One User Experience

Information Console Developer Guide

Information in this document is subject to change without notice. Examples provided are fictitious. No part of
this document may be reproduced or transmitted in any form, or by any means, electronic or mechanical, for any
purpose, in whole or in part, without the express written permission of Actuate Corporation.

© 1995 - 2013 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 951 Mariners Island Boulevard, San Mateo, CA 94404

www.actuate.com

The software described in this manual is provided by Actuate Corporation under an Actuate License agreement.
The software may be used only in accordance with the terms of the agreement. Actuate software products are
Erotected by U.S. and International patents and patents pending. For a current list of patents, please see

ttp:/ /www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:

Actuate, ActuateOne, the Actuate logo, Archived Data Analytics, BIRT, BIRT 360, BIRT Analytics, The BIRT
Company, BIRT Data Analyzer, BIRT iHub, BIRT Performance Analytics, Collaborative Reporting Architecture,
e.Analysis, e.Report, e.Reporting, e.Spreadsheet, Encyclopedia, Interactive Viewing, OnPerformance, The people
behind BIRT, Performancesoft, Performancesoft Track, Performancesoft Views, Report Encyclopedia, Reportlet,
X2BIRT, and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered
trademarks of their respective owners, companies, or organizations include:

Mark Adler and Jean-loup Gailly (www.zlib.net): zLib. Adobe Systems Incorporated: Flash Player. Amazon Web
Services, Incorporated: Amazon Web Services SDK, licensed under the Apache Public License (APL). Apache
Software Foundation (www.apache.org): Ant, Axis, Axis2, Batik, Batik SVG library, Commons Command Line
Interface (CLI), Commons Codec, Crimson, Derby, Hive driver for Hadoop, Pluto, Portals, Shindig, Struts,
Tomcat, Xalan, Xerces, Xerces2 Java Parser, and Xerces-C++ XML Parser. Castor (www.castor.org), ExoLab
Project (www.exolab.org), and Intalio, Inc. (www.intalio.org): Castor. Day Management AG: Content Repository
for Java. Eclipse Foundation, Inc. (www.eclipse.org): Babel, Data Tools Platform (DTP) ODA, Eclipse SDK,
Graphics Editor Framework (GEF), Eclipse Modeling Framework (EMF), and Eclipse Web Tools Platform (WTP),
licensed under the Eclipse Public License (EPL). Gargoyle Software Inc.: HtmlUnit, licensed under Apache
License Version 2.0. GNU Project: GNU Regular Expression, licensed under the GNU Lesser General Public
License (LGPLv3). HighSlide: HighCharts. Jason Hsueth and Kenton Varda (code.google.com): Protocole Buffer.
IDAutomation.com, Inc.: IDAutomation. IDRsolutions Ltd.: JBIG2, licensed under the BSD license. InfoSoft
Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts. Matt Inger (sourceforge.net):
Ant-Contrib, licensed under Apache License Version 2.0. Matt Ingenthron, Eric D. Lambert, and Dustin Sallings
(code.google.com): Spymemcached, licensed under the MIT OSI License. International Components for Unicode
(ICU): ICU library. jQuery: jQuery, licensed under the MIT License. Yuri Kanivets (code.google.com): Android
Wheel gadget, licensed under the Apache Public License (APL). LEAD Technologies, Inc.: LEADTOOLS. The
Legion of the Bouncy Castle: Bouncy Castle Crypto APIs. Bruno Lowagie and Paulo Soares: iText, licensed under
the Mozilla Public License (MPL). Microsoft Corporation (Microsoft Developer Network): CompoundDocument
Library. Mozilla: Mozilla XML Parser, licensed under the Mozilla Public License (MPL). MySQL Americas, Inc.:
MySQL Connector. Netscape Communications Corporation, Inc.: Rhino, licensed under the Netscape Public
License (NPL). OOPS Consultancy: XMLTask, licensed under the Apache License, Version 2.0. Oracle
Corporation: Berkeley DB, Java Advanced Imaging, JAXB, JDK, Jstl. PostgreSQL Global Development Group:
pgAdmin, PostgreSQL, PostgreSQL JDBC driver. Progress Software Corporation: DataDirect Connect XE for
JDBC Salesforce, DataDirect JDBC, DataDirect ODBC. Rogue Wave Software, Inc.: Rogue Wave Library
SourcePro Core, tools.h++. Sam Stephenson (prototype.conio.net): prototype.js, licensed under the MIT license.
Sencha Inc.: Ext JS, Sencha Touch. ThimbleWare, Inc.: JMemcached, licensed under the Apache Public License
(APL). World Wide Web Consortium (W3C) (MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86
Project, Inc.: (www.xfree86.org): xvfb. ZXing authors (code.google.com): ZXing, licensed under the Apache
Public License (APL).

All other brand or product names are trademarks or registered trademarks of their respective owners,
companies, or organizations.

Document No. 130131-2-640301 January 23, 2013

Contents

About Information Console Developer Guide vii
Part 1
Customizing Actuate Information Console
Chapter 1
Introducing Actuate Information Console 3
About Actuate Information Console 4
Setting up Actuate Information Console 5
Generating a web archive (WAR) for installation 5
Understanding Actuate Information Console load balancing 6
Deploying a load balancer for an Actuate BIRT iHub cluster 7
About using a cluster of applicationservers oo ool 7
About Actuate Information Console architecture 8
Using proxy servers with Actuate InformationConsole 8
About Actuate Information Console pages i 10
Working with Actuate Information Console URIs 11
About Actuate Information Console URIs 11
Using a special characterina URL, 12
About UTF-8 encoding e 14
About Actuate Information Console functionality levels 14
Customizing functionality levels 16
Customizing functionality level features 18
Preserving functionality levels and features 20
Chapter 2
Creating a custom Information Console web application 21
Information Console web application structure and contents 22
Understanding Information Console directory structure 23
Building a custom Information Console contextroot, 27
Activating a new or custom web application oL 29
Configuring a custom Information Console web application 29
Customizing Information Console configuration 30
Setting the defaultlocale 30
Controlling the Message Distribution service load balancing 31
Specifying the default Encyclopedia volume and server 32
Modifying text and messagesiiiiiii i 33
Customizing Information Console text and messages 34
Customizing Actuate BIRT iHub error messages 36

Customizing an Information Console web application 39

Modifying the landing page 40
Viewing modifications to a custom web applicationo 41
Locating existing pages and linkinginnew pages 42
Obtaining information about the user and the session 43
Customizing accessible files and page structure using templates 44
Specifying a template and templateelementso 45
About the dashboard template 46
Changingatemplate 46
Modifying existing content or creatingnew contentl 48
Modifying global styleelements 49
Customizing Actuate Information Console using skins 49
Using skins 49
Managing skins using the skinmanager 51
Customizing and cloning skins 52
Understanding style definition fileso 56
Specifying colorsand fonts o 57
Customizing page styles for BIRT Studio, 58
Modifying graphicimages 59
Part 2
Actuate Information Console reference
Chapter 3
Actuate Information Console configuration 63
About Information Console configuration 64
Configuring the Information Console web application 64
Configuring Information Console using web.xml 64
Configuring Information Console using volumeProfilexml 70
Using a volume profile defined in volumeProfilexml 71
Overriding the volume specified in a volume profile 71
Understanding temporary volume profiles 72
Configuring Information Console functionality levels with functionality-level.config 72
Configuring Information Consolelocales 75
Configuring Information Console time zones 76
Customizing messages and text according tolocale 76
Configuring Shindig 2.0 for a WAR or EAR deployment 78
Configuring the connectiontoiHub o il 79
Configuring the BIRT Viewer and Interactive Viewer 80
Configuring BIRT Studio 80
Configuring BIRT Data Analyzer i 80

ii

Chapter 4

Actuate Information Console URIs 81
Actuate Information Console URIS OVEIVIEWttt 82
Actuate Information Console URIs quick reference 82
Common URI parameters i 84
Information Console Struts actionsttt e 85
Actuate Information Console URIsreference iiiiiiiiiinininan... 92
AbOoUt Page 95
banner page 95
browse file page 96
calendar page ... 96
channels page 96
completed request page 97
create folder page 98
dashboard page 98
delete file status page 98
deletejob page 99
delete status page 99
detail pageo 100
Arop Page . . oo 102
EITOT PAZE .+ ot ottt ettt ettt e e e e e e e e e e e e 103
eXeCUte TePOTt PAZE 103
general OPtioNS Page 106
homepage 107
INAEX PagE oot 108
license page 110
LSt page ... 111
loginbanner page i 114
login page 114
logout page ... 115
My dashboard page 115
notification page 116
OPHIONS PAGE . . oot 117
OULPUL PAgE .. oo 118
pagenotfound page 119
PArameters PAEt 120
pending page 120
PIN g DA - . ottt 120
privileges page 123
TUNIUNE PAZE « o o v ettt ettt et e ettt ettt e e e 123
schedule page 124
scheduled job page 125
search folders page 125

iii

submitjob page 126

Actuate BIRT Viewer URIsreference 130
Chapter 5
Actuate Information Console JavaScript 131
Actuate Information Console JavaScript overview i 132
Actuate Information Console JavaScript reference 132
Chapter 6
Actuate Information Consoleservlets 135
Information Console Java Servlets OVeIrVIeWcuutieire e 136
About the base servlet 136
Invoking a servlet 136
Information Console Java servlets referencec.oiiiinineneinennnnnns 137
DownloadFile servlet 137
Interactive Viewer servlet 137
Chapter 7
Actuate Information Console customtags 141
Information Console custom tag overview ittt 142
Information Console custom tags quick reference i 142
Information Console custom tag libraries i 142
Information Console custom tagsuuuunn e 143
Information Console custom tags referenceo 144
bundle 144
COMEEN . . oo 145
copyFileFolder 146
formatDate 146
LOgin .. 147
ITEESSAZE « o o vt e ettt ettt e e e e e e e e e e 149
1251 o Y 150
tabBegin 151
tabENd 151
tabMiddle 152
tabMiddleSelected 153
tabPanel 153
tabSeparator 155
Chapter 8
Actuate Information Console JavaBeans 157
Information Console JavaBeans overviewuiiinnirniineieeeinnnnns 158
Information Console JavaBeans package reference 158
Information Console JavaBeans class referencecoiiiiiiinirnennnnnnn. 158

iv

Documents 159
General 160
JODS o 160
SKINS . 161
USeIS ..o 162
Information Console UserInfoBean class reference 162
Chapter 9
Using Actuate Information Console security 169
About Actuate Information Console security L 170
Protecting corporatedata 170
Protecting corporate data using firewallsl 170
Protecting corporate data using Network Address Translation 171
Protecting corporate data using proxy servers 171
Understanding the authentication process 171
Creating a custom security adapter 172
Accessing the IPSE Javaclasses i 173
Creating a custom security adapterclassl 173
Deploying a custom security adapter.............. 174
Understanding the security adapterclass 175
Creating an upload security adapter 178
Accessing the necessary Javaclasses 179
Creating a custom security adapterclassl 179
Deploying an upload security adapter....................l 180
Understanding the upload security adapter interface 181
Chapter 10
Customizing Information Consoleonlinehelp 183
About Actuate Information Console online help files 184
Understanding the help directory structure 184
Understanding a help collection 185
Understanding a documentroot 186
Understanding context-sensitive help 187
Understanding locale support 188
Using a custom help location 189
Creating a localized help collection L 191
Customizing icons, links, and the companylogo 193
Changing the corporatelogo 193
Changing the additional links footer in help content pages 194
Changing the Google translate element in help content pages 196
Changing icONs i 196
Changing the browser window title oL 198

Changing helpcontent 198

Changing existing helpcontentl 198
Adding or removing help topics 199
Adding and removing content files oL 200
Changing the tableof contentsl 201
Changingtheindex......... 204
INdeX ... 207

vi

Information Console Developer Guide is a guide to designing, deploying, and
accessing custom reporting web applications using Actuate Information Console.

Information Console Developer Guide includes the following chapters:

About Information Console Developer Guide. This chapter provides an overview
of this guide.

Part 1. Customizing Actuate Information Console. This part describes how to use
Information Console and how to customize its appearance and layout.

Chapter 1. Introducing Actuate Information Console. This chapter introduces
Actuate Information Console web applications and explains how Information
Console works.

Chapter 2. Creating a custom Information Console web application. This chapter
explains how to work with Information Console JSP files to design custom
reporting web applications.

Part 2. Actuate Information Console reference. This part describes the code
components that make up Information Console, such as URISs, JavaScript files,
servlets, tags, beans, and security facilities.

Chapter 3. Actuate Information Console configuration. This chapter describes the
Information Console configuration files and parameters.

Chapter 4. Actuate Information Console URIs. This chapter describes the
Information Console JSPs and URL parameters.

Chapter 5. Actuate Information Console JavaScript. This chapter describes the
Information Console JavaScript files.

Chapter 6. Actuate Information Console servlets. This chapter describes the
Information Console Java servlets.

About Information Console Developer Guide vii

m Chapter 7. Actuate Information Console custom tags. This chapter describes the
Information Console custom tag libraries.

m Chapter 8. Actuate Information Console JavaBeans. This chapter lists the
Information Console JavaBeans.

m Chapter 9. Using Actuate Information Console security. This chapter introduces
the Information Console Security Extension (IPSE) and explains how to use it.

m Chapter 10. Customizing Information Console online help. This chapter describes
how to customize the Information Console online help files.

viii Information Console Developer Guide

One

Customizing Actuate
Information Console

Introducing Actuate
Information Console

This chapter contains the following topics:
m About Actuate Information Console

m About Actuate Information Console architecture

Chapter 1, Introducing Actuate Information Console 3

About Actuate Information Console

4

Actuate Information Console is a web application that supports accessing and
working with report information using a web browser. Web developers and
designers use Actuate Information Console’s industry-standard technology to
design custom e.reporting web applications that meet business information
delivery requirements.

Actuate Information Console technology is platform independent and
customizable. By separating user interface design from content generation,
Information Console ensures that reporting web application development tasks
can proceed simultaneously and independently. You deploy Actuate Information
Console on a network with Actuate BIRT iHub. Information Console accesses and
stores documents on an Encyclopedia volume managed by iHub. Actuate
Information Console technology is also scalable and supports clustering. On a
Windows system, the default context root for Information Console is C:\Program
Files\ Actuate\iPortal2\iportal for Information Console installed separately or
C:\Program Files\ Actuate\iHub2\servletcontainer\iportal for Information
Console embedded in the BIRT iHub application. On a UNIX-based system, the
default context root for Information Console is $Home /iPortal2 /iportal for
Information Console installed separately or $Home/iHub2 /servletcontainer
/iportal for Information Console embedded in the BIRT iHub application.

Actuate Information Console technology includes the following features:

m JavaServer Pages (JSPs) support creating HTML or XML pages that combine
static web page templates with dynamic content.

m Distributing requests to multiple Actuate BIRT iHub machines in an Actuate
BIRT iHub System cluster balances server loads.

m Simple Object Access Protocol (SOAP) standards provide plain text
transmission of XML using HTTP.

m Actuate Information Delivery API supports direct communication between
the pages’ custom tags and Actuate BIRT iHub.

m The full range of authentication and authorization functionality that Actuate
BIRT iHub provides is available.

m Secure HTTP (HTTPS) supports secure information transfer on the web.

m Licensed options on BIRT iHub provide additional functionality. To use these
options on a BIRT iHub System, the BIRT iHub System must be licensed for
the options. For example, to use browser-based tools, such as BIRT Interactive
Viewer or BIRT Data Analyzer, the BIRT iHub requires the appropriate license
options.

Information Console Developer Guide

The BIRT 360 option for BIRT iHub is required to use dashboard and gadget
files. If these options are not available, users cannot open dashboards or
gadgets in Information Console.

Setting up Actuate Information Console

You install Information Console in either of two ways:

m As a separate web application. This method enables native load balancing
for iHub clusters, redundancy to support constant report services over the
web, and secure networks using firewalls and proxy severs as described in
Chapter 9, “Using Actuate Information Console security.”

m Automatically on the same host with iHub. This method provides reports
locally on each iHub machine.

For enterprise architectures, installing Information Console on several web
servers is recommended.

To deploy a report to the web, you need:
m An Actuate Information Console installation.

= An application server or JSP or servlet engine such as Actuate embedded
servlet engine or IBM WebSphere.

s One or more Actuate designer tools and Actuate BIRT iHub System with
Actuate Management Console.

m Actuate BIRT iHub administrator privileges.

m Permission to read, write, and modify operating system directories as
necessary. For example, the directory Java uses to hold temporary files is
defined by the java.io.tmpdir property and is by default the value of the TMP
system variable in the Windows environment and /var/tmp in the UNIX and
Linux environments. Read and write permission must be provided to the
application server running Information Console for this directory.

This section discusses deployment concerns that may affect your Information
Console installation and how you wish to deploy reports to the web. For more
information about installing Information Console, see Installing BIRT iHub for
Windows or Installing BIRT iHub for Linux.

Generating a web archive (WAR) for installation

To deploy Information Console on an application server, you can use a WAR file
of your Information Console application. Generating Web Archive is a feature of
Actuate Information Console that is available to Administrator-level users. This
feature creates a WAR file of your entire Actuate Information Console system.
Information Console streams the WAR file to your browser. You select a file name
and location to save the file. After you customize your system, you can create a

Chapter 1, Introducing Actuate Information Console 5

6

WAR file to deploy the customized Information Console on other machines. The
customizations can include any modifications of JavaScript, JavaServer Pages
(JSPs) and other web pages, and skins. Later chapters in this book provide
detailed information about customizing JavaScript and JSPs.

If Actuate Information Console is deployed as a WAR file, you cannot further
customize skins, add pages, or make any other changes that affect the Actuate
Information Console file structure in the WAR file. Instead, install Actuate
Information Console as a directory structure with the installation wizard on your
product CD and make your changes to that installation. Then use Generate Web
Archive to create a new WAR file and deploy that WAR file to your application
server.

How to customize and deploy Actuate Information Console in a cluster

To customize Actuate Information Console and deploy it to application servers in
a clustered environment, use the following general procedure.

1 Install Actuate Information Console on one of the machines in your cluster.

2 Customize the Actuate Information Console JavaScript, skins, and web pages
as desired.

Open Information Console. On the landing page, choose My Documents.

Log in as an administrator-level user. On the Information Console banner,
choose Customization.

5 Choose Generate Web Archive. At the prompt, provide a location for the WAR
file. For example, provide the location where your application server accesses
WAR files. By default, the name of the WAR file of your customized Actuate
Information Console installation is acweb.war.

6 Deploy the WAR file to each remaining machine in your cluster.

Understanding Actuate Information Console load
balancing

Actuate Information Console supports two kinds of load balancing, as illustrated
in Figure 1-1, to ensure high availability and to distribute tasks for efficient
processing:

m Actuate Message Distribution service (MDS) balances the request load among
Actuate BIRT iHub machines in an Actuate BIRT iHub cluster.
The Message Distribution service eliminates the need for a third-party
network load balancer in front of the Actuate BIRT iHub tier. Actuate
Information Console determines which machines in a cluster have MDS
running and detects when the MDS machines go offline. MDS distributes the
load among the available servers and does not attempt to send a request to an
offline machine.

Information Console Developer Guide

m Clustered Actuate Information Console machines can use a third-party
application to balance the load among the application servers.

Application —
\t,)Veb server ﬁﬁc&gate BIRT
rowser : ~_
\ / Icr:lform?tlon < Encyclopedia
onsole volume
N
Third-party Application Actuate /
Web | _ application server | BIRT iHub N
browser server load Information \v
balancer Console el Encyclopedia
_I volume
Application Actuate /
web |7 N e 71 BIRT iHub
browser Information | =7
Console ~—
[
volume
[StateServer or SqlServerj<—

Figure 1-1 Load-balancing architecture for Information Console

Deploying a load balancer for an Actuate BIRT iHub
cluster

To deploy a load balancer or proxy layer in front of the Actuate BIRT iHub tier,
disable the Actuate load-balancing support by setting the MDS_ENABLED
configuration parameter to False in the web.xml Actuate Information Console
configuration file.

About using a cluster of application servers

If the application servers running Information Console support session state
management, you can configure Actuate Information Console and the application
servers to share and maintain a web browsing session state across a cluster of
Information Console instances. Configuring the application servers to track the
state of each Information Console instance supports reusing authentication
information. In other words, you can log in to an Information Console instance
and send a request using another Information Console instance without logging
in again using the second instance.

If you do not use an application server to track session state information,
managing the session state is fast, but you lose a user’s state information when
you restart Actuate Information Console or your application server.

Sharing session state information takes advantage of the application servers’
failover features. If a user is on a cluster application server running Information
Console and that application server fails, another application server running
Information Console can manage the user’s session.

Chapter 1, Introducing Actuate Information Console 7

An application server works with one or more database servers to manage
session state information. All application servers must have access to the
database server to store and retrieve session state information. For specific
information about configuring your installation, see your application server
documentation.

About Actuate Information Console architecture

8

This section describes the general operation, authentication, and structure of
Information Console as a web application.

The Actuate Information Console architecture is illustrated in Figure 1-2.

Firewall Firewall
[[
| Web or Application server | ’ Database Server ’
| Servlet or Page engine |
| Actuate Information |
Web Console | Actuate BIRT
browser | IDAPI Proxy | IHub System
Actuate load <—T‘> =N e
| balancing
| |
[[
Figure 1-2 Actuate Information Console architecture overview

A user submits a request by choosing a link on a web page that specifies an
Actuate Information Console URL As shown in Figure 1-2, the web or application
server receives the URI as an HTTP request and passes the request to the servlet
or page engine. The engine invokes Actuate Information Console, interprets the
URI, and communicates with the Actuate BIRT iHub using the Actuate
Information Delivery API (IDAPI). The IDAPI manages the request and returns
the results to Actuate Information Console and the servlet or page engine. The
web server returns the results to the web browser. Then, the web browser
displays the results for the user.

Actuate Information Console manages requests as part of a JSP engine within a
web or application server. There is no default user interface for the engine. On a
Windows system, Actuate Information Console installation places an Actuate
Information Console link on the Start menu.

Using proxy servers with Actuate Information Console

When setting up a proxy server with Actuate Information Console, there are steps
you must take if your internal application server port is protected by a firewall. In
this situation, when the proxy server changes the URL to point to the new

Information Console Developer Guide

context’s port, that port is unavailable due to the firewall. The usual solution is to
configure a reverse proxy, but if you are using multiple proxies and a reverse
proxy is not practical for your installation, Actuate Information Console can
perform the redirection.

To redirect a page without using a reverse proxy, Actuate Information Console
forwards the URL to redirect to the processRedirect.jsp page and updates the
browser’s location bar accordingly. This action processes on the client. The
browser takes the current URL location and updates the rest of the URI using the
redirected URL. You must also set the ENABLE_CLIENT SIDE_REDIRECT
configuration parameter to True and modify the redirect attributes in the <context
root>/WEB-INF/struts-config.xml file. The necessary modifications are included
in the file. You just need to comment out the lines that have the redirect attribute
set to True and uncomment the lines that forward to the processRedirect.jsp page.

For example, the following code is the struts-config.xml entry for the login action:

<!-- Process a user login -->

<action path="/login" name="loginForm"
scope="request" input="/iportal/activePortal/private/login.jsp"
type="com.actuate.activeportal.actions.AcLoginAction"
validate="false">

<forward name="loginform"
path="/iportal/activePortal/private/login.jsp" />

<!--

<forward name="success" path="/iportal/activePortal/private/common
/processredirect.jsp?redirectPath=/getfolderitems.do" />

-=>

<forward name="success" path="/getfolderitems.do"
redirect="true" />

<forward name="dashboard" path="/dashboard" redirect="true" />

<forward name="ajcLogin" path="/ajclanding.jsp" redirect="true" />

<forward name="landing" path="/landing.jsp" redirect="false" />

</action>

By default the forward statement for success points to getfolderitems.do with the
redirect attribute set to True. This code instructs the application server to send a
redirect with the getfolderitems.do URL when the user logs in.

From behind a firewall and proxy, this redirect method fails because the redirect
sent by the application server points to the application server port instead of the
firewall and proxy port. For success, comment out the line having redirect="true".
Uncomment the line that points to processRedirect.jsp. The following code shows
the updated entry in struts-config.xml:

<!-- Process a user login -->

<action path="/login" name="loginForm"
scope="request" input="/iportal/activePortal/private/login.jsp"
type="com.actuate.activeportal.actions.AcLoginAction"
validate="false">

Chapter 1, Introducing Actuate Information Console 9

10

<forward name="loginform"
path="/iportal/activePortal/private/login.jsp" />

<forward name="success" path="/iportal/activePortal/private/common
/processredirect.jsp?redirectPath=/getfolderitems.do" />

<!--

<forward name="success" path="/getfolderitems.do"
redirect="true" />

-=>

<forward name="dashboard" path="/dashboard" redirect="true" />

<forward name="ajcLogin" path="/ajclanding.jsp" redirect="true" />

<forward name="landing" path="/landing.jsp" redirect="false" />

</action>

This change needs to be made for all the actions in struts-config.xml that send a
redirect to the browser.

About Actuate Information Console pages

Actuate Information Console uses JSPs to generate web pages dynamically before
sending them to a web browser. These JSPs use custom tags, custom classes, and
JavaScript to generate dynamic web page content. The JavaScript, classes, and
tags provide access to other pages, JavaBeans, and Java classes. For example,
application logic in Actuate Information Console can reside on the web server in
a JavaBean.

Web browsers can request a JSP with parameters as a web resource. The first time
a web browser requests a page, the page is compiled into a servlet. Servlets are
Java programs that run as part of a network service such as a web server. Once a
page is compiled, the web server can fulfill subsequent requests quickly, provided
that the page source is unchanged since the last request.

The dashboards servlet and JSPs support the dashboards and gadgets interface
for Information Console. The dashboard pages reside in <context root>
\dashboard\jsp. To provide dashboard access, enable the BIRT 360 license
option.

The channels JSPs and custom tags support viewing reports submitted to
channels. The channels pages reside in <context root>\iportal\activePortal
\private\channels. Users access channels by clicking Channel in the sidebar.

The filesfolders JSPs and custom tags support accessing repository files and
folders. These JSPs and custom tags reside in <context root>\iportal
\activePortal\private \filesfolders.

The submit request JSPs and custom tags support submitting new jobs. The
submit request JSPs reside in <context root>\iportal\activePortal\private
\newrequest. For specific information about running jobs using Actuate
Information Console, see Using Information Console.

Information Console Developer Guide

The options JSPs and custom tags support managing user option settings. The
options pages reside in <context root>\iportal\activePortal\private\options.

The viewing JSPs and custom tags support the following functionality, depending
on the report type:

m Searching report data

m Using a table of contents to navigate through a report
m Paginating or not paginating a report

m Fetching reports in supported formats

For specific information about viewing reports using Actuate Information
Console, see Using Information Console.

Use the default pages, customize the pages, or create entirely new pages to
deploy your reporting web application.

Working with Actuate Information Console URIs

Actuate Information Console Uniform Resource Identifiers (URIs) convey user
requests to the Actuate BIRT iHub System. URIs access functionality including
generating and storing reports, managing volume contents, and viewing reports.

About Actuate Information Console URIs

Actuate Information Console URIs consist of the context root and port of the web
server where you install and deploy the JSPs or servlets. Actuate Information
Console URIs have the following syntax:

http://<web servers:<ports>/iportal/<path><page>.<type>
[?<parameter=value>{&<parameter=value>}]

m <web server> is the name of the machine running the application server or
servlet engine. You can use localhost as a trusted application’s machine name
if your local machine is running the server.

m <port> is the port on which you access the application server or page or
servlet engine. The default port for Information Console installed separately is
8700, while the BIRT iHub embedded version uses 8900 by default.

m iportal is the default context root for accessing the Actuate Information
Console pages.

m <path> is the directory containing the page to invoke.
m <page> is the name of the page or method.
m <type>isjsp or do.

m <parameter=value> specifies the parameters and values that the page
requires.

Chapter 1, Introducing Actuate Information Console 11

For example, to view the login page, Actuate Information Console uses a URI
with the following format:

http://<web servers:<ports>/iportal
/login.jsp?TargetPage=<folder/file>

m iportal/login.jsp is the JSP that provides default login functionality for
Information Console.

m TargetPage is the viewframeset.jsp parameter that specifies the page to direct
the user to after the login completes.

m <folder/file> is the complete pathname for the file that the client opens after
the login completes.

Using a special character in a URI

Actuate Information Console URIs use encoding for characters that a browser can
misinterpret. The following example uses hexadecimal encoding in the
Information Console URI to display the report, Newsfeed.rptdesign, from an
Encyclopedia volume:

http://localhost:8900/iportal/executereport.do? requesttype=
immediate& executableName=%2fNewsfeed%2erptdesign& vp=serverl

You do not have to use hexadecimal encoding in all circumstances. Use the
encoding only when the possibility of misinterpreting a character exists. The
following unencoded URI displays the same report as the preceding URI:

http://localhost:8900/iportal/executereport.do? requesttype=
immediate& executableName=\Newsfeed.rptdesign& vp=serverl

Always encode characters that have a specific meaning in a URI when you use
them in other ways. Table 1-1 describes the available character substitutions. An
ampersand introduces a parameter in a URI, so you must encode an ampersand
that appears in a value string. For example, use:

&company=AT%26T
instead of:

&company=AT&T

Table 1-1 Encoding sequences for use in URIs
Character Encoded substitution
ampersand (&) %26
asterisk (*) %2a
at (@) %40
backslash (\) Y%5c¢
colon (3) %3a

12 Information Console Developer Guide

Table 1-1 Encoding sequences for use in URIs

Character Encoded substitution
comma (,) Yo2¢
dollar sign ($) %24
double quote (*) %22
equal (=) %3d
exclamation (!) %21
forward slash (/) Y%o2f
greater than (>) %3e
less than (<) %3¢
number sign (#) %23
percent (%) %25
period (.) Y%2e
plus (+) %2b
question mark (?) %3f
semicolon (;) %3b
space () %20
underscore (_) %5f

If you customize Actuate Information Console by writing code that creates URI

parameters, encode the entire parameter value string with the encode() method.
The encode() method is included in encoder.js, which is provided in the Actuate
Information Console <context root>/js directory. The following example encodes

the folder name /Training/Sub Folder before executing the getFolderltems
action:

<%-- Import the StaticFuncs class. --%>
<%@ page import="com.actuate.reportcast.utils.*" %>

o\°

<
String url =
"http://localhost:8900/iportal/getfolderitems.do?folder=" +
StaticFuncs.encode ("/Training/Sub Folder") ;
response.sendRedirect (url) ;

o\°

>

The encode() method converts the folder parameter value from:
/Training/Sub Folder

to:

$2fTraining%2fSub%20Folder

Chapter 1, Introducing Actuate Information Console

13

14

About UTF-8 encoding

All communication between Information Console and BIRT iHub uses UTF-8
encoding. UTF-8 encoding is the default encoding that web browsers support. For
8-bit (single-byte) characters, UTF-8 content appears the same as ANSI content.
However, if extended characters are used (typically for languages that require
large character sets), UTF-8 encodes these characters with two or more bytes.

UTE-8 encoding support is encoded for all Information Console web pages. When
customizing these pages or adding customized web pages to an Information
Console web application, provide UTF-8 encoding support using the following
code:

<META
HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">

About Actuate Information Console functionality
levels

Actuate Information Console provides functionality levels that control which
features are available to a user. By default, each user can access all of the
functionality level features. To restrict access to features for user groups, the
Actuate Information Console administrator can modify functionality levels and
add additional levels by editing the configuration file. The standard location for
the Actuate Information Console configuration file is <context root>\WEB-INF
\functionality-level.config.

Functionality-level.config has several functionality levels mapped to security
roles, much like privileges, in comments. Table 1-2 shows the supplied
functionality levels and their corresponding security roles.

Table 1-2 Functionality levels mapping to security roles
Functionality level Security role

Basic All—default access
Intermediate Active Portal Intermediate
Advanced Active Portal Advanced
Administrator Active Portal Administrator

When uncommenting existing security roles or creating new security roles, make
sure that any roles specified in the configuration file also exist in the Encyclopedia
volume. Because all users automatically belong to the All security role, all users
receive the functionality associated with the Basic or the Open functionality level
plus the functionality associated with any other roles they have. When restricting
access to features, remove the feature from the Open functionality level or
comment out the Open level completely and use the Basic functionality level.
Understanding the provided functionality levels

Information Console Developer Guide

When the comment tags are removed, the provided functionality levels give the
following access. Users with the Basic level can perform the following tasks:

m Access Documents, My Jobs, and Channels.
m Delete their own files.

