p t e r

6
Chapter 6Accessing data in a

report document
This chapter contains the following topics:

■ Using report document data

■ Creating a report document

■ Connecting to a report document

■ Specifying the data to retrieve from a report document

54 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using report document data
A report document is a binary file that contains report design information and
cached data. It has the file extension .rptdocument. You can generate a report
document from a report design, then use the report document as a data source for
other reports. Using data from a report document provides the following benefits:

■ Faster report-generation time because the report does not have to connect to
an external data source, such as a database or web service, to retrieve data.

■ Reuse of calculated data. If a table or chart in a report document contains
calculated data, such as aggregations, that data is available to your report
design.

■ Simplifies report creation. You do not need to gather all the information to
connect to an external data source, nor do you need to create the query to
retrieve data from the data source. Eliminating these steps is particular useful
if data retrieval requires a complex SQL query to get data from a database, or a
complex SOAP request to get data from a web service.

A report document provides efficient access to data, but at the cost of data
possibly being out of date. It is most useful in cases where connecting to and
querying a data source is resource-intensive, or when the data changes
infrequently.

As with other types of data sources, for a report to use data from a report
document, you must create the following BIRT objects:

■ A data source that contains the information to connect to a report document

■ A data set that specifies the data to use from the report document

Creating a report document
Generate a report document from a report design by choosing Run➛Generate
Document. Specify the folder in which to save the report document. To share the
report document with other report developers, put the file in a shared resource
folder.

When used as a data source, the report document provides access to its result sets.
At report generation, a result set is created for each table, chart, cross tab, and list.
The data in a result set is defined by the data column bindings created for a table,
chart, cross tab, or list. A report design has access to all result sets in a report
document, except for a cross tab’s result set.

For example, Figure 6-1 shows a report that displays sales data in two tables and
a chart.

C h a p t e r 6 , A c c e s s i n g d a t a i n a r e p o r t d o c u m e n t 55

Figure 6-1 A report displaying data in two tables and a chart

A report design that uses a report document generated from this report has access
to the result sets generated for the two tables and the chart. When you create a
data set to specify which result set data to use, the data set editor displays all the
available results sets, as shown in Figure 6-2.

Figure 6-2 Data set editor displaying available result sets with default names

Table

Chart

Table

56 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The result sets are organized under three categories: Bookmark, Element ID, and
Result Set ID. The result sets named __bookmark_1, __bookmark_2, and
__bookmark_3 correspond to the result sets for the first table, the chart, and the
second table, respectively. Similarly, the result sets named Table_252, Chart_312,
and Table_6 correspond to the result sets for the first table, the chart, and the
second table. Finally, the result sets named QuRs0, QuRs1, and QuRs2 also
correspond to the result sets for the first table, the chart, and the second table.

While it seems redundant to provide three methods to select any given result set,
each method offers different benefits.

■ For result sets that appear under Bookmark, the report developer designing
the report from which a report document is generated can specify descriptive
names. The name can be a literal string or an expression.

■ For results sets that appear under Element ID, the report developer can also
specify descriptive names, but can only use literal strings to do so. Result sets
are also organized hierarchically if a report, such as a master-detail report,
contains nested tables.

■ For result sets that appear under Result Set ID, the report developer cannot
specify alternate names. These generated names are useful for accessing a
result set programmatically.

Figure 6-3 shows another example of the data set wizard displaying the result sets
available to a report design.

Figure 6-3 Data set editor displaying two result sets with custom names

C h a p t e r 6 , A c c e s s i n g d a t a i n a r e p o r t d o c u m e n t 57

This time, the result sets under Bookmark use custom names, rather than the
default __Bookmark_#. Result sets under Element ID are organized hierarchically
under Orders and Payments, which are custom names. This hierarchy reflects the
structure of data in the report document.

Specifying bookmark names
As Figure 6-2 showed, BIRT generates a bookmark for each result set, and assigns
bookmark names using the __bookmark_# format. If you are designing the report
from which to generate a report document, you can specify more descriptive
bookmark names to better identify the data in result sets. For example, instead of
using the default name, __bookmark_1, to refer to the result set for the sales
summary table, specify a name, such as Sales Totals by State.

How to specify a bookmark name

1 Open the report design to be used to generate a report document.

2 In the report layout, select the table, chart, or list for which to specify a
bookmark.

3 In Properties Editor—Properties, choose Bookmark.

4 In Bookmark, specify one of the following:

■ A name, such as "Sales Totals by State". If typing a name, enclose it within
double quotation marks, as shown in Figure 6-4.

Figure 6-4 Specifying a bookmark name for an element

■ An expression, such as the following:

row["COUNTRY"]
"Order: " + row["ORDERNUMBER"]

Specify an expression if, for example, a table is nested within another table
or a list. In this case, the generated report document typically contains
multiple instances of the inner table, and each table instance has a result
set. If each table instance provides data about a particular sales order, for
example, it is useful to identify each result set by order number, as shown
in Figure 6-3.

5 Save the report.

58 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Specifying element names
BIRT also assigns an element ID for each result set. As Figure 6-2 showed, each ID
consists of the element type, an underscore, and a number, for example, Table_252
or Chart_312. If you are designing the report from which to generate a report
document, you can specify more descriptive element IDs to describe the data in
result sets.

How to specify an element name

1 Open the report design to be used to generate a report document.

2 In the report layout, select the table, chart, or list for which to specify a name.

3 In Properties Editor—Properties, choose General.

Notice that the Name property is undefined. Notice, too, that the Element ID
property has a read-only number, which BIRT automatically assigns to every
report element. BIRT uses this number in the default result set name.

4 In Name, type a descriptive and unique name. A report cannot contain
duplicate element names. Figure 6-5 shows an example of a name, Sales Chart,
specified for a chart.

Figure 6-5 Specifying a name for a chart element

5 Save the report.

Connecting to a report document
When creating a data source to connect to a report document, the only
information required is the location and name of the report document.

How to connect to a report document

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

C h a p t e r 6 , A c c e s s i n g d a t a i n a r e p o r t d o c u m e n t 59

1 Select BIRT Report Document Data Source from the list of data source
types, as shown in Figure 6-6.

2 In Data Source Name, type a name for the data source.

Figure 6-6 Selecting BIRT report document as a data source type

3 Choose Next.

3 In New BIRT Report Document Data Source Profile, use one of the following
steps to provide a value for Report Document Path:

■ To select a report document in the resource folder, choose Browse. Select
the report document, then choose OK.

■ To select a report document in a location other than the resource folder,
click the arrow next to Browse, and choose Absolute Path. Navigate to the
folder where the report document is stored, select the report document,
then choose OK.

Figure 6-7 shows an example of a report document data source that connects
to a file named SalesReport.rptdocument in the resource folder.

60 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 6-7 Report document selected

4 Choose Finish.

The data source appears under Data Sources in Data Explorer. The report now
has access to the data saved in the report document.

Specifying the data to retrieve from a report document
Because a report document contains cached data in the form of result sets, all you
do is select the result set or result sets whose data to use in a report design. You
must create a data set for each result set.

How to retrieve data from a report document

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the report document data source to use.
Data Set Type displays BIRT Report Document Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

New BIRT Report Document Data Set displays all the result sets in the report
document. These items are organized under Bookmark, Element ID, and
Result Set ID.

3 Expand a category, then select a result set to see its data columns, as shown in
Figure 6-8.

C h a p t e r 6 , A c c e s s i n g d a t a i n a r e p o r t d o c u m e n t 61

Figure 6-8 Selecting a result set

4 Select the result set that contains the data to use in the report, then choose
Finish. Edit Data Set displays the columns in the data set, as shown in
Figure 6-9.

Figure 6-9 Columns in a data set

5 Choose Preview Results to view the data rows that the data set returns.

6 Choose OK to close the data set editor.

62 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 7 , A c c e s s i n g d a t a i n a n e . r e p o r t 63

C h a p t e r

7
Chapter 7Accessing data in

an e.report
This chapter contains the following topics:

■ Using ActuateOne for e.Reports Data Connector

■ Connecting to an e.report

■ Specifying the data to retrieve from an e.report

64 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using ActuateOne for e.Reports Data Connector
The ActuateOne for e.Reports Data Connector is an open data access (ODA)
driver that enables BIRT to retrieve data from an e.report, a report designed and
generated using Actuate e.Report Designer Professional. The e.report is a report
object instance (.roi) file. Using the ActuateOne for e.Reports Data Connector
driver to access the data and business logic from the existing e.report's data
schema preserves the business logic in the report while BIRT consumes the data.

For more information about e.reports, see Working with Actuate e.Reports.

About ActuateOne for e.Reports Data Connector
functionality
A BIRT data object, information object, or report design can use the data
connector to retrieve data from an existing ROI file in an Encyclopedia volume on
Actuate BIRT iServer Release 11 or higher. The ROI file does not need to be on the
same Encyclopedia volume as the BIRT report design.

The report object design (.rod) file used to generate the ROI file must have
searchable fields defined. The ActuateOne for e.Reports Data Connector uses the
display names for the searchable fields to name the columns in the BIRT data set.

An ActuateOne for e.Reports data source connects to an Encyclopedia volume.
An ActuateOne for e.Reports data set maps controls in a selected e.report to data
set columns. The user interface for creating the data set displays the control
names as available columns. The names of the columns that the e.report data
source uses are not available.

Accessing an e.report using Page Level Security
The ActuateOne for e.Reports Data Connector respects the Page Level Security
(PLS) privileges implemented in the source e.report. The BIRT report developer
must specify user credentials for an ROI file in order to retrieve data from that
ROI file. PLS privileges of the specified user restrict the data that the BIRT report
design retrieves from the ROI file.

Accessing an e.report having multiple sections
A BIRT report design can retrieve data from a complex, multi-section e.report.
Each data set, however, can access data from a single section only. For example, if
an e.report contains parallel sections to display an orders report and a payments
report side-by-side, a data set can access data either from the orders report or the
payments report, but not from both.

A data set is also limited to accessing data from either data controls or page
controls, but not from both. Typically, a BIRT report uses data from data controls.

C h a p t e r 7 , A c c e s s i n g d a t a i n a n e . r e p o r t 65

To determine which controls are available for use in the same data set, open the
ROD file in e.Report Designer Professional to view the report structure. If the
ROD file is not available, use the Output Columns page in Edit Data Set in BIRT
Designer Professional to examine the partially scoped name of each column. The
name’s scope appears before the scope resolution operator (::), as shown in the
following example:

SalesRepTitleFrame::SalesRepTotal

Connecting to an e.report
When creating an ActuateOne for e.Reports data source in a BIRT report to
connect to an e.report, you specify the Encyclopedia volume that contains the ROI
files. You specify iServer connection properties and the name of the Encyclopedia
volume. Specify the use of a trusted connection to improve performance. As you
edit the data source and the data set, a trusted connection uses the same session to
communicate with the iServer. A non-trusted connection uses the specified
credentials to log in to the iServer for each communication.

How to create an ActuateOne for e.Reports data source

1 In Data Explorer, right-click Data Sources and choose New Data Source.

2 In New Data Source, select ActuateOne for e.Reports Data Source, as shown in
Figure 7-1. Choose Next.

Figure 7-1 Selecting ActuateOne for e.Reports Data Source

66 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

3 In New ActuateOne for e.Reports Data Source Profile, type the URL of the
server, the user credentials, the volume name, and whether the connection is
trusted, as shown in Figure 7-2.

Figure 7-2 Creating a data source profile

4 Choose Test Connection to ensure that the connection information is correct. If
Test Connection returns an error, repeat the preceding steps to correct the
error. Choose OK if the connection is successful.

5 Choose Finish.

Specifying the data to retrieve from an e.report
The controls in an e.report provide the columns for a data set. As discussed
earlier, you must use columns from controls in only a single section in the
e.report, and you must use either data controls or page controls. The scoped name
of the column shows the section that contains the control. This name is available
in the user interface for editing the data set.

How to create an ActuateOne for e.Reports data set

1 In Data Explorer, right-click Data Sets and choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the ActuateOne for e.Reports data source to
use. Data Set Type displays ActuateOne for e.Reports Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In Select Columns, choose Browse.

C h a p t e r 7 , A c c e s s i n g d a t a i n a n e . r e p o r t 67

4 Navigate to the location of the ROI file and select the ROI file, as shown in
Figure 7-3. Choose OK.

Figure 7-3 Selecting the ROI file

5 In Select Columns, choose Refresh Columns. Available Columns displays the
column names from the ROI file, as shown in Figure 7-4.

Figure 7-4 Available columns in Detail.roi

68 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

6 Select the columns to include in the report. Choose the right arrow to move the
columns to the Selected Columns pane, as shown in Figure 7-5.

Figure 7-5 Selecting columns

Choose Finish.

7 In Edit Data Set, select Preview Results. Figure 7-6 shows the data rows
returned by the data set.

Figure 7-6 Preview of data set results

C h a p t e r 7 , A c c e s s i n g d a t a i n a n e . r e p o r t 69

If the error message shown in Figure 7-7 appears, you selected columns from
different sections in the e.report.

Figure 7-7 Error message displayed when the selected columns are from
different sections

If the error message shown in Figure 7-8 appears, you selected columns from
both data and page controls.

Figure 7-8 Error message displayed when selected columns are from data
and page controls

8 To resolve these errors, perform the following steps:

1 In the error message, choose OK.

2 Choose Output Columns.

3 Expand Name to make the full names of the output columns visible, as
shown in Figure 7-9.

Figure 7-9 Checking scope prefixes

70 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Note each name’s prefix. In the example shown in Figure 7-9, the first three
columns are in the SalesRepTitleFrame component, and the fourth is in the
Page component. This information indicates that the first three columns are
from data controls, and the fourth column is from a page control.

4 Choose Select Columns. In Selected Columns, remove the incompatible
columns.

5 Choose Preview Results to verify that the data set returns data rows.

C h a p t e r 8 , A c c e s s i n g d a t a i n A m a z o n D y n a m o D B 71

C h a p t e r

8
Chapter 8Accessing data in

Amazon DynamoDB
This chapter contains the following topics:

■ Using Amazon DynamoDB data in a report

■ Connecting to Amazon DynamoDB

■ Specifying the data to retrieve from Amazon DynamoDB

72 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using Amazon DynamoDB data in a report
Amazon DynamoDB is a fully-managed database service that supports the
operations of a non-relational, or NoSQL, database in the cloud. Organizations
use Amazon DynamoDB to manage large volumes of data that do not require the
features of a relational database, and to offload the administrative costs and
complexities of operating a database.

Amazon DynamoDB is a schema-less database, and does not support relational
queries, such as joins, or complex transactions. It is particularly useful for storing
data, such as product catalogs, logs, or forum postings, where the data structure
does not require a relational model.

An Amazon DynamoDB database organizes data into tables. A table is a
collection of items and each item is a collection of attributes. For example, a
products table can contain items, such as books, DVDs, and CDs. A book item can
have ID, title, author, publisher, and ISBN attributes. A CD item can have ID, title,
and artiste attributes. Unlike a database with a schema, items in an Amazon
DynamoDB table are not required to have the same number or types of attributes.

Each attribute is a name-value pair. The value can be a single value or a multi-
value set, as shown in the following examples:

Author = “J.K. Rowling”
Author = “Susan Smith”, “John Smith”

For each item, one attribute—typically an ID—must be a primary key that
identifies the item in a table. The primary key is the only part of the table that is
indexed, and it is also used to hash partition data across multiple servers.

Actuate BIRT Designer supports access to data in Amazon DynamoDB. As with
other types of data sources, for a report to use data from Amazon DynamoDB,
you must create the following BIRT objects:

■ A data source that contains the information to connect to a DynamoDB
database.

■ A data set that specifies the data to retrieve

Connecting to Amazon DynamoDB
Actuate BIRT Designer provides an ODA (Open Data Access) driver to connect to
Amazon DynamoDB. You provide the regional endpoint to a web service to
access an Amazon DynamoDB database, as well as, your access credentials.

How to create an Amazon DynamoDB data source

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

C h a p t e r 8 , A c c e s s i n g d a t a i n A m a z o n D y n a m o D B 73

2 In New Data Source, specify the following information:

1 Select Amazon DynamoDB Data Source from the list of data source types.

2 In Data Source Name, type a name for the data source.

3 Choose Next.

3 In New Amazon DynamoDB Data Source Profile, specify the properties to
connect to your Amazon DynamoDB database instance.

1 In AWS Region Endpoint URL, specify the regional endpoint to the web
service to which to make requests. The default value specifies the US-East
region, which the AWS SDKs and console for Amazon DynamoDB
reference. For a list of supported regions and endpoints, see the Amazon
DynamoDB documentation.

2 In Amazon Web Services Access credentials, type your user credentials to
log in to the system. Set Use Security Token Service to yes to use temporary
security credentials.

3 In Amazon Web Services Client Configuration:

❏ In Connection Timeout, specify the number of milliseconds to wait for a
connection.

❏ In Maximum Number of Retries, specify the number of times to attempt
to connect until a successful connection is established.

❏ In Data Transfer Timeout, specify the number of milliseconds to wait
for a response to a data request.

Figure 8-1 shows an example of properties to connect to a database instance in
Amazon DynamoDB.

Figure 8-1 Connection properties for an Amazon DynamoDB database

74 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Specifying the data to retrieve from Amazon
DynamoDB

Once the report connects to an Amazon DynamoDB database, you create a data
set and select the table from which to retrieve data. A data set can retrieve data
from one table only.

After selecting a table, you select the attributes from which to retrieve data. BIRT
maps each selected attribute to a data set column. Because DynamoDB is a
schema-less database in which each table item can contain a different set of
attributes, you have the option of specifying the number of items to scan to
compile the list of attributes. Scanning items in a table can be resource intensive.
If all the table items contain the same attributes, specify one (the default) as the
number of items to scan.

How to specify what data to retrieve from an Amazon DynamoDB database

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the Amazon DynamoDB data source to use.
Data Set Type displays Amazon DynamoDB Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In New Data Set, in Query, do the following:

1 In DynamoDB Table, select the table from which to retrieve data.

2 In Number of Items to Scan for Attributes, type the number of table items
for which to search for attributes, then choose Scan. The fewer the number
of items to scan, the faster the response.

Available Attributes displays the attributes defined in the scanned items. If
you do not see the attributes you expect and want, increase the number of
items to scan, then choose Scan.

3 In Available Attributes, select the attribute or attributes whose data to
retrieve.

4 If Searchable by Composite Key is available, you can filter the data to
retrieve by searching for a hash key value, a range key value, or both. For
information about this task, see “Filtering by a composite primary key,”
later in this chapter.

5 In Advanced Settings, specify the following options:

❏ In AWS fetch size, type the maximum number of items to return in each
web service call to the database, or select No fetch size limit. If you

C h a p t e r 8 , A c c e s s i n g d a t a i n A m a z o n D y n a m o D B 75

select the latter, each fetch operation returns the entire result set up to
1MB, the limit set by Amazon DynamoDB. The smaller the fetch size
value, the faster the response time per web service call. The higher the
fetch size, the fewer the calls to fetch data.

❏ Select the Eventually consistent reads option to maximize the read
throughput. Deselect this option to request a strongly consistent read,
which returns a result that reflects all writes that receive a successful
response prior to the read.

❏ In Separator character(s) in a multi-valued set column, specify the
character to use to separate values in a multi-value set. By default, BIRT
returns a multi-value set as a string in the following format:

Value1|Value2|Value3

You can change the separator character to a comma, for example, to
return results in the following format:

Value1,Value2,Value3

Figure 8-2 shows an example of an Amazon DynamoDB query.

Figure 8-2 Example of an Amazon DynamoDB query

4 Choose Finish to save the data set. Edit Data Set displays the columns, and
provides options for editing the data set.

5 Choose Preview Results to view the data rows returned by the data set.

76 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Filtering data
Amazon DynamoDB is designed to store large volumes of data across multiple
servers. Database users must design tables for efficient write and read operations.
As discussed earlier, the required primary key is the only part of a table that is
indexed, and it is also used to hash partition data across multiple servers.

Amazon DynamoDB supports two types of primary keys:

■ Hash primary key, which consists of one attribute. For example, a product
catalog table can use ProductID as its primary key.

■ Composite primary key, which consists of two attributes. The first attribute is
a hash attribute and the second attribute is a range attribute. For example, a
forum table can use ForumName and Subject as its primary key, where
ForumName is the hash attribute and Subject is the range attribute.

A table’s primary key type determines how you specify a filter condition, and
how Amazon DynamoDB searches for data, as the following sections describe.

Filtering by a composite primary key
A composite key supports searching for a specific value in the hash attribute, and
can include searching on the range attribute as well. Searching on both attributes
narrows a search. When a composite primary key is defined for a table, Amazon
DynamoDB uses its Query API to search on the key index only. This type of
search is typically efficient.

If you select a table that uses a composite primary key, the query page of the data
set editor displays the Searchable by Composite Key option, as shown in
Figure 8-3. This option is disabled if the selected table uses a hash primary key.

Figure 8-3 Query page displaying the Searchable by Composite Key option

C h a p t e r 8 , A c c e s s i n g d a t a i n A m a z o n D y n a m o D B 77

In this example, the hash attribute is ForumName and the range attribute is
Subject. You can select one or both of these attributes on which to filter. Each
attribute you select creates a corresponding data set parameter, as shown in
Figure 8-4.

Figure 8-4 Data set parameters associated with the selected attributes in the
composite primary key

You must edit each data set parameter to specify the attribute value to search.
Figure 8-5 shows searching for the value Amazon DynamoDB in the ForumName
hash attribute.

Figure 8-5 Parameter value specified for an attribute in a composite primary key

Filtering by an attribute
You can filter data by any attribute selected in a data set. When filtering by an
attribute that is not a primary key, Amazon DynamoDB uses its Scan API to scan
the entire table, then filters out values to provide the desired result set. This type
of search is not efficient, and slows down as a table grows.

To filter by an attribute that is not a composite primary key, use the Filters page in
the data set editor. Figure 8-6 shows an example of a filter condition created for
the Product Catalog data set, where the BicycleType attribute is equal to Road.

78 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 8-6 A filter condition specified for an attribute

This filter condition uses the Equal to operator, which looks for an exact match.
With this filter, a match is found if the BicycleType attribute contains the single
value, Road. As mentioned earlier, an attribute, however, can contain a multi-
value set, which BIRT returns in value1|value2|value3 format. If the BicycleType
attribute contains a multi-value set, such as Road|Hybrid, there is no match.

If you do not know whether a string attribute contains a single value or a multi-
value set, do not use the Equal to operator in the filter condition. Instead, use the
following operator:

Contains substring, or value in a set

To exclude a value when comparing values in a multi-value set, use the following
operator:

Absence of substring, or value in a set

Figure 8-7 shows a filter condition where the Color attribute must contain the
value Red.

C h a p t e r 8 , A c c e s s i n g d a t a i n A m a z o n D y n a m o D B 79

Figure 8-7 A filter condition specified for an attribute that contains a multi-value
set

Figure 8-8 shows the data rows returned when the filter condition in Figure 8-7 is
applied. The Color column in each row contains the value Red.

Figure 8-8 Results of applying a filter condition

80 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Chapter 9, Accessing data in Amazon Relat ional Database Serv ice 81

C h a p t e r

9
Chapter 9Accessing data in Amazon
Relational Database Service
This chapter contains the following topics:

■ Using Amazon RDS data in a report

■ Connecting to Amazon RDS

■ Specifying the data to retrieve from Amazon RDS

82 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using Amazon RDS data in a report
Amazon Relational Database Service (RDS) is a web service that supports the
operations of a relational database in the cloud. It provides access to a MySQL or
Oracle database and manages all the administrative tasks, including hardware
and software configuration and updates, automated backups, and system
monitoring.

Organizations use Amazon RDS to manage their database deployment in the
cloud, paying only for the computing resources and storage that their database
instance uses. By off-loading the costs and complexities of purchasing and
maintaining hardware and database software, organizations can focus on their
business applications.

Actuate BIRT Designer supports access to data in Amazon RDS. As with other
types of data sources, for a report to use data from Amazon RDS, you must create
the following BIRT objects:

■ A data source that contains the information to connect to a MySQL or Oracle
database in Amazon RDS.

■ A data set that specifies the data to retrieve

Connecting to Amazon RDS
Actuate BIRT Designer provides two JDBC drivers to connect to MySQL and
Oracle, the databases supported by Amazon RDS. You provide the URL to
connect to the specific database instance on Amazon RDS, and your login
credentials. The URL, or endpoint, is available in the DB Instance description in
Amazon’s AWS (Amazon Web Services) Management Console.

How to create a Amazon RDS data source

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Amazon RDS Data Source from the list of data source types.

2 In Data Source Name, type a name for the data source.

3 Choose Next.

3 In New Amazon RDS Data Source Profile, specify the properties to connect to
the MySQL or Oracle database instance on Amazon RDS.

1 In Driver Class, select either the MySQL or Oracle JDBC driver.

2 In Endpoint, type the URL to the database instance.

Chapter 9, Accessing data in Amazon Relat ional Database Serv ice 83

3 In User Name and Password, type the user credentials to log in to the
system.

Figure 9-1 shows an example of properties to connect to a MySQL database
instance in Amazon RDS.

Figure 9-1 Connection properties for a MySQL instance on Amazon RDS

Specifying the data to retrieve from Amazon RDS
Once the report connects to a MySQL or Oracle database in Amazon RDS, you
create a data set and write a SQL query to specify what data rows to retrieve.

How to specify what data to retrieve from a database in Amazon RDS

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the Amazon RDS data source to use. Data
Set Type displays SQL Select Query.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In New Data Set, in Query Text, type a SQL statement that indicates what data
to retrieve.

84 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

4 Choose Finish to save the data set. Edit Data Set displays the columns, and
provides options for editing the data set.

5 Choose Preview Results to view the data rows returned by the data set.

C h a p t e r 1 0 , A c c e s s i n g d a t a i n a H a d o o p s y s t e m 85

C h a p t e r

10
Chapter 10Accessing data in a

Hadoop system
This chapter contains the following topics:

■ Using Hadoop data in a report

■ Connecting to a Hadoop system

■ Specifying the data to retrieve from a Hadoop system

86 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using Hadoop data in a report
With data storage requirements approaching several petabytes, relational
databases no longer meet the needs of many organizations. Facebook, for
example, analyzes 15 terabytes of log data each day. To store and process vast
amounts of data, organizations use “big data” systems such as Hadoop. An open-
source software framework designed for scalable, distributed computing,
Hadoop spreads and manages data on clusters of servers and coordinates work
among them.

To achieve reliability and efficiency in distributed processing, Hadoop uses a
MapReduce programming model, which uses map and reduce operations to
divide data-intensive tasks, such as data searches or data aggregation, into
discrete tasks that can be done in parallel across clusters of servers. The map
phase occurs when each discrete task is distributed, or mapped, to all the servers.
The reduce phase occurs when the intermediate results are merged, or reduced,
into one result set.

Actuate BIRT Designer supports access to Hadoop data through Hive, which is a
data warehouse infrastructure built on top of Hadoop. Hive facilitates data
summarization, queries, and analysis. It provides a mechanism for structuring
large data sets and querying the data using a SQL-like language called Hive
Query Language (HQL). By using Hive to access data, you can write HQL
queries, instead of MapReduce functions, to specify the data to retrieve.

As with other types of data sources, for a report to use data from a Hadoop
system, you must create the following BIRT objects:

■ A data source that contains the information to connect to a Hive system

■ A data set that specifies the data to retrieve

Connecting to a Hadoop system
Actuate BIRT Designer provides a JDBC driver to connect to a Hadoop system
through Hive. Similar to connecting to a database, you provide the URL to the
Hive machine and your user credentials. You also have the option to pass
MapReduce scripts to Hadoop. These scripts can be written in any programming
language.

How to create a Hive data source

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Hive Data Source from the list of data source types.

C h a p t e r 1 0 , A c c e s s i n g d a t a i n a H a d o o p s y s t e m 87

2 In Data Source Name, type a name for the data source.

3 Choose Next.

3 In New Hive Data Source Profile, specify the properties to connect to the Hive
system.

1 In Database URL, type the URL to the Hive system.

2 In User Name and Password, type the user credentials to connect to the
system.

3 In Add File Statement, optionally type one or more Add File statements to
add script files to the Hadoop distributed cache, as shown in the following
example. Separate each Add File statement with a semicolon.

add file /usr/local/hive/rating_mapper.py; add file /usr/
local/hive/weekday_mapper.py;

Figure 10-1 shows an example of properties to connect to a Hive system.

Figure 10-1 Connection properties for a Hive system

Specifying the data to retrieve from a Hadoop system
To specify what data rows to retrieve from a Hadoop system running Hive, you
write a query using HQL. As mentioned earlier, HQL is similar to SQL. HQL
supports many of the same keywords as SQL, for example, SELECT, WHERE,
GROUP BY, ORDER BY, JOIN, and UNION.

Hive transforms HQL statements into MapReduce jobs that Hadoop uses to
perform and manage parallel processing across the clusters of servers. You can
embed your own MapReduce scripts in the query by using the TRANSFORM
clause. You make these scripts available to Hadoop through the Add File

88 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

property when you configure the connection properties, as described in the
previous section.

The following is an example of a HQL query that uses the TRANSFORM clause:

SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING 'python weekday_mapper.py'
AS (userid, movieid, rating, weekday)

FROM u_data

How to specify what data to retrieve from a Hadoop system

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the Hive data source to use. Data Set Type
displays HQL Select Query.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In HQL Query, in Query text, type a HQL statement that indicates what data
to retrieve. Figure 10-2 shows an example of an HQL query specified in the
data set editor.

Figure 10-2 Data set editor displaying an HQL query

C h a p t e r 1 0 , A c c e s s i n g d a t a i n a H a d o o p s y s t e m 89

4 Choose Finish to save the data set. Edit Data Set displays the columns, and
provides options for editing the data set, as shown in Figure 10-3.

Figure 10-3 Data set editor displaying the output columns

5 Choose Preview Results to view the data rows returned by the data set.

90 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 1 1 , A c c e s s i n g d a t a i n S a l e s f o r c e . c o m 91

C h a p t e r

11
Chapter 11Accessing data in

Salesforce.com
This chapter contains the following topics:

■ Using Salesforce.com data in a report

■ Connecting to Salesforce.com

■ Specifying the data to retrieve from Salesforce.com

92 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using Salesforce.com data in a report
Salesforce.com is a company specializing in software-as-a-service (SaaS),
providing Customer Relationship Management (CRM) applications that run in
the cloud. Organizations use these CRM applications to manage all aspects of
their business activities with customers, including tracking the status of contracts
and sales opportunities, accessing customer profiles and account histories, and
communicating with decision makers.

Actuate BIRT Designer supports access to data in Salesforce.com, enabling you to
integrate this business data in your reports. As with other types of data sources,
for a report to use data from Salesforce.com, you must create the following BIRT
objects:

■ A data source that contains the information to connect to a database in
Salesforce.com

■ A data set that specifies the data to retrieve

Connecting to Salesforce.com
Actuate BIRT Designer uses a DataDirect JDBC driver to connect to
Salesforce.com. This third-party driver supports access to Salesforce objects
through JDBC and SQL. You provide the URL to connect to a Salesforce instance,
and your login credentials. You can also set performance-tuning properties to
control the data communications between BIRT and Salesforce.com.

How to create a Salesforce.com data source

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Actuate JDBC Salesforce.com Data Source from the list of data source
types.

2 In Data Source Name, type a name for the data source.

3 Choose Next.

3 In New Actuate JDBC Salesforce.com Data Source Profile, specify the
properties to connect to a Salesforce instance, and optionally, change the
performance-tuning settings.

1 In Database URL, type the URL to a Salesforce instance.

2 In User Name, type the user name to log in to the system.

C h a p t e r 1 1 , A c c e s s i n g d a t a i n S a l e s f o r c e . c o m 93

3 In Password, type the user password and security token to log in to the
system, for example, myPasswordXXXXXXXXX, where myPassword is the
password and XXXXXXXXX is the security token. A user’s security token is
assigned by a Salesforce.com administrator. A user can change his or her
security token in Saleforce.com’s Personal Setup tool.

4 In Database Name, do one of the following:

❏ Deselect Use default, then type a filename prefix, or a path and a prefix.
The driver uses this value to create or locate the set of Salesforce
embedded database files. For example, if Database Name is set to
AcmeData, the database files that are created or loaded have the format,
AcmeData.<file extension>. If you specify a path and a prefix, such as
C:\Resources\Data\AcmeData, the driver creates or looks for database
files AcmeData.<file extension> in the C:\Resources\Data folder.

❏ Select Use default. This option uses BIRT’s resource folder as the path
and the User Name value as the filename prefix.

5 In Connection Retry Count, specify the number of times to attempt to
connect until a successful connection is established.

6 In Connection Retry Delay, specify the number of seconds to wait between
each connection attempt.

7 In Fetch Size, specify the number of data rows that the driver processes
before returning data to the application. A small fetch size can improve the
initial response time of the query. A large fetch size can improve overall
fetch times at the cost of additional memory.

8 In Web Service Fetch Size, specify the number of data rows that the driver
fetches for each JDBC call.

9 In Web Service Retry Count, specify the number of times the driver retries a
SELECT query that has timed out.

10 In Web Service Timeout, specify the number of seconds that the driver
waits for a response to a web service request.

Figure 11-1 shows an example of properties to connect to a Salesforce.com
instance.

94 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 11-1 Connection properties to a Salesforce.com instance

Specifying the data to retrieve from Salesforce.com
Once the report connects to a Salesforce.com instance, you create a data set and
write a SQL query to specify what data rows to retrieve. The driver translates the
SQL query to a SOQL query before sending it to Salesforce.com for execution.
SOQL (Salesforce Object Query Language) is Salesforce.com’s query language for
accessing data, and is similar to SQL. You cannot write a SOQL query in the data
set editor.

How to specify what data to retrieve from a database in Salesforce.com

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the Actuate JDBC Salesforce.com data
source to use. Data Set Type displays Select Query.

2 In Data Set Name, type a name for the data set.

C h a p t e r 1 1 , A c c e s s i n g d a t a i n S a l e s f o r c e . c o m 95

3 Choose Next.

In New Data Set, in Query Text, type a SQL statement that indicates what data
to retrieve. Figure 11-2 shows an example of a query specified in the data set
editor.

Figure 11-2 Data set editor displaying a SELECT query

3 Choose Finish to save the data set. Edit Data Set displays the columns, and
provides options for editing the data set.

4 Choose Preview Results to view the data rows returned by the data set.

96 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 1 2 , A c c e s s i n g d a t a i n a P O J O 97

C h a p t e r

12
Chapter 12Accessing data in a POJO

This chapter contains the following topics:

■ Using POJO data in a report

■ Connecting to a POJO

■ Specifying the data to retrieve from a POJO

98 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using POJO data in a report
Plain Old Java Objects (POJOs) are simple Java objects that do not implement
framework-specific interfaces such as those defined by the EJB framework. Java
developers use POJOs to separate an application’s business logic from
infrastructure frameworks, which constantly evolve. POJOs are frequently used
for data persistence—the storage and retrieval of data—in Java applications.

Actuate BIRT Designer supports the use of POJOs as a data source for reports. As
with other types of data sources, such as databases, XML files, and web services,
for a report to use data from a POJO, you must create the following BIRT objects:

■ A POJO data source that contains the information to connect to a POJO

■ A POJO data set that defines the data that is available to a report

No programming is required to create these BIRT objects. However, if using
POJOs created by another developer, a basic understanding of what the classes do
and the data they provide is necessary. A simple POJO example typically consists
of the following classes:

■ A class that describes the data object, for example, a books class that describes
the properties of books, including book title, author, publisher, year published,
and so on.

■ A class that specifies how to retrieve data. For example, such a class can
retrieve data about each book by using the Java interface, Iterator, and
implementing the open(), next(), and close() methods to iterate through all
the book objects.

Connecting to a POJO
When creating a POJO data source in a BIRT report to connect to a POJO, you
specify the location of the JAR file that contains the POJO classes. You can specify
either a relative or absolute path.

How to create a POJO data source

1 In Data Explorer, right-click Data Sources, then choose New Data Source.

2 In New Data Source, specify the following information:

1 Select Actuate POJO Data Source from the list of data source types, as
shown in Figure 12-1.

2 In Data Source Name, type a name for the data source.

C h a p t e r 1 2 , A c c e s s i n g d a t a i n a P O J O 99

Figure 12-1 Selecting POJO as a data source type

3 Choose Next.

3 In New POJO Data Source Profile, shown in Figure 12-2, specify the properties
to connect to the POJO.

Figure 12-2 POJO data source properties

100 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

1 In Runtime Properties, specify the location of the POJO classes that define
the run time properties of the data source. Click the arrow icon next to Add
Jars, then select either Relative path or Absolute path.

❏ Select Relative path to specify a path that is relative to the folder
designated as the resource folder. By default, BIRT uses the current
project folder as the resource folder.

In Select Jars/Zips, which displays the contents of the resource folder,
as shown in Figure 12-3, select the JAR file, then choose OK.

Figure 12-3 Select Jars/Zips displaying the contents of the resource
folder

❏ Select Absolute path to specify the full path in the file system. Browse
the file system and select the JAR file, then choose OK.

2 In Design Time Properties, specify the location of the POJO classes that
define the design time properties of the data source. The data set editor
uses this information to list the get methods, which you select to define the
column mappings for the POJO data set. Use the instructions in the
previous step to specify either a relative path or absolute path to the POJO
classes.

4 Choose Test Connection to ensure that the connection information is correct. If
Test Connection returns an error, repeat the preceding steps to correct the
error.

5 Choose Finish. The new POJO data source appears under Data Sources in Data
Explorer.

Specifying the data to retrieve from a POJO
BIRT reports must use data that is structured as a table consisting of rows and
columns. For a POJO data set to return data in this format, you map methods or
members of a POJO class to columns. Listing 12-1 shows an example of a class
that represents music CDs. The class describes the members and uses pairs of get

C h a p t e r 1 2 , A c c e s s i n g d a t a i n a P O J O 101

and set methods to persist the data. To create a data set using this class, you
would map the get methods to columns.

Listing 12-1 Class representing music CDs

package dataset;
public class CD {

private String cdTitle;
private String cdArtist;
private String cdCountry;
private String cdCompany;
private String cdPrice;
private String cdYear;

public CD(String title) {
this.cdTitle = title;

}
public String getCDTitle() {

return cdTitle;
}
public void setCDTitle(String title) {

this.cdTitle = title;
}
public String getCDArtist() {

return cdArtist;
}
public void setCDArtist(String artist) {

this.cdArtist = artist;
}
public String getCDCountry() {

return cdCountry;
}
public void setCDCountry(String country) {

this.cdCountry = country;
}
public String getCDCompany() {

return cdCompany;
}
public void setCDCompany(String company) {

this.cdCompany = company;
}
public String getCDPrice() {

return cdPrice;
}

102 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

public void setCDPrice(String price) {
this.cdPrice = price;

}
public String getCDYear() {

return cdYear;
}
public void setCDYear(String year) {

this.cdYear = year;
}

}

How to create a POJO data set

This procedure assumes you have already created the POJO data source that this
data set uses. Examples in this section refer to the POJO example in Listing 12-1.

1 In Data Explorer, right-click Data Sets, then choose New Data Set.

2 In New Data Set, specify the following information:

1 In Data Source Selection, select the POJO data source to use. Data Set Type
displays Actuate POJO Data Set.

2 In Data Set Name, type a name for the data set.

3 Choose Next.

3 In New Actuate POJO Data Set, specify the following information:

1 In POJO Data Set Class Name, specify the POJO class that retrieves the data
at run time. Choose Browse to find and select the class.

2 In Application Context Key, use the default key or delete it. This property
is optional.

Figure 12-4 shows an example of properties set for a POJO data set.

Figure 12-4 POJO data set properties

C h a p t e r 1 2 , A c c e s s i n g d a t a i n a P O J O 103

4 Choose Next.

5 Map methods or fields in a POJO class to data set columns, using the
following steps:

1 In POJO Class Name, specify the POJO class that contains the get methods
to map to columns. You can choose Browse to find and select the class.

The data set editor uses a get* filter to display all the get methods in the
specified POJO class, as shown in Figure 12-5.

Figure 12-5 Data set editor displaying the get methods in a POJO class

2 Double-click the get method to map to a data set column.

Add Column Mapping displays the mapping information, as shown in
Figure 12-6.

Figure 12-6 Column mapping information

104 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Choose OK to accept the default values.

3 Repeat the previous step for every column to add to the data set.
Figure 12-7 shows an example of column mappings defined in a POJO data
set.

Figure 12-7 Data set editor displaying the column mappings

6 Choose Finish to save the data set. Edit Data Set displays the columns, and
provides options for editing the data set.

7 Choose Preview Results to view the data rows returned by the data set.
Figure 12-8 shows an example of data rows returned by a POJO data set.

Figure 12-8 Data rows returned by a POJO data set

Chapter 13, Combin ing data f rom mult iple data sources 105

C h a p t e r

13
Chapter 13Combining data from

multiple data sources
This chapter contains the following topics:

■ Ways to combine data

■ Creating a union data set

■ Creating a joined data set

106 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Ways to combine data
Sometimes, the data that a report requires originates in several data sources. For
example, an application system generates monthly transaction data and the data
for each month is saved in a separate CSV file, or a system saves data in different
formats, such as XML and CSV.

Actuate BIRT Designer provides two options for combining data from multiple
sources. You can create a union data set or a joined data set. The option you
choose depends on the data structures and the results you want. Both options
entail combining data sets, so before creating a union data set or a joined data set,
you first create the individual data sets. For example, to combine data from an
XML file with data from a CSV file, you must first create the XML data set and the
flat file data set.

Creating a union data set
A union data set combines the results returned by two or more data sets. Creating
a union data set is similar to using a SQL UNION ALL statement, which
combines the result sets of two or more SELECT statements into a single result
set.

Create a union data set to consolidate data from multiple sources that have
similar data structures. For example, a company maintains separate database
tables to store contact information about employees and contractors. The
structure of the tables are similar. Both contain Name and Phone fields. Suppose
you want to create a master contact list for all employees and contractors. The
solution is to create one data set to retrieve employee data, a second data set to
retrieve contractor data, and a union data set that combines data from the
previous data sets.

Figure 13-1 illustrates the data sets that return employee and contractor data.

Figure 13-1 Data sets with common fields returning employee and contractor
data

When creating a union data set, you select the fields to include. Figure 13-2 shows
a union data set that includes all the fields from both Employees and Contractors

Name Phone E-mail

Mark Smith

Patrick Mason

Soo-Kim Yoon

Maria Gomez

650-343-2232

650-343-1234

650-343-5678

650-343-9876

msmith@acme.com

mason@acme.com

skyoon@acme.com

gomez@acme.com

Name Phone

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

650-545-3645

415-242-8254

650-662-9735

408-234-2645

Employees data set Contractors data set

Chapter 13, Combin ing data f rom mult iple data sources 107

data sets. The Name field contains all employee and contractor names. The Phone
field also contains all employee and contractor phone numbers. The E-mail field
exists only in the employee data set, so only employee data rows have e-mail
data.

Figure 13-2 Union data set that combines all data from Employees data set and
Contractors data set

Figure 13-3 shows a union data set that includes only the common fields, Name
and Phone, from the Employees and Contractors data sets.

Figure 13-3 Union data set that combines data from common fields in Employees
data set and Contractors data set

In the previous example, the two data sets used to create a union data set
contained common fields with the same names. This condition is required for
consolidating data into a single field. However, data sources often use different
field names.

Suppose the Name field in the Employees and Contractors tables is
EmployeeName and ContractorName, respectively. To create a union data set
that consolidates employee and contractor names in a single field, rename the
field names in the individual data sets to use the same name. When creating the

Name Phone E-mail

Mark Smith

Patrick Mason

Soo-Kim Yoon

Maria Gomez

650-343-2232

650-343-1234

650-343-5678

650-343-9876

msmith@acme.com

mason@acme.com

skyoon@acme.com

gomez@acme.com

Union data set

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

650-545-3645

415-242-8254

650-662-9735

408-234-2645

Name Phone

Mark Smith

Patrick Mason

Soo-Kim Yoon

Maria Gomez

650-343-2232

650-343-1234

650-343-5678

650-343-9876

Union data set

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

650-545-3645

415-242-8254

650-662-9735

408-234-2645

108 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Employees data set, in Output Columns, use the Alias property to give the
EmployeeName field another name. Figure 13-4 shows the EmployeeName field
with the alias, Name.

Figure 13-4 Alias specified for the EmployeeName field

Similarly, when creating the Contractors data set, edit the ContractorName field
to use the same alias.

How to create a union data set

This procedure assumes that you have created the data sets to be included in the
union data set.

1 In Data Explorer, right-click Data Sets, and choose Union Data Set.

2 In New Data Set, in Data Set Name, optionally type a name for the union data
set.

3 Choose New.

4 In New Union Element, in Select Data Set, select the first data set that contains
the data to include in the union data set.

New Union Element displays the fields in the selected data set, as shown in
Figure 13-5.

Figure 13-5 Fields in a data set selected for a union data set

Chapter 13, Combin ing data f rom mult iple data sources 109

5 Select the fields to include in the union data set, then choose OK.

6 Repeat steps 3 to 5 to add the next data set to the union data set.

Figure 13-6 shows a union data set named MasterCustomerList that consists of
fields from two data sets, PlatinumCustomers and GoldCustomers.

Figure 13-6 Definition of a union data set that combines two data sets

7 Choose Finish. Edit Data Set displays the selected fields, and provides options
for editing the data set.

8 Choose Preview Results. Figure 13-7 shows the rows returned by the Master
Customer List union data set.

Figure 13-7 Data rows returned by the union data set

110 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Creating a joined data set
A joined data set combines the results of two or more data sets that are related
through a common key. Creating a joined data set is similar to joining tables in a
database using a SQL JOIN clause. Use a joined data set to combine data from
different data sources in which a relationship exists, as shown in the following
example.

Figure 13-8 illustrates data sets that return data about customers and orders. The
data sets are related through the CustomerID field. You can retrieve order
information for each customer by joining the data sets.

Figure 13-8 Data sets with a common field returning customer and order data

Figure 13-9 shows the results of joining the customers and orders data sets on the
CustomerID key, and displaying only the CustomerName and Amount fields in
the joined data set.

Figure 13-9 Data rows returned when the customers and orders data sets are
joined

Actuate BIRT Designer supports the functionality of joined data sets available in
the open-source version, and provides the following additional features in an
updated user interface:

■ The capability to join more than two data sets

■ The capability to join on more than one key

■ Support for new join operators: <>, <, >, <=, >=

■ Support for a new type of join, the side-by-side join

Unlike the other types of supported joins (inner, left outer, right outer, and full
outer), the side-by-side join links data sets without requiring a key. The resulting

CustomerName CustomerID

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

1001

1002

1003

1004

Customers data set Orders data set

OrderID Amount CustomerID

110

115

120

125

1500.55

12520.00

8450.50

7550.00

1003

1001

1004

1002

CustomerName Amount

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

12520.00

7550.00

1500.55

8450.50

Chapter 13, Combin ing data f rom mult ip le data sources 111

joined data set displays the selected fields side by side. Figure 13-10 shows two
data sets that do not share a common field. The first data set returns customer
data, and the second data set returns order data.

Figure 13-10 Data sets without a common field

Figure 13-11 shows the results of joining the customers and orders data sets using
the side-by-side join. When using this type of join, do not misinterpret the results.
As Figure 13-11 shows, the data from the two data sets appear side by side,
implying that each customer has a relationship with an order when, in fact, no
such relationship exists.

Figure 13-11 Results of a side-by-side join

For information about the other types of supported joins, see BIRT: A Field Guide.

How to create a joined data set

This procedure assumes that you have created the data sets to be included in the
joined data set.

1 In Data Explorer, right-click Data Sets, and choose Join Data Set.

2 In New Data Set, in Data Set Name, optionally type a name for the joined data
set.

3 Specify the data sets to use in the joined data set. Under Available data sets,
drag each data set to the editing area. Figure 13-12 shows three data sets in the
editing area.

CustomerName CustomerID

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

1001

1002

1003

1004

Customers data set Orders data set

OrderID Amount

110

115

120

125

1500.55

12520.00

8450.50

7550.00

CustomerName CustomerID

Sarah Brown

Sean Calahan

Paula Mitchell

Michael Lim

1001

1002

1003

1004

OrderID Amount

110

115

120

125

1500.55

12520.00

8450.50

7550.00

112 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 13-12 Three data sets selected for a joined data set

4 Specify the fields from each data set to include in the joined data set. Perform
the following tasks for each data set:

1 Select a data set by clicking anywhere in the image of the data set. Do not,
however, click on a field name.

2 Choose Output Columns.

3 In Edit Data Set Properties, under Select output columns, select the desired
data set fields, then choose OK.

5 Specify the conditions for joining the data sets. Perform the following tasks for
each pair of data sets. In the example shown in Figure 13-12, specify a
condition for joining the first and second data sets, and a condition for joining
the second and third data sets.

1 Select the arrow between two data sets.

2 Choose Conditions.

3 In Define join type and join conditions, specify the following information:

1 In Join Type, select the type of join to use.

2 If you select a join type other than Side-By-Side, define a join condition.

Chapter 13, Combin ing data f rom mult ip le data sources 113

❏ Choose New.

❏ Select the fields on which to join, and select a operator that specifies
how to compare the values in the fields being joined. Figure 13-13
shows a join condition that combines data when the
CUSTOMERNUMBER value in the Customers data set is equal to
the CUSTOMERNUMBER value in the Orders data set.

Figure 13-13 Joining data sets on a common field

❏ Choose OK.

The Define join type and join conditions dialog displays the specified
condition, as shown in Figure 13-14.

Figure 13-14 Definition of an inner join

4 Choose OK.

6 Choose Finish to save the joined data set.

114 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Joining on more than one key
You can specify more than one join condition when joining two data sets. For
example, you can join a customers data set with a sales offices data set, shown in
Figure 13-15, to find the names of customers and sales managers that are located
in the same city and state.

Figure 13-15 Data sets with two common fields, City and State

You would create the following join conditions:

■ The first condition, shown in Figure 13-16, compares the State values in the
Customer and SalesOffices data sets and looks for a match.

Figure 13-16 Joining on a State field

■ The second condition, shown in Figure 13-17, compares the City values in
both data sets and looks for a match.

Figure 13-17 Joining on a City field

Name City

Mark Smith

Patrick Mason

Paula West

Joanne Kim

San Francisco

Los Angeles

New York

San Diego

Customers data set Sales Offices data set

City State SalesMgr

Los Angeles

New York

San Francisco

California

New York

California

Robert Diaz

Monica Blair

Susan Kline

State

California

California

New York

California

Chapter 13, Combin ing data f rom mult ip le data sources 115

The joined data set returns the results shown in Figure 13-18, if the join type is
fullOuter.

Figure 13-18 Data rows returned by the joined data set

Specifying a join condition not based on equality
The condition for joining values in two fields is usually based on equality (=), as
shown in all the examples so far. Less common are join conditions that use any of
the other comparison operators: not equal (<>), greater than (>), less than (<),
greater than or equal to (>=), and less than or equal to (<=).

The following example shows the use of joins that are not based on equality. In
the example, a Sales data set is joined with a Commissions data set. The joined
data set uses a >= join and a < join to look up the commissions to pay to sales
managers, based on their sales totals and management levels.

Figure 13-19 shows the Sales and Commissions data sets. In the Commissions
data set, each level has four commission rates. For level 1, a commission rate of
25% is paid if a sales total is between 75000 and 100000, 20% is paid if a sales total
is between 50000 and 75000, and so on.

Figure 13-19 Data sets returning sales and commission rates data

SalesMgr Level

Susan Kline

Robert Diaz

Monica Blair

Sean Calahan

1

2

2

1

Sales data set Commissions data set

Level LowRange HighRange

1

1

1

1

75000

50000

25000

15000

100000

75000

50000

25000

TotalSales

55000

45000

28000

23000

Commission

25

20

15

10

2

2

2

2

70000

45000

20000

10000

100000

70000

45000

20000

25

20

15

10

116 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The following join conditions specify the fields on which to join and how to
compare the values in the fields being joined:

■ The first condition, shown in Figure 13-20, compares the Level values in the
Sales and Commissions data sets and looks for a match.

Figure 13-20 Joining on the Level field and looking for a match

■ The second condition, shown in Figure 13-21, uses the >= operator to compare
the TotalSales values in the Sales data set with the LowRange values in the
Commissions data set.

Figure 13-21 Joining on TotalSales and LowRange fields using the >= operator

■ The third condition, shown in Figure 13-22, uses the < operator to compare the
TotalSales values in the Sales data set with the HighRange values in the
Commissions data set.

Figure 13-22 Joining on TotalSales and HighRange fields using the < operator

Chapter 13, Combin ing data f rom mult ip le data sources 117

The second and third join conditions check if a sales total is greater than or equal
to LowRange and less than HighRange.

The joined data set returns the results shown in Figure 13-23.

Figure 13-23 Data rows returned by the joined data set

118 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Part 2Designing reports

Part Two2

C h a p t e r 1 4 , F o r m a t t i n g a r e p o r t 121

C h a p t e r

14
Chapter 14Formatting a report

This chapter contains the following topics:

■ Formatting features in Actuate BIRT Designer

■ Removing the default themes

■ Hiding columns in a table

■ Using a Quick Response (QR) code to link to content

■ Designing for optimal viewer performance

122 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Formatting features in Actuate BIRT Designer
Actuate BIRT Designer supports all the formatting features available in the open-
source version, and provides additional features. The reports you create using
Actuate BIRT Designer are typically published to the Actuate BIRT iServer, where
they can be viewed in Interactive Viewer, opened in BIRT Studio, added to a
dashboard, or made available to mobile devices. Often, when designing a report,
you consider how the report is viewed and used by these applications.

This chapter describes the additional report formatting options in Actuate BIRT
Designer. For information about other formatting options, see BIRT: A Field Guide.
This chapter also describes the design issues to consider when designing reports
that users view in the web viewer.

Removing the default themes
By default, new reports that you create use a set of themes that apply formatting
to charts, gadgets, tables, and cross tabs. Figure 14-1 shows a table with the
default formats.

Figure 14-1 Table with the default formats

The themes are defined in a library, ThemesReportItems.rptlibrary, which is
added to every new report.

To apply your own themes or styles in a report, disable the default themes by
doing one of the following:

■ When creating a new report, in the second dialog of the New Report wizard,
deselect Include the default themes. Figure 14-2 shows this option selected,
which is the default.

C h a p t e r 1 4 , F o r m a t t i n g a r e p o r t 123

Figure 14-2 Include the default themes selected by default

■ If a report already includes the default themes, in the Outline view, expand
Libraries, then right-click ThemesReportItems and choose Remove Library, as
shown in Figure 14-3.

Figure 14-3 Removing ThemesReportItems.rptlibrary from a report

The previous procedures remove all the default themes from a report. You can,
however, choose to remove themes from specific report elements while
maintaining default themes for other report elements. Figure 14-4 shows an

Option to include or
exclude default themes

124 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

example of removing a default theme, ThemesReportItems.default-table, from a
table by setting the Theme property to None.

Figure 14-4 Setting a table’s Theme property to None

Hiding columns in a table
There are two ways to hide a column in a table. You can:

■ Set the column’s Display property to No Display.

■ Set the column’s Visibility property to Hide.

Use the Display property if you are designing a report for Interactive Viewer and
you want to hide one or more columns when the report is first displayed in
Interactive Viewer. Users viewing the report can then choose to show the hidden
columns. The Display property is available under Advanced properties in
Property Editor, as shown in Figure 14-5.

Figure 14-5 Display property of a table column set to No Display

C h a p t e r 1 4 , F o r m a t t i n g a r e p o r t 125

Use the Visibility property to hide a column based on the output format or on a
specific condition. For example, you can hide a column in all formats except PDF,
or hide a column if it contains no values. The Visibility property is available
under Properties in the Property Editor, as shown in Figure 14-6.

Figure 14-6 Visibility property of a table column set to Hide Element

In releases prior to 11SP1, columns hidden by the Visibility property were
available for display in the Interactive Viewer. In releases 11SP1 and later, they are
not. Reports created in a release prior to 11SP1 and which used the Visibility
property to hide or display a column now exhibit different behavior in Interactive
Viewer. To restore the original behavior, change the report to use the Display
property instead of the Visibility property.

Using a Quick Response (QR) code to link to content
A QR code is a type of two-dimensional barcode that contains encoded
information. Figure 14-7 shows an example of a QR code.

Figure 14-7 A QR code

QR codes are used by a wide range of applications targeted to mobile-phone
users. QR codes can store URLs, business card information, or any kind of text.
Use a QR code in a report to provide contact information or links to other reports.
Mobile-phone users who have a QR code reader on their phone can scan the
image of a QR code to display the contact information or open a report.

Actuate BIRT Designer includes a QR code generator, ZXing, for generating QR
codes. To insert a QR code in a report, insert an image element to display the QR
code. In the image’s onCreate or onRender event, write code to dynamically

126 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

create the QR code. Listing 14-1 shows a code example that creates a QR code that
when scanned opens a report, qrreport.rptdesign, on an Actuate BIRT iServer.

Listing 14-1 Code to create a QR code that opens a report

var size = 350; // image width and height in pixels
var bgnd = new Packages.java.awt.Color(1.0, 1.0, 1.0); // white

background
var fgnd = new Packages.java.awt.Color(0, 0, 0); // black

foreground

// Report URL to encode.
var message = "http://athena:8910/iportal/

executereport.do?__executablename=/
qrreport.rptdesign&invokeSubmit=true;"

var writer = new Packages.com.google.zxing.qrcode.QRCodeWriter();
var matrix = writer.encode(message,

Packages.com.google.zxing.BarcodeFormat.QR_CODE, size, size);

var bi = new Packages.java.awt.image.BufferedImage(size, size,
Packages.java.awt.image.BufferedImage.TYPE_INT_RGB);

var g = bi.getGraphics();
g.setColor(bgnd);
g.fillRect(0,0,size,size);
g.setColor(fgnd);
for (var y = 0; y < size; y++) {

for (var x = 0; x < size; x++) {
if (matrix.get(x, y)) {

g.fillRect(x, y, 1, 1);
}

}
}

baos = new Packages.java.io.ByteArrayOutputStream();
Packages.javax.imageio.ImageIO.write(bi, "png", baos);

QR codes support up to 4,296 characters. The higher the number of characters, the
higher the resolution of the QR code. Note, however, that low-resolution mobile
phone cameras might not be able to read high-resolution codes.

Designing for optimal viewer performance
Actuate BIRT viewers support a feature called progressive viewing, which
displays the first few pages as soon as they are generated instead of waiting until
the entire report is generated. For long reports, this feature can significantly
reduce the amount of time a user waits before the first page appears.

C h a p t e r 1 4 , F o r m a t t i n g a r e p o r t 127

The design and functionality of a report affect the time it takes for BIRT to
generate the initial pages. A major factor that hinders performance is the retrieval
of data from an underlying data source, and the storage and processing of all that
data before BIRT can render the first report page. Optimal viewing performance
occurs when BIRT renders a page as soon as the data for that page has been
retrieved, before data for the entire report is processed.

To achieve optimal progressive viewing performance, observe the following
guidelines:

■ Ensure that data sets return only the data that you want to display in each
report element (tables, lists, or charts).

For example, if the data in a table must be filtered, grouped, sorted, or
aggregated, perform these tasks at the data source level. To manipulate data at
the table level, BIRT not only has to retrieve and store more data, it also has to
spend more time processing the data.

■ If, as recommended in the previous point, you create a data set to return data
rows that are already grouped, disable the group sorting in BIRT, which
occurs when you create a group using the group editor.

To disable group sorting in BIRT, select the table in which grouping is defined.
In Property Editor, choose Advanced, then set the Sort By Groups property to
false.

■ If creating nested tables (a table within another table) as is common in master-
detail reports, create a data set for each table instead of creating a single data
set that both the outer and inner tables use.

■ Avoid the following items:

■ Top n or bottom n filters. These filters require that BIRT process an entire
set of data to determine the subset of data to display.

■ Aggregations that require multiple passes through data, for example,
subtotals as a percentage of a grand total.

■ Summary tables. Even though these tables do not display detail rows, BIRT
must still process all the detail rows to calculate and display the summary
data.

128 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 129

C h a p t e r

15
Chapter 15Building HTML5 charts

This chapter contains the following topics:

■ About HTML5 charts

■ Creating an HTML5 chart

■ Formatting an HTML5 chart

■ Writing event handlers

130 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About HTML5 charts
HTML5 is an open standard for structuring and presenting content for the World
Wide Web, and is increasingly regarded as the alternative to Flash for creating
interactive and animated content for traditional and mobile devices.

HTML5 charts provide the following benefits:

■ Animated charts that display on all computers and mobile devices. Flash
charts are not supported on all mobile devices. BIRT charts (SVG, BMP, JPG,
and PNG) that are generated with the BIRT chart engine are designed for
static, print-based documents.

■ Highly customizable charts whose presentation, design-time and generation-
time properties you can control through the user interface and scripting. Flash
charts support only a limited number of properties that can be customized
through scripting. BIRT charts support extensive scripting, but not animation.

Comparing HTML5, Flash, and BIRT charts
Use the information in Table 15-1 to decide which chart format to use in a report.

Table 15-1 does not list the chart types or chart properties supported by each chart
format because that list would be too long. As the last item in the table indicates,
in this release, HTML5 charts support the fewest number of chart types.
However, the common chart types, such as bar, line, pie, and area, are supported.
As you design HTML5 charts, you will also discover that many of the properties
available to BIRT charts are also available to HTML5 charts.

If creating animated charts, first review the set of HTML5 charts to see if a
suitable chart is available. If you need to present data in a chart that is not
available in HTML5 (for example, maps or complex combination charts), use a

Table 15-1 Features available in HTML5, Flash, and BIRT charts

HTML5 Flash BIRT

Displays in the web viewer ✓ ✓ ✓

Displays in PDF ✓ ✓ ✓

Displays in other document formats
(DOC, PPT, XLS, etc.) as a static image

✓ – ✓

Supported on mobile devices ✓ limited ✓

Provides animation ✓ ✓ –

Supports customization through scripting ✓ limited ✓

Rank in number of available chart types,
1 being the highest

3 1 2

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 131

Flash object. Note, however, that Flash objects have limited support on mobile
devices, and Adobe is discontinuing further development of Flash technology for
mobile devices.

Information about using Flash objects in a report is provided later in this book.
For information about building BIRT charts, see BIRT: A Field Guide.

Rendering platform
Actuate BIRT Designer uses Highcharts, a third-party charting library, to render
HTML5 charts. This charting library, written in JavaScript, is integrated into
Actuate BIRT Designer’s standard chart builder, where you create HTML5 charts
using the familiar user interface.

Highcharts also provides a full API, which you can use to programmatically add,
remove, or modify chart elements after creating the chart in the chart builder.
Access to the Highcharts API is through the chart builder’s script editor.

Creating an HTML5 chart
The procedure for creating an HTML5 chart is the same as the procedure for
creating a BIRT chart. To create an HTML5 chart, perform the following tasks:

■ Drag the chart element from the palette and drop it in the report.

■ In the chart builder, choose a chart type, and set Output Format to HTML5, as
shown in Figure 15-1. This is the default format if you select a chart type
supported by HTML5.

■ Specify the data to present in the chart.

■ Format the chart.

This chapter describes the features that are unique to HTML5 charts, for example,
scripting with the Highcharts API and designing chart themes using JavaScript.
For information about the different chart types, specifying data for a chart, and
using the standard formatting options, see BIRT: A Field Guide.

132 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 15-1 Select Chart Type page showing the HTML5 format selected for a
bar chart

Formatting an HTML5 chart
As with a BIRT chart, you format an HTML5 chart using one or both of the
following methods:

■ Use the chart builder’s Format Chart page to set style properties for the
different parts of the chart.

■ Apply a chart theme, which defines styles for the different parts of a chart.
Themes provide a flexible way to define and maintain styles in one place and
reuse them for any chart that you create. Actuate BIRT Designer provides
several predefined themes for HTML5 charts. For a custom look, create your
own chart themes.

Select
HTML5
format

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 133

If using both methods to format a chart, the properties in the chart theme function
as the basis for the chart’s appearance. Properties that you set in the Format Chart
page override properties set by the theme.

The user interface indicates clearly whether a property is set by a theme or set in
the chart builder. Properties presented as a list box or as radio buttons display the
value Auto for default values that are set by a theme or by the software. These
properties display a specific value if set in the chart builder.

Properties set through check boxes have three states—on, off, and default. A
check mark indicates the on state, an empty check box indicates the off state, and
a check box with a grey check mark or a blue square indicates the default state.
The symbol for the default state changes depending on the Windows theme that
your machine uses.

A default state can be set by a theme or the software, and the default state can be
either on or off. So, even though it might appear counter-intuitive, a grey check
mark does not necessarily mean that a property is on by default. For example, the
Use Glass Style property, available in the Select Chart Type page, as shown in
Figure 15-1, is set to the default state, and the software’s default value is off. To
apply the glass style to the chart, you would click the check box until it displays a
check mark.

Similarly, the property below it, Turn Off Animation, is set to the default state,
which is off. In other words, animation is turned on by default. To turn off
animation, you would click the check box until it displays a check mark.

Applying a chart theme
On the Select Chart Type page, Theme displays the theme currently applied to the
chart, or None, if one is not applied. To change the theme or apply one, select a
theme from the drop-down list. The list displays all the predefined themes, as
well as, the themes that you created. When you select a theme, the chart
previewer shows the changes instantly.

Creating a chart theme
HTML5 charts support two types of chart themes:

■ A general chart theme that you create with the graphical chart theme builder,
and which you can apply to both BIRT and HTML5 charts.

■ A JavaScript theme that you create using JavaScript and the Highcharts API.
Use this programming option to define chart attributes that are not available
through the graphical chart theme builder, or if you are more comfortable
writing scripts and prefer to view all attributes in text format on a single page.
Unlike the general chart theme, a JavaScript theme is applicable to HTML5
charts only.

134 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

A typical approach to designing chart themes, whether general or JavaScript, is to
create one theme for all chart types. Use this approach to design a consistent
presentation style for all chart types, one that uses corporate styles, for example.
Such a theme might define general attributes, such as color schemes for the chart
background and plot areas, font styles for chart titles, value labels, or axis labels,
border styles, and legend styles.

The charts in Figure 15-2 and Figure 15-3 are examples of how a bar chart and a
line chart appear in a consistent style when the same theme is applied. The charts
use the same color schemes, fonts, grid, border and legend styles. In these
examples, the charts use a predefined chart theme, ThemesReportItems.Chart
Grid. You can use the same design principles when creating custom themes.

Figure 15-2 Bar chart using a predefined theme, ThemesReportItems.Chart Grid

Figure 15-3 Line chart using the same theme, ThemesReportItems.Chart Grid

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 135

You can create a chart theme in a report design or in a library. Create a chart
theme in a library—the typical approach—to share the theme with other report
developers or to use the theme in other reports. A chart theme defined in a report
design is available only to charts in that report.

If an existing chart contains the formatting attributes you want to set in a theme,
export the attributes to a theme. To do so, open the chart in the chart builder, then
click the button at the top right side of the chart builder, and specify a name for
the new theme. BIRT creates a theme that contains all the formatting attributes
from the chart. The theme is created in the report that contains the source chart
and is accessible through the Outline view for the report design. To place this
theme in a library, copy it from the Outline view and paste it into a library.

The predefined chart themes included with Actuate BIRT Designer are defined in
a library, ThemesReportItems.rptlibrary. You can download this library from the
Resources folder in Actuate BIRT iServer to use as an example when creating
your own library of themes.

Creating a general chart theme
The chart theme builder, which you use to create a general chart theme, organizes
and presents properties in a similar way as the Format Page of the chart builder.
Figure 15-4 shows the Format Chart Theme page where you set formatting
attributes for the different parts of a chart. The preview section shows your
formatting changes for the selected chart type, which you choose in the Preview
Type page.

Use the Script page to write event-handling code for a theme. This code applies
only to HTML5 charts. It is ignored when the theme is applied to a BIRT chart.
Information about writing event handlers is provided later in this chapter.

How to create a general chart theme

1 In Outline, right-click Themes and choose New Report Item Theme.

2 In New Report Item Theme, specify the following information:

■ In Name, type a name for the theme.

■ In Type, select Chart.

Choose OK.

3 In Chart Theme Wizard, select the first option, General, to define a theme.
Choose Next.

4 In the chart theme builder, shown in Figure 15-4, define the style properties for
the chart theme.

136 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 15-4 Format Chart Theme page of the chart theme builder

Creating a JavaScript chart theme
As mentioned earlier, Actuate BIRT Designer uses Highcharts, a third-party
charting library, to render HTML5 charts. To create a JavaScript chart theme, you
set the Highcharts chart options to values that provide the visual attributes you
desire. Every option has a default value. You define attributes only to change
default settings, or to add items that do not appear by default.

Listing 15-1 shows the JavaScript code for the predefined chart theme, Chart
Grid. The charts in Figure 15-2 and Figure 15-3 use this theme. As the code shows,
options are set using a JavaScript object notation structure. Keys and values are
connected by colons, separated by commas, and grouped by curly brackets.

For a complete reference of the options and their descriptions, see the Highcharts
documentation at the following location:

http://www.highcharts.com/ref/

The Highcharts reference contains two sections, The options object and Methods
and properties. Look at The options object for information about the options you
can set in a chart theme.

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 137

Listing 15-1 JavaScript code for the chart theme Chart Grid

colors: ['#058DC7', '#50B432', '#ED561B', '#DDDF00', '#24CBE5',
'#64E572', '#FF9655', '#FFF263', '#6AF9C4'],

 chart: {
 backgroundColor: {
 linearGradient: [0, 0, 500, 500],
 stops: [
 [0, 'rgb(255, 255, 255)'],
 [1, 'rgb(240, 240, 255)']
]
 },

 borderWidth: 2,
 plotBackgroundColor: 'rgba(255, 255, 255, .9)',
 plotShadow: true,
 plotBorderWidth: 1

 },
 title: {
 style: {
 color: '#000',
 font: 'bold 16px "Trebuchet MS", Verdana, sans-serif'
 }
 },
 subtitle: {
 style: {
 color: '#666666',
 font: 'bold 12px "Trebuchet MS", Verdana, sans-serif'
 }
 },
 xAxis: {
 gridLineWidth: 1,
 lineColor: '#000',
 tickColor: '#000',
 labels: {
 style: {
 color: '#000',
 font: '11px Trebuchet MS, Verdana, sans-serif'
 }
 },
 title: {
 style: {
 color: '#333',
 fontWeight: 'bold',
 fontSize: '12px',
 fontFamily: 'Trebuchet MS, Verdana, sans-serif'

138 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

 }
 }
 },
 yAxis: {
 gridLineWidth: 1,
 minorGridLineWidth: 1,
 minorTickInterval: 'auto',
 lineColor: '#000',
 lineWidth: 1,
 tickWidth: 1,
 tickColor: '#000',
 labels: {
 style: {
 color: '#000',
 font: '11px Trebuchet MS, Verdana, sans-serif'
 }
 },
 title: {
 style: {
 color: '#333',
 fontWeight: 'bold',
 fontSize: '12px',
 fontFamily: 'Trebuchet MS, Verdana, sans-serif'
 }
 }
 },
 legend: {
 itemStyle: {
 font: '9pt Trebuchet MS, Verdana, sans-serif',
 color: 'black'

 },
 itemHoverStyle: {
 color: '#039'
 },
 itemHiddenStyle: {
 color: 'gray'
 }
 },
 labels: {
 style: {
 color: '#99b'
 }
 }

How to create a JavaScript chart theme

1 In Outline, right-click Themes and choose New Report Item Theme.

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 139

2 In New Report Item Theme, specify the following information:

■ In Name, type a name for the theme.

■ In Type, select Chart.

Choose OK.

3 In Chart Theme Wizard, select the second option, HTML5, to define a theme.
Choose Next.

4 In the JavaScript chart theme builder, shown in Figure 15-5, write code that
defines the desired style properties for the chart theme. The Preview section
displays the results of your code for a selected chart type.

Figure 15-5 Example of JavaScript code and preview of a bar chart

5 To write event-handling code, described in the next section, choose the Script
tab.

Writing event handlers
You can write scripts in JavaScript that specify the task to perform when a
particular event occurs. This type of script is called an event handler. Like BIRT
charts, HTML5 charts support two types of event handlers:

■ Event handlers that respond to user interactions, such as a mouse click on a
legend or a mouse over a series, when viewing the report. For example, you

Type your JavaScript
code here

Select the type of
chart in which to
preview the results
of your code

140 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

can create an event handler to link to another report when a user clicks a bar in
a bar chart.

■ Event handlers that respond to chart events, which occur when BIRT renders
the chart. Use this type of event handler to conditionally change or add chart
elements as the chart is being generated. For example, you can write an event
handler to calculate an average value and display this value as a marker line.

For both types of event handlers, you use the script editor in the chart builder, as
shown in Figure 15-6. To launch the script editor, choose the Script tab.

Figure 15-6 Script editor displaying the UI for writing an event handler for a chart
event

To create an event handler that responds to a user interaction, choose
Interactivity. To create an event handler that responds to a chart event, choose
Client Script, as shown in Figure 15-6.

Scripts that you write using Client Script apply to HTML5 charts only. If you later
change a chart’s output format from HTML5 to SVG, BIRT ignores these client-
side scripts when generating the chart.

Writing event handlers that respond to user
interactions
Depending on what you want to accomplish, you can create some of these
interactivity event handlers without scripting. For typical event handlers, the
script editor in the chart builder simplifies the process by providing a list of chart
elements, a list of events, and a list of actions. Select the chart element you wish to
make interactive, select an event, such as Mouse Click or Mouse Over, then select
an action, such as Show Tooltip or Hyperlink. To implement a custom action,
choose Invoke Script, then write JavaScript code. For HTML5 charts, this code can
use the Highcharts API.

Choose Script
to open the
script editor

Choose Client
Script to write
an event
handler for a
chart event

Choose
Interactivity to
write an event
handler for a
user action

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 141

Figure 15-7 shows an example of an event handler defined for a chart’s Y series.
The event handler runs when the Mouse Over event is triggered. When triggered,
the Show Tooltip action runs. In this example, the tooltip is set to display the
series data, which is typical.

Figure 15-7 Script editor displaying an interactivity event handler

Figure 15-8 shows the results of the previous event handler. When the user places
the mouse pointer over the first bar in the bar chart, a tooltip displays the series
data value.

Figure 15-8 A tooltip displays a bar’s data value when the user places the mouse
pointer over the bar

142 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 15-9 shows an example of an event handler defined for a chart’s legend.
The event handler runs when the Mouse Click event is triggered. When triggered,
the Invoke Script action runs. In this example, the following script brings a series
in an area chart to the front when the user clicks the series name in the legend:

evt.target.group.toFront();

This line of code calls a method in the Highcharts API.

Figure 15-9 Script editor displaying an event handler that runs a script

Figure 15-10 shows the results of the previous event handler. When the user clicks
the In Process series in the area chart’s legend, the corresponding series in the
chart displays in front of the other overlapping series.

Figure 15-10 In Process series displayed in front when the user clicks the series
name in the legend

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 143

Compared to BIRT charts, HTML5 charts support fewer events and actions, and
fewer chart elements on which to define event handlers. The additional events
that BIRT charts support, but that HTML5 charts do not, include Mouse Down,
Mouse Up, Mouse Move, Key Down, and Key Up. The additional chart elements
for which you can define event handlers in a BIRT chart, but not an HTML5 chart,
include the chart title, y-axis, and x-axis.

If you begin by creating a BIRT chart, then later change the output format to
HTML5, BIRT ignores the event handlers defined for events that are specific to a
BIRT chart when generating the chart. This behavior provides the flexibility of
creating and maintaining event handlers for either chart format with the option of
changing the chart format at any time without any additional changes to the
design.

Writing event handlers that respond to chart events
Unlike event handlers that respond to user interactions with the chart, the event
handlers that you write for chart events require programming in JavaScript. You
also have to learn the Highcharts API to know what chart options you can
manipulate and how.

In the script editor, you select an event function, such as beforeRendering() or
beforeDrawAxis(), then you write code that performs a specific task or tasks
when the chart event occurs. The event handlers that you write for HTML5 chart
events differ from the event handlers for BIRT charts in several important aspects,
as described in Table 15-2.

Write client-side scripts using the script editor accessible from the Script tab in the
chart builder. Write server-side scripts using the script editor accessible from the
Script tab in the report editor. Only the following server-side event functions are
supported for HTML5 charts: beforeDataSetFilled(), afterDataSetFilled(), and
beforeGeneration()

This section provides information about writing client-side event handlers for
HTML5 chart events. For information about writing server-side event handlers,
see Integrating and Extending BIRT.

For documentation about the Highcharts API, go to the following location:

http://www.highcharts.com/ref/

Table 15-2 Comparison of event handlers in HTML5 charts and BIRT charts

Event handlers in HTML5 charts Event handlers in BIRT charts

Support only JavaScript Support JavaScript and Java

Use client-side scripting and limited
server-side scripting

Use server-side scripting only

Use the Highcharts API Use BIRT’s charting API

144 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About the HTML5 chart events
The set of events for an HTML5 chart is much smaller than the set of events for a
BIRT chart. Table 15-3 lists the HTML5 chart event functions and describes when
they are called.

Setting chart options through scripting
The before functions are called after BIRT generates the static JavaScript options,
which are based on the chart’s data and formatting options set in the chart
builder. The beforeGeneration() function is the first function called after the
generation of the static JavaScript options, but before a chart object is created. Use
beforeGeneration() to add chart options that Highcharts provides, but that are
not available through the chart builder’s format page.

For example, Highcharts provides a credits option to display a credits label in the
chart. To add this label to the lower right corner of the chart (the default position),
you would write code as follows:

beforeGeneration: function(options)
{

options.credits = {
enabled: true,
text: 'Acme Inc.'

};
},

As the code example shows, beforeGeneration() receives an options object. You
use this options object to configure chart options. When you type the word,
options, followed by a period (.), the script editor displays a list of options, as
shown in Figure 15-11. Click an option to view summary information about it.
Double-click an option to add it to your code.

Table 15-3 HTML5 chart event functions

Event function Called

afterRendering(chart) After the chart is rendered

beforeDrawAxis(axis, axisOptions, chart,
axisIndex)

Before rendering each axis

beforeDrawDataPoint(point,
pointOptions, chart, seriesIndex,
pointIndex)

Before drawing each data point
graphical representation or marker

beforeDrawSeries(series, seriesOptions,
chart, seriesIndex)

Before rendering the series

beforeGeneration(options) Before the chart is created

beforeRendering(options, chart) Before the chart is rendered

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 145

Figure 15-11 The script editor displaying the available options

The other before functions also receive an options object, for example,
axisOptions or seriesOptions, which is specific to the associated chart element.
Your code typically makes changes to the options object to change the appearance
of an axis, series, or data point. The following code example shows how to use
beforeDrawSeries() and the seriesOptions object to display a legend for all series
types except pie:

beforeDrawSeries: function(series, seriesOptions, chart,
seriesIndex)

{
if (series.type == "pie")
{

seriesOptions.showInLegend = false;
}
else
{

seriesOptions.showInLegend = true;
}

},

All the before functions, except beforeGeneration(), also receive the chart object,
which represents the chart that is created based on the original static options and
any options created with beforeGeneration(). With the exception of
beforeGeneration(), your code can query the chart object to determine what
changes to make to the options. You typically use these before functions to

146 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

dynamically add, change, or remove a chart element based on specified
conditions. Your code, however, should not make any changes to the chart object
itself because it is a temporary object. Changes to this temporary chart are
discarded along with the chart.

After the before functions run, BIRT passes the original options and your scripted
options into a constructor to create a new chart object. The afterRendering()
function provides the final opportunity to make changes to this new chart object.
To get the chart object, use the getCore() method, as shown in the following code
snippet:

afterRendering: function(Chart)
{

myChart=Chart.getCore();
...

Scripting example 1
The bar chart in Figure 15-12 shows the following custom options that are added
through scripting:

■ A script in beforeDrawSeries() calculates the average sales total, and changes
the color of bars that show data values above the average value.

■ A script in afterRendering() draws a plot line on the y-axis to show the
average value, and adds a legend item to display the average value.

Figure 15-12 Customized options in a bar chart

The event handlers written for the bar chart appear in Listing 15-2.

Custom
legend item
added to
display the
average
sales value

Bars that display data values above the
average value appear in a different color

Plot line
added to
show the
average
sales value

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 147

Listing 15-2 Event-handling script for the bar chart with customized options

beforeDrawSeries: function(series, seriesOptions, tempChart,
seriesIndex)

{
 var totalValue = 0;

 // First, find the average value for the series
 for (var i = 0; i < series.data.length; i++)
 {

 totalValue += series.data[i].y;
 }
 aveValue = totalValue / series.data.length;

 for (var j = 0; j < series.data.length; j++)
 {
 // Find out if this data point is above average

 if (series.data[j].y <= aveValue)
 {
 continue;
 }
 // The data point is above average. Color it green.
 var pointOptions = seriesOptions.data[j];
 pointOptions.color = 'green';
 }

},

afterRendering: function(myChart)
{

// Get the chart object
chart=myChart.getCore();
var mySeries = chart.series[0];

// Assuming aveValue was set in the beforeDrawSeries function,
draw a plot line at the average value

mySeries.yAxis.addPlotLine({
color: 'green',
width: 2,
value: aveValue,
id: 'averageValuePlotLine',
zIndex: 2

});
// Add a legend item that labels the plot line
// Do this by adding an empty series
chart.addSeries({

color: 'green',
name: 'Ave: $' + aveValue.toFixed(2),
marker: {

148 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

enabled: false
}

});
},

Scripting example 2
The bar chart in Figure 15-13 shows custom objects, stars, that are added through
scripting. Each star indicates the highest value for each order status series. A
script in afterRendering() performs the following tasks:

■ Calculates the highest (max) value for each y-series

■ Draws a star based on the width of the bar

■ Positions the stars at the top of the appropriate bars

This script showcases Highchart’s renderer object, which supports drawing
shapes, such as circles, rectangles, and stars, and adding images and text to a
chart. The renderer is useful for adding annotations to a chart. For example,
instead of a star, you can annotate the max value by creating text and enclosing it
in a rectangle.

Figure 15-13 Bar chart with custom objects

The JavaScript code written for this bar chart appears in Listing 15-3.

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 149

Listing 15-3 Event-handling script for the bar chart with custom objects

afterRendering: function(myChart)
{

// Get the chart object
chart=myChart.getCore();

// Get the max values from the y-axis series
for (var i = 0; i < chart.series.length; i++)
{
var mySeries = chart.series[i];
var maxValue = mySeries.data[0].y;
var maxValueIdx = 0;
if (!maxValue)
{

maxValue = 0;
}

for (var j = 1; j < mySeries.data.length; j++)
{
var curValue = mySeries.data[j].y;
if (!curValue)
{

continue;
}

if (maxValue < mySeries.data[j].y)
{

maxValue = mySeries.data[j].y;
maxValueIdx = j;

}
}

var maxPoint = mySeries.data[maxValueIdx];

// Create a group to hold each annotation
var group = chart.renderer.g().add();

// Draw a star based on the width of the column,
// and add it to the group
var star = chart.renderer.path(['M', maxPoint.barW/2, 0,

 'L',
maxPoint.barW*.4, maxPoint.barW/4,
maxPoint.barW*.05, maxPoint.barW/4,
maxPoint.barW*.325, maxPoint.barW*.475,
maxPoint.barW*.2, maxPoint.barW*.85,
maxPoint.barW/2, maxPoint.barW*.6,

150 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

maxPoint.barW*.8, maxPoint.barW*.85,
maxPoint.barW*.675, maxPoint.barW*.475,
maxPoint.barW*.95, maxPoint.barW/4,
maxPoint.barW*.6, maxPoint.barW/4,
'Z'])
.attr({
fill : 'yellow',
stroke: 'black',
'stroke-width': 1
}).add(group);

// Move the group to the top of the correct bar, and set it to
// draw in front of everything in the chart
group.attr({

translateX: maxPoint.barX + chart.plotLeft,
translateY: maxPoint.barY + chart.plotTop - maxPoint.barW -

10
});
group.toFront();

 }
},

Scripting example 3
The scatter chart in Figure 15-14 shows a vertical and horizontal plot line and
tooltip that appear when the mouse pointer is placed over a data point. The plot
line and tooltip disappear when the mouse pointer is moved away from a data
point.

Figure 15-14 Scatter chart displaying a dynamic plot line and tooltip

C h a p t e r 1 5 , B u i l d i n g H T M L 5 c h a r t s 151

The event-handling script to display and remove the plot line dynamically
appears in Listing 15-4.

Listing 15-4 Event-handling script to display a plot line dynamically

beforeRendering: function(options, chart)
{

options.plotOptions = {
series : {

point : {
events : {

mouseOver: function() {
this.series.xAxis.addPlotLine({

color: this.series.color,
width: 1,
value: this.x,
id: 'dynamicVerticalPlotLine'

});
this.series.yAxis.addPlotLine({

color: this.series.color,
width: 1,
value: this.y,
id: 'dynamicHorizontalPlotLine'

});
},
mouseOut: function() {

this.series.xAxis.
removePlotLine('dynamicVerticalPlotLine');

this.series.yAxis.
removePlotLine('dynamicHorizontalPlotLine');

}
}

}
}

};
},

152 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 1 6 , U s i n g F l a s h o b j e c t s i n a r e p o r t 153

C h a p t e r

16
Chapter 16Using Flash objects in

a report
This chapter contains the following topics:

■ About Flash

■ Software requirements

■ Ways to add Flash objects in a report

■ Output formats that support Flash

154 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About Flash
Flash, developed by Adobe Systems, is software commonly used for adding
animation and interactivity to web pages, and to create rich Internet applications.
Actuate BIRT Designer supports the use of Flash objects, such as Flash charts and
gadgets, in reports. Figure 16-1 shows examples of the types of Flash objects that
reports can display.

Software requirements
You must install Adobe Flash Player to view and interact with Flash objects in a
report design. Flash player installs as an ActiveX control or browser plug-in. It is
available from Adobe at the following location:

http://www.adobe.com/products/flashplayer

Figure 16-1 Flash charts and gadgets

C h a p t e r 1 6 , U s i n g F l a s h o b j e c t s i n a r e p o r t 155

Ways to add Flash objects in a report
Add Flash objects in a report in any of the following ways. The methods are listed
in order of difficulty, from easiest to most difficult:

■ Use a built-in Flash chart or Flash gadget. These elements are available in the
palette and provide the basic types of charts and gadgets. Actuate BIRT
Designer provides tools for creating these elements without any
programming. For information about using these elements, see Chapter 17,
“Using built-in Flash charts and gadgets.”

■ Use a Flash chart, gadget, or other object in the InfoSoft Flash Object Library, a
third-party library that is packaged with Actuate BIRT Designer. Using a Flash
object from this library requires programming in JavaScript or Java to convert
data to the XML format required by the object and then to pass the converted
data to the object. For information about using objects in the InfoSoft Flash
Object Library, see Chapter 18, “Using the Flash object library.”

■ Use a Flash object from a third-party library other than InfoSoft. The
procedure for using this type of Flash object is similar to the procedure for
using objects in the InfoSoft Flash Object Library.

■ Use a custom Flash object that you or another programmer develops using
third-party software. This method provides full control and access to the
underlying code of the Flash object, but requires knowledge of how the object
is created, as well as, how to integrate and use the object in the report. The
procedure for using a custom Flash object is similar to the procedure for using
objects in the InfoSoft Flash Object Library.

To determine the method to use, consider the data to present and which type of
Flash object is most suitable for the data, then look at the available types of
built-in Flash charts and gadgets. For example, if you determine that a doughnut
chart is best, you need look no further than the built-in Flash chart. However, if
you decide that a Flash map is best, look at the maps included in the InfoSoft
Flash Object Library. In most cases, the built-in Flash objects and the InfoSoft
Flash Object Library provide all the objects suitable for presenting report data.

Output formats that support Flash
HTML reports display Flash content. Report users must have Flash Player
installed. PDF reports can also display Flash content if the Adobe Reader
supports Flash. Download a version of Adobe Reader that supports Flash from
the following location:

http://www.adobe.com/acrobat

156 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

If creating a report that contains Flash content and that will be viewed in other
formats, such as XLS or DOC, use the visibility property to hide Flash objects in
formats that do not support Flash. If you do not hide the Flash objects, the report
displays a message, such as “Flash report items are not supported in this report
format.” As a substitute for a Flash chart or gadget, use a standard chart or an
HTML5 chart and set it to appear in formats that do not support Flash content.

Chapter 17, Using bui l t - in F lash char ts and gadgets 157

C h a p t e r

17
Chapter 17Using built-in Flash charts

and gadgets
This chapter contains the following topics:

■ About Flash charts and gadgets

■ Creating a Flash chart and gadget

■ Formatting a Flash chart

■ Formatting a Flash gadget

■ Using animation and other visual effects

■ Tutorial 1: Creating a Flash chart

■ Tutorial 2: Creating a Flash gadget

■ Limitations

158 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About Flash charts and gadgets
Flash charts are charts that use visual effects and animation. Actuate BIRT
Designer supports the creation of Flash charts, HTML5 charts, and BIRT charts.
BIRT charts are static images whereas Flash and HTML5 charts add motion and
more visual interest. For example, an animated Flash column chart can
progressively draw its columns from the bottom to the top and its x-axis labels
from left to right. For a comparison of Flash and HTML5 charts, see Chapter 15,
“Building HTML5 charts.”

Actuate BIRT Designer provides these Flash chart types: column, bar, line, pie,
and doughnut. Like Flash charts, Flash gadgets display data graphically and with
animation. The difference between the two elements is that a gadget typically
displays a single value whereas a chart plots multiple values for comparison. The
supported Flash gadgets, shown in Figure 17-1, are meter, linear gauge, sparkline,
cylinder, thermometer, and bullet.

Figure 17-1 Flash gadgets

Creating a Flash chart and gadget
The procedure for creating a Flash chart and gadget is the same as the procedure
for creating a BIRT chart. To create a Flash chart or gadget, perform the following
tasks:

■ Drag the Flash chart or Flash gadget element from the palette and drop it in
the report.

■ Choose a type of chart or gadget.

Chapter 17, Using bui l t - in F lash char ts and gadgets 159

■ Specify the data to present in the chart or gadget.

■ Format the chart or gadget.

The formatting options available to the Flash elements are different from the
formatting options available to BIRT charts. While many of the chart parts and
formatting attributes are the same, Flash lets you add animation and special
visual effects to parts of a chart or gadget.

This chapter describes the formatting options that are unique to Flash charts and
gadgets. Flash gadgets are covered in more detail because gadgets have features
that differ from those in a BIRT chart. For information about the different chart
types, specifying data for a chart, and using the standard formatting options, see
BIRT: A Field Guide.

Formatting a Flash chart
The Flash chart builder is similar to the standard BIRT chart builder. Both provide
a separate page for formatting tasks. Figure 17-2 shows an example of the Format
Chart page displaying Series properties for a Flash chart. This page is similar to
the Format Chart page in the standard chart builder. The primary difference is the
capability to add animation and special visual effects, such as bevels, glow, and
blur, to a Flash chart. These tasks are described later in this chapter.

Figure 17-2 Format Chart page in the Flash chart builder

160 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Formatting a Flash gadget
Like the Flash and standard chart builders, the Flash gadget builder provides a
separate page for formatting tasks. Figure 17-3 shows an example of the Format
Gadget page displaying the general properties for a linear gauge.

Format Gadget lists formatting properties of each visual part of a gadget. As
Figure 17-4 shows, for a linear gauge, you can format its scale, needle, numbers,
regions, ticks, thresholds, and so on. Each gadget has a different set of formatting
properties, which change specific aspects of the gadget’s appearance.

General properties
The general properties of a gadget control overall appearance, such as color
scheme, background and border style, and whether animation is enabled. General
properties can also define the radius of a cylinder gauge, the needle position of a
linear gauge, or the start and end angles of a meter gauge. For example,
Figure 17-4 shows how changing the Radius, Height, and Viewing Angle
properties affects the view of a cylinder gauge gadget. Radius and Height values
are expressed as percentages of the gadget area.

Categories of
formatting
properties

Figure 17-3 Format Gadget displaying a linear gauge and its general properties

Chapter 17, Using bui l t - in F lash char ts and gadgets 161

Figure 17-4 Examining results of setting properties for a cylinder gauge

Figure 17-5 shows examples of setting the Start Angle and End Angle properties
to change the shape and orientation of a meter gauge. The examples also show
how to use the Outer Radius and Inner Radius properties to set the thickness of
the arc in the gauge.

Figure 17-5 Examining results of setting properties for a meter gadget

Radius: 20%(default)
Height: 50% (default)
Viewing Angle: 30 (default)

Radius: 30%
Height: 60%
Viewing Angle: 0

Start Angle: 180 (default)
End Angle: 0 (default)
Outer Radius: 70% of Radius (default)
Inner Radius: 40% of Radius (default)

Start Angle: 90
End Angle: -90
Outer Radius: 40% of Radius
Inner Radius: 25% of Radius

Start Angle: 225
End Angle: -45
Outer Radius: 30% of Radius
Inner Radius: 25% of Radius

Start Angle:45
End Angle: 135
Outer Radius: 50% of Radius
Inner Radius: 50% of Radius

162 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Table 17-1 shows all the general properties and lists the gadgets to which they
apply. Some properties appear for only one type of gadget. Other properties are
common to multiple types of gadgets.

Table 17-1 General properties

Property Gadget Usage

Background Color All Sets the background color of the gadget.

Base Color All Sets the color scheme of the gauge. You can use
either a base color or a preset color scheme. All other
selections derive from this selection.

Center X
Coordinate

Meter Specifies the x coordinate of the gauge center.

Center Y
Coordinate

Meter Specifies the y coordinate of the gauge center.

Color All Specifies the color of the border around the gadget.

Connect Missing
Data

Sparkline Connects a line between missing points of data.

End Angle Meter Specifies the angle where the gauge ends drawing.

Fill color Cylinder,
thermometer

Specifies the color of the contained image within a
filled type of gadget, such as a cylinder or
thermometer.

Height Cylinder,
thermometer

Specifies the percentage of the gadget area that the
gadget image height occupies.

Inner Radius Meter Specifies the radius of the inner portion of the
gauge.

Outer Radius Meter Specifies the radius of the outer portion of the
gauge.

Preset Scheme All Selects a preset color scheme for the gauge. You can
use either a base color or a preset color scheme. All
other selections derive from this selection.

Radius (or Bulb
Radius)

Cylinder,
thermometer

Species the percentage of the gadget area that the
gadget image radius occupies.

Show Border All Enables or disables the border around the gadget.

Show Dial Values Meter Enables or disables the value display on the dial.
The dial position can be selected to be above or
below the dial.

Show Needle On Linear gauge Set to top to have needles appear on top of the
gadget, set to bottom to have them appear on the
bottom.

Chapter 17, Using bui l t - in F lash char ts and gadgets 163

Scale properties
Scale properties define the range of values and the number of tick marks that a
gadget displays. The scale properties affect the numbers displayed on the gadget,
not its size. Minimum Value and Maximum Value specify the lowest and highest
numbers, respectively. However, if the data set value (represented by the needle
value) is lower than the minimum value or higher than the maximum value, the
minimum or maximum value is ignored.

Figure 17-6 shows scale properties set for a linear gauge.

Show Needle Value Linear gauge Enables or disables the display of the value at the
needle. If enabled, set to Above Needle to display
the value above the needle, or set to Below Needle to
display the value below the needle.

Show Round
Corners

Linear gauge,
bullet

Enables or disables rounded corners on the gauge.

Show Value Cylinder,
thermometer

Enables or disables the display of the value the
gadget is illustrating.

Start Angle Meter Specifies the angle where the gauge begins drawing.

Start X Coordinate Cylinder Chooses a starting x coordinate percentage that
positions the image within the gadget. Selecting 0
starts the image at the left side of the gadget.

Start Y Coordinate Cylinder Chooses a starting y coordinate percentage that
positions the image within the gadget. Selecting 0
places the starting y coordinate at the top of the
gadget, selecting 100 places it at the bottom.

Style All Supports adding a style to the gadget.

Sub-Title Sparkline, bullet Adds a subtitle to the gadget.

Title Sparkline, bullet Adds a title to the gadget.

Turn Off All
Animations

All Enables or disables all animation effects.

Turn Off Default
Animations

All Enables or disables default animation.

Viewing angle Cylinder Specifies the angle at which the gadget is viewed.
Valid values are 0 through 50. 0 appears flat, 50 is
tilted towards the viewer.

Width Linear gauge,
meter

Specifies the thickness of the border around the
gadget.

Table 17-1 General properties

Property Gadget Usage

164 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 17-6 Format Gadget displaying a linear gauge and its scale properties

Table 17-2 shows all the scale properties and lists the gadgets to which they apply.

Table 17-2 Scale properties

Property Gadget Usage

Auto Adjust
Tickmarks

All but
sparkline

Enables or disables tick marks created
evenly across the scale

Major Tickmarks
Count

All but
sparkline

Specifies the number of major tick marks
to display on the scale

Maximum Value All Sets the highest value of the scale

Minimum Value All Sets the lowest value of the scale

Minor Tickmarks
Count

All but
sparkline

Specifies the number of minor tick marks
to display between major tick marks

Chapter 17, Using bui l t - in F lash char ts and gadgets 165

Needle properties
Needle properties define the shape, size, and color of a needle. A needle appears
only in a linear gauge and in a meter gauge, and is used to point to a data value.
Figure 17-7 shows the needle properties set for a meter gauge.

Figure 17-7 Selecting options for the needle of a meter gauge gadget

For a meter gauge, the needles properties apply only to the pointer part of the
needle. To format the base, or pivot, of the needle (represented by the circle),
choose Needle Base/Pivot.

Table 17-3 shows all the needle properties and lists the gadgets to which they
apply.

166 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Needle base or pivot properties
Needle base or pivot properties define the appearance of a needle base, or pivot.
Drawn as a circle, the base is the point around which the needle rotates. A needle
base appears only for a meter gauge. Figure 17-8 shows the needle base
properties set for a meter gauge. The size of the needle base is larger than the
default size, and the fill color is set to a radial gradient.

Table 17-3 Needle properties

Property Gadget Usage

Base Width Meter Sets the size of the bottom part of the
needle, as a percent of the size of the
gadget.

Border Color Linear gauge,
meter

Sets the border color of the needle.

Border Width Linear gauge,
meter

Sets the thickness of the needle border.

Fill Background
Color

Meter Sets the background color of needle.

Fill Color Linear gauge Sets the interior color of the needle.

Rear Extension Meter Sets the size of the portion of the needle
behind the pivot as a percent of the size of
the gadget.

Shape Linear gauge Sets the shape of the needle.

Show Value Meter Enables or disables the display of the
value to which the needle points.

Size Linear gauge,
meter

Sets the size in pixels, or in percent of
gadget width, of the needle.

Tooltip Linear Gauge,
meter

Specifies text for the tooltip.

Top Width Meter Sets the size of the tip of the needle as a
percent of the size of the gadget.

Value Linear gauge,
meter

Sets which needle to format. Several
needles can co-exist, based on the data
used to create the gadget.

Value Textbox X
Co-ordinate

Meter Sets the x coordinate of the value text, as a
percent of gadget width.

Value Textbox Y
Co-ordinate

Meter Sets the y coordinate of the value text, as a
percent of gadget height.

Chapter 17, Using bui l t - in F lash char ts and gadgets 167

Figure 17-8 Selecting options for the needle base of a meter gauge

Table 17-4 shows all the needle base or pivot properties. These properties are used
only in a meter gauge.

Table 17-4 Needle base/pivot properties

Property Usage

Border Color Sets the border color of the needle base.

Border Thickness Sets the width of the needle base border.

End Color Sets the ending color to use in a fill gradient.

Fill Color Sets the interior color of the needle base to a solid color.

(continues)

Needle
base

168 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Number formatting properties
Number formatting properties define how numbers are displayed in a gadget.
Use these properties to abbreviate numbers, to add text before or after a number,
or to specify the number of digits to display after a decimal point. Figure 17-9
shows the number formatting properties set for a thermometer gauge. Numbers
display with the dollar symbol ($) before the number and they appear in
abbreviated format, such as $30K instead of $30,000.

Figure 17-9 Examining a linear gauge and its number formatting properties

Table 17-5 shows all the number formatting properties. These properties are used
in all the gadgets.

Fill Gradient Sets the interior color of the needle base to a color gradient.

Pattern Specifies the pattern of the fill gradient. Choose Radial or
Linear.

Rotation Sets the angle of a linear fill gradient.

Show Border Displays or hides the border around the needle base.

Size Sets the size of the needle base as a percent of the meter
radius.

Start Color Sets the starting color to use in a fill gradient.

Table 17-4 Needle base/pivot properties (continued)

Property Usage

Chapter 17, Using bui l t - in F lash char ts and gadgets 169

Region properties
Region properties enable the division of the data plot into regions. Use regions to
provide more information about values in a gadget. Compare the linear gauges in
the following figures. The gauge in Figure 17-10 does not show regions. The
gauge in Figure 17-11 displays three regions, labeled Fair, Good, and Excellent.

Figure 17-10 Linear gauge without regions

Figure 17-11 Linear gauge with three regions

Figure 17-12 shows the properties set for the region labeled Fair in Figure 17-11.

Figure 17-12 Properties specified for a region labeled Fair

Table 17-5 Number formatting properties

Property Usage

Auto Abbreviation Abbreviates a number to an appropriate number factor.
For example, 10,000 becomes 10K.

Force Trailing Zeros Enables or disables the display of trailing zeros after
the decimal point.

Format Numbers Enables and disables number formatting.

Fraction Digits Specifies the number of digits displayed after the
decimal point.

Prefix Specifies a text value to display before a number.

Suffix Specifies a text value to display after a number.

170 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Table 17-6 shows all region properties and lists the gadgets to which they apply.

Tick properties
Tick properties define the size, color, and position of tick marks on a gadget.
Figure 17-13 shows the tick properties set for a linear gauge. Tick marks appear at
the top and inside the gauge. The first and last tick values display Min and Max
instead of numbers.

Figure 17-13 Format Gadget displaying a linear gauge and its tick properties

Table 17-6 Region properties

Property Gadget Usage

Color Linear gauge, meter, bullet Specifies the color of the region.

End Value Linear gauge, meter, bullet Specifies where the region ends.

Label Linear gauge, meter, bullet Specifies the name of the region.

Region Linear gauge, meter, bullet Chooses the region for which the
settings apply. You can also add or
remove a region from the list.

Show Labels Linear gauge Display or hide the region labels.

Start Value Linear gauge, meter, bullet Specifies where the region starts.

Chapter 17, Using bui l t - in F lash char ts and gadgets 171

Table 17-7 shows all the tick properties and lists the gadgets to which they apply.

Table 17-7 Tick properties

Property Gadget Usage

Major Tick Marks
Color

Linear gauge, meter, bullet,
cylinder, thermometer

Sets the color of major tick marks.

Major Tick Marks
Height

Linear gauge, meter, bullet,
cylinder, thermometer

Sets the height of major tick marks.

Major Tick Marks
Width

Linear gauge, meter, bullet,
cylinder, thermometer

Sets the width of major tick marks.

Maximum Label Linear gauge, meter, bullet,
cylinder, thermometer

Sets the highest tick mark value. Text
replaces the numeric value.

Minimum Label Linear gauge, meter, bullet,
cylinder, thermometer

Sets the lowest tick mark value. Text
replaces the numeric value.

Minor Tick Marks
Color

Linear gauge, meter, bullet,
cylinder, thermometer

Sets the color of minor tick marks.

Minor Tick Marks
Height

Linear gauge, meter, bullet,
cylinder, thermometer

Sets the height of minor tick marks.

Minor Tick Marks
Width

Linear gauge, meter, bullet,
cylinder, thermometer

Sets the width of minor tick marks.

Position Cylinder, thermometer Positions tick marks on the right side of the
gadget.

Position Above Linear gauge, meter, bullet Sets tick marks to appear above the gadget.

Position Below Linear gauge, meter, bullet Sets tick marks to appear below the gadget.

Position Left Cylinder, thermometer Positions tick marks on the left side of the
gadget.

Show Limits
Value

Linear gauge, meter, bullet,
cylinder, thermometer

Enables or disables the display of the first
and last values.

Show Tick Marks Linear gauge, meter, bullet,
cylinder, thermometer

Enables or disables the display of tick
marks on the gadget.

Show Tick Values Linear gauge, meter, bullet,
cylinder, thermometer

Enables or disables the display of values on
tick marks.

Ticks Inside Linear gauge, meter, bullet Sets tick marks to appear inside or outside
of the gadget.

Values Inside Linear gauge, meter, bullet Sets tick mark values to appear inside or
outside of the gadget.

172 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Threshold properties
Threshold properties define thresholds, which you use to identify meaningful
values. For example, in a linear gauge that displays a sales total, you can add a
threshold that identifies the target sales amount, as shown in Figure 17-14. By
displaying this threshold value, the gauge shows whether the actual sales total is
over or under the sales target.

Figure 17-14 also shows the threshold properties set to create the threshold. You
can specify a label, create a threshold line or a threshold zone, specify a threshold
value or range of values, and format the line and marker. You can create multiple
thresholds for a gadget.

Figure 17-14 Examining a linear gauge and its threshold properties

Chapter 17, Using bui l t - in F lash char ts and gadgets 173

Table 17-8 shows all the threshold properties and lists the gadgets to which they
apply.

Table 17-8 Threshold properties

Property Gadget Usage

Arc Inner Radius Meter Specifies the inner radius of arc for the threshold
area

Arc Outer Radius Meter Specifies the outer radius of arc for the threshold
area

Border Color Linear gauge, meter Sets the border color of the threshold marker

Color Linear gauge, meter,
sparkline

Sets the color of the threshold area on the gadget

End Value Linear gauge, meter,
sparkline

Sets the end value of the threshold zone

Label Linear gauge, meter Specifies the text to apply to the threshold

Length Bullet Specifies the length of the threshold as a percent of
gadget size

Line Style Linear gauge, meter,
sparkline

Sets the line style of the threshold

Marker Color Linear gauge, meter Sets the color of the threshold marker

Radius Linear gauge Sets the size of the threshold marker

Show as Zone Sparkline Enables or disables display of the threshold as a
zone

Show Border Meter Enables or disables display of a border around the
threshold

Show Marker Linear gauge, meter Enables or disables display of the marker on the
threshold

Show Threshold Sparkline, bullet Enables or disables display of the threshold

Show Value Meter Enables or disables display of the threshold value

Show Value
Inside

Meter Displays value inside or outside of the arc on the
gadget

Show Value on
Top

Linear gauge Enables or disables display of the threshold value

Size Meter Sets the size of the threshold marker

Start Value Linear gauge, meter,
sparkline

Sets start value of the threshold zone

Threshold Linear gauge, meter Sets which threshold the settings affect

(continues)

174 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Anchor properties
Anchor properties control the shape, size, color, and visibility of markers, or
anchors, in a sparkline gadget. Unlike other gadgets that display only one or two
data values, a sparkline gadget plots multiple values and, by default, uses
anchors to highlight the first, last, lowest, and highest values. Figure 17-15 shows
the anchor properties set for a sparkline gadget.

Figure 17-15 Examining a sparkline gadget and its anchor properties

Table 17-9 shows all the anchor properties. These properties are used only in a
sparkline gadget.

Threshold Line/
Threshold Zone

Linear gauge, meter Sets whether the threshold is a single line or a zone

Tooltip Linear gauge, meter Sets tooltip text for the marker on the threshold

Width Sparkline, bullet Sets the width of the threshold

Table 17-8 Threshold properties (continued)

Property Gadget Usage

Chapter 17, Using bui l t - in F lash char ts and gadgets 175

Plot properties
Plot properties control the appearance of elements in the data plot area of bullet
and sparkline gadgets. For a bullet gadget, you can add a border around the
gadget or a shadow below it. You can also specify whether to display the value
label and whether to display the value indicator as a line or as a dot.

For a sparkline gadget, you can specify whether to display the first, last, lowest,
or highest values, change the color and width of the data line, and add bars in the
background to represent period blocks. For example, if a sparkline displays daily
stock quotes over a month, you can show period blocks that have a length of 5 to
divide the stock values into weeks. The value of 5 assumes that each week has
five trading days.

For example, Figure 17-16 shows the preview of a sparkline gadget. The gadget
displays period bars where each period contains five values. Alternate bars
appear in color.

Figure 17-16 Format Gadget displaying a sparkline gadget

Figure 17-17 shows the plot properties specified for the plot that appears in the
sparkline gadget example shown in Figure 17-16.

Table 17-9 Anchor properties

Setting Usage

Shape Sets the shape of the anchors.

Size Sets the size of the anchor in pixels.

Visibilities Sets the visibility and color of the anchors. Open, Close,
High, and Low anchors are visible by default. To display
anchors for all the other values, select Other Anchors.

176 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 17-17 Examining the plot properties for a sparkline gadget

Table 17-10 shows all the plot properties.

Table 17-10 Plot properties

Property Gadget Usage

Border Bullet Enables or disables the border around the
gadget.

Border Color Bullet Sets the color of the border around the
gadget.

Border Width Bullet Sets the thickness of the border around the
gadget.

Line Color Sparkline Sets the color of the plot line.

Line Width Sparkline Sets the thickness of the plot line.

Period Bars Color Sparkline Sets the color of the period bars. The color
is applied to alternate bars.

Period Bars Length Sparkline Sets the number of values that each period
bar highlights.

Show as Dot Bullet Enables or disables the display of the
value indicator as a dot instead of a solid
line.

Show Close Value Sparkline Enables and disables the display of the
close value.

Show High and Low
Values

Sparkline Enables and disables the display of the
high and low values.

Show Open Value Sparkline Enables and disables the display of the
open value.

Show Period Bars Sparkline Enables and disables the display of period
bars.

Chapter 17, Using bui l t - in F lash char ts and gadgets 177

Value indicator properties
Value indicator properties control the size, color, and border of the value indicator
in a bullet gadget, as shown in Figure 17-18.

Figure 17-18 Examining a bullet gadget and its value indicator properties

Table 17-11 shows the value indicator properties. These properties are used only
in a bullet gadget.

Show Shadow Bullet Enables or disables the appearance of a
shadow below the gadget.

Show Value Label Bullet Enables or disables the display of the
value on the gadget.

Table 17-11 Value indicator properties

Property Gadget Usage

Border Color Bullet Sets the color of the border

Border Width Bullet Sets the thickness of the border

Color Bullet Sets the color of the value indicator

Show Border Bullet Enables or disables a border around the
value indicator

Width Bullet Sets the value indicator width as a percent
of the plot thickness

Table 17-10 Plot properties

Property Gadget Usage

Value indicator

178 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Tooltip properties
Tooltip properties control the visibility and appearance of tooltips in a gadget. A
tooltip displays a data value when the mouse pointer is placed over a value
marker. Figure 17-19 shows a meter gadget that displays a tooltip and the
properties set for the tooltip.

Figure 17-19 Format Gadget displaying a bullet gadget and its tooltip properties

Table 17-12 shows the tooltip properties. These properties are available to all the
gadgets.

Table 17-12 Tooltip properties

Property Usage

Show Tooltip Enables and disables the display of a tooltip

Background Sets the background color for the tooltip

Border Sets the border color for the tooltip

Chapter 17, Using bui l t - in F lash char ts and gadgets 179

Font properties
Font properties define the type, size, and color of the font used for any text in a
gadget. Table 17-13 shows the font properties. These properties are available to all
the gadgets.

Padding and margin properties
Padding and margin properties support the addition of space on all sides of a
gadget, between a title and the plot, and between a data value and the plot.
Compare the sparkline gadgets in Figure 17-20 and Figure 17-23. The gadget in
Figure 17-20 uses default values for all the padding and margin properties.

Figure 17-20 Format Gadget displaying a sparkline gadget and its default padding
and margin property settings

Table 17-13 Font properties

Property Usage

Font Specifies the name of the font

Size Specifies the font size in points

Color Specifies the color of the text

180 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The gadget in Figure 17-21 uses the margin and padding properties to add extra
space between the elements in the gadget.

Table 17-14 shows the padding and margin properties.

AddOn properties
AddOn properties support the creation of custom objects, called AddOns, to add
to a gadget. You can add rectangles, polygons, circles, arcs, lines, text, and images

Margin
Left

Padding
Title

Padding
Value

Margin
Right

Margin
Top

Margin
Bottom

Figure 17-21 Format Gadget displaying a sparkline gadget that uses padding and margin
properties to add extra space between elements

Table 17-14 Padding and margin properties

Property Gadget Usage

Padding
Title

Sparkline,
bullet

Adds space, in pixels, between the title and the
element next to it

Padding
Value

All Adds space, in pixels, between the data value and
the element next to it

Margins
Left, Right,
Top, Bottom

All Adds space, in pixels, around the entire gadget on
the left, right, top and bottom sides

Chapter 17, Using bui l t - in F lash char ts and gadgets 181

to any gadget to enhance its appearance. You can create any number of objects
and arrange objects on top of or behind one another.

Figure 17-22 shows an example of adding two rectangles with rounded corners
behind a meter gauge. To create this image, create one rectangle with a white
border, then create another rectangle that is slightly larger. Use the same fill color
for both rectangles. Place the larger rectangle behind the smaller rectangle.

Figure 17-22 AddOn objects used to enhance a meter gadget

Figure 17-23 shows the AddOns page. AddOns lists the two rectangles added to
the meter gauge. The objects are listed in z order, which is the order from front to
back.

Figure 17-23 Format Gadget displaying a meter gauge and its AddOn properties

Figure 17-24 shows the properties set for the larger rectangle. Notice that the size
of the rectangle is not fixed. Rather, the size is a percentage of the gadget’s size.
You define an AddOn’s size by specifying values for these four properties:
Start X coordinate, Start Y coordinate, End X coordinate, and End Y coordinate.
By using a relative size, AddOns adjust to the size of the gadget area.

Objects listed
in z order

182 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 17-24 Properties of an AddOn object

Table 17-15 shows the properties for creating the different types of objects that
you can add to a gadget.

Table 17-15 AddOn properties

Property Object Type Usage

Center X
coordinate

Polygon, Circle, Arc Specifies the location, as a percentage of the size
of the gadget, of the x coordinate of the object.

Center Y
Coordinate

Polygon, Circle, Arc Specifies the location, as a percentage of the size
of the gadget, of the y coordinate of the object.

Color Line, Text Specifies the color of the line.

Dash Gap Line Specifies the length of gaps between dashes, in
pixels.

Dash Length Line Specifies the length of dashes, in pixels.

Chapter 17, Using bui l t - in F lash char ts and gadgets 183

End Angle Circle, Arc Specifies the end angle of the object.

End Color Rectangle, Polygon,
Circle, Arc

Specifies the end color of the gradient fill.

End X coordinate Rectangle Specifies the location, as a percentage of the size
of the gadget, of the end x value of the object.

End Y coordinate Rectangle Specifies the location, as a percentage of the size
of the gadget, of the end y value of the object.

Font Text Specifies the font for the object. You can also select
Bold, Italic, or Underline.

Font Size Text Specifies the font size in points.

Horizontal Text Supports the selection of horizontal text
alignment within the gadget.

Inner Radius Arc Specifies the radius of the inner portion of the
object, as a percent of the size of the gadget.

Gradient Rectangle, Polygon,
Circle, Arc

Select to have a gradient type of fill. Choose a
Radial or Linear pattern.

Label Text Specifies the text that appears on the object.

Name All Specifies the name of the object. This name
appears in the list on AddOns options.

Outer Radius Arc Specifies the radius of the outer portion of the
object, as a percent of the size of the gadget.

Radius Circle Specifies the radius, as a percent of the gadget, of
the object.

Rotation Rectangle, Polygon,
Circle, Arc

Specifies the rotation angle for the fill within the
object.

Rotation Angle Polygon Specifies the rotation angle of the object.

Scale Image Image Enables or disables image scaling. Adjust the
height and width of the image by percent.

Scale This Font Text Select to alter the size of the text. Adjust the
scaling amount for width and height by percent.

Show as Dashed Line Enables or disables dashed lines.

Show Border Rectangle, Polygon,
Circle, Arc

Enables or disables the drawing of a border line
around the object. Select the color and thickness of
the border with the Color and Thickness
drop-down menus.

(continues)

Table 17-15 AddOn properties (continued)

Property Object Type Usage

184 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using animation and other visual effects
By default, every Flash chart and gadget animates the data plot, the part of the
chart or gadget that represents the data. For example, the columns in a column
chart grow vertically and horizontally, and the pie and doughnut charts rotate.

Show Round
Corners

Rectangle Enables or disables rounded corners. Type the
percent of a circle to round the corner.

Sides Polygon Specifies the number of sides on the object.

Size Polygon Specifies the size, as a percent of the gadget, of the
object.

Solid Color Rectangle, Polygon,
Circle, Arc

Select to use a solid fill color for the object. Select a
color from the associated drop-down list box.

Start Angle Circle, Arc Specifies the beginning angle of the object.

Start Color Rectangle, Polygon,
Circle, Arc

Specifies the start color of the gradient fill.

Start X coordinate Rectangle Specifies the location, as a percentage of the size
of the gadget, of the beginning x value of the
object.

Start Y coordinate Rectangle Specifies the location, as a percentage of the size
of the gadget, of the beginning y value of the
object.

TextBox
Background Color

Text Specifies the background color of the text box.

TextBox Border
Color

Text Sets the border color of the text box.

Text Wrap Text Disables or enables text wrap. Choose, by percent
of the gadget, the maximum height and width for
the wrap.

Thickness Line Specifies the thickness of the line.

Transparent Image Specifies the amount of transparency, in percent,
of the image.

URL Image Specifies the location of the image for AddOn file
types of .gif, .jpg, .png, or .swf.

Vertical Text Supports the selection of vertical text alignment
within the gadget.

Table 17-15 AddOn properties (continued)

Property Object Type Usage

Chapter 17, Using bui l t - in F lash char ts and gadgets 185

You can change the default animation and define custom animations and visual
effects. The types of visual effects you can apply are shadow, glow, bevel, blur,
and font.

When defining custom animations and visual effects, do the following:

■ Select the part of the chart or gadget to animate or to apply a visual effect.

■ Select the type or types of effects to apply and set their properties.

If a standard formatting property and an effect property are set for the same chart
or gadget part, the effect property takes precedence. For example, if the font
property and a font effect are set for the x-axis labels, the font effect is used.

Creating effects
There are two approaches to designing effects for a Flash chart or gadget. You can
create one or both of the following effects:

■ A specialized effect that applies to a single chart or gadget part

■ A general purpose effect that applies to multiple parts of a chart or gadget

The first approach is typical. For example, you might create one animation effect
that draws a chart’s x-axis labels horizontally, and a second animation effect that
draws y-axis labels vertically.

Use the second approach to apply the same animation or visual effects to more
than one chart or gadget part. For example, to apply the same font properties to
the legend title, x-axis labels, and y-axis labels, create an effect with the desired
font properties, then apply this effect to the three chart parts. Whenever you need
to change the font for these chart parts, you modify a single effect. This approach
enables you to reuse and maintain common effects easily.

How to create an effect

1 Select the part of the chart or gadget to which to apply an effect. If the selected
part supports effects, the Effects button appears.

2 Choose Effects. Effects shows the part of the chart or gadget selected for an
effect. Figure 17-25 shows an example of X-Axis Labels selected for a Flash
chart.

Figure 17-25 Effects displaying the chart part selected for an effect

Selected part

186 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

3 To apply an effect to a different part of the chart or gadget, select a different
part from the drop-down list.

4 Choose Add to create an effect.

5 In Add New Effect, type a name for the effect, then choose OK. Effect, shown
in Figure 17-26, lists the types of effects that you can apply. Animation is
selected by default.

Figure 17-26 Types of effects that can be set for Flash object

6 Choose an effect type, then choose Enable.

7 Set the properties of the selected effect type. The properties of each effect type
are described later in this chapter.

8 If desired, choose another effect type. For example, you can create an effect
that uses the glow and shadow effect types.

9 Choose OK when you finish creating the effect. Effects displays information
about the effect you created. Figure 17-27 shows an example.

Figure 17-27 A defined effect named Animate Labels

Types of effects

Properties of
the selected
effect

Chapter 17, Using bui l t - in F lash char ts and gadgets 187

My List shows an effect named Animate Labels. The check mark indicates that
the effect applies to X-Axis Labels. The symbol under Animation and Font
indicates that the Animate Labels effect uses animation and font effects.

For specific examples of creating effects, see the tutorials later in this chapter.

How to apply an effect to multiple parts in a chart or gadget

This procedure assumes that you have already created the effect.

1 Select the part of the chart or gadget to which to apply an existing effect, then
choose Effects. Alternatively, choose Effects for any part that currently appears
in the Format Chart or Format Gadget page. The point is to open the Effects
dialog.

Effects lists all the effects defined for the Flash chart or gadget.

2 In Effects, in Chart Parts (for a Flash chart) or Effect Target (for a Flash gadget),
select the item to which to apply an effect, if necessary.

3 Under My List, select the effect to apply by clicking the check box next to the
effect. Figure 17-28 shows an example of the Highlight effect selected for the
needle in a Flash gauge.

Figure 17-28 Applying an effect to a Flash object’s needle

Managing effects
A single Flash chart or gadget can use any number of effects. The Effects dialog
box, shown in Figure 17-28, shows all the effects created for a chart or gadget. In
this dialog box, aside from creating a new effect as described previously, you can
perform the following tasks:

■ See which parts of the chart or gadget have effects applied. Open the
drop-down list next to Chart Part or Effect Target. Items that have effects
applied appear in bold.

188 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ See which parts of the chart or gadget a particular effect applies to. Under My
List, hover the mouse pointer over an effect. A tooltip displays the name of the
chart or gadget part that uses the effect. For example, the following tooltip
indicates that an effect applies to a chart’s y-axis labels and title:

Target: Y-Axis Labels, Title

■ Edit an effect. Under My List, select the effect, then choose Edit.

■ Delete an effect. Under My List, select the effect, then choose Delete.

Animation effect
Using the animation effect, you can animate different parts of a chart or gadget,
including the background, title, data plot, data values, x-axis labels, y-axis labels,
and more. After selecting the object to animate, you set properties to define how
the object moves, including the direction, pattern, and duration of the animation.

For example, you can animate the data plot of a column chart so that the columns
are drawn from the left side of the chart to the right side in five seconds, with a
bouncing motion at the end. Figure 17-29 shows the properties set to create this
type of animation. The Attribute to Animate value of X coordinate specifies that
the x (horizontal) position of the plot is animated. The Start Value setting of Chart
Start X specifies that the animation starts from the left side of the chart.

Figure 17-29 Definition of an animation effect

Table 17-16 describes the animation properties.

Chapter 17, Using bui l t - in F lash char ts and gadgets 189

Table 17-17 describes the attributes of a chart part, or object, that you can animate.

Table 17-18 describes the macros that you can select for the Start Value property
described in Table 17-16. Chart refers to the entire area of the Flash chart or
gadget. Canvas refers to the plot area.

Table 17-16 Animation properties

Property Description

Attribute To
Animate

Specifies the property of the object to animate as described in
Table 17-17. Each attribute produces different movements.
Not all attributes apply to all chart objects. For example, the
rotation attribute applies only to the data plot of a pie and
doughnut chart.

Duration Specifies the duration of animation in seconds.

Start Value Specifies the start position of the animation. Either specify a
fixed pixel location or select a macro. Macros are useful for
setting a start x or y position at the start, center, or end
position of chart. Without a macro, such as Chart Center X,
you would have to experiment with many x values to find
the center of the chart. Macros are described in Table 17-18.

Type Specifies the type of animation as described in Table 17-19.
The animation type determines acceleration and
deceleration during animation. For example, a chart object
might gradually increase its speed near the beginning of an
animation, but slow down at the end of the animation.