Basic level users cannot perform any other modifications. The default banner for
the Basic level looks like the one in Figure 1-3.

My Documents v) el Content Esave
é-_jurup
Documents
[My Jobs

Figure 1-3 Banner menu for a basic level Actuate Information Console user

Users at the Intermediate level have all the Basic level access, and can also
perform the following tasks:

m Search documents.

m Create their own job notifications with attachments.
m Subscribe to channels.

m Upload and download files.

m Use the interactive viewer, if this option is licensed.

Users at the Advanced level have all the Intermediate level access, plus they can
perform the following tasks:

m Create and delete folders.
m Share files and folders.
m Setjob priority.

The default banner for the Intermediate and Advanced levels adds a Search link
and looks like the banner in Figure 1-4.

My Documents + ¢ i) &kl Content Hsave
Surup
Documents

1])

- My Jobs

Figure 1-4 Banner menu for advanced level Actuate Information Console user

Users at the Administrator level can perform all Advanced level tasks and can
also clone and customize Actuate Information Console skins. The default banner
for the Administrator level adds a Customization link, activates the add content
function, and looks like the banner in Figure 1-5.

Chapter 1, Introducing Actuate Information Console 15

16

My Documents P (e ——) &kl Content EHsave
Hurup

Documents &,
I Rename

My Jobs
1 channels = Copy = administrator w
Figure 1-5 Banner menu for an administrator Actuate Information Console user

Use Actuate Management Console to associate the levels with users in the
Encyclopedia volume by assigning the appropriate roles to each user.

Customizing functionality levels

Customize or add functionality levels by modifying or creating a level definition
in functionality-level.config. A functionality level definition consists of five parts:

m Level name

The level name must be a unique alphanumeric string, enclosed within
<Name> and </Name> tags.

m Matching security role

The name of the security role that corresponds to the functionality level. Both
the security level and the functionality level must exist before the functionality
level can be assigned to a user. Enclose the role name with <Role> and
</Role> tags.

m Available features
Table 1-3 describes the five available features.

Table 1-3 Features for functionality levels

Feature Description

Channels Provides access to channels
Customization Provides access to skin customization
Documents Provides access to files and folders

Jobs Allows submitting and accessing jobs
Mobile Provides access to BIRT mobile viewing
Search Provides access to the file search facility

Features are specified one per line and are enclosed within <FeatureID> and
</FeaturelD> tags. When a feature is omitted from a functionality level, the
corresponding side menu or banner item is hidden to anyone assigned that
functionality level. For example, the Search feature is not provided in the
Basic functionality level, so the Search link does not appear for users with
the Basic functionality level.

Information Console Developer Guide

m Available subfeatures

Subfeatures correspond to actions that you can perform through Actuate
Information Console. Most subfeatures are associated with a feature. A
subfeature cannot be included in a functionality level if its corresponding
feature is not included. The subfeatures are described in Table 1-4.

Table 1-4 Subfeatures for functionality levels

Subfeature Feature Description

AddFile Documents Permits adding files when the user has
the appropriate privileges

AdvancedData NA Permits the modifying and synchronizing
of data sets in BIRT Studio

CreateFolder Documents Permits creating folders when the user
has the appropriate privileges

Dashboard NA Permits use of dashboards

BusinessUser

Dashboard NA Permits design and administration of

Developer dashboards

DeleteFile Documents Permits deleting files when the user has
the appropriate privileges

DeleteFolder Documents Permits deleting folders when the user
has the appropriate privileges

DownloadFile Documents Permits downloading files when the user
has the appropriate privileges

InteractiveViewing NA Permits opening Interactive Viewer

JobPriority Jobs Permits setting job priority, up to the
user’s maximum job priority

SelfNotification Jobs Activates e-mail notification for

WithAttachment successful jobs

ShareDashboard NA Permits sharing dashboards when the

user has the appropriate privileges

ShareFile Documents Permits sharing files when the user has
the appropriate privileges

SubscribeChannel ~ Channels Permits subscribing to channels

Subfeatures are specified one per line, enclosed within <SubfeatureID> and
</SubfeaturelD> tags.

Chapter 1, Introducing Actuate Information Console 17

The following code shows a sample functionality level entry:

<Level>
<Name>ViewAndSearch</Name>
<Role>All</Role>
<FeatureID>Jobs</FeatureID>
<FeatureID>Documents</FeatureID>
<FeatureID>Search</FeatureID>
<SubfeatureID>ShareFile</SubfeatureID>
<SubfeatureID>DeleteFile</SubfeatureID>

</Levels>

The level is named ViewAndSearch and is available to all security roles. Users
with ViewAndSearch functionality can run jobs, access documents, and search for
files. In addition, they can share and delete their own files.

Customizing functionality level features

Customize functionality level features by modifying the action they perform and
the graphic image they use. Features are defined in the functionality-level.config
file. A feature definition consists of up to five parts:

m Feature ID

This is the feature name and must be a unique alphanumeric string, enclosed
within <ID> and </ID> tags. This value is used as the feature name in
functionality level definitions. Do not change this value, because the IDs are
used in the Actuate Information Console code to identify the features.

m Label key

This key is used in the Actuate Information Console resource files. These files
have names of the format, ActivePortalResources_<locale>.properties. The
files are located in <context root>\WEB-INF\lib\resources.jar. If this file does
not contain a resource file for a locale, the resource file,
ActivePortalResources.properties, for the default locale, en_US, is used. The
key provides for proper translation in the resource file so that the hyperlink
text for the feature is displayed using the current locale. Keys are enclosed
within <Labelkey> and </Labelkey> tags. Do not change the key values or
the resource string substitution fails.

m Link

This link is the target URI of the label key hyperlink, which is typically to the
page that corresponds to the feature. Table 1-5 shows the targets for each
feature. Links are enclosed within <Link> and </Link> tags. Change the link
target for the feature by replacing the default page or action name.

18 Information Console Developer Guide

Table 1-5 Actuate Information Console targets for features

Feature Actuate Information Console target
Documents \getfolderitems.do

Jobs \selectjobs.do

Channels \selectchannels.do

Search \searchfiles.do

Customization \customize.do

m Large icon and Small icon

These optional icons are displayed together with the link, depending on the
skin. For example, the Classic skin displays the large icons, the Treeview skin
uses the small icons, and the Tabbed skin does not use these icons at all.
Table 1-6 shows features and their icons. Large icons are 32 pixels square.
Their file names are relative to the context root and are enclosed within
<Largelcon> and </Largelcon> tags. Small icons are 16 pixels square. Their
file names are relative to the context root and are enclosed within <Smalllcon>
and </Smalllcon> tags. Replace these file names with the names of your own
icons to customize your skin’s appearance.

Table 1-6 Icons for features

Feature Smalllcon Largelcon

Documents \images\ \images
filesfoldersicon16x16.gif \filesfoldersicon.gif

Jobs \images\requestsicon16x16.gif = \images\requestsicon.gif

Channels \images\channelsicon16x16.gif \images\channelsicon.gif

The following example shows a sample definition for the Channels feature. This
example specifies custom large and small icons. The Classic and Treeview skins,
and any skins cloned from them, use these new images for the channel icon.

<Feature>
<ID>Channels</ID>
<Labelkey>SBAR_CHANNELS</Labelkey>
<Link>/selectchannels.do</Link>
<SmallIcon>/images/customIconléxl6.gif</SmallIcon>
<LargeIcons>/images/customIcon32x32.gif</Largelcon>
</Feature>

Chapter 1, Introducing Actuate Information Console 19

Preserving functionality levels and features

The functionality-levels.config file is overwritten during upgrade installations.
This change ensures that new levels, features, and subfeatures are available to
you with your new Actuate Information Console installation. If you have
modified your existing functionality-level.config file, make a backup of the
changes before the upgrade. Use the backed-up file to access your changes and
merge them into the new functionality-level.config file.

20 Information Console Developer Guide

Creating a custom
Information Console
web application

This chapter contains the following topics:

Information Console web application structure and contents
Configuring a custom Information Console web application
Customizing an Information Console web application

Modifying global style elements

Chapter 2, Creating a custom Information Console web application 21

Information Console web application structure and
contents

22

Information Console generates web pages using a set of default JSPs. Actuate
Information Console JSPs use cascading style sheets, JavaScript, and custom tags
to generate dynamic web page content. The JavaScript and tags provide access to
other JSPs, JavaBeans, and Java classes.

The Information Console web application organizes these inter-operating
components into a Model-View-Controller (MVC) architecture. To operate a web
application, the MVC components perform the following functions:

m Model contains the logic for sending requests to and processing responses
from the repository. This component is the data model for Information
Console.

m View contains the pages that display data prepared by actions. This
component is the presentation portion of Information Console.

m Controller contains the servlets that implement actions. This component is the
program control logic for Information Console and manages actions initiated
from the browser.

The controller maps actions, designated by URLs with the .do extension, to an
actionServlet. The actionServlet is configured with action paths specified in
<Actuate home>\iPortal\iportal \WEB-INF\struts-config.xml.

Typically, an action path leads to a JSP with parameters as a web resource.
Actuate Information Console file and directory names are case-sensitive. The first
time you use a JSP, your web server compiles it into a servlet. Servlets are
compiled Java programs or JSPs that run as part of a network service such as a
web server. After compiling a JSP into a servlet, a web server can fulfill
subsequent requests quickly, provided that the JSP source does not change
between requests.

Users make requests to view the contents of a repository, run and view reports,
and so on. Each JSP processes any URL parameters by passing them to JSP tags,
including Actuate custom tags or your own custom tags.

You specify the user’s Actuate BIRT iHub System and Encyclopedia volume as
URL parameters. To specify the locale and time zone to which to connect, use
parameter values in an Actuate Information Console request within a URL or by
specifying the desired values in the login form. For example, the following URL
specifies the en_US locale for U.S. English, and the Pacific standard time for the
timezone parameter:

http://localhost:8900/iportal/login.do?locale=en US&timezone=PST

Information Console Developer Guide

Understanding Information Console directory

structure

The Java Server Pages (JSPs) that implement Actuate Information Console URIs
are grouped by method into directories under the context root. The context root is
the home directory in which an Actuate Information Console web application
resides. The default context root for the embedded Information Console for iHub
on Windows systems is <Actuate home>\iHub2\servletcontainer\iportal and on
UNIX and Linux systems is <Actuate home>/iHub2/servletcontainer/iportal.
The default context root for a separate Information Console installation on
Windows systems is <Actuate home>\iPortal2\iportal and on UNIX and Linux
systems is <Actuate home>/iPortal2/iportal. The Information Console context
root name in the web or application server’s configuration file is iportal.

Figure 2-1 shows the Information Console directory structure.

<Actuate home>
\iPortal2

\—{iportal l—

birtAdapter
bizRD

Il
i

channels

Figure 2-1

Css

dashboard

downloads

dtd

common

dtd

errors

filesfolders

iportal

<

R T

n

META-INF
newrequest
options
requests
temp

viewer

(Il

—{ WEB-INF H repository

images

L

channels
common
customization

diagnosis

private

viewer

Actuate Information Console directory structure

NI

filesfolders
jobs

mobile
newrequest
options
parameters
sample
skins

templates

Chapter 2, Creating a custom Information Console web application 23

24

Actuate Information Console URIs convey user requests to Actuate BIRT iHub.

Pages supporting folder navigation and document viewing reside in the
<context root>\iportal\activePortal directory. In this directory, pages supporting
report viewing reside in the viewer directory, pages serving as templates for other
pages reside in the templates directory, and so on. Some directory names exist in
the iportal directory and also in the <context root>\iportal\activeportal\private
subdirectory. Customize the JSPs in the private subdirectory. The directory of the
same name in the iportal directory exists only for backward compatibility.

Table 2-1 lists and describes the general iHub2\servletcontainer\iportal or
iPortal\iportal directories.

Table 2-1 <Context root> directories
Directory Contents
This directory landing jsp, the default page for accessing all Information
Console functionality.
birtAdapter BIRT Viewer integration files.
bizRD Pages that support BIRT Studio.
channels Pages that support channels.
css Actuate Information Console cascading style sheet (.css)
files.
da BIRT Data Analyzer support files.
dashboard Dashboard support files.
downloads Downloaded files.
dtd Document type definitions.
filesfolders Pages that support working with files and folders.
images Information Console user interface images and icons.
iportal The Information Console application.
iv Pages that support Interactive Viewer.
js JavaScript files that control specific web page elements such
as search, toolbar, and table of contents.
logs Administrative and SOAP fault log files.
META-INF The Information Console manifest file. iHub embedded
InfoConsole directory.
newrequest Pages that support new requests, such as parameter
processing, scheduling, and job status pages.
options Options-specific pages, such as channels, notification, and

options update pages.

Information Console Developer Guide

Table 2-1 <Context root> directories

Directory Contents

requests Pages in this directory provide backward compatibility for
custom web applications referencing these pages by URL.
Use the action paths and the private\jobs directory for new
customization projects.

temp Working directory for transient content.

viewer Pages that support report viewing.

WEB-INF Files that manage session information such as current user

login, roles, and volume.

Table 2-2 lists and describes the iportal directories.

Table 2-2 <Context root>/iportal directories
Directory Contents
activePortal Pages that support login and authentication and directories
for the remaining pages for folder navigation and document
usage
birt Libraries that support BIRT reports, BIRT Studio, and
Interactive Viewer and pages that support BIRT reports
common Common elements included in all reporting web pages,
such as banner and side menu elements
jsapi The Java Report Engine Manager

Table 2-3 lists and describes the <context root>\iportal\activePortal directories.

Table 2-3 <Context root>/iportal/activePortal directories
Directory Contents
This directory Pages that support login and authentication and directories
for the remaining folder and document pages for the
Information Console application.
common Common elements included in all reporting web pages,
such as banner and side menu elements.
dtd Document type definitions.
errors Error pages.
images Images for reporting web pages, such as buttons, icons,

lines, and arrows.
(continues)

Chapter 2, Creating a custom Information Console web application 25

26

Table 2-3 <Context root>/iportal/activePortal directories (continued)
Directory Contents
private Most Information Console folders and documents web
pages. Users cannot directly access pages in this directory
using URLs. These pages are customizable.
private Pages that support channels.
\channels
private Common elements included in all reporting web pages,
\common such as banner and side menu elements.
private Pages that support customization of skins.
\customization
private Self-diagnostic utility page.
\diagnosis
private Pages that support working with files and folders.
\filesfolders
private\jobs Pages that support requests such as completed requests,
successful submission, and details pages by redirecting.
private\mobile Pages that support BIRT Mobile subscriptions.
private Pages that support new requests, such as parameter
\newrequest processing, scheduling, and job status pages.
private\options Options-specific pages, such as channels, notification, and
options update pages.
private Pages that support table parameters.
\parameters
private\sample = Example custom requester page.
private\skins Skins definitions.
private Jakarta Struts template pages that simplify customization by
\templates handling common web page structure and functionality for
many pages.
viewer Pages that support report viewing.

Actuate recommends that you group Information Console applications in the
home directory of an Actuate distribution to make them easier to locate. Place the
context root in whatever location your application requires. To ensure that the JSP
engine locates your Information Console application’s context root, add its
location to your JSP engine’s configuration file as a context root path.

Information Console Developer Guide

Building a custom Information Console context root

Application servers route requests from the user’s browser to the configured
Information Console web content in a context root. A JSP engine specifies the
path for the Information Console context root in a platform-specific configuration
file. For example, the Tomcat engine specifies context roots in the /etc/tomcat
/server.xml file on a UNIX or Linux system and C:\Program Files (x86)\ Apache
Software Foundation\Tomcat 6.0\conf\server.xml file on a Windows system.
Other application servers and servlet engines use an analogous file.

You can configure multiple Actuate Information Console context roots on a single
server. Each context root can contain a web reporting application that uses a
different design. For example, you can create different web reporting applications
for particular language groups or departments. The following example is the
definition for the default Actuate Information Console context root, iportal, from
a Tomcat server.xml file on a Windows system:

<Context
path="/iportal"
docBase="C:\Program Files (x86)\Actuate\iPortal2\iportal"
debug="0"/>

The following example is the definition for the default Actuate Information
Console context root, iportal, from a Tomcat server.xml file on a UNIX-based
system:

<Context
path="/iportal"
docBase="/home/user/iPortal/iportal"
debug="0"/>

Actuate Information Console’s embedded servlet engine uses an automatic
mechanism to discover new web applications. This server provides a quick and
convenient environment in which to test your custom Information Console
application before deploying to your main application server. To test a custom
Information Console application on the embedded servlet engine, you create the
context root directory structure in <Actuate home>\iPortal2, then restart the
Actuate 11 Apache Tomcat for Information Console service and clear your
browser cache.

How to create a new context root

The following example creates a custom web application for MyCorp’s Marketing
Communications group. The Marketing Communications users use the following
URI prefix to access their custom application:

http://MyCorp:8700/marcom

For example, to access the application’s login page, they choose a web page
hyperlink with the following URI:

http://MyCorp:8700/marcom/login.do

Chapter 2, Creating a custom Information Console web application 27

28

1

2

Install Information Console separately. Information Console installed
separately is portable but Information Console embedded in BIRT iHub is not.

Make a copy of the Actuate Information Console directory structure and give
the copy a name related to the context root name.

For example, for the default installation on a Windows machine, copy the
directory C:\Program Files\ Actuate\iPortal2\iportal, paste it into
C:\Program Files\ Actuate\iPortal2 and rename it marcom.

For the default installation on a UNIX-based machine, copy the directory
$HOME /iPortal2/iportal, paste it into SHOME /iPortal2/ and rename it
marcom.

If you are using a server other than Information Console’s embedded servlet
engine, add your definition to the JSP engine’s configuration file. For example,
for Tomcat installed on a Windows machine, add the context root, marcom, to
the <Information Console Directory>\conf\server.xml file as follows:

<Context
path="/marcom"
docBase="C:\Program Files\Actuate\iPortal2\marcom"
debug="0"/>

For Tomcat installed on a UNIX-based machine, add the context root, marcom,
to the <Information Console Directory>/conf/server.xml file as follows:

<Context
path="/marcom"
docBase="/home/user/iPortal2/marcom"
debug="0"/>

Restart the application server or JSP engine. For example, to restart
Information Console’s embedded servlet engine on a Windows XP system,
perform the following steps:

1 From the Windows Start menu, choose All Programs>Administrative
Tools>Services.

2 On Services, select Actuate 11 Apache Tomcat for Information Console
service.

3 From the menu, choose Action>Restart.
4 Close Services.

To restart Information Console’s embedded servlet engine on a UNIX-based
system, perform the following steps:

1 Open a console window.
2 Type the following commands:

sh SHOME/iPortal2/iportal/actuate http service/bin/shutdown.sh
sh SHOME/iPortal2/iportal/actuate http service/bin/startup.sh

Information Console Developer Guide

After you stop and restart the server, the Marketing Communications users can
access the Actuate Information Console web application called marcom. The
application looks like the default Actuate Information Console application
because you have not customized its appearance.

Activating a new or custom web application

To activate the changes you make in the Information Console configuration files,
content pages, or by creating a new context root, you must restart the web server
that runs Information Console and clear the browser cache. For the default
Information Console installation, you restart the Actuate 11 Apache Tomcat for
Information Console service.

How to restart the Actuate 11 Apache Tomcat for Information Console service on a
Windows XP system

1 From the Windows Start menu, choose All Programs>Administrative
Tools>Services.

2 On Services, select Actuate 11 Apache Tomcat for Information Console service.
3 From the menu, choose Action>Restart.

4 Close Services.

How to clear the browser cache for Microsoft Internet Explorer 7

1 Open Microsoft Internet Explorer.

2 Choose Tools>Delete Browsing History

3 On Delete Browsing History, choose Delete All. Then choose Yes.

4

Close Microsoft Internet Explorer.

Configuring a custom Information Console web
application

Information Console’s configuration determines many of its essential methods.
Configuring your web application customizes how it operates internally, and
affects the user’s experience.

Customize specific pages and operations using the Actuate Information Console
web pages, as described in “Customizing an Information Console web
application,” later in this chapter.

Perform cosmetic customization tasks using the Actuate Information Console
skins and style sheets, as described in “Modifying global style elements,” later in
this chapter.

Chapter 2, Creating a custom Information Console web application 29

30

Customizing Information Console configuration

Set configuration parameters for the Information Console application to tune
performance and to control service and application execution. For example, you
can perform the following tasks using configuration parameters:

m Setting the default locale
m Controlling the Message Distribution service load balancing
m Specifying the default Encyclopedia volume and server

You configure the Information Console application by changing configuration file
contents, such as web.xml. To understand the common configuration files and
how each of their entries affect Information Console, see Chapter 3, “Actuate
Information Console configuration.”

The following section describes the customization procedure using the text editor.

How to customize Information Console configuration parameters

Use the following procedure to customize configuration parameters for
Information Console. In this procedure, it is assumed that <context root>
\WEB-INF\web.xml is the configuration file.

1 Make a backup copy of web.xml.

2 Using a text editor that supports UTF-8 encoding, edit web.xml to change
parameter values. Parameter definitions use the following format:

<param-name><keyword></param-name>
<param-value><values>< /param—value>

m <keyword> is the name of the parameter.
m <value> is the parameter value.

Do not enclose the keyword and value within quotes, and use no spaces
between <param-name>, the keyword or value, and </param-name>. For
example, the definition for the default locale parameter is:

<param-name>DEFAULT_LOCALE</param-name>
<param-value>en US</param-valuex>

Save web.xml.

Restart the application server or servlet engine that runs Information Console
and clear your browser cache.

Setting the default locale

The default locale and time zone for Information Console are set when you install
it. To change the default settings, you modify the values of the
DEFAULT_LOCALE and DEFAULT_TIMEZONE configuration parameters.

Information Console Developer Guide

How to set a default Information Console locale and time zone
1 Using a UTF-8 compliant code editor, open the web.xml configuration file.

2 Navigate to the lines that define DEFAULT_LOCALE, similar to the following
code:

<param-name>DEFAULT LOCALE</param-name>
<param-value>en US</param-valuex>

Change the current locale id, en_US in the above example, to the desired locale
id in param-value. Valid locale id strings are listed in <context root>
\WEB-INF\localemap.xml.

3 Navigate to the lines that define DEFAULT_TIMEZONE, similar to the
following code:

<param-name>DEFAULT TIMEZONE</param-names>
<param-value>America/Los_Angeles</param-values

Change the current time zone id, Pacific Standard Time in the above example,
to the desired default time-zone in param-value. Valid time zone id strings are
listed in <context root>\WEB-INF\TimeZones.xml.

Save web.xml.

Restart the application server or servlet engine that runs Information Console
and clear your browser cache.

6 Open the Information Console web application. The login page for the
custom application appears. A login page with default locale set to en_GB,
and the default time zone set to Europe/London, appears as shown in
Figure 2-2.

Language: |English {United Kingdom) j
Time zone: | Europe/Londaon j
Figure 2-2 The login page for the custom application

Controlling the Message Distribution service load balancing

The default load balancing for Information Console are set to when you install it.
To change the default settings, you modify the values of the MDS_ENABLED and
MDS_REFRESH_FREQUENCY_SECONDS configuration parameters.

If you are using third-party load balancing, you will need to refer to their
documentation to configure load balancing. See “Understanding Actuate
Information Console load balancing” in Chapter 1, “Introducing Actuate
Information Console.”

How to enable the Message Distribution service

The Message Distribution service (MDS) is enabled by default. This procedure
assumes it has been disabled.

Chapter 2, Creating a custom Information Console web application 31

Using a UTF-8 compliant code editor, open the web.xml configuration file.

2 Navigate to the lines that define MDS_ENABLED, similar to the following
code:

<param-name>MDS ENABLED</param-name>
<param—value>false</param—value>

Change the current value, if it is false, to true.

3 Navigate to the lines that define MDS_REFRESH_FREQUENCY_SECONDS,
similar to the following code:

<param-name>MDS REFRESH FREQUENCY SECONDS</param-names
<param-value>0</param-value>

Change the current refresh frequency in seconds, 0 in the above example, to
the desired number of seconds so that MDS will attempt to discover new
nodes added to the cluster or remove nodes dropped from the cluster.

Save web.xml.

Restart the application server or servlet engine that runs Information Console
and clear your browser cache.

Specifying the default Encyclopedia volume and server

The default Encyclopedia volume and server is set when you install Information
Console to the local web service and machine name. To use a different
Encyclopedia volume and server by default or hide this information in the URL
using a volume profile name, you add a profile to the VolumeProfiles.xml
configuration file.

How to specify the default Encyclopedia volume and server

1 Using a UTF-8 compliant code editor such as JCreator, open the
VolumeProfile.xml configuration file

2 Navigate to the lines that define the default Profile, similar to the following
code:

<Profile>
<Default>true</Default>
<ProfileNames>LocalMachine</ProfileName>
<RepositoryType>enterprise</RepositoryType>
<ServerUrls>http://LocalMachine:8000</ServerUrl>
<VolumesLocalMachine</Volume>

</Profile>

Navigate to the line that defines Default, and change the value from true to
false.

3 Create a copy of the entire LocalMachine profile immediately below the
LocalMachine profile’s </Profile> tag and before the </VolumeProfiles> tag.

32 Information Console Developer Guide

4 Change the values of your copied profile to the new default Encyclopedia
volume and server, similar to the following code:

<Profile>
<Defaults>true</Defaults>
<ProfileName>NewServer</ProfileName>
<RepositoryType>enterprise</RepositoryType>
<ServerUrls>http://NewServer:8000</ServerUrl>
<VolumesNewServer</Volume>
<DashboardTemplatePath></DashboardTemplatePath>

</Profile>

m The value of Default is true, indicating that the profile is the default server
profile. Set only one profile Default to true in VolumeProfile.xml, the others
must be set to false.

m The value of ProfileName is a unique name for the server profile.

m The value of ServerUrl is the URL for the new iHub service to contact by
default.

m The value of Volume is the name of the Encyclopedia volume to access by
default.

m The value of DashboardTemplatePath is an optional repository path for a
dashboard file that Information Console loads by default when creating
new dashboards.

Save VolumeProfile.xml. Close the code editor.

6 Restart the application server or servlet engine that runs Information Console
and clear your browser cache.

7 Open the Information Console web application. The login page for the custom
application appears. The URL will contain the default volume profile
information in the VolumeProfile parameter, similar to the following:

http://localhost:8900/iportal/login.jsp?
& vp=NewServer&targetPage=/iportal/getfolderitems.do

Modifying text and messages

Actuate Information Console provides text and messages and also passes Actuate
BIRT iHub messages to the user. You can customize both Actuate BIRT iHub and
Actuate Information Console messages and text. Actuate has created the Actuate
Information Console software and resource files in multiple languages. If you
need to change the text and messages to translate your Actuate Information
Console web application to another language, contact Actuate Corporation.

Chapter 2, Creating a custom Information Console web application 33

34

Customizing Information Console text and messages

Actuate Information Console uses text and messages to communicate with the
user. Customize the text of a label to prompt your user with the phrasing that
your application needs by changing configuration files in one or more of the files
in resources jar, located in <context root>\WEB-INF\lib\. For example, the
default title of the landing page displayed in the title bar and tab text of your web
browser is Actuate Information Console, as shown in Figure 2-3.

7 I
@‘-\ L I") http: /localhost 8700 4portal ! j *1 % I Bing P
File Edit View Favorites Tools Help

QFavorites o Actuate Information Con... X | | f:} = E - - o=y - Page - Safety - Tools - '@" ?
Figure 2-3 Default title bar text of the Information Console landing page

To change this title, change the value of the TITLE_LANDING_PAGE parameter
in com\actuate\iportal\common\bundle\messages.properties file compressed
in the <context root>\WEB-INF\lib\com.actuate.resources.jar. By editing
TITLE_LANDING_PAGE, you can customize the marcom web site by replacing
the default title with Marcom Information Console, as shown in Figure 2-4.

@ =
@‘_-\ b I"; hitp: #flocalhost:87 00/marcom.! j SIS I Bing R
File Edit Yiew Favaorites Tools Help

<7 Favorites) Marcom Information Con.. % | | Zhov B -) e v Page - Safety v Tools~ @+ >
Figure 2-4 Custom title bar text of the Information Console landing page

You can find the method of a particular line of text in the Information Console
web application by searching for the relevant message key in the JSPs and
examining the related code. To customize a message in other parts of Information
Console, you edit the appropriate properties file compressed in resources.jar.
Table 2-4 lists the properties files that provide messages and text to particular
Information Console page categories.

Information Console inserts additional text using variables. When customizing
messages and text, keep the original variables in your text or message, if possible.
Variables appear in text and messages in the form {n} where n is a whole number,
beginning with 0.

For example, if a user mlee tries to subscribe to a channel but has no available
channels other than the user’s personal channel, Information Console displays
the MSGT_NO_CHANNELS message and its variable from com\actuate
\activeportal \resources\ ActivePortalResources.properties:

There are no channels available for subscription by {0}.

in the following form:

There are no channels available for subscription by mlee.

Information Console Developer Guide

How to customize Actuate Information Console text and messages on a Windows
system

Use the location of your Information Console installation if it differs from the
location used in this example.

1

Extract the contents of <context root>\WEB-INF\lib\resources.jar into a
temporary directory.

1 Open a command window.
2 Back up your resources file:

cd "C:\Program Files\Actuate\iPortal2\iportal\WEB-INF\1lib"
copy com.actuate.resources.jar
com.actuate.resources.jar.original

3 Extract the resource file’s contents:

mkdir C:\ap

cd C:\ap

jar -xf "C:\Program Files\Actuate\iPortal2\iportal\WEB-INF
\lib\com.actuate.resources.jar"

4 Leave the command window open.

Navigate to com\actuate\activeportal \resources and make a backup copy of
ActivePortalResources.properties:

cd com\actuate\activeportal\resources
copy ActivePortalResources.properties
ActivePortalResourcesOrig.properties

In a text editor that supports UTF-8 encoding, edit C:\ap\com\actuate
\reportcast\resources\ ActivePortalResources.properties to add your custom
error messages in the following format:

<Errorcode>=Example of a message with no variables.
<Errorcode>=Example of a message with a variable {0}.
<Errorcode>=Message with three variables {0}, {1} and {2}.

where <Errorcode> is the Actuate error number or constant of the message
being customized.

Save and close the file.

Rebuild the resources.jar file with your customized
ActivePortalResources.properties file:

cd C:\ap

jar -cf com.actuate.resources.jar *

move resources.jar "C:\Program Files\Actuate\iPortal2
\iportal\WEB-INF\lib\com.actuate.resources.jar"

Chapter 2, Creating a custom Information Console web application 35

36

How to customize Actuate Information Console text and messages on a Linux
system

Use the location of your Information Console installation if it differs from the
location used in this example.

1 Extract the contents of resources.jar into a temporary directory:
1 Back up your resources file:

cd /usr/local/Actuate/iPortal2/iportal /WEB-INF/1lib
cp com.actuate.resources.jar
com.actuate.resources.jar.original

2 Extract the resource file’s contents:

mkdir ap

cd ap

jar -xf /usr/local/Actuate/iPortal2/iportal/WEB-INF/1lib
/com.actuate.resources.jar

2 Navigate to com/actuate/activeportal/resources and make a backup copy of
ActivePortalResources.properties:

cd com/actuate/activeportal/resources
cp ActivePortalResources.properties
ActivePortalResourcesOrig.properties

3 In a text editor that supports UTF-8 encoding, edit ap/com/actuate
/reportcast/resources/ ActivePortalResources.properties to add your custom
error messages in the following format:

<Errorcode>=Example of a message with no variables.
<Errorcode>=Example of a message with a variable {0}.
<Errorcode>=Message with three variables {0}, {1} and {2}.

where <Errorcode> is the Actuate error number or constant of the message
being customized.

Save and close the file.

Rebuild the resources.jar file with your customized
ActivePortalResources.properties file:

jar -cf resources.jar *
mv resources.jar /usr/local/Actuate/iPortal2/iportal
/WEB-INF/lib/com.actuate.resources.jar

Customizing Actuate BIRT iHub error messages

Actuate Information Console uses SOAP messages to communicate with the

Actuate BIRT iHub. You can customize the message text of an Actuate BIRT iHub
error message before Information Console displays it to the user. For example, the
following URL attempts to schedule a job for a report that is not in the repository:

Information Console Developer Guide

http://localhost:8700/iportal/submitjob.do
?requesttype=scheduled&executableName=BadFileName.x

Information Console retrieves an iHub error message, as shown in Figure 2-5.