Table 17-17 Animation attributes

Attribute Description

Horizontal Scale Animates the x (horizontal) scale of the object. For example,
for the data plot of a column chart, the columns are animated
to grow widthwise.

Rotation Animates pie and doughnut charts in a circular motion.

Transparency Specifies alpha transition, or transparency fading.

Vertical Scale Animates the y (vertical) scale of the object. For example, for
the data plot of a column chart, the columns are animated to
grow in height.

X coordinate Animates the x position of the object.

Y coordinate Animates the y position of the object.

190 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Table 17-19 describes the type of animation that you can select for the Type
property described in Table 17-16.

Table 17-18 Animation Start Value macros

Macro Description

Chart Start X The start x position of the chart, which is equal to 0

Chart Start Y The start y position of the chart, which is equal to 0

Chart Width The width of the chart

Chart Height The height of the chart

Chart End X The end x position of the chart, which is the same as the
chart width

Chart End Y The end y position of the chart, which is the same as the
chart height

Chart Center X The center x position of the chart

Chart Center Y The center y position of the chart

Canvas Start X The start x position of the canvas, which is the x coordinate
of the left side of the canvas

Canvas Start Y The start y position of the canvas, which is the y coordinate
of the top of the canvas

Canvas Width The width of the canvas

Canvas Height The height of the canvas

Canvas End X The canvas end x position, which is the x coordinate of the
right side of the canvas

Canvas End Y The canvas end y position, which is the y coordinate of the
bottom of the canvas

Canvas Center X The center x position of the canvas

Canvas Center Y The center y position of the canvas

Table 17-19 Animation types

Type Description

Bounce Adds a bouncing motion at the end of the animation. The
number of bounces relates to the duration. Longer durations
produce more bounces.

Elastic Adds an elastic motion at the end of the animation. The
range of motion is larger than that of the bounce. The
amount of elasticity is unaffected by duration.

Linear Adds a smooth movement from start to end of the animation
without any changes in speed.

Chapter 17, Using bui l t - in F lash char ts and gadgets 191

Bevel effect
Use the bevel effect to create bevels on chart and gadget objects. This effect is
typically applied to a data plot, as shown in Figure 17-30. As the figure shows, the
bevel makes the pie chart appear more three-dimensional. By setting properties,
you can control the angle, depth, and color of the bevel.

Figure 17-30 Definition of a bevel effect

Table 17-20 describes the bevel properties.

Regular Adds slower movement at the end of the animation.

Strong Adds an effect similar to regular, but the effect is more
pronounced.

Table 17-20 Bevel properties

Property Description

Angle Specifies the angle of the bevel. Values are 0 to 360 degrees.

Distance Specifies the offset distance of the bevel. Values are in pixels.

Highlight Specifies the color of the highlight portion of the bevel.

(continues)

Table 17-19 Animation types

Type Description

192 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Blur effect
Use the blur effect to blur a chart or gadget object. Figure 17-31 shows this effect
applied to the gauge of a linear gauge gadget.

Figure 17-31 Definition of a blur effect

Table 17-21 describes the blur properties.

Font effect
By default, all text in a Flash chart and gadget appear in the same font. Use the
font effect to apply different fonts to different text objects. For example, you can
use one font for the axes labels and another for the legend labels.

Table 17-22 describes the font effect properties.

Horizontal Blur Specifies the amount of horizontal blur in pixels.

Shadow Specifies the color of the shadow portion of the bevel.

Vertical Blur Specifies the amount of vertical blur in pixels.

Table 17-21 Blur properties

Property Description

Horizontal Blur Specifies the amount of horizontal blur in pixels

Vertical Blur Specifies the amount of vertical blur in pixels

Table 17-20 Bevel properties (continued)

Property Description

Chapter 17, Using bui l t - in F lash char ts and gadgets 193

Glow effect
Use the glow effect to add a glowing outline around a chart or gadget object.
Figure 17-32 shows this effect applied to the data plot of a pie chart.

Figure 17-32 Definition of a glow effect

Table 17-23 describes the glow effect properties.

Table 17-22 Font effect properties

Property Description

Background color Sets the background color for the text box

Bold Sets text to bold

Border color Creates a border around the text of specified color

Color Sets the font color

Font Sets the font family for the text

Italic Sets text to italic

Size Specifies the font size

Underline Sets text to underline

Table 17-23 Glow properties

Property Description

Color Specifies the color of the glow

Horizontal Blur Specifies the amount of horizontal blur in pixels

Vertical Blur Specifies the amount of vertical blur in pixels

194 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Shadow effect
Use the shadow effect to add a shadow to a chart or gadget object. Figure 17-33
shows this effect applied to the data plot of a pie chart.

Figure 17-33 Definition of a shadow effect

Table 17-24 describes the shadow effect properties.

Table 17-24 Shadow properties

Property Description

Angle Specifies the angle of the shadow. Valid values are from 0 to
360 degrees.

Color Specifies the color of the shadow.

Distance Specifies the offset distance for the shadow in pixels.

Horizontal Blur Specifies the amount of horizontal blur in pixels.

Vertical Blur Specifies the amount of vertical blur in pixels.

Chapter 17, Using bui l t - in F lash char ts and gadgets 195

Tutorial 1: Creating a Flash chart
This tutorial provides step-by-step instructions for building a report that uses an
animated Flash column chart to display sales by product line. You perform the
following tasks:

■ Create a new report.

■ Build a data source.

■ Build a data set.

■ Add a Flash chart to the report.

■ Select data for the Flash chart.

■ Animate the x-axis labels.

■ Animate the y-axis labels.

■ Change the animation effect of the columns.

Task 1: Create a new report
This task assumes you have already created a project for your reports.

1 Choose File➛New➛Report.

2 In Select Project, select the project in which to create the report, then choose
Next.

3 In New Report, type the following text as the file name:

ProductLineSales.rptdesign

4 Choose Finish. A blank report appears in the layout editor.

Task 2: Build a data source
In this procedure, create a data source to connect to the Classic Models sample
database.

1 Choose Data Explorer.

2 Right-click Data Sources, and choose New Data Source from the context menu.

3 Select Classic Models Inc. Sample Database from the list of data sources. Use
the default data source name, then choose Next. Connection information
about the new data source appears.

4 Choose Finish. The new data source appears under Data Sources in Data
Explorer.

196 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Task 3: Build a data set
In this procedure, build a data set to indicate what data to retrieve from the
OrderDetails and Products table.

1 In Data Explorer, right-click Data Sets, and choose New Data Set.

2 In New Data Set, in Data Set Name, type the following text:

SalesTotals

Use the default values for the other fields.

■ Data Source Selection shows the name of the data source that you created
earlier.

■ Data Set Type specifies that the data set uses a SQL SELECT query to
retrieve the data.

3 Choose Next.

4 In New Data Set—Query, type the following SQL SELECT statement to
indicate what data to retrieve:

select Products.ProductLine,
sum(OrderDetails.QuantityOrdered * OrderDetails.PriceEach) as

TotalPrice
from OrderDetails, Products
where products.productcode = orderdetails.productcode
group by products.productline
order by products.productline

This statement calculates the total sales amount for each product line.

5 Choose Finish to save the data set. Edit Data Set displays the columns
specified in the query, and provides options for editing the data set.

6 Choose Preview Results. Figure 17-34 shows the data rows that the data set
returns.

Figure 17-34 SalesTotals data set preview

Chapter 17, Using bui l t - in F lash char ts and gadgets 197

7 Choose OK.

Task 4: Add a Flash chart to the report
Use the palette to insert a Flash chart, then select a chart type.

1 Choose Palette, then drag the Flash Chart element from the palette to the
blank report design. The Flash chart builder opens and displays the Select
Chart Type page, as shown in Figure 17-35.

Figure 17-35 Flash chart builder displaying the Select Chart Type page

2 Create a column chart, using the default values for all the properties.

Task 5: Select data for the Flash chart
In this procedure, select the data to present in the chart.

1 In the Flash chart builder, choose Next to display the Select Data page.

On this page, under Select Data, Use Data From is selected by default and its
value is set to SalesTotals, the data set you created earlier. Data Preview shows
the columns and values returned by the data set.

198 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

2 In Data Preview, select the PRODUCTLINE column header and drag it to the
empty field to the right of Category (X) Series, as shown in Figure 17-36.

3 Select the TOTALPRICE column header and drag it to the empty field in Value
(Y) Series, as shown in Figure 17-36.

Figure 17-36 Specifying the data to use for the category and value series

The image in Chart Preview changes to use the specified data.

4 Before formatting the Flash chart, preview the chart.

1 Choose Finish to close the Flash chart builder.

2 In the layout editor, enlarge the Flash chart. Increase its width to seven
inches, and increase its height to three inches.

3 Run➛View Report➛In Web Viewer.

The Flash chart is animated. Columns are drawn linearly from the bottom to
the top. Figure 17-37 shows the generated chart.

Chapter 17, Using bui l t - in F lash char ts and gadgets 199

Figure 17-37 Preview of the Flash chart

5 Close the viewer.

Task 6: Animate the x-axis labels
In this procedure, animate x-axis labels to draw them linearly from left to right.

1 Double-click the Flash chart to open the Flash chart builder.

2 Choose Format Chart.

3 Choose X-Axis in Chart Area, shown in Figure 17-38. Then, choose Effects.

Figure 17-38 Select X-Axis and Effects to apply animation to x-axis labels

X-Axis

Effects

200 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

In Effects, Chart Parts displays X-Axis Labels, indicating that is the part of the
chart selected for an effect.

4 Choose Add to create an effect.

5 In Add New Effect, type the following text as the name of the effect, then
choose OK:

Animate Horizontally

In Effect—Animate Horizontally, Animation is selected by default.

6 Specify the following animation values, as shown in Figure 17-39:

■ Select Enable.

■ In Attribute to Animate, select X co-ordinate.

■ In Start Value, select Canvas Start X.

■ In Duration, type 3.

■ In Type, select Linear.

Figure 17-39 Animation values specified for the Animate Horizontally effect

7 Choose OK to save the effect.

In Effects, shown in Figure 17-40, My List shows Animate Horizontally, the
effect you just created. The check mark indicates that the effect applies to
X-Axis Labels. A symbol under Animation indicates that the effect uses
animation.

Chapter 17, Using bui l t - in F lash char ts and gadgets 201

Figure 17-40 Effects lists the Animate Horizontally effect

Task 7: Animate the y-axis labels
In this procedure, animate the y-axis labels to display them from top to bottom
with a bouncing movement.

1 In Effects, in Chart Parts, select Y-Axis Labels.

2 Choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then
choose OK:

Animate Vertically

4 Specify the following animation values:

■ Select Enable.

■ In Attribute to Animate, select Y co-ordinate.

■ In Start Value, select Chart Start Y.

■ In Duration, type 3.

■ In Type, select Bounce.

5 Choose OK to save the effect.

Task 8: Change the animation effect of the columns
As you saw earlier, the default animation for a column chart is the drawing of
columns vertically from bottom to top. In this procedure, animate the columns to
grow in both height and width.

1 In Effects, in Chart Parts, select Data Plot.

2 Choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then
choose OK:

Animate Columns

202 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

4 Specify the following animation values:

■ Select Enable.

■ In Attribute to Animate, select Horizontal Scale

■ In Start Value, select Canvas Start X.

■ In Duration, type 3.

■ In Type, select Linear.

5 Choose OK to save the effect.

In Effects, the Animate Columns effect is added to the list, as shown in
Figure 17-41.

Figure 17-41 Effects listing the three effects created

6 Close Effects, then choose Finish to close the Flash chart builder.

7 View the report in the web viewer.

Tutorial 2: Creating a Flash gadget
This tutorial provides step-by-step instructions for creating an animated Flash
gadget to display a sales grand total. This tutorial continues with the report built
in the previous tutorial, which used a Flash chart to display sales totals by
product line. The Flash gadget in this tutorial uses the data from the data set
created in the previous tutorial. If you want to skip creating the Flash chart in the
previous tutorial, set up the data required by the Flash gadget by running
through the following tasks from the previous tutorial:

■ Task 1: Create a new report

■ Task 2: Build a data source

■ Task 3: Build a data set

This tutorial covers the following tasks:

■ Add a Flash gadget to the report.

Chapter 17, Using bui l t - in F lash char ts and gadgets 203

■ Select data for the linear gauge.

■ Divide the data area into regions.

■ Add thresholds.

■ Animate the region labels.

Task 1: Add a Flash gadget to the report
1 Choose Palette, then drag the Flash Gadget element from the palette and drop

it in the report, above the Flash chart. The Flash gadget builder opens and
displays the Select Gadget Type page, as shown in Figure 17-42.

Figure 17-42 Flash gadget builder displaying the Select Gadget Type page

2 Create a linear gauge, the gadget selected by default.

Task 2: Select data for the linear gauge
In this procedure, specify the data to present in the gauge.

1 In the Flash gadget builder, choose Next to display the Select Data page.

On this page, under Select Data, Use Data From is selected by default and its
value is set to SalesTotals, the data set you created earlier. Data Preview shows
the columns and values returned by the data set.

204 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

2 In Data Preview, select the TOTALPRICE column header and drag it to the
empty field in Value Definition, as shown in Figure 17-43.

Figure 17-43 Specifying the data to use for the gauge value

The gauge in Preview changes to use the specified data. The needle shows a
value of 3.85M, which is the total for Classic Cars, the value in the first row
returned by the data set.

3 Specify that the gauge display the sum of sales across all product lines.

1 Click the down arrow button next to the sigma () symbol.

2 In Aggregate Expression, select Sum, then choose OK.

In Preview, the needle now shows a value of 9.6M.

4 Before formatting the gauge, preview the report.

1 Choose Finish to close the Flash gadget builder.

2 In the layout editor, resize the gauge. Increase its width to 7 inches, and
decrease its height to 1.5 inches.

Σ

Chapter 17, Using bui l t - in F lash char ts and gadgets 205

3 Choose Run➛View Report➛In Web Viewer. The gauge is animated. The
gauge is drawn linearly from the left to the right, and the needle moves
from the left edge of the gauge to its final position.

Task 3: Divide the data area into regions
In this procedure, divide the data area into three regions labeled Fair, Good, and
Excellent.

1 In the layout editor, double-click the gauge to open the Flash gadget builder.

2 Choose Format Gadget.

3 Choose Regions from the list of options. Figure 17-44 shows the default region
properties. There are three predefined regions: A, B, and C. A is selected by
default.

Figure 17-44 Format Gadget page displaying default region properties

4 In Properties, change the properties of region A as follows:

1 In Label, type:

Fair

2 In Start Value, use the default value 0.

3 In End Value, type 3,000,000.

206 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

4 In Color, select a red color.

5 Select B, then set its properties as follows:

1 In Label, type:

Good

2 In Start Value, type 3,000,000.

3 In End Value, type 7,500,000.

4 In Color, select a yellow color.

6 Select C, then set its properties as follows:

1 In Label, type:

Excellent

2 In Start Value, type 7,500,000.

3 In End Value, type 10,000,000.

4 In Color, select a green color.

Preview shows the data area of the gauge divided into three regions, as shown
in Figure 17-45. The regions appear in the specified colors, but the region
labels do not appear.

Figure 17-45 Gauge displaying three regions

7 Select Show Labels to display the region labels. The gauge displays Fair, Good,
and Excellent in the corresponding regions, as shown in Figure 17-46.

Figure 17-46 Gauge displaying region labels

Task 4: Add thresholds
In this procedure, add two threshold points to represent nominal and target sales
values.

1 Choose Thresholds from the list of options.

The page displays the properties for a predefined threshold, Threshold1.

Chapter 17, Using bui l t - in F lash char ts and gadgets 207

2 Change the properties of Threshold1 as follows:

1 In Properties—Label, type:

Nominal

2 In Start Value, type 2,500,000

3 In Marker, select Show Marker.

In Preview, the gauge displays a threshold line that displays the Nominal label
above the marker.

3 Create a new threshold. In the drop-down list that displays the text
Threshold1, click the down arrow button, then choose <New Threshold...>.

4 Set the properties of Threshold2 as follows:

1 In Properties—Label, type:

Target

2 In Start Value, type 8,000,000.

3 In Marker, select Show Marker.

The gauge displays the Target threshold. Figure 17-47 shows the gauge with
the two thresholds added.

Figure 17-47 Gauge displaying thresholds

Task 5: Animate the region labels
In this procedure, animate the region labels to move from the left of the gauge to
their final positions.

1 Choose Regions.

2 In Properties, Choose Effects, next to the Label property value. In Effects,
Effect Target displays Gauge Labels, indicating that is the part of the gadget
selected for an effect.

3 Choose Add to create an effect.

4 In Add New Effect, type the following text as the name of the effect, then
choose OK:

Animate Horizontally

In Effect—Animate Horizontally, Animation is selected by default.

208 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

5 Specify the following animation values, as shown in Figure 17-48:

■ Select Enable.

■ In Attribute to Animate, select X co-ordinate.

■ In Start Value, select Chart Start X.

■ In Duration, type 3.

■ In Type, select Linear.

When you finish specifying the values, Sample Preview shows the animation.

Figure 17-48 Animation values specified for the Animate Horizontally effect

6 Choose OK to save the effect.

In Effects, shown in Figure 17-49, My List shows Animate Horizontally, the
effect you just created. The check mark indicates that the effect applies to
Gauge Labels. A symbol under Animation indicates that the effect uses
animation.

Figure 17-49 Effects lists the Animate Horizontally effect

Chapter 17, Using bui l t - in F lash char ts and gadgets 209

Task 6: Animate the sales value
In this procedure, animate the sales value to move it from the top of the gauge to
its final position above the needle.

1 In Effects, in Effect Target, select Value.

2 Choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then
choose OK:

Animate Vertically

4 Specify the following animation values:

■ Select Enable.

■ In Attribute to Animate, select Y co-ordinate.

■ In Start Value, select Chart Start Y.

■ In Duration, type 2.

■ In Type, select Linear.

5 Choose OK to save the effect, then choose OK to close Effect.

6 Display the sales value above the needle.

1 In the Format Gadget page, choose General.

2 In Properties, next to Show Needle Value, select Above Needle.

Task 7: Add a glow effect to the needle
In this procedure, highlight the needle by adding a glow effect.

1 Choose Needles from the list of options, then choose Effects.

2 In Effects, choose Add to create a new effect.

3 In Add New Effect, type the following text as the name of the effect, then
choose OK:

Highlight

4 In Effect—Highlight, choose Glow.

5 Specify the following glow values:

■ Select Enable.

■ Use the default values for Horizontal Blur, Vertical Blur, and Color.

6 Choose OK to save the effect, then choose OK to close Effect.

7 Choose Finish to save the formatting changes to the gauge.

210 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

8 Preview the report in the web viewer. The gauge should look like the one in
Figure 17-50.

Figure 17-50 Preview of finished Flash gadget

Limitations
Due to certain aspects of using Flash objects with Actuate BIRT, there are
situations where the Flash object does not work as expected. Data for the Flash
object is embedded in the Flash object by default. If you create a Flash chart or
gadget that contains data exceeding 64KB, you get an error, such as “A script in
this movie is causing Adobe Flash Player to run slowly.” This error can appear in
either Actuate BIRT Designer or Actuate Interactive Viewer.

To fix this error, set the Embed Data property of the chart or gadget to false, and
rebuild the report. This property setting prevents data from being embedded in
the Flash object, and the object displays properly. To set the Embed Data property,
in the report layout, select the Flash chart or gadget, and in Property Editor, select
Advanced. Note, however, that setting a chart’s Embed Data property to false
displays the chart in an HTML report only. The chart does not appear in PDF.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 211

C h a p t e r

18
Chapter 18Using the Flash

object library
This chapter contains the following topics:

■ About the Flash object library

■ Inserting a Flash object in a report

■ Providing data to a Flash object

■ Using the Flash object library documentation

■ Tutorial 3: Creating a Flash map that gets data through the dataXML variable

■ Tutorial 4: Creating a Flash chart that gets data through the dataURL variable

■ Debugging a Flash object

212 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About the Flash object library
Actuate BIRT Designer includes a library of Flash objects developed by InfoSoft.
This third-party library provides hundreds of Flash objects organized in four
categories—charts, power charts, widgets, and maps. If the Flash chart and Flash
gadget elements, described in the previous chapter, do not provide the type of
chart or gadget that you want to use in a report, look in the Flash object library.

Unlike the Flash chart and Flash gadget elements in the palette, using a Flash
object from this library requires programming in JavaScript or Java. Knowledge
of XML is also essential.

About Flash charts
The Flash object library provides all the basic chart types—bar, column, line, pie,
and doughnut—supported by the built-in Flash chart element, as well as, an
extensive gallery of advanced charts, including combination, multi-series, scroll,
and XY plot charts.

Figure 18-1 shows examples of Flash charts that are available in the library, but
not in the Flash chart element in the palette.

About Flash gadgets
The Flash object library provides all the common gadgets—linear, meter, bullet,
cylinder, and thermometer—supported by the built-in Flash gadget element, and
many others, including funnel, pyramid, gantt, and LED gadgets. Gadgets,
commonly used in dashboard applications, are suitable for displaying KPIs (Key
Performance Indicators) and other critical data that are monitored in real time.

Figure 18-2 shows examples of Flash gadgets that are available in the library, but
not in the Flash gadget element in the palette.

Figure 18-1 Column 3D line dual Y combination chart and marimekko chart

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 213

Figure 18-2 Funnel gadget and pyramid

About Flash maps
Flash maps are vector maps suitable for displaying data by geographical
divisions, such as population distribution, electoral results, office locations,
survey results, weather patterns, and real-estate sales. The Flash object library
provides hundreds of maps, including maps of the world, continents, countries,
European regions, USA states, and so on.

Figure 18-3 shows examples of Flash maps.

Figure 18-3 US map and Europe map

214 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About Flash power charts
Flash power charts are specialized charting widgets that provide unique ways to
present data. Charts, such as the drag-node, logarithmic, radar, kagi, and
waterfall chart can be used for a wide variety of purposes, including simulations,
scientific plotting, financial analysis, and hierarchical diagrams.

Figure 18-4 shows examples of power charts.

Figure 18-4 Waterfall chart and radar chart

Flash object components
Essentially, the Flash object library is a collection of Shockwave Flash (SWF) files
that generate Flash charts, gadgets, or maps based on data and configuration
settings provided in XML format. Each Flash object used in a report comprises the
following components:

■ An SWF file, which is a ready-to-use chart, gadget, or map

■ XML data, which defines the data values and properties for rendering the
Flash chart, gadget, or map

The Flash object library provides the SWF files. You provide the XML data in the
format required by the Flash object.

Inserting a Flash object in a report
Just like the other report elements, you can insert a Flash object directly in the
report page or in any of the container elements, which is the typical case. The
location depends on various factors, including the position of the Flash object
relative to other report elements, or whether the Flash object shares data in a data
set that is used by other elements. For information about laying out a report, see
BIRT: A Field Guide.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 215

How to insert a Flash object

1 Drag the Flash Object element from the palette and drop it in the report layout.

2 In Flash Builder, specify the following information:

1 In Select content from, select Flash Object Library, as shown in Figure 18-5.

Figure 18-5 Selecting Flash Object Library

2 In Enter resource file, choose the open folder button to select a Flash file
from the library.

Browse for Flash Files displays the top-level contents of the Flash Object
Library, as shown in Figure 18-6.

Figure 18-6 Top-level contents of the Flash Object Library

3 Expand the folder that contains the type of Flash object you want, then
select the SWF file for the object. Figure 18-7 shows some of the SWF files in
the Flash Charts folder. The names of the SWF files reflect the chart types.
For example, to insert a bubble chart in the report, select Bubble.swf.

216 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 18-7 Available Flash charts

4 Choose OK.

3 Choose Finish. The Flash object appears in the report layout. Now, you must
provide data to the Flash object.

Providing data to a Flash object
All Flash objects are controlled by XML properties. You must use XML to provide
data to a Flash object and to define the visual and functional properties of a Flash
object. Unlike the Flash charts and gadgets that you create using the Flash chart
and Flash gadget elements, an object in the Flash library cannot access data
directly from a data set. After creating a data set to retrieve data from a data
source, you write code that accesses the data and converts it to the required XML
format.

Before you can write this code, you need to know what XML is required for a
given Flash object. The XML differs depending on the type of Flash object. The
following example shows a basic single-series chart and the XML that defines its
data and properties. Figure 18-8 shows a doughnut chart that displays a
company’s revenue by business division.

Figure 18-8 Doughnut chart displaying revenue by business division

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 217

Listing 18-1 shows the XML that defines the data and properties of the doughnut
chart.

Listing 18-1 Sample XML for a doughnut chart

<chart caption='Company Revenue' numberPrefix='$'
labelSepChar=':'>
<set label='Services' value='2500000'/>
<set label='Hardware' value='3280000'/>
<set label='Software' value='4550000'/>

</chart>

In a BIRT report, the values highlighted in bold are data values that are derived
from a data set. Other XML attributes and values define the appearance of the
chart. For example:

■ caption='Company Revenue' sets the title of the chart.

■ numberPrefix='$' adds the dollar symbol as a prefix to all numbers on the
chart.

■ labelSepChar=':' specifies that the colon character be used to separate the data
label and data values on the chart.

Even if you are not well-versed in XML, you quickly learn that chart data and
formatting information are defined using the attribute='value' format. Notice that
the sample XML is brief for a chart that looks presentable. Only two visual
attributes are specified. The XML does not define attributes for fonts or colors.
Every Flash object uses default values for visual attributes. You define attributes
only to change default settings, or to add items that do not appear by default.

The next example shows a multi-series chart and the XML that defines its data
and properties. Figure 18-9 shows a multi-series column chart that displays
expenses and revenue from 2005 to 2009.

Figure 18-9 Multi-series column chart displaying expenses and revenue for five
years

218 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Listing 18-2 shows the XML that defines the data and properties of the multi-
series chart.

Listing 18-2 Sample XML for a multi-series column chart

<chart caption='Expenses and Revenue' showValues='0' decimals='0'
numberPrefix='$'>
<categories>
<category label='2005' />
<category label='2006' />
<category label='2007' />
<category label='2008' />
<category label='2009' />

</categories>

<dataset seriesName='Expenses'>
<set value='38000' />
<set value='48000' />
<set value='50000' />
<set value='55000' />
<set value='57000' />

</dataset>

<dataset seriesName='Revenue'>
<set value='48000' />
<set value='53000' />
<set value='60000' />
<set value='75000' />
<set value='52000' />

</dataset>
</chart>

The values highlighted in bold are data values that are provided by a data set.
Compared to the single-series doughnut chart, the XML for defining the data for
a multi-series column chart is slightly more complex. The data for the multi-series
chart is divided into three sections, whereas the data for the single-series
doughnut chart is contained in one section.

Once you determine the XML needed to define the data and properties for a
specific Flash object, perform the following tasks:

1 Write code to generate the XML.

Use either JavaScript or Java, depending on the method you use to pass the
XML to the Flash object, described next.

2 Pass the XML to the Flash object.

There are two ways to accomplish this task. Use either the dataXML variable
or the dataURL variable to pass the XML to the Flash object.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 219

Generating the XML data
Defining the visual attributes is straightforward. Simply use the attribute='value'
format for each attribute; for example, color='8BBA00'. Defining the data,
however, requires programming to iterate through a data set and retrieve values
from each row of data.

The following examples include code snippets, which show how to accomplish
this task using JavaScript. For complete programming examples using JavaScript
and Java, review the tutorials later in this chapter.

Doughnut chart example

In the doughnut chart example shown in Figure 18-8, data is defined using the
<set> tag and the following format:

<set label='Services' value='2500000'/>

The code you write must get values from two columns, one that stores business
division values, and another that stores revenue values. Assume that the data set
providing the data values returns rows as shown in Figure 18-10.

Figure 18-10 Data rows returned by data set in doughnut chart example

The JavaScript code for getting the division and revenue values from a data set
row and creating a single <set> line would look like the following:

var setData = "<set ";
setData = setData + "label='" +

this.getRowData().getColumnValue("Division") + "'";
setData = setData + "value='" +

this.getRowData().getColumnValue("Revenue") + "'/>";

To generate all the <set> lines, add code, such as the following:

xmlData = xmlData + setData;

220 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Multi-series chart example

In the multi-series chart example shown in Figure 18-9, category data is defined
within the <categories> tag using the <category> tag in the following format:

<category label='2005' />

Value series data is defined within the <dataset> tag using the <set> tag in the
following format:

<set value='38000' />

The code you write gets values from three columns in each data set row. Assume
that the data set providing the data values returns rows as shown in Figure 18-11.

Figure 18-11 Data rows returned by data set in multi-series chart example

The JavaScript code for getting the column values from each data set row would
look like the following:

var YearData = "<category label='" +
this.getRowData().getColumnValue("Year")+ "'/>";

var ExpenseData = "<set value='" +
this.getRowData().getColumnValue("Expenses") + "'/>";

var RevenueData = "<set value='" +
this.getRowData().getColumnValue("Revenue") + "'/>";

To generate all the <category> and <set> lines, add code, such as the following:

dataPart1 = dataPart1 + YearData;
dataPart2 = dataPart2 + ExpenseData;
dataPart3 = dataPart3 + RevenueData;

Using the dataXML variable to pass XML data
Use the dataXML variable if the XML to pass to the Flash object is less than 64KB,
a limit imposed by the Flash Player. Passing the data through the dataXML
variable embeds the data in the Flash object. If the XML exceeds 64KB, the Flash
Player displays an error. When using the dataXML variable, you write JavaScript
code, as shown in the code examples in the previous section, to generate the XML.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 221

Writing this code requires a basic understanding of BIRT events and their order of
execution, as well as, BIRT elements and the functions for manipulating data.

How to use the dataXML variable to pass data to the Flash object

This procedure assumes you have already generated the data in XML format, as
described in the previous section.

1 In the report layout, select the Flash object.

2 In Property Editor, choose the Flash Variables tab.

3 In the Flash Variables page, choose Add.

4 In Add Variables, do the following:

1 In Name, type:

dataXML

2 In Expression, choose the JavaScript expression builder.

5 In the JavaScript expression builder, type an expression that passes the
complete XML to the Flash object. The following expression passes the XML
for creating the doughnut chart shown earlier in Figure 18-8:

//Get the data generated and saved in the g_dataPart global var
var g_dataPart =

reportContext.getPersistentGlobalVariable("g_dataPart");

//Build the complete XML
"<chart caption='Company Revenue' showPercentageValues='1'>" +

g_dataPart + "</chart>"

6 Choose OK to save the expression.

7 Choose OK to save the dataXML variable.

Using the dataURL variable to pass XML data
Use the dataURL variable if the XML to pass to the Flash object exceeds 64KB,
which can occur for more complex objects, such as multi-series combination
charts that require many rows of data or the definition of a large number of
attributes.

When you use the dataURL variable, the XML data is stored in a separate file
rather than embedded in the Flash object. To use this method, you write a Java
class to generate the XML file, then pass the URL of the program to the Flash
object.

Writing a Java class requires experience with the Eclipse Java development
process. The Java class must be implemented as a plug-in, which is a modular
component that provides a specific type of service within the Eclipse platform. In

222 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

fact, all the tools in Eclipse and Actuate BIRT Designer are plug-ins. For
information about developing plug-ins, see the Eclipse documentation.

How to use the dataURL variable to pass data to the Flash object

This procedure assumes you have already implemented a plug-in that generates
the XML file to pass to the Flash object.

1 In the report layout, select the Flash object.

2 In Property Editor, choose the Flash Variables tab.

3 In the Flash Variable page, choose Add.

4 In Add Variables, do the following:

1 In Name, type:

dataURL

2 In Expression, choose the JavaScript expression builder.

5 In the JavaScript expression builder, type an expression that passes the URL of
the plug-in to the Flash object. Use the createDataURL() method of the
flashContext object, as shown in the following example:

flashContext.createDataURL("ComboChartXMLFormat", true, null);

The first argument, ComboChartXMLFormat, is the format defined in the
plug-in. The second argument, true, specifies that the URL is encoded. The
third argument, null, specifies that there are no custom parameter names and
values to pass to the URL.

6 Choose OK to save the expression.

7 Choose OK to save the dataURL variable.

Using the Flash object library documentation
This chapter describes the procedures for inserting a Flash object from the library
in a report and passing data to the object. This chapter does not provide
documentation about every Flash object, the structure of each object, or the XML
elements and attributes that you use to create an object. This information,
essential for generating the required XML, is available in the InfoSoft
documentation, which is included in Actuate BIRT Designer’s online help.

To access the InfoSoft documentation, in the main menu, choose Help➛Help
Contents. In Help, expand Actuate BIRT Guide. The InfoSoft documentation is
titled Flash Object Library Reference.

This reference is organized by Flash object type, as shown in Figure 18-12.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 223

Figure 18-12 Contents of the Flash Object Library Reference

To find documentation about a particular Flash object, choose the corresponding
reference, then drill down until you find the specification for the specific Flash
object. The specification provides a complete reference to the object, including
descriptions of all the parts of the object, and all the properties that can be set to
manipulate and format the object. For example, let’s say you want to see reference
information about the 3D pie chart. First, choose Flash objects chart reference. In
the InfoSoft documentation for charts, navigate through the following topic
structure: Chart XML API—Single Series Charts—Pie 3D Chart.

Tutorial 3: Creating a Flash map that gets data
through the dataXML variable

This tutorial provides step-by-step instructions for building a report that uses a
Flash map from the Flash object library to display sales by territory. The map uses
data from the Classic Models sample database, which you convert to XML and
pass to the map through the dataXML variable.

This tutorial requires a considerable amount of code (SQL, JavaScript, and XML).
Instead of typing the code, you can copy the code from the online help.

You perform the following tasks in this tutorial:

■ Create a new report.

■ Build a data source.

■ Build a data set.

224 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ Find a suitable Flash map.

■ Review the map specifications.

■ Map the data set values to the Flash map entity values.

■ Add the Flash map to the report.

■ Generate an XML data string.

■ Create the dataXML variable and pass the data.

■ Format the Flash map.

Task 1: Create a new report
This task assumes you have already created a project for your reports.

1 Choose File➛New➛Report.

2 In Select Project, select the project in which to create the report, then choose
Next.

3 In New Report, type the following text as the file name:

SalesByTerritory.rptdesign

4 Choose Finish. A blank report appears in the layout editor.

Task 2: Build a data source
In this procedure, create a data source to connect to the Classic Models sample
database.

1 Choose Data Explorer.

2 Right-click Data Sources, and choose New Data Source from the context menu.

3 Select Classic Models Inc. Sample Database from the list of data sources. Use
the default data source name, then choose Next. Connection information
about the new data source appears.

4 Choose Finish. The new data source appears under Data Sources in Data
Explorer.

Task 3: Build a data set
In this procedure, build a data set to specify what data to retrieve and combine
from various tables in the database.

1 In Data Explorer, right-click Data Sets, and choose New Data Set.

2 In New Data Set, in Data Set Name, type the following text:

Sales By Territory

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 225

Use the default values for the other fields.

■ Data Source Selection shows the name of the data source that you created
earlier.

■ Data Set Type specifies that the data set uses a SQL SELECT query to
retrieve the data.

3 Choose Next.

4 In New Data Set —Query, type the following SQL SELECT statement to
retrieve the sales total for each territory:

SELECT CLASSICMODELS.OFFICES.TERRITORY,
SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED *
CLASSICMODELS.ORDERDETAILS.PRICEEACH) as SALES
FROM CLASSICMODELS.CUSTOMERS,
CLASSICMODELS.ORDERS,
CLASSICMODELS.ORDERDETAILS,
CLASSICMODELS.OFFICES,
CLASSICMODELS.EMPLOYEES
WHERE CLASSICMODELS.ORDERS.ORDERNUMBER =

CLASSICMODELS.ORDERDETAILS.ORDERNUMBER
AND CLASSICMODELS.CUSTOMERS.SALESREPEMPLOYEENUMBER =

CLASSICMODELS.EMPLOYEES.EMPLOYEENUMBER
AND CLASSICMODELS.EMPLOYEES.OFFICECODE =

CLASSICMODELS.OFFICES.OFFICECODE
AND CLASSICMODELS.CUSTOMERS.CUSTOMERNUMBER =

CLASSICMODELS.ORDERS.CUSTOMERNUMBER
GROUP BY CLASSICMODELS.OFFICES.TERRITORY

5 Choose Finish to save the data set. Edit Data Set displays the columns
specified in the query, and provides options for editing the data set.

6 Choose Preview Results. Figure 18-13 shows the data rows that the data set
returns.

Figure 18-13 Sales By Territory data set preview

7 Choose OK.

226 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Task 4: Find a suitable Flash map
The data set created in the previous task returns sales data for four worldwide
territories: APAC (Asia Pacific), EMEA (Europe and middle east), Japan, and NA
(North America). In this procedure, look in the Flash object library for a map
suitable for representing data in these territories.

1 In Help, expand Actuate BIRT Guide, choose Flash Object Library Reference,
then choose Flash objects maps reference.

2 Choose Map Gallery—World & Continents. This folder lists three world maps:
World Map, World Map (Countries), and World Map (8 Regions). Review each
map.

3 For this tutorial, either World Map or World Map (8 Regions) is suitable for the
data. Use World Map. The help displays the image of World Map, as shown in
Figure 18-14.

Figure 18-14 World Map available in Flash Object Library

World Map displays the names of the continents as two-letter abbreviations:
NA, SA, AF, EU, AS, and AU. The Classic Models data uses these acronyms
for the sales territories: APAC, EMEA, Japan, NA.

Task 5: Review the map specifications
Each map in the library displays different entities. An entity is the smallest item
represented in a map. For example, in a world map that shows continents, each
continent is an entity. In a continent map that shows countries, each country is an
entity. Similarly, in a country map that shows states, each state is an entity. In this
procedure, review the entities in World Map.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 227

1 In the online Help for Flash maps, choose Map Specification Sheets—World &
Continents—World Map.

2 The World Map Specification Sheet, shown in Figure 18-15, displays
information about the map, including its list of entities. Each entity has the
following properties:

■ Internal Id—The ID through which an entity is referred to in the XML data
document

■ Short Name—The abbreviated entity name, which appears on the map

■ Long Name—The full entity name, which appears as a tool tip

Figure 18-15 World Map Specification Sheet available in online help

Task 6: Map the data set values to the Flash map
entity values

To display data from the data set in the Flash map, you need to map the territory
values in the data set to the internal ID values used by World Map.

1 In Data Explorer, under Data Sets, right-click Sales By Territory, then choose
Edit.

2 In Edit Data Set, choose Computed Columns, then choose New.

3 In New Computed Column, specify the following information:

1 In Column Name, type Territory_ID.

2 In Data Type, select String.

3 In Expression, choose the JavaScript expression builder.

4 In the expression builder, type the following statement, then choose OK.

Each case statement replaces a territory value with the corresponding
internal ID used by the map.

228 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

switch(row["TERRITORY"]) {
case "EMEA":

name = "EU";
break;

case "APAC":
name = "AS";
break;

case "Japan":
name = "AS";
break;

case "NA":
name = "NA";
break;

}

5 Choose OK.

4 Choose Preview Results. The data set returns the data shown in Figure 18-16.
The Territory_ID values match Internal Id values in World Map.

Figure 18-16 Sales By Territory data set preview includes Territory_ID values

5 Choose OK.

Task 7: Add the Flash map to the report
In this procedure, add World Map from the Flash object library to the report.

1 Insert a table that consists of one column and one detail row, and bind the
table to the Sales By Territory data set.

2 Drag a Flash Object element from the palette and drop it in the table’s footer
row.

3 In Flash Builder, specify the following information:

1 In Select content from, select Flash Object Library, as shown in
Figure 18-17.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 229

Figure 18-17 Selecting Flash Object Library

2 In Enter resource file, choose the open folder button to select a Flash file
from the library.

3 In Browse for Flash Files, expand Flash Maps, and select
FCMap_World.swf. Choose OK. In Flash Builder, the path to the Flash file
appears in Enter resource file.

4 Choose Finish.

Task 8: Generate an XML data string
Data provided to any Flash object must be in the specific XML format that the
object requires. In this procedure, look at the Flash map documentation for this
information, then generate an XML data string that provides data in the required
format.

1 In the online Help for Flash maps, choose How to use FusionMaps. This topic
describes the procedure for displaying data in a map. It includes an example
of displaying population data in the world map. The following is the sample
XML:

<map borderColor='005879' fillColor='D7F4FF' numberSuffix='
Mill.' includeValueInLabels='1' labelSepChar=': '
baseFontSize='9'>

<data>
<entity id='NA' value='515' />
<entity id='SA' value='373' />
<entity id='AS' value='3875' />
<entity id='EU' value='727' />
<entity id='AF' value='885' />
<entity id='AU' value='32' />

</data>
</map>

230 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Each XML document for maps starts with the <map> element. As the example
shows, you can specify formatting attributes for the <map> element. Within
the <map> element is the <data> element. The <data> element contains
<entity> elements that define the data for each entity on the map. For
example, <entity id='NA' value='515' /> assigns the population value 515 to
the NA (North America) entity. The entity ID corresponds to the internal ID,
which you saw earlier in the Map Specification Sheet for World Map.

2 Write code to generate an XML string that provides data defined as <entity>
elements. The code needs to create the content within the <data> element. A
logical place to put this code is in the OnCreate() method for the table’s detail
row because this method executes with each retrieval of a data row from the
data set.

1 In the report layout, select the detail row of the table, choose Script, then
select OnCreate.

2 Type the following code in the script editor:

var entityLine = "<entity id='" +
this.getRowData().getColumnValue("Territory_ID") + "' "
+ "value='" + this.getRowData().getColumnValue("SALES")
+ "'/>";

dataPart = dataPart + entityLine;

reportContext.setPersistentGlobalVariable("g_dataPart",
dataPart);

The code iterates through the data rows in the data set, and builds an XML
string using the Territory_ID and SALES values. The full XML string is
stored as a persistent global variable so that it can be accessed anywhere in
the report.

3 Initialize the dataPart variable, using the following steps:

1 Return to the report layout. Select the table, choose Script, then select
OnCreate.

2 Type the following code:

dataPart="";

The table’s OnCreate() method is typical for placing start-up or initialization
code for report elements in a table.

Task 9: Create the dataXML variable and pass the
data

As described earlier in this chapter, one of the ways to pass data to a Flash object
is through the dataXML variable. In this procedure, create the dataXML variable
and assign the XML content to the variable.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 231

1 In the report layout, select the Flash object.

2 In Property Editor, choose Flash Variables, as shown in Figure 18-18.

Figure 18-18 Flash Variables tab in Property Editor

3 Choose Add.

4 In Add Variables, do the following:

1 In Name, type:

dataXML

2 In Expression, choose the JavaScript expression builder.

5 In the JavaScript expression builder, type the following expression:

var g_dataPart =
reportContext.getPersistentGlobalVariable("g_dataPart");

"<map><data>" + g_dataPart + "</data></map>"

The first statement retrieves the XML data string that you created earlier and
stored in the persistent global variable g_dataPart. The second statement
builds a bare-bones XML data document that contains only the essential
elements. This line creates the required <map> and <data> elements, and
appends the g_dataPart variable, which supplies the <entity> data. The XML
does not include any formatting attributes.

6 Choose OK.

7 Choose Preview. The previewer displays the Flash map. Move the mouse
pointer over each continent. A tooltip displays the continent’s full name and
the sales total for that continent (if sales data exists for the continent), as
shown in Figure 18-19. This Flash map uses all the default data and formatting
attributes.

232 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 18-19 Preview of the Flash map with the mouse pointer over Europe

Task 10: Format the Flash map
Now that you verified that the map displays the correct sales data for the
territories, you can focus on adding functionality and visual interest to the map.
Perform the following tasks in this section:

■ Display sales values in a more readable format.

■ Change the colors used in the map.

■ Define data ranges and apply different colors to each range.

■ Create city markers.

You specify formatting attributes by editing the XML string you typed in the
previous task.

Display sales values in a more readable format
In this procedure, format the sales value so that it displays $4.52M instead of
4,520,712.27999999. Also, specify that the sales values appear on the map in the
following format:

EU: $4.52M

1 Choose Layout to resume editing the map.

2 Select the Flash object. In Property Editor, choose Flash Variables, select the
dataXML variable, and choose Edit.

3 In Edit Variables, choose the expression builder.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 233

4 In the line that defines the XML (the line that begins with "<map>), add the
text shown in bold. You must type the entire XML string in a single line.

"<map decimals='2' formatNumberScale='1' numberPrefix='$'
includeValueInLabels='1' labelSepChar=': '><data>" +
g_dataPart + "</data></map>"

For information about these attributes, see the “XML Attributes” topic in the
Flash map help.

5 Choose Validate to verify the expression. If there are no syntax errors, choose
OK.

6 In Edit Variables, choose OK.

7 Choose Preview. The sales values appear in $4.52M format on the map and in
the tooltip.

Building the XML string in readable pieces
As you add attributes, the XML string becomes increasingly difficult to type and
read as a single line in the expression builder. This procedure shows how to build
the XML string piece by piece.

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Replace the line that
defines the XML string (the line that begins with "<map>) with the following
lines:

var str = "<map "
//Format sales numbers
str += "decimals='2' formatNumberScale='1' numberPrefix='$'"

//Display sales numbers in the map
str += "includeValueInLabels='1' labelSepChar=': '"
str += ">"

//Define data
str += "<data>" + g_dataPart + "</data>"
str += "</map>"

The str variable stores the XML string. The += operator adds each successive
piece of string to the current string. By building the XML string in pieces, you
can read, edit, delete, and add attributes easily. As the example shows, you can
also add comments about the purpose of the attributes.

3 Choose Validate to verify the syntax of the expression.

4 Preview the report to ensure that the map displays correctly. The expression
builder’s validation does not verify that the XML string contains valid content.

234 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Change the colors used in the map
In this procedure, change the fill and background colors of the map. Use Hex
codes for the color values.

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Add the following
lines before the str += ">" line:

//Colors in map
str += "fillColor='DDDDDD' bgColor='FFFFDC'"

3 Validate the expression, then preview the report.

Define data ranges and apply different colors to each range
In this procedure, categorize the sales data into the following ranges, and apply a
different color to each range:

0 - 1000000, Below target
1000001 - 4000000, Within target
4000001 - 8000000, Above target

1 Choose Layout to resume editing the map.

2 Edit the dataXML expression in the expression builder. Add the following
lines after the str += ">" line. Each str line must be a single line.

//Create data ranges
str += "<colorRange> "
str += "<color minValue='0' maxValue='1000000'

displayValue='Below target' color='CCFF99' />"
str += "<color minValue='1000001' maxValue='4000000'

displayValue='Within target' color='66CCFF' />"
str += "<color minValue='4000001' maxValue='8000000'

displayValue='Above target' color='FFDDFF' />"
str += "</colorRange>"

3 Validate the expression, then preview the report.

Create city markers
In this procedure, display markers for these cities in which there are sales offices:
New York, Paris, San Francisco, and Tokyo. To display markers, define the
properties of each marker, including a user-specified ID, its XY position, the label
to display, and the position of the label relative to the marker. You can also specify
the shape, size, and color of each marker. After defining the markers, create the
list of markers to display on the map.

1 Choose Layout to resume editing the map.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 235

2 Edit the dataXML expression in the expression builder. Add the following
lines after the data range definition, that is, after the str += "</colorRange>"
line. Each str line must be a single line.

// Define city markers
str += "<markers>"
str += " <definition>"
str += "<marker id='NYC' x='210' y='140' label='New York'

labelPos='bottom' />"
str += "<marker id='PAR' x='360' y='130' label='Paris'

labelPos='bottom' />"
str += "<marker id='TOK' x='630' y='160' label='Tokyo'

labelPos='right' />"
str += "<marker id='SFO' x='80' y='163' label='San Francisco'

labelPos='left' />"
str += "</definition>"

//Specify the shape, size, and color of the markers
str += "<shapes>"
str += "<shape id='TOKdot' type='circle' radius='3'

fillColor='ffd700' labelPadding='+1' /> "
str += "<shape id='PARdot' type='circle' radius='3'

fillColor='ffd700' labelPadding='-2' /> "
str += "<shape id='NYCdot' type='circle' radius='3'

fillColor='ffd700' labelPadding='+1' /> "
str += "<shape id='SFOdot' type='circle' radius='3'

fillColor='ffd700' labelPadding='+1' /> "
str += "</shapes>"

//Specify which markers to display
str += "<application>"
str += "<marker id='TOK' shapeId='TOKdot' />"
str += "<marker id='NYC' shapeId='NYCdot' />"
str += "<marker id='PAR' shapeId='PARdot' />"
str += "<marker id='SFO' shapeId='SFOdot' />"
str += "</application>"
str += "</markers>"

3 Validate the expression, then preview the report.

The map should look like the one shown in Figure 18-20. The territories with
sales data appear in different colors. A legend displaying the data range colors
and labels appears on the right. The map displays circular markers and labels
for San Francisco, New York, Paris, and Tokyo.

236 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 18-20 Flash map displaying all the formats you applied

This tutorial demonstrates only a few of the attributes that you can use to format
and manipulate a Flash map. For a complete list and descriptions of the
attributes, see the Flash map help.

Tutorial 4: Creating a Flash chart that gets data
through the dataURL variable

This tutorial provides step-by-step instructions for building a report that uses a
combination chart from the Flash object library to display revenue data by
country. The chart uses data from the Classic Models sample database, which you
convert to XML and pass to the chart through the dataURL variable.

As described earlier, using the dataURL variable to pass data requires Java
programming and plug-in development experience. Although this tutorial
provides detailed procedures accompanied by screen illustrations and conceptual
explanations, Java programming experience is essential in the event basic
troubleshooting is required or your Eclipse environment does not match exactly
the environment shown in this tutorial.

You perform the following tasks in this tutorial:

■ Create a new report.

■ Build a data source.

■ Build a data set.

■ Add a Flash chart to the report.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 237

■ Create a plug-in.

■ Define an extension.

■ Create a Java class.

■ Implement methods in the class.

■ Deploy the plug-in.

■ Create the dataURL variable.

Task 1: Create a new report
1 Choose File➛New➛Report.

2 In Select Project, select a project in which to create the report. Choose Next.

3 In New Report, type the following text as the file name:

RevenueByCountry.rptdesign

4 Choose Finish. A blank report appears in the layout editor.

Task 2: Build a data source
In this procedure, create a data source to connect to the Classic Models sample
database.

1 Choose Data Explorer.

2 Right-click Data Sources, and choose New Data Source from the context menu.

3 Select Classic Models Inc. Sample Database from the list of data sources. Use
the default data source name, then choose Next. Connection information
about the new data source appears.

4 Choose Finish. The new data source appears under Data Sources in Data
Explorer.

Task 3: Build a data set
In this procedure, build a data set to indicate what data to retrieve from various
tables in the database.

1 In Data Explorer, right-click Data Sets, and choose New Data Set.

2 In New Data Set, in Data Set Name, type the following text:

Revenue

Use the default values for the other fields.

■ Data Source Selection shows the name of the data source that you created
earlier.

238 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ Data Set Type specifies that the data set uses a SQL SELECT query to
retrieve the data.

3 Choose Next.

4 In New Data Set—Query, type the following SQL SELECT statement to
retrieve the revenue and total of items sold for each country:

SELECT CLASSICMODELS.CUSTOMERS.COUNTRY,
SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED *

CLASSICMODELS.ORDERDETAILS.PRICEEACH) as SALES,
SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED) as QUANTITY
FROM CLASSICMODELS.CUSTOMERS,
CLASSICMODELS.ORDERS,
CLASSICMODELS.ORDERDETAILS
WHERE CLASSICMODELS.CUSTOMERS.CUSTOMERNUMBER =

CLASSICMODELS.ORDERS.CUSTOMERNUMBER
AND CLASSICMODELS.ORDERS.ORDERNUMBER =

CLASSICMODELS.ORDERDETAILS.ORDERNUMBER
GROUP BY CLASSICMODELS.CUSTOMERS.COUNTRY
HAVING SUM(CLASSICMODELS.ORDERDETAILS.QUANTITYORDERED *

CLASSICMODELS.ORDERDETAILS.PRICEEACH) > 200000
ORDER BY 2 DESC

5 Choose Finish to save the data set. Edit Data Set displays the columns
specified in the query, and provides options for editing the data set.

6 Choose Preview Results. Figure 18-21 shows the data rows that the data set
returns.

Figure 18-21 Revenue data set preview

7 Choose OK.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 239

Task 4: Add a Flash chart to the report
In this procedure, add the 2D dual-Y combination chart from the Flash object
library to the report.

1 Drag a Flash Object element from the palette and drop it in the report layout.

2 In Flash Builder, specify the following information:

1 In Select content from, select Flash Object Library.

2 In Enter resource file, choose the open folder button to select a Flash file
from the library.

3 In Browse for Flash Files, expand Flash Charts, and select
MSCombiDY2D.swf, as shown in Figure 18-22.

Figure 18-22 Selecting a Flash chart from the Flash Object Library

4 Choose OK. In Flash Builder, the path to the Flash file appears in Enter
resource file.

3 Choose Finish.

4 Bind the Flash object to the Revenue data set.

1 While the Flash object is selected, in Property Editor, choose the Binding
tab.

2 In the Binding page, in Data Set, select Revenue.

The Flash object has access to data in the selected data set.

240 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Task 5: Create a plug-in
Data provided to any Flash object must be in the specific XML format that the
object requires. To use the dataURL variable to pass data to the Flash object, you
create a Java class to generate an XML document, and deploy the class as a plug-
in. In this procedure, you create the plug-in using the Eclipse Plug-in
Development Environment (PDE).

1 In the main menu, choose Window➛Open Perspective➛Other.

2 In Open Perspective, choose Plug-in Development, as shown in Figure 18-23.

Figure 18-23 Selecting the Plug-in Development perspective

Choose OK. The Plug-in Development perspective displays the views and
tools for creating and managing plug-ins.

3 Choose File➛New➛Project.

4 In New Project, expand Plug-in Development, and select Plug-in Project, as
shown in Figure 18-24.

Figure 18-24 Selecting Plug-in Project

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 241

Choose Next.

5 In New Plug-in Project, specify the following project information:

1 In Project Name, type:

com.actuate.birt.flash.library.sample.CombinationChart

This name follows the naming convention used by Actuate BIRT plug-ins.

2 In Target Platform, select the following option:

OSGi framework: Equinox

OSGi is a framework specification for developing and deploying modular
Java applications. Equinox is an Eclipse project that implements the OSGi
framework and is the plug-in technology used by Eclipse and BIRT.

3 Use the default values for the other properties. Figure 18-25 shows the
information specified for the plug-in project.

Figure 18-25 Properties of the plug-in project

Choose Next.

6 In New Plug-in Project—Content, specify the information for generating the
plug-in.

242 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

1 In Properties, use all the default values.

❏ ID identifies the plug-in. By default, the value you specified as the
project name in the previous step is used as the ID value.

❏ Version is the version number to assign to this plug-in.

❏ Name is the plug-in’s display name, which appears in general
descriptions about the plug-in.

❏ Provider is the name of the plug-in contributor.

❏ Execution Environment specifies the JRE (Java run-time environment)
to use.

2 In Options, uncheck the first option, Generate an activator, a Java class that
controls the plug-in’s life cycle.

Figure 18-26 shows the information for generating the plug-in.

Figure 18-26 Information for generating the plug-in

Choose Finish.

Eclipse creates the plug-in. The Plug-in editor displays an Overview page, as
shown in Figure 18-27. This page shows the properties of the plug-in and
provides links to pages about developing, testing, and deploying a plug-in.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 243

Figure 18-27 Plug-in editor displaying overview information

Task 6: Define an extension
In this procedure, define an extension that customizes the data extraction
functionality provided by the org.eclipse.birt.report.engine.dataextraction plug-
in. This plug-in defines an extension point, which your plug-in uses to define a
custom extension to retrieve data from the data set and generate the XML data
required by the Flash chart.

1 In the Plug-in editor, choose the Extensions tab. If an Extension tab is not
available, do the following:

1 In the Overview page, in the Extension/Extension Point Content section,
choose the Extensions link.

2 In the message that appears, choose Yes.

2 In the Extensions page, choose Add.

3 In New Extension, perform the following steps:

1 Deselect Show only extension points from the required plug-ins.

244 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

2 Select org.eclipse.birt.report.engine.dataExtraction from the list of
extension points, as shown in Figure 18-28.

Figure 18-28 Selecting an extension point

Choose Finish. A message asks if you want to add a dependency to the
org.eclipse.birt.report.engine plug-in. Choose Yes. The Extensions page
displays the new extension to the plug-in.

4 In Extension Element Details, edit the extension properties using the values
shown in Table 18-1.

Table 18-1 Extension properties

Property Value Description

id com.actuate.birt.flash.library.sample
.combchart.XMLGenerator

The extension identifier.

format CombChartXMLFormat The supported format of this data
extraction extension. Later, when you
create the Flash chart’s dataURL variable,
you pass the format value as an argument
to the createDataURL() method.

class com.actuate.birt.flash.library.sample
.combchart.XMLGenerator

The Java class that implements the
IDataExtractionExtension interface. You
create this class later.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 245

Figure 18-29 shows the specified properties in the Extensions page.

Figure 18-29 Properties of the extension

5 Save the plug-in. Package Explorer displays the folder structure of the plug-in,
as shown in Figure 18-30.

Figure 18-30 Package Explorer displaying the folder structure of the plug-in

Task 7: Create a Java class
In this procedure, create a Java class that contains the code to generate the XML
data required by the Flash chart. This class implements the data extraction
interface, IDataExtractionExtension.

mimeType text/xml Mime type of the file generated by the
extension.

name Combination Chart XML Format The name of the extension. This name
appears in the user interface.

isHidden true Specifies whether format is shown in the
user interface.

Table 18-1 Extension properties

Property Value Description

246 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

1 In Package Explorer, right-click the src folder, then choose New➛Class.

2 In New Java Class, specify the following information:

1 In Package, type:

com.actuate.birt.flash.library.sample.combchart

2 In Name, type:

XMLGenerator

3 In Interfaces, choose Add to add the data extraction interface.

4 In Implemented Interfaces Selection, select IDataExtractionExtension. If the
dialog box does not display any interfaces, do the following:

❏ Under Choose interfaces, type:

IDataE

Matching items lists the interfaces that begin with IDataE.

❏ Select IDataExtractionExtension.

❏ Choose OK.

5 Use the default values for the other options. Figure 18-31 shows the
properties for the class.

Figure 18-31 Properties for the class

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 247

6 Choose Finish. In Package Explorer, the class, XMLGenerator.java, appears
in the plug-in’s src folder. The content of XMLGenerator.java appears in the
editor, as shown in Figure 18-32.

Figure 18-32 Code template for XMLGenerator.java

Task 8: Implement methods in the class
When you create a Java class using the wizard, Eclipse generates a code template,
as shown in Figure 18-32. As the class declaration shows, the XMLGenerator class
implements the IDataExtractionExtension interface. The interface defines three
methods, which your class must implement. Perform the following tasks in this
section:

■ Import the required packages.

■ Implement the initialize() method.

■ Implement the output() method.

■ Implement the release() method.

Import the required packages
The code template contains import statements to include the packages that
contain the classes your code needs. Verify that the code contains the following
import statements. If any are missing, add them.

248 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

import java.io.IOException;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;

import org.eclipse.birt.core.exception.BirtException;
import org.eclipse.birt.report.engine.api.IDataExtractionOption;
import org.eclipse.birt.report.engine.api.IDataIterator;
import org.eclipse.birt.report.engine.api.IExtractionResults;
import org.eclipse.birt.report.engine.api.script.IReportContext;
import org.eclipse.birt.report.engine.extension.

IDataExtractionExtension;

Implement the initialize() method
The initialize() method is the first method that the BIRT report engine calls before
rendering the Flash object. Use this method to initialize resources.

1 Add the following line after the class declaration line (the line that begins with
public class XMLGenerator):

private IDataExtractionOption option;

This statement declares a private variable, option, of type
IDataExtractionOption. The initialize() method takes an input argument of
this type.

2 Add the following line after the initialize() method declaration:

this.option = arg1;

This statement assigns the option variable to the input argument arg1.

Listing 18-3 shows the edited code in the class definition and initialize()
method.

Listing 18-3 Class definition and initialize() method implementation

public class XMLGenerator implements IDataExtractionExtension {

private IDataExtractionOption option;

public void initialize(IReportContext arg0,
IDataExtractionOption arg1)

throws BirtException {
this.option = arg1;

}

Implement the output() method
The output() method is where you write the code to build the XML data to pass
to the Flash chart. Listing 18-4 shows the code to write to replace the output()
code stub. Some of the XML strings that define chart attributes are long. You must
type each string in a single line. Each string ends with a semicolon (;).

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 249

You can copy the code from the online help topic with the same title as this
section title. In the Actuate BIRT Guide online help, choose Using the Flash object
library—Tutorial 4: Creating a Flash chart that gets data through the data URL
variable—Implement methods in the class.

Read the comments embedded in the code to understand what each section of
code does. For information about the XML elements and attributes used to build
the XML data, see the sample XML for the 2D dual-Y combination chart. In the
online help for Flash charts, choose Chart XML API—Combination Charts—2D
Dual Y Combination.