3072 Cannat find the specified file or folder, or pou do nat have permission to access it : /B adFileh ame.x.
. PARAMETERT=/B adFileMame. x

Figure 2-5 iHub error message for a missing file

To customize a message, you edit ErrorMessages.properties, following the
procedures described later in this section. This file contains customized error
messages. For a full list of all BIRT iHub error messages, see <context root>
\WEB-INF\ ErrorMessages.txt. This file contains the error code, error level, and
the English text of every message. When you customize
ErrorMessages.properties, use the error code for the message from
ErrorMessages.txt.

Information Console inserts context-specific text to an error message using
variables. When changing message text, maintain the original variables in your
new message, if possible. For the best results, follow the format of the original
message exactly to maintain the number and order of the variables. Variables
appear in message text as {n} where n is a whole number, beginning with 0.

For example, the URL for a missing file produces error 3072, and you can change
the entry for error 3072 to something similar to the following:

3072 = {0} is a bad file name or the file does not exist.

Using the erroneous URL above with this custom message results in a new
message, as shown in Figure 2-6.

1 3072: /BadFileMame. is a bad file name o the file does not exist.
L3 PARAMETER1=/BadFieMame.»

Figure 2-6 Custom iHub error message for a missing file

How to customize Actuate BIRT iHub error messages on a Windows system

Use the location of your own Actuate Information Console installation if it differs
from the location used in this example.

1 Extract the contents of <context root>\WEB-INF\lib\resources.jar into a
temporary directory.

1 Open a command window.

Chapter 2, Creating a custom Information Console web application 37

2 Back up your resources file:

cd "C:\Program Files\Actuate\iPortal2\iportal\WEB-INF\1lib"
copy com.actuate.resources.jar
com.actuate.resources.jar.original

3 Extract the resource file’s contents:

mkdir C:\ap

cd C:\ap

jar -xf "C:\Program Files\Actuate\iPortal2
\iportal\WEB-INF\lib\com.actuate.resources.jar"

4 Leave the command window open.

2 Navigate to com\actuate\reportcast\resources and make a backup copy of
ErrorMessages.properties:

cd com\actuate\reportcast\resources
copy ErrorMessages.properties ErrorMessagesOrig.properties

3 In a text editor that supports UTF-8 encoding, edit C:\ap\com\actuate
\reportcast\resources\ ErrorMessages.properties to add your custom error
messages in the following format:

<Errorcode>=Example of a message with no variables.
<Errorcode>=Example of a message with a variable {0}.
<Errorcode>=Message with three variables {0}, {1} and {2}.

where <Errorcode> is the Actuate error number or constant of the message
being customized.

Save and close the file.

Rebuild the resources.jar file with your customized ErrorMessages.properties
file:

jar -cf resources.jar *
move resources.jar "C:\Program Files\Actuate\iPortal2
\iportal\WEB-INF\lib\com.actuate.resources.jar"

How to customize Actuate BIRT iHub error messages on a UNIX or Linux system

Use the location of your Information Console installation if it differs from the
location used in this example.

1 Extract the contents of resources.jar into a temporary directory:
1 Back up your resources file:

cd /usr/local/Actuate/iPortal2/iportal /WEB-INF/1lib
cp com.actuate.resources.jar
com.actuate.resources.jar.original

38 Information Console Developer Guide

2 Extract the resource file’s contents:

mkdir ap
cd ap

jar -xf /usr/local/Actuate/iPortal2/iportal/WEB-INF/lib
/com.actuate.resources.jar

2 Navigate to com/actuate/activeportal /resources and make a backup copy of
ErrorMessages.properties:

cd com/actuate/activeportal/resources
cp ErrorMessages.properties ErrorMessagesOrig.properties

3 In a text editor that supports UTF-8 encoding, edit ap/com/actuate
/reportcast/resources/ErrorMessages.properties to add your custom error
messages in the following format:

<Errorcodes>=Example of a message with no variables.
<Errorcode>=Example of a message with a variable {0}.
<Errorcode>=Message with three variables {0}, {1} and {2}.

where <Errorcode> is the Actuate error number or constant of the message
being customized.

4 Save and close the file.

Rebuild the resources.jar file with your customized ErrorMessages.properties
file:

jar -cf resources.jar *
mv resources.jar /usr/local/Actuate/iPortal2/iportal/WEB-INF
/1lib/com.actuate.resources.jar

Customizing an Information Console web application

To perform most cosmetic customization tasks, use the Actuate Information
Console skin manager. The skin manager supports using skins to change
typically customized images, colors, and fonts in Actuate Information Console
web pages. You also can customize aspects of Information Console that are not
supported by the skin manager by modifying the Information Console files
manually.

Actuate Information Console supports customization of the landing page,
<context root>\landing.jsp, and the appearance of the pages in My Documents,
BIRT Studio, and the interactive viewer for BIRT reports.

Chapter 2, Creating a custom Information Console web application 39

40

You use knowledge of the following standard languages and frameworks to
customize an Information Console web application manually:

Cascading style sheet (.css) files

CSS files define fonts, colors, and other visual design attributes of an
Information Console web application. For information about modifying style
sheets, see “Modifying global style elements,” later in this chapter.

Hypertext markup language (HTML)

HTML handles links and the presentation of text and graphics in web pages.
Information Console incorporates HTML code in its JavaServer pages.

Jakarta Struts Framework

Jakarta Struts Framework is an open source framework for building web
applications. Based on standard technologies, Struts enables the Information
Console Model-View-Controller design. For more information about Struts,
access the following URL:

http://jakarta.apache.org/struts

Java

Information Console uses Java classes to provide functionality. You can create
your own Java classes for your custom web application. For more information
on the Information Console Java classes, see Chapter 8, “Actuate Information
Console JavaBeans.”

JavaScript

JavaScript is an interpreted, object-oriented language that facilitates
embedding executable content in web pages. It provides strong tools for
interacting with web browsers.

JavaServer Pages

The JavaServer Pages (JSP) extension of the Java Servlet API

facilitates the separation of page design from business logic. JSPs are a
platform-independent solution. Information Console web pages are defined
primarily by JSPs. For more information about the Actuate JavaServer Pages,
see Chapter 4, “Actuate Information Console URIs.”

Actuate recommends that you use the skin manager to customize as much as
possible and then handle any remaining customization tasks manually.

Modifying the landing page

To modify the appearance of the landing page, use custom styles as described
later in this chapter. The landing page uses the same cascading style sheets files
as the other Actuate Information Console JSPs. Figure 2-7 shows some of the
classes that define various elements of the landing page. Where possible, modify
these styles by using the customization pages for skins.

Information Console Developer Guide

bannerLogoAre

ACTUATE 1 for: Evaluation

Welcome to Actuate BIRT iHub/Information Console/

aﬁ topBanner

image_title iPortal

Container

Android and iPhone/iPad!

&

Learn more today

& .
Actuate J1C: The integrated
Bl solution built with BIRT
One user experience,
One server. One design.
Learn More »

{
(5” /:a Log in to access folders and view BIRT reports, and more. .,
fa
@ N
J’ { Log In Now
ah‘_x'_f box first
box
BIRT Muobile ActuateOne Other Resources —— 1 box last
Actuate 115P4 supports BIRT mobile for PBIRT Exchange: For all things BIRT content

Suppert forums, DevShare tachnical
articles, sample code, events and more!

b Getting Started
Launch the Acduate Evaluation Guide,

b iHub 2 Information
Learn more about iHub 2

Figure 2-7 Classes used on the default landing page

Use the contents of the <body> element in landing jsp to customize the branding
images, the welcome text in the banner, and the list of links that appears at the left
of the default landing page. The code comments indicate which portion of the
page can be modified. For example, the code after the comment <%-- THE UPPER
SECTION --%> refers to the banner area at the top of the page.

Viewing modifications to a custom web application

After making changes to your Information Console web application, you need to
view the changes. Caching in the browser or your application server can interfere
with seeing the changes you made. After changing an Information Console
application, complete these general tasks in order:

m Save any files involved in the change.
m Refresh the browser page.

m If you do not see changes you made in a JSP or XML file, complete the
following tasks in order:

m Shut down the JSP engine.

m Clear the JSP engine’s cache or work directory to ensure that the JSP engine
picks up your changes. For example, to force Information Console’s
embedded servlet engine to use the changed files, delete all files from
C:\Program Files\ Actuate\iPortal2\work and clear the web browser’s
cache.

Chapter 2, Creating a custom Information Console web application 41

42

m Restart the JSP engine.

m If you do not see changes you made in a cascading style sheet file or a
JavaScript file, clear the web browser’s cache, then refresh the page.

Your changes appear in the web browser.

Locating existing pages and linking in new pages

To locate an existing page, navigate to that page and examine the URI in the
address field of your browser. If the URI contains a JSP name, go to that JSP file. If
the URI contains an action path, search struts-config.xml for that action path
without the .do extension, or look up the action path in Chapter 4, “Actuate
Information Console URIs.”

An action path is a uniform resource identifier (URI) called directly by
Information Console or by a user to access the Information Console functionality.
<context root>\WEB-INF\struts-config.xml contains the action path
specifications.

An action path specifies a JSP to use in response to user controls. An action path
uses the results of an Action class to determine the next action path to use or the
next JSP to display. Typically, an action class indicates one action path or JSP if
the execution succeeds and a different action path or JSP if the execution causes
an error. In the following code sample, if the AcGetFolderltemsAction JavaBean
executes successfully, the next JSP to display is <context root>\iportal
\activePortal \private \filesfolders\filefolderlist.jsp:

<!-- Process getfolderitems -->
<action
attribute="filelListActionForm"
name="fileListActionForm"
path="/getfolderitems"
scope="request"
type="com.actuate.activeportal.actions.AcGetFolderItemsAction"
validate="false">
<forward name="success"
path="/iportal/activePortal/private/filesfolders
/filefolderlist.jsp" />
<forward name="dashboard" path="/dashboard" redirect="true" />
</action>

In the preceding example, the path for an error result is not listed. This means that
it defaults to the definition in the global forwards section of struts-config.xml as a
when an error occurs:

<forward name="error" path="/iportal/activePortal/private/common
/errors/errorpage.jsp"/>

Information Console Developer Guide

To add a forward command that activates when the JavaBean returns another
result, such as viewbirt, you can include a forward for that result to direct it
accordingly, as shown in the following example:

<forward name="viewbirt"
path="/iportal/activePortal/viewer/viewframeset.jsp"
redirect="true" />

To add a new web page to Information Console, you change the navigation in
struts-config.xml to use the new JSP or path. You can change an existing input
page or forward page specification in an action path to your new page, or you can
create a new action path that forwards to your page. If you create a new action
path, you can change another action path to forward to your new path or you can
modify or create links on web pages to specify your new action path. The
following action path always navigates to welcome.jsp when another action path,
link, or URL invokes it:

<!-- Process welcome -->

<action path="/welcome"
forward="/iportal/activePortal/private/welcome.jsp"
name="welcome" >

</actions\

For more information on action paths and Jakarta Struts, go to the following URL:

http://jakarta.apache.org/struts

Obtaining information about the user and the session

Typically, new Actuate Information Console web pages need access to session
information. Your application server and Information Console store information
about the session that you can use in your web pages. Obtain the serverURL,
volume, and other information from your application server using the JSP request
variable, as shown in the following example.

String volume = request.getParameter ("volume") ;
String serverURL = request.getParameter ("serverurl") ;
String userId = request.getParameter ("userid") ;
String thisReport = request.getParameter ("report") ;

You can also obtain the context root path from your application server, as shown
in the following code:

String contextRoot = request.getContextPath() ;

Additionally, Actuate Information Console stores a wide variety of information
about the session in UserInfoBean. To access UserInfoBean, place the following
line of code near the top of your JSP:

<jsp:useBean id="userinfobean"
class="com.actuate.activeportal.beans.UserInfoBean"
scope="session"/>

Chapter 2, Creating a custom Information Console web application 43

44

After this line, you can access information in the JavaBean by the appropriate get
method. The most important method for new pages is the getlportalid() method.
This method retrieves the user’s authentication ID with the server. This ID is
based on the server, volume, and user name supplied on the login page.

To write generic code, you need to determine whether your application is
running. Information Console includes a utility class, iPortalRepository, that
provides this information. To access this class in your JSP, place the following
code at the head of your JSP:

<%@ page
import="com.actuate.iportal.session.iPortalRepository" %>

Then use code similar to the following line to check the repository type:

boolean isEnterprise =
iPortalRepository.REPOSITORY ENCYCLOPEDIA.equalsIgnoreCase (
userinfobean.getRepositoryType ()) ;

Use the authentication ID and the repository type to access the server with JSP
custom Actuate tags and calls to Information Console beans, as shown in the
following examples:

String authenticationID = userinfobean.getIportalid() ;
String folderPath = userinfobean.getCurrentfolder() ;
jobDetailURL += StaticFuncs.encode (userinfobean.getUserid()) ;
com.actuate.reportcast.utils.AcLocale acLocale =
userinfobean.getAcLocale () ;
TimeZone timeZone = userinfobean.getTimezone () ;
boolean isEnterprise =
iPortalRepository.REPOSITORY ENCYCLOPEDIA.equalsIgnoreCase (
userinfobean.getRepositoryType ()) ;
String serverURL =
(isEnterprise | userinfobean.getServerurl() | "");
String userVolume =
(isEnterprise | userinfobean.getVolume() | "");

Customizing accessible files and page structure
using templates

Actuate Information Console uses Jakarta Struts templates to simplify JSP code
and customization. Information Console templates handle overall page
organization, access to Jakarta Struts custom tag libraries, and access to common
CSS and JavaScript files. The login page and landing page do not use a template.
Table 2-4 describes the Information Console templates.

Table 2-4 Actuate Information Console Struts templates

Template Method

dashboardtemplate.jsp Used for BIRT 360 dashboards

Information Console Developer Guide

Table 2-4 Actuate Information Console Struts templates

Template Method

simpletemplate.jsp Used for errors, confirmations, and other simple pages

template.jsp Used by all other pages except the login and landing
pages

Each Actuate Information Console skin has its own version of these templates,
besides the dashboard template, in <context root>\iportal\activePortal\private
\skins\ <skin name>\templates. The set of templates in <context root>\iportal
\activePortal\templates sets up several JavaBeans and then accesses the template
of the same name for the user’s selected skin. The dashboard template is located
in <context root>\dashboard\jsp, along with the dashboard JSP files.

Specifying a template and template elements

To use a template and template elements, a page uses the Jakarta Struts custom
template tags, described in Table 2-5.

Table 2-5 Struts template tags

Template tag Method

template:insert Specifies the template to use

template:put Specifies the text or file to use for a template element
such as the name, banner, side menu, or content
elements

The custom template tags define the JSPs to use for the template and the custom
elements that the template specifies to build the user interface. For example, the
template:insert tag in the following code applies querytemplate.jsp settings to the
page. The first template:put tag accesses the localized string for the title of the
page. The remaining template:put tags specify that the template use banner and
content elements using the files specified in each tag.

The following tables show JSPs affected by template changes. Table 2-6 lists the
Information Console templates and the pages that use them.

Table 2-6 Templates for JSPs
Template JSPs in iportal\activePortal \ private
simpletemplate.jsp common\errors\errorpage.jsp

customization\fileupload.jsp
newrequest\newrequest2.jsp

(continues)

Chapter 2, Creating a custom Information Console web application 45

46

Table 2-6 Templates for JSPs (continued)

Template JSPs in iportal\activePortal \ private

template.jsp channels\channellist.jsp
channels\channelnoticelist.jsp
channels\channeloperationstatus.jsp
channels\channelsubscribe.jsp
customization\skinedit.jsp
customization\skinmanager.jsp
filesfolders\createfolder.jsp
filesfolders\deletefilestatus.jsp
filesfolders\filedetail.jsp
filesfolders\filefolderlist.jsp
filesfolders\privilege.jsp
filesfolders\search\filefolderlist.jsp
jobs\getjobdetails.jsp
jobs\joboperationstatus.jsp
jobs\selectjobs.jsp
newrequest\submitjobstatus.jsp
options\options.jsp

About the dashboard template

The JSPs in <context root>\dashboard\jsp define the dashboard interface for the
Actuate BIRT 360 option. The dashboard template applies to the banner and
content when the dashboard is visible as defined by dashboard.jsp, as follows:

<template:insert template="/dashboard/jsp/dashboardtemplate.jsp">

<template:put name="title" direct="true">
<bean:message bundle="iportalResources" key="MSGT BROWSER"

arg0="<%= pageTitle %>" />
</template:put>
<template:put name="banner" content="<%= bannerUrl %>" />
<template:put name="content" content="/dashboard/jsp/
dashboardcontent.jsp" />

</template:insert>

The contents of a separate page or pages displayed on a dashboard use templates
defined by that page’s code, but the surrounding interface elements adhere to the
dashboard template.

Changing a template

Make changes to all pages that use a particular template by changing only the
template. You can add or remove lines in the template that make cascading style
sheets, JavaScript files, and other resources accessible to all pages that use the
template. Customize the overall structure of all pages that use a template by

Information Console Developer Guide

moving, resizing, or removing the HTML, JSP, and Jakarta Struts code describing
the layout of the web pages that use the template.

For example, the innerTable of <context root>\iportal\activePortal\private
\skins\treeview \templates\template.jsp specifies various HTML commands
and embedded Jakarta Struts tags that populate the content frame. The inner
banner with the breadcrumb is in the top row. The second row contains the
content page.

<table class="innerTable" border="0" cellspacing="0"
cellpadding="0">

<% if (!"false".equalsIgnoreCase (showBreadCrumb)) { %>

<tr>
<td class="allBreadcrumbs">
<jsp:include page="<%= breadcrumb %>" flush="true" >
<jsp:param name="fromDashboard" value="<%= fromDashboard %>" />
<jsp:param name="showBanner" value="<%= showBanner %>" />
<jsp:param name="showSideBar" value="<%= showSideBar %>" />

°

<jsp:param name="showBreadCrumb" value="<%= showBreadCrumb %>"
/>
</jsp:include>
</td>

</tr>

<% } %>

<tr>
<td class="fileFolderListContent" valign="top">
<divs>
<template:get name="content" flush="true"/>
</div>
</td>

</tr>

</table>

The breadcrumb, or navigation trail, is a link or set of links. On a document page,
the breadcrumb displays the repository and any folders and pages you access.
Use any of these items as a link to return to that level. For a jobs or channels page,
the breadcrumb supports direct access to a document page.

To implement the expandable tree, a frameset in <context root>\iportal
\activePortal\ private\skins\treeview \templates\template.jsp specifies the
sidebar and content frames using HTML and embedded Jakarta Struts tags that
define the content.

<FRAMESET cols="20%,80%" border="1"
onload="if (typeof (bodyOnload) != 'undefined') bodyOnload() ;">
<FRAME src="<html:rewrite page="<%= sidebar %>"/>"
name="<%$=htmlSideFrameName%>"

id="<%=htmlSideFrameId%>"

Chapter 2, Creating a custom Information Console web application 47

48

scrolling="auto"
/>
<FRAME src="<html:rewrite href="<%= contentURL %>" />"
name="main" scrolling="auto"
/>
</FRAMESET>

Modifying existing content or creating new content

You can modify the content of an existing page or create new pages for linking in
to your custom web application. Typically, a web page has one JSP that
implements a template and another JSP to implements the content to display
according to the template’s structure. For example, the following code specifies
that the template’s content element on a web page uses the JSP code in

<context root>\iportal\activePortal \ private \newrequest \newrequestpage.jsp:

<template:put name="content" content="/iportal/activePortal
/private/newrequest/newrequestpage.jsp" />

The content JSP contains the code that creates the page-specific content and
functionality. The newrequestpag.jsp contains code that places page-specific text,
graphics, links, and other functionality on the page. You can use HTML code, JSP
code, JSP built-in tags, Jakarta Struts tags, Actuate servlets, Actuate custom tags,
Actuate JavaBeans, CSS, and JavaScript methods to obtain data and present
information on the page. For information about how to use these features, see
“Customizing an Information Console web application,” later in this chapter.

The default Actuate Information Console pages use HTML tables to provide
formatting for each page. The tables are often nested. Individual files include
other files that define elements, such as the <TABLE> declaration. As you modify
the pages to suit your needs, verify that the Actuate Information Console pages
for tasks, such as logging in, listing folders and files, and viewing and requesting
reports appear correctly in your web browser.

When using relative hyperlinks in your HTML code, ensure that any files to
which you refer are available to Actuate Information Console. Information
Console resolves relative hyperlinks from the context root. For example, in the
standard Information Console installation, the following code refers to an images
directory at the same level as the Information Console context root directory:

All Actuate Information Console requests require action paths to have certain
names. Similarly, the action paths require JSP files to have certain names and to
reside in a particular directory under the context root. Do not rename the default
files provided with Information Console without making the corresponding
change to struts-config.xml. If you do not change the file name consistently in all
places, Information Console cannot locate your custom files.

Information Console Developer Guide

Modifying global style elements

Although JSPs can use HTML to set colors, fonts, and other stylistic elements
directly, the JSPs also use cascading style sheets (CSS), templates, and shared
images to control the global styles of an Information Console web application. To
modify the appearance of the entire Information Console web application, change
global style elements.

Global styles can change more than the appearance of Actuate Information
Console. For example, to view search results with HKSCS characters in an
English locale, change the .searchresultlink style’s font from Arial to
MingLiU_HKSCS. This style change only affects the search results.

Customizing Actuate Information Console using skins

Actuate Information Console skins support customizing the Actuate Information
Console colors, fonts, and images in the graphical user interface (GUI) for the
pages in My Documents, BIRT Studio, and the interactive viewer for BIRT
reports. A skin consists of images, cascading style sheets, JavaScript, and template
files used to define the GUI. Actuate Information Console installs with three
skins. Only users with the Administrator functionality level can customize skins.

Using skins

To select a different Information Console skin, a user chooses Options, then
selects a name from the Skin drop-down list, as shown in Figure 2-8.

& =
-
General My Dashboard | Notification
Home -
folder: fHome/fadministrator
E-mail I
address:
Skin: |Tree Yiew Skin j
=R Tabbed Skin
Enable Tree Yiew Skin
f”ters: T OTSPTay FICET TOT TTTaTITETS, COCOTITETTCS T T JOTT.
Document A .
viewing: ™ Open in new browser window -
-
Done l_l_l_l_l_l_lﬁ Local intranet: | Protected Mode: OFf ’q_'l H100% v g
Figure 2-8 Default skins choices

Actuate Information Console provides three default skins:

m Use the Classic skin to view Documents, My Jobs, and Channels as buttons in
the side menu, as shown in Figure 2-9.

Chapter 2, Creating a custom Information Console web application 49

=7 ACTUATE. User: administrator | Licensed for: Evaluation ®e@ E

My Documents » o &dld Cortert Elzave
Documents vl 3
Lmf 7 ~
My Jobs
Channels urup = Home > administrator w

Mobile Subscriptions

e Folder Add File Filter: Qn | OfF View: ICategories 'I

Documents You Can ¥iew

1 Examples wersion 1 1/28/2013 10:46 AM 3.28 KB v

Figure 2-9 Classic skin

m Use the Tabbed skin to view Documents, My Jobs, and Channels as tabs on the
banner at the top of the page, as shown in Figure 2-10.

7 ACTUATE. User: administrator | Licensed for: Evaluation ® @ E
My Documents v iy | &kl Cortert Bsave
Documents My Jobs Channels Mobile Subscriptions {ml 2 =

urup = Home > administrator w

ate Falder Add File Filter: On | OFf Wiew: Icategor\es -

Documents You Can Yiew

i Examples Version 1 1/28/2013 10:46 AM 3.28 KB v

Figure 2-10 Tabbed skin

m Use the Treeview skin to view Documents, My Jobs, and Channels in the side
menu as a hierarchical view. The folders view starts from the root folder of an
Encyclopedia volume. This hierarchical view is similar to that of Windows
Explorer, as shown in Figure 2-11, and is the default skin. The Treeview skin
does not support placement in an iFrame.

0
User: administrator | Licensed for: Evaluation @ @ E

My Documents + &5 iy | Al Content Elsave
Surup
E-% Docurments
1 Dashboard

= administrator
1 Public

Add File

Filter: On | OFf View: | Categories vl

[Resaurces Documents You Can Yiew
My Jobs e Examples Version 1 1/28/2013 10:46 AM 3,28 KB r
" channels

- B\ Mobile Subscriptions

Figure 2-11 Treeview skin

50 Information Console Developer Guide

Managing skins using the skin manager

Users with the Administrator functionality level manage skins for all users. The
skin manager controls skins and their settings. To access the skin manager, choose
Customization on the Information Console banner as shown in Figure 2-12.

My Documents 5) &kl Contert Esave
é-__-éurup ¢ Customizatior Customization
#5 Documents
=My Jobs 1] Rename
A Channels B copy drministrator w
Figure 2-12 Information Console banner showing Customization menu option
The default skin manager looks like the one in Figure 2-13.
Ekins = Manager
Name Description Default Public
classic Classic Skin o~ I Clone Preview
tabbed Tabbed Skin o~ I Clone Preview
treeview Tree View Skin & = Clone Preview
Figure 2-13 Skin manager showing the default skins

Table 2-7 describes the features of the skin manager.

Table 2-7 Skin manager functionality

Feature Description

Clone Adds a copy of the skin to the table as private.

Customize Displays the Skin—Customize page to allow customizing for
that skin. The skins shipped by default with Actuate
Information Console cannot be customized.

Default Selects the skin used for new users by default without affecting
existing users. Setting a skin to Default makes it public and
disables its Public check box.

Delete Deletes the skin after confirmation. Skins shipped with Actuate
Information Console and the default skin cannot be deleted. To
delete the current default skin, first choose another skin as the
default.

Preview Applies the skin immediately. When the current session times
out, the skin reverts back to the user’s original skin. The user’s
current skin is shown in bold text.

Public Makes the skin available for all users by adding the skin to the

list on the Options page. If a public skin becomes private, users
using the skin revert to the default skin. The default skin is
always public.

Chapter 2, Creating a custom Information Console web application

51

52

Customizing and cloning skins

Actuate Information Console ships with three standard skins. You cannot
customize the standard skins. You can customize any skin clone, or copy, you
create. The skins that Information Console provides may be modified during an
upgrade, but any skin you create is preserved during upgrades. To customize any
of the three standard skins, clone the skin to create a copy, and then customize the
clone. When cloning a skin, select the skin that is closest to the required
appearance. Perform additional customizations to a cloned skin at any time.

Table 2-8 lists the GUI components of cloned skins that you can customize.

Table 2-8 Customizable components of skins

Item Customizable components

Colors Banner, footer, side menu, tabbed dialogs, pop-up menus,
viewer, templates

Fonts Multiple font families in order of preference

General Skin description that appears on the Options page

Images Banner logo, My Folder icon, volume icon, open and closed

folder icons

The skin description appears on the Options page to identify the skin to users.

Colors are grouped into categories according to the GUI area they affect. Table 2-9
lists ways to specify colors.

Table 2-9 Techniques for specifying colors

Specification Description

Color code Type a standard HTML color or hexadecimal RGB value.
Red Green Blue Type individual RGB values, from 0 to 255.

Pick a color Select from a palette of available colors.

To customize images for a skin, upload GIF or JPEG files to Actuate Information
Console to replace the existing images. Images are grouped in categories by their
GUI component. The categories and the images that you can replace depend
upon the type of skin. For example, more images are available to customize in a
skin based on the Treeview than a skin based on the Classic skin. Icon images
must be consistent in size with the images they replace. Most icons supplied with
Actuate Information Console are either 32x32 or 16x16 pixels.

After making changes to a skin, use the preview functionality to view different
Actuate Information Console pages to show the skin’s current appearance. By
checking multiple pages, you identify the areas that need modification.

Information Console Developer Guide

How to clone a skin
Use the following procedure to create a new skin, based on an existing skin.

1 Log in to the documents web pages as an administrator-level user. Choose
Customization.

2 In the skin manager, choose Clone on an existing skin, as indicated in
Figure 2-14.

Skins = Manager | Clone
Name Description Default Public

classic Classic skin o = Clone Preview

tabbed Tabbed Skin « = Clone Preview

treeview Tree View Skin = Clone Preview

Figure 2-14 Clone functionality for a skin

3 At the prompt, type a name for the new skin. Choose OK. The new skin
appears in the list of available skins, as shown in Figure 2-15. Do not select
Public or Default until you have finished the skin development.

Skins = Manager

Name Description Default Public

classic Classic skin « I Clone Preview
tabbed Tabbed skin o I Clone Ereview
treeview Tree Yiew Skin @ 17 Clone Preview
Clone of treeview Clone of treeview € r Customize Clone Delete Preview

Figure 2-15 The skin manager showing a cloned skin
How to customize a skin

The following procedure customizes the skin created in “How to clone a skin,”
earlier in this chapter.

1 In the skin manager, on the skin to change, choose Preview, as indicated in

Figure 2-16. The appearance of Actuate Information Console pages changes to
match the selected skin.

Skins = Manager

Name Description Default Public

classic Classic Skin [1”3 Clone Preview

tabbed Tahbed Skin « 1”3 Clone Preview

treeview Tree View Skin @ = Clone Preview

Clone of treeview Clone of treeview € r Customize Clone Delete Preview——— Preview

Figure 2-16 Preview functionality for a skin

Chapter 2, Creating a custom Information Console web application 53

54

2 On the skin to change, choose Customize, as indicated in Figure 2-17.

Customize

Skins = Manager
Name Description Default Public
classic Classic skin [~ Cloye Praview
tabbed Tahbad Skin o ~ Clone Preview
treeview Tree Wiew Skin @ = Clone Preview
Clone of treeview Clone of treeview r Customize Clone Delete Preview
Figure 2-17 Customize functionality for a cloned skin

3 On Skins—Customize—General, change the skin description to a unique
value that conveys meaning to your users, as shown in Figure 2-18.

skins = Customnize: Clone of treeview

General Images Colors

Skin Mame: Clone of treeview

Fonts

Description: |C0mpany Standard

Figure 2-18

General pane for skin customization

4 Select Images. The Images pane appears, as shown in Figure 2-19. Choose a
category name to see the images in that category.

General Images Colors

Fonts

Asterisk (*) items will take effect only if their corresponding items are not set in "Colors”
tah.

Cptions

Top banner background *

Top banner divider background *

Inner banner middle background *

Name Preview

General

Banner

Logo a Upload File..
Blue Logo a ACTUATE. Upload File..

Upload File...

Upload File..

Upload File...

Uplaad File. ..

Figure 2-19

Images pane for skin customization

Information Console Developer Guide

5 Select Colors. The Colors pane appears, as shown in Figure 2-20. The
categories shown depend upon the type of skin. Choose a category name to
toggle between showing and hiding the list of colors in that category.

Skins = Customize: Clone of treeview

General Images Colors Fonts
Name Color Code Red Green Blue
General
Landing and Login pages background *I [u] i} ful Pick Color...
Body background IWhitE! 255 |255 |255
. Text Color Iblack [a] a Lu]
Panel background color I#DADADA 218 |218 |218 Pick Caolor. ..
Listing content background color I#EBEBEB 232 |23z |232
Listing content highlight color Iwhite 255 |255 [255
Panel barder color I#bSbZQC 181 [178 [156
Breadcrumbs background color Iwhite 255 |255 |255 Pick Color...

Figure 2-20
Select Fonts. The Fonts pane appears, as shown in Figure 2-21. On Name,

Colors pane for skin customization

select General. Font Family appears. Specify one or more font families to use.

Actuate Information Console uses the first font in the list found on the
machine where Actuate Information Console is deployed.

Skins > Custornize: Clone of treeview
General | Images | Colors Fonts
Name Preview Font family in order of preference
General
Font Family Sample Text |VerdanaJ Arial, Helvetica, sans-serif
Figure 2-21 Fonts pane for skin customization
Choose OK.

To make the new skin available to all users, on the Skins—Manager page,
select Public for your new skin.

To make the skin the default skin for all users, select Default. Figure 2-22
shows a custom skin, Clone of classic, based on the Classic skin.