Listing 18-4 output() method implementation

public void output(IExtractionResults results) throws
BirtException {
//Get the handle of the OutputStream defined in the
//IDataExtractionOption option interface
OutputStream stream = option.getOutputStream();

//If the stream is not null, define three string buffers.
//The xml buffer is used to build the full XML.
//The xmlSales and xmlQty buffers store the data for the
//Revenue and Quantity series.
if (stream != null)
{

StringBuffer xml = new StringBuffer();
StringBuffer xmlSales = new StringBuffer();
StringBuffer xmlQty = new StringBuffer();

//Start building the XML. This part defines chart attributes.
//Type this XML string in a single line.

xml.append("<chart caption='Revenue by Country'
PYAxisName='Revenue' SYAxisName='Quantity'
numVisiblePlot='8' showValues='0' numberPrefix='$'
useRoundEdges='1' labelDisplay='ROTATE' >");

//If results is not null, iterate through the data set rows.
//Add the values to the data series. Add the data and
//additional formatting attributes to the XML.
//Type each appended XML string in a single line.
if (results != null)
{

IDataIterator itr = results.nextResultIterator();
xml.append("<categories >");
xmlSales.append("<dataset seriesName='Revenue' >");
xmlQty.append("<dataset seriesName='Quantity'

parentYAxis='S' >");

250 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

while (itr.next())
{

String country =
String.valueOf(itr.getValue("COUNTRY"));

String sales = String.valueOf(itr.getValue("SALES"));
String qty = String.valueOf(itr.getValue("QUANTITY"));
xml.append("<category label='"+ country + "' />");
xmlSales.append("<set value='"+ sales + "' />");
xmlQty.append("<set value='"+ qty + "' />");

}
xmlSales.append("</dataset>");
xmlQty.append("</dataset>");
xml.append("</categories>");
xml.append(xmlQty);
xml.append(xmlSales);
xml.append("<trendlines>");
xml.append(" <line startValue='400000' color='91C728'

displayValue='Target' showOnTop='1'/> ");
xml.append("</trendlines>");
xml.append("<styles> ");
xml.append("<definition> <style name='CanvasAnim'

type='animation' param='_xScale' start='0'
duration='1' /> </definition> ");

xml.append(" <application> <apply toObject='Canvas'
styles='CanvasAnim' /> </application> ");

xml.append("</styles>");
xml.append("</chart>");

//Write the buffer to the output stream.
//Use the try/catch blocks to catch exceptions.
try
{

stream.write(xml.toString().getBytes("UTF-8"));
stream.flush();

}
catch (UnsupportedEncodingException e)
{

e.printStackTrace();
}
catch (IOException e)
{

e.printStackTrace();
}

}
}

}

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 251

Implement the release() method
Use the release() method to clean up allocated resources.

1 Add the following line after the release() method declaration:

this.option = null;

This statement releases the handle to the output stream.

2 Save your changes to XMLGenerator.java. You have finished implementing
the class and the plug-in.

Task 9: Deploy the plug-in
In this procedure, deploy the plug-in using Eclipse’s Export utility. This utility
creates a plug-in JAR file and copies it to a specified folder.

1 From the main menu, choose File➛Export.

2 In Export, expand Plug-in Development, and select Deployable plug-ins and
fragments, as shown in Figure 18-33.

Figure 18-33 Selecting Deployable plug-ins and fragments

3 Choose Next. In Export, Available Plug-ins and Fragments displays the
plug-in you created.

252 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

4 Select com.actuate.birt.flash.library.sample.CombinationChart.

5 In Destination—Directory, type the following path, if necessary.

For Windows 7:

C:\Program Files (x86)\Actuate11\MyClasses\eclipse

For Windows XP:

C:\Program Files\Actuate11\MyClasses\eclipse

All custom plug-ins that Actuate BIRT Designer uses must be placed in this
folder.

6 Choose Finish.

7 Restart Actuate BIRT Designer. This step is required for the new plug-in to
take effect.

Task 10: Create the dataURL variable
In this procedure, create the dataURL variable to pass the XML data generated by
the plug-in to the Flash chart.

1 Open the report design perspective by choosing Report Design in the toolbar.

2 Choose RevenueByCountry.rptdesign, the report you created earlier in this
tutorial.

3 In the report layout, select the Flash object.

4 In Property Editor, choose the Flash Variables tab.

5 In Flash Variables, choose Add.

6 In Add Variables, do the following:

1 In Name, type:

dataURL

2 In Expression, choose the JavaScript expression builder.

7 In the JavaScript expression builder, type the following expression:

flashContext.createDataURL("CombChartXMLFormat", true, null);

The first argument, CombChartXMLFormat, is the format specified in the
extension properties of the plug-in. The second argument, true, specifies that
the URL is encoded. The third argument, null, specifies that there are no
custom parameter names and values to pass to the URL.

8 Choose OK.

9 Preview the report. The Flash chart should look like the one shown in
Figure 18-34. The chart has two y axes. The left axis displays revenue values

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 253

and the right axis displays quantity values. The column chart presents revenue
data and the line chart presents quantity data.

Figure 18-34 Preview of Flash chart

Debugging a Flash object
Because using a Flash object from the Flash object library requires programming
and typing XML content, implementation errors are common. To troubleshoot
errors, use the following debugging tools:

■ The JavaScript debugger in Actuate BIRT Designer. Use this tool to debug the
JavaScript code you write when using the dataXML variable to pass data to
the Flash object.

■ The Eclipse debugger. Use this tool to debug the entire report and the Java
classes that the report uses. This tool is useful for debugging the Java class you
write when using the dataURL variable to pass data to the Flash object.

■ The debug mode provided by Flash objects. Use this method to see the
processing that occurs in the Flash object.

Information about using the JavaScript debugger and the Eclipse debugger is
provided in the Eclipse Series book, Integrating and Extending BIRT. This section
provides instructions for using the debug mode in Flash objects.

Using the Flash object’s debug mode
The debug mode provides a description and status of the Flash object. When you
run a report in debug mode and there are errors generating the Flash object, the
debugger lists the errors. If the Flash object runs without errors, the debugger
shows the XML used to create the Flash object. Figure 18-35 shows an example of
the type of information displayed by the debugger.

254 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 18-35 Information displayed by the Flash object debugger

How to enable debug mode

1 In the report layout, select the Flash object to debug.

2 In Property Editor, choose Flash Variables, then choose Add.

3 In Add Variables, specify the following information, then choose OK:

1 In Name, type:

debugMode

2 In Expression, type:

1

4 Preview the report. A debug window opens on top of the Flash object, as
shown in Figure 18-35. To hide the debug window, click it while pressing
Shift+D. Use the same keystrokes to redisplay the debug window.

How to disable debug mode

Edit the debugMode variable. Set Expression to 0.

Resolving errors
For information about the types of errors, their typical causes, and ways to
resolve them, see the Debugging topics in the InfoSoft online documentation.

C h a p t e r 1 8 , U s i n g t h e F l a s h o b j e c t l i b r a r y 255

Figure 18-36 shows a portion of the “Basic Troubleshooting” topic under
“Debugging Your Maps.”

Figure 18-36 Troubleshooting topic in the InfoSoft online documentation

256 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 257

C h a p t e r

19
Chapter 19Writing expressions using

EasyScript
This chapter contains the following topics:

■ About EasyScript

■ Using the EasyScript expression builder

■ Changing the default expression syntax

■ Functions

■ Operators

258 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About EasyScript
EasyScript is an expression syntax similar to the syntax used in Excel formulas.
Like Excel, EasyScript provides functions for performing calculations on report
data. In Actuate BIRT Designer, EasyScript is supported in most places an
expression is required. For example, when specifying an expression for a
computed column, a column binding, a filter condition, or a map rule, you can
use either JavaScript or EasyScript.

Choosing between EasyScript and JavaScript
You can use both JavaScript and EasyScript expressions in a report. For simple
expressions or common calculations, the choice is often based on syntax
familiarity or simplicity. Users who work with Excel functions will find
EasyScript syntax familiar and easy to use.

The following example is an EasyScript expression that rounds values in a Price
field to the nearest integer:

ROUND([Price])

The following example is the equivalent JavaScript expression:

Math.round(row["Price"])

Both expressions are straightforward, although one could argue that the
EasyScript syntax is simpler. Now, compare the expressions used to round the
Price values to 2 decimal places. In the following expressions, the first shows
EasyScript syntax, and the second shows JavaScript syntax:

ROUND([Price], 2)
Math.round(row["Price"]*100)/100

In this case, the EasyScript syntax is clearly simpler and more intuitive. The
EasyScript ROUND() function provides a second argument that lets you specify
the number of decimal places to which to round the number. The JavaScript
round() function does not, and, therefore, requires additional mathematical
operations.

If a report needs complex calculations that require lines of code or calculations
that cannot be done with EasyScript, use JavaScript. For information about
writing JavaScript expressions, see BIRT: A Field Guide.

Syntax rules
When writing an EasyScript expression, observe the following rules:

■ Enclose field names within square brackets ([]), for example, [CustomerID].

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 259

■ Field names and function names are case-sensitive. All function names are
uppercase.

■ When creating an expression that contains a literal date, always type the date
according to the conventions of the US English locale. For example, if working
in the French locale, type 07/10/2010 to represent July 10, 2010. Do not type
10/07/2010, which is the convention for dates in the French locale. The
following expression, which calculates the number of days from the current
date to Christmas, includes a literal date:

DIFF_DAY(TODAY(), "12/25/10")

■ When creating an expression that contains a literal number, always type the
number according to the conventions of the US English locale. Use a period (.),
not a comma (,) as the decimal separator.

Using the EasyScript expression builder
When specifying an expression, the JavaScript syntax is the default. Figure 19-1
shows the icon that represents JavaScript syntax. Clicking on this icon opens the
JavaScript expression builder.

Figure 19-1 An expression property set to use a JavaScript expression

To switch to EasyScript syntax, click the arrow button next to the JavaScript
syntax icon and choose EasyScript Syntax, as shown in Figure 19-2.

Figure 19-2 Switching to EasyScript

This action opens the EasyScript expression builder, shown in Figure 19-3.

Icon representing JavaScript
syntax

260 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 19-3 EasyScript expression builder

Like the JavaScript expression builder, the EasyScript expression builder provides
help selecting functions and fields to use in an expression. To use a function in an
expression, type the first letter of the function, then select a function from the list
that appears. To use a field, type the left square bracket ([), then select a field from
the list.

When you finish creating an expression, choose Validate to verify the expression.

Changing the default expression syntax
If you consistently use EasyScript or use it more than JavaScript, you can change
the Default Syntax property in Preferences to EasyScript syntax. To access this
property, select Window➛Preferences, and choose Report Design—Expression
Syntax. After changing the default syntax, the EasyScript syntax icon appears by
default every time you create a new expression.

The Default Syntax property does not convert existing JavaScript expressions to
EasyScript expressions, and vice versa. To change the syntax of an expression,
you must select the syntax type and edit the expression accordingly.

Functions
This section is a complete reference to all of the EasyScript functions in Actuate
BIRT Designer. This reference organizes the functions alphabetically. Each

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 261

ABS()

function entry includes a general description of the function, its syntax, the
arguments to the function, the result the function returns, and an example that
shows typical usage.

ABS()
Returns the absolute value of a number without regard to its sign. For example, 6
is the absolute value of 6 and -6.

Syntax ABS(number)

Argument number
The number for which you want to find the absolute value.

Returns An integer that represents the absolute value of a specified number.

Example The following example returns the absolute value for each number in the
TemperatureCelsius field:

ABS([TemperatureCelsius])

ADD_DAY()
Adds a specified number of days to a date value.

Syntax ADD_DAY(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of days to add to the start date. If you specify a negative number, the
result is as if the number is subtracted from the start date.

Returns The date value that results from adding the specified number of days to the start
date.

Example The following example adds 15 days to each date value in the InvoiceDate field:

ADD_DAY([InvoiceDate], 15)

ADD_HOUR()
Adds a specified number of hours to a date value.

Syntax ADD_HOUR(date, n)

262 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

ADD_MINUTE()

Arguments date
The date or date expression that represents the start date. If a start date does not
have a time value, the function assumes the time is midnight, 12:00 AM.

n
The number of hours to add to the start date. If you specify a negative number,
the result is as if the number is subtracted from the start date.

Returns The date-and-time value that results from adding the specified number of hours
to the start date.

Example The following example adds eight hours to each date value in the ShipDate field:

ADD_HOUR([ShipDate], 8)

ADD_MINUTE()
Adds a specified number of minutes to a date value.

Syntax ADD_MINUTE(date, n)

Arguments date
The date or date expression that represents the start date. If a start date does not
have a time value, the function assumes the time is midnight, 12:00 AM.

n
The number of minutes to add to the start date. If you specify a negative number,
the result is as if the number is subtracted from the start date.

Returns The date-and-time value that results from adding the specified number of
minutes to the start date.

Example The following example subtracts 30 minutes from each date in the StartTime field:

ADD_MINUTE([StartTime], -30)

ADD_MONTH()
Adds a specified number of months to a date value.

Syntax ADD_MONTH(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of months to add to the start date. If you specify a negative number,
the result is as if the number is subtracted from the start date.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 263

ADD_QUARTER()

Returns The date value that results from adding the specified number of months to the
start date. This function always returns a valid date. If necessary, the day part of
the resulting date is adjusted downward to the last day of the resulting month in
the resulting year. For example, if you add one month to 1/31/08,
ADD_MONTH() returns 2/29/08, not 2/31/08 or 2/28/08, because 2008 is a
leap year.

Example The following example adds two months to each date value in the InitialRelease
field:

ADD_MONTH([InitialRelease], 2)

ADD_QUARTER()
Adds a specified number of quarters to a date value.

Syntax ADD_QUARTER(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of quarters to add to the start date. If you specify a negative number,
the result is the number subtracted from the start date.

Returns The date value that results from adding the specified number of quarters to the
start date. A quarter is equal to three months. For example, if you add two
quarters to 9/22/08, ADD_QUARTER() returns 3/22/09.

Example The following example adds two quarters to each date value in the
ForecastClosing field:

ADD_QUARTER([ForecastClosing], 2)

ADD_SECOND()
Adds a specified number of seconds to a date value.

Syntax ADD_SECOND(date, n)

Arguments date
The date or date expression that represents the start date. If a start date does not
have a time value, the function assumes the time is midnight, 12:00 AM.

n
The number of seconds to add to the start date. If you specify a negative number,
the result is as if the number is subtracted from the start date.

264 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

ADD_WEEK()

Returns The date-and-time value that results from adding the specified number of
seconds to the start date.

Example The following example adds 30 seconds to each date value in the StartTime field:

ADD_SECOND([StartTime], 30)

ADD_WEEK()
Adds a specified number of weeks to a date value.

Syntax ADD_WEEK(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of weeks to add to the start date. If you specify a negative number,
the result is as if the number is subtracted from the start date.

Returns The date value that results from adding the number of weeks to the start date.

Example The following example adds two weeks to each date value in the OrderDate field:

ADD_WEEK([OrderDate], 2)

ADD_YEAR()
Adds a specified number of years to a date value.

Syntax ADD_YEAR(date, n)

Arguments date
The date or date expression that represents the start date.

n
The number of years to add to the start date. If you specify a negative number, the
result is as if the number is subtracted from the start date.

Returns The date value that results from adding the number of years to the start date.

Example The following example adds five years to each date value in the HireDate field:

ADD_YEAR([HireDate], 5)

BETWEEN()
Tests if a value is between two specified values.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 265

CEILING()

Syntax BETWEEN(source, target1, target2)

Arguments source
The value to test. The value can be a string, numeric, or date value.

target1
The first value in the range of values to compare to. String and date values must
be enclosed in double quotation marks (" ").

target2
The second value in the range of values to compare to. String and date values
must be enclosed in double quotation marks (" ").

Returns True if source is between target1 and target2, or equal to target1 or target2; returns
false otherwise.

Examples The following example tests each value in the SalesTotal field to see if the value is
between 10000 and 20000:

BETWEEN([SalesTotal], 10000, 20000)

The following example tests each value in the CustomerName field to see if the
value is between A and M:

BETWEEN([CustomerName], "A", "M")

The following example tests each value in the ReceiptDate field to see if the value
is between 10/01/07 and 12/31/07:

BETWEEN([ReceiptDate], "10/01/07", "12/31/07")

The following example uses BETWEEN() in conjunction with the IF() and
ADD_DAY() functions to calculate a shipment date. If an orderDate value is in
December 2007 (between 12/1/07 and 12/31/07), add five days to the orderDate
value. If an orderDate value is in a month other than December, add three days to
the orderDate value.

IF(BETWEEN([orderDate], "12/01/07", "12/31/07"),
ADD_DAY([orderDate], 5), ADD_DAY([orderDate], 3))

CEILING()
Rounds a number up to the nearest specified multiple.

Syntax CEILING(number, significance)

Arguments number
The number to round up.

significance
The multiple to round number to.

266 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

DAY()

Returns The number that results from the rounding. If the specified number value is an
exact multiple of significance, no rounding occurs.

Examples CEILING() is commonly used to round up prices. For example, to avoid dealing
with pennies, you can round prices in a Price field up to the nearest nickel with
the following expression:

CEILING([Price], 0.05)

If the Price value is 20.52, CEILING() returns 20.55.

The following example rounds prices up to the nearest dime:

CEILING([Price], 0.1)

If the Price value is 20.52, CEILING() returns 20.60. If the Price value is 20.50,
CEILING() returns 20.50. No rounding occurs because 20.50 is already a multiple
of 0.1.

The following example rounds prices up to the nearest dollar:

CEILING([Price], 1)

If the Price value is 20.30, CEILING() returns 21.0.

DAY()
Returns a number from 1 to 31 that represents the day of the month.

Syntax DAY(date)

Argument date
The date or date expression from which you want to extract the day.

Returns The number of the day of the month for the specified date value.

Example The following example gets the number of the day for each date value in the
ShipDate field:

DAY([ShipDate])

DIFF_DAY()
Calculates the number of days between two date values.

Syntax DIFF_DAY(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 267

DIFF_HOUR()

Returns The number of days between date1 and date2. If date1 is earlier than date2, the
result is a positive number; otherwise the result is a negative number.

Example The following example calculates the time it takes to pay invoices by computing
the number of days between each value in the invoiceDate field and each value in
the paymentDate field:

DIFF_DAY([invoiceDate],[paymentDate])

The following example calculates the number of days from an order date to
Christmas:

DIFF_DAY([orderDate], "12/25/10")

The following example calculates the number of days from the current date to
Christmas. TODAY() is a function that returns the current date.

DIFF_DAY(TODAY(), "12/25/10")

DIFF_HOUR()
Calculates the number of hours between two date values.

Syntax DIFF_HOUR(date1, date2)

Arguments date1
The first date or date expression to use in the calculation. If the date does not have
a time value, the function assumes the time is midnight, 12:00 AM.

date2
The second date or date expression to use in the calculation. If the date does not
have a time value, the function assumes the time is midnight, 12:00 AM.

Returns The number of hours between date1 and date2.

Example The following example calculates the number of hours between each value in the
startTime field and each value in the finishTime field:

DIFF_HOUR([startTime],[finishTime])

The following example calculates the number of hours from the current date to
Christmas. NOW() is a function that returns the current date and time.

DIFF_HOUR(NOW(), "12/25/10")

DIFF_MINUTE()
Calculates the number of minutes between two date values.

Syntax DIFF_MINUTE(date1, date2)

268 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

DIFF_MONTH()

Arguments date1
The first date or date expression to use in the calculation. If the date does not have
a time value, the function assumes the time is midnight, 12:00 AM.

date2
The second date or date expression to use in the calculation. If the date does not
have a time value, the function assumes the time is midnight, 12:00 AM.

Returns The number of minutes between date1 and date2.

Example The following example calculates the number of minutes between each value in
the startTime field and each value in the finishTime field:

DIFF_MINUTE([startTime],[finishTime])

The following example calculates the number of minutes from the current date to
Christmas. NOW() is a function that returns the current date and time.

DIFF_MINUTE(NOW(), "12/25/10")

DIFF_MONTH()
Calculates the number of months between two date values.

Syntax DIFF_MONTH(date1,date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of months between date1 and date2. The function calculates the
difference by subtracting the month number of date1 from the month number of
date2. For example, if date1 is 8/1/08 and date2 is 8/31/08, DIFF_MONTH()
returns 0. If date1 is 8/25/08 and date2 is 9/5/08, DIFF_MONTH() returns 1.

Example The following example calculates the number of months between each value in
the askByDate field and each value in the ShipByDate field:

DIFF_MONTH([askByDate],[shipByDate])

The following example calculates the number of months from each value in the
hireDate field to the end of the year:

DIFF_MONTH([hireDate], "12/31/10")

DIFF_QUARTER()
Calculates the number of quarters between two date values.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 269

DIFF_SECOND()

Syntax DIFF_QUARTER(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of quarters between date1 and date2. DIFF_QUARTER() calculates
the difference by subtracting the quarter number of date1 from the quarter
number of date2. For example, if date1 is 1/1/10 and date2 is 3/31/10,
DIFF_QUARTER() returns 0 because both dates are in quarter 1. If date1 is
3/31/10 and date2 is 4/15/10, DIFF_QUARTER() returns 1 because date1 is in
quarter 1 and date2 is in quarter 2.

Example The following example calculates the number of quarters between each value in
the PlanClosing field and each value in the ActualClosing field:

DIFF_QUARTER([PlanClosing],[ActualClosing])

The following example calculates the number of quarters from each value in the
orderDate field to the end of the year:

DIFF_QUARTER([orderDate], "12/31/10")

DIFF_SECOND()
Calculates the number of seconds between two date values.

Syntax DIFF_SECOND(date1, date2)

Arguments date1
The first date or date expression to use in the calculation. If the date does not have
a time value, the function assumes the time is midnight, 12:00 AM.

date2
The second date or date expression to use in the calculation. If the date does not
have a time value, the function assumes the time is midnight, 12:00 AM.

Returns The number of seconds between date1 and date2.

Example The following example calculates the number of seconds between each value in
the startTime field and each value in the finishTime field:

DIFF_SECOND([startTime],[finishTime])

The following example calculates the number of seconds from the current date to
Christmas. NOW() is a function that returns the current date and time.

DIFF_SECOND(NOW(), "12/25/10")

270 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

DIFF_WEEK()

DIFF_WEEK()
Calculates the number of weeks between two date values.

Syntax DIFF_WEEK(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of weeks between date1 and date2. The function calculates the
difference by subtracting the week number of date1 from the week number of
date2. For example, if date1 is 1/1/10 (week 1 of the year), and date2 is 1/4/10
(week 2 of the year), DIFF_WEEK() returns 1.

Example The following example calculates the number of weeks between each value in the
askByDate field and each value in the shipByDate field:

DIFF_WEEK([askByDate],[shipByDate])

The following example calculates the number of weeks from each value in the
orderDate field to the end of the year:

DIFF_WEEK([orderDate], "12/31/10")

DIFF_YEAR()
Calculates the number of years between two date values.

Syntax DIFF_YEAR(date1, date2)

Arguments date1
The first date or date expression to use in the calculation.

date2
The second date or date expression to use in the calculation.

Returns The number of years between date1 and date2. The function calculates the
difference by subtracting the year number of date1 from the year number of
date2. For example, if date1 is 1/1/10 and date2 is 12/31/10, DIFF_YEAR()
returns 0. If date1 is 11/25/09 and date2 is 1/5/10, DIFF_YEAR() returns 1.

Example The following example calculates the number of years between each value in the
HireDate field and each value in the TerminationDate field:

DIFF_YEAR([HireDate],[TerminationDate])

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 271

FIND()

The following example calculates the number of years from each value in the
HireDate field to the current date. TODAY() is a function that returns the current
date.

DIFF_YEAR([HireDate], TODAY())

FIND()
Finds the location of a substring in a string.

Syntax FIND(target, source)

FIND(target, source, index)

Arguments target
The substring to search for. The search is case-sensitive.

source
The string in which to search.

index
The position in str where the search starts.

Returns The numerical position of the substring in the string. The first character of a string
starts at 1. If the substring is not found, FIND() returns 0.

Examples The following example searches for the substring, Ford, in each ProductName
value:

FIND("Ford", [ProductName])

If the product name is 1969 Ford Falcon, FIND() returns 6.

The following example searches for the first hyphen (-) in each product code:

FIND("-", [ProductCode])

If the product code is ModelA-1234-567, FIND() returns 7.

The following example uses FIND() in conjunction with the LEFT() function to
display the characters that precede the hyphen in a product code. The LEFT()
function extracts a substring of a specified length, starting from the first character.
In this example, the length of the substring to display is equal to the numerical
position of the hyphen character.

LEFT([ProductCode], FIND("-", [ProductCode]))

If the product code is ModelA-1234, the expression returns the following string:

ModelA

272 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

IF()

IF()
Returns one value if a specified condition evaluates to true, or another value if the
condition evaluates to false.

Syntax IF(c, vt, vf)

Arguments c
The condition to test.

vt
The value to return if the condition evaluates to true.

vf
The value to return if the condition evaluates to false.

Returns Returns the vt value if c is TRUE or the vf value if c is false.

Example The following example calculates and displays different discount amounts based
on the value in the Total field. If the Total value is greater than 5000, the discount
is 15%. Otherwise, the discount is 10%.

IF([Total]>5000, [Total]*15%, [Total]*10%)

The following example uses IF() in conjunction with the BETWEEN() and
ADD_DAY() functions to calculate a shipment date. If an orderDate value is in
December 2010 (between 12/1/10 and 12/31/10), add five days to the orderDate
value. If an orderDate value is in a month other than December, add three days to
the orderDate value.

IF(BETWEEN([orderDate], "12/1/10", "12/31/10"),
ADD_DAY([orderDate], 5), ADD_DAY([orderDate], 3))

The following example checks each value in the Office field. If the value is Boston,
San Francisco, or NYC, display U.S. If the value is something other than Boston,
San Francisco, or NYC, display Europe and Asia Pacific.

IF([Office]="Boston" OR [Office]="San Francisco" OR
[Office]="NYC", "U.S.", "Europe and Asia Pacific")

IN()
Tests if a value is equal to a value in a list.

Syntax IN(source, target1,..., targetN)

Arguments source
The value to test. The value can be a string, numeric, or date value.

target1, ..., targetN
The value or values to compare to.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 273

ISNULL()

Returns True if the source value is equal to one of the target values; returns false
otherwise.

Example The following example tests if New Haven, Baltimore, or Cooperstown are values
in the city field. If any one of the cities is in the field, IN() returns true.

IN([city], "New Haven", "Baltimore", "Cooperstown")

The following example tests if 9/15/08 or 9/30/08 are values in the payDate
field:

IN([payDate], "9/15/08", "9/30/08")

The following example uses IN() in conjunction with the IF() function to test if
Ships or Trains are values in the ProductLine field. If Ships or Trains is a value in
the field, display Discontinued Item; otherwise, display the product line value as
it appears in the field.

IF(IN([ProductLine], "Ships", "Trains"),"Discontinued Item",
[ProductLine])

ISNULL()
Tests if a value in a specified field is a null value. A null value means that no
value exists.

Syntax ISNULL(source)

Argument source
The field in which to check for null values.

Returns True if a value in the specified field is a null value; returns false otherwise.

Example The following example uses ISNULL() in conjunction with the IF() function to
test for null values in the BirthDate field. If there is a null value, display No date
specified; otherwise display the BirthDate value.

IF(ISNULL([BirthDate]), "No date specified", [BirthDate])

LEFT()
Extracts a substring from a string, starting from the left-most, or first, character.

Syntax LEFT(source)

LEFT(source, n)

Arguments source
The string from which to extract a substring.

274 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

LEN()

n
The number of characters to extract, starting from the first character.

Returns A substring of a specific length.

■ If you omit n, the number of characters to extract, the function returns the first
character only.

■ If n is zero, the function returns an empty string.

■ If n is greater than the length of the string, the function returns the entire
string.

Example The following example displays the first letter of each name in the
CustomerName field:

LEFT([CustomerName])

The following example uses the LEFT() and FIND() functions to display the
characters that precede the hyphen in a product code:

LEFT([ProductCode], FIND("-", [ProductCode]))

If the product code is ModelA-1234, the expression returns the following string:

ModelA

LEN()
Counts the number of characters in a string.

Syntax LEN(source)

Argument source
The string expression to evaluate.

Returns The number of characters in the specified string.

Example The following example returns the length of each value in the ProductCode field:

LEN([ProductCode])

The following example uses LEN() in conjunction with the RIGHT() and FIND()
functions to display the characters that appear after the hyphen in a product code.
RIGHT() extracts a substring of a specified length, starting from the last
character. In this example, the length of the entire string returned by LEN()
minus the length up to the hyphen is the number of characters to display:

RIGHT([ProductCode], LEN([ProductCode]) - FIND("-" ,
[ProductCode]))

If the product code is ModelA-Ford, the expression returns Ford.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 275

LIKE()

LIKE()
Tests if a string matches a pattern.

Syntax LIKE(source, pattern)

source
The string to evaluate.

pattern
The string pattern to match. You must enclose the pattern in double quotation
marks (" "). The match is case-sensitive. You can use the following special
characters in a pattern:

■ A percent character (%) matches zero or more characters. For example, %ace%
matches any string value that contains the substring ace, such as Facebook,
and MySpace. It does not match Ace Corporation because this string contains
a capital A, and not the lowercase a.

■ An underscore character (_) matches exactly one character. For example, t_n
matches tan, ten, tin, and ton. It does not match teen or tn.

To match a literal percent (%), underscore (_), precede those characters with two
backslash (\\) characters. For example, to see if a string contains M_10, specify
the following pattern:

"%M_10%"

Returns True if the string matches the pattern; returns false otherwise.

Example The following example returns true for values in the customerName field that
start with D:

LIKE([customerName], "D%")

The following example returns true for productCode values that contain the
substring Ford:

LIKE([productCode], "%Ford%")

The following example uses two LIKE() expressions to look for the substrings
"Ford" or "Chevy" in each ProductName value. If a product name contains either
substring, the expression displays U.S. Model; otherwise, it displays Imported
Model.

IF(((LIKE([ProductName], "%Ford%") = TRUE) OR (LIKE([ProductName],
"%Chevy%") = TRUE)), "U.S. model", "Imported Model")

276 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

LOWER()

LOWER()
Converts all letters in a string to lowercase.

Syntax LOWER(source)

Argument source
The string to convert to lowercase.

Returns The specified string in all lowercase letters.

Example The following example displays all the string values in the productLine field in
lowercase:

LOWER([productLine])

MATCH()
Tests if a string matches a pattern. The pattern must use JavaScript regular
expression syntax.

Syntax MATCH(source, pattern)

Arguments source
The string to evaluate.

pattern
The string pattern to match. You must enclose the pattern in quotation marks (" ").
In JavaScript regular expression syntax, a pattern is enclosed within a pair of
forward slash (/) characters. However, for this argument, the forward slash
characters are optional. For example, the following values are equivalent:

"smith"
"/smith/"

You can use any special character supported by JavaScript regular expressions,
such as the following:

■ A question mark (?) matches zero or one occurrence of the character previous
to it. For example, "te?n" matches tn, ten, and often. It does not match teen or
intern.

■ An asterisk (*) matches zero or any number of occurrences of the character
precious to it. For example, "te*n" matches tn, ten, often, and teen. It does not
match intern.

■ A period (.) matches any character. For example, "te.*" matches ten, often, teen,
and intern.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 277

MOD()

■ A caret (^) specifies that the pattern to look for is at the beginning of a string.
For example, "^ten" matches ten, tennis, and tense. It does not match often or
pretend.

■ An i character specifies a case-insensitive search. For example, "/smith/i"
matches Smith, blacksmith, and Smithsonian. In this case, the pair of forward
slashes is required.

To match a special character literally, precede the special character with two
backslash (\\) characters. For example, to check if a string contains S*10, specify
the following pattern:

"/S*10/"

Returns True if the string matches the pattern; returns false otherwise.

Examples The following example returns true for values in the ProductCode field that start
with S18:

MATCH([ProductCode], "/^S18/")

The following example uses MATCH() to check if the values in the SKU field
contain the letters EM followed by a number that ends with 99. If there is a match,
display Discontinued; otherwise, display the SKU value.

IF(MATCH([SKU], "/EM.*99/"), "Discontinued", [SKU])

MOD()
Returns the remainder after a number is divided by another.

Syntax MOD(number, divisor)

Arguments number
The number to divide.

divisor
The number by which to divide the number value. You must specify a non-zero
number.

Returns The remainder after the number value is divided by the divisor value. Different
applications and programming languages define the modulo operation
differently when either the dividend or the divisor are negative. For example, in
EasyScript and Excel, MOD(-5, 3) returns 1. However, in JavaScript and most
databases, the modulo operation returns -2.

Examples The following examples shows the results that the function returns for specific
numbers:

MOD(10, 5) // returns 0

278 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

MONTH()

MOD(11, 5) // returns 1
MOD(12, 5) // returns 2
MOD(-10, 5) //returns 0
MOD(-11, 5) //returns 4
MOD(-12, 5) //returns 3
MOD(10, -5) //returns 0
MOD(11, -5) //returns -4
MOD(12, -5) //returns -3

The following example uses MOD() to check if numbers in the Grade field are
odd or even. When the divisor is 2, MOD() returns 0 for even numbers, and 1 for
odd numbers.

MOD([Grade], 2)

The following example uses MOD() and YEAR() to get the last digit of a year.
YEAR() returns the year number of a date. Dividing a number by 10 returns the
last digit of the number.

MOD(YEAR([BirthDate]), 10)

MONTH()
Returns the month for a specified date value.

Syntax MONTH(date)

MONTH(date, option)

Arguments date
The date or date expression whose month to get.

option
A number that represents the month format to return. Use one of the following
values:

■ 1 to get the month as a number from 1 to 12.

■ 2 to get the full month name, for example, January. The result is locale-specific.

■ 3 to get the abbreviated month name, for example, Jan. The result is
locale-specific.

If you omit option, MONTH() returns the month as a number.

Returns The month for a specified date value.

Example The following example returns the month, 1–12, for each value in the ShipDate
field:

MONTH([ShipDate])

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 279

NOT()

The following example returns the full month name for each ShipDate value:

MONTH([ShipDate], 2)

NOT()
Negates a Boolean expression.

Syntax NOT(x)

Argument x
The Boolean value or expression to negate.

Returns True if the expression evaluates to false, and false if the expression evaluates to
true.

Example The following example uses NOT() in conjunction with the IF() function. It tests
if the value in the State field is not CA. If the value is not CA, it returns the value
in the Markup field multiplied by 10%, and by 15% if it is.

IF(NOT([State]="CA"),[Markup]*10%,[Markup]*15%)

The previous IF() expression is semantically equivalent to the following
expression:

IF([State]="CA",[Markup]*15%,[Markup]*10%)

NOTNULL()
Tests if a value in a specified field is a non-null value.

Syntax NOTNULL(source)

Argument source
The field in which to check for non-null values.

Returns True if a value in the specified field is not a null value; returns false otherwise.

Example The following example uses NOTNULL() in conjunction with the IF() function
to test for non-null values in the BirthDate field. If there is a non-null value,
display the BirthDate value; otherwise display No date specified.

IF(NOTNULL([BirthDate]), [BirthDate], "No date specified")

NOW()
Returns the current date and time.

Syntax NOW()

280 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

QUARTER()

Returns The current date and time. For example:

Feb 10, 2010 2:55 PM

Example The following example uses the DIFF_DAY() and NOW() functions to calculate
the number of days from the current date and time to Christmas:

DIFF_DAY(NOW(), "12/25/10")

QUARTER()
Returns the quarter number for a specified date value.

Syntax QUARTER(date)

Arguments date
The date or date expression whose quarter number to get.

Returns A number from 1 to 4 that represents the quarter for a specified date value.
Quarter 1 starts in January.

Examples The following example displays the quarter number for each value in the
CloseDate field:

QUARTER([CloseDate])

The following example displays a string—Q1, Q2, Q3, or Q4—for each value in
the CloseDate field:

"Q" & QUARTER([CloseDate])

RIGHT()
Extracts a substring from a string, starting from the right-most, or last, character.

Syntax RIGHT(source)

RIGHT(source, n)

Arguments source
The string from which to extract a substring.

n
The number of characters to extract, starting from the last character.

Returns A substring of a specific length.

■ If you omit n, the number of characters to extract, the function returns the last
character only.

■ If n is zero, the function returns an empty string.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 281

ROUND()

■ If n is greater than the length of the string, the function returns the entire
string.

Example The following example displays the last four characters of each value in the
ProductCode field:

RIGHT([ProductCode], 4)

The following example uses RIGHT() in conjunction with the LEN() and FIND()
functions to display the characters that appear after the hyphen in a product code.
This example assumes that the number of characters after the hyphen varies.
Therefore, the length of the entire string (returned by LEN()) minus the length up
to the hyphen (returned by FIND()) is the number of characters to display.

RIGHT([ProductCode], LEN([ProductCode]) - FIND("-" ,
[ProductCode]))

If the product code is ModelA-Ford, the expression returns Ford. If the product
code is ModelCZ15-Toyota, the expression returns Toyota.

ROUND()
Rounds a number to a specified number of digits.

Syntax ROUND(number)

ROUND(number, dec)

Arguments number
The number to round.

dec
The number of digits to round number to. If you omit dec, ROUND() assumes 0.

Returns A number rounded to a specified number of digits.

Example The following example rounds the numbers in the PriceEstimate field to return an
integer. For example, if the PriceEstimate value is 1545.50, ROUND() returns
1546. If the PriceEstimate value is 1545.25, ROUND() returns 1545.

ROUND([PriceEstimate])

The following example rounds the numbers in the PriceEstimate field to one
decimal place. For example, if the PriceEstimate value is 1545.56, ROUND()
returns 1545.6. If the PriceEstimate value is 1545.23, ROUND() returns 1545.2.

ROUND([PriceEstimate], 1)

The following example rounds the numbers in the PriceEstimate field to one digit
to the left of the decimal point. For example, if the PriceEstimate value is 1545.56,

282 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

ROUNDDOWN()

ROUND() returns 1550. If the PriceEstimate value is 1338.50, ROUND()
returns 1340.

ROUND([PriceEstimate], -1)

ROUNDDOWN()
Rounds a number down to a specified number of digits.

Syntax ROUNDDOWN(number)

ROUNDDOWN(number, dec)

Arguments number
The number to round down.

dec
The number of digits to round number down to. If you omit dec, ROUND()
assumes 0.

Returns A number rounded down to a specified number of digits.

Example The following example rounds down the numbers in the PriceEstimate field to
return an integer. For example, if the PriceEstimate value is 1545.25,
ROUNDDOWN() returns 1545. If the PriceEstimate value is 1545.90,
ROUNDDOWN() returns 1545.

ROUNDDOWN([PriceEstimate])

The following example rounds down the numbers in the PriceEstimate field to
one decimal place. For example, if the PriceEstimate value is 1545.56,
ROUNDDOWN() returns 1545.5. If the PriceEstimate value is 1545.23,
ROUNDDOWN() returns 1545.2.

ROUNDDOWN([PriceEstimate], 1)

The following example rounds the numbers in the PriceEstimate field down to
one digit to the left of the decimal point. For example, if the PriceEstimate value is
1545.56, ROUNDDOWN() returns 1540. If the PriceEstimate value is 1338.50,
ROUNDDOWN() returns 1330.

ROUNDDOWN([PriceEstimate], -1)

ROUNDUP()
Rounds a number up to a specified number of digits.

Syntax ROUNDUP(number)

ROUNDUP(number, dec)

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 283

SEARCH()

Arguments number
The number to round up.

dec
The number of digits to round number up to. If you omit dec, ROUND()
assumes 0.

Returns A number rounded up to a specified number of digits.

Example The following example rounds up the numbers in the PriceEstimate field to
return an integer. For example, if the PriceEstimate value is 1545.25,
ROUNDUP() returns 1546. If the PriceEstimate value is 1545.90, ROUNDUP()
returns 1546.

ROUNDUP([PriceEstimate])

The following example rounds up the numbers in the PriceEstimate field to one
decimal place. For example, if the PriceEstimate value is 1545.56, ROUNDUP()
returns 1545.6. If the PriceEstimate value is 1545.23, ROUNDUP() returns 1545.3.

ROUNDUP([PriceEstimate], 1)

The following example rounds up the numbers in the PriceEstimate field to one
digit to the left of the decimal point. For example, if the PriceEstimate value is
1545.56, ROUNDUP() returns 1550. If the PriceEstimate value is 1338.50,
ROUNDUP() returns 1340.

ROUNDUP([PriceEstimate], -1)

SEARCH()
Finds the location of a substring in a string. The substring can contain wildcard
characters.

Syntax SEARCH(pattern, source)

SEARCH(pattern, source, index)

Arguments pattern
The string pattern to search for. You must enclose the pattern in double quotation
marks (" "). You can use the following special characters in a pattern:

■ An asterisk (*) matches zero or more characters, including spaces. For
example, t*n matches tn, tin, and teen.

■ A question mark (?) matches exactly one character. For example, t?n matches
tan, ten, tin, and ton. It does not match teen or tn.

source
The string in which to search.

284 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

SQRT()

index
The position in source where the search starts.

Returns The numerical position of the string pattern in the string. The first character of a
string starts at 1. If the substring is not found, SEARCH() returns 0.

Examples The following example searches for the string pattern, S*A, in each product code.
If the product name is KBS5412A, SEARCH() returns 3.

SEARCH("S*A", [ProductCode])

The following example uses SEARCH() in conjunction with the LEFT() function
to display the characters that precede the first space character in a product name.
The LEFT() function extracts a substring of a specified length, starting from the
first character. In this example, the length of the substring to display is equal to
the numerical position of the space character.

LEFT([ProductName], SEARCH(" ", [ProductName]))

If the product name is 1969 Ford Falcon, the expression returns 1969.

SQRT()
Calculates the square root of a number.

Syntax SQRT(number)

Argument number
The number for which you want to find the square root. The number must be a
positive number.

Returns A number that is the square root of the specified number.

Examples The following example calculates the square root of each numeric value in the
LotSize field:

SQRT([LotSize])

The following example uses SQRT() to calculate the actual distance travelled
uphill, given the base distance and elevation values. This example applies the
Pythagorean theorem, which states that . Using this theorem, the
actual distance traveled is c, which means we want to calculate

which translates to the following expression:

SQRT((([Distance] * [Distance]) + ([Elevation] * [Elevation])))

a2 b2
+ c2

=

c a2 b2
+=

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 285

TODAY()

TODAY()
Returns the current date that includes a time value of midnight, 12:00 AM.

Syntax TODAY()

Returns The current date in the following format:

Feb 11, 2010 12:00 AM

Examples The following example calculates the number of days from the current date to
Christmas:

DIFF_DAY(TODAY(), "12/25/10")

The following example calculates the number of years from each value in the
HireDate field to the current date:

DIFF_YEAR([HireDate], TODAY())

TRIM()
Removes the leading and trailing blanks from a specified string. TRIM() does not
remove blank characters between words.

Syntax TRIM(source)

Argument source
The string from which to remove leading and trailing blank characters.

Returns A string with all leading and trailing blank characters removed.

Example The following example uses TRIM() to remove all leading and trailing blank
characters from values in the FirstName and LastName fields. The expression
uses the & operator to concatenate each trimmed FirstName value with a space,
then with each trimmed LastName value.

TRIM([FirstName]) & " " & TRIM([LastName])

TRIMLEFT()
Removes the leading blanks from a specified string.

Syntax TRIMLEFT(source)

Argument source
The string from which to remove the leading blank characters.

Returns A string with all leading blank characters removed.

286 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

TRIMRIGHT()

Example The following example concatenates a literal string with each value in the
customerName field. TRIMLEFT() removes all blank characters preceding the
customerName value so that there are no extra blank characters between the
literal string and the customerName value.

"Customer name: " & TRIMLEFT([customerName])

TRIMRIGHT()
Removes the trailing blanks from a specified string.

Syntax TRIMRIGHT(source)

Argument source
The string from which to remove the trailing blank characters.

Returns A string with all trailing blank characters removed.

Example The following example concatenates each value in the Comment field with a
semicolon, then with a value in the Action field. TRIMRIGHT() removes all blank
characters after the Comment value so that there are no extra blank characters
between the Comment string and the semicolon.

TRIMRIGHT([Comment]) & "; " & [Action]

UPPER()
Converts all letters in a string to uppercase.

Syntax UPPER(source)

Argument source
The string to convert to uppercase.

Returns The specified string in all uppercase letters.

Example The following example displays all the string values in the customerName field in
all uppercase:

UPPER([customerName])

WEEK()
Returns a number from 1 to 52 that represents the week of the year.

Syntax WEEK(date)

Argument date
The date or date expression whose week of the year to get.

C h a p t e r 1 9 , W r i t i n g e x p r e s s i o n s u s i n g E a s y S c r i p t 287

WEEKDAY()

Returns A number that represents the week of the year for the specified date value.

Example The following example gets the week number of the year for each date value in
the ShipDate field:

WEEK([ShipDate])

WEEKDAY()
Returns the day of the week for a specified date value.

Syntax WEEKDAY(date, option)

Arguments date
The date or date expression from which you want to get the day of the week.

option
A number that represents the weekday format to return. Use one of the following
values:

■ 1 to get the day as a number from 1 (Sunday) to 7 (Saturday).

■ 2 to get the day as a number from 1 (Monday) to 7 (Sunday).

■ 3 to get the day as a number from 0 (Monday) to 6 (Sunday).

■ 4 to get the full weekday name, for example, Wednesday. The result is
locale-specific.

■ 5 to get the abbreviated weekday name, for example Wed. The result is
locale-specific.

If you omit option, WEEKDAY() assumes option 1.

Returns The day of the week for a specified date value.

Example The following example gets the full weekday name for each date value in the
DateSold field:

WEEKDAY([DateSold], 4)

YEAR()
Returns the four-digit year value for a specified date value.

Syntax YEAR(date)

date
The date or date expression from which you want to extract the year part.

Returns The number that represents the four-digit year for the specified date value.

288 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Example The following example gets the four-digit year for each date value in the
ShipDate field, and adds 15 to the four-digit year. For example, if the ShipDate
value is Sep 16, 2008, YEAR() returns 2023.

(YEAR([ShipDate]) + 15)

Operators
Table 19-1 lists the operators in EasyScript.

Table 19-1 EasyScript operators

Operator Use to Example

+ Add two or more numeric values
together

[OrderAmount] + [SalesTax]

- Subtract one numeric value from
another

[OrderAmount] - [Discount]

* Multiply numeric values [Price] * [Quantity]

/ Divide numeric values [Profit]/12

^ Raise a numeric value to a power [Length]^2

% Specify a percent [Price] * 80%

= Test if two values are equal IF([ProductName] = "1919 Ford Falcon",
"Discontinued Item", [ProductName])

> Test if one value is greater than
another value

IF([Total] > 5000, [Total]*15%, [Total]*10%)

< Test if one value is less than
another value

IF([SalePrice] < [MSRP], "Below MSRP",
"Above MSRP")

>= Test if one value is greater than or
equal to another value

IF([Total] >= 5000, [Total]*15%,
[Total]*10%)

<= Test if one value is less than or
equal to another value

IF([SalePrice] <= [MSRP], "Below or equal
to MSRP", "Above MSRP")

<> Test if two values are not equal IF([Country] <> "USA", "Imported
product", "Domestic product")

AND Test if two or more conditions are
true

IF(([Gender] = "Male" AND [Salary] >=
150000 AND [Age] < 50), "Match found",
"No match")

OR Test if any one of multiple
conditions is true

IF(([City] = "Boston") OR ([City] = "San
Francisco"), "U.S.", "Europe and Asia")

& Concatenate string values [FirstName] & " " & [LastName]

Chapter 20, Specify ing f i l ter condit ions at repor t run t ime 289

C h a p t e r

20
Chapter 20Specifying filter

conditions at report
run time

This chapter contains the following topics:

■ About report parameters and filters

■ Enabling the user to specify a filter condition

■ Getting information about queries

290 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About report parameters and filters
Report parameters provide a mechanism for collecting values from a report user
or a program. They are typically used in filters to collect information that
determines the data to display in a report. Actuate BIRT Designer supports all the
functionality of parameters and filters available in the open-source version, and
provides additional features.

In open-source BIRT Report Designer, the following expression in the filter tool is
an example of how a filter uses a report parameter to obtain the filter value at run
time:

row["Total"] Greater than or Equal params[Sales Total].value

The field to evaluate (row["Total"]) and the operator that determines the type of
filter test (Greater than or Equal) are specified at design time. At run time, the
report user supplies the parameter value, which, in this example, is a sales total,
such as 10000.

In Actuate BIRT Designer, report parameters and filters are enhanced to support
dynamic filter conditions, which provide users more control over what data they
see in the report. Instead of specifying only the value on which to filter, the report
user can specify conditions, such as Total Less than 10000, or Total Between 10000
and 20000, or Total Greater than 20000. The user can also choose to view all totals;
in other words, the user can choose to omit the filter condition.

Another enhancement is that these filters can modify the underlying query so
that filtering occurs in the database. This functionality applies when accessing a
database through an information object or a JDBC connection for query builder
data source. When using these data source types, only data rows that meet the
filter criteria are retrieved from the database. By retrieving a limited number of
rows, Actuate BIRT Designer’s performance improves.

This chapter describes how to create report parameters and filters to enable
dynamic filtering. For information about other types of parameters and filters, see
BIRT: A Field Guide.

Enabling the user to specify a filter condition
To enable users to specify a filter condition, complete the following tasks in the
recommended order:

■ Create a dynamic filter report parameter.

■ Create a dynamic filter and bind it to the report parameter.

Chapter 20, Specify ing f i l ter condit ions at repor t run t ime 291

Creating a dynamic filter report parameter
A dynamic filter report parameter differs from a regular report parameter in one
important aspect. Using a dynamic filter parameter, you can provide report users
with a list of operators, which they can use to construct their own filter condition.

Figure 20-1 shows an example definition of a dynamic filter parameter where the
display type is a text box. Aside from the Dynamic Filter Condition section,
where you specify the column on which to filter and the operators to provide to
users, the properties are similar to the properties for a regular report parameter.

Like the regular report parameter, a dynamic filter parameter can also provide the
user with a list of values. However, values can be presented in a combo box or list
box only. Figure 20-2 shows an example definition of a dynamic filter parameter
that includes a list of values. The display type is set to Combo/List Box.

Standard properties
for a report
parameter

Operators to provide
to report users

Column on which to
filter

Figure 20-1 Properties of a dynamic filter parameter whose display type is a text box

292 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

How to create a dynamic filter report parameter

1 In Data Explorer, right-click Report Parameters, and choose New Dynamic
Filter Parameter.

2 Specify the properties of the dynamic filter parameter. For information about
the standard properties for a report parameter, see BIRT: A Field Guide. The
following Dynamic Filter Condition properties are specific to a dynamic filter
parameter:

Values to provide to
report users

Display type set to
Combo/List Box

Operators to provide
to report users

Figure 20-2 Properties of a dynamic filter parameter whose display type is a combo box or
list box

Chapter 20, Specify ing f i l ter condit ions at repor t run t ime 293

■ In Column, type the name of the field on which to filter.

■ In Operator, select the operators to provide to the user. By default, all the
operators are selected. To remove an operator, select it and click <.

■ Optionally, set one of the operators as the default. Select the operator, then
choose Set as Default. A check mark appears next to the operator. If you
specify a default operator, you must also specify a value in Default Value.

3 Choose OK.

Making a filter parameter optional
When you create a dynamic filter parameter, you can require the user to specify a
value or you can make the filter optional. It is usually good practice to make the
filter optional, so that the user can view a report with all the data. For example, if
a report displays inventory data by vendor and you create an optional parameter
to filter on vendors, the user can select No Condition to view inventory data for
all vendors.

On the other hand, you can require that the user specify a value if displaying all
the data results in a very long report. A report that runs into hundreds of pages is
not only difficult to read, but the report takes longer to generate.

To make a filter parameter optional, deselect the Is Required property.

Accepting multiple values
Users often want to select any number of values for a filter condition. In an
inventory report, for example, the user might need to view data for several
vendors. To support the selection of multiple values, create a dynamic filter
parameter as follows:

■ Select Combo/List Box as the display type.

■ Select the In operator as one of the operators to provide to the user.

■ Create a list of values.

Creating a dynamic filter
Actuate BIRT Designer supports two types of filters: static and dynamic. Use a
static filter to define a specific filter condition at design time. Use a dynamic filter
to enable users to define a filter condition at report run time.

How to create a dynamic filter

This procedure assumes you have already created the dynamic filter report
parameter to bind to the filter you are creating.

1 Select the element to which to apply a dynamic filter condition. For example,
select a data set, a table, or a chart whose data you want to filter.

294 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

2 Choose Filters, then choose New or Add to define a filter.

3 In New Filter Condition, specify the following values:

1 Choose Dynamic.

2 In Column, select the field on which to filter.

3 In Filter Parameter, select the dynamic filter parameter to update this filter
with user-specified values at run time.

Figure 20-3 shows an example in which a QUANTITYINSTOCK field is bound
to a dynamic filter parameter named Quantity.

Figure 20-3 Definition of a dynamic filter condition

4 Choose OK.

The filter appears on the Filters page. Figure 20-4 shows the Quantity dynamic
filter on the Filter page of the data set editor. Unlike a static filter, no values
appear under Operator, Value 1, or Value 2, indicating that these values are
specified at run time.

Figure 20-4 Dynamic filter in a data set

Chapter 20, Specify ing f i l ter condit ions at repor t run t ime 295

Getting information about queries
When a report accesses data from a database, it is useful to understand what
queries the report sends to the database, and how charts and tables get their data.
For example, if you create a dynamic filter on a table to display sales data for
certain products only, does BIRT send a query to retrieve sales data for all
products then filter at the table level to display data for specific products, or does
BIRT send a query that retrieves only data for specific products? Answers to
questions such as this can help you optimize the performance of a report.

To get information about the queries that are executed, right-click a report
element, such as a table or a chart, then choose Show Query Execution Profile.
Figure 20-5 shows an example of a query that is executed for a table. In this
example, Query Execution Profile shows the following information:

■ The data set (Products Data Set) that is bound to the table, the original query
specified, and the query modified by BIRT and sent to the database

■ A sort definition that sorts data rows by product name in ascending order

■ A filter condition (row["QUANTITYINSTOCK"] > 5000

■ A group definition that groups data by vendor

■ Data bindings associated with the table

Figure 20-5 Query execution profile for a table

296 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Select each item in the query execution profile to see more information about that
item. For example, click the filter, as shown in Figure 20-6, to see whether the
filter is executed in BIRT or at the database level. In the filter information, “Push
Down: applied” means that the filter is pushed down to, or executed by, the
database. Similarly, select the sort and group definitions to see where these tasks
are executed.

Figure 20-6 Filter information displayed in the query execution profile

Another piece of useful information that the query execution profile provides is
whether, and how, BIRT modifies a query when you sort, group, or filter data
using the graphical tools. As discussed at the beginning of this chapter, BIRT can
modify a query to perform these tasks at the database level if the report accesses
the database through an information object or a JDBC connection for query
builder data source.

Select the Original: SELECT statement to see the query specified originally. Select
the Effective: SELECT statement to see the query modified by BIRT. Figure 20-7
shows an example of the SELECT statement in the original query. Figure 20-8
shows an example of the SELECT statement in the modified query.

Chapter 20, Specify ing f i l ter condit ions at repor t run t ime 297

As Figure 20-8 shows, BIRT changes the original query to add a filter condition
(WHERE clause) and a sort condition (ORDER BY clause).

Figure 20-7 Original query displayed in the query execution profile

Figure 20-8 Modified (effective) query displayed in the query execution profile

298 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The performance of a report improves when data is processed by the database
rather than by BIRT. Data filtering in particular can affect performance
significantly because filtering can mean the difference between retrieving
hundreds or millions of rows of data.

When you create filters using the graphical filter tool, BIRT pushes a filter to the
database if the filter condition can be mapped to a SQL expression (if using the
JDBC connection for query builder data source) or an Actuate SQL expression (if
using an information object data source). Using that criterion, the following are
examples of when BIRT pushes a filter to the database:

■ The filter uses an operator that is supported by the database, for example,
<, >, =.

BIRT-specific operators, such as Match, Top Percent, and Bottom Percent, do
not have SQL equivalents, so a filter that uses any of these operators is not
pushed to the database.

■ The filter uses an expression that refers to a field in a database table. For
example, the following filter condition is pushed to the database if SalesTotal
is a column in the database table:

row["SalesTotal"] Greater than 5000000

On the other hand, the following filter condition is not pushed to the database
if Profit is a computed column derived from other columns, for example,
row["Sales"] - row["Cost"]:

row["Profit"] Greater than 2000000

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 299

C h a p t e r

21
Chapter 21Displaying cross tab data

by relative time periods
This chapter contains the following topics:

■ About relative time periods

■ Aggregating data by a relative time period

300 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About relative time periods
Cross tabs typically aggregate and display data by time periods because time is
an essential part of data analysis. Any analysis of stock performance, revenue, or
productivity is meaningful only if it can be measured by day, week, month,
quarter, or year. Support for displaying data by a specific time period has been
available since the introduction of cross tabs in open-source BIRT Report
Designer. For example, a cross tab can display revenue data for a particular
month, quarter, or year.

In Actuate BIRT Designer, cross tabs are enhanced to support relative time
periods, such as current month, previous month, year-to-date, quarter-to-date,
quarter-to-date in the previous year, trailing 30 days, and so on. Displaying data
by relative time periods supports, for example, the comparison of current data
with past data of the same period. Figure 21-1 shows a report that displays sales
data in four cross tabs. All the cross tabs use data from the same cube.

■ The first cross tab displays sales by region and by quarter.

■ The second cross tab displays total sales, sales in the current year (2011), and
sales in the previous year (2010).

■ The third cross tab displays the quarter-to-date sales in the current year and,
as comparison, sales for the same period in the previous year, and sales in the
previous quarter.

■ The fourth cross tab compares sales in the previous 15 days with the same
period the previous year.

Figure 21-1 Report displaying four cross tabs

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 301

The first cross tab represents the typical way of displaying a measure (sales) by
two dimensions (a region dimension and a time dimension) defined in a cube.
The other cross tabs aggregate data by region and by relative time periods. The
procedures for aggregating the sales data by the relative time periods shown in
the examples are described later in this chapter. For information about building
cubes and cross tabs, see BIRT: A Field Guide.

Aggregating data by a relative time period
As the cross tab examples in Figure 21-1 show, the capability to aggregate data by
relative time periods is useful for comparing data across different time periods. In
addition to viewing data by the typical time periods, such as quarter-to-date or
previous quarter, you can define time periods, for example, to compare the week
before Christmas with the week after Christmas, or the last 15 days in a quarter
with the same period last year.

BIRT provides this functionality at the cross tab level where you add a relative
time period element and select the time period (Year To Date, Previous Year To
Date, and so on) for which to view data. In many cases, you do not need to make
any changes to the cube, assuming that the cube already contains at least one time
dimension, which is typical. A cube that provides sales data, for example,
typically defines time dimensions, such as orderDate or shipDate.

How to aggregate data by a relative time period

1 In the detail area of a cross tab, insert a relative time period element. To do so,
click the button next to a measure, as shown in Figure 21-2, and choose Add
Relative Time Period.

Figure 21-2 Inserting a relative time period measure

2 In Relative Time Period Aggregation Builder, specify the properties of the
relative time period measure. All properties are required unless described as
optional.

302 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ In Column Binding Name, type a name for the measure data element.

■ In Display Name (optional), type an alternate name to display in the report
design. If one is not specified, the report design displays the Column
Binding Name value.

■ In Data Type, select a data type appropriate for the measure. The default
type, Float, provides the best performance and a high precision level.

■ In Time Period, select the desired time period in which to aggregate the
data. For example, to calculate sales totals for the current month, select
Current Month. The time periods are described in Table 21-1 later in this
chapter. Some time periods, such as Previous N Months, require additional
property values, which appear immediately below Time Period.

■ In Function, select the function to perform the desired aggregate
calculation. The default function, SUM, adds up all the measure values. For
information about each aggregate function, see BIRT: A Field Guide.

■ In Expression, select the measure whose values to aggregate, or specify an
expression. The drop-down list displays the measures used in the cross tab.

■ In Filter Condition (optional), specify an expression to include only certain
measure values from the aggregate calculation. For example, specify a
filter, such as measure["SalesAmount"] > 100, to include only sales
amounts over 100 in the calculation.

■ In Aggregate On, select the dimension or dimensions by which to
aggregate the measure data. The dimensions used in the cross tab are
selected by default.

■ In Time Dimension, select the time dimension that contains the date values
to use in the relative time period calculation. The drop-down list displays
all the time dimensions defined in the cube. The time dimension inserted in
the cross tab, if any, is selected by default. If you did not insert a time
dimension in the cross tab, the first time dimension defined in the cube is
selected by default. In the example report shown in Figure 21-1, the first
cross tab displays a time dimension (dates are grouped by year and
quarter), but the other cross tabs do not.

■ In Reference Date, specify the date that is the basis for calculating the
specific period for aggregating data. Select one of the following options:

❏ Today. This option uses the current date (the date on which the report is
run) as the reference date. For example, if the relative time period
specified in Time Period is Year to Date, and the report is run on
12/01/2011, BIRT aggregates the data for the year up to, and including,
12/01/2011.

❏ This date. This option uses a fixed date value, which you specify, as the
reference date. If the time period is Year to Date, and you specify
09/30/2011, BIRT aggregates the data for the year up to, and including,

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 303

09/30/2011. You can use the Calender tool in the expression builder to
select a date, or type a date value in one of the following formats:

"09/30/2011"
"2011-09-30"

Enclose the date in quotes if specifying a JavaScript or EasyScript
expression.

❏ Most recent date in Time Dimension. This option uses the latest date in
the dimension specified in the Time Dimension property as the
reference date. For example, if the time dimension contains the dates
07/07/2011, 11/30/2011, and 09/19/2011, the date 11/30/2011 is used
as the reference date. This option is available only if the cross tab
contains a time dimension.

Examples of relative time period aggregations
Figure 21-1 showed examples of cross tab data aggregated by relative time
periods. In all the examples, the current date is December 01, 2011. This section
describes how those aggregations are defined.

Example 1: Displaying data for the current year

Figure 21-3 shows using Current Year to calculate the sum of the Sales measure
by region for the current year up to the current date. The dates used in the
calculation are from the TransactionDate dimension. These settings result in the
current year data displayed in the second cross tab shown in Figure 21-1.

Figure 21-3 Properties set to display Sales data for the current year

304 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Example 2: Displaying data for the previous year

Figure 21-4 shows using Previous Year to calculate the sum of the Sales measure
by region for the previous year. Number of Year(s) Ago is set to 1 to specify that
data from one year ago is to be used in the calculation. Reference Date set to
Today specifies that the previous one year is calculated from the current date.
These settings result in the previous year data displayed in the second cross tab
shown in Figure 21-1.