Chapter 2, Creating a custom Information Console web application

55

56

Examp_lel:a!p User: administrator | Licensed for: Evaluation | == @ @ &
My Documents v i) Add Cortert Elsave
Surup
B - Documents I 7 -y
-- Dashboard
Horme Skins » Manager
A administreat
minsTraten Name Description Default Public
; Public
153 Resources classic Classic Skin [I Clone Preview
o jihy Jobs tabbed Tabbed Skin [I Clone Preview
- Ncharnels Tree Visw Sk s P ¢l p
Treeview ree Yiew Skin v ohe heview
- Syiobile Subscriptions
done of treevi done of +r [= Customize Clone Preview

Figure 2-22 An example of a custom skin

Understanding style definition files

Additional style definitions for each provided skin come from <context root>
\iportal\activePortal\ private\skins\ <skin name>\css\skinstyles.css. Add more
styles to this file if you want the style definitions to take effect for only a

particular skin. Information Console’s JSPs typically link these styles in the
following order:

m <context root>\css\allstyles.css

<LINK href="<html:rewrite page="/css/allstyles.css"/>"
type="text/css" rel="stylesheet">

m <context root>\iportal\activePortal \ private\skins\ <skin name>\css
\skinstyles.css

<LINK

href="<ap:skinResource resource="/css/skinstyles.css" />"
type="text/css" rel="stylesheet" >

m Style specifications from the customization web pages

<STYLE>
<bean:write

name="userinfobean" property="skinConfig.cssCode" />
</STYLE>

If a style is defined in more than one of these files, the JSP engine uses the
definition in the last file that contains the style. Thus the settings you specify in
the customization web pages override any other CSS files.

allstyles.css contains additional style definitions for the Actuate Information
Console application. Modify allstyles.css to change any style definitions that are
not handled within the customization web pages or the <context root>\iportal

Information Console Developer Guide

\activePortal\private\skins\ <skinname>\css\skinstyles.css file. Changes to a
style in allstyles.css affects all Information Console skins except the parameters
page unless the customization web pages or a skin’s skinstyles.css file override it.
To customize the parameter component, modify the style definitions in the
<context root>\css\parameter.css file.

How to test and modify styles depending on the browser type

1 Near the top of your JSP, link in the allstyles.css style sheet:

<LINK href="<html:rewrite page="/css/allstyles.css"/>"
type="text/css" rel="stylesheet" >

2 After this line, link in the style sheet located in the current skin’s css directory:

<LINK href="<ap:skinResource resource="/css/skinstyles.css" />"
type="text/css" rel="stylesheet" >

3 Use the Jakarta Struts bean:write custom tag to generate and include style
definitions for styles defined using the skin customization pages:

<STYLE>
<bean:write
name="userinfobean" property="skinConfig.cssCode" />
</STYLE>

4 If the skin customization styles contain any settings that do not work in a
specific browser, you can override them individually.

Specifying colors and fonts

Specify fonts and colors for styles in the customization web pages or in the
cascading style sheets. Specify colors using the following methods:

m Using a color name such as navy, yellow, or teal, as shown in the following
example:

color: Yellow;

m Using hexadecimal notation to set the amount of red, green, and blue to use in
the color.

#FFFFOO

m Using decimal notation to set the amount of red, green, and blue to use in the
color. In the customization web pages, fill in the value for red, green, and blue
in the corresponding fields. In a CSS file, use a call to the rgb() method, as
shown in the following example:

color: rgb (156, 207, 255);

How to change the font style of a single item

To change Actuate Information Console pages to display the user, system name,
and volume in 12-point italic Comic Sans MS font:

Chapter 2, Creating a custom Information Console web application 57

58

In a text editor, open <context root>\css\allstyles.css.
2 Locate the following string:
bannerTextArea

There are two instances of the string bannerTextArea. The first is part of the
definition for all the banner styles. This definition sets the banner styles’
common attributes. The second instance sets the attributes for bannerTextArea
only and looks like the following text:

.bannerTextArea
color: white;
font-size: 10pt;
text-align: left;
white-space: nowrap;

}

3 Modify the code that follows the bannerTextArea definition to change the font
as shown in the following code:

.bannerTextArea
color: white;
font-family: Comic Sans MS;
font-size: 1lpt;
font-style: italic;
text-align: left;
white-space: nowrap;

}
Save and close the CSS file.

Refresh your web browser to view the changes. Figure 2-23 shows the new
appearance of the banner.

|
'C,:‘ ACTUATE. LUser: administrator | [r: Evaluation | ER @ @ E

Figure 2-23 Appearance of customized Information Console banner

Customizing page styles for BIRT Studio

To customize BIRT Studio pages, use the files in <context root>\iportal
\bizRD\styles. This directory includes the following customizable CSS files:

m accordion.css defines styles for the report design area of the page, which
displays the Available Data, Report Template Items, and other selectable tree
views.

m dialog.css defines styles for dialog boxes that have shared characteristics,
including the dialog boxes for template selection, file browsing, calculations,
parameters, and so on.

Information Console Developer Guide

m dialogbase.css defines the style of dialog containers, such as the button style,
the Close icon style, and so on.

m title.css defines styles for the title bar of BIRT Studio pages.

m toolbar.css defines styles for the toolbar.

m wrcontextmenu.css defines the styles for BIRT Studio context menus.
Another file in this directory, webreporting.css, is not customizable.

For more information about using cascading style sheets, access the following
URL:

http://www.w3.0org/Style/CSS/

Modifying graphic images

Information Console pages use images for the company logo in the banners, on
the side menu, and for the background. Some pages use additional images that
are related to their content. You can also add new images on pages.

Certain images are most easily changed by customizing a skin. You can customize
the company logo and the My Folder icon for all skins. In addition, you can
customize the open and closed folder icons and volume icon for a skin that is
cloned from the Treeview skin. These and all other images that you can customize
reside in <context root>\iportal\activePortal\ private\skins\ <skin name>
\images. Update these images by using the skin customization pages to use new
graphic files instead of changing the supplied graphic files. Customizing the
images described in Table 2-10 affects most Information Console web pages.

Table 2-10 Images in Information Console skins

Skins Default image file Description

All logo.gif The company logo to use in the banners
All homefoldericon.gif The image to use beside the My Folder link

Treeview closedfoldericon.gif The image to use to indicate a unexpanded
folder in the hierarchical view of the volume
and folders

Treeview foldericon.gif The image to use to indicate an expanded
folder in the hierarchical view of the volume
and folders

Treeview volume_icon.gif The image to use to indicate a volume in the
hierarchical view of the volume and folders

An additional image of interest is <context root>\iportal\activePortal \private
\skins\ <skin name>\images\background.gif. The Classic skin and its clones use
this image to provide the background for every page. This image is one pixel high

Chapter 2, Creating a custom Information Console web application 59

60

and 1280 pixels long, and is copied as necessary to fill the page. Change the
contents of this image file to modify the background of a Classic skin clone.

All other images reside in <context root>\iportal\activePortal\images. This set
of images provides the features on the side menu in the Classic skin and the tree
in the Treeview skin. Update these feature images by changing the corresponding
feature definition in the \iporta \WEB-INF\ functionality-level.config file.

Other images are referenced by hard-coded path and file names in JSP and
JavaScript files, such as the icons in <context root>\iportal\activePortal\ private
\filesfolders\views\categories.jsp. For example, categories.jsp specifies the
location and filename, <context root>\iportal\activePortal \images
\detailicon.gif, a magnifying glass icon that is used to obtain more details about a
document or other item in a list. When you change the location or replace an
image with a new file, you must update the JavaScript and JSP files that use them.
Alternatively, make a backup copy of the original image and then reuse the
original name for your new image. By reusing the original name, you do not need
to make any changes in the JSP and JavaScript files using the image.

Information Console Developer Guide

Two

Actuate Information Console reference

Actuate Information
Console configuration

This chapter contains the following topics:

m About Information Console configuration

m Configuring the Information Console web application
m Configuring the connection to iHub

m Configuring the BIRT Viewer and Interactive Viewer
m Configuring BIRT Studio

m Configuring BIRT Data Analyzer

Chapter 3, Actuate Information Console configuration

63

About Information Console configuration

The Information Console application is configured using files in the context root’s
WEB-INF directory. For example, the web.xml configuration file for your context
root is located:

<context roots>\WEB-INF\web.xml

Table 3-1 lists the configuration files discussed in this chapter.

Table 3-1 Information Console configuration files

File Features Description

erni_config.xml BIRT Studio Configures BIRT Studio
functionality

functionality-level.config Information Configures the Information Console

Console user interface by iHub security roles

iv_config.xml BIRT Viewer Configures BIRT Viewer user
interface

localemap.xml All Configures languages and locales

TimeZones.xml All Configures time zones

volumeProfile.xml All Consolidates iHub volume

connection information into a single
handle, hiding iHub volume details
in a URL

web.xml All Configures features of Information
Console including security,
networking, caching, labeling and
storage

Configuring the Information Console web application

64

Information Console provides the ability to organize, run, and view reports. You
configure the user interface, logging, and caching for Information Console using
web.xml.

Configuring Information Console using web.xml

Web.xml contains parameters that control Information Console features. Table 3-2
describes the configuration parameters for the Information Console application.

Information Console Developer Guide

Table 3-2 Actuate Information Console web.xml parameters

Parameter name

Description

BIRT360PLUS_URL

BIRT_RENDER _
FORMAT_EMITTER _
ID_MAPPING

CACHE_CONTROL

URL for the BIRT 360 plus web resources required for performance
analytics gadgets, available in the gadget gallery.

Specifies which emitter will be used for a specific BIRT report. Valid
entries are of the format "render_format:emitter_ID" separated by a
semicolon. The default value is:

html:org.eclipse.birt.report.engine.emitter.html;xhtml:com.
actuate.birt.report.engine.emitter.xhtml;pdf:org.eclipse.birt.report.
engine.emitter.pdf;postscript:org.eclipse.birt.report.engine.emitter.
postscript;xls:com.actuate.birt.report.engine.emitter.xls;ppt:org.
eclipse.birt.report.engine.emitter.ppt;pptx:com.actuate.birt.report.
engine.emitter.pptx;doc:org.eclipse.birt.report.engine.emitter.
word;docx:com.actuate.birt.report.engine.emitter.docx

Specifies how a web browser caches information using one of the
following values:

m NO-CACHE indicates that the browser does not cache
information and forwards all requests to the server. With
NO-CACHE, the back and forward buttons in a browser do not
always produce expected results, because choosing these
buttons always reloads the page from the server.

If multiple users access Information Console from the same
machine, they can view the same cached data. Setting
CACHE_CONTROL to NO-CACHE prevents different users
viewing data cached by the browser.

m NO-STORE indicates that information is cached but not
archived.

m PRIVATE indicates that the information is for a single user and
that only a private cache can cache this information. A proxy
server does not cache a page with this setting.

m PUBLIC indicates that information may be cached, even if it
would normally be non-cacheable or cacheable only within an
unshared cache.

m Unset (no value) is the default value. The browser uses its own
default setting when there is no CACHE_CONTROL value.

Caching information reduces the number of server requests that the
browser must make and the frequency of expired page messages.
Caching increases security risks because of the availability of
information in the cache. For additional information about cache
control, see the HTTP /1.1 specifications.

(continues)

Chapter 3, Actuate Information Console configuration 65

Table 3-2 Actuate Information Console web.xml parameters (continued)

Parameter name

Description

CONNECTION_
TIMEOUT

COOKIE_DOMAIN

COOKIE_ENABLED

COOKIE_SECURE

DEFAULT_LOCALE

DEFAULT_PAGE_
BREAK_INTERVAL

DEFAULT_TIMEZONE

MOBILE_APP_
DOWNLOAD

ENABLE_CLIENT_
SIDE_REDIRECT

ENABLE_DEBUG_
LOGGING

Controls how many seconds Actuate Information Console waits for
a request to complete before dropping the connection to the
application server or Actuate BIRT iHub. Set this value to limit wait
times. The default value is 0, meaning the connection is never
dropped.

Specifies the host name of the server setting the cookie. The cookie
is only sent to hosts in the specified domain of that host. The value
must be the same domain the client accesses. Information Console
automatically sets this parameter. For example, if the client accesses
http:/ /www.actuate.com/iportal /login.do, the domain name is
actuate.com.

Indicates whether to use cookies to store information between user
logins. The default value is True. If False, Information Console does
not use cookies. Without cookies, many Information Console
features are unavailable or do not persist across sessions. For
example, without cookies, user name, language, and time zone
settings always use their default values when a new browser
session begins.

Indicates whether to access and write cookies securely. If true,
cookies are only written if a secure connection, such as HTTPS, is
established. The default value is false, which enables cookies for all
connection types.

Specifies the default locale. Information Console sets this parameter
value during installation. The locale map is <context root>
\WEB-INF\localemap.xml.

Specifies the number of rows to display in one page when viewing
areport. If set to 0, there are no page breaks.

Specifies the default time zone. Information Console sets this
parameter value during installation. The time zone map is
<context root>\WEB-INF\TimeZones.xml.

The URL target of the download button displayed by Information
Console when viewed in mobile/touch device.

Specifies whether URL redirection is done on the client side or the
server side. Set the value to True for client side redirection. The
default value is False. For more information about URL redirection,
see “Using proxy servers with Actuate Information Console” in
Chapter 1, “Introducing Actuate Information Console.”

Indicates whether to record debugging messages in a log file called
Debug.log. Set the value to True to enable debug messages in the
log file. The default value is False.

66 Information Console Developer Guide

Table 3-2

Actuate Information Console web.xml parameters (continued)

Parameter name

Description

ENABLE_ERROR_
LOGGING

ENABLE_JUL_LOG

ERROR_LOG_FILE_
ROLLOVER

EXECUTE_DASH
BOARD_GADGET_
GENERATION_WAIT_
TIME

EXECUTE_REPORT_
WAIT_TIME

FILES_DEFAULT_
VIEW

FORCED_GC_
INTERVAL

GADGET_
GENERATION_
WAITING_TIME

Indicates whether to log errors. This parameter’s default value is
True, which enables error logging. If you set this parameter to True,
Information Console creates two error log files:

m Admin.log records general errors.
m Soapfault.log records iHub communication errors.

Indicates whether to log Information Console activity. This
parameter’s default value is TRUE, which enables logging. If you
set this parameter to TRUE, Information Console creates log files
named reportService.<Service number>.<System name>
.<Information Console start up time stamp>.<File number>.log.

Specifies the time period to wait before starting a new log file.
Options are Daily, Monthly, Weekly, and Yearly. The default value is
Monthly.

Specifies the time to wait, in seconds, for a gadget to generate when
running a dashboard design file. This parameter’s default value is
2 seconds.

Specifies the time to wait, in seconds, for a report to execute. This
parameter’s default value is 20 seconds. For more information
about the wait time parameter, see “execute report page” in
Chapter 4, “Actuate Information Console URIs.”

Specifies the default view for the files and folders list using one of
the following values:

m Categories, the default, displays files organized in rows by type.
m Detail displays files organized in rows by name.

m List displays files organized in columns with small icons.

m Icon displays files organized in columns with large icons.

Indicates the length in seconds of the interval that the Information
Console application waits between forced garbage collections. To
disable garbage collection, set this parameter to 0, the default value.
Use this parameter to tune application server performance.

600 seconds is the recommended value. If the value is too low, the
application server performs garbage collection too frequently,
slowing the system. If the value is too high, you waste memory. If
disabled, the application server controls garbage collection.

Specifies the time to wait, in seconds, for an individual gadget to
generate. This parameter’s default value is 10 seconds.

(continues)

Chapter 3, Actuate Information Console configuration 67

Table 3-2

Actuate Information Console web.xml parameters (continued)

Parameter name

Description

IDAPI_TIMEOUT

INSTALL_MODE

JUL_LOG_CONSOLE_
LEVEL

JUL_LOG_FILE_
COUNT

JUL_LOG_FILE_
LEVEL

JUL_LOG_FILE_SIZE_
KB

LOG_FILE_
LOCATION

LOGIN_TIMEOUT

MAX_BACKUP_
ERROR_LOGS

MAX_LIST_SIZE

PRELOAD_ENGINE _
LIST

Specifies the number of seconds to wait for a SOAP message
response. This value must be larger than the maximum time
necessary to run a report design or Information Console generates a
time-out error for some reports. Its default value is 7200.

Indicates whether Information Console is installed with iHub. The
value is set when Actuate Information Console is installed. Do not
change this setting.

The level of Information Console activity to log to the console.
Valid values are OFF, SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, in order of the number of messages to log. The
default value is OFFE.

Specifies the number of log files for a particular time stamp, if the
value of ENABLE_JUL_LOG is TRUE.

The level of Information Console activity to log in a file. Valid
values are OFF, SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, in order of the number of messages to log. The
default value is WARNING.

The maximum size, in kilobytes, for an Information Console
activity log file. When a log file reaches this size, Information
Console creates a new log file and increments its file number. If the
log file number reaches the value of JUL_LOG_FILE_COUNT,
Information Console resets the file number to zero and overwrites
the first log file for the time stamp.

Indicates which directory contains the log files. If the value is not
an absolute directory path name, Actuate Information Console
locates the directory in the Information Console home directory.
The default value is logs in the Information Console home
directory.

Specifies the number of seconds to wait before a session times out.
The minimum login time-out is 300 seconds. The maximum value
is equivalent to java.lang.Long. Its default value is 1200 seconds.

Specifies the maximum number of backup error log files to keep.
The default value is 10.

Limits the number of items returned when getting folder items,
jobs, job notices, scheduled jobs, and channels to reduce network
traffic. The default value is 150.

List of engines to load when Information Console starts. Valid

values are birt and ess. Default value is “birt, ess” which indicates
both.

68 Information Console Developer Guide

Table 3-2

Actuate Information Console web.xml parameters (continued)

Parameter name

Description

PROGRESSIVE_
REFRESH

PROGRESSIVE _
VIEWING_ENABLED

PROXY_BASEURL

SECURITY_
ADAPTER_CLASS

SESSION_DEFAULT_
PARAMETER _
VALUE_ID

sessionTimeout

TRANSIENT_STORE_
MAX_SIZE_KB

TRANSIENT_STORE _
PATH

TRANSIENT_STORE_
TIMEOUT_MIN

UPLOAD_FILE_TYPE_

LIST

UPLOAD_SECURITY_
MANAGER

Controls the interval in seconds at which an Actuate report
refreshes itself when running a progressive report. The report
refreshes first after 15 seconds, then after 60 seconds, and then after
the PROGRESSIVE_REFRESH interval. If the value is less than 60,
Actuate Information Console uses 60 seconds. This parameter’s
default value is 1800 seconds.

Specifies whether a paginated report starts to display in the
browser as soon as the first page has been generated. Valid values
are true and false. The default value is true.

Indicates a proxy server’s URL if the network uses one between
Information Console and the client. The default value is blank,
which indicates that the network does not use a proxy server.

Specifies the fully qualified class of the security adapter, which
must extend com.actuate.iportal.security.iPortalSecurity Adapter,
that controls access to Actuate Information Console functionality.
The default value is no name.

Specifies the name of the object that stores the HTTP session-level
report parameters. This object is an instance of the
com.actuate.parameter.SessionLevelParameter class, which is
extensible. The default value is SessionDefaultParameterValue.

The number of milliseconds the Information Console Ajax Proxy
maintains an idle session. The default value is 5000.

Limits the amount of disk space that Actuate Information Console
uses for temporary files. The default value is 102400, which is
100 MB.

Path to Actuate Information Console transient files. The default
value is set when Information Console is installed. When deploying
more than one context root or separate server, set a unique path for
each.

Specifies, in minutes, how long to retain Actuate Information
Console transient files. The default value is 40, which is 40 minutes.

Specifies the valid file types, by extension, for upload with
Information Console. The default value is blank, which indicates
any file type.

Specifies the fully qualified class of the security adapter, which
must extend com.actuate.iportal.security.lUploadSecurity Adapter,

that controls access to the upload functionality. The default value is
no name.

Chapter 3, Actuate Information Console configuration 69

70

Configuring Information Console using
volumeProfile.xml

Information Console uses a volume profile to access a specific iHub instance and
Encyclopedia volume. Because the volume profile conceals the iHub and
Encyclopedia volume values from the users of Information Console, the system
administrator can change the location of these resources without affecting the
URLSs accessed by the users. To access iHub resources using a volume profile, add
a _vp=ProfileName parameter to the URL.

Customize volume profiles by creating or modifying entries in the following file:
<context roots>\WEB-INF\volumeProfile.xml
For example, the following is a volume profile definition for the serverl server:

<VolumeProfiles>
<Profile>
<Default>true</Defaults>
<ProfileNamesserverl</ProfileNames>
<RepositoryType>enterprise</RepositoryType>
<ServerUrls>http://serverl:8000</ServerUrl>
<Volumes>volumel</Volumes>
<DashboardTemplatePath></DashboardTemplatePath>
</Profile>
</VolumeProfiles>

m <ProfileName> is the name of this profile.
m <RepositoryType> has one of two values, either enterprise or workgroup.

m <ServerUrl> contains the iHub URL, for example, http:/ /server1:8000. If
RepositoryType is workgroup, ServerUrl is ignored.

m <volume> is the volume name. If RepositoryType is workgroup, volume is
ignored.

m <Default> is optional. Valid values are true and false. A value of true sets this
profile as the default volume profile, and the server and volume in this profile
is used if no volume profile is provided in the URL. Information Console
handles only the first profile with default set to true as the default profile.

m <DashboardTemplatePath> is optional. This repository path is the location of
the dashboard file that loads when a user creates a new dashboards.

To make a new profile available to Information Console, add a new <Profile>
element to the list in <VolumeProfiles> in volumeProfile.xml. Then, restart
Information Console. For example, the following profile accesses the volume2
volume on the server2 server:

Information Console Developer Guide

<Profile>
<Default>false</Defaults>
<ProfileName>server2</ProfileName>
<RepositoryType>enterprise</RepositoryType>
<ServerUrls>http://server2:8000</ServerUrl>
<Volumes>volume2</Volumes>
<DashboardTemplatePath></DashboardTemplatePath>

</Profile>

Using a volume profile defined in volumeProfile.xml

Information Console connects to the server and volume defined by the default
volume profile entry when the URL does not include the __vp parameter or the
volume parameter. For example, to connect to the default volume and server, use
the following URL:

http://infoconsole:8900/iportal/getfolderitems.do?userid=userName
&password=validPassword

Information Console connects to the server and volume defined by a volume
profile when the URL contains a __vp parameter with a valid profile name and
the URL does not have a volume parameter. For example, to connect to volume2
on server2 defined by the volume profile example above, use the following URL:

http://infoconsole:8900/iportal/getfolderitems.do?userid=userName
&password=validPassword& vp=server2

Overriding the volume specified in a volume profile

Information Console supports using a volume profile to access an Encyclopedia
volume even if the volume is not specified in a volume profile definition. To
override the volume specified by a volume profile, add the volume parameter to
the URL. A URL with a valid __vp parameter and volume parameter connects to
the server in the volume profile, but the volume assigned to the volume
parameter. For example, to connect to volume3 on server2 explicitly, use the
following URL:

http://infoconsole:8900/iportal/getfolderitems.do?userid=userName
&password=validPassword& vp=server2&volume=volume3

If the URL contains a volume parameter but not a __vp parameter, Information
Console connects to the server in the default volume profile and the volume
assigned to the volume parameter. For example, to connect to volume3 on the
default server, use the following URL:

http://infoconsole:8900/getfolderitems.do?userid=userName
&password=validPassword&volume=volume3

Chapter 3, Actuate Information Console configuration 71

72

Understanding temporary volume profiles

If a request URL contains serverurl, repositorytype, or volume parameters not
defined in volumeProfile.xml, Information Console generates a temporary profile
name for this set of volume properties. A temporary name is not persistent and is
lost every time the application restarts. If the request URL does not contain
serverurl, volume, and repositorytype parameters, Information Console uses the
default profile for the request URL. If there is no default profile defined,
Information Console generates a temporary server profile having a random name
and uses SERVER_DEFAULT, DEFAULT_VOLUME, and REPOSITORY_TYPE
defined in WEB-INF/web.xml as the default values for serverurl, volume, and
repositorytype.

Configuring Information Console functionality levels
with functionality-level.config

A functionality level defines which Information Console user interface features
are visible and usable by members of an Encyclopedia volume security role or
roles. By default, every uses can access all functionality levels. Functionality
levels corresponding to iHub security roles like Intermediate, Advanced, and
Administrator, are provided in the comments of the functionality-level.config file.
For example, by default every functionality level shows Log out, Options, and
Help links on the Information Console banner.

The Intermediate and Advanced levels add a Search link to the documents page
and the capability to add tabs, and the Administrator level adds a Customization
link, as shown in Figure 3-1.

All levels

) All levels
except Basic i
[[
strator Licensed for: Evaluation | B @ @ E‘

Administrator level
only

My Documents {ry | vl Cortert Esave
] '5@ Cuskarnization
=urup
E Documents 24 \
Dashhoard 1 Rename
Figure 3-1 The banner appearance for a user at the Administrator

functionality level

Actuate Information Console provides five functionality levels by default. Four
functionality definitions specify a corresponding Encyclopedia volume security
role that provides access to that functionality level. Table 3-3 shows the
functionality levels and their corresponding security roles. The Administrator
level is the Information Console Administrator, not the Encyclopedia volume
administrator.

Information Console Developer Guide

Table 3-3 Information Console default functionality levels and the
corresponding Encyclopedia volume security roles

Functionality level Security role

Basic All (The All role includes all users.)
Intermediate Active Portal Intermediate
Advanced Active Portal Advanced
Administrator Active Portal Administrator

Customize a functionality level by creating or modifying entries in the following
file:

<context root>\WEB-INF\functionality-level.config

When modifying the configuration file, ensure that functionality levels in the
configuration file specify a corresponding security role to enable access to that
functionality level. You can modify the built-in levels but you cannot delete them.

The following example shows the definition of the Basic functionality level:

<Level>
<Name>Basic</Name>
<Role>All</Role>
<FeatureID>Jobs</FeaturelID>
<FeatureID>Documents</FeatureID>
<FeatureID>Channels</FeatureID>
<SubfeatureID>DeleteFile</SubfeaturelID>
<SubfeaturelID>InteractiveViewing</SubfeaturelID>
</Levels>

Every functionality level entry in the configuration file must have the five
components shown in the following sections.

Name
Use a unique alphanumeric string for the functionality level name, enclosed
within the <Name> and </Name> tags, such as <Name>Intermediate</Name>.

Role

The Role component defines the name of the Encyclopedia volume security role
that corresponds to the functionality level. Both the security role and the
functionality level must exist before you can assign the functionality level to a
user. Enclose the security role name within <Role> and </Role> tags, such as
<Role>Active Portal Intermediate</Role>.

Features
There are five features, which are described in Table 3-4.

Chapter 3, Actuate Information Console configuration 73

74

Table 3-4 Features of functionality levels

Feature Description

Channels Provides access to channels
Customization Provides access to skin customization
Documents Provides access to files and folders

Jobs Supports submitting and accessing jobs
Mobile Provides access to BIRT mobile viewing
Search Provides access to file and folder search

Enclose the feature within <FeaturelD> and </FeaturelD> tags. When you omit a
feature from a functionality level, the corresponding side menu or banner item is
not visible to anyone using that functionality level. For example, the Search
feature is not available to the Basic functionality level, so the Search link does not
appear in the banner for a user at the Basic functionality level.

Feature IDs

Functionality-level.config defines the features that are available to Information
Console users as well as functionality levels. The following example shows the
Documents feature definition from functionality-level.config:

<Feature>
<ID>Documents</ID><Labelkey>SBAR DOCUMENTS</Labelkey><Link>
/getfolderitems.do</Link>
<SmallIcons>/iportal/activePortal/images/
filesfoldersiconléxl6.gif
</SmallIcon>
<LargeIcons>/iportal/activePortal/images/filesfoldersicon.gif
</Largelcon>

</Features>

The ID identifies the feature for Information Console. The label key appears on
the side menu for Documents, Jobs, and Channels, or in the banner for Search and
Customization. The link specifies the action that is executed for the feature. The
small and large icons represent the feature in the side menu. Only the side menu
features use the small and large icons.

Although you can customize the labels and links of all five features, do not
change the <ID> or <Labelkey> tag values. Information Console uses these tags
to identify the features and perform resource management. The Labelkey
provides the resource to use for the feature’s text label.

Changing the Link tag’s value specifies a different action to execute. Changing
the icon files changes the side menu’s appearance. The small icons are used by the
Treeview skin and are 16x16 pixels. The large icons are used by the Classic skin
and are 32x32 pixels. The Tabbed skin does not use icons. Link and icon file
names are relative to <context root>.

Information Console Developer Guide

Subfeatures

A subfeature corresponds to an action you can perform using the Information
Console user interface. A user must have appropriate privileges to create, delete,
or share files or folders. Table 3-5 describes the subfeatures.

Table 3-5 Subfeatures of the features described in Table 3-4
Feature Subfeature Supported functionality
Channels SubscribeChannel Subscribing to channels.
Documents AddFile Uploading files.
Documents CreateFolder Creating folders.
Documents DeleteFile Deleting files.
Documents DeleteFolder Deleting folders.
Documents ~ DownloadFile Downloading files.
Documents ShareFile Sharing files.
Jobs JobPriority Setting job priority, up to the user’s maximum job
priority.
Jobs SelfNotification E-mail notification for successful jobs.
WithAttachment
None InteractiveViewing Using BIRT Interactive Viewer.
None AdvancedData Used in BIRT Studio.
None DashboardBusiness ~ Viewing and editing dashboards and gadgets.
User
None DashboardDeveloper Creating and configuring gadgets and dashboards.
None ShareDashboard Sharing dashboards. Requires either

DashboardBusinessUser or DashboardDeveloper.

Specify one subfeature to a line and enclose each subfeature within
<SubfeaturelD> and </SubfeaturelD> tags. Each subfeature is associated with a
feature. You cannot include a subfeature in a functionality level if its
corresponding feature is not available to that functionality level.

Configuring Information Console locales

<context root>\WEB-INF\localemap.xml contains the locales available to
Information Console. Add locales to this file using the same format as the existing
locales. To see each locale in the file, search for one of the following strings:

<Locale
or:

<DisplayName>

Chapter 3, Actuate Information Console configuration 75

76

Searching for <Locale places the cursor on the line having the ID for the locale.
Searching for <DisplayName> places the cursor on the line having the descriptive
name for the locale.

Typically, the locale names have the following syntax:
<language> <country>

For example, ar_EG is Arabic (Egypt). A language spoken in multiple countries
has multiple locale names for which the language code is the same and the
country code has several values. For example, en_US is the locale for English
(United States), en_AU is the locale for English (Australia), and en_BZ is the
locale for English (Belize). Some countries have several locales, one for each
language. For example, Canada has both en_CA for English (Canada) and fr_ CA
for French (Canada). You specify a default locale for a custom web application in
<context root>\WEB-INF\web.xml.

Configuring Information Console time zones

<context root>\WEB-INF\TimeZones.xml contains the time zones available to
Information Console. Add time zones to this file by using the same format as the
existing time zones. To see each time zone in the file, search for one of the
following strings:

<TimeZone
or:
<DisplayName>

Searching for <TimeZone places the cursor on the line having the ID for the time
zone. Searching for <DisplayName> places the cursor on the line having the
descriptive name for the time zone.

Some time zone names have short abbreviations for the ID. All time zone names
have a full descriptive ID, such as Samoa Standard Time or Greenwich Standard
Time. The DisplayName provides the relative time from Greenwich Standard
Time and one or more locations that the time zone includes. You specify a default
time zone for a custom web application in <context root>\WEB-INF\web.xml.

Customizing messages and text according to locale

Error messages and text for Information Console are encoded in resource files
compressed in the <context root>/WEB-INF/lib/resources jar file. The
properties files contain entries for the interface text and error codes Information
Console generates.

For reference, the <context root>/WEB-INF/ErrorMessage.txt file lists the default
error codes used by Information Console. The \com\actuate\reportcast
\resources\ErrorMessages.properties file within the resources.jar archive
contains error messages for the default locale. Information Console uses messages

Information Console Developer Guide

from this file if no locale-specific message for the error exists. Not all of the codes
exist in the default ErrorMessages.properties because iHub directly generates
many of them in the SOAP messages sent to Information Console.

Override iHub and Information Console messages using a locale-specific error
messages file. In addition to the default ErrorMessages.properties file,
Information Console provides several localized error message files, such as
ErrorMessages_de_DE.properties. This file contains the German language
messages for the Germany locale. To specify error messages to a certain locale,
modify the existing error message file for that locale or create a new file for the
locale. By convention, the format of a locale-specific error message file name
includes the language and locale codes at the end of the file name separated by
underscore characters.