Figure 21-4 Properties set to display Sales data for the previous year

Example 3: Displaying data for the quarter to date

Figure 21-5 shows using Quarter to Date to calculate the sum of the Sales measure
by region for the current quarter up to the current date. These settings result in
the quarter-to-date data displayed in the third cross tab shown in Figure 21-1.

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 305

Figure 21-5 Properties set to display Sales data for the quarter to date

Example 4: Displaying data for the same quarter in the previous year

Figure 21-6 shows using Quarter to Date Last Year to calculate the sum of the
Sales measure by region for the same quarter last year. Number of Year(s) Ago is
set to 1 to specify that data for the quarter from one year ago is to be used in the
calculation. These settings result in the same quarter, previous year data
displayed in the third cross tab shown in Figure 21-1.

Figure 21-6 Properties set to display Sales data for the same quarter last year

306 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Example 5: Displaying data for the previous quarter

Figure 21-7 shows using Previous Quarter to calculate the sum of the Sales
measure by region for the previous quarter. Number of Quarter(s) Ago is set to 1
to specify that data from one quarter ago is to be used in the calculation. These
settings result in the previous quarter data displayed in the third cross tab shown
in Figure 21-1.

Figure 21-7 Properties set to display Sales data for the previous quarter

Example 6: Displaying data for the previous 15 days

Figure 21-8 shows using Trailing N Days to calculate the sum of the Sales
measure by region for a specified number of days prior to the current day.
Number of Days(s) Ago is set to 15 to specify that data from the previous 15 days
is to be used in the calculation. These settings result in the trailing 15 days data
displayed in the fourth cross tab shown in Figure 21-1.

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 307

Figure 21-8 Properties set to display Sales data for the previous 15 days

Example 7: Displaying data for the previous 15 days last year

Figure 21-9 shows using Trailing N Periods to calculate the sum of the Sales
measure by region for a specified number of days prior to the current day, but in
the previous year. The first Number of Period Ago property is set to 15 and The
First Period is set to DAY to specify that data from the previous 15 days is to be
used in the calculation. The second Number of Period Ago property is set to 1 and
The Second Period is set to YEAR to specify that the calculation is for the previous
year. These settings result in the trailing 15 days, previous year data displayed in
the fourth cross tab shown in Figure 21-1.

308 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 21-9 Properties set to display Sales data for the previous 15 days last year

Supported time periods
Table 21-1 describes the time periods available for the Time Period property. All
the time periods are relative to a reference date, which, as described earlier, can be
the current date (the date the report is run), a date you specify, or the latest date in
the time dimension.

Table 21-1 Supported time periods

Time period Description

Current Month The entire month relative to the month and year
portions of the reference date. For example, if
the reference date is 2011-01-10, the period is
2011-01-01 to 2011-01-31.

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 309

Current Period The entire period from a specified period
relative to the reference date. For example, use
to aggregate data for the same quarter five years
ago.
This time period requires three additional
properties:
■ The First Period, which specifies either year,

quarter, or month as the type of period for
which to aggregate data

■ Number of Periods Ago, which specifies the
number of prior periods (type of period
specified next), from which to begin the
calculation

■ The Second Period, which specifies either
year, quarter, month, or day as the type of
period

For example, if the reference date is 2012-02-08,
to aggregate data for the same quarter five years
ago, specify the following:
■ The First Period: Quarter
■ Number of Periods Ago: 5
■ The Second Period: Year
Data is aggregated for the entire quarter,
2007-01-01 to 2007-03-31.

Current Quarter The entire quarter relative to the month and
year portions of the reference date. For example,
if the reference date is 2011-12-15, the period is
2011-10-01 to 2011-12-31.

Current Year The entire year relative to the year portion of the
reference date. For example, if the reference date
is 2011-06-30, the period is 2011-01-01 to
2011-12-31.

Month to Date The period starting at the beginning of the
reference date’s month and ending at the
reference date. For example, if the reference date
is 2011-12-25, the period is 2011-12-01 to
2011-12-25.

(continues)

Table 21-1 Supported time periods (continued)

Time period Description

310 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Month to Date Last Year Same as Month To Date, but for the previous nth
year. This time period requires another property,
Number of Years Ago, which specifies which
prior year. For example, if the reference date is
2011-12-25 and Number of Years Ago is 1, the
period is 2010-12-01 to 2010-12-25.

Next N Periods The next n periods from the reference date. This
time period requires two additional properties:
■ Number of Periods Ago, which specifies the

number of periods
■ The First Period, which specifies either year,

quarter, month, week, or day as the period in
which to begin the calculation

For example if the reference date is 2012-01-01,
Number of Periods Ago is 1, and The First
Period is Month, then the period is 2012-01-01 to
2012-01-31.

Period to Date The period from a specified period relative to
the reference date. For example, use to
aggregate data for the same quarter to date, five
years ago.
This time period requires three additional
properties:
■ The First Period, which specifies either year,

quarter, or month as the type of period for
which to aggregate data

■ Number of Periods Ago, which specifies the
number of prior periods (type of period
specified next), from which to begin the
calculation

■ The Second Period, which specifies either
year, quarter, month, or day

For example, if the reference date is 2012-02-08,
to aggregate data for the same quarter up to
02-08, five years ago, specify the following:
■ The First Period: Quarter
■ Number of Periods Ago: 5
■ The Second Period: Year
Data is aggregated for 2007-01-01 to 2007-02-08.

Table 21-1 Supported time periods (continued)

Time period Description

Chapter 21, Disp lay ing cross tab data by relat ive t ime per iods 311

Previous N Month The previous nth month relative to the month
and year portions of the reference date (the day
portion is ignored). This time period requires
another property, Number of Months Ago,
which specifies which prior month. For
example, to specify three months back from the
reference month, type 3. If the reference date is
2012-01-15 and Number of Months Ago is 3,
then the period is 2011-10-01 to 2011-10-31.

Previous N Month to Date The previous nth month relative to the reference
date. This time period requires another
property, Number of Months Ago, which
specifies which prior month. For example, to
specify three months back from the reference
date, type 3. If the reference date is 2012-01-15
and Number of Months Ago is 3, then the
period is 2011-10-01 to 2011-10-15.

Previous N Quarter The previous nth quarter relative to the month
and year portions of the reference date (the day
portion is ignored). This time period requires
another property, Number of Quarters Ago,
which specifies which prior quarter. For
example, to specify one quarter back from the
reference date, type 1. If the reference date is
2012-03-15 and Number of Quarters Ago is 1,
then the period is 2011-10-01 to 2011-12-31.

Previous N Quarter to Date The previous nth quarter relative to the
reference date. This time period requires
another property, Number of Quarters Ago,
which specifies which prior quarter. For
example, to specify one quarter back from the
reference date, type 1. If the reference date is
2012-03-15 and Number of Quarters Ago is 1,
then the period is 2011-10-01 to 2011-12-15.

(continues)

Table 21-1 Supported time periods (continued)

Time period Description

312 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Previous N Year The previous nth year relative to the year
portion of the reference date. This time period
requires another property, Number of Years
Ago, which specifies which prior year. For
example, to specify two years back from the
reference date, type 2. If the reference date is
2011-09-30 and Number of Years Ago is 2, then
the period is 2009-01-01 to 2009-12-31.

Previous N Year to Date The previous nth year relative to the reference
date. This time period requires another
property, Number of Years Ago, which specifies
which prior year. For example, to specify two
years back from the reference date, type 2. If the
reference date is 2011-09-30 and Number of
Years Ago is 2, then the period is 2009-01-01 to
2009-09-30.

Quarter to Date The period starting at the beginning of the
reference date’s quarter and ending at the
reference date. For example, if the reference date
is 2011-12-25, the period is 2011-10-01 to
2011-12-25.

Quarter to Date Last Year Same as Quarter To Date, but for the previous
nth year. This time period requires another
property, Number of Years Ago, which specifies
which prior year. For example, if the reference
date is 2011-12-25 and Number of Years Ago is
1, then the period is 2010-10-01 to 2010-12-25.

Trailing N Days The last n days from the reference date. This
time period requires another property, Number
of Days Ago, which specifies the number of
trailing days. For example, if the reference date
is 2011-12-25, and Number of Days Ago is 15,
then the period is 2011-12-10 to 2011-12-24.

Trailing N Months The last n months from the reference date. This
time period requires another property, Number
of Months Ago, which specifies the number of
trailing months. For example, if the reference
date is 2011-12-25, and Number of Months Ago
is 3, then the period is 2011-09-25 to 2011-12-25.

Table 21-1 Supported time periods (continued)

Time period Description

Chapter 21, Disp laying cross tab data by rela t ive t ime per iods 313

Using the * to Date and Trailing N * time periods
Time periods, such as Month to Date, Quarter to Date, Previous N Year to Date,
Trailing N Months, and Trailing N Periods, are calculated using the year, month,
and day parts of a reference date. For example, Month to Date covers the period
starting at the beginning of the reference date’s month and ending at the reference

Trailing N Periods The last n periods from a specified period
relative to the reference date. For example, use
to aggregate data for the two months prior to
the reference date five years ago.
This time period requires four additional
properties. The first and second properties
define the period for which to aggregate data:
■ Number of Periods Ago, which specifies the

number of periods
■ The First Period, which specifies either year,

quarter, month, or day as the type of period
The third and fourth properties define the
period relative to the reference date from which
to begin the calculation.
■ Number of Periods Ago, which specifies the

number of prior periods
■ The Second Period, which specifies either

year, quarter, month, or day as the type of
period

For example, if the reference date is 2012-01-01,
to aggregate data for the two months prior to
January 1, five years ago, specify the following:
■ Number of Periods Ago: 2
■ The First Period: Month
■ Number of Periods Ago: 5
■ The Second Period: Year
Data is aggregated for the period 2007-11-01 to
2007-12-31.

Year to Date The period starting at the beginning of the
reference date’s year and ending at the reference
date. For example, if the reference date is
2011-06-30, the period is 2011-01-01 to
2011-06-30.

Table 21-1 Supported time periods (continued)

Time period Description

314 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

date. If the reference date is 2012-01-08, the period is 2012-01-01 to 2012-01-08.
Contrast this with Current Month, which is calculated using only the year and
month parts of a reference date. For a reference date of 2012-01-08, Current Month
covers the entire month, 2012-01-01 to 2012-01-31.

Because the * to Date and Trailing N * time periods use the day part of a reference
date, the time dimension defined in the cube must include the Day Of Year level.
Figure 21-10 shows an example in which the time levels, Year, Quarter, Month,
and Day Of Year, are selected for a time dimension.

Figure 21-10 Time levels selected for a time dimension in a cube

If the time dimension in the cube does not include the Day of Year level, and you
use a * to Date or a Trailing N * time period in a relative time period measure,
BIRT displays a warning when you run the report. In the generated report, those
measures display the wrong results. Month to Date returns the same results as
Current Month, Quarter to Date returns the same results as Current Quarter, and
so on. In other words, the day part of the reference date has no effect.

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 315

C h a p t e r

22
Chapter 22Adding HTML buttons

to a report
This chapter contains the following topics:

■ About HTML buttons

■ Creating an HTML button

■ Writing code for an HTML button

■ Changing the appearance of an HTML button

316 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About HTML buttons
In a BIRT report, an HTML button is a report element that provides the same
functionality as a button defined with the HTML <button> tag in a web page. The
HTML button can execute client-side JavaScript code associated with button
events, such as a button click or double-click.

You can use HTML buttons to provide users with custom interactive reporting
functionality. For example, you can create HTML buttons that, when clicked,
filter data, hide or show data, sort data, link to another report, or perform
calculations.

Figure 22-1 shows Actuate Viewer displaying a product sales report that contains
three buttons at the top. Each button provides a different data filtering option.
The user can choose to view all product sales, the top ten products, or the bottom
ten products. The report in Figure 22-1 shows the top ten products.

Figure 22-1 Report with HTML buttons that provide different data filtering options

You can also use HTML buttons to integrate a report with other enterprise
applications. Figure 22-2 shows an example of a report that uses Check Inventory
and Process Order buttons to link to business processes that run in a different
application.

The HTML button is supported in HTML reports only. It does not work in other
output formats, such as PDF or Excel, and appears as static text in those
documents. If a report is to be viewed in formats other than HTML, use the
Visibility property to hide HTML buttons in all output formats, except HTML.

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 317

Figure 22-2 Report with HTML buttons that link to business processes

Creating an HTML button
Creating a functional HTML button entails inserting the HTML button element in
the desired location in the report, specifying the text to display on the button,
then programming the button’s action. You can place an HTML button in the
report page, a grid, table, list, and cross tab.

How to create an HTML button

1 Drag an HTML button element from the palette and drop it in the desired
location in the report.

2 In HTML Button, specify the following values:

1 In Name, type a different name for the element if you do not want to use
the default name. Each HTML button must have a unique name.

2 In Value, type the text to display on the button. Alternatively, select
JavaScript Syntax or EasyScript Syntax to create an expression to display a
dynamic or calculated value. Figure 22-3 shows an example of text
specified for Value.

318 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 22-3 Definition of an HTML button

3 Choose OK. A message appears, providing information about writing code
for the button. Choose OK.

The HTML button appears in the report.

3 While the button is selected, choose the Script tab.

4 In the script editor, click New Event Function and select a button event from
the drop-down list, shown in Figure 22-4.

Figure 22-4 Click New Event Function to display the list of button events

5 Write JavaScript code to program the button’s action for the selected event.
The next section provides information about this task.

6 Run the report in the web viewer to test the button’s functionality. If you do
not receive expected results, or if you receive an error, check the event handler
script for possible problems.

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 319

Writing code for an HTML button
After inserting an HTML button in a report, you use the script editor to write
JavaScript code that specifies the task to perform when a particular button event
occurs. This type of code is called an event handler. HTML button event handlers
can consist of any valid JavaScript code, and typically access report data and the
Actuate JavaScript API to provide interactive viewing functionality.

The HTML button supports multiple events, and you can write multiple event
handlers for a single button to execute different routines based on the event that
occurs. For example, you can write an event handler that displays help
information when the user moves the mouse pointer over a button, and a second
event handler to run a business process when the user clicks the button.

Table 22-1 lists and describes the events that the HTML button supports and for
which you can write code.

When you select an event for which to write code, the script editor provides a
JavaScript code template, as shown in Figure 22-5.

The following line of code in the template instructs the software to execute the
code within the braces that follow when a click, or button press, event occurs:

this.onclick = function(event)

Do not modify this line of code. Write your JavaScript code within the braces
following that line.

Table 22-1 Supported events

Event Description

onblur Occurs when the button loses focus, or stops being active

onclick Occurs when the button is clicked

ondblclick Occurs when the button is double-clicked

onfocus Occurs when the button gets focus, or becomes active

onkeydown Occurs when a keyboard key is pressed

onkeypress Occurs when a keyboard key is pressed and released

onkeyup Occurs when a keyboard key is released

onmousedown Occurs when a mouse button is pressed

onmousemove Occurs when a mouse pointer moves when it is over the
button

onmouseover Occurs when a mouse pointer moves onto the button

onmouseup Occurs when a mouse button is released

320 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 22-5 Script editor displaying a script template

If you write multiple event handlers for an HTML button, the script editor places
all the event handlers serially, as shown in the following code example:

/**
* Occurs when mouse clicks.
 * @param event */

this.onclick = function(event)
{

/* onclick code here */
}

/**
* Occurs when a mouse button is released.
 * @param event */

this.onmouseup = function(event)
{
 /* onmouseup code here */
}

Accessing report data
It is common to use HTML buttons to perform calculations on-demand or to
present additional information. For example, rather than display customer notes
that take up space in a report or that users view infrequently, you can create an
HTML button that, when clicked, displays the information when users want to
view the information.

These types of event handlers typically require access to data in the report, such
as row data, aggregate data, or report parameter values. To provide event
handlers with access to report data, you must do the following:

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 321

1 Insert the HTML button in a container, such as a table, that provides access to
data.

2 For each type of data, create a variable for the HTML button using the
Variables page on Property Editor. Figure 22-6 shows an HTML button
variable named CustomerNotes whose value is set to the Notes column.

Figure 22-6 Variable associated with an HTML button

After you create a variable, use dataObject to access the variable in an event
handler. For example, to access the variable CustomerNotes, use
dataObject.CustomerNotes, as shown in the following event handler code:

/**
* Occurs when mouse clicks.
 * @param event */
this.onclick = function(event)
{

alert("Customer notes: " +
"\n" + dataObject.CustomerNotes);

}

This example uses the JavaScript alert function to display customer notes in a
message box, as shown in Figure 22-7.

Figure 22-7 Message box displaying a note when the HTML button is clicked

The next example shows how to use an HTML button to calculate the price of a
product after applying a discount specified by the user at report view time.
Figure 22-8 shows the report in the web viewer. The report lists the products and
their MSRP (Manufacturer’s Suggested Retail Price). Each product row contains a
Discounted Price button for calculating the discounted price for that product.

322 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 22-8 Product report using HTML buttons to calculate discounted prices

When the user clicks a button, a window prompts the user to enter a discount
percent, as shown in Figure 22-9.

Figure 22-9 Window prompting for a discount percent

After the user enters a value, such as 10, and chooses OK, another window
displays the product’s discounted price, as shown in Figure 22-10.

Figure 22-10 Window displaying the discounted price

To create this HTML button, a button labeled Discounted Price is inserted in the
detail row of a table. The HTML button’s event handler code requires the MSRP

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 323

values to calculate the discounted price, so a variable is created. Figure 22-11
shows the definition of a variable named Price.

Figure 22-11 Price variable defined for the HTML button

The event handler code for the HTML button is as follows:

this.onclick = function(event)
{

Discount = window.prompt('Enter the discount percent: ','');
DiscountedPrice = dataObject.Price - (dataObject.Price *

(Discount/100));
alert("Discounted price: " + DiscountedPrice);

}

The first line after the opening brace prompts the user for a discount value and
stores the value in the Discount variable. The second line calculates the
discounted price using the values in the Price and Discount variables. The third
line displays the results in a message box. Note that this event handler code
covers only the main tasks. A more complete event handler would also perform
data validation to ensure that the input value is a number, and handle the case if
the user chooses Cancel at the prompt.

How to add a variable to an HTML button

1 In the layout editor, select the HTML button to which to add a variable.

2 Choose Property Editor, then choose the Variables tab.

3 In Variables, choose Add.

4 In Add Variables, specify the following values:

1 In Name, type a unique name for the variable. JavaScript event handlers
use the name to access the variable’s information through dataObject. For
example, the event handler accesses a variable named credit as
dataObject.credit.

2 In Expression, type the value that the variable contains. You can also use
Expression Builder to create a value. Choose OK.

Variables displays the variable you created, as shown in Figure 22-12.

324 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 22-12 Variable defined for an HTML button

Using the Actuate JavaScript API
Actuate provides a JavaScript API (JSAPI) to support the integration of Actuate
technology with web applications. Application developers can use the API to
embed entire reports or individual report elements, such as charts or tables, into
existing web pages.

HTML button event handlers can also use JSAPI to access report elements,
manipulate data, and refresh a report in the Actuate viewer. For example, you can
use the JSAPI to implement interactive functionality in the viewer, such as sorting
and filtering data, linking to other report elements, and displaying or hiding
report elements.

The three HTML buttons in the report shown in Figure 22-1, which provide three
data filtering options, use methods in the JSAPI to get the current viewer, create
the filters, and reload the report with new data each time the user clicks one of the
buttons. The following is the event handler code for the Top Ten Products button:

this.onclick = function(event)
{

//Get the current viewer object and the table with the
//bookmark DetailTable on the current page.
var viewer = this.getViewer();
var pagecontents = viewer.getCurrentPageContent();
var table = pagecontents.getTableByBookmark("DetailTable");

//Create a top 10 filter on the table
table.setFilters(new actuate.data.Filter("PRICE",
actuate.data.Filter.TOP_N, "10"));

//Reload the table
table.submit();

}

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 325

The following is the event handler code for the All Products button:

this.onclick = function(event)
{

var viewer = this.getViewer();
var pagecontents = viewer.getCurrentPageContent();
var table = pagecontents.getTableByBookmark("DetailTable");
table.clearFilters("PRICE");
table.submit();

}

The JSAPI provides many classes and methods that are useful for adding
functionality to HTML buttons. For more information about using the JSAPI, see
Using Actuate JavaScript API.

Testing an HTML button
As mentioned previously, HTML buttons are supported in HTML reports only. To
test the functionality of an HTML button, run the report in the web viewer. The
previewer in the report editor does not support the Actuate JavaScript API. You
can view an HTML button that contains JSAPI code in the previewer, but it does
not respond to any button events.

Changing the appearance of an HTML button
As with other report elements, you can modify an HTML button by changing
property values, such as its name, its value, or aspects of its appearance. The tabs
on the property sheet for the element support altering the appearance, visibility,
and other features.

The general properties page provides the ability to change the size, color, and the
appearance of the text of the button. By default, the button’s size adjusts to the
length of the text on the button. If a report contains multiple buttons and you
want all the buttons to be the same size, specify values for the Width and Height
properties.

The general properties page also supports adding an image to the face of the
button. Use the Upload button next to the Image property to add an image.
Before doing so, make sure the image file is the appropriate size for the button. A
button expands to display the image in its full size unless you specify Width and
Height values. So, if an image is large, and you use the default auto-sizing
feature, the button is large. If you use explicit Width and Height values, and the
image is larger than the specified button size, the image is truncated. To change
the size of an image, you must edit the image using a graphic editing tool.

Figure 22-13 shows the general properties for an HTML button.

326 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 22-13 General properties for an HTML button

Use the padding settings, as shown in Figure 22-14, to add extra space around the
text or image on the face of the HTML button.

Figure 22-14 Padding properties for an HTML button

Padding supports the use of different units, such as inches or points. When you
add padding, it affects the HTML button as shown in Figure 22-15. The button on
the left uses the default padding values. The button on the right uses padding
values of 0.5 inch at the top and bottom.

Figure 22-15 Padding added to an HTML button using an image

Use the margin settings to increase the space around the entire button. Specifying
margin values is similar to specifying padding values, as shown in Figure 22-16.

Padding of 0.5 inch at the
top and bottom of button

C h a p t e r 2 2 , A d d i n g H T M L b u t t o n s t o a r e p o r t 327

Figure 22-16 Margin properties for an HTML button

However, whereas padding modifies the size of the HTML button, margins
modify the space around the button and do not change the button size.
Figure 22-17 shows two buttons, each within a cell. The button on the left uses the
default margin values. The button on the right uses margin values of 0.5 at the top
and bottom.

Figure 22-17 Margin space around an HTML button in a table

Visibility, Page Break, Table of Contents, and other properties operate in the same
manner as they do for other report elements.

How to change the name or value of an HTML button

1 Double-click the HTML button.

2 In HTML Button, in Name, type the new button name. In Value, type the new
value.

3 Choose OK. The HTML button displays the new value.

Margin of 0.5 inch at the
top and bottom of button

328 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Chapter 23, Contro l l ing user access to repor t pages and data 329

C h a p t e r

23
Chapter 23Controlling user access to

report pages and data
This chapter contains the following topics:

■ About the security model

■ Controlling user access to report pages

■ Controlling user access to data

330 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About the security model
All files stored in an Actuate BIRT iServer Encyclopedia volume are subject to a
standard security procedure, which restricts file access to authorized users. The
iServer security model is based on roles and privileges. The iServer administrator
creates roles for various job functions in an organization, such as finance,
marketing, and sales. The privileges, or permissions, to perform certain
operations, such as read, write, and execute, are assigned to roles. Users are
assigned roles, and, through these roles, acquire the privileges to perform
particular operations on folders and files.

With this level of security, each user has access to files and folders on a need-to-
know basis. For security at a more detailed level, iServer provides the following
types of security:

■ Page-level security, which controls user access to particular sections or pages
in a report. This security feature requires the Page Level Security option on
iServer. The published report must be assigned the Secure Read privilege.

■ Data security, which controls user access to a particular set of data provided
by a BIRT data object. This security feature is part of the core iServer
functionality. The published data object must be assigned the Secure Read
privilege.

The security procedure that applies to files and folders in an iServer volume is
implemented entirely in iServer. Page-level security and data security, however,
require implementation in Actuate BIRT Designer as well.

About access control lists (ACLs) and security IDs
Page-level and data security use the same security mechanism in Actuate BIRT
Designer: access control lists.

An access control list (ACL) is a list of security IDs that tells iServer which users
have access to a particular item in a report or data object. A security ID can be
either a user name or a role defined in iServer. Typically, you use roles because
they are more permanent than user names. A role can be assigned to different
users at different times as employees leave or change positions.

To implement page-level and data security in Actuate BIRT Designer, perform the
following tasks:

■ In the report or data object, select the item to which to apply security.

■ For the item’s Access Control List Expression property, specify an expression
that evaluates to a security ID or a list of security IDs.

Chapter 23, Contro l l ing user access to repor t pages and data 331

ACL expression syntax
The ACL expression must evaluate to a string, and can be either a JavaScript or
EasyScript expression. If specifying multiple security IDs, separate each with a
comma.

The following expressions are examples of ACL expressions in JavaScript. The
first expression specifies a literal role name. The second expression specifies two
literal role names. The third expression evaluates to role names, such as Sales
Manager France or Sales Manager Canada. The fourth expression specifies two
literal role names and an expression that evaluates to role names.

"CFO"
"CFO" + "," + "Sales VP"
"Sales Manager " + row["Country"]
"CFO" + "," + "Sales VP" + "," + "Sales Manager " + row["COUNTRY"]

The following ACL expressions are the EasyScript equivalent:

"CFO"
"CFO" & "," & "Sales VP"
"Sales Manager " & [Country]
"CFO" & "," & "Sales VP" & "," & "Sales Manager " & row["COUNTRY"]

Controlling user access to report pages
In a report that uses page-level security, report users can view only pages to
which they have access. You can design a single report that meets the needs of a
range of users. The most common case is to create a hierarchy of ACLs where
each successive level has access to more information. The ACL hierarchy can
match the organizational hierarchy of a company.

For example, in a report that provides worldwide sales data by region and
country, you can restrict user access to the content as follows:

■ Each country sales manager can view only the pages that display sales data for
her country.

■ Each regional sales manager can view all the pages that display sales data for
the countries in her region.

■ The vice president of sales can view the entire report.

332 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-1 shows the single page that the sales manager in France can view. Note
that the page number is 1.

Figure 23-1 Page that the sales manager in France can view

Chapter 23, Contro l l ing user access to repor t pages and data 333

Figure 23-2 shows the pages that the regional sales manager for Europe can view.
The pages are numbered 1 through 5. Here, the sales data for France is on page 4,
whereas, it is on page 1 in the report that the sales manager of France sees, as
shown in Figure 23-1. The report displays page numbers sequentially in the order
that they appear to a user.

Figure 23-2 Pages that the regional sales manager for Europe can view

334 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-3 shows the full report, which only the vice president of sales can view.

Figure 23-3 Pages that the vice president of sales can view

Chapter 23, Contro l l ing user access to repor t pages and data 335

Without page-level security, you would need to create multiple reports—one
report for each user—and the iServer administrator would then have to define
different security rules for each report, and manage multiple reports. In the sales
report example, which presents data for three regions and eight countries, you
would have to create twelve reports. For large companies, which typically have
more hierarchical levels and more users, the number of reports increases.

Adding page-level security to a report
To implement page-level security in a report, perform the following tasks:

■ Identify the sections that require security.
The most common elements to which to apply security are tables, lists, grids,
and groups defined in a table.

■ Identify the users that can view each section.
Obtain the security IDs, typically roles, from the iServer volume administrator.

■ Set security.
For each element that requires security, right click the element, then select
Security from the context menu. Set the Access Control List Expression
property to the security ID or IDs to which to grant access to the element’s
content.

Example 1

Figure 23-4 shows the design for the sales report shown in the previous section.
The report design consists of a single table that groups data by region, country,
and product.

Figure 23-4 Design of report that groups sales data by region and country

Page-level security is applied to these elements: the table, the Region group, and
the Country group. Figure 23-5 shows the Security dialog for the table element.

336 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-5 Page-level security applied to the table and two of its groups

■ The Access Control List Expression property is set to the value "Sales VP".

■ The Cascade ACL option is selected. This setting propagates the specified
ACL to all the elements in the table.

These settings specify that only the Sales VP has access to all of the table’s
contents.

■ For the Region group:

■ The Access Control List expression is:

"Regional Sales Manager: " + row["REGION"]

This expression specifies that data for each region is restricted to a specific
regional sales manager role. For example, only a user with the Regional
Sales Manager: Europe role can view the sales data for Europe.

■ Cascade is set to True. This value propagates the ACL to the elements in the
Region group, providing the regional sales manager access to all the data
within the Region group.

■ For the Country group:

■ The Access Control List expression is:

"Sales Manager: " + row["COUNTRY"]

This expression specifies that data for each country is restricted to a specific
sales manager role. For example, only a user with the Sales Manager:
France role can view the sales data for France.

■ Cascade is set to True. This value propagates the ACL to the elements in the
Country group, providing the sales manager access to all the data within
the Country group.

Chapter 23, Contro l l ing user access to repor t pages and data 337

Example 2

This example shows how to implement page-level security in a report that
contains multiple tables. Figure 23-6 shows a report design that contains four
tables and identifies the roles that can view each table. The last table shows
detailed sales data grouped by country and product. The CEO, Sales VP, and
Sales Director can view all the content in this table. Each sales manager can view
only the sales data for her country.

Figure 23-6 Design of report that contains four tables and the roles that can
access each table

There are several ways to implement page-level security in this report. You can:

■ Select each table and set each table’s Access Control List Expression property
to the roles identified in Figure 23-6.

The ACL for the first, second, and third tables would be:

"CEO" + "," + "Sales VP"

The ACL for the first fourth table would be:

"CEO" + "," + "Sales VP" + "," + "Sales Director"

The ACL for the Country group in the fourth table would be:

"CEO" + "," + "Sales VP" + "," + "Sales Director" + "," +
"Sales Manager of " + row["COUNTRY"]

CEO, Sales VP

CEO, Sales VP

CEO, Sales VP

CEO, Sales VP,
Sales Director

CEO, Sales VP,
Sales Director,
Sales Manager of
[COUNTRY]

338 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

■ Use the Cascade ACL option to cascade security IDs from a container element
to its contents. Because the CEO and Sales VP roles can view the entire report,
it is more efficient to specify the ACL once at the topmost container, the report
element, than it is to specify the same ACL multiple times.

The ACL for the report element would be:

"CEO" + "," + "Sales VP"

The ACL for the fourth table would be:

"Sales Director"

The ACL for the Country group in the fourth table would be:

"Sales Manager of " + row["COUNTRY"]

■ Add a grid to the report, place all the tables in the grid, and cascade the
"CEO" + "," + "Sales VP" ACL expression from the grid instead of from the
report element. This design is more versatile than the previous one because it
is often practical to leave the ACL at the report level blank to grant all users
access to the report. Later, if you add new sections, such as a title page, for a
broader range of users, it is easier to start with the rule that all users can view
all the content in a report, then restrict access to particular sections.

The report examples in this section illustrate several key concepts about
page-level security, which are summarized next. Understanding these concepts
can help you design a report to use page-level security.

■ When an element’s ACL expression property is blank, there are no viewing
restrictions for that element, except those restrictions (determined by the
ACLs) that the element inherits from its container.

■ An element inherits the ACLs from its container when the container’s Cascade
ACL option is selected. This option, selected by default, means that a user who
is permitted to view a container can also view all elements within the
container.

■ The report element is the topmost container. If its ACL expression property is
blank, BIRT assigns an internal ACL of "__all" to the report. This setting
combined with the selected Cascade ACL option ensures that a report created
initially is accessible to all users.

■ BIRT generates one report document, inserting a page break between elements
that have different ACLs. This concept explains why some pages display just a
group header, as Figure 23-3 shows, when groups in a table have different
ACLs.

Enabling and disabling page-level security
For ACLs to take effect when the report is run on iServer, you must enable
page-level security in the report design. When enabled, BIRT generates a report

Chapter 23, Contro l l ing user access to repor t pages and data 339

that consists of pages, which are restricted to users with specified security IDs. If
you decide later to make the entire report available to users, all you do is disable
the page-level security option. You do not have to remove the ACLs.

How to turn page-level security on or off

1 In the layout editor, right-click a blank area of the report, then select Security.

2 In Security, shown in Figure 23-7, either select or deselect Enable Page Level
Security on generated report document.

Figure 23-7 Enabling page-level security

Configuring page numbers
A report that uses page-level security provides two options for displaying page
numbers. The report can display page numbers sequentially in the order that they
appear to a user. For example, if a user can view pages 1, 5, 6, and 8 of a report,
the page numbers that the user sees are 1, 2, 3, and 4. Alternatively, the report can
display the actual page numbers 1, 5, 6, and 8.

Similarly, for page number formats that include the total page count, such as
1 of 4, the total page count can be the number of pages visible to the user or the
number of pages in the report.

How to configure page numbers

This procedure assumes that the report already contains page number elements.

1 Choose Master Page to view the page number elements. Figure 23-8 shows an
example of a master page where the footer contains three elements to display
page numbers in the format 1 of 10.

Figure 23-8 Master page containing page number elements

2 Right-click the Page Number element and choose Security.

Option to enable
or disable
page-level security

340 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

3 In Security, shown in Figure 23-9, select a display option, then choose OK.

■ Select Visible Page Number to display numbers sequentially in the order
that the pages appear to the user.

■ Select Actual Page Number to display the numbers as they appear in the
entire report.

Figure 23-9 Selecting a page-numbering option

4 If the page number format includes a total page count, as shown in the sample
master page in Figure 23-8, use the instructions in the previous step to select a
display option for the Total Page element.

Testing page-level security
Actuate BIRT Designer supports the simulation of secure report viewing, so that
you can test page-level security without having to publish the report to iServer,
log in with different user credentials, run the report and verify its output.

How to test page-level security

1 Make sure page-level security is enabled. This procedure is described earlier in
this chapter.

2 Choose Run➛View Report with Page Security, and select the output format in
which to view the report.

3 In Run Report with Page Level Security, shown in Figure 23-10, type a security
ID specified in an ACL. For example:

Sales Manager: France

Figure 23-10 Using a specified security ID

Choose OK. The report runs and displays only the page or pages that the
specified security ID can view.

Chapter 23, Contro l l ing user access to repor t pages and data 341

4 Repeat the previous step until you finish testing all the security IDs used in the
report.

Controlling user access to data
In addition to page-level security, iServer also supports data security, which
controls user access to a particular set of data provided by a BIRT data object. For
example, you can design a data object that returns one set of data rows for one
group of dashboard or report users, and a different set for another group of users.

You can limit access to the following items in a data object:

■ A data set, its rows and columns

■ A cube, its measures, dimensions, dimension levels, and dimension members

After designing the data object, generate a data object store (a .data file) and
publish this file to an iServer volume. iServer supports data security on .data files,
but not on .datadesign files.

A user can only see and use the data items to which she is granted access. The
security rules apply to users designing a dashboard in BIRT 360 or a report in
BIRT Studio, as well as, users running a dashboard or report.

Unlike page-level security, the concept of cascading, or inherited, ACLs does not
apply to data security. A cube does not inherit the ACL specified for the data set
that the cube uses. Similarly, a joined data set does not inherit ACLs specified for
the underlying data sets.

Adding security to a data object
To implement security in a data object, perform the following tasks:

■ Identify the data items that require security.

■ Identify the users that can view each item. Obtain the security IDs, typically
roles, from the iServer volume administrator.

■ In the data object design (.datadesign), for each item that requires security, set
the item’s Access Control List Expression property to the security ID or IDs to
which to grant access to the item.

Adding security to a data set
To apply security to a data set, select Security, then specify the security IDs in
Access Control List Expression. Figure 23-11 shows an example where the
expression specified for the data set’s Access Control List Expression property is:

"CEO" + "," + "CFO"

342 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-11 Data security applied to the data set

In the example, only users with the CEO or CFO role can access the data set. For
example, in a report that contains a table that uses the secured data set, only the
CEO and CFO can view the data in the table, as shown in Figure 23-12. Other
users see an empty table, as shown in Figure 23-13.

Figure 23-12 Preview of the report for the CEO and CFO roles

As Figure 23-13 shows, the table does not display data from the secured data set,
but the labels in the table’s header appear. To hide the entire table if there is no

Chapter 23, Contro l l ing user access to repor t pages and data 343

data, use the table’s Visibility property. Specify an expression, as shown in the
following example, as the condition for hiding the table. In the expression,
Row_Count is a column binding that uses the COUNT function to return the
number of rows in the table.

row["Row_Count"] == null

Figure 23-13 Preview of the report for roles other than CEO or CFO

You can also apply security to rows in a data set, which is a typical approach. To
do so, specify the security IDs in Row Access Control List Expression.
Figure 23-14 shows an example where the expression specified for the Row
Access Control List Expression property is:

"HR Director" + "," + "Manager: Office " + row["OFFICECODE"]

Figure 23-14 Data security applied to data set rows

Security applied to data set rows acts as a filter. In the example shown in
Figure 23-14, the HR Director can view all rows in the data set. Managers can
view only rows that pertain to their department as specified by the office code.

Table
displays
header
labels, but
no data

344 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-15 shows a report design that uses the secured data object. In the
design, a table contains data elements that access the data set columns in the data
object.

Figure 23-15 Report design that uses data from a data set in a secured data object

When run and viewed by the HR Director, the report displays all the rows in the
data set, as shown in Figure 23-16.

Figure 23-16 Preview of the report for the HR Director role

When run and viewed by the manager of a specific office code, the report
displays only the rows for that office. Figure 23-17 shows the report that
Manager: Office 4 sees.

Chapter 23, Contro l l ing user access to repor t pages and data 345

Figure 23-17 Preview of the report for the Manager: Office 4 role

As the example shows, applying security to data set rows is useful for creating a
single data set that provides different data to different users.

You can also apply security to each column in a data set. For example, you can
restrict a profit/loss column or a salary column to users with executive-level
roles. To do so, select Output Columns, select the column, then specify the
security IDs in Access Control List Expression. Figure 23-18 shows an example
where the expression specified for a column’s Access Control List Expression
property is:

"Sales VP"

Figure 23-18 Data security applied to a column in a data set

In the example, only users with the Sales VP role can access data in the PROFIT
column. Figure 23-19 shows a report using the PROFIT column and how the
report appears to a user with the Sales VP role.

346 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-19 Preview of the report for the Sales VP role

Figure 23-20 shows the same report, but as viewed by a user without the Sales VP
role. There is no data in the PROFIT column; only the PROFIT label appears in the
table header. To hide the entire column if there is no data, set the column’s
Visibility property to an expression, such as the following:

row["PROFIT"] == null

Figure 23-20 Preview of the report for roles other than Sales VP

Security at the column level also controls the availability of certain columns to
users designing a dashboard in BIRT 360 or a report in BIRT Studio.

Chapter 23, Contro l l ing user access to repor t pages and data 347

Adding security to a cube
To apply security to a cube, in the cube builder, choose Security, then specify the
security IDs in Access Control List Expression. Figure 23-21 shows an example
where the expression specified for the Access Control List Expression property is:

"CEO" + "," + "CFO" + "," + "Sales VP"

Only users with the CEO, CFO, or Sales VP role have access to the cube. For
example, in a report that contains a cross tab that uses the secured cube, only the
CEO, CFO, and Sales VP can view the data in the cross tab. Other users see an
empty cross tab. Similarly, in BIRT Studio or BIRT 360, only users with those roles
can see and use the secured cube in their report designs or dashboards.

Figure 23-21 Data security applied to a cube

Within a cube, you can limit access to each measure and dimension. For example,
you can restrict a profit measure to users with executive-level roles. In the cube
builder, choose Groups and Summaries, select the dimension or measure, then
specify the security IDs in the Access Control List Expression property.

Figure 23-22 shows an example where the expression specified for a measure’s
Access Control List Expression property is:

"CEO" + "," + "CFO"

In a report that contains a cross tab that uses this cube, only the CEO and CFO can
view the QUANTITY data in the cross tab.

348 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 23-22 Data security applied to a cube measure

With a dimension, you can also restrict access according to the dimension’s
values, or members. For example, you can provide executives access to sales data
for all countries and restrict managers to sales data for their respective countries.
Figure 23-23 shows security applied to the members of a Country dimension. The
expression specified for the Member Access Control List Expression property is:

"Sales VP" + "," + "Manager " + dataSetRow["COUNTRY"]

In this example, the Sales VP can view data for all countries. Managers can view
only data for their country.

Figure 23-23 Data security applied to members of a dimension

Chapter 23, Contro l l ing user access to repor t pages and data 349

Notice that the Group Level dialog box, as shown in Figure 23-23, displays two
ACL properties. Access Control List Expression controls access to the dimension
(users either have access to the entire dimension or not at all), whereas, Member
Access Control List Expression controls access to specific data within the
dimension.

Figure 23-24 shows a report design, which uses the data object that contains the
cube with security applied to its country dimension. In the report design, a cross
tab uses data from the cube to display sales totals by country and by quarter.

Figure 23-24 Report design that uses data from the secured cube

When the report is run and viewed by a user with the Sales VP role, the cross tab
displays sales data for all countries, as shown in Figure 23-25.

Figure 23-25 Preview of the cross tab for the Sales VP role

350 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

When the report is run and viewed by the manager of a specific country, the cross
tab displays only sales data for his or her specific country. Figure 23-26 shows the
cross tab that the Manager France role sees.

Figure 23-26 Preview of the cross tab for the Manager France role

Enabling and disabling data security
For ACLs to take effect, you must enable data security in the data object. If you
decide later to make all the data in the data object available to users, all you do is
disable data security. You do not have to remove the ACLs.

How to turn data security on or off

1 In the layout editor, right-click in an empty area of the data object design, then
select Security.

2 In Security, shown in Figure 23-27, either select or deselect Enable Data
Security.

Figure 23-27 Enabling data security

Testing data security
Actuate BIRT Designer supports the simulation of viewing reports with data
security. You can test data security in a report without having to publish the
report to iServer, log in with different user credentials, run the report and verify
its output.

To test data security from the perspective of a user designing a dashboard in
BIRT 360 or a report in BIRT Studio, you need to run tests on the iServer. The
testing procedure entails the following steps:

Option to enable
or disable data
security

Chapter 23, Contro l l ing user access to repor t pages and data 351

■ Publishing the data object (.data file) to an iServer volume

■ Sharing the data object with selected users or roles, and assigning the Secure
Read privilege

■ Logging in with each user credential

■ Launching the dashboard design tool or BIRT Studio, and using the data
object as a source of data for the dashboard or report.

How to test data security in a report in Actuate BIRT Designer

1 Using Actuate BIRT Designer, build a report that uses a secure data object
store (.data) as its data source. For information about this procedure, see
Chapter 4, “Accessing data in a data object.”

2 When you finish building the report, choose Run➛View Report with Data
Security, and select the output format in which to view the report.

3 In Run Report with Data Security Enabled, shown in Figure 23-28, type a
security ID specified in an ACL in the data object. For example:

Manager: Office 4

Figure 23-28 Running a report with data security using a specified security ID

Choose OK.

The report runs and displays only the content that the specified security ID
can view.

4 Repeat the previous step until you finish testing all the security IDs used in the
report.

352 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 2 4 , A c c e s s i n g i S e r v e r e n v i r o n m e n t i n f o r m a t i o n 353

C h a p t e r

24
Chapter 24Accessing iServer

environment information
This chapter contains the following topics:

■ Writing event handlers to retrieve iServer environment information

■ Debugging event handlers that use the iServer API

■ iServer API reference

354 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Writing event handlers to retrieve iServer environment
information

Report developers distribute reports to users by publishing them to Actuate BIRT
iServer. Sometimes a report requires information about the iServer environment
to implement application or business logic based on, for example, the security
credentials of the user running the report, the browser in which the report is
viewed, the server volume on which the report is run, and so on. BIRT provides
an API, referred to in this chapter as the iServer API, that enables access to this
type of information.

To use the iServer API in a report, you write event handler scripts in either Java or
JavaScript. BIRT event handlers are associated with all the elements that make up
a report, such as data sources, data sets, tables, charts, and labels. When a report
is run, BIRT fires events and executes event handlers in a specific sequence to
generate and render the report.

Writing event handlers in a report requires knowledge of the BIRT event model.
For information about the event model and details about writing event handlers
in Java and JavaScript, see Integrating and Extending BIRT. This chapter describes
the additional requirements for accessing and debugging the iServer API in an
event handler.

Writing a JavaScript event handler
You write a JavaScript event handler that uses the iServer API the same way you
write other event handlers. In Actuate BIRT Designer, you select an element, such
as the report design or a table, then use the script editor to select an event, such as
beforeFactory or onCreate, for which to write an event handler.

Figure 24-1 shows the script editor displaying event-handling code written for
the report design’s beforeFactory event.

Figure 24-1 Event-handling code in the script editor

C h a p t e r 2 4 , A c c e s s i n g i S e r v e r e n v i r o n m e n t i n f o r m a t i o n 355

Writing a Java event handler
Writing a Java event handler that uses the iServer API is similar to writing other
types of event handlers. You create a Java event handler class, make the class
available to BIRT, and associate the class with a report element. The difference is
the additional JAR files required to access the iServer API.

You must add the following JAR files in the build path and classpath when
configuring the Java event handler project:

■ $ACTUATE_HOME\iServer\Jar\BIRT\lib\scriptapi.jar

This JAR file provides the event handler classes and access to the
reportContext object. If you use the ULocale methods, com.ibm.icu_version.jar
is also required. $ACTUATE_HOME is the location where iServer is installed.

■ $ACTUATE_HOME\iServer\reportengines\lib\jrem.jar

This JAR file contains the definitions of the classes and methods in the
iServer API.

Figure 24-2 shows the build path of a Java project that uses the iServer API. In this
example, Actuate BIRT Designer is installed on the same machine where iServer
is installed. If Actuate BIRT Designer is installed on a different machine, you must
copy the JAR files from the iServer machine to your workspace.

Figure 24-2 Build path of a Java project that uses the iServer API

356 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About the serverContext object
The BIRT engine uses an object called serverContext to store information about
the iServer environment. The serverContext methods and properties are defined
in the IServerContext interface. The container for the serverContext object is the
application context object appContext. The appContext object stores objects and
values that are used in all phases of report generation and presentation.

The appContext object, in turn, is a property of the reportContext object. This
object stores information associated with the instance of the report that is being
generated or viewed. For example, the reportContext object stores information
about report parameters, global variables, report output format, locale, the
request that runs the report, and the application context. The report context class
defines methods for setting and retrieving these properties. Every event handler
in a BIRT report has access to the reportContext object. In Java, the report context
object is an argument to all event-handler methods.

To call a method to retrieve iServer environment information, the code must
reflect the relationships between the serverContext, appContext, and
reportContext objects.

The following JavaScript code snippet shows how to call the getVolumeName()
method to retrieve the name of the iServer volume in which a report runs:

reportContext.getAppContext().get("ServerContext").getVolumeName()

The following example shows the equivalent code snippet in Java:

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.getVolumeName();

JavaScript event handler example
The code example in Listing 24-1 uses the getUserRoles() method to retrieve the
user’s roles and displays the contents of a report element if the user role is
Manager. This code can be used, for example, in the onPrepare event of a table
element to hide or display the table depending on the user role. The code example
also uses the appendToJobStatus() method to write messages about the user’s
roles to the server job status.

Listing 24-1 JavaScript event handler

userRoles = reportContext.getAppContext().get("ServerContext")
.getUserRoles();

reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("The user roles are:" + userRoles +"\n");

C h a p t e r 2 4 , A c c e s s i n g i S e r v e r e n v i r o n m e n t i n f o r m a t i o n 357

if (userRoles != null)
{

for (i = 0; i < userRoles.size(); i++)

{
if (userRoles.get(i) == "Manager")
{

reportContext.setGlobalVariable("HideDetails", "false");
reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("The user has a Manager role\n");
break;

}

}
}

Java event handler example
Like the JavaScript event handler in the previous section, the Java code example
in Listing 24-2 uses the getUserRoles() method to retrieve the user’s roles and
displays the contents of a table if the user role is Manager. The TableEH class
extends the TableEventAdapter class and implements the event-handler script in
the onPrepare event method.

Listing 24-2 Java event handler class

package server.api.eh;

import java.util.List;

import org.eclipse.birt.report.engine.api.script.IReportContext;
import org.eclipse.birt.report.engine.api.script.element.ITable;
import org.eclipse.birt.report.engine.api.script.eventadapter

.TableEventAdapter;

import com.actuate.reportapi.engine.IServerContext;

public class TableEH extends TableEventAdapter {

public void onPrepare(ITable tbl, IReportContext reportContext)
{

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
List<String> userRoles = scontext.getUserRoles();
scontext.appendToJobStatus("The user roles are:" + userRoles

+"\n");

358 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

for (int i = 0; i < userRoles.size(); i++)
{

if (userRoles.get(i).contentEquals("Manager"))
{

reportContext.setGlobalVariable("HideDetails", "false");
scontext.appendToJobStatus("The user has a Manager role

\n");
break;

}
}

}
}

Debugging event handlers that use the iServer API
A report that uses the iServer API returns the expected results only when it is run
on iServer. When the report is run in Actuate BIRT Designer, the report cannot
access the iServer to retrieve the server information, and the report typically
returns null values. Therefore, you cannot debug the iServer API calls in the same
way you debug other event handlers in Actuate BIRT Designer.

To debug iServer API calls, use the appendToJobStatus() method to write a
debugging message for each event handler. For example, if you write a JavaScript
event handler for the beforeFactory event, add the following line of debugging
code:

reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("Debugging: beforeFactory called.\n");

In a Java event handler, write:

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.appendToJobStatus("Debugging: beforeFactory called.\n");

The appendToJobStatus() method writes a specified string message in the status
section of a job-completion notice. After running the report on iServer, you can
view these messages in either iServer Management Console or iServer
Information Console.

In Management Console, choose Jobs—Completed, then choose the job’s details.
The job’s Status page displays the debug messages in the Status section, as shown
in Figure 24-3.

C h a p t e r 2 4 , A c c e s s i n g i S e r v e r e n v i r o n m e n t i n f o r m a t i o n 359

Figure 24-3 Debug message in the job status page in Management Console

In Information Console, choose My Jobs—Completed, then choose Details next to
the job whose status you want to review. The debug messages appear in the
Status section in the job details page, as shown in Figure 24-4.

Figure 24-4 Debug message in the status section in the job detail page in
Information Console

360 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

iServer API reference
This section lists all the methods in the iServer API in alphabetical order. Each
method entry includes a general description of the method, the JavaScript and
Java syntaxes, the result the method returns, and examples.

appendToJobStatus()
Appends a specified string to the status of the current job. iServer writes status
messages for each report-generation job.

JavaScript
syntax

appendToJobStatus(statusString)

Java
syntax

public void appendToJobStatus(String statusString)

Argument statusString
The string to add to the job status.

Usage Use to provide information for debugging purposes. For example, to verify that
an event handler is executed, write a message indicating that the event method is
called.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.appendToJobStatus("This message appears when beforeFactory is
called.\n");

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.appendToJobStatus("This message appears when

beforeFactory is called.\n");

getAuthenticationId()
Retrieves the current user’s authentication ID.

JavaScript
syntax

getAuthenticationId()

Java
syntax

public String getAuthenticationId()

Usage Use in cases when the report application needs to pass the ID to another
application, such as IDAPI calls to iServer.

Returns An authentication ID in String format.

C h a p t e r 2 4 , A c c e s s i n g i S e r v e r e n v i r o n m e n t i n f o r m a t i o n 361

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getAuthenticationId();

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.getAuthenticationId();

getServerWorkingDirectory()
Retrieves the path to the folder in the file system where temporary files are stored.

JavaScript
syntax

getServerWorkingDirectory()

Java
syntax

public String getServerWorkingDirectory()

Usage Use to read or write information from and to the file system.

Returns The full path to the iServer working directory.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getServerWorkingDirectory();

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.getServerWorkingDirectory();

getUserAgentString()
Identifies the browser used to view a report.

JavaScript
syntax

getUserAgentString()

Java
syntax

public String getUserAgentString()

Usage Use in cases when an application requires different code for different browsers.
The browser information is available only when the report is rendered, so use
getUserAgentString() in a report element’s onRender event.

Returns The browser type in String format. For Internet Explorer, for example,
getUserAgentString() might return a string, such as:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; InfoPath.1;
MS-RTC LM 8)

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getUserAgentString();

362 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.getUserAgentString();

getUserRoles()
Retrieves the roles assigned to the current user.

JavaScript
syntax

getUserRoles()

Java
syntax

public List<String> getUserRoles()

Usage Use in cases when an application requires different code for different iServer
security roles.

Returns The current user’s security roles.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getUserRoles();

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
List<String> userRoles = scontext.getUserRoles();

getVolumeName()
Retrieves the name of the iServer volume on which the report runs.

JavaScript
syntax

getVolumeName()

Java
syntax

public String getVolumeName()

Usage Use in cases when an application running in a multi-volume environment
requires volume information, for example, to implement logging in a report.

Returns The name of the iServer volume running a report.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.getVolumeName();

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.getVolumeName();

C h a p t e r 2 4 , A c c e s s i n g i S e r v e r e n v i r o n m e n t i n f o r m a t i o n 363

setHeadline()
Sets the headline of a generated report. A headline appears in a job completion
notice that iServer writes to a channel.

JavaScript
syntax

setHeadline(headline)

Java
syntax

public void setHeadline(String headline)

Argument headline
A string that represents the headline of a completed job.

Usage Use to specify a headline based on the contents of a report, or on the value of a
report parameter.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.setHeadline("Sales Report for " + params["Region"].value);

Java
example

String region = (String)reportContext.getParameterValue("Region")
IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.setHeadline("Sales Report for " + region);

setVersionName()
Sets the version name of a generated report.

JavaScript
syntax

setVersionName(versionName)

Java
syntax

public void setVersionName(String versionName)

Argument versionName
A string that represents the report’s version name.

Usage Use to specify a version name that includes dynamic data, such as the contents of
a report, the value of a report parameter, or the report-generation date.

JavaScript
example

reportContext.getAppContext().get("ServerContext")
.setVersionName("Version " + new Date());

Java
example

IServerContext scontext;
scontext = (IServerContext)

reportContext.getAppContext().get("ServerContext");
scontext.setVersionName("Version " + new Date());

364 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 2 5 , P e r f o r m i n g i m p a c t a n a l y s i s 365

C h a p t e r

25
Chapter 25Performing impact

analysis
This chapter contains the following topics:

■ About impact analysis

■ Searching for database items used in BIRT objects

■ Identifying the files impacted by a BIRT object

■ Viewing the relationships among files in a project

■ Assessing the impact of changes in an Actuate BIRT iServer volume

366 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About impact analysis
In an enterprise reporting system, data requirements frequently change, and BIRT
data sources must be updated accordingly. For example, columns in a database
table can be renamed or deleted, or their data type changed. These changes
require updates to the data objects or information objects that retrieve data from
the affected columns. Changes in a data object or information object, in turn,
impact the reports and dashboards that derive their data from those data sources.

Actuate BIRT Designer provides tools for assessing the impact of changes in a
database and in BIRT objects. Using these tools, you can:

■ Search for a specific column used by files in a workspace or a specific project

■ Identify the files that are impacted by a specific file

■ View the relationships among files in a project

Through impact analysis, you can more easily manage changes in your
environment.

Searching for database items used in BIRT objects
You can identify the files impacted by a change in a database schema by searching
for a specific table or column in a workspace or a project. The search tool finds
and lists all the files—data objects, information objects, libraries, and report
designs—that access data from the specified table or column.

How to search for files that use a specific database, table, or column

1 From the main menu, choose Search➛Database.

2 In Search—Database Search:

1 Specify the host name of the database to search, using one of the following
methods:

❏ In Databases, select an item from the list of database host names and
types. The list shows only database hosts found in the current project,
regardless of the scope of the search.

❏ In Search for database host name or select from the list below, type the
name of the database host.

2 Optionally, after the database host name, type a table name and a column
name. Type a colon (:) to separate each item, as shown in the following
examples:

Classic Models Sample Database:Products
Classic Models Sample Database:Products:Productline

C h a p t e r 2 5 , P e r f o r m i n g i m p a c t a n a l y s i s 367

You can choose Refine to search for and select a table or a column. The
Refine dialog box, however, lists only the tables and columns used by files
in the current project.

3 In Scope, select the scope of the search. You can search the entire
workspace, the resources selected in Navigator, the projects that enclose
the selected resources, or predefined working sets.

Figure 25-1 shows an example of searching for the Productline column in
the Products table in the Classic Models sample database.

Figure 25-1 Database search example

4 Choose Search. The search results appear in the Search view, as shown in
Figure 25-2. Search displays all the files that use the specified column and
the file locations. For each file, Search identifies the data set in which the
column is defined.

Figure 25-2 Database search results

368 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Identifying the files impacted by a BIRT object
Use one of the following ways to assess the impact of changing a BIRT object:

■ Generate an impact report, which lists the files that are affected by a selected
object. To generate this report, in Navigator, right-click the object, then choose
Generate Impact Report. Figure 25-3 shows an example of an impact report
generated for a data object, Sales.datadesign. This impact report lists two
reports that use the data object.

Figure 25-3 Impact report generated for Sales.datadesign

■ Generate a project model diagram, which provides a graphical view of all the
BIRT files in the project, and highlight a specific file and the files that depend
on it, as shown in Figure 25-4. To display this diagram, right-click the file and
choose Show Impact.

Figure 25-4 Highlighted graphical view of Sales.datadesign and the reports
that use it

Viewing the relationships among files in a project
In Navigator, right-click the project, and choose Show Relationship Overview.
The report editor displays a project model diagram, as shown in Figure 25-5. The
diagram shows all the BIRT files in the project, and the relationships among them.

C h a p t e r 2 5 , P e r f o r m i n g i m p a c t a n a l y s i s 369

Figure 25-5 Project model diagram

The diagram in Figure 25-5 shows the following files and relationships:

■ ProductSalesDetails.rptdesign does not depend on any files.

■ Employee.rptdesign depends on MyLibrary.rptlibrary.

■ SalesByProductLine.rptdesign depends on MyLibrary.rptlibrary and
ClassicModels_Sales.datadesign.

You can zoom the diagram, print it, or save it as an image. Right-click in an empty
space in the diagram to access these options. You can edit the layout of the
diagram by moving objects.

You can also add notes to any item in the diagram. For example, if a report
depends on a library, it would be useful to list the specific element or elements in
the library that the report uses. Hover the mouse pointer over the item. When you
see two arrows with boxes, as shown in Figure 25-6, click one of the arrows and
drag the line to an area in which to create a note. When you release the mouse
button, a Create Note Attachment button appears. Click it to create a note.

Figure 25-6 Creating a note in the project model diagram

Figure 25-7 shows a note created for Employees.rptdesign. If you add notes, save
the diagram as an image file or print it. The notes are lost when you close the
view or regenerate the diagram.

370 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 25-7 Note added to the project model diagram

The impact-analysis tools can be used in a BIRT project only. They are not
available in other types of projects, such as Java or plug-in projects. In Navigator,
a BIRT project is identified with a B symbol in the corner of the project icon.

Furthermore, the project model diagram and impact report show the file
dependencies between BIRT files only, such as data objects, information objects,
libraries, and reports. Non-BIRT files, such as JAR, CSS, and image files, that
reports might use are not included in the project model diagram or impact report.

Assessing the impact of changes in an Actuate BIRT
iServer volume

Impact-analysis tools are available in Actuate BIRT Designer only. To identify file
dependencies in an iServer volume, download the volume contents to a BIRT
project in Actuate BIRT Designer, then run the impact-analysis commands on the
project, as described in the previous sections.

You can download content from the entire volume or from specific folders. But,
first, you must create an iServer profile, which stores the properties to connect to
a specific volume.

How to create a new iServer profile

1 Select iServer Explorer. If you do not see this view, choose Window➛Show
View➛iServer Explorer.

2 Right-click Servers, and choose New iServer Profile.

3 In New iServer Profile, specify the connection information.

1 In Profile type, select iServer.

2 In Profile name, type a unique name that identifies the new profile. Using
the volume name is a good way to identify the volume to which this profile
connects.

3 In iServer, type the name or IP address of the iServer.

4 In Port number, type the number of the port to access iServer.

C h a p t e r 2 5 , P e r f o r m i n g i m p a c t a n a l y s i s 371

5 In Volume, select the iServer Encyclopedia volume.

6 In User name, type the user name required to access the volume.

7 In Password, type the password required to access the volume.

8 To save the password with the profile, select Remember Password.

Figure 25-8 shows an example of connection properties specified for an iServer
volume named Athena.

Figure 25-8 Properties of an iServer profile

4 Choose Finish. The iServer profile appears in iServer Explorer. Expand the
profile to display the contents of the volume.

How to download content from an iServer volume

1 Choose File➛Download➛Download from iServer. If this menu item is
unavailable, select Navigator.

2 In Download from iServer, specify the following information:

1 In Download from iServer, select the profile of the iServer volume from
which to download content.

2 In Download to project, select a BIRT project to which to download the
volume content.

3 In Download Files, select the files to download. Select the volume to
download all content, or select specific folders and files.

372 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

4 In Download Location, choose Browse to select a folder within the BIRT
project in which to download the files.

Figure 25-9 shows an example of properties specified for downloading an
entire volume named Athena. The files are downloaded to the root folder
of the project, Athena_20120615.

Figure 25-9 Properties specified for an iServer volume download

5 Choose Download. Actuate BIRT Designer downloads the selected volume
files to the specified project folder.

Figure 25-10 shows an example of files downloaded to the project folder,
Athena_20120615.

You can now run the impact-analysis commands on the project, or on
specific files in the project.

C h a p t e r 2 5 , P e r f o r m i n g i m p a c t a n a l y s i s 373

Figure 25-10 Navigator displaying the downloaded iServer files in the
Athena_20120615 project

374 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Part 3Deploying reports and resources

Part Three3

C h a p t e r 2 6 , D e p l o y i n g B I R T r e p o r t s t o i S e r v e r 377

C h a p t e r

26
Chapter 26Deploying BIRT reports

to iServer
This chapter contains the following topics:

■ About deploying BIRT reports

■ Publishing a report resource to iServer

■ Deploying Java classes used in BIRT reports

■ Installing a custom JDBC driver

■ Installing custom ODA drivers and custom plug-ins

378 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About deploying BIRT reports
This chapter describes how to run and distribute BIRT reports in the Actuate
business reporting system. To deploy BIRT reports, you need to understand the
environment in which the reports run.

iServer provides a central location from which business users can access, run, and
view reports. You can also use Actuate Information Console to run report
executables, and to manage, generate, view, and print report documents.

Actuate BIRT Designer Professional, the tool that you use to develop BIRT
reports, has built-in capabilities that facilitate the deployment process. The
Actuate BIRT Designer integrates with iServer in several important ways to
support performing the following tasks:

■ Use an open data access (ODA) information object data source that resides on
an Encyclopedia volume.

■ Publish a report design to an Encyclopedia volume.

■ Publish a resource to an Encyclopedia volume.

■ Install a custom JDBC driver for use by BIRT reports running in the iServer
environment.

A user accesses BIRT Studio from Actuate Information Console. BIRT Studio is a
licensed option of iServer. To deploy templates and reports to BIRT Studio you
use the deployment features available in Actuate BIRT Designer Professional. The
following sections describe these capabilities.

Publishing a report to iServer
The purpose of publishing a report to iServer is to make it accessible to a large
number of users. A published report is available to manage, meaning you can
schedule re-running the report to include updates from the data sources. You can
also choose who can access part or all of the report.

Actuate BIRT Designer Professional provides tools for easy deployment of
reports, templates and their resources to iServer. The designer connects directly to
an iServer and deploys the reports to selected iServer folders. The designer
provides an iServer Explorer view for managing iServer connections. Using
iServer Explorer, you can create iServer connection profiles to store the
connection properties to a specific Encyclopedia volume. Figure 26-1 shows
iServer Explorer displaying an iServer profile.

C h a p t e r 2 6 , D e p l o y i n g B I R T r e p o r t s t o i S e r v e r 379

Figure 26-1 iServer Explorer view

How to create a new iServer profile

1 In Actuate BIRT Designer, open iServer Explorer. If you do not see the iServer
Explorer view in the designer, select Windows➛Show view➛iServer Explorer.

2 In iServer Explorer, right-click Servers, and choose New iServer Profile.

3 In New iServer Profile, specify the connection information. Figure 26-2
displays an example of connection properties provided for an iServer named
Athena.

Figure 26-2 Setting properties in a new iServer profile

1 In Profile type, select iServer.

2 In Profile name, type a unique name that identifies the new profile.

3 In iServer, type the name or IP address of the iServer.

4 In Port number, type the number of the port to access iServer.

5 In Volume, select the iServer Encyclopedia volume.

380 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

6 In User name, type the user name required to access the volume.

7 In Password, type the password required to access the volume.

8 Select Remember Password, if you want to save the password.

4 Choose Finish to save the iServer profile. The iServer profile appears in the
iServer Explorer as shown in Figure 26-1.

How to publish a report design to iServer

1 Choose File➛Publish➛Publish to iServer.

2 On Publish to iServer, select a server profile. If there is no appropriate profile
in the iServer profile list, create a new profile by choosing Add. In New iServer
Profile, complete the information in the New iServer Profile, as shown in
Figure 26-2. Then, choose Close.

3 Select the project where the report you want to publish is located.

4 Select Publish Report Designs.

5 On Publish to iServer, select the report, as shown in Figure 26-3.

6 In Publish location, type or browse for the location on the Encyclopedia
volume in which to publish the report design, as shown in Figure 26-3.

Figure 26-3 Selecting a server and location

7 Choose Publish Files. A window showing the file upload status appears.

C h a p t e r 2 6 , D e p l o y i n g B I R T r e p o r t s t o i S e r v e r 381

In Publishing, wait until the upload finishes, then choose OK, as shown in
Figure 26-4.

Figure 26-4 Confirming the report publishing

8 In Publish Report Designs, choose Close.

Publishing a report resource to iServer
BIRT reports frequently use files with additional information to present report
data to the users. A BIRT resource is any of the following items:

■ Static image that a BIRT report design uses

■ Report library

■ Properties file

■ Report template

■ Data object

■ CSS file

■ External JavaScript file

■ SWF file of a Flash object

■ Java event handler class packaged as a Java archive (JAR) file

You can publish BIRT resources from the BIRT Report Designer’s local resource
folder to iServer. By default, the Resource folder is the current report project
folder. If you use shared resources with other developers and the resource files for
your reports are stored in a different folder, you can change the default Resource
folder. Use Windows➛Preferences➛Report Design➛Resource menu to set the
resource folder.

In the Encyclopedia volume, the Resource folder is set to /Resources by default.
In the sample Encyclopedia volume, the /Public folder contains sample reports.
The libraries and templates used by these sample reports are stored in the
/Resources folder.

382 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

If the resource folder in the Encyclopedia volume is different from the default,
before publishing a resource, you need to set up the Resource folder in the
Encyclopedia volume.

How to change the Resource folder on an Encyclopedia volume

1 Open Management Console and log in to the Encyclopedia volume.

2 Create a folder to designate as a resource folder.

3 Choose Volume➛Properties.

4 On Properties➛General, in Resource folder, type or browse to the folder to
which you want to publish BIRT resources. Choose OK.

How to publish a resource from the Resource folder to iServer

1 In Actuate BIRT Designer, choose File➛Publish➛Publish to iServer.

2 Select the iServer profile, as shown in Figure 26-5.

3 On Publish to iServer, you can publish reports and resources. Choose Publish
Resources.

4 On Publish to iServer, expand the Actuate BIRT Designer’s Resource Folder
and select the resources to publish.

Figure 26-5 Publish Resources dialog

C h a p t e r 2 6 , D e p l o y i n g B I R T r e p o r t s t o i S e r v e r 383

5 Choose Publish Files. A new window showing the file upload status appears.

6 Choose OK when the upload finishes.

7 In Publish to iServer, choose Close.

Deploying Java classes used in BIRT reports
A BIRT report uses scripts to implement custom functionality. For example, you
can use scripts to create a scripted data set or to provide custom processing for a
report element. When you deploy a BIRT report to an Encyclopedia volume, you
must provide iServer with access to the Java classes that the scripts reference. You
package these classes as JAR files that can be recognized and processed from an
iServer Java factory process. There are two ways to deploy Java classes:

■ Deploy the JAR files to the Encyclopedia volume.

This method supports creating specific implementations for each volume in
iServer. This method of deployment requires packaging the Java classes as a
JAR file and attaching the JAR file as a resource to the report design file. You
treat a JAR file as a resource in the same way as a library or image. Using this
method, you publish the JAR file to iServer every time you make a change in
the Java classes.

■ Deploy the JAR files to the following iServer subdirectory:

$ACTUATE_HOME\iServer\resources

This method uses the same implementation for all volumes in iServer. Actuate
does not recommend deploying JAR files to an iServer /resources folder
because iServer must be restarted after deploying the JAR file. Another
disadvantage of this deployment technique is that the JAR file, deployed in
the iServer /resources directory is shared across all volumes, which can cause
conflicts if you need to have different implementations for different volumes.
When using this method, you do not have to add the JAR file to the report
design’s Resource property.

How to configure BIRT reports and deploy a JAR file to an Encyclopedia volume

1 Package the Java classes as a JAR file and copy the JAR file to the Actuate BIRT
Designer resource folder.

2 Open the report design in Actuate BIRT Designer.

3 In Outline, select the root report design slot and select Resources property
group in the Property Editor window.

4 In Resources, in JAR files, choose Add and navigate through the Resource
folder to select the JAR file, as shown on Figure 26-6.

384 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 26-6 Add JAR file as a resource to a report

When the report executes, the engine searches for the required classes and
methods only in this JAR file.

5 Choose File➛Publish➛Publish to iServer to publish the report and the JAR file
to the iServer.

1 Select the server profile.

2 Select Publish Report Designs, choose the report, and the folder on iServer
where you want to copy the report.

3 Select Publish Resources and choose the JAR file. The JAR file is stored in
the Encyclopedia volume’s Resource folder.

6 Run the report from Information Console or Management Console.

How to deploy a JAR file to an iServer /resources folder

1 Copy the JAR file to the following iServer subdirectory:

$ACTUATE_HOME\iServer\resources

$ACTUATE_HOME is the folder where Actuate products install. By default, it
is C:\Program Files\Actuate11 for version 11.

2 Publish the report to iServer as described in “Publishing a report to iServer,”
earlier in this chapter.

C h a p t e r 2 6 , D e p l o y i n g B I R T r e p o r t s t o i S e r v e r 385

3 Restart iServer.

4 Run the report from Information Console or Management Console.

Installing a custom JDBC driver
In order to run a BIRT application in the iServer environment when the BIRT
application uses a custom JDBC driver, you must install the JDBC driver in the
following location:

$ACTUATE_HOME\iServer\Jar\BIRT\platform\plugins
\org.eclipse.birt.report.data.oda.jdbc_<VERSION>\drivers

Installing custom ODA drivers and custom plug-ins
All custom ODA drivers and custom plug-ins must be installed in the following
folder:

$ACTUATE_HOME\iServer\MyClasses\eclipse\plugins

By default, Actuate iServer and Information Console load custom plug-ins from
this folder. If your application uses a different location to store custom plug-ins,
you must set this location in each product’s link file. Actuate products use link
files to locate folders where the custom plug-ins are deployed. The name of the
link files are customPlugins.link and customODA.link. As the file names suggest,
the customODA.link file stores the path for custom ODA drivers, and
customPlugins.link is for all plug-ins used by BIRT reports and the BIRT engine,
such as custom emitters, or Flash object library plug-ins. Typically, the link files
are stored in a \links subfolder of the Eclipse instance of the product. For Actuate
BIRT Designer, for example, the file is located in:

$ACTUATE_HOME\BRDPro\eclipse\links

You can change the path in customPlugins.link file and deploy the plug-ins to the
new location.

When you install the InformationConsole.war file to your own J2EE application
server, the shared folder MyClasses is not available. In this case, custom plug-ins
should be copied to this folder:

WEB-INF/platform/dropins/eclipse/plugins

The locations of the link files for each product are listed in Table 26-1.

386 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Table 26-1 .link files locations

Product Paths of .link files

Actuate BIRT Designer
Professional

$ACTUATE_HOME\BRDPro\eclipse\links

Actuate iServer $ACTUATE_HOME\iServer\Jar\BIRT\platform
\links

Information Console WEB-INF/platform/dropins/eclipse/plugins

Chapter 27, Conf igur ing data source connect ions in iServer 387

C h a p t e r

27
Chapter 27Configuring data source

connections in iServer
This chapter contains the following topics:

■ About data source connection properties

■ Using a connection profile

■ Using a connection configuration file

■ Accessing BIRT report design and BIRT resource path in custom ODA plug-ins

388 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About data source connection properties
Every BIRT data source object specifies the connection properties required to
connect to an underlying data source. Typically, many report designs access the
same data source. Rather than typing the same connection properties for each
design, you can create a connection profile to reuse the same connection
properties across multiple designs. Usually you change database connection
properties used in the development environment when you publish the reports to
Actuate BIRT iServer.

To change the connection properties dynamically when you design or deploy
your reports, you can use one of two approaches, connection configuration file or
connection profile. The connection profile approach is the recommended method
of managing database connections. The following sections describe these two
approaches.

Using a connection profile
The connection profile includes information about the database driver, a user ID,
password, port, host, and other properties related to the type of data source. BIRT
supports using a connection profile when creating a data source in a report
design. When a connection profile changes, the BIRT report picks up those
changes. This behavior makes migration from a test to a production environment
straightforward.

You can use connection profiles for all data source types, except SQL Query
Builder data sources. If you have to use connection profiles for this type of data
source, you must define a unique connection profile in each report.

Creating a connection profile
There are two ways to create a connection profile in BIRT Report Designer
Professional. You can create a connection profile in Data Explorer, when you
create a data source, or in Data Source Explorer view. You use Data Source
Explorer to modify, import and export connection profiles.

Connection profiles are stored in text files called connection profile stores.
Connection profile stores can contain multiple connection definitions for various
ODA data sources. The default connection profile store is ServerProfiles.dat,
located in the .metadata folder in your workspace.

You can also define your own connection profile store, and choose an absolute or
a relative file path to store it. It is a good practice to create and use your own
profile store file, instead of the default store. Using the default store requires

Chapter 27, Conf igur ing data source connect ions in iServer 389

using absolute file paths for a profile location and involves additional procedures
of exporting a profile.

Using the Data Source Explorer to create a connection profile limits the
connection profile location definition to an absolute file path only, while Data
Explorer allows a relative and absolute file path definition. When using a relative
file path, the Resource folders in the designer and iServer are used as the base
folders. At design time, the BIRT Resource folder points to either the project root
or an item in the workspace or a folder on the file system. This setting is available
under Report Design->Resources node in the Preferences view. At runtime, the
BIRT Resource folder points to the Resource folder on the iServer.

Like other BIRT resource files, you must deploy the connection profile store to the
iServer when you deploy the report that uses it. By default, BIRT Designer
deploys relative path connection profiles to the iServer resource folder.

The connection profile store file can be encrypted using BIRT secured encryption
framework. The default extension for the connection profile is .acconnprofiles.
This extension is tightly integrated with the default out-of-the-box encryption.

How to create a connection profile using Data Explorer

1 In Data Explorer, right-click Data Sources, and choose New Data Source.

2 In New Data Source, choose Create from a connection profile in the profile
store, as shown in Figure 27-1.

Figure 27-1 Create a new data source

3 Choose Next. Connection Profile appears, as shown in Figure 27-2.

390 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 27-2 Connection Profile

4 In Connection Profile, perform one of the following steps:

■ To use an existing profile store, choose Browse.

1 In Browse, narrow down your selection by choosing Relative Path, or
Absolute Path for the connection profile store. Relative Path lists all the
connection profile stores in the Resources folder. Absolute Path opens a
browser window to the file system.

Selecting a connection profile store displays the connection profile store
content in the text box below Use externalized properties in Connection
Profile Store.

2 Select Use externalized properties in Connection Profile Store to
maintain the link to the profile instance in the external profile store file.
It is enabled by default. Disabling removes the external reference link,
and copies the properties from the selected profile to the data source
local properties.

3 Deselect Use the default data source name, if you wish to specify a data
source name different from the default.

■ To create a new connection profile store, choose New. Create Connection
Profile Store appears, as shown in Figure 27-3.

Chapter 27, Conf igur ing data source connect ions in iServer 391

Figure 27-3 Create a connection profile store

1 In Create Connection Profile Store, select an existing profile from the list
or choose New to create a new connection profile.

New Connection Profile appears, as shown in Figure 27-4, and lists the
data source types for which you can create connection profiles.

Figure 27-4 New Connection Profile

392 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

2 Choose a data source type and specify a name of the new connection
profile. In this example, as shown in Figure 27-4, Flat File Data Source
type is selected.

3 Choose Next. A new window for defining the data source properties
appears.

4 Specify the required information to connect to the data source. For a flat
file data source, as shown in Figure 27-5, you must enter:

❏ flat file home folder, or file URI

❏ flat file character set format

❏ flat file style

❏ file format details, such as Use first line as column name indicator,
Use second line as data type indicator, and Use trailing null
columns.

Figure 27-5 Defining a folder for a flat file data source profile

The connection properties are the same as the properties displayed by
the data source wizard.

5 Select Test Connection to verify the connectivity.

6 Choose Finish.

The new connection profile appears in the list of connection profiles, as
shown in Figure 27-6.

Chapter 27, Conf igur ing data source connect ions in iServer 393

Figure 27-6 Selecting a connection profile

7 In Create a Connection Profile Store, select the connection profile,
Products.

8 Specify a file name for the store file.

9 Choose Browse to select a location for the profile store, or choose the
arrow icon next to Browse, and choose Relative Path or Absolute Path
By default, profile store files are saved in a relative file path. Try to use a
relative path, unless your implementation requires an absolute path.

The relative path selection brings up a window like the one in
Figure 27-7. The default file extension is .acconnprofiles and the
displayed location is the Resource folder in your workspace.

Figure 27-7 Specifying a store file name

10 Select a folder in the suggested location and specify the file name, if you
have not entered it in the previous step. Choose OK.

11 Deselect Encrypt file content if you wish not to encrypt. The option to
encrypt is default.

12 In Create a Connection Profile Store, choose OK.

394 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The selected relative path, in this example ReportDesigns
/Products.acconnprofiles, appears in Connection Profile Store box as
shown in Figure 27-8.

Figure 27-8 Selecting the store path

13 Choose Next.

5 If you see a window, such as the one shown in Figure 27-15, choose Test
Connection. If the connection is successful, choose Finish to save the
connection profile.

Figure 27-9 Testing the connection

Chapter 27, Conf igur ing data source connect ions in iServer 395

How to create a connection profile from Data Source Explorer

1 Choose Window➛Show View➛Other.

2 In Show View, expand Data Management and select Data Source Explorer,
then choose OK.

Data Source Explorer lists the data source types for which you can create
connection profiles, and any previously defined connection profiles, as shown
in Figure 27-10.

Figure 27-10 Data Source Explorer

Database Connections supports creating profiles to connect to databases using
drivers shipped with Actuate BIRT Designer. These database drivers provide
access to the graphical SQL query builder. Creating a database connection
profile is equivalent to creating a data source by selecting JDBC Database
Connection for Query Builder in the data source wizard. ODA Data Sources
supports creating profiles to connect to all the other types of data sources.

3 Right-click the data source type for which to create a connection profile.
Choose New.

4 Specify a name for the connection profile. Use a name that describes the data
source, so that you or other report developers can identify it when selecting
the profile later.

5 Specify the information to connect to the data source. The connection
properties are the same as the properties displayed by the data source wizard.
Figure 27-11 shows an example of connection properties for Amazon
DynamoDB.

396 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 27-11 Connection properties for Amazon DynamoDB

6 Choose Test Connection to verify the connection to the data source.

7 Choose Finish. The connection profile appears under the data source type in
Data Source Explorer. Figure 27-12 shows a connection profile,
ProductsDatabase-DynamoDB, under Amazon DynamoDB Data Source.

Figure 27-12 Data Source Explorer displaying a connection profile for Amazon
DynamoDB

Chapter 27, Conf igur ing data source connect ions in iServer 397

Managing a connection profile
You can create connection profiles for different purposes. Data Source Explorer
provides import and export functionality to support multiple connection profiles.
This functionality supports creating and maintaining separate profiles with
connection properties valid for different environments. Figure 27-13 shows Data
Source Explorer, and the Import and Export buttons.

Figure 27-13 Importing and exporting connection profiles

Exporting connection profiles
Connection profiles are exported as text files, either plain or encrypted. Use the
exported feature to:

■ Move reports from development to production environments.

■ Plan to create a new workspace or upgrade to a newer version.

■ Reuse existing connection profiles.

■ Share a common set of connection profiles across a workgroup.

■ Deploy a set of connection profiles to a server environment whose application
can work directly with the exported file.

How to export a connection profile

1 In Data Source Explorer, choose Export.

2 Select the connection profiles you want to export, as shown in Figure 27-14.

3 Enter a fully qualified path to create a new file, or choose Browse to overwrite
an existing file.

Use the default .acconnprofiles extension if you plan to encrypt the connection
profile and use the default out-of-the-box encryption mechanism for it.

4 Deselect Encrypt File Content if the connection profiles do not contain
passwords or any other content that pose a security risk.

5 Choose OK.

Export

Import

398 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 27-14 Exporting a connection profile

Importing connection profiles
You might import a connection profile if you created connection profiles in a
previous version of the product and want to reuse them in the current version, or
want to share a common set of connection profiles across a workgroup.

Importing connection profiles, as shown in Figure 27-15 involves a profile
selection. You can overwrite an existing profile if you choose to.

Figure 27-15 Importing a connection profile

How to import a connection profile

1 In Data Source Explorer, choose Import.

2 Enter the fully qualified path to the connection profile file, or choose Browse.

3 Choose Overwrite Existing Connection Profiles with Same Names, if you
wish.

4 Choose OK.

The connection profile appears under its data source category.

Chapter 27, Conf igur ing data source connect ions in iServer 399

Editing connection profile properties
You can use Data Source Explorer or Console Editor Application to edit
connection profile properties. Console Editor Application works from a
command line and is useful in environments where you do not have BIRT Report
Designer installed. Use this application for editing connection profile store files.

How to edit connection profile properties

1 Open Data Source Explorer.

2 Expand the category for the connection profile that you want to edit.

3 Right-click the data source and select Properties.

4 Edit the connection profile properties as necessary.

Figure 27-16 shows an example of the properties for a flat file data source.

Figure 27-16 Modifying connection profile properties

Editing connection profile store files using Console Editor
Application

You can also view and edit connection profile properties in connection profile
store files using Console Editor Application, which is an application you can
launch outside the Eclipse workbench. Console Editor Application is a system
console application to make minor changes to an exported connection profile,
such as the file path to the JDBC driver JARs, a connection URL or an ODA data
source file path.

When you copy an exported file to a server environment for deployment, you can
use this editor tool to quickly adjust the connection profile properties without
having to open Data Source Explorer in the Eclipse workbench. The updates are
saved in a separate file for all the connection profiles. If the connection profile is
deployed on iServer, you must download the profile first, make the changes, and
then upload it to iServer again.

Before you can use Console Editor Application, you must install
org.eclipse.datatools.connectivity.console.profile_<version>.jar in your Eclipse
environment, along with the other DTP plug-ins. The plug-in is installed with the
BIRT Report Designer Professional installation.

400 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

From within your Eclipse home directory, enter the command:

eclipse[c] -nosplash -application
org.eclipse.datatools.connectivity.console.profile.
StorageFileEditor

[-? | -in <connectionProfileFile> | -out <saveAsFile> | -profile
<profileName>]

For Windows platforms, indicate eclipsec. For other platforms, use eclipse. The
command line options are presented in Table 27-1.

If you do not specify an argument value, Console Editor prompts you for an input
value.

Deploying a connection profile
Connection profiles that use relative paths are deployed the same way as report
resources, and by default they are saved to the iServer resource folder. For more
details on how to publish resources to iServer, see “Publishing a report resource
to iServer,” in Chapter 26.

When deploying reports that use absolute connection profiles, you must deploy
the connection profile to the correct folder in the file system on the iServer
machine. For example, if a report uses a connection profile stored in folder
C:\ConnProfile\MySQL.acconnprofiles, you must manually create the same
folder C:\ConnProfile on the iServer machine and copy the MySQL.dat file there.

Table 27-1 Optional command line options

Option Description

-? Displays help.

-in <connectionProfileFile> Enter the name of the connection profile storage
file to view and/or change.

-out <saveAsFile> Enter the name of the output file to save your
changes.

-profile <profileName> Enter the name of a connection profile to view
and/or change. If you do not specify a
connection profile name, the Console Editor
steps through all the profiles found in the input
file.

Chapter 27, Conf igur ing data source connect ions in iServer 401

Encrypting connection profile properties
BIRT supports encrypting the connection profile properties by using the
cipherProvider extension point. To define a new encryption method you must
extend org.eclipse.datatools.connectivity.cipherProvider extension point.

To define a new encryption plug-in you must define the file extension and its
corresponding provider of javax.crypto.Cipher class for the encryption of
connection profile store files. Listing 27-1 shows an example of such definition.

■ fileExtension – The file extension of connection profile store files that shall be
encrypted and decrypted using the cipher provider class specified in the class
attribute. The out-of-the-box encryption implementation defines
.acconnprofiles as a default extension.

The fileExtension attribute value may include an optional dot (.) before the file
extension, for example you can define profiles or .profiles. A keyword default
may be specified as an attribute value to match files with no file extension.

■ class – The concrete class that implements the
org.eclipse.datatools.connectivity.security.ICipherProvider interface to
provide the javax.crypto.Cipher instances for the encryption and decryption
of connection profile store files. The custom class may optionally extend the
org.eclipse.datatools.connectivity.security.CipherProviderBase base class,
which reads a secret (symmetric) key specification from a bundled resource.
The base implementation class of the
org.eclipse.datatools.connectivity.security.ICipherProvider interface is
org.eclipse.datatools.connectivity.security.CipherProviderBase. The class uses
a default bundled encryption key as its javax.crypto.spec.SecretKeySpec.

The example in Listing 27-1 registers
org.company.connectivity.security.ProfileStoreCipherProvider as the provider for
files with the extension .profile and for those with no file extension.

Listing 27-1 Example of javax.crypto.Cipher extension

<extension
id="org.company.connectivity.security.cipherProvider"
point="org.eclipse.datatools.connectivity.cipherProvider">

<cipherProvider fileExtension="profile"
class="org.company.connectivity.security.
ProfileStoreCipherProvider">
</cipherProvider>

<cipherProvider fileExtension="default"
class="org.company.connectivity.security.

ProfileStoreCipherProvider">
</cipherProvider>

</extension>

402 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Listing 27-2 shows an example implementation of
org.company.connectivity.security.ProfileStoreCipherProvider class.

Listing 27-2 org.eclipse.datatools.connectivity.security.ICipherProvider interface
implementation example

import org.eclipse.core.runtime.Platform;
import

org.eclipse.datatools.connectivity.security.CipherProviderBase;
import

org.eclipse.datatools.connectivity.security.ICipherProvider;
import org.osgi.framework.Bundle;

public class ProfileStoreCipherProvider extends CipherProviderBase

 implements ICipherProvider
{
 /* (non-Javadoc)
 * @see

org.eclipse.datatools.connectivity.security.CipherProviderBase#
getKeyResource()

 */
 @Override
 protected URL getKeyResource()
 {
 Bundle bundle = Platform.getBundle(

"org.company.connectivity.security");
 return bundle != null ?
 bundle.getResource("cpkey") : //$NON-NLS-1$
 super.getKeyResource();
 }
}

Binding connection profile properties
There are two connection profile properties, Connection Profile Store URL and
Connection Profile Name, that can be bound to report parameters or expressions
and updated when the report is generated.

The next section shows how to bind a parameter to change Connection Profile
Store URL.

Binding Connection Profile Store URL property
The Connection Profile Store URL property is the path and name of the
connection profile store file that contains the connection profile used in a report.
The report developer can use the property binding feature in the BIRT data source
editor to assign a dynamic file path or URL to Connection Profile Store URL
property. This can be done at report run time without changing the report design

Chapter 27, Conf igur ing data source connect ions in iServer 403

itself. You can create multiple connection profile store files for different purposes
and pass them to a report as parameters at run time.

For example, you have two JDBC connection profiles to the same database using
different user names and passwords. These profiles are stored in two separate
profile store files. At run time, you can select the profile store you want to use to
connect to the database.

Connection Profile Store URL property name is OdaConnProfileStorePath. You
can also use the property binding feature to specify a JavaScript expression for the
value of OdaConnProfileStorePath. This feature provides the flexibility to define
a different root path for different file properties. For example, the JavaScript
expression can include a variable to control the root path:

config["birt.viewer.working.path"].substring(0,2) +
"../../data/ProfileStore.acconnprofiles"

Alternatively, you can use a reportContext object to pass session information and
build the path expression.

Binding a connection profile name to a report parameter
You can also externalize a connection profile name for a data source by binding it
to a report parameter. The next example shows how to create a report design that
uses a CSV file as a data source, using Actuate BIRT Designer Professional. At
design time, the report design uses the CSV file in the folder, C:\ConnProfile
\Testing. Typically, the design time CSV file contains only a few records. In the
production environment, the CSV file, which contains more records, is in the
folder, C:\ConnProfile\Production. You create two connection profiles, one for
the testing database and one for the production database, and pass the name of
the connection profile as a parameter at run time. In this way, the report runs as
expected in development and production environments.

How to bind Connection Profile Store URL property to a report parameter

1 In BIRT Designer Professional, create a new BIRT report.

2 In Data Sources, create a new data source and choose Create from a connection
profile in the profile store. Choose Next.

3 In Connection Profile, choose New.

4 In Create a Connection Profile Store, select New.

5 In New Connection Profile, choose Flat File Data Source and enter
Products-testing as a profile name.

6 In Description, type Testing database. Choose Next.

7 In New Flat File Data Source Profile, choose Enter File URI:, and choose
Browse to select the testing database file, which is C:\ConnProfile\Testing
\csvTestODA.csv, in this example.

404 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

8 Choose Test Connection to validate the connection, and select Finish.

Products-testing profile appears in the Create a Connection Profile Store list,
as shown in Figure 27-17.

Figure 27-17 Create a connection profile for testing

9 In Create a Connection Profile, choose New to create a connection profile for
the production database.

10 In New Connection Profile, choose Flat File Data Source and enter
Products-Production as a connection profile name.

11 Choose Next.

12 In New Flat File Data Source Profile, enter the file URI:

C:\ConnProfile\Production\csvTestODA.csv.

13 Select Test Connection to validate the connection.

14 Choose Finish.

Products-production appears in Create a Connection Profile Store list.

15 In Select the connection profiles, select Products-testing and
Products-production, as shown in Figure 27-18.

16 In Specify a file name, choose Browse.

Create a Connection Profile store appears, showing Resources folder.

Chapter 27, Conf igur ing data source connect ions in iServer 405

Figure 27-18 Creating a relative path connection profile store

17 In Connection Profile Store choose the root project folder, ConnProfile, as
shown in Figure 27-19.

Figure 27-19 Specifying a store file name and location

18 Enter ProductsDB as a file name, and choose OK.

19 In Connection Profile Store, choose OK.

Select Connection Profile appears, as shown in Figure 27-20, prompting you to
select a connection profile for the data source.

20 In Connection Profile select the testing database connection profile,
Products-testing, as shown in Figure 27-20.

21 Deselect Use the default data source name and change the data source name to
ProductsDB.

22 Choose Next.

406 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 27-20 Selecting a connection profile

23 Select Test Connection to validate the connection. Choose Finish.

Products data source appears in Data Explorer.

24 In Data Explorer create a new data set named Products from the Products data
source.

25 Add the Products data set to the layout and preview the report, as shown in
Figure 27-21. In the example the report displays only six rows of data.

Figure 27-21 Previewing the report with testing data

26 Select Layout and create a new report parameter in Data Explorer.

27 Name the parameter ConnProfileName, as shown in Figure 27-22.

28 In Prompt text enter:

Select the connection profile name:

29 Choose OK to create the parameter.

Chapter 27, Conf igur ing data source connect ions in iServer 407

Figure 27-22 Creating a report parameter

30 In Data Explorer double-click, Products data set to open the properties.

31 Choose Property Binding, as shown in Figure 27-23, and enter the expression:

params["ConnProfileName"].value

Alternatively, you can select Fx to use Expression Builder to create the
expression.

Figure 27-23 Binding a connection profile name to a report parameter

32 Choose OK.

408 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

33 Select Preview. In Parameters, enter Products-production to choose the
production database as a data source. The report displays a large set of data, as
shown in Figure 27-24.

Figure 27-24 Previewing the report with the production data

Using a connection configuration file
A connection configuration file is an XML file that sets the data source connection
properties to use when iServer runs a report. Externalizing data source
connection information in this file enables an administrator to modify these
settings without modifying the report.

iServer expects the configuration file to use UTF8 encoding. You also can use a file
that only has ASCII characters. The settings that you use in a connection
configuration file override the settings in a report.

Setting up the connection configuration file
In a BIRT report design, the configuration key that specifies a data source is the
concatenation of the ODA plug-in’s data source extension ID and the data source
design name separated by an underscore (_) character.

The connection property names are the connection properties defined for your
data source. To find the correct names for the connection properties, check the

Chapter 27, Conf igur ing data source connect ions in iServer 409

data source definition in the XML source of the BIRT report design file. You can
view the report’s XML source by selecting the XML Source tab in the report
editor.

The code example in Listing 27-3 shows the XML definition of a MySQL
Enterprise database in a report design. Using this data source, the report
developer can test the report in development. This XML data source definition
specifies the connection properties, odaDriverClass, odaURL, odaUser, and
odaPassword, for the data source, ClassicModels.

Listing 27-3 The XML definition of a MySQL Enterprise database

<data-sources>
<oda-data-source extensionID=
"org.eclipse.birt.report.data.oda.jdbc" name="Customers"
id="4">

<property name="odaDriverClass">
com.mysql.jdbc.Driver

</property>
<property name="odaURL">

jdbc:mysql://localhost/ClassicModels
</property>
<property name="odaUser">root</property>
<property name="odaPassword">pwd</property>

</oda-data-source>
</data-sources>

At run time, the report uploaded to iServer connects to a production database
that resides on a different database server. The connection properties specify a
machine IP address, 192.168.218.226, and a different username and password. To
externalize the database connection information, create the configuration
property file, DBConfig.xml, with the settings shown in Listing 27-4.

Listing 27-4 A configuration property file that connects to a production database

<Config>
<Runtime>
<ConnectOptions

Type="org.eclipse.birt.report.data.oda.jdbc_Customers">
<Property PropName="odaDriverClass">

com.mysql.jdbc.Driver
</Property>
<Property PropName="odaURL">

jdbc:mysql://192.168.218.226:3306/ClassicModels
</Property>
<Property PropName="odaUser">operator</Property>
<Property PropName="odaPassword">pwd</Property>

410 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

</ConnectOptions>
</Runtime>
</Config>

Understanding how iServer uses the connection
configuration file
When the report runs, iServer searches the path in the configuration file
parameter for the configuration file that contains the valid ConnectOptions
values. The Factory process reads the configuration file containing the
ConnectOptions values when the process starts. Factory processes that are
running when you change the configuration file do not use the new information.
Only Factory processes that start after the configuration file changes use the new
information. To ensure that a report executable file uses the updated
configuration file information, confirm that no reports are active and stop all
currently running Factory processes before you change the configuration file.
After you change the file, iServer starts a Factory process for the next report
request using these settings.

Setting the location of a connection configuration file
There is no default location for the connection configuration file. iServer uses the
value of the configuration file parameter to locate the connection configuration
file.

If you do not specify a value for this parameter, iServer uses the database
connection properties in the report executable file. When you set or change the
value of the configuration file parameter, you must restart iServer for the change
to take effect.

On a Windows operating system, the configuration file parameter can specify a
path and file name or a URL. For example:

C:\BIRTRptConfig\DBConfig.xml

or:

http://myserver/configs/testconfig.xml

On a UNIX or Linux operating system, the parameter value can only be a path
and file name. The parameter value cannot be a URL.

If you have an iServer cluster, each iServer in the cluster must have access to the
file. You must use a local absolute path for each machine in the cluster. If you use
a single copy of the file for a cluster, put the file in a shared location and set the
path to that shared location for all iServers in the cluster.

Chapter 27, Conf igur ing data source connect ions in iServer 411

How to set up a configuration file in iServer Configuration Console

To set up a connection configuration file, create the file and specify the name and
location using the ConnConfigFile parameter in iServer Configuration Console.

1 Log in to iServer Configuration Console.

2 From the banner, select Advanced view.

3 From the side menu, select Server Configuration Templates.

4 In Server Configuration Templates, select the name of the template to modify.

5 In Properties Settings, select iServer to expand the property list.

6 In the iServer property list, choose Database Connection Configuration File.

Figure 27-25 Specifying the location of a connection file

7 In Actuate—Server properties, in Configuration file for database connections,
type the configuration file’s location, as shown in Figure 27-25.

8 Restart iServer.

Encrypting the connection properties
Actuate BIRT supports the encryption of connection properties in the connection
configuration file. The encryption conversion is created in Actuate BIRT Designer,
using BIRT’s encryption framework. The encryption user interface reads a
user-specified configuration file, and writes the encrypted values for a specified
property type to a new output file. The configuration file must have the file-name
extension, .acconfig.

412 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The run-time decryption processing runs in Actuate BIRT Designer, iServer, and
Actuate Java Component. You must deploy the encrypted version of a
configuration file to the iServer or Actuate Java Component environments, and
set up the database configuration for iServer.

For more information about the BIRT encryption mechanism, see Chapter 29,
“Working with BIRT encryption in iServer.”

How to encrypt a configuration file in BIRT Designer

This procedure assumes you have already created a connection configuration file
with an extension of .acconfig. Listing 27-5 shows an example of connection
properties specified for Microsoft SQL server. The properties are not encrypted.

Listing 27-5 Connection configuration file

<?xml version="1.0" encoding="UTF-8"?>
<Config>

<Runtime>
<ConnectOptions

Type='org.eclipse.birt.report.data.oda.jdbc_Athena'>
<Property PropName='odaDriverClass'>

com.actuate.jdbc.sqlserver.SQLServerDriver
</Property>
<Property PropName='odaURL'>

jdbc:actuate:sqlserver://
Athena:1433;databasename=Financials </Property>

<Property PropName='odaUser'>
fmanager </Property>

<Property PropName='odaPassword'>password</Property>
</ConnectOptions>

</Runtime>
</Config>

1 In Actuate BIRT Designer, choose File—Encrypt Property values from the
main menu.

2 In Encrypt property values, in Connection configuration file name, choose
Browse and select the connection file to encrypt.

3 Select the properties to encrypt.

4 In Encryption extension, select the encryption algorithm.

5 In Save as file name, type or choose Browse to specify the file path and name
for the encrypted connection file.

Figure 27-26 shows an example of encryption options specified for a
connection configuration file.

Chapter 27, Conf igur ing data source connect ions in iServer 413

Figure 27-26 Encrypting property values

6 Choose Save to encrypt the properties. The encrypted configuration file looks
like the one in Listing 27-6.

Listing 27-6 Encrypted connection configuration file

<?xml version="1.0" encoding="UTF-8"?>
<Config>
 <Runtime>
 <ConnectOptions

Type='org.eclipse.birt.report.data.oda.jdbc_Athena'>
 <Property PropName='odaDriverClass'>
 com.actuate.jdbc.sqlserver.SQLServerDriver
 </Property>
 <Property PropName='odaURL'>
 amRiYzphY3R1YXRlOnNxbHNlcnZlcjov....
 </Property>
 <Property PropName='odaUser'>
 Zm1hbmFnZX...
 </Property>
 <Property PropName='odaPassword'>
 cGFzc3...
 </Property>
 <Property PropName='encryptedPropNames'>
 odaURL|odaUser|odaPassword
 </Property>
 <Property PropName='encryptionExtName'>
 base64
 </Property>
 </ConnectOptions>
 </Runtime>
</Config>

414 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The encryption feature encrypts the selected properties and adds two new
properties to the connection options. The encryptedPropNames property
specifies the list of encrypted properties, separated by |. The encryptionExtName
property specifies the encryption algorithm.

Externalizing the connection profile properties on
the iServer
You can use the iServer database connection configuration file to externalize the
data source properties for any data source connection property in a BIRT report
design. The data source properties are externalized in the connection
configuration file that is made accessible to the iServer.

As Connection Profile Store URL is the ODA data source property,
OdaConnProfileStorePath, the file path to the connection profile can itself be
externalized. To externalize Connection Profile Store URL ODA data source
property, specify it in the iServer‘s connection configuration file. When the report
is deployed to the iServer and executed, the server reads the connection profile
from the file path specified in the iServer database connection configuration file.
The file path specified in the report design is ignored.

Understanding externalization precedence
Data source properties in a report design can be externalized to the connection
profile and to the iServer connection configuration file. In addition, Connection
Profile Store URL itself can be externalized. The following precedence rules
explain how iServer and Information Console determine the final list of data
source properties for report execution:

■ Information Console – Data source properties in the connection profile
override the data source properties in the report design.

■ iServer – Data source properties in the iServer connection configuration file
override the data source in the connection profile that overrides the data
source connection properties in the report. The ascending order of precedence
for iServer is as follows:

■ Data source properties in the report design

■ Data source properties in the connection profile

■ Data source properties in the iServer connection configuration file

The following sample connection configuration file externalizes the file path to
the connection profile and shows the required structure:

<Config>
<Runtime>
<ConnectOptions Type="org.eclipse.birt.report.data.oda.jdbc_SQL

Server Data Source">

Chapter 27, Conf igur ing data source connect ions in iServer 415

<Property PropName="OdaConnProfileStorePath">
C:\SqlServer.profile

</Property>
</ConnectOptions>
</Runtime>
</Config>

The connection profile referenced by the BIRT report design is read when the
report is executed in Information Console and iServer. The path to the connection
profile in the design has to be visible to Information Console and iServer
applications.

Referencing an external connection profile
The path to the external connection profile is stored in the BIRT report design.
The ODA data source property, ConnectionProfileStoreURL, holds this value. The
path can be a relative or an absolute file path, or a URL. File paths, whether
relative or absolute, must be accessible by the Information Console web
application when the report is deployed to Information Console. Similarly, this
path must be accessible by the iServer when the report is deployed to the iServer.
Actuate does not recommend the use of absolute file paths. Typically, the location
of the connection profile in all three environments, Actuate BIRT Designer,
Information Console, and iServer, resolves to a different path. Absolute paths
have the disadvantage that the absolute path used in the Actuate BIRT Designer
environment on Windows will not be available when the report is deployed to
Information Console or iServer on UNIX. On UNIX, you can use relative paths
with the use of soft links, but these links are not available on Windows.

Using a relative path, you deploy the connection profile to iServer, and this
resolves the issue with different environments and not accessible absolute paths.

When the absolute file path to the connection profile is different in the design
environment compared to the Information Console and iServer deployment
environments, there are some options to avoid having to change the report design
file before deployment, as described in the following section.

When specifying network paths in BIRT reports always use the Universal
Naming Convention (UNC) to describe the path, instead of a mapped drive letter.
Windows XP and later do not allow processes running as services to access
network resources through mapped network drives. For this reason, a report that
uses a mapped drive letter to access a resource runs in Actuate BIRT Designer
Professional. The same report fails when running on iServer or Information
Console, because the iServer or Information Console processes cannot resolve the
mapping address.

For example, a BIRT report uses a flat file Production.csv as a data source. The flat
file is located on a shared network drive on a machine, named ProductionServer.
The UNC network path to the file is \\ProductionServer\e$\Data and it is
mapped as X:\ in your system. Using the path X:\ to define the data source

416 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

HOME folder works only in Actuate BIRT Designer. Using the UNC path
\\ProductionServer\e$\Data in the data source definition is the correct way to
define network paths.

Accessing BIRT report design and BIRT resource path
in custom ODA plug-ins

ODA providers often need to obtain information about a resource path defined in
ODA consumer applications. For example, if you develop an ODA flat file data
source, you can implement an option to look up the data files in a path relative to
a resource folder managed by its consumer. Such resource identifiers are needed
in both design-time and run-time drivers.

ODA consumer applications are able to specify:

■ The run-time resource identifiers and pass them to the ODA run-time driver in
an application context map

■ The design-time resource identifiers in a DataSourceDesign, as defined in an
ODA design session model

Accessing resource identifiers in the run-time ODA
driver
For run time, the BIRT ODA run-time consumer passes its resource location
information in the org.eclipse.datatools.connectivity.oda.util.ResourceIdentifiers
instance in the appContext map. ODA run-time drivers can get the instance in
any one of the setAppContext methods, such as IDriver.setAppContext:

■ To get the instance from the appContext map, pass the map key
ResourceIdentifiers.ODA_APP_CONTEXT_KEY_CONSUMER_RESOURCE_
IDS, defined by the class as a method argument.

■ To get the BIRT resource folder URI, call, getApplResourceBaseURI() method.

■ To get the URI of the associated report design file folder call
getDesignResourceBaseURI() method. The URI is application-dependent and
it can be absolute or relative. If your application maintains relative URLs, call
the getDesignResourceURILocator.resolve() method to get the absolute URI.

The code snippet on Listing 27-7 shows how to access the resource identifiers
through the application context.

Listing 27-7 Accessing resource identifiers at run time

URI resourcePath = null;
URI absolutePath = null;

Chapter 27, Conf igur ing data source connect ions in iServer 417

Object obj = this.appContext.get
(ResourceIdentifiers.ODA_APP_CONTEXT_KEY_CONSUMER_RESOURCE
_IDS);

if (obj != null)
{

ResourceIdentifiers identifier = (ResourceIdentifiers)obj;

if (identifier.getDesignResourceBaseURI() != null)
{ resourcePath = identifier.getDesignResourceBaseURI();

if (! resourcePath.isAbsolute())
absolutePath =

identifier.getDesignResourceURILocator().resolve(
resourcePath);

else
absolutePath = resourcePath;

}
}

Accessing resource identifiers in the design ODA
driver
The resource identifiers are available to the custom ODA designer UI driver. The
designer driver provides the user interface for the custom data source and data
set. Typically, to implement a custom behavior, the data source UI driver extends
the following class:

org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSourceWizardPage

The DataSourceWizardPage class has an inherited method,
getHostResourceIdentifiers(), that provides access to the resource and report
paths. The extended DataSourceWizardPage just needs to call the base method to
get the ResourceIdentifiers for its path’s information. Similarly, if the custom
driver implements a custom data source editor page, it extends:

org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSourceEditorPage

The DataSourceEditorPage class has an inherited method,
getHostResourceIdentifiers(). The extended class just needs to call the base class
method to get the ResourceIdentifiers object for the two resource and report paths
base URIs. Related primary methods in the
org.eclipse.datatools.connectivity.oda.design.ResourceIdentifiers class are:

■ getDesignResourceBaseURI();

■ getApplResourceBaseURI();

418 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

C h a p t e r 2 8 , C o n f i g u r i n g f o n t s i n i S e r v e r 419

C h a p t e r

28
Chapter 28Configuring fonts

in iServer
This chapter contains the following topics:

■ About configuring fonts

■ Understanding font configuration file priorities

■ Understanding how the BIRT engine locates a font

■ Understanding the font configuration file structure

420 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About configuring fonts
Actuate Information Console and iServer support rendering BIRT reports in
different formats such as PDF, Microsoft Word, Postscript, and PowerPoint. The
processes that do the conversion use the fonts installed on your system to display
the report characters.

BIRT uses a flexible mechanism that supports configuring font usage and
substitution. This mechanism uses font configuration files for different purposes
that control different parts of the rendering process. The configuration files can
configure the fonts used in specific operating systems, for rendering to specific
formats, in specific locales only, or combinations of these parameters.

The plug-in folder, org.eclipse.birt.report.engine.fonts, contains the font
configuration files. Table 28-1 shows the location of this folder in the supported
BIRT environments.

Understanding font configuration file priorities
BIRT reports use five different types of font configuration files. The font
configuration file-naming convention includes information about the rendering
format, the system platform, and the system locale, as shown in the following
general format:

fontsConfig_<Format>_<Platform>_<Locale>.xml

The platform name is defined by the Java System property, os.name. The current
Java Network Launch Protocol (JNLP) specification does not list the values for
the os attributes. Instead it states that all values are valid as long as they match
the values returned by the system property os.name. Values that only match the
beginning of os.name are also valid. If you specify Windows and the os.name is
Windows 98, for example, the operating system name is accepted as valid.

Table 28-1 Locations of the font configuration file plug-in folder

Environment Font configuration file folder location

Actuate BIRT
Designer Professional

$Actuate<release>\BRDPro\eclipse\plugins

Information Console $Information Console\iportal\WEB-INF\platform
\plugins

iServer $Actuate<release>\iServer\Jar\BIRT\platform
\plugins

C h a p t e r 2 8 , C o n f i g u r i n g f o n t s i n i S e r v e r 421

The following sample Java class code shows how to check the os.name property
for the value on your machine:

class WhatOS
{
 public static void main(String args[])

{
 System.out.println(System.getProperty("os.name"));

}
}

BIRT supports the following types of font configuration files, with increasing
priority:

■ For all rendering formats

These files have no format specifier in their names. These configuration files
are divided into three sub-types.

■ The default configuration file:

fontsConfig.xml

■ Configuration files for a specific platform, for example:

fontsConfig_Windows_XP.xml

■ Configuration files for a specific platform and locale, for example:

fontsConfig_Windows_XP_zh.xml
fontsConfig_Windows_XP_zh_CN.xml

■ For certain formats only

These files include the format specifier in their names. These configuration
files are divided into two sub-types:

■ The default configuration file for a format, for example:

fontsConfig_pdf.xml

■ Configuration files for a format for a specific platform:

fontsConfig_pdf_Windows_XP.xml

Understanding how the BIRT engine locates a font
The PDF layout engine renders the PDF, PostScript, and PowerPoint formats. The
engine tries to locate and use the font specified at design time. The PDF layout
engine searches for the font files first in the fonts folder of the plug-in,
org.eclipse.birt.report.engine.fonts. If the specified font is not in this folder, the
BIRT engine searches for the font in the system-defined font folder. You can
change the default load order by using the settings in the font configuration file.

422 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

When the required font for a character is not available in the search path or is
incorrectly installed, the engine uses the fonts defined in the UNICODE block for
that character. If the UNICODE definition also fails, the engine replaces the
character with a question mark (?) to denote a missing character. The font used
for the ? character is the default font, Times-Roman.

The engine maps the generic family fonts to a PDF-embedded Type1 font, as
shown in the following list:

■ Cursive font styles to Times-Roman

■ Fantasy font styles to Times-Roman

■ Monospace font styles to Courier

■ Sans-serif font styles to Helvetica

■ Serif font styles to Times-Roman

Understanding the font configuration file structure
The font configuration file, fontsConfig.xml, consists of the following major
sections:

■ <font-aliases>

■ <composite-font>

■ <font-paths>

<font-aliases> section
In the <font-aliases> section, you can:

■ Define a mapping from a generic family to a font family. For example, the
following code defines a mapping from the generic type “serif” to a Type1 font
family Times-Roman:

<mapping name="serif" font-family="Times-Roman"/>

■ Define a mapping from a font family to another font family. This definition is
useful if you want to use a font for PDF rendering which differs from the font
used at design time. For example, the following code shows how to replace
simsun with Arial Unicode MS:

<mapping name="simsun" font-family="Arial Unicode MS"/>

Previous versions of Actuate BIRT Designer use the XML element
<font-mapping> instead of <font-aliases>. In the current release, a
<font-mapping> element works in the same way as the new <font-aliases>
element. When a font configuration file uses both <font-mapping> and

C h a p t e r 2 8 , C o n f i g u r i n g f o n t s i n i S e r v e r 423

<font-aliases>, the engine merges the different mappings from the two sections. If
the same entries exist in both sections, the settings in <font-aliases> override
those in <font-mapping>.

<composite-font> section
The <composite-font> section is used to define a composite font, which is a font
consisting of many physical fonts used for different characters. For example, to
define a new font for currency symbols, you change font-family in the following
<block> entry to the Times Roman font-family:

<composite-font>
…
<block name="Currency Symbols" range-start="20a0"

range- end="20cf" index="58" font-family="Times Roman" />
…
</composite-font>

The composite fonts are defined by <block> entries. Each <block> entry defines a
mapping from a UNICODE range to a font family name, which means the font
family is applied for the UNICODE characters in that range. You cannot change
the block name or range or index as it is defined by the UNICODE standard. The
only item you can change in the block element is the font-family name. You can
find information about all the possible blocks at
http://www.unicode.org/charts/index.html.

In cases when the Times Roman font does not support all the currency symbols,
you can define the substitution character by character using the <character> tag,
as shown in the following example:

<composite-font>
 …

<character value="?" font-family="Angsana New"/>
<character value="\u0068" font-family="Times Roman"/>

 …
</composite-font>

Note that characters are represented by the attribute, value, which can be
presented two ways, the character itself or its UNICODE code.

You can find information about all the currency symbols from
http://www.unicode.org/charts/symbols.html.

A composite font named all-fonts is applied as a default font. When a character is
not defined in the desired font, the font defined in all-fonts is used.

<font-paths> section
If the section <font-paths> is set in fontsConfig.xml, the engine ignores the
system-defined font folder, and loads the font files specified in the section,

424 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

<font-paths>. You can add a single font path or multiple paths, ranging from one
font path to a whole font folder, as shown in the following example:

<path path="c:/windows/fonts"/>
<path path="/usr/X11R6/lib/X11/fonts/TTF/arial.ttf"/>

If this section is set, the PDF layout engine will only load the font files in these
paths and ignore the system-defined font folder. If you want to use the system
font folder as well, you must include it in this section.

On some systems, the PDF layout engine does not recognize the system-defined
font folder. If you encounter this issue, add the font path to the <font-paths>
section.

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 425

C h a p t e r

29
Chapter 29Working with BIRT

encryption in iServer
This chapter contains the following topics:

■ About BIRT encryption

■ About the BIRT default encryption plug-in

■ Creating a BIRT report that uses the default encryption

■ Deploying multiple encryption plug-ins

■ Deploying encryption plug-ins to iServer

■ Generating encryption keys

■ Creating a custom encryption plug-in

■ Using encryption API methods

426 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About BIRT encryption
BIRT provides an extension framework to support users registering their own
encryption strategy with BIRT. The model implements the Java™ Cryptography
Extension (JCE). The Java encryption extension framework provides multiple
popular encryption algorithms, so the user can just specify the algorithm and key
to have a high security level encryption. The default encryption extension plug-in
supports customizing the encryption implementation by copying the BIRT
default plug-in, and giving it different key and algorithm settings.

JCE provides a framework and implementations for encryption, key generation
and key agreement, and message authentication code (MAC) algorithms. Support
for encryption includes symmetric, asymmetric, block, and stream ciphers. The
software also supports secure streams and sealed objects.

A conventional encryption scheme has the following five major parts:

■ Plaintext, the text to which an algorithm is applied.

■ Encryption algorithm, the mathematical operations to conduct substitutions
on and transformations to the plaintext. A block cipher is an algorithm that
operates on plaintext in groups of bits, called blocks.

■ Secret key, the input for the algorithm that dictates the encrypted outcome.

■ Ciphertext, the encrypted or scrambled content produced by applying the
algorithm to the plaintext using the secret key.

■ Decryption algorithm, the encryption algorithm in reverse, using the
ciphertext and the secret key to derive the plaintext content.

About the BIRT default encryption plug-in
BIRT’s default encryption algorithm is implemented as a plug-in named:

com.actuate.birt.model.defaultsecurity_<Release>

Table 29-1 shows the location of this plug-in folder in the supported BIRT
environments.

Table 29-1 Locations of the default encryption plug-in folder

Environment Font configuration file folder location

Actuate BIRT
Designer Professional

$Actuate<Release>\BRDPro\eclipse\plugins

Information Console $Information Console\iportal\webapps\iportal
\WEB-INF\platform\plugins

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 427

About supported encryption algorithms
Two different cryptographic methods, private-key and public-key encryptions,
solve computer security problems. Private-key encryption is also known as
symmetric encryption. In private-key encryption, the sender and receiver of
information share a key that is used for both encryption and decryption. In
public-key encryption, two different mathematically related keys, known as a key
pair, are used to encrypt and decrypt data. Information encrypted using one key
can only be decrypted by using the other member of the key pair. BIRT’s default
encryption plug-in supports the following algorithms within these two methods:

■ Private-key encryption.

■ DES is the Digital Encryption Standard as described in FIPS PUB 46-2 at
http://www.itl.nist.gov/fipspubs/fip46-2.htm. The DES algorithm is the
most widely used encryption algorithm in the world. This algorithm is the
default encryption that BIRT uses.

■ DESede, triple DES encryption

Triple-DES or DESede is an improvement over DES. This algorithm uses
three DES keys k1, k2, and k3. A message is encrypted using k1 first, then
decrypted using k2 and encrypted again using k3. This technique is called
DESencryptiondecryptionencryption. Two or three keys can be used in
DESede. This algorithm increases security as the key length effectively
increases from 56 to 112 or 168.

■ Public-key encryption supports the RSA algorithm.

RSA uses both a public key and a private key. The public key can be known to
everyone and is used for encrypting messages. Messages encrypted with the
public key can only be decrypted using the private key.

About the components of the BIRT default encryption
plug-in
The BIRT default encryption plug-in consists of the following main modules:

■ acdefaultsecurity.jar

■ encryption.properties file

■ META-INF/MANIFEST.MF

■ plugin.xml

iServer $Actuate<Release>\iServer\Jar\BIRT\platform
\plugins

Table 29-1 Locations of the default encryption plug-in folder

Environment Font configuration file folder location

428 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About acdefaultsecurity.jar
This JAR file contains the encryption classes. The default encryption plug-in also
provides key generator classes that can be used to create different encryption
keys.

About encryption.properties
This file specifies the encryption settings. BIRT loads the encryption type,
encryption algorithm, and encryption keys from the encryption.properties file to
do the encryption. The file contains pre-generated default keys for each of the
supported algorithms.

You define the following properties in the encryption.properties file:

■ Encryption type

Type of algorithm. Specify one of the two values, symmetric encryption or
public encryption. The default type is symmetric encryption.

■ Encryption algorithm

The name of the algorithm. You must specify the correct encryption type for
each algorithm. For the symmetric encryption type, BIRT supports DES and
DESede. For public encryption type, BIRT supports RSA.

■ Encryption mode

In cryptography, a block cipher algorithm operates on blocks of fixed length,
which are typically 64 or 128 bits. Because messages can be of any length, and
because encrypting the same plaintext with the same key always produces the
same output, block ciphers support several modes of operation to provide
confidentiality for messages of arbitrary length. Table 29-2 shows all
supported modes.

Table 29-2 Supported encryption modes

Mode Description

None No mode

CBC Cipher Block Chaining Mode, as defined in the National
Institute of Standards and Technology (NIST) Federal
Information Processing Standard (FIPS) PUB 81, “DES
Modes of Operation,” U.S. Department of Commerce,
Dec 1980

CFB Cipher Feedback Mode, as defined in FIPS PUB 81

ECB Electronic Codebook Mode, as defined in FIPS PUB 81

OFB Output Feedback Mode, as defined in FIPS PUB 81

PCBC Propagating Cipher Block Chaining

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 429

■ Encryption padding

Because a block cipher works on units of a fixed size, but messages come in a
variety of lengths, some modes, for example CBC, require that the final block
be padded before encryption. Several padding schemes exist. The supported
paddings are shown in Table 29-3. All padding settings are applicable to all
algorithms.

■ Encryption keys

Actuate provides pre-generated keys for all algorithms.

Listing 29-1 shows the default contents of encryption.properties.

Listing 29-1 Default encryption.properties

#message symmetric encryption , public encryption.
type=symmetric encryption

#private encryption: DES(default), DESede
#public encryption: RSA
algorithm=DES

NONE , CBC , CFB , ECB(default) , OFB , PCBC
mode=ECB
NoPadding , OAEP , PKCS5Padding(default) , SSL3Padding
padding=PKCS5Padding

#For key , support default key value for algorithm
#For DESede ,DES we only need to support private key
#private key value of DESede algorithm : 20b0020…
#private key value of DES algorithm: 527c2qI

#for RSA algorithm , there is key pair. you should support
private-public key pair

Table 29-3 Supported encryption paddings

Mode Description

NoPadding No padding.

OAEP Optimal Asymmetric Encryption Padding (OAEP) is a
padding scheme that is often used with RSA encryption.

PKCS5Padding The padding scheme described in RSA Laboratories,
“PKCS #5: Password-Based Encryption Standard,” version
1.5, November 1993. This encryption padding is the
default.

SSL3Padding The padding scheme defined in the SSL Protocol Version
3.0, November 18, 1996, section 5.2.3.2.

430 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

#private key value of RSA algorithm: 30820…

#public key value of RSA algorithm: 30819…

#private key
symmetric-key=527c23…

#public key
public-key=

About META-INF/MANIFEST.MF
META-INF/MANIFEST.MF is a text file that is included inside a JAR to specify
metadata about the file. Java’s default ClassLoader reads the attributes defined in
MANIFEST.MF and appends the specified dependencies to its internal classpath.
The encryption plug-in ID is the value of the Bundle-SymbolicName property in
the manifest file for the encryption plug-in. You need to change this property
when you deploy multiple instances of the default encryption plug-in, as
described later in this chapter. Listing 29-2 shows the contents of the default
MANIFEST.MF.

Listing 29-2 Default MANIFEST.MF

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Actuate Default Security Plug-in
Bundle-SymbolicName:

com.actuate.birt.model.defaultsecurity;singleton:=true
Bundle-Version: <release><version>
Require-Bundle: org.eclipse.birt.report.model,
 org.eclipse.core.runtime
Export-Package: com.actuate.birt.model.defaultsecurity.api
Bundle-ClassPath: acdefaultsecurity.jar
Bundle-Vendor: Actuate Corporation
Eclipse-LazyStart: true
Bundle-Activator:

com.actuate.birt.model.defaultsecurity.properties.
SecurityPlugin

About plugin.xml
plugin.xml is the plug-in descriptor file. This file describes the plug-in to the
Eclipse platform. The platform reads this file and uses the information to
populate and update, as necessary, the registry of information that configures the
whole platform. The <plugin> tag defines the root element of the plug-in
descriptor file. The <extension> element within the <plugin> element specifies
the Eclipse extension point that this plug-in uses,

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 431

org.eclipse.birt.report.model.encryptionHelper. This extension point requires a
sub-element, <encryptionHelper>. This element uses the following attributes:

■ class

The qualified name of the class that implements the interface
IEncryptionHelper. The default class name is
com.actuate.birt.model.defaultsecurity.api.DefaultEncryptionHelper.

■ extensionName

The unique internal name of the extension. The default extension name is jce.

■ isDefault

The field indicating whether this encryption extension is the default for all
encryptable properties. This property is valid only in a BIRT Report Designer
environment. When an encryption plug-in sets the value of this attribute to
true, the BIRT Report Designer uses this encryption method as the default to
encrypt data. There is no default encryption mode in iServer and Information
Console. The encryption model that BIRT uses supports implementing and
using several encryption algorithms. The default encryption plug-in is set as
default using this isDefault attribute. If you implement several
encryptionHelpers, set this attribute to true for only one of the
implementations. If you implement multiple encryption algorithms and set
isDefault to true to more than one instance, BIRT treats the first loaded
encryption plug-in as the default algorithm.

Listing 29-3 shows the contents of the default encryption plug-in’s plugin.xml.