For example:

ErrorMessages_de DE.properties

m deis the language code for German.

m DE is the Germany country code.

These values for language and locale codes are defined in localemap.xml.

Because alphabets for different languages are dissimilar and Information Console
uses ASCII encoding for these files, you must convert new or edited files into
ASCII format. To convert the files to ASCII, modify the properties file using an
editor that saves to the UTF-8 format and convert the file to ASCII using the Java
native2ascii utility using the -encoding UTF-8 switch. The native2ascii utility
installs with any Java Developer Kit in the <JDK home>/bin directory. Model the
format of new messages after those in the ErrorMessage.properties file.

When your modifications are complete, recompress the resources.jar archive
using the Java jar utility, retaining the original directory structure for the archive.
Copy the new resources jar file to the <context root>/WEB-INF/lib directory,
restart the Actuate 11 Apache Tomcat for Information Console service, and log in
using the locale for the modified messages file. Confirm that the new messages
tile was loaded by examining the error messages generated by Information
Console using that specific locale.

Error messages appear in pop-up windows when an error is encountered. The
window is an operating system window, not an HTML frame. If you use a
language-specific version of Windows corresponding to the locale you are
viewing, the localized message shows up correctly. If you have not loaded the
Windows language pack for a language, the text of a message appears as empty
squares instead of text.

Chapter 3, Actuate Information Console configuration 77

78

Configuring Shindig 2.0 for a WAR or EAR deployment

To enable shindig 2.0 support for a deployable Information Console’s WAR or
EAR file, modify the host name, port, and context root in the following
configuration files:

<context roots>/WEB-INF/web.xml

<context root>/WEB-INF/classes/shindig.properties

<context root>/WEB-INF/classes/containers/default/container.js
In web.xml, update the following parameters:

<param-name>system.properties</param-names
<param-value>
shindig.host=<host name>
shindig.port=<port>
</param-value>

m <host name> is the name of the web server hosting the Information Console
web application.

m <port>is the TCP port assigned to the Information Console web application.
In shindig.config, update the following parameter:

shindig.signing.global-callback-url=http://<host names>:<ports>/
<context>/gadgets/oauthcallback

m <host name> is the name of the web server hosting the Information Console
web application.

m <port>is the TCP port assigned to the Information Console web application.
m <context> is the context root of the Information Console web application.

In container.js update the following parameters:

"gadgets.jsUriTemplate" : "http://%host%/<context>/gadgets/js/
%jss"

"gadgets.oauthGadgetCallbackTemplate" : "//%host%/<context>/
gadgets/oauthcallback™"

"gadgets.osDataUri" : "http://%host%/<context>/social/rpc"

"proxyUrl" : "//%host%/<context>/gadgets/
proxy?refresh=%refresh%&url=%urls",

"jsonProxyUrl" : "//%$host%/<context>/gadgets/makeRequest"

"path" : "http://%host%/<context>/social"

"endPoints" : ["http://%host%/<context>/social/rpc", "http://

$host%/<context>/gadgets/api/rpc"]

<context> is the context root of the Information Console web application.

Information Console Developer Guide

Configuring the connection to iHub

Information Console provides the ability to connect to iHub, an Encyclopedia
volume, and manage reports on remote systems. Configure the repository,
network, and Message Distribution service for Information Console using
parameters in web.xml. These parameters control Information Console’s
connection to iHub and the Encyclopedia volume. Table 3-6 describes the
configuration parameters for networking with iHub.

Table 3-6

iHub connection web.xml parameters

Parameter name

Description

AUTO_SAVE_
DASHBOARD_DELAY

DASHBOARD_SHARED_
RESOURCES

MAX_CONNECTIONS_
PER_SERVER

MDS_ENABLED

MDS_REFRESH _
FREQUENCY_SECONDS

REPOSITORY_CACHE_
TIMEOUT_SEC

Controls how long, in seconds, the dashboard engine should
wait before sending a save message to persist the personal
dashboard file. To disable auto save, set this value to 0.

Specifies the path for the shared dashboard and gadget
resources on the Encyclopedia volume. The gadget gallery
displays the contents of this folder under the shared folder and
is the default location when sharing dashboards.

Indicates the maximum number of Actuate Information
Console connections to Actuate BIRT iHub. Actuate pools
connections to increase efficiency. Choose a number of
connections that satisfies the most requests concurrently
without requiring an unreasonable amount of memory. Begin
with a value equal to the number of threads available in your
application server. The value for this parameter must be greater
than 0. The default value is 150.

Indicates whether to enable the Message Distribution service.
The default value is True, which enables the Message
Distribution service. For more information about the Message
Distribution service, see “Understanding Actuate Information
Console load balancing” in Chapter 1, “Introducing Actuate
Information Console.”

Indicates, in seconds, how quickly Actuate Information
Console detects an offline or new node in a cluster. If
MDS_ENABLED is True, Information Console refreshes the list
of available nodes from Actuate BIRT iHub at the time interval
specified. The default value is 300 seconds.

Specifies how long a repository cache remains valid. When the
cache becomes invalid, any user actions refresh the cache for
the time-out duration. The default value is 900 seconds.

(continues)

Chapter 3, Actuate Information Console configuration 79

Table 3-6

iHub connection web.xml parameters (continued)

Parameter name Description
TEMP_FOLDER_ Specifies the directory Information Console uses to temporarily
LOCATION store files from an Encyclopedia volume if viewing the file

requires a location on the web server. If the value is not an
absolute directory path name, Actuate Information Console
locates the directory in the Information Console home
directory. The default value is temp in the Information Console
home directory. The Information Console user must have write
permission for the directory. When deploying more than one
context root or separate server, set a unique path for each.

VOLUME_PROFILE_ Path to the volume profile configuration file from the context

LOCATION

root. Default value is /WEB-INF/VolumeProfile.xml.

Configuring the BIRT Viewer and Interactive Viewer

The BIRT Viewer provides the ability to view a BIRT report. The Interactive
Viewer supports modifying many aspects of the report’s layout and formatting.
These viewers are available in Information Console with the appropriate licensed
iHub system option. They are also available as Java Components. Parameters in
web.xml configure these viewers. For information on those configuration
parameters, see Working with Actuate BIRT Viewers.

Configuring BIRT Studio

BIRT Studio is a report design tool that you use to design BIRT reports. This
designer is available in Information Console with the appropriate licensed iHub
system option. It is also available as a Java Component. Parameters in web.xml
configure it. For information on those configuration parameters, see Using BIRT
Studio - iHub Edition.

Configuring BIRT Data Analyzer

BIRT Data Analyzer extends the functionality of BIRT Interactive Viewer to
perform analytics on a cross tab. You can configure performance enhancements
for Data Analyzer in web.xml. For information on those configuration
parameters, see Using BIRT Data Analyzer.

80 Information Console Developer Guide

Actuate Information
Console URIs

This chapter contains the following topics:

Actuate Information Console URIs overview
Actuate Information Console URIs quick reference
Common URI parameters

Information Console Struts actions

Actuate Information Console URIs reference

Actuate BIRT Viewer URIs reference

Chapter 4, Actuate Information Console URIs

81

Actuate Information Console URIs overview
This chapter describes Actuate Information Console URIs. Information Console
JSPs manage content. The following sections provide quick reference tables and
detailed reference information about Actuate Information Console URIs. An
Actuate Information Console URI is a directive to Actuate Information Console to
perform an action, such as showing a list of files.
Information Console pages use the .do extension for Struts action mapping to a
page. The complete page name appears as part of the reference material. Actuate
Information Console page and folder names are case-sensitive.
Information Console supports two viewers, which have specific URLs associated
with them. The detailed reference material for Information Console and the
viewers is divided into the following categories:
m Actuate Information Console URIs reference
m Actuate BIRT Viewer URIs reference
Actuate Information Console URIs quick reference
Table 4-1 lists the Actuate Information Console URIs. For more information about
the Information Console directory structure, see “Understanding Information
Console directory structure” in Chapter 2, “Creating a custom Information
Console web application.”
Table 4-1 Actuate Information Console URI pages
Actuate Information
Console page Description
about page Displays information about Actuate Information Console.
banner page Displays a banner at the top of each Actuate Information Console
page.
browse file page Provides file and folder browsing functionality for the submit request
pages.
browse page See browse file page.
calendar page Provides calendar functionality for submit request’s scheduling
feature.
canceljob page See request drop page.
channels page Displays the channels property sheet.
completed request Lists all completed requests.
page

82 Information Console Developer Guide

Table 4-1

Actuate Information Console URI pages (continued)

Actuate Information
Console page

Description

create folder page
delete file status page
dashboard page
delete job page
delete status page
detail page
do_update page

drop page

error page

execute report page

general options page

getfiledetails page
getfolderitems page
getjobdetails page

home page
list page

login banner page
login page
logout page

notification page
options page

output page
page not found page

parameters page

pending page

Creates a folder.

Displays whether a file was successfully deleted.
Provides the dashboard interface.

Deletes a scheduled job.

Deletes the completed job notice.

Supports error handling and presenting object details.
See options page.

Supports deleting files or canceling running jobs.

Retrieves an error message from the exception or the request and
displays it.
Submits a run report job request to the server.

Displays the general user settings and environment settings property
sheet.

See file or folder detail page.
See file and folder index page.
See request detail page.

Provides the link from the My Folder button to the Actuate
Information Console home page.

Supports listing channels, channel contents, and Encyclopedia
objects.

Provides the banner for the Actuate Information Console login page.
Logs into the reporting web application.

Logs the user out of the current session and clears all user settings,
such as filters.

Supports specifying the current user’s request notification options.
Updates options and user settings. See also options index page.

Presents a form to specify output information for report jobs, such as
report object name and location.

Displays an error message when a JSP is unavailable in Information
Console.

Presents a list of the request parameters.
Lists all requests awaiting execution.

(continues)

Chapter 4, Actuate Information Console URIs 83

Table 4-1 Actuate Information Console URI pages (continued)

Actuate Information
Console page

Description

ping page
privileges page
privileges page
running page

schedule page

scheduled job page
search folders page
selectjobs page
submit job page

viewer page for BIRT
reports

Diagnostics for Actuate BIRT iHub System components.
Prints report documents in PDF format.

Sets file and folder privileges.

Lists all requests currently executing.

Presents a form for specifying scheduled report job request
properties, such as date, time, recurring request, and immediate
report job run.

Lists all requests awaiting execution at specified dates and times.
Searches folders recursively for files and folders.

See requests index page.

Submits a scheduled job request to the server.

Displays BIRT documents and the toolbar.

Common URI parameters

All Actuate Information Console URIs have the parameters shown in Table 4-2.
String values that are too long are truncated for all parameters. The web browser
that you use determines the length of parameters. The common URI parameters
support Actuate Information Console authentication using cookies.

Table 4-2 Common Actuate Information Console URI parameters
URI parameter Description
forceLogin True to force a login, False to display the login page. The default is

iPortallD

locale

False. For example, when switching between Encyclopedia volumes
and using an Information Console security manager class, set
forceLogin=true to force the Information Console Login module to
call the security manager to perform the login operation. The login
operation is described in Chapter 9, “Using Actuate Information
Console security.”

The unique authentication ID assigned to the user upon successful
login. Use this parameter in conjunction with the userID parameter to
ensure that a user’s personalized settings appear in the Information
Console pages.

The current user’s locale, such as U.S. English (en-US).

84 Information Console Developer Guide

Table 4-2 Common Actuate Information Console URI parameters
URI parameter Description
password The password associated with the userID.
serverURL The URI that accesses the Actuate BIRT iHub, such as
http:/ /Services:8000.
timezone The current user’s time zone.
userID The user’s unique identifier, required to log in to the repository. Use
this parameter in conjunction with the iPortallD parameter to ensure
that a user’s personalized settings appear in the Information Console
pages.
volume The volume to which the user connects. This parameter overrides the
volume from the __vp parameter if they are used together.
_Vp The name of a server configured in VolumeProfile.xml. Information

Console uses the volume information in a VolumeProfile entry except
when a volume parameter specifies a different one.

The following Information Console URI shows most of the common URI
parameters in use:

http://localhost:8700/iportal/dashboard?folder=/Training
&volume=Encyc2&locale=en AU&userID=Mike&password=pwl23
&serverURL=http://serverl:8000&timeZone=Australia/Perth

This URI lists the contents of the Training folder in the Encyc2 Encyclopedia
volume on the Actuate BIRT iHub named server1 at port 8000. The locale is set to
Australian English and the time zone is Australia/Perth (GMT plus eight hours).
The user is Mike and the password is pw123. The password is shown in plain
text, as entered.

If the server and volume information for serverl above is configured as a Volume
Profile, you can use a simplified URL as shown in the following lines:

http://localhost:8700/iportal/dashboard?folder=/Training
& vp=serverl&locale=en AU&userID=Mike&password=pwl23
&timeZone=Australia/Perth

Information Console Struts actions

The following tables summarizes the global forwards and actions defined in
struts-config.xml.

Table 4-3 lists the global forwards defined in struts-config.xml.

Chapter 4, Actuate Information Console URIs 85

Table 4-3

Actuate Information Console global forwards

Action Forward

authexpired /login.do

browsefile /browsefile.do

canceljob /canceljob.do

da /da

dashboard /dashboard

deletefile / deletefile.do

deletejob / deletejob.do

deletejobnotice / deletejobnotice.do
deletejobschedule / deletejobschedule.do
downloadfile /servlet/DownloadFile

error /private/common/errors/errorpage.jsp
erroportlet /private/common/errors/errorportlet.jsp
executedocument /executedocument.do
executereport /executereport.do

getjobdetails / getjobdetails.do
getrequesterjobdetails /getrequesterjobdetails.do
getsavedsearch /viewer/getsavedsearch.do

goto /private/common/goto.jsp

iv /iv

login /login.do

logout /logout.do

requestercanceljob /requestercanceljob.do
requesterdeletejob /requesterdeletejob.do
requesterdeletejob /requesterdeletejobshedule.do
schedule

skinerror /private/common/errors/error.jsp
viewframeset /viewer/viewframeset.jsp
viewpage /servlet/ViewPage

wr /wr

Information Console Developer Guide

Table 4-4 lists the action, input JSP, and forward name and path defined in

struts-config.xml.

Table 4-4 Actuate Information Console actions
Action Input JSP Forward name path
/browsefile /iportal/activePortal name=success
/private/newrequest path=/iportal/activePortal /private
/browse.jsp /newrequest/browse.jsp

/browseportletfile /iportal/portlets
/browsefile jsp

/canceljob

/cancelreport

/createfolder

/customize

name=browseFile
path=/iportal/activePortal /private
/common/browseFile.jsp

name=success
path=/iportal/portlets /browsefile.jsp

name=success
path=/iportal/activePortal /private
/jobs/joboperationstatus.jsp

name=5Succeeded
path=/iportal/activePortal /viewer
/ closewindow.jsp

name=Failed
path=/iportal/activePortal /viewer
/ closewindow.jsp?status=failed

name=InActive
path=/iportal/activePortal /viewer
/ closewindow.jsp?status=inactive

name=success
path=/getfolderitems.do
name=cancel

path=/getfolderitems.do

name=showform
path=/iportal/activePortal /private
/filesfolders/ createfolder.jsp

name=success
path=/iportal/activePortal /private
/customization/skinmanager.jsp
name=downloadwar
path=/servlet/CacheDownload

(continues)

Chapter 4, Actuate Information Console URIs 87

Table 4-4 Actuate Information Console actions (continued)

Action

Input JSP

Forward name path

/deletefile

/ deletejob

/ deletejobnotice

/ deletejobschedule

/editTableRow

/executedocument

/executereport

/filefoldersprivilege

/ getfiledetails

88 Information Console Developer Guide

/iportal/activePortal
/private/parameters
/table/roweditor.jsp

/private/newrequest
/newrequest.jsp

/iportal/activePortal
/private/filesfolders
/privilege.jsp

name=success
path=/iportal/activePortal /private
/filesfolders/deletefilestatus.jsp

name=error
path=/iportal/activePortal /private
/filesfolders/deletefilestatus.jsp

name=confirm
path=/iportal/activePortal /private
/filesfolders/confirm.jsp

name=success
path=/iportal/activePortal /private
/jobs/joboperationstatus.jsp

name=success
path=/iportal/activePortal /private
/jobs/joboperationstatus.jsp

name=success
path=/iportal/activePortal / private
/jobs/joboperationstatus.jsp

name=close
path=/iportal/activePortal /private
/parameters/table/close.jsp

name=tableRowEditor
path=/iportal/activePortal /private
/parameters/table/roweditor.jsp

name=success
path=/executereport.do

name=viewbirt

path=/iv

name=viewreport
path=/servlet/DownloadFile

name=wait
path=/iportal/activePortal /private
/newrequest/waitforexecution.jsp

name=success
path=/getfolderitems.do

name=success
path=/iportal/activePortal / private
/filesfolders/filedetail jsp

Table 4-4 Actuate Information Console actions (continued)

Action Input JSP

Forward name path

/ getfolderitems

/ getjobdetails

/ getnoticejobdetails

/ getportletfolder
items

/ getrequesterjob
details

/iPortalLogin /iportal/login.jsp

/iv /iportal/activePortal
/private/newrequest
/newrequest.jsp

/login /iportal/activePortal
/private/login.jsp

name=success
path=/iportal/activePortal /private
/filesfolders/filefolderlist.jsp

name=dashboard
path=/dashboard

name=success
path=/iportal/activePortal /private
/jobs/ getjobdetails.jsp

name=success
path=/iportal/activePortal /private
/jobs/ getjobdetails.jsp
name=success

path=/iportal/portlets/filefolderlist
/filefolderlistportlet.jsp

name=success
path=/iportal/activePortal /private
/jobs/ getrequesterjobdetails.jsp
name=landing
path=/landing.jsp
name=iPortalLoginForm
path=/login jsp

name=iv

path=/iv

name=viewbirt

path=/iv

name=loginform
path=/iportal/activePortal /private
/login.jsp

name=success
path=/getfolderitems.do
name=dashboard
path=/dashboard
name=ajclogin
path=/ajclanding.jsp
name=landing
path=/landing.jsp

(continues)

Chapter 4, Actuate Information Console URIs 89

Table 4-4 Actuate Information Console actions (continued)

Action Input JSP

Forward name path

/logout

/options /iportal/activePortal
/private/options
/options.jsp

/options/save /iportal/activePortal
/private/options
/options.jsp

/ping

/requestercanceljob

/requesterdeletejob

/requesterdeletejob

schedule

/searchfiles

/selectchannels

/selectjobnotices

/selectjobs

90 Information Console Developer Guide

name=landing

path/landing.jsp

name=success
path=/iportal/activePortal /private
/options/options.jsp

name=saved
path=/getfolderitems.do

name=dashboard
path=/iportal/activePortal /private
/options/options.jsp
name=success
path=/getfolderitems.do

name=saved
path=/getfolderitems.do

name=success
path=/iportal/activePortal /private
/diagnosis/pingresponse.jsp
name=success
path=/iportal/activePortal /private
/jobs/requesterjoboperationstatus.jsp

name=success
path=/iportal/activePortal /private
/jobs/requesterjoboperationstatus.jsp

name=success
path=/iportal/activePortal / private
/jobs/requesterjoboperationstatus.jsp

name=success
path="iportal/activePortal/private
/filesfolders/search/filefolderlist.jsp

name=channellist
path=/iportal/activePortal / private
/channels/channellist.jsp

name=success
path=/iportal/activePortal /private
/channels/channelnoticelist.jsp

name=success
path=/iportal/activePortal /private
/jobs/selectjobs.jsp

Table 4-4

Actuate Information Console actions (continued)

Action

Input JSP

Forward name path

/searchfiles

/skinedit

/submitjob

/subscribeChannel

/tableList

/treebrowser

/updatechannel

/uploadimage

/uploadlicense

/customize.do

/iportal/activePortal
/private/newrequest
/newrequest.jsp

/iportal/activePortal
/private/channels
/channelsubscribe.jsp

/iportal/activePortal
/private/parameters
/table

/tableparameters.jsp

name=success
path=/iportal/activePortal /private
/filesfolders/search/filefolderlist.jsp

name=success
path=/iportal/activePortal /private
/customization/skinedit.jsp

name=success
path=/iportal/activePortal /private
/newrequest/submitjobstatus.jsp

name=viewreport
path=/servlet/DownloadFile

name=success
path=/selectchannels.do

name=close
path=/iportal/activePortal /private
/parameters/table/close.jsp

name=tableParamList
path=/iportal/activePortal / private
/parameters/table/tableparameters.jsp

name=success
path=/iportal/activePortal /private
/filesfolders/treebrowser.jsp

name=success
path=/iportal/activePortal /private
/channels/channeloperationstatus.jsp

name=success
path=/iportal/activePortal /private
/customization/fileupload.jsp

name=success
path=/iportal/admin/fileupload.js

(continues)

Chapter 4, Actuate Information Console URIs 91

Table 4-4 Actuate Information Console actions (continued)

Action Input JSP Forward name path
/viewer name=success
/ getsavedsearch path=/getfolderitems.do

/viewer/savesearch /iportal/activePortal
/viewer /savesearch.jsp

/waitforreport /iportal/activePortal
execution /private/newrequest
/waitforexecution.jsp

name=searchreport
path=/iportal/activePortal / viewer
/searchreportpage.jsp
name=requestsearch
path=/iportal/activePortal /viewer
/requestsearch.jsp

name=success
path=/iportal/activePortal /viewer
/requestsearch.jsp

name=browse
path=/browsefile.do

name=success
path=/iportal/activePortal /viewer
/viewreport.jsp

name=fail
path=/iportal/activePortal / viewer
/ closewindow.jsp

Actuate Information Console URIs reference

This section provides the detailed reference for Actuate Information Console
URIs. In the definitions, <context root> represents the name of your Actuate

Information Console context root, initially iportal. Table 4-5 lists the topics this
chapter covers and the file names discussed in each topic. All pages are under the

Information Console context root.

Table 4-5 Actuate Information Console pages

Topic Information Console file

about page iportal\activePortal\ private\options\about.jsp

banner page iportal\activePortal\ private\common\banner.jsp

browse file page browsefile.do

calendar page iportal\activePortal\private \newrequest
\calendar.jsp

channels page iportal\activePortal\ private\options\channels.js

92 Information Console Developer Guide

Table 4-5

Actuate Information Console pages (continued)

Topic

Information Console file

completed request
page

create folder page
dashboard page
delete file status page

delete job page
delete status page
detail page

m error detail page

m file or folder detail
page
m request detail page

drop page

m file or folder drop
page

m request drop page

error page

execute report page
general options page

home page

index page

m file and folder
index page

m new request index
page

iportal\activePortal\ private \jobs\completedjob.jsp

createfolder.do
DashboardServlet

iportal\activePortal\ private\filesfolders
\deletefilestatus.jsp

deletejob.do
deletejobnotice.do

iportal\activePortal\errors\detail.jsp
getfiledetails.do
iportal\activePortal\ private\filesfolders\filedetail jsp

getjobdetails.do
iportal\activePortal\ private \jobs\ getjobdetails.jsp

deletefile.do

canceljob.do
errors\error.jsp

iportal\activePortal\ private\common\errors
\error.jsp

executereport.do
iportal\activePortal\private\options\general.jsp

iportal\activePortal\ private \common
\breadcrumb.jsp

getfolderitems.do

iportal\activePortal\ private\filesfolders
\filefolderlist.jsp

executereport.do

(continues)

Chapter 4, Actuate Information Console URIs 93

Table 4-5

Actuate Information Console pages (continued)

Topic

Information Console file

m options index page

m requests index
page
list pages

m channels list page

m channel contents
list page

m file and folder list
page

login banner page
login page

logout page
notification page

options page

output page
page not found page

parameters page
pending page
ping page

privileges page
running page

schedule page

scheduled job page

94

options.do

iportal\activePortal\ private\options\options.jsp
selectjobs.do

iportal\activePortal\ private \jobs\selectjobs.jsp

selectchannels.do
iportal\activePortal\ private\channels\channellist.jsp

iportal\activePortal \ private\channels
\channelnoticelist.jsp

getfolderitems.do

iportal\activePortal\ private\filesfolders
\filefolderlist.jsp

iportal\activePortal\private\login_banner.jsp
login.do

iportal\activePortal\private\login.jsp

logout.do

iportal\activePortal\ private\options\notification.jsp
options.do

iportal\activePortal\ private\options\options.jsp
iportal\activePortal\ private \newrequest\output.jsp
iportal\activePortal \errors\pagenotfound.jsp

iportal\activePortal\ private \newrequest
\parameters.jsp

iportal\activePortal\ private \jobs\ pendingjob.jsp
ping.do

iportal\activePortal\ private\diagnosis
\pingresponse.jsp
iportal\activePortal\viewer\print.jsp
iportal\activePortal\private\jobs\runningjob.jsp

iportal\activePortal\ private \newrequest
\schedule.jsp

iportal\activePortal\ private \jobs\scheduledjob.jsp

Information Console Developer Guide

Table 4-5 Actuate Information Console pages (continued)

Topic Information Console file

search folders page searchfiles.do
iportal\activePortal\ private \filesfolders\search
\filefolderlist.jsp

submit job page submitjob.do
iportal\activePortal\ private \newrequest
\submitjobstatus.jsp

viewer page for BIRT IVServlet

reports

about page

Displays the About page, containing information about Actuate Information
Console. Called when the user chooses the About tab on the Options page.

The default About page for Information Console is similar to Figure 4-1.

About License

Actuate Information Console version: 2 (Build 2204130129)

violume profile: urup

Actuate BIRT iHub version: 2 {Build 2204120129)

Licensed for: Evaluation

J5P server: Server

Current l[anguage: English

Current time zone: Americaflos_angeles

Copyright: ©1995-2013 Actuate Corporation
Figure 4-1 Information Console About page

Name <context root>\iportal\activePortal\private\options\about.jsp
Parameters The about page uses the common URI parameters.

Used by iportal\activePortal\private\options\optionspage.jsp

banner page

Provides the banner that appears across the top of all Actuate Information
Console web pages. The default banner displays the Actuate logo, user name, and
license, and provides links for Logout, Options, and Help. The banner page
obtains the user name from variables maintained by the authenticate page.

Chapter 4, Actuate Information Console URIs 95

Name <context root>\iportal\activePortal\private\common\banner.jsp

Used by iportal\activePortal\private\login.jsp
iportal\activePortal\private\channels\channelnoticelist.jsp
iportal\activePortal\ private\channels\channeloperationstatus.jsp
iportal\activePortal\private\filesfolders\ deletefilestatus.jsp
iportal\activePortal\private \filesfolders \filedetail.jsp
iportal\activePortal\private \filesfolders \filefolderlist.jsp
iportal\activePortal\private\jobs\getjobdetails.jsp
iportal\activePortal\ private \jobs\joboperationstatus.jsp
iportal\activePortal\private \jobs\selectjobs.jsp
iportal\activePortal\ private \newrequest\newrequest.jsp
iportal\activePortal \ private \newrequest\newrequest2.jsp
iportal\activePortal \ private \newrequest\submitjobstatus.jsp
iportal\activePortal \ private\options\options.jsp

browse file page

Contains file and folder browsing functionality used by submit request pages.
Name <context root>\browsefile.do

Parameters workingFolder is the name of the folder for which to display contents in the
folder browser window. The browse file page also uses the common URI
parameters.

Used by iportal\activePortal\private\newrequest\browse.jsp

calendar page
Provides calendar functionality for the submit request scheduling feature.
Name <context root>\iportal\activePortal\private\newrequest\calendar.jsp

Used by iportal\activePortal\private\newrequest\newrequestpage.jsp

channels page

Displays the channels property sheet. The channels page presents a list of all
channels available on the current volume. Channels to which the user subscribes
appear with their check boxes selected.

The channels page looks like Figure 4-2.

96 Information Console Developer Guide

Name
Used by

Surup

-- Documents
My lohs

L channels Channels

“-RMobile Subscriptions Show subscribed channelsj m

1 4] Y

Channel NameDescription

+Personal
Channel

My Documents i) Addd Content Hsave

Figure 4-2 Channels page

Users choose which channels they want to see in the list by specifying a filter. For
example, to see all Marketing Communications channels, the user might type the
filter Mar* in the Filter field. Channels uses the HTTP session variable
AcChannelFilter to save the current filter value. AcChannelFilter works if cookies
are enabled. For more information, see Managing an Encyclopedia Volume.

<context root>\iportal\activePortal\private\options\channels.jsp

iportal\activePortal \ private\options\optionspage.jsp

completed request page

Lists all completed requests. The completed request page lists all report jobs that

Name
Parameters
Used by

have executed and are available or whose execution failed.

The completed request page looks like Figure 4-3.

My Documents « iy | vl Cortert Esave
Surup
-- Documents [7 RN
My Jobs

1 channels My Jobs - Completed

~RMobile Subseri Fyer on | off
Schedules Waiting for Event | Pendi R i C leted
Job Name Document Name Result Finished Details
goR S S31ES [1o 5 sales performers ¢/ Succeededlul 17, 2012 3:28:33 PM

Figure 4-3 Completed request page

<context root>\iportal\activePortal\private\jobs\completedjob.jsp

The completed request page uses the common URI parameters.

iportal\activePortal \ private\jobs\selectjobscontent.jsp

Chapter 4, Actuate Information Console URIs 97

create folder page

Name

Parameters

Used by

Creates a folder in the current Encyclopedia volume. Createfolder.do uses
<context root>\iportal\activePortal\ private\filesfolders\createfolder.jsp to
create the new folder.

<context root>\createfolder.do

Table 4-6 lists and describes the parameters for the create folder page. The create
folder page also uses the common URI parameters.

Table 4-6 Parameters for create folder URI

URI parameter Description

workingFolderID The ID of the folder to contain the new folder. Specify
either workingFolderID or workingFolderName.

workingFolderName The name of the folder to contain the new folder. Specify
either workingFolderID or workingFolderName.

Not applicable.

dashboard page

Name

Used by

Provides the dashboard interface servlet for Information Console.
<context root>\dashboard

Not applicable.

delete file status page

Name

Used by

Summarizes the result of a deletion performed by the drop page and indicates
whether a file was successfully deleted. The delete file status page includes
authenticate to obtain user session data. Information Console performs the
deletion as part of an action and then forwards to the delete file status page.

<context root>\iportal\activePortal\private\filesfolders\deletefilestatus.jsp

Not applicable.

98 Information Console Developer Guide

delete job page

Name

Parameters

Used by

Deletes the specified job, then redirects the page to a completion status page.
Specify the name or the ID of the job to delete.

The default redirection JSP is <context root>\iportal\activePortal \ private\jobs
\joboperationstatus.jsp.

<context root>\deletejob.do

Table 4-7 lists and describes the parameters for the delete job page. The delete job
page also uses the common URI parameters.

Table 4-7 Parameters for delete job URI

URI parameter Description
jobID Unique request identifier.
jobName The name of the job to delete. This parameter is
ignored if jobID is also specified.
jobState The state of the job to delete.
redirect URI to which to redirect the job deletion page.
Not applicable.

delete status page

Deletes a job notice corresponding to a request. Specify the job notice by name or
by ID.

Name <context root>\deletejobnotice.do

The default redirection action forwards to <context root>\iportal\activePortal
\private\jobs\joboperationstatus.jsp.

Parameters Table 4-8 lists and describes the parameters for the delete status page. The delete
status page also uses the common URI parameters.

Table 4-8 Parameters for delete status URI

URI parameter Description

channellD The unique identifier of the channel to delete the job notice from.

channelName The name of the channel to delete the job notice from.

jobID Unique request identifier.

(continues)

Chapter 4, Actuate Information Console URIs 99

Table 4-8

Parameters for delete status URI (continued)

URI parameter Description

jobName

jobState
redirect

userName

The name of the job notice to delete. This parameter is ignored if
jobID is also specified.

The state of the job to delete.
URL to which to redirect the delete status page.
The name of the user to notify about the deleted job.

Used by

Not applicable.

detail page

Name
Used by

Name

Parameters

Displays detailed information about Encyclopedia volume objects. There are
three detail pages:

<context root>\iportal\activePortal\errors
<context root>\iportal\activePortal \filesfolders

<context root>\iportal\activePortal \requests

error detail page
Provides a template error page that can be embedded in another page.
<context root>\iportal\activePortal\errors\detail.jsp

iportal\activePortal\ private \common \errors\error.jsp

file or folder detail page

Displays detailed information about the selected viewable folder or file. Users
request file or folder details by choosing the magnifying glass icon to the right of
files or folders listed on the Encyclopedia folder page or breadcrumb. Users can
request another document or delete the current file or folder from the file or
folder detail page. filedetail jsp uses the HTML code in <context root>\iportal
\activePortal\private \filesfolders\filedetailcontent.jsp to display the
information.