Listing 29-3 Default plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>

<extension
id="encryption"
name="default encryption helper"
point="org.eclipse.birt.report.model.encryptionHelper">
<encryptionHelper

class="com.actuate.birt.model.defaultsecurity.api
.DefaultEncryptionHelper"
extensionName="jce" isDefault="true" />

</extension>
</plugin>

432 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Creating a BIRT report that uses the default encryption
This section describes an example that shows how the entire mechanism works.
This example uses Actuate BIRT Designer to create a report design. The report
design connects to a MySQL Enterprise database server using the user, root, and
password, root, as shown in Figure 29-1.

Figure 29-1 Data source properties for the encryption example

The encryption model stores the encrypted value of the database password in the
report design file. Along with the value, the model stores the encryptionID. In
this way, it identifies the encryption mechanism used to encrypt the password, as
shown in the <encrypted-property> element in the following code:

<data-sources>
<oda-data-source

extensionID="org.eclipse.birt.report.data.oda.jdbc" name="Data
Source" id="6">
<property name="odaDriverClass">

com.mysql.jdbc.Driver
</property>
<property name="odaURL">

jdbc:mysql://localhost:3306/classicmodels
</property>
<property name="odaUser">root</property>
<encrypted-property name="odaPassword" encryptionID="jce">

10e52…
</encrypted-property>

</oda-data-source>
</data-sources>

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 433

iServer uses the encryptionID attribute of the <encrypted-property> element to
identify the algorithm to decrypt the password. After using the algorithm on the
value of <encrypted-property>, iServer connects to the database and generates
the report.

Deploying multiple encryption plug-ins
In some cases, you need to use an encryption mechanism other than the Data
Source Explorer default in your report application. For example, some
applications need to create an encryption mechanism using the RSA algorithm
that the default encryption plug-in supports. In this case, you must create an
additional encryption plug-in instance. For use within Actuate BIRT Designer,
you can set this plug-in as the default encryption mechanism. If you change the
default encryption mechanism, you must take care when you work with old
report designs. For example, if you change an existing password field in the
designer, the designer re-encrypts the password with the current default
encryption algorithm regardless of the original algorithm that the field used.

How to create a new instance of the default encryption plug-in

1 Make a copy of the default encryption plug-in:

1 Copy the folder:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>

2 Paste the copied folder in the same folder:

$ACTUATE_HOME\BRDPro\eclipse\plugins

3 Rename:

$ACTUATE_HOME\BRDPro\eclipse\plugins\Copy of
com.actuate.birt.model.defaultsecurity_<Release>

to a new name, such as:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>_rsa

2 Modify the new plug-in’s manifest file:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_2.3.2_rsa\
META-INF\MANIFEST.MF

2 Change:

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity

434 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

to:

Bundle-SymbolicName:
com.actuate.birt.model.defaultsecurity.rsa

MANIFEST.MF now looks similar to the one in Listing 29-4.

Listing 29-4 Modified MANIFEST.MF for the new encryption plug-in

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Actuate Default Security Plug-in
Bundle-SymbolicName:

com.actuate.birt.model.defaultsecurity.rsa;singleton:=true
Bundle-Version: <Release>.<Version>
Require-Bundle: org.eclipse.birt.report.model,
 org.eclipse.core.runtime
Export-Package: com.actuate.birt.model.defaultsecurity.api
Bundle-ClassPath: acdefaultsecurity.jar
Bundle-Vendor: Actuate Corporation
Eclipse-LazyStart: true
Bundle-Activator: com.actuate.birt.model.defaultsecurity

.properties.SecurityPlugin

3 Save and close MANIFEST.MF.

3 Modify the new plug-in’s descriptor file to be the default encryption plug-in:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>_rsa
\plugin.xml

2 Change:

extensionName="jce"

to:

extensionName="rsa"

plugin.xml now looks similar to the one in Listing 29-5.

3 Save and close plugin.xml.

Listing 29-5 Modified plugin.xml for the new encryption plug-in

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="<Version>"?>
<plugin>

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 435

<extension
id="encryption"
name="default encryption helper"
point="org.eclipse.birt.report.model.encryptionHelper">
<encryptionHelper
class="com.actuate.birt.model.defaultsecurity.api
.DefaultEncryptionHelper"
extensionName="rsa" isDefault="true" />
</extension>

</plugin>

4 Modify the original plug-in’s descriptor file, so that it is no longer the default
encryption plug-in:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>
\plugin.xml

2 Change:

isDefault="true"

to:

isDefault="false"

3 Save and close plugin.xml.

5 Set the encryption type in the new plug-in to RSA:

1 Open:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>_rsa
\encryption.properties

2 Change the encryption type to public encryption:

type=public encryption

3 Change the algorithm type to RSA:

algorithm=RSA

4 Copy the pre-generated private and public keys for RSA to the
symmetric-key and public-key properties. encryption.properties now looks
similar to the one in Listing 29-6.

5 Save and close encryption.properties.

436 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Listing 29-6 Modified encryption.properties file for the new encryption
plug-in

#message symmetric encryption , public encryption
type=public encryption

#private encryption: DES(default), DESede
#public encryption: RSA

algorithm=RSA
NONE , CBC , CFB , ECB(default) , OFB , PCBC

mode=ECB
#NoPadding , OAEP , PKCS5Padding(default) , SSL3Padding
padding=PKCS5Padding
#For key , support default key value for algorithm
#For DESede ,DES we only need to support private key
#private key value of DESede algorithm : 20b0020e918..
#private key value of DES algorithm: 527c23ea...
RSA algorithm uses a key pair. You should support
#private-public key pair
#private key value of RSA algorithm: 308202760201003....
#public key value of RSA algorithm: 30819f300d0....
#private key
symmetric-key=308202760....
#public key
public-key=30819f300d0.....

6 To test the new default RSA encryption, open Actuate BIRT Designer and
create a new report design. Create a data source and type the password.

7 View the XML source of the report design file. Locate the data source
definition code. The encryptionID is rsa, as shown in the following sample:

<data-sources>
<oda-data-source name="Data Source" id="6"

extensionID="org.eclipse.birt.report.data.oda.jdbc" >
<text-property name="displayName"></text-property>
<property name="odaDriverClass">

com.mysql.jdbc.Driver
</property>
<property name="odaURL">

jdbc:mysql://192.168.218.225:3306/classicmodels
</property>
<property name="odaUser">root</property>
<encrypted-property name="odaPassword"

encryptionID="rsa">
36582dc88.....

</encrypted-property>
</oda-data-source>

</data-sources>

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 437

8 Create a data set and a simple report design. Preview the report to validate
that BIRT connects successfully to the database server using the encrypted
password. Before trying to connect to the data source the report engine
decrypts the password stored in the report design using the default RSA
encryption plug-in. Then the engine submits the decrypted value to the
database server.

Deploying encryption plug-ins to iServer
If you deploy your report designs to iServer, you need to deploy the report and
the new encryption plug-in to iServer. iServer loads all encryption plug-ins at
start up. During report execution, iServer reads the encryptionID property from
the report design file and uses the corresponding encryption plug-in to decrypt
the encrypted property. Every time you create reports using a new encryption
plug-in, make sure you deploy the plug-in to iServer, otherwise the report
execution on the server will fail.

When using iServer, you do not need to deploy the encryption plug-ins to
Information Console.

How to deploy a new encryption plug-in instance to iServer

1 Copy:

$ACTUATE_HOME\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_2.3.2_rsa

to:

$ACTUATE_HOME\iServer\Jar\BIRT\platform\plugins

2 Publish your report design to iServer.

3 Restart iServer to load the new encryption plug-in.

4 Log in to iServer using Information Console and run the report. iServer now
uses the new encryption plug-in to decrypt the password.

Generating encryption keys
The default encryption plug-in provides classes that can be used to generate
different encryption keys. The classes names are SymmetricKeyGenerator and
PublicKeyPairGenerator. SymmetricKeyGenerator generates private keys, which
are also known as symmetric keys. PublicKeyPairGenerator generates public
keys. Both classes require acdefaultsecurity.jar in the classpath.

Both classes take two parameters, the encryption algorithm and the output file,
where the generated encrypted key is written. The encryption algorithm is a

438 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

required parameter. The output file is an optional parameter. If you do not
provide the second parameter, the output file is named key.properties and is
saved in the current folder. The encryption algorithm values are shown in
Table 29-4.

How to generate a symmetric encryption key

Run the main function of SymmetricKeyGenerator.

1 To navigate to the default security folder, open a command prompt window
and type:

cd C:\Program Files\Actuate11\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>

2 To generate the key, as shown in Figure 29-2, type:

java -cp acdefaultsecurity.jar
com.actuate.birt.model.defaultsecurity.api.keygenerator.
SymmetricKeyGenerator des

Figure 29-2 Symmetric key generation

3 The generated key is saved in the file, key.properties. The content of the file
looks like this one:

#Key Generator
#Mon Sep 17 10:26:58 PDT 2012
symmetric-key=c402dad0c7a8...

4 Copy the key from the generated key file to the encryption.properties file.

Table 29-4 Key-generation classes and parameters

Class name
Encryption algorithm
parameter

com.actute.birt.model.defaultsecurity.api.
keygenerator.SymmetricKeyGenerator

des

com.actute.birt.model.defaultsecurity.api.
keygenerator.SymmetricKeyGenerator

desede

com.actute.birt.model.defaultsecurity.api.
keygenerator.PublicKeyPairGenerator

rsa

C h a p t e r 2 9 , W o r k i n g w i t h B I R T e n c r y p t i o n i n i S e r v e r 439

How to generate a public key using RSA encryption

Run the main function of PublicKeyPairGenerator.

1 To navigate to the default security folder, open a command prompt window
and type:

cd C:\Program Files\Actuate11\BRDPro\eclipse\plugins
\com.actuate.birt.model.defaultsecurity_<Release>

2 In the command prompt window, type:

java -cp acdefaultsecurity.jar
com.actuate.birt.model.defaultsecurity.api.keygenerator.

PublicKeyPairGenerator rsa

The class generates a pair of keys saved in the key.properties file:

#Key Generator
#Mon Sep 17 10:34:58 PDT 2012
public-key=30819f300d06092a86...
symmetric-key=3082027...

3 Copy the key from the generated key file to the encryption.properties file.

Creating a custom encryption plug-in
To create a custom encryption plug-in, you need to extend the following
extension point:

org.eclipse.birt.report.model.encryptionHelper

The interface IEncryptionHelper defines two methods, as shown in the following
code:

public interface IEncryptionHelper
{

public String encrypt(String string);

public String decrypt(String string);
}

You need to implement these methods and program your encryption and
decryption logic there.

To install the custom encryption plug-in, copy the plug-in to the product’s
plugins folder, where the default plug-in resides. Change the isDefault property
in plugin.xml to true. Change the isDefault properties of the rest of the encryption
plug-ins to false.

440 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Using encryption API methods
You can call the API methods in the default encryption plug-in when you have to
set the encryptionID property, or encrypt data programmatically. The following
list describes these methods and shows their signatures:

■ IEncryptionHelper::encrypt encrypts the given string, and returns the
encrypted string:

String IEncryptionHelper::encrypt(String value)

■ IEncryptionHelper::decrypt decrypts the given encrypted string, and returns
the original string:

public String IEncryptionHelper::decrypt(String string)

■ MetaDataDictionary::getEncryptionHelper returns the encryption helper with
the extension ID:

public IEncryptionHelper
MetaDataDictionary::getEncryptionHelper(String id)

■ MetaDataDictionary::getEncryptionHelpers gets all the encryption helpers:

public List MetaDataDictionary::getEncryptionHelpers()

C h a p t e r 3 0 , U s i n g c u s t o m e m i t t e r s i n i S e r v e r 441

C h a p t e r

30
Chapter 30Using custom emitters

in iServer
This chapter contains the following topics:

■ About custom emitters

■ Deploying custom emitters to iServer and Information Console

■ Rendering in custom formats

■ Configuring the default export options for a BIRT report

442 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About custom emitters
In Actuate BIRT Designer Professional or Interactive Viewer, you can choose to
render BIRT reports in several different formats, as shown in Figure 30-1.

Figure 30-1 Rendering formats

Actuate provides out-of-the-box report rendering for the following file formats:

■ AFP - Advanced Function Printing document format

■ DOC - Microsoft Word document

■ DOCX - Microsoft Word document, introduced in Windows 7

■ HTML - HyperText Markup Language document, a standard format used for
creating and publishing documents on the World Wide Web

■ PDF - Created by Adobe, a portable file format intended to facilitate document
exchange

■ POSTSCRIPT - A page description language document for medium- to
high-resolution printing devices

■ PPT - Microsoft PowerPoint document

■ PPTX - Microsoft PowerPoint document for Windows 7

■ XHTML - Extensible Hypertext Markup Language document, the next
generation of HTML, compliant with XML standards

■ XLS/XLSX - MS-Excel Document

If you need to export your document to a format not directly supported by
Actuate, such as CSV and XML, you need to develop a custom emitter. Actuate
supports using custom emitters to export reports to custom formats. After a
system administrator places custom emitters in the designated folder in
Information Console or iServer, and registers the emitters with iServer, he must
restart the product. Users then are able to use the emitters as output formats
when scheduling BIRT report jobs in iServer or exporting BIRT reports in
Information Console. Custom emitters are also supported as e-mail attachment
formats.

C h a p t e r 3 0 , U s i n g c u s t o m e m i t t e r s i n i S e r v e r 443

iServer uses the custom emitter format type as a file extension for the output file
when doing the conversion. When you develop custom emitters, always use the
same name for a format type and an output file extension type. Management
Console and Actuate Information Console for iServer display the options of each
emitter for the user to choose when exporting a report.

The Integrating and Extending BIRT book, published by Addison-Wesley, provides
detailed information about how to develop custom emitters in BIRT.

Deploying custom emitters to iServer and Information
Console

The custom emitters in BIRT are implemented as plug-ins and packaged as JAR
files. To make them available to the Actuate products that support them, copy the
emitters to the MyClasses folder. The MyClasses folder appears at different levels
on different platforms and but it is always available at the product’s installation
folder. For iServer the folder is at the following location:

Actuate<release>/iServer/MyClasses/eclipse/plugins

When you install InformationConsole.war file to your own J2EE application
server, the shared folder MyClasses is not available. In this case, custom emitter
plug-ins should be copied to the following folder:

<context-root>/WEB-INF/platform/plugins

Every time you deploy a custom emitter you need to restart the product. This
ensures the emitter JAR is added to the classpath and the product can discover
the new rendering format. For iServer deployment you must execute an extra
step to register the emitter with iServer.

The following tools and products support custom emitters:

■ Actuate BIRT DesignerProfessional

■ Actuate BIRT Studio

■ BIRT Interactive Viewer for iServer

■ Information Console for iServer

■ iServer

444 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Rendering in custom formats
After deploying the custom emitter, you can see the new rendering formats
displayed along with built-in emitters in the following places:

■ Preview report in Web Viewer in Actuate BIRT Designer

■ Output page of schedule job in Management Console and Information
Console for iServer

■ Attachment notification page of schedule job in Management Console or
Information Console for iServer

■ Export content in Actuate BIRT Viewer and Actuate BIRT Interactive Viewer

The following examples show the deployment and usage of a custom CSV
emitter. The CSV emitter renders a report as a comma-separated file. The JAR file
name is org.eclipse.birt.report.engine.emitter.csv.jar. The custom format type is
MyCSV.

To test the emitter functionality with Management and Information Consoles,
you schedule any BIRT report design or report document from the examples in
the Public folder. The examples that follow use the report from the sample
Encyclopedia volume for an iServer:

Public/BIRT and BIRT Studio Examples/CustomerList.rptdesign

How to deploy a custom emitter to iServer

This example assumes that the iServer is installed in the Actuate<Release> folder
on Windows.

1 Copy org.eclipse.birt.report.engine.emitter.csv.jar to:

Actuate<Release>\iServer\MyClasses\eclipse\plugins

2 Register the emitter with iServer.

1 Open the following file:

Actuate<Release>\iServer\etc\jfctsrvrconfig.xml

JREM uses this configuration file at startup to load the registered emitters.

2 Navigate to the end of the file to find the following entry:

<node name="BIRTReportRenderOption">

The entry contains a list of emitter descriptions separated by a semicolon.
The emitter description must have the format type and the emitter id
separated by a colon. For example, the PDF emitter is described as:

pdf:org.eclipse.birt.report.engine.emitter.pdf;

C h a p t e r 3 0 , U s i n g c u s t o m e m i t t e r s i n i S e r v e r 445

3 Add your emitter description to the beginning of the
<entry name="RenderFormatEmitterIdMapping"> tag:

MyCSV:org.eclipse.birt.report.engine.emitter.mycsv;

The whole tag would look like this:

<node name="BIRTReportRenderOption">

<!-- The value is "render_format:emitter_ID" separated by ";",
for example, pdf:org.eclipse.birt.report.engine.emitter.pdf;
xml:org.eclipse.birt.report.engine.emitter.xml -->

<entry name="RenderFormatEmitterIdMapping">
MyCSV:org.eclipse.birt.report.engine.emitter.csv;
html:org.eclipse.birt.report.engine.emitter.html;
xhtml:com.actuate.birt.report.engine.emitter.xhtml;
pdf:org.eclipse.birt.report.engine.emitter.pdf;
postscript:org.eclipse.birt.report.engine.emitter.postscript;
xls:com.actuate.birt.report.engine.emitter.xls;
ppt:org.eclipse.birt.report.engine.emitter.ppt;
pptx:com.actuate.birt.report.engine.emitter.pptx;
doc:org.eclipse.birt.report.engine.emitter.word;
docx:com.actuate.birt.report.engine.emitter.docx

</entry>
</node>

3 Restart the iServer to make it load the new plug-in in its classpath:

■ Restart Actuate iServer <Release> from Start➛Settings➛Control
Panel➛Administrative Tools➛Services, as shown in Figure 30-2.

■ If you use a separately deployed Information Console, you must also
restart Apache Tomcat for Actuate Information Console <Release>.

Figure 30-2 Services

446 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

The following procedures show how to export a BIRT report to a custom format
in different products. The procedures use an example format, MyCSV.

How to deploy and use a custom emitter in Actuate BIRT Designer

This example assumes that iServer is installed in the Actuate<Release> folder on
Windows.

1 Copy the emitter to:

Actuate<Release>\MyClasses\eclipse\plugins

2 Reopen the designer.

3 Preview the report in Web Viewer.

The new MYCSV format appears in the list of formats, as shown in
Figure 30-3.

Figure 30-3 List of available formats in Web Viewer

How to export a BIRT report in iServer Management Console

1 Open iServer Management Console.

2 Navigate to the Public/BIRT and BIRT Studio Examples folder.

3 Click the blue arrow next to CustomerList.rptdesign and choose the Schedule
option from the menu.

4 In the Schedule page, select Output tab.

The new MYCSV format appears in the list of the available formats, as shown
in Figure 30-4.

C h a p t e r 3 0 , U s i n g c u s t o m e m i t t e r s i n i S e r v e r 447

5 Choose the Notification tab in the same Schedule Job page. Select MYCSV
format from the Format for the attached report’s drop-down list, as shown in
Figure 30-5.

Figure 30-5 Notification tab in the Schedule Job page

6 Choose OK. The generated report is saved as CustomerList.MYCSV in the
Encyclopedia volume. The report is also attached to the e-mail notification.

How to export a BIRT report from Information Console or iServer

Schedule a BIRT report to run by choosing Save As on the Schedule page. The
new MYCSV format appears in the document format list. You can also select to
attach the output report to an e-mail notification, as shown in Figure 30-6.

Figure 30-4 Output format in Management Console

448 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 30-6 Save As tab in the Schedule Jobs page in Information Console

How to export a BIRT report from Actuate BIRT Viewer or Actuate BIRT Interactive
Viewer

1 Open a BIRT report in Actuate BIRT Viewer or Interactive Viewer.

2 Select Export Content from the viewer menu. The new MYCSV format shows
up in Export Format, as shown in Figure 30-7.

Figure 30-7 Export Content in Actuate BIRT Viewer

3 Choose OK.

A file download window appears, as shown in Figure 30-8. You can choose to
open or save the file. The suggested file name is CustomerList.mycsv.

C h a p t e r 3 0 , U s i n g c u s t o m e m i t t e r s i n i S e r v e r 449

Figure 30-8 File Download

Configuring the default export options for a BIRT report
You can export a BIRT report to various formats from the web viewer. These
formats include docx, pptx, xls, xlsx, pdf, ps, doc, and ppt. You can configure the
default export options by creating a RenderDefaults.cfg file that contains
name-value pairs for the appropriate options. You must create a separate
RenderDefaults.cfg file for each format. For example, when you export a BIRT
report to XLSX, RenderDefaults.cfg can set Enable pivot table to false by default.
Place RenderDefaults.cfg in the following locations:

■ On iServer, place RenderDefaults.cfg in <SERVER_HOME>\Jar\BIRT
\platform\plugins\com.actuate.birt.report.engine.emitter.config
.<EMITTER_TYPE>_<RELEASE_NUMBER>.jar, for example C:\Program
Files (x86)\Actuate11SP5\iServer\Jar\BIRT\platform\plugins
\com.actuate.birt.report.engine.emitter.config.xls_11.0.4.v20120810.jar. When
you create or modify RenderDefaults.cfg, you must restart iServer.

■ On the desktop, place RenderDefaults.cfg in <BDPRO_HOME>
\eclipse\plugins\com.actuate.birt.report.engine.emitter.config
.<EMITTER_TYPE>_<RELEASE_NUMBER>.jar, for example
C:\Program Files (x86)\Actuate11\BRDPro\eclipse\plugins
\com.actuate.birt.report.engine.emitter.config.xls_11.0.4.v20120810.jar.

For information about creating a RenderDefaults.cfg file, see Working with Actuate
BIRT Viewers.

450 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Part 4Using Actuate BIRT APIs

Part Four4

C h a p t e r 3 1 , U s i n g t h e B I R T d a t a o b j e c t A P I 453

C h a p t e r

31
Chapter 31Using the BIRT

data object API
This chapter contains the following topics:

■ About generating data objects from an application

■ Generating data object elements for BIRT report designs

■ Tutorial 5: Creating a data element using the Design Engine API

454 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

About generating data objects from an application
Actuate BIRT iServer includes a Design Engine API extension to create and alter
data objects programmatically. This Actuate extension provides Java classes to
automate data object generation, retrieving important information required
regularly for any application. The classes that support BIRT data objects,
DataMartCubeHandle, DataMartDataSetHandle, and DataMartDataSource
Handle, are contained in the com.actuate.birt.report.model.api package.

Like the BIRT data objects implemented in the BIRT data explorer, BIRT data
objects generated by the Design Engine API generate data sources and data sets
from a .datadesign or .data file. Using the extension requires programming in
Java. Knowledge of XML is also helpful.

Handling data objects for BIRT reports requires knowledge of programming
using the BIRT reporting API and the report object model. For information about
the BIRT reporting API and the report object model, see Integrating and Extending
BIRT. This chapter describes the additional requirements for generating data
objects for reports.

Generating data object elements for BIRT report
designs

To generate data object data sources, data sets, and cubes for a BIRT report
design, first configure BIRT_HOME to access the Actuate commercial model API
Java archive (JAR) files from Actuate iServer. To accomplish this task, generate a
DesignConfig object with a custom BIRT_HOME path, as shown in the following
code:

// Create an DesignConfig object.
DesignConfig config = new DesignConfig();
// Set up the path to your BIRT Home Directory.
config.setBIRTHome("C:/Program Files/Actuate11/iServer/Jar/BIRT

/platform");

Use the path to the iServer installation specific to your system.

Using this design configuration object, create and configure a Design Engine
object, open a new session, and generate or open a report design object, as shown
in the following code:

// Create the engine.
DesignEngine engine = new DesignEngine(config);
SessionHandle sessionHandle = engine.newSessionHandle(

ULocale.ENGLISH);
ReportDesignHandle designHandle = sessionHandle.createDesign();

C h a p t e r 3 1 , U s i n g t h e B I R T d a t a o b j e c t A P I 455

These objects are contained in the model API package
org.eclipse.birt.report.model.api.

The ElementFactory class supports access to all the elements in a report. The
following code generates an Element Factory object:

ElementFactory factory = designHandle.getElementFactory();

To generate data sources, data sets, and cubes, use the datamart methods of an
ElementFactory object: newDataMartCube() for a new cube,
newDataMartDataSet() for a data set, and newDataMartSource() for a new data
source. For example, to instantiate a new data source, use the following code:

DataMartDataSourceHandle dataSource =
factory.newDataMartDataSource("Data Object Data Source");

Associate a handle for a data object data source with an actual data source from
the contents of a data or data design file. For example, to associate a data source
handle with a data source from test.datadesign, use the following code:

dataSource.setDataMartURL("test");
dataSource.setAccessType(

DesignChoiceConstants.ACCESS_TYPE_TRANSIENT);

Finally, add the data element to the report design, as shown in the following code:

designHandle.getDataSources().add(dataSource);

To complete the data source assignment, output the report design into a file and
close the design handle object, using code similar to the following:

FileOutputStream fos = new FileOutputStream("output.rptdesign");
designHandle.serialize(fos);
// Close the document.
fos.close();
designHandle.close();

The resulting output file, output.rptdesign, contains the new data source,
retrieved from test.datadesign. This data source appears in Data Sources in Data
Explorer and establishes a link to the .datadesign file, test.datadesign. The XML
source for output.rptdesign includes markup similar to the following lines:

<datamart-node location="file:/MyProject/test.datadesign">
...
<data-sources>

<data-mart-data-source name="Data Object Data Source" id="7">
<property name="datamartURL">test</property>
<property name="accessType">transient</property>

</data-mart-data-source>
</data-sources>

When exporting this report design to an Encyclopedia volume, also export
test.datadesign to maintain the reference to the data source.

456 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Creating data object data sets for BIRT report designs
To create a data object data set, use the newDataMartDataSet() method from
ElementFactory. For example, to instantiate a new data set, use the following
code:

DataMartDataSetHandle dataSet =
factory.newDataMartDataSet("Data Set");

Associate the data object data cube with a DataMartDataSourceHandle object and
then add the name of a data set from the data or data design file. For example, to
access a data set called "SetName", use the following code:

dataSet.setDataSource(dataSource.getName());
dataSet.setDataObject("SetName");

DataMartDataSetHandle inherits the setDataSource() method from
DataSetHandle.

Finally, add the data element to the report design, as shown in the following code:

designHandle.getDataSets().add(dataSet);

Creating data object data cubes for BIRT report
designs
To create a data object data cube, use the newDataMartDataCube() method from
ElementFactory. For example, to instantiate a new data cube, use the following
code:

DataMartDataCubeHandle dataCube =
factory.newDataMartDataCube("Data Cube");

Associate the data object data cube with a DataMartDataSourceHandle object and
assign a data cube from the data or data design file. For example, to access a data
cube called "CubeName", use the following code:

dataCube.setDataSource(dataSource.getName());
dataCube.setDataObject("CubeName");

Finally, add the data element to the report design, as shown in the following code:

designHandle.getDataCubes().add(dataCube);

Tutorial 5: Creating a data element using the Design
Engine API

This tutorial provides step-by-step instructions for creating a Java class that
generates a BIRT report design with a BIRT data source generated from a BIRT
data design file. You perform the following tasks:

C h a p t e r 3 1 , U s i n g t h e B I R T d a t a o b j e c t A P I 457

■ Set up a project.

■ Create a GenerateDataObject Java class.

■ Create the main() method to test the code.

■ Run the code.

Task 1: Set up a project
To compile a Design Engine API application, the design engine Java archive (JAR)
files from Actuate iServer must be in your classpath. You can find the design
engine JAR files in the <Actuate home>/iServer/Jar/BIRT/lib directory folder.
The main JAR files that contain the design engine classes are coreapi.jar and
modelapi.jar files. In addition, you need a data design file from which to generate
the data objects. For this tutorial, the data design file is include.datadesign.

1 In Java perspective, select File➛New➛Java Project. New Project appears, as
shown in Figure 31-1.

Figure 31-1 Creating a new project

2 Expand Java, select Java Project, and choose Next. New Java Project appears,
as shown in Figure 31-2.

458 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Figure 31-2 Creating the DataObjectExample project

3 In Project Name type:

DataObjectExample

4 In Project layout, select:

Use project folder as root for sources and class files

5 Choose Next. Java Settings appears.

6 Set the project build path.

1 Select the Libraries tab.

2 Choose Add External JARs.

3 In JAR Selection, navigate to the iServer\Jar\BIRT\lib directory. For the
default installation of BIRT on Windows XP, this directory is:

C:\Program Files\Actuate11\iServer\Jar\BIRT\lib

4 In JAR Selection, select all of the JAR files in the directory.

5 Choose Open. The libraries are added to the classpath as shown in
Figure 31-3.

6 Choose Finish.

C h a p t e r 3 1 , U s i n g t h e B I R T d a t a o b j e c t A P I 459

Figure 31-3 DataObjectsAPI project build path

7 Import the data design file.

1 In the Package Explorer, right-click the DataObjectExample project.

2 Choose Import from the context menu.

3 In Import, choose General➛File System and then choose Next.

4 In File System, choose Browse.

5 Navigate to and select a data design file. Then choose Finish. The data
design file appears in the project as shown in Figure 31-4.

Figure 31-4 DataObjectExample project showing the data design file

460 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Task 2: Create a GenerateDataObject Java class
This Java class creates a simple report design, with table, list, and image elements.

1 Choose File➛New➛Class. New Java Class appears.

2 In Name type:

GenerateDataObject

3 In Package, as shown in Figure 31-5, type:

myPackage

Figure 31-5 Creating a GenerateDataObject class

4 Choose Finish. GenerateDataObject.java opens in the Java editor.

5 Add a BIRT_HOME static variable to the class. For the default installation of
iServer on a 32-bit Windows system, use the following line in the body of the
GenerateDataObject class body:

private static final String BIRT_HOME = "C:/Program Files(x86)
/Actuate11sp5/iServer/Jar/BIRT/platform";

Task 3: Create the main() method to test the code
Add a main() method to run the class.

C h a p t e r 3 1 , U s i n g t h e B I R T d a t a o b j e c t A P I 461

1 Type the following main method:

public static void main(String[] args) throws Exception
{
}

An error indicating that the BirtException class is not defined appears.

2 Use Quick Fix (Ctrl+1) to import the BirtException class definition.

3 Add the main method body shown in Listing 31-1 to your main() method.

Listing 31-1 main() method code

DesignConfig config = new DesignConfig();
config.setBIRTHome(BIRT_HOME);

DesignEngine engine = new DesignEngine(config);
SessionHandle sessionHandle = engine.newSessionHandle(

ULocale.ENGLISH);
ReportDesignHandle designHandle = sessionHandle.createDesign();
ElementFactory factory = designHandle.getElementFactory();

DataMartDataSourceHandle dataSource =
factory.newDataMartDataSource("Data Source");

dataSource.setDataMartURL("include");
dataSource.setAccessType(

DesignChoiceConstants.ACCESS_TYPE_TRANSIENT);
designHandle.getDataSources().add(dataSource);

FileOutputStream fos = new FileOutputStream("test.rptdesign");
designHandle.serialize(fos);
fos.close();

designHandle.close();
System.out.println("Done");

Read the code explanations:

■ To access a data source and its contents, the application must first generate
and configure a design engine object.

■ After creating the engine object, the code instantiates a new session. The
SessionHandle object manages the state of all open data and report
designs. Use SessionHandle to open, close, and create data designs, and to
set global properties, such as the locale and the units of measure for data
elements. Create the session handle only once. BIRT supports only a single
SessionHandle.

■ Generate a new design handle using the SessionHandle object. Create a
design engine element factory using the DesignHandle object.

■ Create a new instance of DataMartDataSourceHandle and set the datamart
URL to the name of a datamart file, include, which corresponds to the

462 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

include.datadesign file added to the project. Then, configure the access
type and add the data source handle to the design handle object.

■ Finally, open a file output stream to a report design, test.rptdesign, that
uses the data object. Export the data design element to the report design.

4 Add the import statements shown in Listing 31-2 to the beginning of the file.

Listing 31-2 import statement code

import java.io.FileOutputStream;
import org.eclipse.birt.core.exception.BirtException;
import org.eclipse.birt.report.model.api.DesignConfig;
import org.eclipse.birt.report.model.api.DesignEngine;
import org.eclipse.birt.report.model.api.ElementFactory;
import org.eclipse.birt.report.model.api.ReportDesignHandle;
import org.eclipse.birt.report.model.api.SessionHandle;
import org.eclipse.birt.report.model.api.elements

.DesignChoiceConstants;
import com.actuate.birt.report.model.api

.DataMartDataSourceHandle;
import com.ibm.icu.util.ULocale;

Task 4: Run the code
5 Create a Run configuration for GenerateDataObject.java class.

1 In Package Explorer, select:

GenerateDataObject.java

2 From the main menu, choose Run➛Run Configurations.

3 Double-click the Java Application link in the left frame of Run
Configurations. The GenerateDataObjects configuration gets created.

4 Choose Run. Save and Launch appears. Choose OK.

6 After the execution completes, refresh the contents of the DataObjectExample
project. test.rptdesign appears.

7 Open the report design and view the XML source. The XML contains a
datamart element that points to include.datadesign and a data source called
include, as shown in the following code:

<datamart-node
location="file:/DataObjectExample/include.datadesign">

...
<data-sources>

<data-mart-data-source name="Data Source" id="4">
<property name="datamartURL">include</property>

C h a p t e r 3 1 , U s i n g t h e B I R T d a t a o b j e c t A P I 463

<property name="accessType">transient</property>
</data-mart-data-source>

</data-sources>

8 In Data Explorer, expand Data Sources to view the new data source, as shown
in Figure 31-6.

Figure 31-6 Data Source in test.rptdesign

The final code for GenerateDataObject is shown in Listing 31-3.

Listing 31-3 GenerateDataObject.java

package myPackage;
import java.io.FileOutputStream;
import org.eclipse.birt.core.exception.BirtException;
import org.eclipse.birt.report.model.api.DesignConfig;
import org.eclipse.birt.report.model.api.DesignEngine;
import org.eclipse.birt.report.model.api.ElementFactory;
import org.eclipse.birt.report.model.api.ReportDesignHandle;
import org.eclipse.birt.report.model.api.SessionHandle;
import org.eclipse.birt.report.model.api.elements

.DesignChoiceConstants;
import com.actuate.birt.report.model.api.DataMartCubeHandle;
import com.actuate.birt.report.model.api.DataMartDataSourceHandle;
import com.ibm.icu.util.ULocale;

public class GenerateDataObject {

private static final String BIRT_HOME =
"C:/Program Files/Actuate11/iServer/Jar/BIRT/platform";

public static void main(String[] args) throws Exception
{

DesignConfig config = new DesignConfig();
config.setBIRTHome(BIRT_HOME);

464 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

DesignEngine engine = new DesignEngine(config);
SessionHandle sessionHandle =
engine.newSessionHandle(ULocale.ENGLISH);
ReportDesignHandle designHandle = sessionHandle.createDesign();
ElementFactory factory = designHandle.getElementFactory();

DataMartDataSourceHandle dataSource =
factory.newDataMartDataSource("Data Source");
dataSource.setDataMartURL("include");
dataSource.setAccessType(DesignChoiceConstants
.ACCESS_TYPE_TRANSIENT);
designHandle.getDataSources().add(dataSource);

FileOutputStream fos = new FileOutputStream("test.rptdesign");
designHandle.serialize(fos);
fos.close();

designHandle.close();
System.out.println("Done");
}

}

I n d e x 465

Index
Symbols
^ (caret) character 277
^ operator 288
, (comma) character

ACL expressions 331
EasyScript expressions 259

; (semicolon) character 87
: (colon) character 366
? (question mark) character

font substitution 422
search expressions 276, 283

. (period) character
decimal separators 259
pattern matching 276

" (quotation mark) character 275
[] (square brackets) characters 258
* (asterisk) character

pattern matching 276
search expressions 283

* operator 288
/ (forward slash) character 276
/ operator 288
\ (backslash) character 277
& operator 288
% (percent) character 275
% operator 288
+ operator 288
+= operator 233
< operator 288
<= operator 288
<> operator 288
= operator 288
> operator 288
>= operator 288
– operator 288
_ (underscore) character

ODA configurations 408
pattern matching 275

A
ABS function 261
absolute paths 100, 410, 415

absolute values 261
Access Control List Expression property

data cubes 347, 349
data objects 330, 341
data sets 341, 343, 345
report elements 335, 338
report objects 330

access control lists
adding data security and 341, 350
adding page-level security and 331, 335,

338
creating 330, 331
deleting 339, 350
inheriting 338
propagating across report elements 336

access restrictions 48, 330, 331, 341
accessing

custom plug-ins 385
data 5, 34, 40, 64, 320, 388
data objects 34, 37
e.reports 64, 65
encryption plug-in 426
expression builder 259
external data sources 18, 54
Flash Object Library 215
Flash objects 212
font configuration files 420
information objects 46, 47
InfoSoft documentation 222
Java classes 383
multiple data sources 46, 106
report elements 455
reports 378
resource folders 34
resource identifiers 416, 417
resources 415
result sets 54, 56
sample reports 381
script editor 140
SQL query builder 10
web service applications 54

accounts 46
acdefaultsecurity.jar 428, 437

466 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

ACLs. See access control lists
Acrobat Reader. See Adobe Acrobat Reader
Actual Page Number property 340
Actuate BIRT Designer

accessing encryption plug-in for 426
accessing font configurations for 420
adding e.report data sources and 65, 66
adding Flash objects and 154, 155
adding HTML5 charts and 131, 133
changing data sources and 366, 370
controlling user access and 37, 330, 339,

350
copying link files for 386
creating joined data sets and 110
debugging source code and 253
deploying custom emitters to 445
disabling default themes for 122, 123
externalizing connection profiles and 415
filtering data and 290, 293
formatting data and 122
generating reports and 127
rendering reports and 442, 444
running iServer API reports and 358
supported data sources for 4
testing data security for 350
testing page-level security for 340
viewing Flash objects and 210

Actuate BIRT Designer Professional xiii, 378
See also Actuate BIRT Designer

Actuate BIRT iServer. See iServer
Actuate Data Object Data Source option 40
Actuate Information Object Data Source

option 47
Actuate Information Object Query page 49
Actuate Interactive Viewer 210, 442, 444, 448
Actuate JavaScript API 324, 325
Actuate JDBC Salesforce.com Data Source

option 92
Actuate POJO Data Set option 102
Actuate POJO Data Source option 98
$ACTUATE_HOME variable 384
ActuateOne for e.Reports data sets 66
ActuateOne for e.Reports data sources 65
ActuateOne for e.Reports driver 4

See also e.Reports Data Connector
Add Column Mapping dialog 103
Add File statements 87

Add New Effect dialog 186
Add Relative Time Period command 301
Add Variables dialog 231, 254, 323
ADD_DAY function 261
ADD_HOUR function 261
ADD_MINUTE function 262
ADD_MONTH function 262
ADD_QUARTER function 263
ADD_SECOND function 263
ADD_WEEK function 264
ADD_YEAR function 264
adding

Amazon DynamoDB data sources 72
Amazon RDS data sources 82
animated charts 130
bookmarks 57
chart themes 133, 135, 136, 138
computed columns 13
cross tabs 43
data items to data objects 21, 22
data object data sources 40, 454, 455
data security 330, 341, 347
data sets 42, 49, 66, 88, 102, 456
debugging messages 358, 360
dynamic filter parameters 292
dynamic filters 293–294
e.report data sources 65, 66
expressions 258, 259
Flash charts 131, 155, 158, 197, 212
Flash gadgets 155, 158, 203, 212
Flash maps 155, 213, 223, 229
Flash objects 154, 155, 214, 214–216
Hive data sources 86
HTML buttons 316, 317
HTML5 charts 130, 131
hyperlinks 30–32
information object data sources 47
join conditions 114–117
joined data sets 110, 111
page-level security 330, 335
POJO data sources 98, 102
profiles 379, 397, 402
QR codes 125
relative time period elements 301
report document data sources 60
sample data 5
security IDs 330, 331

I n d e x 467

summary tables 28
tooltips 178
union data sets 106, 108
visual effects 185–187, 200

addition operator 288
add-ons 180, 181
AddOns page (Format Gadget) 182
Adobe Acrobat Reader 155
Adobe Flash Player 154
Advanced Settings page (New Amazon

DynamoDB Data Set) 74
afterDataSetFilled function 143
afterRendering function 144, 146, 148
aggregate expressions 302
aggregate functions 15, 302
aggregation

See also summary tables; summary values
Hadoop data and 86
memory usage and 18
relative time periods and 301, 302, 303
report designs and 54
summary data and 28

alerts 321
Alias property 108
aliases 14
alignment 183, 184
alpha transition 189
Amazon DynamoDB Data Source page 73
Amazon DynamoDB databases

changing values returned by 75
connecting to 72, 73
excluding values in 78
filtering 76–79
retrieving data from 74
searching 76, 77
structure of 72

Amazon DynamoDB service 72
Amazon RDS data sources 82–84
Analysis Type property 28, 29
analysis types 28, 29
analytics technology 18
analyzing data 19, 86, 300, 366
anchor properties (gadgets) 174
anchors (gadgets) 174, 175
AND operator 288
Angle property 191, 194
animated charts 130

animation
Flash charts 163, 185, 188
Flash charts tutorial 199, 201, 207
Flash objects 154
HTML5 charts 133

animation attributes 189
animation effects 188–190
animation macros 189
animation properties 188
animation types 190
appContext objects 356, 416
appendToJobStatus method 358, 360
Application Context Key property 102
application context objects 356, 416
application programming interfaces

Amazon DynamoDB data and 77
BIRT data objects and 454
HTML5 charts and 131
iServer environment and 354
web applications and 324

application servers 385
applications

accessing web service 54
adding interactive features to 154, 316, 324
cloud deployments and 92
compiling code for 457
creating POJO objects and 98
developing 241, 324, 354
encrypting data and 433
loading custom plug-ins and 385
mobile devices and 125, 126, 130
running 385, 416

Arc Inner Radius property 173
Arc Outer Radius property 173
arcs (drawing element) 180
arcs (gadgets) 161, 173
area charts 130
ASCII text files 408
asterisk (*) character

pattern matching 276
search expressions 283

asymmetric encryption 429
See also RSA encryption

attachments 442, 447
Attribute To Animate property 189
Attribute value 28

468 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

attributes (Amazon DynamoDB data) 72, 76,
77

attributes (fonts) 217, 219
authentication algorithms 426
authentication IDs 360
Auto Abbreviation property 169
Auto Adjust Tickmarks property 164
automatic update 38
auto-summarize operations 28

B
Background Color property 162, 193
Background property 178
backslash (\) character 277
bar charts 130, 146, 148, 212
barcodes (QR code readers) 125
Base Color property 162
Base Width property 166
beforeDataSetFilled function 143
beforeDrawAxis function 144
beforeDrawDataPoint function 144
beforeDrawSeries function 144, 145, 146
beforeGeneration function 143, 144
beforeRendering function 144, 151
BETWEEN function 264
bevel effects 191
bevel properties 191
BIRT 360 application 19, 346, 347
BIRT APIs 324, 325, 354, 454
BIRT engine 356, 385
BIRT Interactive Viewer. See Interactive

Viewer
BIRT objects 18, 368

See also specific type
BIRT projects 370
BIRT Report Designer xiii, 4

See also Actuate BIRT Designer
BIRT Report Designer Professional 65

See also Actuate BIRT Designer
Professional

BIRT Report Document Data Source
option 59

BIRT reports 18, 378
See also reports

BIRT resources 381
See also resources

BIRT Studio 21, 346, 347, 350, 378
BIRT Viewer 444, 448
BIRT_HOME variable 454
blank characters 285, 286
block cipher algorithm 426, 428
blur effects 192
blur properties 192
Bold property 193
Bookmark folder (BIRT) 56
bookmark names 57
Bookmark property 57
bookmarks 30, 57
Boolean values 272, 279

See also conditional expressions
Border Color property

needle base 167
needles 166
plots 176
text 193
thresholds 173
value indicators 177

Border property 176, 178
Border Thickness property 167
Border Width property 166, 176, 177
Bounce animation type 190
Browse for Flash Files dialog 215
browsers. See web browsers
build paths 355
Bulb Radius property 162
bullet gadgets 175, 177, 178, 212

See also Flash gadgets
Bundle-SymbolicName property 430
button events 316, 318, 319
button names 317
buttons 133

See also HTML buttons

C
cached data 34, 54, 60
caching data 34, 35
calculations 54, 258, 288, 320
capitalization 286
caret (^) character 277
Cascade ACL setting 336, 338
case 276, 286
case-insensitive searches 277

I n d e x 469

case-sensitive searches 271, 275
case sensitivity (EasyScript) 259
CASE statements 13
catalogs 72
CBC encryption mode 428
CEILING function 265
Center X Coordinate property 162, 182
Center Y Coordinate property 162, 182
CFB encryption mode 428
changing

bookmark names 57
configuration files 410
connection information 388, 408
connection properties 408
data cubes 43
data items 37, 38, 40, 366
data types 366
default encryption 433
default expression syntax 260
default folders 381, 382
field names 108
HTML buttons 327
information objects 46, 366
Java classes 383
passwords 433
queries 50
report element IDs 58
security tokens 93
themes 122, 133
union data sets 109
variables 232
visual effects 188

character encoding 408
character strings. See strings
character tag 423
characters

adding QR codes and 126
counting 274
data object design file names 22
finding matching 275, 276, 283
finding specific 271, 274, 280
font substitution and 422, 423
JavaScript object notation and 136
matching literal 275, 277
multi-valued data sets and 75
removing leading or trailing 285, 286

chart builder 131, 133, 140

See also Flash chart builder
chart element IDs 58
chart elements 143
chart event functions 143, 144
chart event handlers 143, 146, 148, 150
chart events 140, 143, 144
chart formatting attributes 135
chart gadgets 19
chart objects 145
chart options objects 145
chart styles. See chart themes
chart theme builder 133, 135, 139
chart themes

applying 132, 133
creating 133, 135, 136, 138
exporting formats to 135
overriding 133

chart types 130, 131, 159
charting library 131
charts 21, 54, 130, 295

See also Flash charts; HTML5 charts
check boxes 133
Cipher Block Chaining (CBC) Mode 428
Cipher Feedback (CFB) Mode 428
ciphers 426, 428
ciphertext 426
circles 180
city markers (maps) 234
class attribute 431
class definitions 461
class property 244
classes

BIRT encryption 428, 437
BIRT reports and 383
changing 383
creating Java 247
data objects and 454
debugging 253
deploying 383
Flash objects and 221, 245
HTML buttons and 325
iServer API and 360
Java event handlers and 355
ODA UI driver and 417
POJO data objects and 98, 100, 102

Classic Models database 195, 223, 409
classpaths 355, 430, 437, 443, 457

470 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

click events 319
Client Script 140
closing values (gadgets) 176
cloud deployments 72, 82, 92
clusters 410
code

accessing Hadoop data and 86
adding Flash objects and 212, 253
adding HTML buttons and 319, 320
adding HTML5 charts and 135, 136, 140,

145
compiling 457
creating QR codes and 126
creating run configuration for 462
generating data objects and 454
importing classes for 247
writing event handlers and 354, 356, 357

code templates 247, 319
colon (:) character 366
Color property

borders 162
font effects 193
glow effects 193
lines 182
regions 170
shadow effects 194
text 179
threshold area (gadgets) 173
value indicators 177

color values 234
column aliases 14
column bindings 54
column chart gadgets 20
column charts

Flash objects and 212
multiple series and 217, 220
tutorial for animating 201

column names 64, 65
columns

See also fields
adding hyperlinks to 30, 31
adding to reports 42
changing data in 366
consolidating data for 107, 110
creating computed 13
displaying 42, 60
filtering data and 291, 294

generating result sets and 54
getting values from 220
grouping data in 28
hiding 124, 125
mapping to POJO objects and 100, 103
restricting access to 345
retrieving from e.reports 64, 66, 67
searching for changes in 366
setting analysis type for 28, 29

combination charts 212, 236
combo boxes 291
comma (,) character

ACL expressions 331
EasyScript expressions 259

comma separated files. See CSV files
commercial model API JAR files 454
common fields 107
common keys 110
comparison operators 115
comparisons 78, 300
compiling 457
composite fonts 423
composite keys 76
composite-font tag 423
computed columns 13
concatenation 288
conditional expressions 272, 288
conditions. See filter conditions; join

conditions
Configuration Console 411
configuration files

accessing font information and 420, 421,
422

changing 410
connecting to data sources and 408, 410
creating 411
externalizing data source properties

and 414
setting default location for 410
updating 410

configuration keys 408
configuration property files 409
configuring export content defaults 449
ConnConfigFile parameter 411
Connect Missing Data property 162
connection configuration files 408–411, 414
connection definitions 409

I n d e x 471

connection information
Amazon DynamoDB databases 73
Amazon RDS databases 82
data objects 40
Encyclopedia volumes 47
external data sources 54
externalizing 408, 409
Hive data sources 87
information objects 46
POJO data sources 99
report documents 58
Salesforce.com data sources 92

connection profile names 403
connection profile properties 402
Connection Profile Store URL property 402,

414, 415
connection profiles

See also connection information
binding to reports 402–403
changing 388
connecting to Amazon DynamoDB

databases and 73
connecting to Amazon RDS databases

and 82
connecting to data sources and 9, 388
connecting to Hive data sources and 87
connecting to Salesforce.com data sources

and 92
creating 379, 397, 402
deploying 400
externalizing 403, 414
naming 379
publishing reports and 380
referencing external 415
reusing 388

connection properties 8, 388, 410, 414
See also connection information

connection property names 408
connections

accessing data and 5, 8, 18, 40, 388
accessing databases and 9, 72, 82
accessing iServer and 378
configuring 408–411
loading e.reports and 65
testing 100

ConnectOptions parameter 410
context objects 356, 403, 416

contributors 242
Convert to Shared Dimension command 26
copying

data items 23
JAR files 355

Create Note Attachment button 369
createDataURL method 222
creating

access control lists 330, 331
animated charts 130
bookmarks 57
chart themes 133, 135, 136, 138
computed columns 13
configuration files 411
data cubes 22, 43, 456
data items 22
data object stores 34
data objects 18, 21, 454
data security 330, 341, 347
data sets 42, 49, 66, 88, 102, 456
data sources 22, 195, 455
dynamic filter parameters 292
dynamic filters 293–294
e.report data sources 65
encryption keys 428, 437, 438, 439
encryption plug-ins 439
expressions 258, 259
Flash charts 158, 195–202
Flash gadgets 158, 202–210
HTML buttons 316, 317
HTML5 charts 130, 131
hyperlinks 30–32
information objects 46
interactive web pages 154
Java classes 247
Java event handlers 355, 357
JavaScript event handlers 354, 356
join conditions 114–117
joined data sets 110–113, 114
joins 11
mobile phone applications 125, 130
multi-level dimensions 25
page-level security 330, 335
plug-ins 240
POJO data sources 98
profiles 379, 397, 402
queries 10, 49, 88

472 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

creating (continued)
relative time periods 301
report document data sources 54, 58
report documents 54, 57
reports 21, 40, 54, 432, 437
sample data 5
shared dimensions 25–26
summary tables 28
union data sets 106–109
visual effects 185–187, 200

CRM applications 92
See also Salesforce.com data sources

cross tab gadgets 20
cross tabs 43, 54, 300
cryptographic methods 427

See also encryption
CSV emitter 444
CSV files 106, 403
CSV formats 442
cubes. See data cubes
currency symbols 423
currency values 168, 266
current date and time 279, 285, 302
Current Month value 308
Current Period value 309
Current Quarter value 309
Current Year value 309
custom drivers 378, 385
custom emitters

deploying 443, 444, 446
loading 385
rendering reports and 442

custom Flash objects 155
custom plug-ins 385, 439
Customer Relationship Management

applications. See CRM applications
CustomerList.mycsv 448
CustomerList.rptdesign 446
customizing

encryption implementation 426
encryption plug-in 439
Flash objects 180, 185
HTML buttons 325–327
HTML5 charts 132, 133
reports 383

customODA.link file 385
customPlugins.link file 385

cylinder gadgets 160, 212
See also Flash gadgets

D
Dash Gap property 182
Dash Length property 182
dashboard gadgets 19
dashboards

adding Flash gadgets to 212
building data objects for 18, 19
controlling access to 341, 350
creating 18
drilling down in 30
filtering data and 20
finding data in 30
retrieving data for 18, 34
selecting data sources for 33
testing data security for 350
viewing summary information in 27

data
See also data sets; values
accessing 5, 34, 40, 64, 320, 388
aggregating. See aggregation
analyzing 19, 86, 300, 366
building cross tabs and 43
building Flash objects and 155, 210, 216,

229
caching 34, 35
cloud deployments and 82, 92
combining from multiple sources 106, 107,

110
comparing 300
controlling access to 37, 330, 341
creating sample 5
displaying 19, 42, 290, 301
embedding 220, 221
encrypting 431, 433, 440
filtering. See filtering data
finding 30, 271
formatting 122
grouping 15, 28
hiding 33
retrieving 10, 18, 42, 46, 60, 66, 98
returning specified values for 35, 290
specifying analysis type for 28, 29
storing large amounts of 86

I n d e x 473

updating 35, 38, 366
data column bindings 54
data connector. See e.Reports Data Connector
data cubes

adding time dimensions to 314
building dashboards from 19
building shared dimensions for 25–26
controlling access to 341
creating 22, 43, 456
displaying relative time periods and 301,

314
editing 43
exporting 23, 24
generating 455
hiding data sets in 33
incremental updates and 35
linking to 32
naming 43
securing 347, 348
selecting 43

data drivers 4, 64
See also drivers

data elements 455, 456
Data Explorer 22
data extraction plug-in 243, 246
data fields. See columns; data set fields
.data files 34, 40, 341

See also data object stores
data files 4

See also data objects
data filters. See filters
data items

See also data
adding hyperlinks to 30
adding to data objects 21, 22
Amazon DynamoDB databases and 72
changing 37, 38, 40, 366
controlling access to 341
copying 23
creating 22
exporting 23–25
overwriting 23
selecting 33
updating 35, 38, 366

data marts 18
data object classes 454
data object data sources 21, 40

data object design file names 22
data object design files 24, 34, 40, 341
data object stores 34, 35, 40
data objects

accessing 34, 37
adding data items to 21, 22, 456
building information objects and 46
building reports and 40
caching data for 34, 35
changing data in 37, 38, 366
connecting to 40
controlling access to 341, 344, 346
creating 4, 18, 21, 454
defining hyperlinks in 32
deleting items in 38
designing 18–21
exporting data items to 23–25
generating 454, 460
hiding data sets in 33
overwriting data items in 23
publishing 34
renaming items in 38
retrieving data from 42
securing 330, 341
selecting 41
sharing with multiple reports 21
updating data items in 35, 38, 366

data rows
applying security to 343
filtering 14, 290
information objects and 49
memory usage and 18
previewing 42

data security
adding 330, 341, 347
displaying data and 341
testing 350, 351
turning on or off 350

data selector gadgets 20
data selectors 20
data set editor. See Edit Data Set dialog
data set field names 107, 108, 258
data set fields

See also columns
adding to expressions 260
consolidating data and 106, 107, 110, 115
enabling auto-summarizing for 28

474 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

data set fields (continued)
finding character patterns in 275, 276, 283
finding specified characters in 271, 274,

280
mapping e.report data to 64
mapping to report columns 103
removing blank characters in 285, 286
testing for non-null values in 279
testing for null values in 273

data set wizard. See New Data Set dialog
data sets

accessing data and 5
accessing Salesforce.com and 94
adding 42, 49, 66, 88, 102, 456
binding Flash charts to 239
building dashboards from 19, 20
controlling access to 341, 344
creating joined 110–113, 114
creating union 106–109
defining hyperlinks for 31
exporting 23, 24
generating programmatically 455
generating result sets and 60
hiding 33
joining on multiple keys 114
linking 110
mapping to e.reports and 64
mapping to Flash maps 227
naming 42
retrieving from Amazon databases 74, 83
retrieving from data objects 35, 42
retrieving from multiple data sources 106
retrieving from sample database 196
returning specific 35, 290
securing 341, 343, 345
sharing with multiple reports 46
showing gadget values and 163
viewing contents of 42

data source connection definitions 409
Data Source Explorer 397
data source objects 388

See also data sources
data source types (supported) 4
data source wizard. See New Data Source

dialog
data sources

See also specific type

accessing cached data and 54, 60
accessing data in 5, 106, 388
accessing e.reports and 64, 65, 66
accessing external 18, 54
building CRM applications and 92
building information objects and 46
building POJO data sets and 98, 100
connecting to. See connections
creating 22, 195, 455
exporting 23
externalizing properties for 414
filtering data in. See filtering data
generating 455
integrating 46, 106
naming 40
retrieving data from 10, 18, 40, 46, 64, 98
returning Amazon DynamoDB data

and 72, 74
returning Amazon RDS data and 82, 83
returning Hadoop data and 86
returning specified values from 35, 290
running queries from 296
searching for changes in 366
selecting 40, 47, 58
testing connections for 100
updating data in 35, 38, 366

Data Sources folder (BIRT) 42
data structures 106
data tag 230
data types 366
data warehouses 86
database connection configuration files 414

See also connection configuration files
database connection information 409

See also database connection properties
database connection profiles 9, 73, 82, 403

See also connection profiles
database connection properties 8, 410
database connections 9, 72, 82
database schemas 366
Database Search tab 366
database services 72, 82
databases 8, 46, 72, 98, 296

See also data sources
.datadesign files 24, 34, 40, 341
DataDirect JDBC drivers 92
dataextraction plug-in 243

I n d e x 475

datamart methods 455
dataObject class 321
dataPart variable 230
DataSourceEditorPage class 417
DataSourceWizardPage class 417
dataURL variable 221, 222, 240, 252
dataXML variable 220, 230
date values

adding days to 261
adding months to 262
adding quarters to 263
adding time values to 261, 262, 263
adding weeks to 264
adding years to 264
as literals 259
calculating days between 266
calculating months between 268
calculating quarters between 268
calculating time values between 267, 269
calculating weeks between 270
calculating years between 270
creating relative time periods and 302,

303, 304, 305, 306, 307, 308
returning current 279, 285
returning month for 278
returning quarter in 280
returning weekdays for 266, 287
returning weeks for 286
returning year for 287
setting conditions for 272
testing equality of 272
testing range of values for 265

DAY function 266
days

See also date values
adding to date values 261
calculating number of 266
returning number in month 266
returning specific 287

DBConfig.xml 409
debug mode 253, 254
debug window 254
debugging

event handlers 358, 360
Flash objects 253–255
reports 253

debugging messages 358, 360

decimal separators 259
decimal values

displaying 169
rounding and 258, 281, 282, 283

decrypt method 439, 440
decryption 437, 439, 440

See also encryption
decryption algorithms 426
decryption keys 427
default animation 133, 163, 185, 201
default encryption 431, 432, 433
default encryption key 428
default expression syntax 260
default font 422, 423
default security api packages 438
default settings 136, 217
default state (check boxes) 133
Default Syntax property 260
default themes 122, 123
default values 133, 217
Define join type and join conditions

dialog 113
deleting

access control lists 339, 350
blank characters 285, 286
data items 38
visual effects 188

dependencies 23, 368, 370
deploying

connection profiles 400
custom emitters 443, 444, 446
encryption plug-in 430, 433, 437
JAR files 383, 384
Java classes 383
plug-ins 251, 385
report designs 437
reports 378, 400, 415

DES encryption 427
des encryption parameter 438
DESede encryption 427
desede encryption parameter 438
design configuration objects 454

See also data objects
design engine 454
Design Engine API 454, 457
design engine classes 457
design files. See data object design files

476 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

design information 54
design-time filters 293
DesignConfig objects 454
designer ODA driver 417

See also ODA drivers
designers xiii, 378
designing

data objects 18–21
reports 338

designs
accessing custom ODA plug-ins and 416
accessing data for 54, 64, 388
changing connection properties for 388
changing default encryption and 433
creating data objects for 454, 460
creating data sources for 388, 403, 408, 455
defining chart themes in 135
deploying 437
enabling page-level security and 338
generating 456
publishing 378
retrieving e.report data for 64
viewing query information for 296

developing
custom emitters 443
data objects 454, 460
Flash objects 155, 216–222, 253
HTML5 chart themes 133, 135, 136
HTML5 charts 131, 139, 143
mobile phone applications 125, 126, 130
POJOs 98, 100, 102
reports 378
web applications 241, 324, 354

dial values (gadgets) 162
DIFF_DAY function 266
DIFF_HOUR function 267
DIFF_MINUTE function 267
DIFF_MONTH function 268
DIFF_QUARTER function 268
DIFF_SECOND function 269
DIFF_WEEK function 270
DIFF_YEAR function 270
Digital Encryption Standard. See DES

encryption
Dimension Builder 25
dimension columns 28
Dimension value 28

dimensions
See also data cubes
access restrictions and 348
adding 37
creating shared 25
hyperlinks and 30, 32
string columns and 29
time values and 302, 314

directory paths
BIRT_HOME variable for 454
connection profiles 402, 403, 414, 415
data source connections 410
font files 424
Java event handlers and 355
link files 385
ODA data sources 416
POJO classes 98, 100
resources 417
Salesforce database files 93
temporary files 361

disabling default themes 122, 123
display names 64
Display property 124
displaying

BIRT projects 370
columns 60
data 19, 42, 290, 301
data objects 24, 41
debugging messages 358
Flash content 155
Flash objects 210
HTML buttons 316
numeric values 169, 171
page numbers 339, 340
QR barcodes 125, 126
query execution profiles 295
report elements 369
reports 126, 340, 350, 378, 420
result sets 55, 56, 60, 68
specific data values 20, 178
summary values 27
tables 356, 357
threshold values 172, 173, 206
XML code 253
XML source files 409