<context root>\getfiledetails.do
<context root>\iportal\activePortal\private\filesfolders\filedetail.jsp

Table 4-9 lists and describes the parameters for the file or folder detail page. The
file or folder detail page also uses the common URI parameters.

100 Information Console Developer Guide

Table 4-9

Parameters for file or folder detail URI

URI parameter Description

name The full path name of the Encyclopedia object for
which to show details, if objectID is not specified.

objectID The Encyclopedia object’s unique identifier.

version The Encyclopedia object’s version number. The default

is the latest version.

Used by Not applicable.

request detail page

Lists detailed request information for a specified job, as shown in Figure 4-4.

Job Name:
Owner:

Priority:
Submitted:
Started:
Finished:

Run Job:

Event Name:
Event Type:
Event Parameter:

Event Status:

Mame:

Type:

VYersion number:
Version name:

Folder:

Output Document
Mame:
Type:

Yersion name:

My Jobs > Completed = Top 5 Sales Performers :

Detail

Schedule {Succeeded)

Tap 5 Sales Performers
Administrator

1000

Jul 17, 2012 3:27:40 PM
Jul 17, 2012 3:27:41 PM
Jul 17, 2012 3:28:33 PM

The job was scheduled immediately.

Mo event

Report (Executable)

¥ Top 5 Sales Performers
Actuate BIRT Design
1

SPublic/BIRT and BIRT Studio Examples

" Top 5 Sales Performers

Actuate BIRT Document

Headline:
Folder: JfHome/administrator
Figure 4-4 Request detail page

Chapter 4, Actuate

Information Console URIs

101

getjobdetails.jsp uses the HIML code in <context root>\iportal\activePortal
\private\jobs\getjobdetailscontent.jsp to display the information.

Name <context root>\getjobdetails.do
<context root>\iportal\activePortal\private\jobs\getjobdetails.jsp

Parameters The request detail page uses the common URI parameters, as shown in Table 4-10.

Table 4-10 Parameters for request detail URI

URI parameter Description

jobID The job’s unique identifier
userName The user that submitted the job
channelName The channel to receive the request

Used by iportal\activePortal\private\jobs\completedjob.jsp
iportal\activePortal\private \jobs\ pendingjob.jsp
iportal\activePortal\private\jobs\runningjob.jsp
iportal\activePortal\ private \jobs\scheduledjob.jsp

drop page

Deletes one or more files or folders, or cancels a running job.

file or folder drop page
Deletes the specified file or folder.
Name <context root>\deletefile.do

Parameters Table 4-11 lists and describes the parameters for the file or folder drop page. The
file or folder drop page also uses the common URI parameters.

Table 4-11 Parameters for file or folder drop URI

URI parameter Description

ID The unique identifier of the object to delete.

name The full path name of the Encyclopedia object to delete. Multiple

name parameters, to delete more than one file or folder at a time, are
allowed. This parameter is ignored if ID is also specified.

redirect URI to navigate to upon completion. The default redirect page is
processedaction_status.

Used by Not applicable.

102 Information Console Developer Guide

request drop page

Cancels a running job.

Name <context root>\canceljob.do
Parameters Table 4-12 lists and describes the parameters for the request drop page. The
request drop page also uses the common URI parameters.
Table 4-12 Parameters for request drop URI
URI parameter Description
jobID The unique identifier of the Encyclopedia object to delete.
jobName The full path name of the Encyclopedia object to delete. This
parameter is ignored if jobID is also specified.
jobState The state of the job to delete. processedaction_status uses jobState to
build a link to pass to the list of scheduled and completed jobs.
redirect URI to navigate to upon completion. The default redirect page is
processedaction_status.
Used by Not applicable.
error page
Displays the specified error message. Information Console uses two pages. All
iHub Information Console code uses <context root>\iportal\activePortal
\private\common\errors\error.jsp.
Name <context root>\iportal\activePortal\errors\error.jsp
<context root>\iportal\activePortal\private\common\errors\error.jsp
Used by iportal\activePortal\private\login.jsp

iportal\activePortal\ private \common\closewindow.jsp
iportal\activePortal \ private \common\sidebar.jsp
iportal\activePortal\ private \common\errors\errorpage.jsp
iportal\activePortal \ private\options\options.jsp
iportal\activePortal \ private \templates \template.jsp

execute report page

Submits a run report job request to the Actuate BIRT iHub. When executing a
report job, a Cancel button appears after a specified wait time passes. Change the
time by setting the EXECUTE_REPORT_WAIT_TIME configuration parameter in

Chapter 4, Actuate Information Console URIs 103

the appropriate Actuate Information Console configuration file. For reports that
accept run-time parameters, you can set the parameter in the URL by adding an
ampersand (&), the parameter name, and an equal (=) sign, followed by the
parameter value in quotes.

Name <context root>\executereport.do

Parameters Table 4-13 lists and describes the parameters for the execute report page. The
execute report page also uses the common URI parameters.

Table 4-13 Parameters for execute report URI

URI parameter

Description

__ageDays

__ageHours

__archiveBeforeDelete

__archivePolicy

__dateToDelete

__executableName
__headline

invokeSubmit

__isnull

__jobName

Use with __ageHours to determine how long output objects exist
before they are automatically deleted. Use only if __archivePolicy is
set to Age. __ageDays can be any positive number.

Use with __ageDays to determine how long output objects exist
before they are automatically deleted. Use only if __archivePolicy is
set to Age. __ageHours can be any positive number.

Indicate whether to archive the output objects of the current request
before deleting them, according to __archivePolicy’s setting. Set this
parameter to True to archive objects before deleting them. The default
value is False. This parameter has no effect if __archivePolicy is set to
Folder.

The archive policy to implement for the objects created as output for
the current request. Values are folder, age, and date. Set to folder to
use the archive policy that is already set for the folders to which the
output is distributed. Set to age to delete objects older than a specific
time period. Set to date to delete objects on a specific date.

The date on which to delete the output objects of the current request.
Use only if __archivePolicy is set to Date. Set __dateToDelete to a
date in a locale-specific format. The default format is mm/dd/yyyy.

The name of the executable file for this request.
A descriptive tag line for a report document.

Appears on Channel Contents. Use the character string %20 to
represent a space in the headline string.

Controls whether the browser is redirected to the parameter screen or
whether the report job is run immediately. If True, the report job is
executed without displaying the parameters. If False, the parameters
are displayed. False is the default.

Sets the value of the named parameter to null. Use a parameter name
as input.

The name of the job to execute.

104 Information Console Developer Guide

Table 4-13

Parameters for execute report URI (continued)

URI parameter

Description

_limit

_limitNumber

__outputFolderType

__outputDocName

__overwrite

_priority

_priority Value

_progressive

__recurringDay

__saveOutput

__serverURL

_timeToDelete

_users

Indicate whether to limit the number of versions of the output files
for the current request. Set __limit to Limit to limit the number of
versions. Any other value means that the number of versions is
unlimited.

The number of versions to which to limit the output files for the
current request. Use only if __limit is set to Limit. __limitNumber can
be any positive number.

Specifies the root of the output file name. Set to Absolute to use the
full __outputName value starting from the Encyclopedia volume’s
root. Set to Personal to use the __outputName value relative to the
user’s home folder.

Specifies a name for the output file.

New to create a new version of this report document, or Old to
overwrite an existing report document. New is the default.

Specifies the job submission priority. Values are High, Medium, and
Low.

Specifies a number ranging from 1 to 1000 and corresponding to the
job submission priority. Only specify values allowed by your
functionality level.

Indicates whether to display the report document after it generates. If
False, the report document displays after it generates. If True, the
report document displays progressively, as it generates.

Specifies the scheduled recurring day on which to run the report job.
Applies only to scheduled report jobs.

Indicates whether to write the output document to the Encyclopedia
volume. True saves the output in the Encyclopedia volume, applying
the document archiving and file creation parameters. False does not
save the output.

Contains the URI that accesses the JSP engine, such as http://<iHub
machine name>:8700.

Specifies a time at which to delete an archived report document.
Applies only scheduled report jobs.

Contains the name of the user to notify of this scheduled request. You
can notify more than one user. This parameter is valid only for
scheduled jobs.

(continues)

Chapter 4, Actuate Information Console URIs 105

Table 4-13 Parameters for execute report URI (continued)

URI parameter Description

__versionName Contains a string value for the new version name of this report
document. The value can include a
date/time expression enclosed in braces, {}, to ensure a unique
version name.

__volume Contains a string value specifying the volume for this report.

__wait If "wait", Information Console waits for the report generation to be
completed before displaying it. If "nowait", Information Console
displays the first page right away even if the report job is not
completed.

For example, the following URL executes the Sales By Territory.rptdesign report
immediately with the Territory run-time parameter set to EMEA:

http://localhost:8700/iportal/executereport.do?
__requesttype=immediate& executableName=%2fPublic%2fBIRT and
BIRT Studio Examples%2fSales by Territory.rptdesign&
userid=Administrator& saveOutput=false&Territory="EMEA"&
invokeSubmit=True

Set string parameters to an empty string by adding the parameter to the
executereport.do URI with no value following the equal (=) sign.

For example, the following line sets parameterA and parameterB to empty
strings:

¶meterA=&ParameterB=

The following parameter names are reserved for internal use only by the execute
report page:

m doframe
m inputfile
= jobType
= name

m selectTab

Used by Not applicable.

general options page

Displays the general user settings and environment settings property sheet for
the current user. There are two types of settings:

106 Information Console Developer Guide

m User settings that apply only to this user:
m Change password.
m Change e-mail address.
m Environment settings that apply for all browsers on a single local machine:

m Choose a skin to provide colors, fonts, images, and layout in the graphical
user interface (GUI).

m Choose a view to select a layout for the content area of pages providing
lists of files and folders.

= Enable and disable filter fields for Files and Folders, Channels, and
Requests.

® View documents in the current browser window or in a new browser
window.

The general options page appears when the user chooses Options in the Actuate
Information Console banner.

Name <context root>\iportal\activePortal\private\options\general.jsp
Used by iportal\activePortal\private\options\optionspage.jsp

home page

Provides two sets of links. On the right side it provides a graphical and a text
shortcut link from the My Folder button to the current user’s Actuate Information
Console home folder. If the Information Console installation supports BIRT
Studio, there is another shortcut link, BIRT Studio, to the BIRT Studio. On the left
side, it provides the links and other text for the breadcrumb, or path from the
repository root to the current folder.

Users access their home page by choosing the My Folder link below the Actuate
Information Console page banner. Figure 4-5 shows the default My Folder and
breadcrumb links.

My Documents + i Al Corttert BEsave
Hurup BIRT Studio
Documents T .

My Tobs My Folder
Breadcrumb

-~ Channels

By Mobile Subscrint Create Folder psdllcie Filter: On | OFf Wiew: ICategories vl
Folders
4 Dashboard 4 Public
= Home " Resources

Figure 4-5 My Folder and breadcrumb links

Chapter 4, Actuate Information Console URIs 107

Name

Used by

<context root>\iportal\activePortal\private\common\breadcrumb.jsp

iportal\activePortal\ private\skins\tabbed \templates\mypagetemplate.jsp
iportal\activePortal\private\skins\tabbed \templates\template.jsp
iportal\activePortal\ private\skins\classic\templates\template.jsp
iportal\activePortal\ private\skins \treeview \ templates\template.jsp

index page

Name

Parameters

Provides the entry point and structure for the parts of Actuate Information
Console generated from multiple files.

file and folder index page

The default entry point to the Actuate Information Console web application. The
file and folder index page provides the entry point and structure to support the
Files and Folders functionality. The structure is a table that Actuate Information
Console uses to format and present files and folders data. Page content varies
depending on the Actuate Information Console directive.

The file and folder index page uses the banner page to provide the reporting web
page banner. filefolderlist.jsp uses the HTML code in <context root>\iportal
\activePortal\ private \filesfolders\filefolderlistcontent.jsp to display files and
folders data.

<context root>\getfolderitems.do
<context root>\iportal\activePortal\private\filesfolders\filefolderlist.jsp

Table 4-14 lists and describes the parameters for file and folder index page. The
file and folder index page also uses the common URI parameters.

Table 4-14 Parameters for file and folder index URI
URI parameter Description
startUpMessage Specifies a message to appear when Actuate

Information Console calls this page.

subpage Specifies the content of the page. Possible values are:
m _list: include list
m _detail: include detail

Specifying any other value for subpage invokes the
page not found page.

new request index page

Provides the entry point and structure to support the submit job functionality.

108 Information Console Developer Guide

Name

Parameters

Name

Parameters

Name

Parameters

Used by

<context root>\executereport.do

Table 4-15 describes the parameter for the new request index page. The new
request index page also uses the common URI parameters.

Table 4-15 Parameter for new request index URI
URI parameter Description
homeFolder The location of the My Documents folder

options index page

Provides the entry point and structure to support the Options functionality. The
structure is a table that Actuate Information Console uses to format and present
files and folders data. The default table includes the banner across the top of the
page, the side menu on the left side of the page, and a container for page content.
Page content varies depending upon the Actuate Information Console directive.

The options index page uses the banner page to provide the reporting web page
banner. options.jsp uses the HTML code in <context root>\iportal\activePortal
\private\options\optionspage.jsp to display the options data.

<context root>\options.do
<context root>\iportal\activePortal\private\options\options.jsp

Table 4-16 describes the parameter for the options index page. The options index
page also uses the common URI parameters.

Table 4-16 Parameter for options index URI

URI parameter Description

homeFolder Link to My Documents

requests index page

Provides the outermost structure for the active request functionality. The requests
index page displays the side menu and banner elements, and the tabbed property
sheets defined by tabs. selectjobs.jsp uses the HTML code in <context root>

\iportal\activePortal\ private\jobs\selectjobscontent.jsp to display request data.

<context root>\selectjobs.do
<context root>\iportal\activePortal\private\jobs\selectjobs.jsp

Table 4-17 lists and describes the parameters for the requests index page. The
requests index page also uses the common URI parameters.

Not applicable.

Chapter 4, Actuate Information Console URIs 109

Table 4-17 Parameters for request index URI

URI parameter Description

applyFilter Specifies whether to apply cbFail, cbSuccess, and filter to the current
user session. applyFilter applies only to list pages, such as the completed
jobs page.

cbFail Specifies whether to list the failed jobs in the completed jobs page.

cbSuccess Specifies whether to list the successful jobs in the completed jobs page.

channelName Specifies the channel to which a job completion notice was sent.

channelName applies only to the details page.

clearFilter Clears the job name filter. clearFilter causes Actuate Information Console
to retrieve job names from session cookies and to ignore cbFail and
cbSuccess. clearFilter applies only to list pages, such as the completed

jobs page.
filter Specifies the job name filter. filter applies only to list pages, such as the
completed jobs page.
jobID Specifies the unique job identifier. jobID applies only to the details page.
resetFilter Resets all filters to their default values. The default filter values are no

filtering for job name, and listing all completed jobs, whether failed or
successful. resetFilter applies only to list pages such as the completed
jobs page.

subpage Determines the content page. Possible values for subpage are:
m _completed

m _detail

m _pending

®m _running

m _scheduled

_completed is the default content page.

userName Specifies the name of the user who received the completed job notice.
userName applies only to the detail page.

license page

Displays the License page, containing information about the Actuate Information
Console version and options. Called when the user chooses the License tab on the
Options page.

The default license page for Information Console is similar to Figure 4-6.

110 Information Console Developer Guide

Name
Parameters

Used by

About License

The license for this system is a work unit license.
Enterprise made license.

Major Release 22

The CPU Core limit is: unlimited CPUs

Licensed for: Evaluation

Your license expires on: Saturday, March 16, 2013
Listed below are the Work Units licensed:

*® BIRT Online (&)

BIRT Factory { 1)

BIRT 360 (8)

BIRT Data analyzer{ 8)
BIRT Studio { 8)

These Information Console options are currently licensed:

Multi-Tenant Option (Unlimited usears)

BIRT Option (Unlimited users)

BIRT Interactive Viewer Option {(Unlimited users)
BIRT Studio Option (Unlimited users)

BIRT Page Lavel Security Option {Unlimited users)
BIRT 260 Option (Unlimited users)

BIRT Data &nalyzer Option (Unlimited users)
e.Report Data Connector Option (Unlimited users)

These Information Console options are not licensed:
e NMulti-Tenant (Mamed User) Option

Figure 4-6 Information Console license page
<context root>\iportal\activePortal\private\options\license.jsp
The about page uses the common URI parameters.

iportal\activePortal \ private\options\optionspage.jsp

list page

Name
Used by

Lists files in a container, such as a channel or folder. There are three types of lists:
m channels
m channel contents

m filesfolders

channels list page

Lists the channels that the user subscribes to. Users can also subscribe or
unsubscribe to channels from this page.

A channels list page looks like Figure 4-7. Users choose a channel name to see the
contents of the channel.

<context root>\selectchannels.do
Not applicable.

Chapter 4, Actuate Information Console URIs 111

Name

Parameters

112

Used by

My Documents i) Addd Content Hsave
Surup
Documents
My Jobs
Ichannels

1 4] Y

Channels

Show subscribed channelsj m

Channel NameDescription

+Personal
Channel

“-SyMobile Subscriptions

Figure 4-7 Channels list page

channel contents list page

Lists the contents of a specified channel. You cannot access this page directly, but
you can edit it to change its appearance. channelnoticelist.jsp uses the HTML
code in <context root>\iportal\activePortal\ private\channels
\channelnoticelistcontent.jsp to display the contents.

A channel contents list page looks like Figure 4-8. Users choose the file or version
name to view the report document and the magnifying glass for report details.

My Documents v & i) Add Content EHsave
Surup
: Documents
My Jobs
Ichannels

1 A Y

Channels > Personal Channel

~RiMobile Subscriptions Fier: an | off

" Fi17/2012
Top 5 Sales Parformers Wersion 1 355 P 549584

Top 5 Sales Performers

Figure 4-8 Channel contents list page
<context root>\selectjobnotices.do

Table 4-18 describes the parameter for the channel contents list page. The channel
contents list page also uses the common URI parameters.

Table 4-18 Parameter for channel contents list URI
URI parameter Description

__channel The name of the channel to list
Not applicable.

file and folder list page

Presents a list of objects that reside in the current working repository folder. Users
request folder listings by choosing links on the reporting web page. The file and

Information Console Developer Guide

folder list page includes a filter section where users specify criteria for viewing
report documents. For example, users select check boxes to indicate whether they
want to view only the last version of a report document or to see report
executable files and report documents.

When users access a repository for the first time, Actuate Information Console
displays their home folder, if they have one, or the top folder in the repository. All
files and folders in that folder that they have permission to view appear in the
Actuate Information Console listing page. Users can specify a filter to choose the
types of files to view.

The following are the sources that the file and folder list page uses to obtain the
values for filters and the state of check boxes:

m URI parameters. See the following parameters section.

m Session attributes. Actuate Information Console uses session cookies to store
the values that a user specifies. If the user browses the Actuate Information
Console application, then returns to the listing page, the list page obtains the
user’s values from the session cookie if cookies are enabled. If the user chooses
another folder, that folder becomes the working folder, and the list page
applies the same values that applied to the previous folder.

Table 4-19 lists and describes the session attribute variables.

Table 4-19 Session attribute variables

Session attribute Description

AcFilesFoldersFilter Contains the string specifying the files and folders viewing filter

AcFilesFoldersType Contains True if the user specified a filter, False otherwise
Filter

Name <context root>\getfolderitems.do
<context root>\iportal\activePortal\private\filesfolders\filefolderlist.jsp

Parameters Table 4-20 lists and describes the parameters for the file and folder list page. The
file and folder list page also uses the common URI parameters.

Table 4-20 Parameters for file and folder list URI
URI parameter Description
applyFilter If True, apply filter. If False, filter not applied.
filter The filter specifying the file and folder names to list. Filter is a string.
The default is "".

(continues)

Chapter 4, Actuate Information Console URIs 113

Table 4-20 Parameters for file and folder list URI

URI parameter Description

folder The folder for which to list the contents. Folder name is a string. If no
folder is specified, List uses the last working folder known for the
session if cookies are enabled. If cookies are not enabled, List uses the
user’s home folder as specified in the user settings.

onlyLatest If True, show only the latest version of a file if multiple versions exist.
If False, show all versions of a file if multiple versions exist. The
default is False.

resetFilter Any non-null value for resetFilter causes the filter to return to its
original state. Users can reset the filter by choosing the Default button
on the listing page.

showDocument If True, show all viewable documents. If False, do not show viewable
documents. The default is True.

showExecutables If True, show all report executables. If False, do not show report
executables. The default is True.

showFolders If True, show all folders. If False, do not show folders. The default is
True.

Used by Not applicable.

login banner page
Displays the Actuate Information Console web application banner. Banner
elements include the company logo, system name, and help link.
Name <context root>\iportal\activePortal\private\login_banner.jsp

Used by iportal\activePortal\private\login.jsp

login page

Displays the Actuate Information Console login page for logging in to the
Actuate Information Console web application. The login page includes the login
banner page to display the Actuate Information Console application banner.

Name <context root>\login.do
<context root>\iportal\activePortal\private\login.jsp

Parameters Table 4-21 lists and describes the parameters for the login page. The login page
also uses the common URI parameters.

114 Information Console Developer Guide

Table 4-21 Parameters for login page URI

URI parameter Description

loginPostback False to display the login page and True to display the destination page
instead of the login page if the login is successful.

targetPage Specify a relative URI to which login redirects the user on successful
login. The default is the file and folder list page.

Used by Not applicable.

logout page

Ends the user’s Actuate Information Console session. The logout page gathers the
user’s session information, clears it, and returns the user to the login page.

Name <context root>\logout.do

Parameters Table 4-22 lists and describes the parameters for the logout page. The logout page
also uses the common parameters.

Table 4-22 Parameters for logout page URI
URI parameter Description
daemonURL Contains the URI that accesses the Process Management Daemon, such
as http:/ /Server:8100.
user The name of the user to log out. Either user or the common URI
parameter authID must be specified. If authID is specified, user is
ignored.

Used by Not applicable.

My dashboard page

A property sheet that supports specifying the default dashboard and resetting the
layout of the default dashboard.

A My dashboard page looks like Figure 4-9.
Name <context root>\options.do
Used by iportal\activePortal\private\options\optionspage.jsp

Chapter 4, Actuate Information Console URIs 115

General My Dashboard MNotification

r ™ Reset my dashboard to
€ Blank dashboard
& gSystem default

Shared dashboard ke

L]

rDefault layout:
Cne Column

-
% Two Columns
 Three Calurmns
-

Free Form

rFree form layout default settings:
V' Show Grid

¥ Snap to Grid

Grid Spacing: |18 Xl px

Figure 4-9 My dashboard page

notification page

A property sheet that supports specifying notification options for the current
user. Notification options include whether to generate e-mail on completion of
requests. A notification page looks like Figure 4-10.

General My dashhoard Maotification

For jobs that succeed:

™ Send me an e-mail notification

¥ Place a job completion notice in the Personal Channel
For jobs that fail:
™ send me an e-mail notification

¥ Place a job completion notice in the Personal Channel

Note: These settings apply for notifications that you receive.

Figure 4-10 Notification page
Name <context root>\options.do
Used by iportal\activePortal\private\options\optionspage.jsp

116 Information Console Developer Guide

options

page
Updates the user options and settings on the server.

An options page looks like Figure 4-11.

Name <context root>\options.do
<context root>\iportal\activePortal\private\options\options.jsp
General My Dashboard | Motification
Home folder: fHome/administrator
E-mail address: |
Skin: |Tree Wiew Skin j
Wigw ! ICategories j
Enable filters: ™ Display Filter for Channels, Documents and Johs
Document viewing: ™ open in new browser window
Update password:
Old password: |
MNew password: |
Re-enter new password: |
Options
Figure 4-11 Options page
Parameters Table 4-23 lists and describes the parameters for the options page. The options
page also uses the common URI parameters.
Table 4-23 Parameters for options URI
URI parameter Description
channellcons Specifies whether or not to display channel icons.
channels Contains the string list of channels to which the user subscribes.
confirmKey Contains the user’s password.
docChanFilters Specifies filters for viewing documents or channels.
email Contains the user’s e-mail address.
failComp Indicates whether to generate completed request notifications for failed
jobs. Enable to generate notifications for failed requests, Disable
otherwise.
failEmail Indicates whether to generate e-mail for failed requests. Set the value to

"on" to enable or "off" to disable.

(continues)

Chapter 4, Actuate Information Console URIs 117

Table 4-23 Parameters for options URI

URI parameter Description

newKey Contains the user’s new password.

newLocale Contains the user’s new locale.

newTimeZone Contains the user’s new time zone.

oldKey Contains the user’s old password.

redirect Specifies the page to go to when user options update is complete.

requestFilters Indicates whether to use filters for the Request page. Enable to use
filters, Disable otherwise.

succComp Indicates whether to generate completed request notifications for
successful requests. Enable to generate notifications for failed requests,
Disable otherwise.

succEmail Indicates whether to generate e-mail for successful requests. Set the
value to "on" to enable or "off" to disable.

userName Contains the current user’s name.

viewNewBrowser Indicates whether to view documents in the current browser window or

in a new browser window. Set the value to "on" to view documents in a
new browser window or "off" to disable.

Used by Not applicable.

output page

Specifies report executable output data, such as the report headline and output
file name. The output page appears only for scheduled report job and Run and
Save report job submissions. Users access Output by choosing Save As.

An output page looks like Figure 4-12.

Name <context root>\iportal\activePortal\private\newrequest\output.jsp

Parameters Table 4-24 lists and describes the parameters for the output page. The output page
also uses the common URI parameters.

Table 4-24 Parameters for output URI
URI parameter Description
headline Specifies the headline for the report.

ifExists

Specifies the file replacement policy. Values are Create and Replace. If
ifExists is Create, Information Console creates a new version. If ifExists is
Replace, Information Console replaces the existing version.

118 Information Console Developer Guide

Table 4-24 Parameters for output URI

URI parameter Description

outputFolderType Specifies the report output’s folder type. Values are personal and
absolute. If outputFolderType is personal, the output is placed in the
user’s personal folder. If outputFolderType is absolute, the user specifies
the full path name for the output by either typing the path or using the
Browse button.

outputName Specifies the name of the output file.

versionName Specifies the version name.

Schedule Save Ais

Headline:

Output Location: % Home folder

© Cther (please specify)

Documnent Name: |Top & Sales Performers

Wersion Name:
Document Format: | RPTDOCUMENT j

Motification: ™ send me an email notification with | Mo Attachment

If the File Already Exists: ® Create a new version

" Replace the latest version T Keep only the latest I:I version(s)

Figure 4-12 Output page
Used by iportal\activePortal\private \newrequest\newrequestpage.jsp

page not found page

Displays an error message when Information Console cannot find the page that a
user specifies.

Name <context root>\iportal\activePortal\errors\pagenotfound.jsp

Used by Not applicable.

Chapter 4, Actuate Information Console URIs 119

parameters page

Displays report job parameters. Parameters include the headline, output file
name, and report executable file name. Users access the parameters list by
choosing Parameters.

The parameters page looks like Figure 4-13.

Parameters [T

-l Sales Office and Sales Rep

Select Sales Office v =+
Select Sales Rep ID |Tseng j i
*1 Required,

cancel

Figure 4-13 Parameters page
Name <context root>\iportal\activePortal\private\newrequest\parameters.jsp

Used by iportal\activePortal\private\newrequest\newrequestpage.jsp

pending page
Lists all jobs that are currently awaiting execution.
Name <context root>\iportal\activePortal\private\jobs\pendingjob.jsp
Parameters The pending page uses the common URI parameters.

Used by iportal\activePortal\private\jobs\selectjobscontent.jsp

ping page
The ping page tests whether a specific component of the reporting environment is

operational, and optionally retrieves other diagnostic information about the
component. You can test the following components of the reporting environment:

m Information Console itself
m The Encyclopedia service
m The Factory service

m The Integration service

m The Message Distribution service (MDS)

120 Information Console Developer Guide

m The View service
m An Actuate open server driver

If a component is not operational, Actuate BIRT iHub returns an error message. If
a component is operational, the response depends on the ping page parameters.
For example, you can request a simple time stamp that shows the time elapsed
between the time that a component receives the request and the time that it
returns a reply, as shown with the following URI:

http://seamore:8700/iportal/ping.do?destination=EE&mode=trace
generates the following response:

18:03:23.100: MDS (seamore) received Ping message

18:03:23.100: MDS (seamore) forwarding Ping request to node seamore

18:03:23.100: EncycEngine (seamore) received Ping message

EncycEngine (seamore) : Echoing 0 bytes of payload data

18:03:23.100: EncycEngine (seamore) replying to Ping message.
Elapsed=0 ms

18:03:23.100: MDS(seamore) received Ping reply from node seamore.
Roundtrip= 0 ms

18:03:23.100: MDS (seamore) replying to Ping message. Elapsed=0 ms

You also can request more detailed information. A ping request to the MDS has
no security restrictions. For all other components, the request is subject to
Encyclopedia volume authentication. The user must be an Encyclopedia volume
administrator or a user with the Operator security role.

Name <context root>\ping.do
Parameters Table 4-25 lists and describes the parameters for the ping page. The ping page
also uses the common URI parameters.
Table 4-25 Parameters for ping URI
URI parameter Description
action Specifies the action to take at the destination. Valid values are:

m Echo—Echoes data specified by the payloadSize parameter. Echo is
the default action.

m ReadFile—Opens a specified Encyclopedia volume file, reads its
content, and closes the file. Destination must be EE, FS, or VS.

m WriteFile—Creates a temporary file in a partition, writes a specified
number of bytes, closes the file, and deletes it. Destination must be EE
or FS.

m Connect—Connects to a data source.

m If you do not specify a value, the destination component responds to
the request without taking any other actions.

(continues)

Chapter 4, Actuate Information Console URIs 121

Table 4-25

Parameters for ping URI (continued)

URI parameter

Description

destination

filename

mode

partitionName

payloadSize

processID

The reporting environment component to test. Valid values are:
AP (Information Console)

MDS (Message Distribution service)

EE (Encyclopedia Engine)

FS (Factory service)

VS (View service)

AIS (Actuate Integration service)
AIS only supports the Echo action.

Except when AP is specified as destination, Actuate Information
Console sends a ping request to the Actuate BIRT iHub and passes on
the destination as the ping request’s destination parameter.

The default value is AP.

When action=ReadFile, this parameter is required to indicate the
Encyclopedia volume file to read. If you ping an open server driver,
filename specifies the executable file to prepare for execution.

Specifies the level of detail in the ping response. Valid values are:

m Concise—Returns the elapsed time between a component’s receipt of
the request and the time the component sends a reply.

m Normal—Returns the names of components in the test path and the
time stamps of the request entering and leaving each component.
This is the default mode.

m Trace—Returns a time stamp at times when the request enters and
leaves major subcomponents of the component being tested. For
example, a request to a node running the Encyclopedia service can
provide a time stamp for times when the request enters and leaves
the process queue.

A ping request at the trace level also can return diagnostic information
other than timing. For example, a request to test writing a temporary file
to a partition can return the amount of free disk space on the partition.

Specifies the name of the Encyclopedia partition on which to create the
temporary file. Used only if the value of action is WriteFile.

Length of payload string in number of characters that Actuate
Information Console should generate. Used only if the value of action is
Echo.

Specifies the process ID of the Factory or View service to test. Used with
the server parameter.

122 Information Console Developer Guide

Table 4-25

Parameters for ping URI (continued)

URI parameter Description

server

Specifies which instance of a Factory service or View service to test.
Works with the processID parameter. To test all available instance of the
Factory or View service, use an asterisk (*).

If you do not specify server, the Actuate BIRT iHub load balancing
mechanism allocates an available instance of the requested service to
respond to the ping request.

Used by

Not applicable.

privileges page

Name

Parameters

Used by

Assigns privileges to a file or folder. Filefoldersprivilege.do uses the HTML code
in <context root>\iportal\activePortal\ private\filesfolders\filefolderlist.jsp to
set the privileges. The following URI displays the privilege page for the hotgraph
report executable in the Training folder:

\iportal\filefoldersprivilege.do?name=\Training\hotgraph.rptdesign
<context root>\filefoldersprivilege.do

Table 4-26 lists and describes the parameter for the privileges page. The privileges
page also uses the common URI parameters.

Table 4-26 Parameters for privileges URI
URI parameter Description
name File or folder name to set privileges for

iportal\activePortal\ private \common\popupmenu.jsp
iportal\activePortal\private \filesfolders\filedetailcontent.jsp

running page

Lists all jobs that were executing when the running page was last refreshed. The
list is not live. To view the current list, the user must refresh the browser. Users
access the running jobs list by choosing Running.

The running page looks like Figure 4-14.

Chapter 4, Actuate Information Console URIs 123

My Documents «
Hurup
Documents
My Jobs
Ichannels
-8y Mohile Subscript

1 7l)

My Jobs - Running

Filter: ©n | Off

iy Addl Cortert

Schedules | Waiting for Event | Pendi R

There are no running jobs for user administrator.

EHsave

ed

Figure 4-14

Parameters The running page uses the common URI parameters.

Running page

Name <context root>\iportal\activePortal\private\jobs\runningjob.jsp

Used by iportal\activePortal\private\jobs\selectjobscontent.jsp

schedule page

Supports specifying report executable file run schedules. The schedule page

applies only to scheduled report job requests.

Schedule properties include data and time for running the request, recurring
schedules to run a report job on a regular basis, or whether to run the report job

immediately.

The Information Console schedule page is similar to Figure 4-15.

<context root>\js\calendar.js provides calendar functionality for Information
Console. Note that date and time field lengths are hard-coded in the schedule

page.

Schedule Save As

Job Mame: Top 5 Sales Performers

Priority: © Low O Medium O High & Otheril-1000):

Executable version:

® Always use version [1

Scheduling Options: [Right now © onee © Recurring

[Always use latest version of Top 5 Sales Performers.rptdesign
of Top 5 Sales Performers.rptdesign

Figure 4-15 Information Console schedule

124 Information Console Developer Guide

Name

Parameters

Used by

<context root>\iportal\activePortal\private\newrequest\schedule.jsp

Table 4-27 lists and describes the parameters for the schedule page. The schedule
page also uses the common URI parameters.

Table 4-27 Parameters for schedule URI

URI parameter Description

jobName The name of the request being submitted.

onceDate If scheduleType is once, specify the date on which to

run the report job.

onceTime If scheduleType is once, specify the time at which to
run the report job.

recurringDay The day on which to run the request on a regular basis.
Values are the day of the week, EVERYDAY,
FIRST_DAY_OF_THE_MONTH,
LAST_DAY_OF_THE_MONTH.

recurring Time If scheduleType is recurring, specify the time at which
to run the report job.

scheduleType Specify the schedule type. Values are immediate, once,
and recurring.

iportal\activePortal \ private \newrequest\newrequestpage.jsp

scheduled job page

Name
Parameters

Used by

Lists all jobs that activate at a specified date and time but are not yet active.
<context root>\iportal\activePortal\private\jobs\scheduledjob.jsp
The scheduled job page uses the common URI parameters.

Not applicable.

search folders page

Name

Parameters

Recursively searches from the current folder for files and folders whose names
match the search string.

<context root>\searchfiles.do

Table 4-28 lists and describes the parameters for the search folders page. The
search folders page also uses the common URI parameters.

Chapter 4, Actuate Information Console URIs 125

Used by

Table 4-28 Parameters for search folders URI

URI parameter Description

folder Folder name to start the search from. The default is the
current location, as shown in the breadcrumb.

searchFilter The name to search for. Expressions and wildcards are
allowed. For more information about search
expressions, see Using Information Console.

For example, the following Information Console URL searches the current folder
and all subfolders for files or folders whose names begin with the string Cust:

http://localhost:8700/iportal/searchfiles.do?searchFilter=Cust*

A search results page looks like Figure 4-16.

My Documents w i, | Ackd Cortert HSave
Surup
Bl Documents
(N Dashboard

1] "N

urup = Public > Spreadsheet Examples = Search Documents

Haome
Public
Wiew ICategories vl
-] Resources
; My Jobs
T channels

RaMohile SUbSCHOGC Epter the name of the file or folder to search for.

Figure 4-16 Search results
Not applicable.

submit job page

Name

Parameters

Submits a scheduled report job for a report executable to the server. There is no
user interface to the submit job page. submitjobstatus.jsp uses the HTML code in
<context root>\iportal\activePortal\ private\newrequest
\submitjobstatuspage.jsp to display the new request information.

For reports that accept run-time parameters, set the parameter in the URL by
adding an ampersand (&), the parameter name, and an equal (=) sign, followed
by the parameter value in quotation marks.

<context root>\submitjob.do
<context root>\iportal\activePortal\private\newrequest\submitjobstatus.jsp

Table 4-29 lists and describes the parameters for the submit job page. The submit
job page also uses the common URI parameters. All other parameters are passed

126 Information Console Developer Guide

to the report executable as report parameters. Report parameters are
case-sensitive. Specify them exactly as defined in the report design.

Table 4-29 Parameters for submit job URI

URI parameter

Description

__accessToGrant

__ageDays

__ageHours

__archiveBeforeDelete

__archivePolicy

__dateToDelete

__executableName

folderType

Grants read or secure read privileges to those roles that have
permission to view the report document. For users to view only the
parts of the document matching an access control list (ACL), grant
Secure Read access. Otherwise, grant Read access to enable users to
view the whole document.

This parameter requires the __channels, __exclude, and
invokeSubmit=true parameters, even if you use no value for them.

Use the __exclude parameter with this parameter to exclude specific
users from getting the privilege.

Use the __channels parameter to grant read privileges to channels
and notify them.

Used with __ageHours to determine how long output objects exist
before they are deleted. Use only if __archivePolicy is set to age.
__ageDays can be any positive number.

Use with __ageDays to determine how long output objects exist
before they are deleted. Use only if __archivePolicy is set to age.
__ageHours can be any positive number.

Indicates whether to archive the output objects of the request before
deleting them, according to __archivePolicy’s setting. Set this
parameter to True to archive objects before deleting them. The
default value is False.

This parameter has no effect if __archivePolicy is set to folder.

The archive policy to implement for the objects created as output for
the request. Values are folder, age, and date. Set this parameter to
folder to use the archive policy already set for the folders to which
the output is distributed, to age to delete objects older than a specific
time period, or to date to delete objects on a specific date.

The date on which to delete the output objects of the current request.
Use only if __archivePolicy is set to date. __dateToDelete must be a
date in a locale-specific format. The default format is mm/dd/yyyy.

The name of the executable file for this request.

Specifies the destination folder type for the report. Absolute
indicates the repository root folder, /. Personal indicates the current
user’s home folder. Default is Personal.

(continues)

Chapter 4, Actuate Information Console URIs 127

Table 4-29 Parameters for submit job URI (continued)

URI parameter

Description

__headline

__ifExists

invokeSubmit

__jobName

notificationSupported

notify

__onceDate

__onceTime

__outputName
outputName

outputFormat

postback

A descriptive tag line for a report document.

Appears on the Channel Contents page. Use the character string %20
to represent spaces in the headline string.

Indicates whether to overwrite an existing or create a new file, up to
an optional limit. Values are:

m create—creates a new output file.

m create[n]—creates a new output file up to n versions. For
example, to create no more than seven versions, use create?.

m replace—overwrite any existing output.

Controls whether the browser is redirected to the parameter screen
or whether the report job is scheduled immediately. If True, the
report job is scheduled without displaying the parameters. If False,
the parameters are displayed. False is the default.

The name for the job to submit.

Specifies whether to notify users who have notification disabled.
True sends notification and disregards user preferences. Default
value is False.

Activates e-mail notification for the job.
Required for once schedules.

Specify the date on which to run the report job, for report jobs with

__scheduleType of once. Must be in the appropriate format for your
locale, such as mm/dd/yyyy for the U.S. locale. The current date is
the default.

Required for once schedules.

Specify the time at which to run the report job, for report jobs with
__scheduleType of once. Must be in the appropriate format for your
locale, such as “hh:mm a” for the U.S. locale. The current time is the
default.

Specifies a name for the report output document.

Specifies a name for the report output document for the e-mail
notification.

Optional parameter that appends a file extension to the
outputName. Do not use a period in the value of this parameter, a
period is inserted automatically before the file extension.

Forces the browser not to display parameters. Set to False to display
parameters. Do not set postback to True with invokeSubmit also set
to True.

128 Information Console Developer Guide

Table 4-29 Parameters for submit job URI (continued)

URI parameter

Description

__priority

__priorityValue

__progressive

__recurringDay

__recurringTime

__redirect

__schedulePeriod

__scheduleType
__serverURL
__timeToDelete

__versionName

__volume

Specifies the job submission priority. Values are a number from 1 to
1000, High (800), Medium (500), and Low (200). Do not use with
__priority Value.

Specifies a number corresponding to the job submission priority. Do
not use with __priority.

Indicate whether to display the report document after it generates. If
False, the report document displays after it generates. If True, the
report document displays progressively, as it generates. Applies
only to run report jobs.

Specifies the scheduled recurring day on which to run the report job.
Applies only to scheduled report jobs.

Required for recurring schedules.

Specify the time at which to run the report job. Set only if report jobs
__scheduleType is recurring.

Must be in the appropriate format for your locale, such as hh:mm:ss
for the U.S. (enu) locale.

Specifies a relative or absolute URI to go to after do_executereport
submits the report job. The default is Submittedjob_Status.

Required for recurring schedules.
Specify how often to run the report job, and on which days. Choose
a day of the week.

__schedulePeriod values are Every Day, Weekdays, Mondays,
Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays,
First Day of the Month, Last Day of the Month. All values are
case-sensitive.

Every Day or Weekdays. Set only if __scheduleType is recurring.
Specify the type of schedule: immediate, once, or recurring.
Immediate is the default.

Contains the URI that accesses the JSP engine, such as
http:/ /Services:8700.

Specifies a time at which to delete an archived report document.
Applies only to scheduled report jobs.

Contains a string value for the new version name of the job’s report
document output. The value can include a date/time expression
enclosed in braces, {}, to ensure a unique version name.

Contains a string value specifying the volume for the job’s report
document output.

Chapter 4, Actuate Information Console URIs 129

Used by

The submit job page also accepts dynamic filter parameters for BIRT Reports in
the URL, but the value of the parameter must form a complete expression, such as
&Territory=([Territory] = “EMEA”).

For example, the following URL schedules the Sales By Territory.rptdesign report
to run once on the September 16, 2010 with the Territory run-time parameter set
to Japan:

http://localhost:8700/iportal/
submitjob.do? requesttype=scheduled& executableName=%2fPublic
$2fBIRT%20and%$20BIRT%$20Report%20Studio%20Examples%2fSales%20by%
20Territory%2erptdesign%3bl&userid=administrator& scheduleType
=once& onceDate=09/16/2010& onceTime=1:55
pm&Territory="Japan"&invokeSubmit=True

iportal\activePortal\private\filesfolders\filefolderlistcontent.jsp
iportal\activePortal \ private \newrequest\newrequestpage.jsp

Actuate BIRT Viewer URIs reference

130

To view and interact with Actuate BIRT reports, you use the Actuate BIRT Viewer
servlet. All BIRT Viewer options and varieties use the same URI. For detailed
information about the BIRT Viewer servlet URI, see Working with Actuate BIRT
Viewers.

Information Console Developer Guide

Actuate Information
Console JavaScript

This chapter contains the following topics:
m Actuate Information Console JavaScript overview

m Actuate Information Console JavaScript reference

Chapter 5, Actuate Information Console JavaScript 131

Actuate Information Console JavaScript overview

This section describes the Actuate Information Console JavaScript files. Actuate
Information Console JavaScript files provide functionality and dynamic content
to Actuate Information Console web applications. Actuate Information Console
JavaScript files reside in <context root>\iportal\js.

Actuate Information Console JavaScript reference

Table 5-1 lists and describes the Actuate Information Console JavaScript files.

132

Table 5-1 Information Console JavaScript files

Name Description

allscripts.js Defines global variables, resources, and common
methods such as deleteFile and viewActiveRequests

array.js Contains functionality for handling arrays and array
elements

browsertype.js Determines the web browser in use and provides
functionality appropriate to the browser, such as
opening a file in a new window and capturing a
keystroke event

calendarlayer.js Provides calendar functionality for Information
Console

converter.js Provides character encoding

cookie,js Provides cookie functionality, including reading,
writing, and clearing browser cookies

drift.js Adjusts layers and window display for Information
Console

encoder.js Contains the encode and unencode methods

help js Provides context-sensitive help functionality for
Information Console

htmlselect.js Provides methods for manipulating option controls

layer.js Provides layer functionality, such as createLayer,
deleteLayer, getWidth, showLayer

popupmenu.js Defines the methods for manipulating pop-up menus

report.js Provides the JavaScript components for report

viewing

Information Console Developer Guide

Table 5-1 Information Console JavaScript files

Name Description

resize.js Provides the JavaScript component for resizing a
page for Information Console

saveas.js Provides the JavaScript component for saving a file as
another file or object

skincustomization.js Provides the JavaScript components for maintaining
Actuate Information Console skins

strutscommon.js Provides JavaScript components for using the Struts
framework with Information Console

viewnav.js Displays the Actuate Information Console toolbar

Chapter 5, Actuate Information Console JavaScript 133

134 Information Console Developer Guide

Actuate Information
Console servlets

This chapter contains the following topics:
m Information Console Java servlets overview

m Information Console Java servlets reference

Chapter 6, Actuate Information Console servliets 135

Information Console Java servlets overview

136

Java servlets extend web server functionality. Information Console uses Java
servlets to manage binary content and to perform tasks such as uploading and
downloading binary files. Actuate provides an abstract framework of servlets
that provide common functionality to Information Console and Management
Console. You cannot modify the Actuate Java servlets.

About the base servlet
All Actuate servlets derive from the base servlet:
com.actuate.reportcast.servlets.AcServlet

The base servlet has no URI parameters. It provides Actuate servlets with the
functionality for performing the following tasks:

m Parse and validate parameters specified in Information Console URI
directives.

m Create XML API structures based on Actuate Information Console requests.
m Submit XML streams to the Actuate SOAP APL

m Handle responses from the Actuate SOAP API, including detecting errors.
m Store constant session information, such as the name space and SOAP endpoint.
m Read from and write to cookies.

m Stream report data or errors to the web browser.

Invoking a servlet
Invoke servlets using the following syntax:

http://<application servers:<ports>/<context roots>/servlet
/<servlet alias>

m application server is the name of the machine hosting the application server.
m port is the port on which the application server listens for requests.

m context root is the Information Console context root.

m servletis a keyword indicating that a servlet follows.

m servlet alias is the name to which the servlet is mapped in the Information
Console installation’s web.xml file. A typical location for web.xml is
C:\Program Files (x86)\ Actuate\iPortal2\iportal \WEB-INF\web.xml.

Servlet names are case-sensitive. Do not modify the servlets, their names, or their
mapping in web.xml.

Information Console Developer Guide

DownloadFile servlet

Information Console Java servlets reference

Table 6-1 lists and describes the Information Console Java servlets.

Table 6-1 Actuate Information Console servlets

Information Console servlet Description

DownloadFile servlet Downloads a file from the Encyclopedia
volume
Interactive Viewer servlet Displays a BIRT report document

This section provides the detailed reference for Information Console servlets.

DownloadFile servlet

Downloads a file from the Encyclopedia volume.

Name com.actuate.reportcast.servlets.FileDownloadServlet
Invoke the DownloadFile servlet as:
http://<web server>:<port>/<context root>/servlet/DownloadFile
URI Table 6-2 lists and describes the URI parameters for the DownloadFile servlet.
parameters
Table 6-2 Parameters for DownloadFile URI
URI parameter Description
fileld The unique identifier of an object, usually retrieved with the
selectFilesFolders JSP tag.

name The name of the object to download.
version If name is specified, the version number of the object to view. If

version is not specified, the latest version is retrieved.

Interactive Viewer servlet

Displays an Actuate BIRT report document with tools to affect the document and
design files. The viewer has two modes, standard and interactive.

The Standard Viewer displays the report with toolbar options to save, print, show
the TOC, and launch interactive mode, as shown in Figure 6-1.

Chapter 6, Actuate Information Console servlets 137

Interactive Viewer servlet

= 1is >

= Classic Models, Inc
2207 Bridgepointe Parkway

San Mateo, CA 94404 Customer Order Histo

Australian Collectors, Co.
Contact: Peter Ferguson Sales Representative: Andy Fixter

Figure 6-1 Standard Viewer

The Interactive Viewer displays the report with toolbar options to navigate the
report and provides context menus to edit and format report elements, as shown
in Figure 6-2.

= 115 |
g Classic Models, Inc =, (|
e Customer Order History
Australian Collectors, Co.
Contact: Peter Ferguson Sales Representative: Andy Fixter
Figure 6-2 Interactive Viewer
Name com.actuate.iv.servlet.IVServlet
Invoke the Interactive Viewer servlet as:
http://<web server>:<port>/<context root>/iv
URI Table 6-3 lists and describes the URI parameters for the Interactive Viewer servlet.
parameters
Table 6-3 Parameters for IV URI
URI parameter Description
__bookmark Name of the element of a report to display instead of the whole report
file
__floatingfooter Boolean value to add a margin under the footer
__format A format for the displayed report:

m pdf: Adobe PDF

xls: MS Excel

doc: MS Word

ppt: MS PowerPoint

ps: PostScript

html: HTML

flashchartsxml, flashgadgetsxml: used to display a fusion chart

reportlet: used together with __bookmark to show a particular
part/element of the report

138 Information Console Developer Guide

Interactive Viewer servlet

Table 6-3 Parameters for IV URI

URI parameter

Description

__from_page_range

__from_page_style

__imageid
__instanceid
__launchiv
__locale
__page
__report

_rtl
repositoryType
serverURL

userid

volume

The page range of a report to display

The page style to use for a report in pdf or ps formats:

m auto: The page size and content size remains the same.
m actuateSize: Change the page size to fit the content.

m fitToWholePage: Change the content size to fit the page size.

Used with the __format parameter
Name of the report file to display
Name of the report file to display
Boolean value that enables interactivity
Code for a locale

A number for a page to render

Name of the report file to display
Name of the report file to display

The name of the object to download

Contains the URL that accesses iHub, such as
http:/ /ESL02835:8000

The user’s identifier, required to log in to Actuate BIRT iHub

Contains a string value specifying the volume for this report

Chapter 6, Actuate Information Console servlets

139

Interactive Viewer servlet

140 Information Console Developer Guide

Actuate Information
Console custom tags

This chapter contains the following topics:
m Information Console custom tag overview
m Information Console custom tags quick reference

m Information Console custom tags reference

Chapter 7, Actuate Information Console custom tags 141

Information Console custom tag overview

This chapter provides reference information about Information Console tag
libraries and their custom tags. Custom tags are JSP language elements that you
define to encapsulate frequent tasks. A tag library defines a set of related custom
tags and contains the objects that implement the tags.

The Information Console tag libraries reside in <context root>\WEB-INE. The tag
libraries define the XML tags and attributes that the Information Console pages
use. Examine individual pages to determine the tag libraries that they use. For
example, viewdefault.jsp uses the internationalization, common, and users tag
libraries, as shown in the following example:

<%-- DECLARE ANY RESOURCE BUNDLES USED IN THIS PAGE --%>
<%@ taglib uri="/il8n" prefix="1i18n"%>

<%@ taglib uri="/common" prefix="common" %>

<%@ taglib uri="/users" prefix="users" %>

You declare that a page uses tags by including the taglib directive in the page
before you use any custom tag. The uri attribute refers to a URI (Uniform
Resource Identifier) that uniquely identifies the tag library descriptor (TLD). A
TLD file is an XML document that describes a tag library. The prefix attribute
defines the prefix that distinguishes tags defined by a given tag library from those
provided by other tag libraries. The prefix can differ for each use of the taglib
statement, but every prefix must be unique within a page.

Information Console custom tag names are case-sensitive.

Information Console custom tags quick reference

142

This section provides two quick reference lists related to Information Console
custom tags:

m Information Console custom tag libraries

m Information Console custom tags

Information Console custom tag libraries

Table 7-1 lists and describes the Information Console custom tag libraries.

Table 7-1 Actuate Information Console tag libraries

Tag library Description

actabpanel Provides tags for creating tabbed pages
common Provides tags storing and iterating through data

Information Console Developer Guide

Table 7-1

Actuate Information Console tag libraries

Tag library Description

filesfolders Tags for managing files and folders
i18n Provides tags for internationalization
login Provides tags for login operation

Information Console custom tags

Information Console uses Jakarta Struts custom tags and Actuate custom tags.
Actuate recommends that customized Information Console web applications use
Jakarta Struts custom tags and only the Actuate custom tags shown in Table 7-2.

Table 7-2 Actuate Information Console custom tags
Tag library Tag Description
actabpanel content Specifies the page to display when the
user or URL selects the associated tab
actabpanel tab Specifies the label on a page’s tab and its
key
actabpanel tabBegin Specifies any HTML or JSP code to
apply before defining any tabs
actabpanel tabEnd Specifies any HTML or JSP code to
apply after defining all tabs
actabpanel tabMiddle Specifies any HTML or JSP code to
apply to each unselected tab
actabpanel tabMiddleSelected Specifies any HTML or JSP code to
apply to the selected tab
actabpanel tabPanel Contains all tags defining page tabs
actabpanel tabSeparator Specifies any HITML or JSP code to
apply between each adjacent pair of tabs
common tab Holds a single string of data
common tab Holds an array of strings
filesfolders copyFileFolder Copies files and folders
i18n bundle Wraps org.apache.taglibs.i18n.
BundleTag
i18n formatDate Formats a Date value using a locale
i18n message Allows the usage of a resource bundle to
internationalize content
login login Performs the login operation

Chapter 7, Actuate Information Console custom tags 143

bundle

Information Console custom tags reference

This section provides the detailed reference for Information Console custom tags.

bundle

Establishes the ResourceBundle to use for other i18n tags in the JSP. It also
determines the most appropriate locale to use based on browser settings if a
locale is not provided. It overrides the doEndTag() method and sets the
ChangeResponseLocale feature to False. This tag must be placed in a JSP before
any other i18n tags. This tag wraps the org.apache.taglibs.il8n.BundleTag.

Library i18n
Tag class com.actuate.reportcast.tags.common.BundleTag

Attributes Table 7-3 lists and describes the attributes for bundle.

Table 7-3 Attributes for bundle

Attribute Required Description

baseName Yes Used along with the locale to locate the desired
ResourceBundle

id No Variable ID for use with standard
jsp:getProperty tag and as an attribute to other
tags in this tag library

locale No Current user’s locale, such as en_US, from

<context root>\WEB-INF\localemap.xml

localeAttribute No Name of an attribute whose value is the user’s
preferred locale

Variables Table 7-4 describes the variable for bundle.

Table 7-4 Variable for bundle
Variable Description
id Allows other tags or scriptlets to access the ResourceBundle

defined by this tag. This is useful for allowing multiple
bundle declarations per page or for creating localization
debug pages by listing all key and value pairs in a bundle.

Example The following line defines a bundle using browser preference to determine locale:

<il8n:bundle baseName="com.mycorp.taglibs.il8n.test"/>

144 Information Console Developer Guide

Used in

content

The next example defines a bundle using browser preference to determine locale,
and declaring the scripting variable bundle:

<il8n:bundle baseName="com.mycorp.taglibs.il8n.test" id="bundle"/>
The next example defines a bundle using a scriptlet variable to specify the locale:

<il8n:bundle baseName="com.mycorp.taglibs.il8n.test"

)

locale="<%= localeVar %>"/>

<context root>\errors\error.jsp
<context root>\errors \pagenotfound.jsp

content

Library
Tag class

Attributes

Used in

Examples

Specifies the content of a page for a tab. Include HTML or JSP code in the body of
the content tag or use the page attribute to include another JSP file as the content.

actabpanel
com.actuate.activeportal.tags.tabpanel.Content
Table 7-5 describes the attribute for content.

Table 7-5 Attribute for content

Attribute Required Description

page No Specifies a file containing the JSP code to use as
the content of the page associated with the
current tab

If you do not include a page attribute, any HTML or JSP code in the tag’s body
becomes the definition of the page.

<context root>\private\jobs\selectjobscontent.jsp
<context root>\private \newrequest\newrequestpage.jsp
<context root>\private\options\optionspage.jsp

The following example uses the page attribute to specify using the code in
saveas.jsp as the Save As tab’s page content:

<ui:tab><bean:message key="TAB SAVE AS"/></ui:tab>
<ui:content page="saveas.jsp"/>

The following example uses the tag’s body to specify the About tab’s content
page as the result of the JSP include directive:

<ui:tab key="about" unselected="class=\"lnkTab\"">
<bean:message key="TAB ABOUT"/>
<ui:content><%@ include file="about.jsp" %></ui:contents>
</ui:tab>

Chapter 7, Actuate Information Console custom tags 145

copyFileFolder

copyFileFolder

Copies files and folders from one location to another.

Library filesfolders
Tag class com.actuate.reportcast.tags.filesfolders.CopyFileFolderTag
Attributes Table 7-6 lists and describes the attributes for copyFileFolder.

Table 7-6 Attributes for copyFileFolder

Attribute Required Description

appendFileName No Boolean value. If True, add newName
to the targetPath. Default is True.

authID Yes Unique authentication ID assigned to
the user after successful login.

createNew Version No Boolean value. If True, create a new
version of the file or folder. Default is
True.

latestVersionOnly No Boolean value. If True, only the latest
version is to be copied. Default is True.

locale No Current user’s locale, such as en_US,
from <Context root>\WEB-INF
\localemap.xml.

maxVersions No Number of versions to copy.

newName No New name for copied item.

serverURL Yes URL that accesses the BIRT iHub, such
as http:/ /Services:8000.

targetPath Yes Directory path to which to copy.

timeZone No Current user’s time zone from
<Context root>\Web-inf
\TimeZone.xml.

volume Yes BIRT iHub volume to copy from.

workingFolderID No Unique ID for the source folder.

workingFolderName No Name of the source folder.

formatDate

Formats a Date value using a locale. A style or a pattern such as "YYYY MMM
ddd' is specified. If the value is null then the default text is used. If no locale is

146 Information Console Developer Guide

Library
Tag class
Attributes

Used in

login

specified then the parent locale tag is used. If no parent locale tag exists then the
locale is taken from the current request. If still no locale is found then the current

JVM locale is used.

i18n

org.apache.taglibs.il8n.FormatDateTag

Table 7-7 lists and describes the attributes for formatDate.

Table 7-7 Attributes for formatDate

Attribute Required Description

defaultText No Default value.

locale No Current user’s locale, such as en_US, as in
<context root>\Web-inf\localemap.xml.

pattern No Date formatting string. Do not use with style.

style No Short, medium, long, or full. Do not use with
pattern.

value No Date value.

<context root>\private\channels\channelnoticelistcontent.jsp
<context root>\private\filesfolders\filedetailcontent.jsp
<context root>\private\jobs\completedjob.jsp

<context root>\private\jobs\getjobdetailscontent.jsp

<context root>\private\jobs\pendingjob.jsp

<context root>\private\jobs\runningjob.jsp

<context root>\private\jobs\scheduledjob.jsp

login

Library
Tag class

Attributes

Establishes the connection to the Actuate BIRT iHub. On successful connection,
Actuate BIRT iHub returns the authentication ID used during the user’s session
to validate credentials and check access permissions. Actuate BIRT iHub returns

the home folder and start folder as well.
login
com.actuate.reportcast.tags.common.LoginTag

Table 7-8 lists and describes the attributes for login.

Chapter 7, Actuate Information Console custom tags

147

login

Table 7-8 Attributes for login

Attribute Required Description

disableBasic No Boolean value. If True, disable basic
Authentication authentication.

force No Boolean value. True to force a login, False to

display the login page. The default is False. For
example, when switching between
Encyclopedia volumes and using APSE, set
force=true to force the Information Console
Login module to call APSE to perform the login
operation. This prevents the login page from
appearing unnecessarily.

id Yes Unique identifier for the object.

locale No The locale to display.

password No The user’s password.

serverURL No The host and port of the Actuate BIRT iHub to
which the user wants to connect.

timeZone No The time zone to display.

userID Yes The user’s identifier, required to log in to the
Actuate BIRT iHub.

volume No The name of the volume to which the user

wants to connect. If volume is not specified, the
login tag checks whether the variable
volume_default is set in the web.xml file.

Variables Table 7-9 lists and describes the variables for login.

Table 7-9 Variables for login

Variable Description

homeFolder The user’s home folder

startFolder The folder that the user sees upon successful login

authID The authentication ID returned by Actuate BIRT iHub upon

successful login

Used in <context root>\authenticate.jsp

Example The following example logs in the user jaguilar to the volume sales on the Actuate
BIRT iHub marcom with the password secret:

<actu:login clusterURL="http://marcom:8900/" userID="jaguilar"
password="secret" volume="sales" />

148 Information Console Developer Guide

message

message

Implements a body tag allowing the usage of a resource bundle to
internationalize content in a web page. The key attribute is required, and is used
to look up content in the resource bundle. The args attribute is optional, and if
present, provides items to pass to a MessageFormat. The bundle tag must be used
first in order to ensure that the proper bundle is loaded.

Library i18n
Tag class org.apache.taglibs.il8n.MessageTag

Attributes Table 7-10 lists and describes the attributes for message.

Table 7-10 Attributes for message

Attribute Required Description

args No An array of arguments for use with
java.text. MessageFormat when formatting the
display text

bundle No Object reference to the ResourceBundle in
which the key can be found

bundleRef No Name of an attribute that contains a resource
bundle

key Yes Key to use when retrieving the display message

format from the ResourceBundle

Used in <context root>\errors\pagenotfound.jsp

Variables Table 7-11 describes the variable for message.

Table 7-11 Variable for message
Variable Description
id id allows other tags or scriptlets to access the String created

by this tag. If id is specified the String is not printed by this
tag, just stored into the id.

Example The following example displays a plain message using the default (first defined)
bundle:

<il8n:message key="columnl.header"/>

The next example displays a plain message using a specified bundle. In this
example the default bundle is bundlel because it is defined first:

Chapter 7, Actuate Information Console custom tags 149

tab

<il8n:bundle baseName="com.mycorp.taglibs.il8n.il8n-test"
id="bundlel"/> <!-- the default --»>

<il8n:bundle baseName="com.mycorp.taglibs.il8n.il8n-test2"
id="bundle2"/> <!-- the alternate -->

<il8n:message key="columnl.header" bundle="<%= bundle2 %>" />

tab

Library
Tag class

Attributes

Used in

Example

Defines the label and key for a tab in a tab panel. URIs specifying the key cause
selection of the tab and display of the page associated with the tab.

actabpanel
com.actuate.activeportal.tags.tabpanel. Tab

Table 7-12 lists and describes the attributes for tab.

Table 7-12 Attributes for tab

Attribute Required Description

key No Specifies the identification key for this tab. If
not set, the defaultis 0, 1, 2, and so on. Use with
the selectedTab attribute of the tabPanel tag.

selected No Specifies the label on the tab while the tab is
selected.

unselected No Specifies the label on the tab while the tab is not
selected.

<context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp

<context root>\private\jobs\selectjobscontent.jsp
<context root>\private \newrequest\newrequestpage.jsp
<context root>\private\options\optionspage.jsp

If subpage is defined in a tabpanel selectedTabParameter attribute, the following
tag:

<actabpanel:tab key="_scheduled">

provides the ability to select this tab by using the following URL:

http://<application servers:<ports>/iportal/selectjobs.do
?subpage=_scheduled

150 Information Console Developer Guide

tabBegin

tabBegin

Library
Tag class
Attributes

Used in

Example

Specifies HTML or JSP code to execute before defining the first tab in a tab panel.
actabpanel

com.actuate.activeportal.tags.tabpanel. TabBegin

There are no attributes for this tag. Place the desired code as the body of the tag.

<context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp

<context root>\private \newrequest\newrequestpage.jsp
<context root>\private\options\optionspage.jsp

The following example specifies the inclusion of several images to create a border
with rounded edges before defining the tabs:

<ui:tabBegins>
<TR>
<TD><img border=0 height=8
src="<html:rewrite page="/images/top 1 corner.gif"/>"
width=8>
</TD>
<TD><img border=0 height=8
src="<html:rewrite page="/images/horz stretch.gif"/>"
width=100%>
</TD>
<TD><img border=0 height=8
src="<html:rewrite page="/images/top_r corner.gif"/>"
width=8>
</TD>
</TR>
</ui:tabBegin>

tabEnd

Library
Tag class
Attributes

Used in

Specifies HTML or JSP code to execute after defining the last tab in a tab panel.
actabpanel

com.actuate.activeportal.tags.tabpanel. TabEnd

There are no attributes for this tag. Place the desired code as the body of the tag.