Distance property 191, 194
distributed processing 86

I n d e x 477

distributing reports. See deploying
division 277, 288
DOC formats 156, 442
documentation xiii, 222
documents. See report documents
DOCX formats 442
double quotation mark (") character 275
doughnut charts 189, 212, 216, 219
Download from iServer command 371
Download from iServer dialog 371
downloading Adobe Flash Player 154
drag-node charts 214
drawing elements 180
drilling down functionality 30
drill-through hyperlinks 30
drivers

accessing Amazon DynamoDB data
and 72

accessing Hadoop systems and 86
accessing Salesforce.com and 92, 93
getting resource identifiers for 416, 417
installing custom 378, 385
retrieving data and 4, 8, 64, 82
running applications and 385, 416

drivers directory 385
drives, mapping 415
drop shadows 177, 194
duplicate names 58
Duration property 189
dynamic filter parameters 291, 292, 293
dynamic filters 290, 293–294
DynamoDB data objects. See Amazon

DynamoDB

E
e.report data sets 66
e.report data sources 65
e.Report Designer Professional 4
e.reports 64, 65, 66
e.Reports Data Connector 64
EasyScript 258
EasyScript expression builder 259, 260
EasyScript expressions 258, 260, 288
EasyScript function reference 260
ECB encryption mode 428
Eclipse debugger 253

Eclipse Plug-in Development
perspective 240

Edit Data Set dialog
creating data sets and 61, 104
creating hyperlinks and 31
creating information objects and 49, 50
hiding data sets and 33
mapping to POJO data and 100
previewing data and 42
viewing result sets and 55, 68

Edit Dynamic Filter Parameter dialog 291
Edit Output Column dialog 31
Edit Summary Field dialog 32
editing. See changing
effects. See visual effects
Effects button 185, 187
Effects dialog box 185, 187, 200, 208
Elastic animation type 190
Electronic Codebook (ECB) Mode 428
Element ID folder (BIRT) 56
Element ID property 58
ElementFactory class 455
elements. See report elements
e-mail 442, 447

See also notifications
Embed Data property 210
emitters. See report emitters
empty strings 274, 280
Enable Data Security property 350
Enable Incremental Update command 35, 36
Enable Page Level Security setting 339
encoding 408
encrypt method 439, 440
encrypted-property tag 432
encryption 426, 432, 433, 439

See also encryption settings
encryption algorithm information 428
Encryption algorithm property 428
encryption algorithms 426, 427, 431, 438
encryption API methods 440
encryption classes 428
encryption IDs 432
encryption keys

accessing predefined 429
encryption algorithms and 427
generating 428, 437, 438, 439
loading 428

478 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Encryption keys property 429
Encryption mode property 428
Encryption padding property 429
encryption plug-in

accessing 426
changing default encryption and 426
customizing 439
deploying 430, 433, 437
generating encryption keys and 437
instantiating 433
loading 430, 437
overview 427
setting default 431
supported algorithms for 427

encryption plug-in descriptor file 430
encryption plug-in ID 430
encryption properties file 428, 429
encryption settings 428
encryption type information 428
Encryption type property 428
encryptionHelper extension point 431, 439
encryptionHelper tag 431
encryptionID property 437, 440
Encyclopedia volumes

accessing data objects in 37
accessing e.report data in 64, 65
accessing information objects in 46
connecting to 47
creating iServer profiles for 370
deploying to 383
downloading content from 371–372
getting names of 356, 362
publishing data objects to 34
publishing Java classes to 383
publishing reports to 378
publishing resources to 378
securing 330
sharing resources and 381
viewing file dependencies in 370

End Angle property 161, 162, 183
End Color property 167, 183
End Value property 170, 173
End X coordinate property 183
End Y coordinate property 183
endpoints (Amazon DynamoDB) 73
enterprise applications 316

See also web applications

enterprise data sources 4, 366, 409, 432
entity tag 230
environments 354
Equal to operator 78
Equinox project (Eclipse) 241
errors

data object items and 38
e.report output and 69
Flash objects and 210, 253, 254

event handlers
accessing data and 320
accessing variables in 321
creating HTML buttons and 319–325
creating HTML5 charts and 135, 139–151
debugging 358, 360
retrieving iServer environment and 354,

356
writing Java 355, 357
writing JavaScript 354, 356

event model 354
events

HTML buttons 316, 318, 319
HTML5 charts 140, 143, 144

example database 195
example reports 381
Excel document formats 442
Excel functions 258
executable files 410
executing applications 385, 416
executing reports 48, 358, 378, 415, 447
Execution Environment property 242
Explorer view 378
exponentiation 288
Export Content command 448
Export Content dialog

configuration 449
Export Elements to Data Object dialog 24
Export to Data Object command 23
export utility (BIRT) 23
Export utility (Eclipse) 251
exporting

data cubes 24
data items 23–25
data sets 24
plug-ins 251
reports 442, 446, 447, 448

expression builder 13, 221, 259, 260

I n d e x 479

expressions
See also EasyScript
access control lists and 330, 331
aggregating data and 302
bookmark names and 57
calculations and 258, 288
changing syntax of 260
connection profile properties 402
creating 258, 259
data filters and 290, 293, 298
Flash objects and 221, 233
HTML buttons and 317
joined data sets and 110, 112, 114, 115
literal characters in 275, 277
literal values in 259
relative time periods and 302
testing conditions in 272
union data sets and 106
validating 260
variables and 323

extensible markup language. See XML
extension IDs 408
extension points 430
extension properties 244
extension tag 430
extensionName attribute 431
extensions 243
external data sources 18, 54
externalizing

connection information 408, 409
connection profile store URLs 414
connection profiles 403, 414, 415
data source properties 414

F
Factory processes 410
field names 107, 108, 258
fields

See also columns
adding to expressions 260
consolidating data and 106, 107, 110, 115
enabling auto-summarizing for 28
finding character patterns in 275, 276, 283
finding specified characters in 271, 274,

280
mapping e.report data to 64

mapping to report columns 103
removing blank characters in 285, 286
testing for non-null values in 279
testing for null values in 273

file dependencies 23, 368, 370
file name extensions 22
file names 22, 443
file paths. See directory paths
file types 184
files

See also specific type
changing configuration 410
configuring connections and 408, 410
controlling access to 64, 330
deploying custom plug-ins and 385
deploying reports and 378
displaying project dependent 368, 370
displaying XML source 409
downloading 371
exporting plug-ins and 251
generating Flash objects and 214
getting URIs for 416
naming font configuration 420
publishing JAR archives and 383
retrieving data and 4, 40, 54, 64, 106
searching for changes in 366
uploading to iServer 380
viewing relationships among 368, 369

Fill Background Color property 166
Fill Color property 162, 166, 167
Fill Gradient property 168
filter conditions

dynamic filters and 293
exact matches and 78
grouped data and 15
multiple values in 78, 293
report parameters and 290, 291
specifying 290

filter expressions 290, 293, 298
filter parameters 291, 292, 293
filtering

Amazon DynamoDB data sources 76–79
data 20, 290–294, 316, 324
data groups 15, 16
data rows 14

filters 290, 293, 294, 298
Filters page (data set editor) 294

480 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

financial analysis 214
FIND function 271
finding data 30, 271

See also search operations
First Period property 309, 310, 313
Flash Builder 215
Flash chart builder 159, 197
Flash chart elements 197, 212
Flash chart types 158, 212
Flash charts

See also Flash objects; Flash power charts
adding to reports 131, 155, 158, 197, 212
adding visual effects to 185, 187
animating 184, 185, 188–190
binding to data sets 239
creating 158, 195–202
formatting 159, 185, 217
HTML5 charts compared to 130
previewing 198
removing visual effects from 188
selecting data for 197
setting values for 216, 219, 220
troubleshooting 210
tutorial for animating 199, 201
tutorial for developing 236–253

Flash gadget builder 160, 203
Flash gadget elements 203, 212
Flash gadget properties

add-ons 181, 182
anchors 174
fonts 179
general 160
needle base 166
needles 165
number formatting 168
padding and margins 179
plot 175
regions 169
scale 163
thresholds 172
tick marks 170
tooltips 178
value indicators 177

Flash gadget types 158, 212
Flash gadgets

See also Flash objects
adding custom objects to 180

adding titles to 163
adding to reports 155, 158, 203, 212
adding visual effects to 185, 187, 209
adjusting spacing in 180
animating 163, 184, 185, 188–190
creating 158, 202–210
disabling values in 163, 166, 173, 177
dividing into regions 205
formatting 160
previewing 204
removing visual effects from 188
selecting data for 203
setting properties for. See Flash gadget

properties
setting thresholds for 173, 206
setting values for 216
showing tick marks on 163, 170
showing values in 168, 169, 174
tilting 163
troubleshooting 210

Flash library. See Flash Object Library
Flash map attributes 236
Flash maps 155, 213, 223, 229
Flash maps reference 226
Flash object components 214
Flash object elements 215
Flash Object Library 155, 212, 215, 222
Flash object library plug-ins 385
Flash objects

See also specific type
accessing documentation for 222–223
accessing predefined 212
adding 154, 155, 214, 214–216
allocating resources for 248, 251
creating visual effects for 184–194
customizing 155, 180, 185
debugging 253–255
developing 216–222, 253
embedding data in 210, 220
exporting plug-ins for 251
formatting options for 159, 185
generating 155, 253
hiding 156
importing packages for 247
interacting with 154
limitations 210
mapping data to 227

I n d e x 481

mobile devices and 131
outlining 193
previewing 231
retrieving data for 155, 216, 219, 221, 229
setting properties for 160, 216, 223

Flash Player 154
Flash power charts 214
Flash Variables page 221, 231, 232
flat file data sources 106, 403, 416
folders

accessing custom ODA plug-ins and 416
accessing encryption plug-in and 426
accessing font configuration files in 420,

424
accessing resource 34
changing resource 381, 382
controlling access to 330
copying custom emitters to 443
deploying connection profiles and 400
deploying JAR files to 383, 384
downloading specific 371
installing custom plug-ins to 385
installing JDBC drivers to 385
installing ODA drivers to 385
publishing data objects to 34
publishing shared resources to 381
selecting data objects in 24, 41
sharing report documents and 54
viewing data sources in 42

font configuration files 420, 421, 422
font effects 192
font files 421, 423
font properties (gadgets) 179
Font property 179, 183, 193
font scaling property 183
Font Size property 183
font substitution 420, 422
font-aliases tag 422
font-mapping tag 422
font-paths tag 423
fonts 420, 421
fontsConfig.xml 421, 422
footers 339
Force Trailing Zeros property 169
Format Chart page 132, 159
Format Chart Theme page 135
Format Gadget page 160

Format Numbers property 169
format property 244
format-specific fonts 421
formats. See output formats
formatting

data 122
Flash charts 159, 185, 217
Flash gadgets 160
Flash maps 232
HTML charts 132–139

formatting options 122, 159, 185
forums 72
forward slash (/) character 276
Fraction Digits property 169
function names 259
function reference 260
functions 15, 144, 258, 260

See also methods
funnel gadgets 212

See also Flash gadgets

G
gadget builder. See Flash gadget builder
gadget images 162
gadget titles 163
gadgets 19, 38

See also Flash gadgets
gantt gadgets 212
gauges. See specific type
general properties (Flash gadgets) 162
general properties (HTML buttons) 325
Generate Data Objects command 34
Generate Document command 54
Generate Impact Report command 368
generating

BIRT reports 127, 442
data object stores 34
data objects 454, 460
debugging messages 358, 360
encryption keys 428, 437, 438, 439
Flash content 155, 253
Flash objects 155, 253
impact analysis reports 368
project model diagrams 368, 369
QR codes 125
report designs 456

482 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

generating (continued)
report documents 54, 57
result sets 54, 295
summary tables 28
XML data 219, 220, 229, 243

generic fonts 422
getApplResourceBaseURI method 416, 417
getAuthenticationId method 360
getDesignResourceBaseURI method 416, 417
getEncryptionHelper method 440
getEncryptionHelpers method 440
getHostResourceIdentifiers method 417
getServerWorkingDirectory method 361
getUserAgentString method 361
getUserRoles method 357, 362
getVolumeName method 356, 362
global reporting solutions. See locales
glow effect properties 193
glow effects 193, 209
Gradient property 183
grand totals 27
graphical design tools. See designers; specific

Actuate designer
graphics 180, 325
graphics file types 184
graphics scaling property 183
graphs. See charts
grey check marks 133
grids 335
group definitions 295
grouping data 15, 28
groups 15, 335

See also user groups

H
Hadoop data 86
Hadoop systems 86
hash attribute (Amazon DynamoDB data) 76
hash primary key (Amazon DynamoDB

data) 76
headlines 363
Height property

Flash charts 160, 162
HTML buttons 325

help. See online documentation
Hex color values 234

hiding
columns 124, 125
data sets 33
Flash objects 156
HTML buttons 316
region labels 170
tables 356

hierarchical diagrams 214
Highcharts API 131, 133, 136, 143
Highcharts library 131
Highlight property 191
Hive data sources 86
Horizontal Blur property

bevel effects 192
blur effects 192
glow effects 193
shadow effects 194

Horizontal property 183
Horizontal Scale attribute 189
hours

See also time values
adding to date values 261
calculating number of 267

HQL queries 86, 87, 88
See also Hive data sources

HTML Button dialog 317, 327
HTML button elements 317

See also HTML buttons
HTML button names 317
HTML buttons

adding 316, 317
calculating numeric values and 321
changing values for 327
creating event handlers for 319–325
customizing 325–327
displaying data and 320, 321
filtering data and 316, 324
integrating with enterprise

applications 316
renaming 327
setting size of 325
testing 318, 325
viewing 316

HTML formats 442
HTML reports 155
HTML5 charts

adding interactive features to 140–143

I n d e x 483

animating 133
applying themes to 133
converting standard charts to 143
creating 130, 131
customizing 132, 133
formatting 132–139
rendering 131
writing event handlers for 139, 146, 148,

150
Hyperlink Options dialog 32
hyperlinks 30–32

See also URIs; URLs
hypertext markup language. See HTML

I
i character in search expressions 277
I/O. See input; output
icu_version.jar 355
ID property 242
id property 244
IDataExtractionExtension interface 244, 245,

247
IEncryptionHelper class 439, 440
IF function 272, 288
image file types 184
image scaling property 183
images 180, 325
impact analysis 366
impact analysis reports 38, 368, 370
impact analysis tools 366, 370
import statements 247
importing class definitions 461
IN function 272
In operator 293
Incremental Update dialog 36
incremental updates 35, 36
information. See data
Information Console

accessing encryption plug-in for 426
accessing font configurations for 420
copying link files for 386
customizing emitters for 442, 443, 444
deploying reports to 415
encrypting data and 431, 437
exporting reports from 447

externalizing connection profiles and 414,
415

loading custom plug-ins and 385
managing reports and 378
publishing Java classes and 384, 385
rendering reports and 420
running BIRT Studio and 378
viewing debugging messages and 359

information object data sources 46, 47, 49,
378

See also information objects
Information Object Query Builder 49
information objects

building data sets for 49
building queries for 49, 50, 298
changing 46, 366
connecting to 46–48
creating 4, 46
retrieving data from 46, 49–51, 64
selecting 46
updating 46, 366

InformationConsole.war file 385, 443
InfoSoft documentation 222

See also Flash Object Library
initialize method 248
in-memory analytics technology 18
Inner Radius property 161, 162, 183
input 290, 293, 321
installation

Adobe Flash Player 154
custom plug-ins 385, 439
JDBC drivers 8, 385
ODA drivers 385

interactive charts 140
interactive reporting 154, 316, 324
Interactive Viewer 210, 442, 444, 448
interfaces. See application programming

interfaces; user interfaces
internal ACLs 338
IO Design perspective 46

See also information objects
Is Required property 293
isDefault attribute 431
isDefault property 439
iServer

accessing data objects and 37
accessing encryption plug-in for 427

484 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

iServer (continued)
accessing font configurations for 420
accessing information objects on 46, 47
configuring data source connections

and 408, 410
connecting to 378
copying link files to 386
creating profiles for 379, 402
customizing emitters for 442, 443
deploying connection profiles to 400
deploying custom emitters to 443, 445
deploying report designs to 437
deploying reports to 383, 415
encrypting data and 431, 433
exporting reports from 447
externalizing connection profiles and 414,

415
getting environment information for 354,

356
loading custom plug-ins and 385
publishing data objects to 33, 34
publishing JAR files to 383, 384
publishing reports to 354, 378, 380
publishing shared resources to 378, 381,

382
rendering reports and 420
running BIRT applications and 385
running reports and 358
uploading report files to 380

iServer API 354, 358, 360
iServer Explorer 378
iServer security model 330, 341
iServer volumes. See Encyclopedia volumes
IServerContext interface 356
isHidden property 245
ISNULL function 273
Italic property 193

J
J2EE application servers 385
JAR files

creating 251
deploying 383, 384
generating data objects and 454, 457
generating encryption keys and 437
Java classes and 383

Java event handlers and 355
POJO data sources 98, 100
publishing 383, 384
running custom emitters and 443
running reports and 384

Java applications 98, 241
Java classes

BIRT encryption 428, 437
BIRT reports and 383
changing 383
creating 247
data objects and 454
debugging 253
deploying 383
Flash objects and 221, 245
HTML buttons and 325
iServer API and 360
ODA UI driver and 417
POJO data objects and 98, 100

Java code 212
See also source code

Java Cryptography Extension. See Java
encryption extension

Java encryption extension 426
See also encryption plug-in

Java event handlers 355, 357
Java factory processes. See Factory processes
Java objects 98
JavaScript APIs 324, 325
JavaScript attributes 136
JavaScript chart theme builder 139
JavaScript code 136, 212, 253, 319

See also source code
JavaScript debugger 253
JavaScript event handlers 139, 354, 356

See also event handlers
JavaScript expression builder 221, 259
JavaScript expressions 258, 260, 402

See also expressions
JavaScript object notation 136
JavaScript themes 133
JCE encryption extension. See Java encryption

extension
JDBC Connection for Query Builder data

sources. See JDBC data sources
JDBC data sources

connecting to 9, 403

I n d e x 485

filtering data in 298
querying 5, 8, 10
retrieving data from 8

JDBC drivers
Amazon RDS connections and 82
database connections and 8
Hadoop systems and 86
installing 385
Salesforce.com connections and 92

jobs 360, 363, 442
join conditions 112, 114–117
Join Data Set command 111
join operators 110, 115
join types 110, 112
joined data sets 110–113, 114
joins 11, 110, 111
jrem.jar 355

K
kagi charts 214
key fields (Amazon DynamoDB data) 72, 76,

77
key generator classes 428
key pairs (encryption) 427

See also encryption keys
key.properties file 438
keyboard events 319

L
Label property 170, 173, 183
language-specific reports. See locales
leading characters 285
LED gadgets 212

See also Flash gadgets
LEFT function 273
legacy databases 35
LEN function 274
Length property 173
libraries

accessing InfoSoft documentation for 222
adding Flash objects and 155, 212, 222
exporting data items from 23
rendering HTML5 charts and 131, 135
viewing default themes and 122
viewing report elements in 369
viewing sample reports and 381

LIKE function 275
line chart gadgets 20
line charts 130, 212
Line Color property 176
Line Style property 173
Line Width property 176
Linear animation type 190
linear gadgets 20, 212

See also Flash gadgets
linear gauges 160, 163, 169, 170, 172
lines (drawing element) 180
link files 385
links 125

See also hyperlinks
links directory 385
Linux systems 410
list boxes 133, 291
list element IDs 58
lists

displaying in data selector gadgets 20
enabling page-level security for 335
filtering data and 291
generating result sets for 54, 58
selecting multiple values in 293
testing values in 272

literal characters 275, 277
literal values 259
loading. See opening
locales 259, 420
logarithmic charts 214
login credentials 48
logs 72
LOWER function 276
lowercase characters 276

M
MAC algorithms 426

See also encryption
macros 189
Major Tick Marks Color property 171
Major Tick Marks Height property 171
Major Tick Marks Width property 171
Major Tickmarks Count property 164
Management Console

changing resource folders and 382
customizing emitters for 443, 444

486 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

Management Console (continued)
exporting reports and 446
publishing Java classes and 384, 385
viewing debugging messages and 358

manifest files 430
manuals. See documentation
map entities 226, 230
Map Gallery 226
map markers 234
map specification sheets 227
map tag 230
mapping

drives 415
fonts 422, 423

mapping information (columns) 103
MapReduce programming model 86
MapReduce scripts 86, 87

See also Hadoop data
maps 155, 213, 223, 229
margin properties (gadgets) 180
margin properties (HTML buttons) 326, 327
Margins property 180
Marker Color property 173
markers (maps) 234
Master Page tab 339
MATCH function 276
matching character patterns 275, 276, 283
mathematical operations 288
Maximum Label property 171
Maximum Value property 164
maximum values 163
measure columns 28
Measure value 28
measures 28, 30, 32

See also data cubes
Member Access Control List Expression

property 348, 349
memory 18
message authentication code algorithms. See

MAC algorithms
message boxes 321
messages 428
metadata 430
metadata directory 388
MetaDataDictionary class 440
META-INF/MANIFEST.MF 430

meter gadgets 212
See also Flash gadgets

meter gauges 161, 166, 181
methods 100, 247, 325, 355, 360

See also functions
mimeType property 245
Minimum Label property 171
Minimum Value property 164
minimum values 163
Minor Tick Marks Color property 171
Minor Tick Marks Height property 171
Minor Tick Marks Width property 171
Minor Tickmarks Count property 164
minutes

See also time values
adding to date values 262
calculating number of 267

missing characters 422
missing data points 162
mobile devices 125, 126, 130
MOD function 277
modulus 277
MONTH function 278
Month to Date Last Year value 310
Month to Date value 309
months

See also date values
adding to date values 262
calculating number of 268
returning 278

mouse events 319
multi-level dimensions 25

See also data cubes
multiple encryption algorithms 431
multiplication operator 288
multi-series charts 212, 217, 220
multi-value data sets 75, 78
multi-volume environments 362
MyClasses folder 385, 443
MySQL databases 82

N
name conflicts 23
Name property 58, 183, 242
name property 245, 420, 421

I n d e x 487

naming
Amazon DynamoDB data sources 73
Amazon RDS data sources 82
bookmarks 57
chart themes 135
connection profiles 379
data cubes 43
data object data sources 40
data object design files 22
data sets 42
font configuration files 420
Hive data sets 88
HTML buttons 317
JDBC data sets 10
joined data sets 111
plug-in extensions 245
plug-in projects 241
plug-ins 242
POJO data sets 102
POJO data sources 98
report elements 58
reports 363
Salesforce.com data sets 94
union data sets 108
variables 323

needle base (gadgets) 166
needle base properties (gadgets) 167
needle pivot. See needle base
needle properties (gadgets) 165
needle size (gadgets) 166
needles (gadgets) 162, 163, 165, 209
needles (gauges) 165
negation 279
nested tables 56, 57
networked environments 415
New Actuate Data Object Data Set dialog 42
New Actuate Data Object Data Source

dialog 41
New Actuate Information Object Connection

Profile dialog 47
New Actuate JDBC Salesforce.com Data

Source Profile dialog 92
New Actuate POJO Data Set dialog 102
New ActuateOne for e.Reports Data Source

Profile dialog 66
New Amazon DynamoDB Data Source

Profile dialog 73

New Amazon RDS Data Source Profile
dialog 82

New BIRT Report Document Data Set
dialog 60

New BIRT Report Document Data Source
Profile dialog 59

New Connection Profile dialog 9
New Data Object dialog 22
New Data Set command 42
New Data Set dialog

Amazon DynamoDB data sources and 74
Amazon RDS data sources and 83
data objects and 42
e.reports and 66
Hive data sources and 88
information objects and 49
JDBC data sources and 10
joined data sets and 111
POJO data sources and 102
report documents and 60
Salesforce.com data sources and 94
union data sets and 108

New Data Source command 40
New Data Source dialog

Amazon DynamoDB data sources and 73
Amazon RDS data sources and 82
data objects and 40
e.reports and 65
Hive data sources and 86
information objects and 47
JDBC databases and 9
POJO objects and 98
report documents and 58
Salesforce.com data sources and 92

New Dynamic Filter Parameter
command 292

New Extension dialog 243
New Filter Condition dialog 294
New Hive Data Source Profile dialog 87
New iServer Profile command 379
New iServer Profile dialog 379
New Java Class dialog 246, 460
New JDBC Database Connection for Query

Builder dialog 9
New Plug-in Project dialog 241
New POJO Data Source Profile dialog 99
New Report Item Theme dialog 135, 138

488 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

New Shared Dimension command 25
New Union Element dialog 108
newDataMartCube method 455
newDataMartDataCube method 456
newDataMartDataSet method 455, 456
newDataMartSource method 455
Next N Periods value 310
non-null values 279
non-relational databases 72
NOT function 279
notes 369
notifications 363, 447
NOTNULL function 279
NOW function 279
null values 273, 358
number formatting properties (gadgets) 168
Number of Periods Ago property 309, 310,

313
numbering report pages 339, 340
numeric values

as literals 259
calculating square root of 284
displaying text with 169
dividing 277
formatting 169
replacing with text 171
returning absolute 261
rounding 258, 265, 281, 282
setting conditions for 272
testing equality of 272, 288
testing range of values for 265

O
OAEP encryption mode 429

See also RSA encryption
objects 18, 98, 180
ODA connection profiles 403, 414, 415
ODA consumer applications 416
ODA data source editor pages 417
ODA data source wizard pages 417
ODA data sources 378, 414, 416
ODA drivers

Amazon DynamoDB connections and 72
application context and 416
e.reports and 64
installing custom 385

resource identifiers and 417
ODA plug-ins 416
ODA providers 416
ODA user interfaces 417
ODA_APP_CONTEXT_KEY_CONSUMER_

RESOURCE_IDS key 416
OdaConnProfileStorePath property 402, 403,

414, 415
OFB encryption mode 428
onblur event 319
onclick event 319
OnCreate method 230
ondblclick event 319
onfocus event 319
onkeydown event 319
onkeypress event 319
onkeyup event 319
online documentation xiii
online help. See online documentation
onmousedown event 319
onmousemove event 319
onmouseover event 319
onmouseup event 319
onPrepare events 356, 357
onRender events 361
open data access technology. See ODA
opening

custom plug-ins 385
Dimension Builder 25
EasyScript expression builder 259
encryption plug-in 430, 437
Flash files 215
font files 421, 423
InfoSoft documentation 222
iServer Explorer 379
JavaScript expression builder 259
report files 330

opening values (gadgets) 176
operating systems 410, 415, 420
operators 110, 115, 288, 291
Optimal Asymmetric Encryption Padding.

See OAEP encryption mode
optional filter parameters 293
options objects (Highcharts) 145
OR operator 288
Oracle databases 82
os attributes 420

I n d e x 489

OSGi framework 241
Outer Radius property 161, 162, 183
outlining Flash objects 193
output 340, 428
Output Feedback (OFB) Mode 428
output files 438, 443
output formats

configuring default export options 449
exporting data and 442
Flash charts and 210
Flash objects and 155
HTML button elements and 316
PDF layout engine 421
reports 420, 442, 444

output method 248
Overview page (PDE Editor) 242
overwriting data items 23

P
Package Explorer 245
packages 247, 443
packaging Java classes 383
padding properties (gadgets) 180
padding properties (HTML buttons) 326, 327
Padding Title property 180
Padding Value property 180
page breaks 338
page footers 339
page number elements 339
page numbers 339, 340
page-level security

adding 330, 335, 338
displaying reports and 331, 338
loading e.reports and 64
testing 340
turning on or off 339

page-level security examples 335, 337
parameters

adding to data objects 21, 22
binding connection profiles to 402, 403
building dashboards and 20
filtering data and 291, 292
generating encryption keys and 437
hiding data sets for 33
incremental updates and 35
retrieving data and 290

searching Amazon DynamoDB data
and 77

selecting data sources and 41
specifying as optional 293
specifying as required 293

Password property 48
password-based encryption. See

PKCS5Padding encryption mode
passwords

See also security
changing 433
encrypting and decrypting 432, 433
Encyclopedia volumes 48
JDBC data sources 403
Salesforce.com data sources 93

paths
BIRT_HOME variable for 454
connection profiles 402, 403, 414, 415
data source connections 410
font files and 424
Java event handlers and 355
link files 385
ODA data sources 416
POJO classes 98, 100
resources 417
Salesforce database files 93
temporary files 361

pattern matching 275, 276, 283
Pattern property 168
PCBC encryption mode 428
PDE Editor (Eclipse) 240
PDF formats 421, 442
PDF layout engine 421, 424
PDF Reader. See Adobe Acrobat Reader
PDF reports 155, 421
percent (%) character 275
percentages 288
performance

creating data objects and 18
displaying reports and 127
loading e.reports and 65
retrieving data and 18, 34, 290, 298
Salesforce.com data sources and 92
sharing dimensions and 25

performance indicators 212
period (.) character

decimal separators 259

490 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

period (.) character (continued)
pattern matching 276

period bars (gadgets) 176
Period Bars Color property 176
Period Bars Length property 176
Period to Date value 310
pie charts 130, 189, 212
pivot properties (gadgets) 167
PKCS5Padding encryption mode 429

See also RSA encryption
Plain Old Java Objects. See POJOs
platform-specific fonts 421
plot properties (gadgets) 176
plug-in descriptor files 430
Plug-in Development perspective

(Eclipse) 240
plug-in extension IDs 408
plug-in extension points 430
plug-in extension properties 244
plug-in extensions 243
plug-in IDs 242
plug-in projects 241
plugin tag 430
plugin.xml 430
plug-ins

accessing ODA 416
adding Flash objects and 221, 240
creating 240
customizing emitters and 443
deploying 251, 385
encrypting reports and 426
installing custom 385, 439
naming 242
setting properties for 242
viewing information about 242
viewing source files for 409

plugins directory 385, 443
POJO classes 98, 100, 102
POJO Data Set Class Name property 102
POJO data sets 98, 100, 102
POJO data sources 98, 100, 102
POJO objects 98
polygons 180
portable file formats. See PDF formats
Position Above property 171
Position Below property 171
Position Left property 171

Position property 171
PostScript formats 421, 442
power charts. See Flash power charts
PowerPoint documents 421, 442
PowerPoint formats 442
PPT formats 442
PPTX formats 442
predesigned data sources 40
Preferences page 34
Prefix property 169
Preset Scheme property 162
previewing

Amazon DynamoDB data rows 75
Amazon RDS data rows 84
chart themes 135
data 42, 197
Flash charts 198
Flash gadgets 204
Flash objects 231
Hadoop data rows 89
Salesforce.com data rows 95

Previous N Month to Date value 311
Previous N Month value 311
Previous N Quarter to Date value 311
Previous N Quarter value 311
Previous N Year to Date value 312
Previous N Year value 312
primary keys 72, 76
printing 378, 442
private-key encryptions 427, 437
privileges 46, 64, 330
product catalogs 72
ProductLineSales.rptdesign 195
profiles. See connection profiles; query

execution profiles
programming interfaces. See application

programming interfaces
progressive viewing 126, 127
project files 368, 369
project folders 24
project model diagrams 368, 369, 370
projects 241, 370
Propagating Cipher Block Chaining (PCBC)

Mode 428
properties

Amazon DynamoDB databases 73
Amazon RDS databases 82

I n d e x 491

animation 188
bevel effects 191
blur 192
data source connection profiles 402
data source connections 388, 408, 410
dynamic filter parameters 291, 292
encryption 428, 430, 439
Encyclopedia connections 47
externalizing 414
Flash objects 160, 216, 223
font effects 192
glow effects 193
Hive data sources 87
HTML buttons 325
HTML5 charts 130, 133, 136
plug-in extensions 244
plug-ins 242
POJO data sources 99, 102
relative time period measures 301
relative time periods 308, 313
Salesforce.com data sources 92
shadow effects 194
visual effects 185

Provider property 242
public keys 437, 439

See also encryption
public-key encryption 427

See also RSA encryption
PublicKeyPairGenerator class 437, 438
PublicPairGenerator class 439
Publish Report Designs dialog 380
Publish Report to iServer command 380, 382
Publish Resource to iServer command 384
Publish Resources dialog 382
Publish to iServer command 34
publishing

data objects 33, 34
JAR files 383, 384
reports 354, 378, 380
resources 378, 381, 382

Publishing dialog 381
pyramid gadgets 212

See also Flash gadgets

Q
QR code generator 125

QR code readers 125
QR codes 125, 126
qrreport.rptdesign 126
QUARTER function 280
Quarter to Date Last Year value 312
Quarter to Date value 312
quarters

See also date values
adding to date values 263
calculating number of 268
calculating summary values for 304, 306,

307
returning number for 280

queries
accessing DynamoDB data and 72, 74
accessing external data sources and 54
accessing Hadoop data and 86, 87
accessing information objects and 49
accessing Salesforce.com and 93, 94, 95
creating 10, 88
entering manually 8, 49
filtering data with 14, 290
getting information about 295
grouping data and 15
running from databases 296

query builder
information objects 49
JDBC data sources 8, 10

query editor 8, 50
query execution profiles 295, 296
query languages 49, 86, 94
question mark (?) character

font substitution 422
search expressions 276, 283

Quick Response (QR) codes 125, 126

R
radar charts 214
radio buttons 133
Radius property 160, 162, 173, 183
range attribute (Amazon DynamoDB

data) 76
range of values 163, 264, 288
real-time data 40
Rear Extension property 166
rectangles 180

492 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

reference date (time periods) 302, 308
referencing external connection profiles 415
Refine dialog box 367
region labels 170, 206
region properties 169, 170
Region property 170
regions (Amazon DynamoDB) 73
regions (gadgets) 169, 205
Regular animation type 191
Relational Database Service. See Amazon

RDS data sources
relational databases 8, 46

See also databases
relative paths 100, 415

See also directory paths
relative time period aggregation 301, 303
Relative Time Period Aggregation

Builder 301
relative time period elements 301
relative time period property 308, 313
relative time periods 300, 301, 302
release method 251
remainders 277
removing

access control lists 339, 350
blank characters 285, 286
data items 38
default themes 122, 123
visual effects 188

renaming
connection profiles 397
data items 38
data set fields 108
HTML buttons 327
report element IDs 58
result sets 57

RenderDefaults.cfg 449
rendering formats 443

See also output formats
rendering reports 420, 442, 444

See also report emitters
report context class 356
report context objects 355, 356, 403
report design engine 454
report design engine classes 457
report design files 416, 432
report design information 54

report designers xiii, 378
report designs

accessing custom ODA plug-ins and 416
accessing data for 54, 64, 388
changing connection properties for 388
changing default encryption and 433
creating data objects for 454, 460
creating data sources for 388, 403, 408, 455
defining chart themes in 135
deploying 437
enabling page-level security and 338
generating 456
publishing 378
retrieving e.report data for 64
viewing query information for 296

report document data sources 54, 58
report document files 54
Report Document Path property 59
report documents

See also reports
connecting to 58–60
creating 4
displaying 378
enabling page-level security and 338, 339
exporting 442
generating 54, 57
linking to 30
printing 378
retrieving data from 54, 60, 65
selecting 59

report element IDs 58
report element names 58
report elements

accessing 455
adding to libraries 369
customizing 383
embedding into web pages 324
naming 58
setting page-level security for 335, 336,

338
report emitters

deploying 443, 444, 446
loading 385
rendering reports and 442

Report Encyclopedia. See Encyclopedia
volumes

report engines 356, 385

I n d e x 493

report executables 410
report files

See also specific type
controlling access to 64, 330
deploying reports and 378
downloading 371
getting URIs for 416
publishing JAR archives and 383
retrieving data and 4, 40, 54, 64
searching for changes in 366
uploading to iServer 380
viewing project dependent 368, 370
viewing relationships among 368, 369

report items. See report elements
report library files. See libraries
report object document files 65

See also e.reports; report documents
report object instance files 64

See also e.reports
report parameters

adding to data objects 21, 22
binding connection profiles to 402, 403
building dashboards and 20
filtering data and 291, 292
hiding data sets for 33
retrieving data and 290
selecting data sources and 41
specifying as optional 293
specifying as required 293
updating data and 35

report sections 64, 335
report server. See iServer
report specifications. See report design

information
report templates 378, 381
reportContext objects 355, 356, 403
reports

accessing data for 5, 18, 40, 64, 106
adding interactive features for 154, 316,

324
adding QR codes to 125
applying themes to 122, 123
building data objects for 18, 21
changing connection properties for 388,

408
changing data items and 38, 368
creating 21, 40, 54, 432, 437

customizing 383
debugging 253
deploying 378, 400, 415
designing 338
developing 378
displaying 126, 340, 350, 378, 420
drilling down in 30, 32
exporting 442, 446, 447, 448
externalizing connection profiles and 415
filtering data and 293
finding data in 30, 271
formatting data for 122
generating 127, 442
hiding columns in 125
integrating with web applications 324
linking to 30
naming 363
publishing 354, 378, 380
rendering 420, 442, 444
restricting access to 48, 330, 331
retrieving data from 4, 54
returning cached data for 34, 54, 60
returning null values 358
reusing data items for 23
running 48, 358, 378, 415, 447
selecting data sources for 33, 40, 46, 54, 98
sharing data objects and 21
sharing data sets and 46
testing 409
testing data security for 350, 351
testing page-level security for 340
viewing Flash content in 155
viewing page numbers in 339, 340
viewing sample 381
viewing summary information in 27

repositories. See Encyclopedia volumes
required parameters 293
resolve method 416
Resource folder 381, 382
resource folders 24, 34, 381, 383, 416
resource identifiers 416, 417
resource paths 416, 417
Resource property 383
ResourceIdentifiers class 417
resources

accessing 415
defined 381

494 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

resources (continued)
deploying JAR files and 383, 384
mapping network drives and 415
publishing 378, 381, 382
releasing 251

resources directory 383, 384
Result Set ID folder (BIRT) 56
result set names 56, 58
result sets

consolidating data and 106, 110
creating data sets for 60
defining report element IDs for 58
displaying 55, 56, 60, 68
filtering Amazon DynamoDB data and 78
generating 54, 295
renaming 57
searching and 367
selecting 56
viewing data in 60

RIGHT function 280
.rod files 65
.roi files 64
role names 331
roles 330, 357, 362
Rotation Angle property 183
Rotation attribute 189
Rotation property 168, 183
ROUND function 258, 281
round function 258
ROUNDDOWN function 282
rounded corners (gadgets) 163, 184
rounding 258, 265, 281, 282
ROUNDUP function 282
rows

applying security to 343
filtering 14, 290
information objects and 49
memory usage and 18
previewing 42

.rptdocument files 54
See also report documents

RSA algorithms 427, 428
RSA encryption 433, 435, 439
rsa encryption parameter 438
rules 37, 341
Run Report with Data Security Enabled

dialog 351

Run Report with Page Level Security
dialog 340

run-time filters 293
running

applications 385, 416
custom plug-ins 385
information objects 46
reports 48, 358, 378, 415, 447

run-time ODA drivers 416
See also ODA drivers

S
Salesforce database files 93
Salesforce Object Query Language 94
Salesforce.com 92
Salesforce.com data sets 94
Salesforce.com data sources 92, 94
sample data 5
sample database 195
sample reports 381
Scale Image property 183
scale properties (gadgets) 164
Scale This Font property 183
Scan API (Amazon DynamoDB) 77
scatter charts 150
scheduling reports 442
schemas 366
scientific plotting 214
scoped names 65
script editor 140, 319, 354
scripted data sets 383
scripts 140, 143, 383
scroll charts 212
Search dialog box 366
search expressions

case sensitivity and 271
multiple BIRT objects and 366
string patterns in 275, 276
wildcard characters in 283

SEARCH function 283
search operations 76, 86, 366
Search view 367
Second Period property 309, 310, 313
seconds

See also time values
adding to date values 263

I n d e x 495

calculating number of 269
secret keys 426

See also encryption
sections (reports) 64, 335
security

See also data security; page-level security
accessing data objects and 37
creating reports and 330, 432, 437
encrypting data and. See encryption
loading e.reports and 64
specifying encryption settings and 426,

428
testing 340, 351

Security command 335
Security dialog 339, 340, 350
security extension 426
security IDs

adding 330, 331
cascading 338
testing 340, 351

security role names 331
security roles 330, 357, 362
security rules 37, 341
security tokens 93
security types 330
Select Chart Type page 133, 197
Select Data Object File dialog 41
Select Data Object page 24
Select Data page 197, 203
Select Elements page 24
Select Gadget Type page 203
semicolon (;) character 87
sending e-mail attachments 442
Server URI property 47
serverContext objects 356
servers 86, 385

See also iServer
session state 461
SessionHandle objects 461
setAppContext method 416
setDataSource method 456
setHeadline method 363
setVersionName method 363
shadow effects 194
Shadow property 192
Shape property 166, 175
shared dimensions 25–26

Shared Dimensions folder (BIRT) 26
shared resources 34, 381
Show as Dashed property 183
Show as Dot property 176
Show as Zone property 173
Show Border property

add-on objects 183
gadgets 162
meter thresholds 173
needle bases 168
value indicators 177

Show Close Value property 176
Show Dial Values property 162
Show High and Low Values property 176
Show Impact command 368
Show Labels property 170
Show Limits Value property 171
Show Marker property 173
Show Needle On property 162
Show Needle Value property 163
Show Open Value property 176
Show Period Bars property 176
Show Query Execution Profile command 295
Show Relationship Overview command 368
Show Round Corners property 163, 184
Show Shadow property 177
Show Threshold property 173
Show Tick Marks property 171
Show Tick Values property 171
Show Tooltip property 178
Show Value Inside property 173
Show Value Label property 177
Show Value on Top property 173
Show Value property 163, 166, 173
side-by-side joins 110, 111
Sides property 184
simulations 214
Size property

add-ons 184
anchors 175
fonts 179, 193
needles 166, 168
threshold markers 173

SOAP requests 54
Solid Color property 184
SOQL queries 94, 95

See also Salesforce.com data sources

496 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

sort definitions 295
source code

accessing Hadoop data and 86
adding Flash objects and 212, 253
adding HTML buttons and 319, 320
adding HTML5 charts and 135, 136, 140,

145
compiling 457
creating QR codes and 126
creating run configuration for 462
generating data objects and 454
importing classes for 247
writing event handlers and 356, 357

sparkline gadgets 174, 175, 179
See also Flash gadgets

special characters 275, 276, 283
special effects. See visual effects
spreadsheets 442
SQL Editor 50
SQL expressions 298
SQL query builder 8, 10
SQL statements 13, 49, 50, 296

See also queries
SQRT function 284
square brackets ([]) characters 258
square root 284
SSL3Padding encryption mode 429
standard charts. See charts
Start Angle property 161, 163, 184
Start Color property 168, 184
Start Value property 170, 173, 189
Start X Coordinate property 163, 184
Start Y Coordinate property 163, 184
starting iServer Explorer 379
static data sources 5
static filters 293
static text 316
stored procedures 46
str variable 233
string attributes (Amazon DynamoDB

data) 78
string patterns 275, 276, 283
strings

See also substrings
concatenating values in 288
converting to lowercase 276
converting to uppercase 286

counting characters in 274
creating XML data 233, 248
finding substrings in 271, 283
matching characters in 275, 276
removing blank characters in 285, 286
returning length of 274
returning substrings in 273, 280
testing conditions for 272, 279
testing equality of 272, 288
testing range of values for 265

Strong animation type 191
Style property 163
styles 122, 132

See also themes
substrings

extracting 273, 280
finding location of 271, 283

Sub-Title property 163
subtotals 27
subtraction operator 288
Suffix property 169
summary table gadgets 20
summary tables 27, 28
summary values 13, 27, 272

See also aggregation
SWF files 214, 215
symmetric encryption 427
symmetric encryption keys 437, 438
SymmetricKeyGenerator class 437, 438
system resources 34

T
table element IDs 58
table gadgets 20
tables

Amazon DynamoDB databases and 72, 74,
76

building data sets for 196
changing data in 366
creating Flash maps and 228
creating POJO data sets and 100
creating reports and 54, 100
displaying 356, 357
enabling page-level security for 335, 336,

337
generating result sets for 54, 57, 58, 295

I n d e x 497

hiding columns in 124, 125
searching for changes in 366
setting analysis type for 28, 29
viewing summary information in 27

templates 378, 381
temporary files 361
testing

connections 100
data security 350, 351
encryption 437
HTML buttons 318, 325
page-level security 340
report emitters 444
reports 409
security IDs 340, 351

text 169, 171, 180, 317, 325
text-based query editor 50
text boxes 166, 184, 291
text file data sources 106, 403
text files 408
text scaling property 183
text strings. See strings
Text Wrap property 184
TextBox Background Color property 184
TextBox Border Color property 184
Theme property 124, 133
themes

HTML5 charts 132, 133
reports 122, 123

ThemesReportItems.rptlibrary 122
thermometer gadgets 212

See also Flash gadgets
thermometer gauges 168
Thickness property 184
third-party libraries 155
threshold (gadgets) 172, 206
Threshold Line property 174
threshold markers (gadgets) 173
threshold properties (gadgets) 173
Threshold property 173
Threshold Zone property 174
tick marks (gadgets) 163, 170
tick properties (gadgets) 171
tick values (gadgets) 170
Ticks Inside property 171
Time Dimension property 303
time dimensions 302, 314

Time Period property 308, 313
time periods 300, 301, 302, 308
time values

adding to date values 261, 262, 263
analyzing data and 300
calculating number of 267, 269
returning current 279, 285

Title property 163
TODAY function 285
tooltip properties (gadgets) 178
Tooltip property 166, 174
tooltips 166, 174, 178
Top Width property 166
Total Page element 340
totals 27, 272
trailing characters 285, 286
Trailing N Days value 312
Trailing N Months value 312
Trailing N Periods value 313
trailing zeros 169
transient files 361
Transparency attribute 189
Transparent property 184
TRIM function 285
TRIMLEFT function 285
TRIMRIGHT function 286
triple-DES encryption 427
troubleshooting 254
trusted connections 65
Turn Off All Animations property 163
Turn Off Default Animations property 163
Type property (animation) 189

U
ULocale methods 355
UNC (Universal Naming Conventions) 415
Underline property 193
underscore (_) character

ODA configurations 408
pattern matching 275

UNICODE characters 423
Union Data Set command 108
union data sets 106–109
Universal Naming Conventions 415
UNIX systems 410, 415
updates (automatic) 38

498 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

updates (incremental) 35, 36
updating

configuration files 410
connection profiles 388
data items 35, 38, 366
data objects 35
information objects 46, 366
Java classes 383

uploading report files 380
UPPER function 286
uppercase characters 286
URIs 30, 416, 417
URL property 184
URLs

Amazon DynamoDB data sources 73
Amazon RDS data sources 82
connection profile store 402
connection profiles 414, 415
data source connections 410
externalizing 414
Flash objects 222
Highcharts documentation 136, 143
iServer connections 47

Use Data Object Cube command 43
Use Data Object Cube dialog 43
Use logged in user credentials setting 48
user accounts 46
user groups

accessing data and 37, 341
building data objects for 18, 19

user interactions. See interactive reporting
user interfaces 245, 417
user login credentials 48
User Name property 48
user names

access control lists and 330
connection profiles and 403
Encyclopedia volumes and 48

users
accessing data objects and 37
assigning privileges 330
assigning roles 330
changing security tokens for 93
designing dashboards and 19
getting authentication IDs for 360
getting input from 290, 293, 321

getting security roles for 357, 362
restricting access to 48, 330, 331, 341

V
Validate button 260
value indicator (gadgets) 176, 177
value indicator properties (gadgets) 177
Value property 166
Value Textbox X Co-ordinate property 166
Value Textbox Y Co-ordinate property 166
values

See also data
calculating 258, 288, 320
changing HTML button 327
disabling gadget 163, 166, 173, 177
displaying first or last 174
displaying highest or lowest 164, 171, 174,

176
displaying open or close 176
negating Boolean 279
providing lists of 291
returning absolute 261
returning null 358
returning specific 35, 290
returning square root of 284
rounding 258, 265, 281, 282
selecting at run time 290, 293
selecting multiple 293
setting conditions for 272, 279, 290
showing gadget 168, 169, 174
showing in data selectors 20
showing range of 163
testing conditions for 288
testing equality of 272, 288
testing for non-null 279
testing if null 273
testing range of 264, 288
viewing data 178
viewing threshold 172, 173, 206

Values Inside property 171
variables

creating Flash content and 230
creating HTML buttons and 321, 323
editing 232
naming 323

I n d e x 499

Variables page 323
version names 363
Version property 242
Vertical Blur property

bevel effects 192
blur effects 192
glow effects 193
shadow effects 194

Vertical property 184
Vertical Scale attribute 189
View Report with Data Security

command 351
View Report with Page Security

command 340
viewing

BIRT projects 370
columns 60
data 19, 42, 290, 301
data objects 24, 41
debugging messages 358
Flash content 155
Flash objects 210
HTML buttons 316
numeric values 169, 171
page numbers 339, 340
QR barcodes 125, 126
query execution profiles 295
report elements 369
reports 126, 340, 350, 378, 420
result sets 55, 56, 60, 68
specific data values 20, 178
summary values 27
tables 356, 357
threshold values 172, 173, 206
XML code 253
XML source files 409

Viewing Angle property 163
viewing restrictions 330, 338
Visibilities property 175
Visibility property 33, 125, 156
Visible Page Number property 340
visual effects 184–194, 200, 209
visual effects properties 185
volume names 356, 362
Volume property 48
volumes. See Encyclopedia volumes

W
war files 385
waterfall charts 214
web applications 130, 154, 324, 354
web browsers 361
web pages 30, 154, 324
web service data sources 46, 54, 98
Web Viewer 444
WEEK function 286
WEEKDAY function 287
weekdays

See also date values
adding to date values 261
calculating number of 266
returning number in month 266
returning specific 287

weeks
See also date values
adding to date values 264
calculating number of 270
returning 286

Width property
Flash charts 163, 174, 177
HTML buttons 325

wildcard characters 275, 283
Windows systems 410, 415
Word documents 442
World Map Specification Sheet 227
wrapping text 184

X
X coordinate attribute 189
XHTML formats 442
XLS formats 156, 442
XML attributes 217, 233
XML code 212, 216, 253, 454
XML data

generating 219, 220, 229, 243
rendering Flash objects and 214
storing 221
writing code for 248

XML data extraction plug-in 243, 246
XML data source definitions 409
XML documents 46, 442
XML files 98, 106, 409
XML formats 442

500 U s i n g A c t u a t e B I R T D e s i g n e r P r o f e s s i o n a l

XML Source page 409
XML strings 229, 233, 248
XMLGenerator class 247
XY plot charts 212

Y
Y coordinate attribute 189
YEAR function 287
Year to Date value 313
years

See also date values
adding to date values 264
calculating number of 270
creating relative time periods and 302,

303, 304, 305
returning 287

Z
ZXing QR code generator 125

	Contents
	About Using Actuate BIRT Designer Professional
	Retrieving data for reports
	Accessing data
	Supported data sources
	How a report accesses data

	Accessing data in a JDBC database
	Using database data in a report
	Accessing data using the SQL query builder
	Connecting to a database
	Specifying the data to retrieve
	Creating computed columns and complex expressions
	Filtering data rows
	Grouping data
	Filtering groups

	Creating data objects
	About data objects
	Design considerations
	Designing data objects for dashboards
	Designing data objects for reports created with Actuate BIRT Studio
	Designing data objects for reports created with Actuate BIRT Designer

	Building a data object
	Creating new items for a data object
	Exporting items to a data object
	Creating a shared dimension for cubes
	Configuring data set columns for summary tables
	Creating hyperlinks to provide drill-down capability
	Hiding data sets from users

	Providing cached data
	Publishing a data object
	Enabling incremental updates
	Managing user access
	Maintaining a data object

	Accessing data in a data object
	Using data object data in a report
	Connecting to a data object
	Specifying the data to retrieve from a data object
	Using a cube in a data object

	Accessing data in an information object
	Using information object data in a report
	Connecting to an information object
	Specifying the data to retrieve from an information object

	Accessing data in a report document
	Using report document data
	Creating a report document
	Specifying bookmark names
	Specifying element names

	Connecting to a report document
	Specifying the data to retrieve from a report document

	Accessing data in an e.report
	Using ActuateOne for e.Reports Data Connector
	About ActuateOne for e.Reports Data Connector functionality
	Accessing an e.report using Page Level Security
	Accessing an e.report having multiple sections

	Connecting to an e.report
	Specifying the data to retrieve from an e.report

	Accessing data in Amazon DynamoDB
	Using Amazon DynamoDB data in a report
	Connecting to Amazon DynamoDB
	Specifying the data to retrieve from Amazon DynamoDB
	Filtering data
	Filtering by a composite primary key
	Filtering by an attribute

	Accessing data in Amazon Relational Database Service
	Using Amazon RDS data in a report
	Connecting to Amazon RDS
	Specifying the data to retrieve from Amazon RDS

	Accessing data in a Hadoop system
	Using Hadoop data in a report
	Connecting to a Hadoop system
	Specifying the data to retrieve from a Hadoop system

	Accessing data in Salesforce.com
	Using Salesforce.com data in a report
	Connecting to Salesforce.com
	Specifying the data to retrieve from Salesforce.com

	Accessing data in a POJO
	Using POJO data in a report
	Connecting to a POJO
	Specifying the data to retrieve from a POJO

	Combining data from multiple data sources
	Ways to combine data
	Creating a union data set
	Creating a joined data set
	Joining on more than one key
	Specifying a join condition not based on equality

	Designing reports
	Formatting a report
	Formatting features in Actuate BIRT Designer
	Removing the default themes
	Hiding columns in a table
	Using a Quick Response (QR) code to link to content
	Designing for optimal viewer performance

	Building HTML5 charts
	About HTML5 charts
	Comparing HTML5, Flash, and BIRT charts
	Rendering platform

	Creating an HTML5 chart
	Formatting an HTML5 chart
	Applying a chart theme
	Creating a chart theme
	Creating a general chart theme
	Creating a JavaScript chart theme

	Writing event handlers
	Writing event handlers that respond to user interactions
	Writing event handlers that respond to chart events
	About the HTML5 chart events
	Setting chart options through scripting
	Scripting example 1
	Scripting example 2
	Scripting example 3

	Using Flash objects in a report
	About Flash
	Software requirements
	Ways to add Flash objects in a report
	Output formats that support Flash

	Using built-in Flash charts and gadgets
	About Flash charts and gadgets
	Creating a Flash chart and gadget
	Formatting a Flash chart
	Formatting a Flash gadget
	General properties
	Scale properties
	Needle properties
	Needle base or pivot properties
	Number formatting properties
	Region properties
	Tick properties
	Threshold properties
	Anchor properties
	Plot properties
	Value indicator properties
	Tooltip properties
	Font properties
	Padding and margin properties
	AddOn properties

	Using animation and other visual effects
	Creating effects
	Managing effects
	Animation effect
	Bevel effect
	Blur effect
	Font effect
	Glow effect
	Shadow effect

	Tutorial 1: Creating a Flash chart
	Task 1: Create a new report
	Task 2: Build a data source
	Task 3: Build a data set
	Task 4: Add a Flash chart to the report
	Task 5: Select data for the Flash chart
	Task 6: Animate the x-axis labels
	Task 7: Animate the y-axis labels
	Task 8: Change the animation effect of the columns

	Tutorial 2: Creating a Flash gadget
	Task 1: Add a Flash gadget to the report
	Task 2: Select data for the linear gauge
	Task 3: Divide the data area into regions
	Task 4: Add thresholds
	Task 5: Animate the region labels
	Task 6: Animate the sales value
	Task 7: Add a glow effect to the needle

	Limitations

	Using the Flash object library
	About the Flash object library
	About Flash charts
	About Flash gadgets
	About Flash maps
	About Flash power charts
	Flash object components

	Inserting a Flash object in a report
	Providing data to a Flash object
	Generating the XML data
	Using the dataXML variable to pass XML data
	Using the dataURL variable to pass XML data

	Using the Flash object library documentation
	Tutorial 3: Creating a Flash map that gets data through the dataXML variable
	Task 1: Create a new report
	Task 2: Build a data source
	Task 3: Build a data set
	Task 4: Find a suitable Flash map
	Task 5: Review the map specifications
	Task 6: Map the data set values to the Flash map entity values
	Task 7: Add the Flash map to the report
	Task 8: Generate an XML data string
	Task 9: Create the dataXML variable and pass the data
	Task 10: Format the Flash map
	Display sales values in a more readable format
	Building the XML string in readable pieces
	Change the colors used in the map
	Define data ranges and apply different colors to each range
	Create city markers

	Tutorial 4: Creating a Flash chart that gets data through the dataURL variable
	Task 1: Create a new report
	Task 2: Build a data source
	Task 3: Build a data set
	Task 4: Add a Flash chart to the report
	Task 5: Create a plug-in
	Task 6: Define an extension
	Task 7: Create a Java class
	Task 8: Implement methods in the class
	Import the required packages
	Implement the initialize() method
	Implement the output() method
	Implement the release() method

	Task 9: Deploy the plug-in
	Task 10: Create the dataURL variable

	Debugging a Flash object
	Using the Flash object’s debug mode
	Resolving errors

	Writing expressions using EasyScript
	About EasyScript
	Choosing between EasyScript and JavaScript
	Syntax rules

	Using the EasyScript expression builder
	Changing the default expression syntax
	Functions
	ABS()
	ADD_DAY()
	ADD_HOUR()
	ADD_MINUTE()
	ADD_MONTH()
	ADD_QUARTER()
	ADD_SECOND()
	ADD_WEEK()
	ADD_YEAR()
	BETWEEN()
	CEILING()
	DAY()
	DIFF_DAY()
	DIFF_HOUR()
	DIFF_MINUTE()
	DIFF_MONTH()
	DIFF_QUARTER()
	DIFF_SECOND()
	DIFF_WEEK()
	DIFF_YEAR()
	FIND()
	IF()
	IN()
	ISNULL()
	LEFT()
	LEN()
	LIKE()
	LOWER()
	MATCH()
	MOD()
	MONTH()
	NOT()
	NOTNULL()
	NOW()
	QUARTER()
	RIGHT()
	ROUND()
	ROUNDDOWN()
	ROUNDUP()
	SEARCH()
	SQRT()
	TODAY()
	TRIM()
	TRIMLEFT()
	TRIMRIGHT()
	UPPER()
	WEEK()
	WEEKDAY()
	YEAR()
	Operators

	Specifying filter conditions at report run time
	About report parameters and filters
	Enabling the user to specify a filter condition
	Creating a dynamic filter report parameter
	Making a filter parameter optional
	Accepting multiple values

	Creating a dynamic filter

	Getting information about queries

	Displaying cross tab data by relative time periods
	About relative time periods
	Aggregating data by a relative time period
	Examples of relative time period aggregations
	Supported time periods
	Using the * to Date and Trailing N * time periods

	Adding HTML buttons to a report
	About HTML buttons
	Creating an HTML button
	Writing code for an HTML button
	Accessing report data
	Using the Actuate JavaScript API
	Testing an HTML button

	Changing the appearance of an HTML button

	Controlling user access to report pages and data
	About the security model
	About access control lists (ACLs) and security IDs
	ACL expression syntax

	Controlling user access to report pages
	Adding page-level security to a report
	Enabling and disabling page-level security
	Configuring page numbers
	Testing page-level security

	Controlling user access to data
	Adding security to a data object
	Adding security to a data set
	Adding security to a cube

	Enabling and disabling data security
	Testing data security

	Accessing iServer environment information
	Writing event handlers to retrieve iServer environment information
	Writing a JavaScript event handler
	Writing a Java event handler
	About the serverContext object
	JavaScript event handler example
	Java event handler example

	Debugging event handlers that use the iServer API
	iServer API reference
	appendToJobStatus()
	getAuthenticationId()
	getServerWorkingDirectory()
	getUserAgentString()
	getUserRoles()
	getVolumeName()
	setHeadline()
	setVersionName()

	Performing impact analysis
	About impact analysis
	Searching for database items used in BIRT objects
	Identifying the files impacted by a BIRT object
	Viewing the relationships among files in a project
	Assessing the impact of changes in an Actuate BIRT iServer volume

	Deploying reports and resources
	Deploying BIRT reports to iServer
	About deploying BIRT reports
	Publishing a report to iServer
	Publishing a report resource to iServer
	Deploying Java classes used in BIRT reports
	Installing a custom JDBC driver
	Installing custom ODA drivers and custom plug-ins

	Configuring data source connections in iServer
	About data source connection properties
	Using a connection profile
	Creating a connection profile
	Managing a connection profile
	Exporting connection profiles
	Importing connection profiles
	Editing connection profile properties

	Deploying a connection profile
	Encrypting connection profile properties
	Binding connection profile properties
	Binding Connection Profile Store URL property
	Binding a connection profile name to a report parameter

	Using a connection configuration file
	Setting up the connection configuration file
	Understanding how iServer uses the connection configuration file
	Setting the location of a connection configuration file
	Encrypting the connection properties
	Externalizing the connection profile properties on the iServer
	Understanding externalization precedence
	Referencing an external connection profile

	Accessing BIRT report design and BIRT resource path in custom ODA plug-ins
	Accessing resource identifiers in the run-time ODA driver
	Accessing resource identifiers in the design ODA driver

	Configuring fonts in iServer
	About configuring fonts
	Understanding font configuration file priorities
	Understanding how the BIRT engine locates a font
	Understanding the font configuration file structure
	<font-aliases> section
	<composite-font> section
	<font-paths> section

	Working with BIRT encryption in iServer
	About BIRT encryption
	About the BIRT default encryption plug-in
	About supported encryption algorithms
	About the components of the BIRT default encryption plug-in
	About acdefaultsecurity.jar
	About encryption.properties
	About META-INF/MANIFEST.MF
	About plugin.xml

	Creating a BIRT report that uses the default encryption
	Deploying multiple encryption plug-ins
	Deploying encryption plug-ins to iServer
	Generating encryption keys
	Creating a custom encryption plug-in
	Using encryption API methods

	Using custom emitters in iServer
	About custom emitters
	Deploying custom emitters to iServer and Information Console
	Rendering in custom formats
	Configuring the default export options for a BIRT report

	Using Actuate BIRT APIs
	Using the BIRT data object API
	About generating data objects from an application
	Generating data object elements for BIRT report designs
	Creating data object data sets for BIRT report designs
	Creating data object data cubes for BIRT report designs

	Tutorial 5: Creating a data element using the Design Engine API
	Task 1: Set up a project
	Task 2: Create a GenerateDataObject Java class
	Task 3: Create the main() method to test the code
	Task 4: Run the code

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