<context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp
<context root>\private \newrequest\newrequestpage.jsp

Chapter 7, Actuate Information Console custom tags 151

tabMiddle

Example The following example specifies the inclusion of several images to create a border
with rounded edges after defining the tabs:

<ui:tabEnd>
<TR>
<TD><img border=0 height=8
src=<html:rewrite page="/images/bottom 1 corner.gif"/>
width=8>
</TD>
<TD><img border=0 height=8
src=<html:rewrite page="/images/horz_ stretch.gif"/>
width=100%>
</TD>
<TD><img border=0 height=8
src=<html:rewrite page="/images/bottom r corner.gif"/>
width=8> -
</TD>
</TR>
</ui:tabEnd>

tabMiddle

Specifies HTML or JSP code to execute for each currently unselected tab.
Library actabpanel
Tag class com.actuate.activeportal.tags.tabpanel. TabMiddle
Attributes There are no attributes for this tag. Place the desired code as the body of the tag.

Used in <context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp
<context root>\private\jobs\selectjobscontent.jsp
<context root>\private \newrequest\newrequestpage.jsp
<context root>\private\options\optionspage.jsp

Example The following example specifies the color, width, alignment, and other attributes
of unselected tabs:

<ui:tabMiddles
<TD bgcolor="#31659C" width=7> </TD>
<TD bgcolor="#31659C" class="cellSidebar" valign="center"
nowrap="nowrap">
<A href="<%= request.getContextPath() %>/{2}"
class="1nkSidebar">{0}
</TD>
<TD bgcolor="#31659C" width=7> </TD>
</ui:tabMiddles>

152 Information Console Developer Guide

tabMiddleSelected

tabMiddleSelected

Library
Tag class
Attributes

Used in

Example

Specifies HTML or JSP code to execute for the currently selected tab.

actabpanel

com.actuate.activeportal.tags.tabpanel. TabMiddleSelected

There are no attributes for this tag. Place the desired code as the body of the tag.

<context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp

<context root>\private\jobs\selectjobscontent.jsp
<context root>\private \newrequest\newrequestpage.jsp
<context root>\private\options\optionspage.jsp

The following example specifies the color, width, alignment, and other attributes
of the selected tab:

<uil:tabMiddleSelected>
<TD bgcolor="#31659C" width=7> </TD>
<TD bgcolor="#31659C" class="cellSidebarSelected"
nowrap="nowrap">
<A href="<%= request.getContextPath() %>/{2}"
class="1nkSidebarSelected">{0}
</TD>
<TD bgcolor="#31659C" width=7> </TD>
</ui:tabMiddleSelected>

tabPanel

Library
Tag class
Attributes

Defines a tab panel and the pages associated with each tab. The tabPanel tag
contains other tags from the actabpanel library that specify different parts of the
tab panel.

actabpanel
com.actuate.activeportal.tags.tabpanel. TabPanelTag

Table 7-13 lists and describes the attributes for tabPanel.

Table 7-13 Attributes for tabPanel

Attribute Required Description
content No Specifies any HTML attributes to apply to the page
Attribute part of the HTML table if style=vertical.

(continues)

Chapter 7, Actuate Information Console custom tags 153

tabPanel

Example
subpage=<tab key>:
<ui:tabPanel
</ui:tab>
</ui:tab>
154

Table 7-13 Attributes for tabPanel (continued)
Attribute Required Description
defaultTab No The key of the tab to select if selectedTab is null. If
selectedTab and defaultTab are unspecified, the
first tab becomes the selected tab.
flush No Specifies whether the server should start writing
the server response before processing the entire
page.
selectedTab No Specifies the key of the desired tab. This causes
highlighting of the selected tab and display of the
page associated with the tab.
selected No Specifies the parameter name that URIs use to
Tab specify the key of the desired tab.
Parameter
style No Specifies whether the tab panel is horizontal or
vertical.
tabAttribute No Specifies any HTML attributes to apply to the tab
part of the HTML table if style=vertical.
tableAttribute No Specifies any HTML attributes to apply to the

nested HTML table containing the tabs.

Used in <context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp
<context root>\private\jobs\selectjobscontent.jsp
<context root>\private \newrequest\newrequestpage.jsp
<context root>\private\options\optionspage.jsp

The following example creates a tab panel with four tabs. The _completed tab is

chosen by default and URLs can specify the tab desired by using

selectedTabParameter="subpage" defaultTab="_completed" >
<ui:tab key="_scheduled">

<bean:message key="TAB SCHEDULES"/>

<ui:content page="scheduledjob.jsp"/>

<ui:tab key="_ pending" >
<bean:message key="TAB PENDING"/>
<ui:content page="pendingjob.jsp"/>

<ui:tab key="_ running" >
<bean:message key="TAB RUNNING"/>
<ui:content page="runningjob.jsp"/>

Information Console Developer Guide

tabSeparator

</ui:tab>
<ui:tab key=" completed" >
<bean:message key="TAB_ COMPLETED"/>
<ui:content page="completedjob.jsp"/>
</ui:tab>
</ui:tabPanels>

tabSeparator

Specifies HTML or JSP code to execute between defining each adjacent pair of
tabs.

Library actabpanel
Tag class com.actuate.activeportal.tags.tabpanel. TabSeparator
Attributes There are no attributes for this tag. Place the desired code as the body of the tag.

Used in <context root>\private\common\errors\error.jsp
<context root>\private\common\sidebar.jsp

Example The following example specifies the inclusion of several images to create a
dividing line between the tabs:

<ui:tabSeparators>
<TR style="width: 100%">
<TD colspan=3>
<img src="<html:rewrite page="/images/horzstretch.gif"/>
"width=100% height=8 border=0>
</TD>
</TR>
<TR style="width: 100%">
<TD colspan=3>
<img src="<html:rewrite page="/images/horzline.gif"/>"
width=100% height=1 border=0>
</TD>
</TR>
</ui:tabSeparators>

Chapter 7, Actuate Information Console custom tags 155

tabSeparator

156 Information Console Developer Guide

Actuate Information
Console JavaBeans

This chapter contains the following topics:

Information Console JavaBeans overview
Information Console JavaBeans package reference
Information Console JavaBeans class reference

Information Console UserInfoBean class reference

Chapter 8, Actuate Information Console JavaBeans 157

Information Console JavaBeans overview

This section describes the Information Console JavaBeans. Information Console
JavaBeans provide functionality, business logic, and dynamic content to
Information Console web applications. Information Console JavaBeans are in
aciportal.jar, which resides in <context root>\WEB-INF\lib.

The Javadoc is provided for the JavaBeans in <Actuate product root>\iHub2
\servletcontainer \mgmtconsole\help\api. Refer to the Javadoc for a list of
JavaBean methods and their arguments.

Information Console JavaBeans package reference

Table 8-1

Table 8-1 lists and describes the Actuate packages used in Information Console.

Information Console packages

Package

Contents

com.actuate

JavaBeans that maintain information used by the Action

.activeportal.beans classes.

com.actuate

JavaBeans derived from the Jakarta Struts

.activeportal.forms org.apache.struts.action. ActionForm object. These JavaBeans

com.actuate

store and validate the request parameters in HTTP requests.
An interface, IContentList, that defines the behavior of lists of

.activeportal.list items such as files and channels. Several classes in

com.actuate.activeportal.forms use this interface.

Information Console JavaBeans class reference

This section lists and describes the Information Console JavaBean classes by topic.

Channels

Table 8-2 lists and describes Information Console com.actuate.activeportal.forms
classes that support channels.

Table 8-2 Channel classes

Class Description

ChannelListAction Provides the list of channels to which the user subscribes or
Form has available.

158 Information Console Developer Guide

Table 8-2 Channel classes

Class Description
GeneralFilter Serves as a base ActionForm for several other ActionForms.
ActionForm Provides methods that handle filters to select which items the

Actuate BIRT iHub returns. For example, you can request all
folders and only the most recent version of all executable files.

SubscribeChannel Stores a list of channels available to the user, including
ActionForm unsubscribed channels.

Documents

Table 8-3 lists and describes Information Console com.actuate.activeportal.forms
classes that support the Document pages.

Table 8-3 Document classes
Class Description
BrowseFileActionForm Supports browsing through the available files, including using

filters to search.
CreateFolderActionForm Supports creating a folder in the Encyclopedia volume.

FileFoldersPrivilegeAction Stores information about file and folder access rights, the
Form available users and roles, and so forth. Information Console
uses this information to set up file and folder privileges.

FileListActionForm Retrieves a list of folders or files. This ActionForm supports
setting filters specifying characteristics of objects. Stores the
most recent list of items returned from iHub.

GeneralFilterActionForm The base ActionForm for several other ActionForms. Provides
methods that handle filters to select which items the iHub
returns. For example, you can request all folders and only the
most recent version of all executable files.

GetFileDetailsActionForm Stores the details of a file or folder. AcGetFileDetailsAction
gets the details and stores them in this JavaBean.

SearchFilesActionForm Stores information about the filter set by the user in the Search
page. Jakarta Struts uses the filter to retrieve the list of files
from the iHub and store them in this form.

Chapter 8, Actuate Information Console JavaBeans 159

General

Table 8-4 describes the Information Console com.actuate.activeportal.beans class
that supports general functionality.

Table 8-4 General bean class
Class Description
LinkBean Generates an HTML link tag using the link, linkAttributes,

and text properties. By default, the link class is hyperlink.
After setting these properties, use the toString() method to
generate an HTML link tag in the following format:

<A HREF="1link" linkAttributesstext

Table 8-5 lists and describes Information Console com.actuate.activeportal.forms
classes that support general functionality.

Table 8-5 General forms classes
Class Description
BaseActionForm The base ActionForm for all other Information Console

PingActionForm

ActionForms. Provides methods related to postback.

Stores information used by the ping action. Ping detects the
status of Information Console and iHub communication.

Jobs

Table 8-6 lists and describes Information Console com.actuate.activeportal.forms
classes that support jobs.

Table 8-6 Job classes

Class

Description

GeneralFilterActionForm

GetJobDetailsActionForm

JobActionForm

Serves as a base ActionForm for several other ActionForms.
Provides methods that handle filters to select which items the
iHub returns. For example, you can request all folders and
only the most recent version of all executable files.

Stores detail information on jobs. AcGetJobDetailsAction uses
this class to store and retrieve the job detail information for
display.

The base ActionForm for SubmitJobActionForm. Stores values
used in submitting a job, such as the document, parameters,
and schedule.

SelectJobNoticesActionForm Stores the list of job notices for a channel.

160 Information Console Developer Guide

Table 8-6 Job classes

Class

Description

SelectJobsActionForm

SubmitJobActionForm

Contains the list of job properties for a scheduled, running,
pending, or completed job.

Contains the information for submitting a job from the
requester page. This class extends JobActionForm.

Skins

Table 8-7 lists and describes Information Console com.actuate.activeportal.beans
classes that support skins.

Table 8-7 Skin bean classes

Class

Description

GroupBean

SkinBean

SkinManagerInfoBean

Stores lists of all images, colors, fonts, and styles for a skin.
Each list is a list of SkinBean objects.

Stores information about an image, style, color, or font. The
information for this JavaBean comes from a <Style> or
<Image> tag in the skin.config file for a skin. Access this
information using the getStyle() or getlmage() methods.
SkinBeans are grouped into GroupBeans for each skin.

Stores access information about a skin. Used by the
SkinManagerActionForm.

Table 8-8 lists and describes Information Console com.actuate.activeportal.forms
classes that support skins.

Table 8-8 Skin form classes

Class

Description

FileUploadActionForm

SkinEditorActionForm

SkinManagerActionForm

Uploads images during skin customization and stores an
object representation of the uploaded file. It uses Jakarta Struts
org.apache.struts.upload.FormkFile to handle file upload. The
file is saved in a temporary folder on the server.

Stores all the information about the various groups defined in
the skin.config file. When an administrator edits a skin,
Information Console loads the skin.config file and represents
its contents as a SkinConfig object. Changes to the skin’s
images, color, and fonts are stored in GroupBeans for a skin.

Stores the list of available skins. Use the getSkin() method to
get the list of skins as a Vector of SkinManagerInfoBean. This
form supports adding, cloning, and deleting skins.

Chapter 8, Actuate Information Console JavaBeans 161

Users

Table 8-9 lists and describes Information Console com.actuate.activeportal.beans
classes that support handling users.

Table 8-9 User bean classes
Class Description
FeatureOptionsBean Stores the features available to the current user. It contains

Information Console functionality levels and reporting
features on the iHub the user is using. Access this class using
UserInfoBean.getFeatureBean().

ProfileBean Stores the user profile settings obtained from the iHub. Access
this class by using UserInfoBean.getProfile().

UserAgentBean Detects what kind of browser the user is using from the HTTP
header user-agent. After instantiating this JavaBean, you must
call setRequest(HttpServletRequest request). Get the browser
type by calling isIE(), isNS4(), and isNS6() methods.

UserInfoBean Contains information about the user, such as the user’s
Encyclopedia volume name, iHub URL, preferred skin, and
authentication ID assigned by the iHub. Several methods also
affect the display and highlighting of features.

Table 8-10 lists and describes Information Console com.actuate.activeportal.forms
classes that support handling users.

Table 8-10 User form classes
Class Description
LoginForm Stores information about the user ID, server URL, volume,

and other information specified during login.

UserOptionsActionForm Stores the selected choices on the options page, including the
skin, view, experience level, and e-mail ID. This form supports
changing these options.

Information Console UserinfoBean class reference

Table 8-11 lists and describes the methods other than set methods available in the
Information Console com.actuate.activeportal.beans.UserInfoBean class.

162 Information Console Developer Guide

Table 8-11 UserinfoBean methods

Method Description

getAcLocale() Gets the AcLocale object specifying the Actuate locale for the
current user.

getAdminRights() Gets the administrator rights of the current user. If the user is
not an administrator or operator, this method returns null. An
administrator or application sets these rights when creating a
user.

getAuthid() Gets a String containing the authentication ID returned by the
iHub for this user during login. Use this authentication ID in
IDAPI calls.

getCurrentfolder() Gets a string containing the name of the most recent folder

getDefaultServerURL()
getDefaultVolume()
getFeatureOptionsBean()
getFeatures()

getFilter()

getHomefolder()

getlportalid()
getLocale()
getMaxJobPriority()

getOnlylatest()

getPassword()

accessed by the user.

Gets a string for the URL to use for the default server for the
user.

Gets the volume name from the VOLUME_DEFAULT tag in
<context root>\WEB-INF\web.xml.

Gets a JavaBean that stores the features and iHub options that
are available to the current user.

Gets a list of all features defined in the
functionality-level.config file.

Gets a string containing the filter the user most recently typed
into the search field of the Documents page. If the user has not
typed a filter, this method returns null.

Gets a string specifying the user’s home folder. An
administrator or application sets this value when creating a
user.

Gets a string specifying the Information Console session id.
Gets the current login user’s java.util. Locale object.

Gets the maximum job priority permitted for this user. An
administrator or application sets this value when creating a
user.

Gets the string “true” if the filter on the Documents page
specifies showing only the most recent version of each file.

Gets a string containing the user’s password.

(continues)

Chapter 8, Actuate Information Console JavaBeans 163

Table 8-11

UserinfoBean methods (continued)

Method

Description

getProfile()

getProperty(java.lang
.String name)

getRepositoryType()

getRoleNames()

getServerurl()

getShowdocuments()
getShowexecutables()
getShowfolders()

getSideBarFeatures()

getSidebarSelected()

getSkinConfig()

getSkinName()
getSubfeatures()

getSystemname()

Gets the ProfileBean. This JavaBean stores information about
the user’s settings on the Information Console options page.
This information includes current skin, view, experience level,
and so on.

Gets a string containing the value of a custom property having
the name passed as a parameter. Create custom properties and
set their values using setProperty().

Gets a string specifying the type of repository that the user is
accessing as:

workgroup: local file system

enterprise: an Encyclopedia volume

Gets an array of strings containing a list of the user’s feature
roles, such as Actuate Information Console Intermediate,
Actuate Information Console Advanced, or Actuate
Information Console Administrator.

Gets the URL of the server to which the current user is logged
in. This URL includes the protocol and the port. For example:
http:/ /localhost:9000.

Gets the string “true” if the filter on the Documents page
specifies including documents.

Gets the string “true” if the filter on the Documents page
specifies including executable files.

Gets the string “true” if the filter on the Documents page
specifies including folders.

Gets the list of features available to this user on the side menu,
tabs, the tree, or equivalent structure. Some features, such as
customization, are not part of this set.

Gets the URL for the feature selected on the side menu, tab,
tree, or equivalent structure. This method is used to highlight
a feature in the sidebar.

Gets the SkinConfig object for the user’s current skin. The
SkinConfig object contains all information defined for the
skin.

Gets a string containing the name of the skin used by the user.

Gets a collection containing a list of all subFeatures defined in
<context root>\WEB-INF\ functionality-level.config.

Gets a string containing the name of the iHub machine.

164 Information Console Developer Guide

Table 8-11 UserinfoBean methods (continued)

Method Description

getTimezone() Gets the AcTimeZone object specifying the time zone for the
current user.

getUserAgent() Gets the UserAgentBean object for the user. UserAgentBean
detects the user’s browser type.

getUserid() Gets the userID of the current user.

getView() Gets the string specifying the current view for this user.

getVolume() Gets the string specifying the Encyclopedia volume that the
user is accessing.

init() Initializes the UserInfoBean members.

isAlwaysGetFolderList()
isHomeFolderSet()
isShowFilters()
isViewInNewBrowser

Window()
toString()

Returns True if the Documents page should always show the
folder list, even if it is not selected on the filter.

Returns True if the user has a home folder specified in the
Encyclopedia volume.

Returns True if the filter panel is shown for all lists of
documents, jobs, and channels.

Returns True if the report viewer is specified to launch in a
new browser window.

Returns a string representation of the object.

UserInfoBean calls set methods when the user logs in to set the values that the get
methods return. Typically, your application should not call the set methods as the
bean would then be inconsistent with the information stored in the repository or
external security application. These set methods only change the values in the
bean, so the results of the calls are not deterministic.

Table 8-12 lists and describes set methods that are available in the Information
Console com.actuate.activeportal beans.UserInfoBean class.

Table 8-12

UserinfoBean set methods

Method

Description

setAcLocale(com.actuate.

reportcast.utils.AcLocale
acLocale)

setAlwaysGetFolderList
(boolean b)

Sets the Actuate locale for the current user with the specified
AcLocale object. Also changes the Java locale.

Set to True if the Documents page should always show the

folder list, even if it is not selected on the filter.

(continues)

Chapter 8, Actuate Information Console JavaBeans 165

Table 8-12

UserinfoBean set methods (continued)

Method

Description

setAuthid(java.lang.String
authid)

setCurrentfolder(java.lang
String currentfolder)

setDefaultServerURL(java
Jang.String
defaultServerURL)

setDefaultVolume(java.lang
.String defaultVolume)

setFeatureOptions
(FeatureOptionsBean
featureOptionsBean)

setFilter(java.lang.String
filter)

setHomefolder(java.lang
String string)

setMax]JobPriority(int
priority)

setOnlylatest(java.lang
.String onlylatest)

setPassword(java.lang
String password)

setProfile()

setProperty(java.lang.String
name, java.lang.String
value)

Sets the authentication ID to the string passed in as a
parameter. The authentication ID is returned by the Actuate
BIRT iHub and set for the user during login. Use getAuthid()
to use this authentication ID in IDAPI calls.

Sets the string specifying the most recent folder name accessed
by the user.

Sets the URL to use as a default value for users.

Sets the volume to use if no volume name is specified by the
URL in the request. By default, Information Console sets the
default volume to the value in the VOLUME_DEFAULT tag in
<context root>\WEB-INF\web.xml.

Sets a list of all Information Console features and iHub
options that are available to the current user.

Sets the string specifying the filter to use as a default value in
the Documents page. Information Console sets this String to
the filter that the user most recently typed into the search field
of the Documents page.

Sets the string specifying the user’s home folder. An
administrator or application sets this value when creating
a user.

Sets the maximum job priority permitted for this user. An
administrator sets this value for a user.

Sets value to indicate if only latest version of the documents
are to be displayed in the file folder list. “true” sets
Information Console to show only the most recent version of
each file.

Sets the password to the value of the string passed as a
parameter.

Sets the ProfileBean. This JavaBean stores information about
the user’s settings on the Information Console options page.
This information includes current skin, view, experience level,
and so on.

Sets the value of a custom property. Create custom properties
and set their values using this method. The parameters are the
name of the custom property and the value to set.

166 Information Console Developer Guide

Table 8-12 UserinfoBean set methods (continued)

Method

Description

setRoleNames(java.lang
String[] strings[])

setServerurl(java.lang
String surl)

setShowdocuments(java
Jang.String
showdocuments)

setShowexecutables(java
Jang.String
showexecutables)

setShowFilters(boolean
showFilters)

setShowfolders(java.lang
.String showfolders)

setSideBarFeatures(com
.actuate.activeportal
functionality.config
.Feature[] feature)

setSidebarSelected(java.lang
String sideBarSelected)

setSkinConfig(com.actuate
.activeportal.skin
SkinConfig config)

setSkinName(java.lang
String string)

setSystemname(java.lang
String systemName)

Sets a list of the user’s feature roles, such as Active Portal
Intermediate, Active Portal Advanced, or Active Portal
Administrator.

Sets the server URL currently used by the user. This URL
includes the protocol and the port, for example:
http:/ /localhost:9000.

Sets the value to indicate if documents are to be displayed in
the file folder list. “true” sets Information Console to display
documents.

Sets the value to indicate if executables are to be displayed in
the file folder list. “true” sets Information Console to display
executables.

Set to True to specify that Information Console display the
filter panel for all pages showing lists of files, jobs, or
channels.

Sets the value to indicate if folders are to be displayed in the
file folder list. “true” sets Information Console to display
folders.

Sets the list of features available to this user on the side menu,
tabs, the tree, or equivalent structure. This list is a subset of the
features available to the user.

Sets the feature highlighted on the side menu, tab, tree, or
equivalent structure. To highlight a feature, pass a string
containing the URI invoked by the feature. To not highlight
any features, pass a string, such as “No highlighting”, that
does not match the URI for any feature in the side menu. By
default, Information Console highlights the Documents
feature.

Sets the SkinConfig object for the user’s current skin. The
SkinConfig object contains all information defined for the
skin.

Sets the name of the skin used by the user.
Sets the iHub system name to the value of the string

parameter.
(continues)

Chapter 8, Actuate Information Console JavaBeans 167

Table 8-12 UserinfoBean set methods (continued)

Method

Description

setTimezone(com.actuate
.reportcast.utils
.AcTimeZone timezone)

setUserAgent
(UserAgentBean userAgent)

setUserid(java.lang
.String userid)

setView(java.lang.String
string)

setViewInNewBrowser
Window(boolean
_newWindow)

setVolume(java.lang
.String volume)

Sets the AcTimeZone object specifying the user’s time zone.

Sets the UserAgentBean for this user. The UserAgentBean
specifies the user’s browser type.

Sets the user ID for the user.

Sets the current view for the user. The string contains the name
of the constant for the desired view. The available constants
are:

m AcConstants.VIEW_CATEGORY
m AcConstants.VIEW_LIST

m AcConstants.VIEW_DETAIL

m AcConstants.VIEW_ICON

Set to True to specify that the report viewer launch in a new
browser window.

Sets the value of the string specifying the name of the
Encyclopedia volume the user is accessing.

168 Information Console Developer Guide

Using Actuate Information
Console security

This chapter contains the following topics:

m About Actuate Information Console security
m Protecting corporate data

m Understanding the authentication process

m Creating a custom security adapter

m Creating an upload security adapter

Chapter 9, Using Actuate Information Console security 169

About Actuate Information Console security

A reporting web application is accessible to any user who has a web browser and
the URI for the application. This chapter discusses the Actuate Information
Console security features and how to use them to:

m Ensure that users access only those objects in the Encyclopedia volume for
which they have permission.

m Protect sensitive reports.
The types of security you can provide for Information Console are:

m Default user authentication. Use the default Information Console and Actuate
BIRT iHub facilities to ensure that users access only those reports and other
Encyclopedia volume items for which they have permission.

m User authentication using the Information Console Security Extension (IPSE).
Use IPSE to customize and control the user login and authentication process.
For details about implementing custom user authentication, see “Creating a
custom security adapter,” later in this chapter.

Protecting corporate data

170

iHub provides a structured content generation solution for web applications.
Deploying Actuate applications developed for the internet, such as Information
Console, requires planning for network security.

Internet applications support access to information within an organization from
outside that organization. Because the organization’s internal network is
connected to the internet, there is the risk of unauthorized access to the corporate
network and to the data that resides on that network.

Organizations use one or a combination of the technologies described in the
following sections to prevent unauthorized access to the corporate network and
protect authentication transactions from intrusion.

Protecting corporate data using firewalls

Typically companies use firewalls to prevent unauthorized access to corporate
networks and data. A firewall is a system or group of systems that restrict access
between two networks, such as an organization’s internal network and the
internet. Firewalls keep unauthorized users out. As a result, firewalls prevent
damage caused by malicious programs such as worms and viruses from
spreading to other parts of your network. At the same time, firewalls allow
legitimate business to tunnel through the firewall and be efficiently conducted on
your network.

Information Console Developer Guide

Firewalls can be used to restrict access between two internal networks, for
example, the accounting and engineering networks. Security teams configure
firewalls to allow traffic using specific protocols, such as HTTP, over specific
network addresses and ports. Be sure that your firewall allows access for the
Information Console and iHub ports For more information about the Actuate
ports, see Configuring BIRT iHub.

Protecting corporate data using Network Address
Translation

Companies also use Network Address Translation (NAT). NAT routers and
software support private networks using unregistered, private IP (Internet
Protocol) addresses to connect to the internet.

Protecting corporate data using proxy servers

Proxy servers, specialized web servers or hardware that operate on or behind a
tirewall, improve efficient use of network bandwidth and offer enhanced network
security. For more information about proxy servers and Information Console, see
Chapter 1, “Introducing Actuate Information Console.”

Understanding the authentication process

The authentication process involves the following steps, in this order:

m A user or client makes a request by choosing a link on an Information Console
page or by typing an Actuate Information Console URI in a web browser. The
Information Console application processes the request.

m Information Console checks the URI for the forceLogin parameter. If the
forceLogin parameter is set to “true” in the URI, the application activates the
Information Console Login page, even if the user has already logged in. If
forceLogin is set to “false” or does not appear, the request process continues.
For details about the forceLogin URI parameter, see “Common URI
parameters” in Chapter 4, “Actuate Information Console URIs.”

m Information Console authenticates the user for the Encyclopedia volume. If
the login information is invalid, the login screen appears in the browser.

If a custom security adapter parameter is set in the web.xml file, Information
Console attempts to load the custom security adapter class. If the class loads
successfully, the following steps occur:

m Information Console calls the custom security adapter’s authenticate()
method with the parameters that the browser sent.

m The authenticate() method performs the custom validation.

Chapter 9, Using Actuate Information Console security 171

» Information Console calls the required getUserName(), getPassword(),
and getVolumeProfile() methods to retrieve the user information needed
by the iHub.

m Optionally, Information Console calls the getExtendedCredentials()
method. If this method returns null, there are no extended credentials to
send to the iHub.

» Information Console now has all the information that it requires for
connecting to the iHub. Information Console creates the necessary SOAP
message for connecting to the iHub and sends a login request.

Information Console uses the default Volume Profile setting if the server, volume,
or volume profile

Creating a custom security adapter

172

The Information Console security adapter enables other applications to
authenticate users and log in to the Information Console application, for example,
by using a URL. A custom security adapter can define alternate authentication
requirements. In this way, an Information Console security adapter establishes an
additional layer of logic to the existing Information Console authentication, as
shown in Figure 9-1.

Security
adapter
configured?

Authentication
required

Generic
Information
Console
authentication

Authenticate()

Figure 9-1 Information Console authentication system

A user cannot update their password from Information Console if a custom
security adapter class is set. In this way, Information Console prevents conflicts
between the user’s current password and the security system that is used to
verify passwords.

To create a custom security adapter, perform the following steps:

m Ensure that your application can access the IPSE Java classes.

Information Console Developer Guide

m Create a java class that implements the custom security adapter class for IPSE.

m Deploy the Custom Security Adapter to Information Console.

Accessing the IPSE Java classes

The Information Console library, com.actuate.iportal jar, contains the IPSE Java
classes. This library is located in the lib subdirectory in the Information Console
installation. The class, com.actuate.iportal.security.iPortalSecurity Adapter, in this
library provides the framework for custom authentication. A custom security
adapter providing an IPSE implementation extends this class.

Specifically, the JRE needs to access the following jars:

= <context root>\WEB-INF\lib\com.actuate.iportal jar

= <context root>\WEB-INF\lib\org.apache.xerces_<version> jar
m <context root>\WEB-INF\lib\com.actuate.webcommon.jar

m <iPortal installation directory>\lib\servlet-api.jar

m <iPortal installation directory>\lib\jsp-api.jar

Creating a custom security adapter class

Extend the iPortal Security Adapter class to customize authentication. The iPortal
Security Extension requires access to the following libraries:

m javax.servlet.http.*
m com.actuate.iportal.security.iPortalSecurity Adapter

iPortalSecurity Adapter provides a set of empty methods. Extend this class and
override any of the methods to provide custom IPSE authentication. To establish a
secure session with Information Console using a custom security adapter, the
following methods are required:

m A constructor

m authenticate()
m getPassword()
m getUserName()

The login module of Information Console calls methods in the custom security
class to perform authentication and to retrieve login credentials to pass to iHub.
The authenticate() method returns a boolean value to indicate whether the login
credentials provided are acceptable. The getter methods return the credentials
that iHub requires. Each user name and password must correspond to an
authentic user account on the volume configured by the volume profile. If a
volume profile isn’t set by the security adapter, authentication uses the default

Chapter 9, Using Actuate Information Console security 173

174

volume profile configuration. For example, to support a URL that authenticates
using a single parameter, code, override authenticate() to retrieve the parameter
from the HttpServletRequest and set the user name, password, and volumeProfile
as in the following class:

import javax.servlet.http.*;
import com.actuate.iportal.security.iPortalSecurityAdapter;

public class SecurityCode extends
com.actuate.iportal.security.iPortalSecurityAdapter {
private String volumeProfile = "CustomAccess";
private String userName = null;
private String password = null;
public SecurityCode() {}

public boolean authenticate(
HttpServletRequest httpservletrequest) {
String param = httpservletrequest.getParameter ("code") ;
boolean secured = true;

if ("12345".equalsIgnoreCase(param)) {
userName = "userl";
password = "userl";

}

else if ("abc".equalsIgnoreCase(param)) {
userName = "BasicUser";
password = "";

}

else {

secured = false;

}

return secured;

}

public String getUserName() { return userName; }
public String getPassword() { return password; }
public String getVolumeProfile() { return volumeProfile; }

}

If there is a user "user1" with the password "userl" on the volume configured by
the volume profile "CustomAccess," a valid URL that authenticates userl using
this security adapter is as follows:

http://localhost:8700/iportal/getfolderitems.do?code=12345

Deploying a custom security adapter

To deploy a custom security adapter, the Information Console application must
have access to the class compressed into a JAR file. To meet this requirement,
compile the class, compress it into a JAR, and move it into the <context root>
\WEB-INF\Ilib directory for your Information Console application. Then, add the

Information Console Developer Guide

Syntax

Parameters

Description

class’s name as the value for the SECURITY_ADAPTER_CLASS parameter in
<context root>\WEB-INF\web.xml. Finally, restart the application service
running Information Console to activate this change.

How to deploy a custom security adapter to Information Console

1 Compile the IPSE application. Use a command similar to this one in a console
window:

javac SecurityCode.java

2 Create a JAR file to contain the IPSE application. Use a command similar to
this one in a console window:

jar cvf SecurityCode.jar SecurityCode.class

3 Using Windows Explorer, copy SecurityCode jar to this directory:
<your application context root>\WEB-INF\lib

4 Using a UTF-8 compliant code editor, open the following file:
<your application context roots>\WEB-INF\web.xml
Navigate to the parameter name SECURITY_ADAPTER_CLASS.

Change the param-value parameter of the SECURITY_ADAPTER_CLASS to
the fully qualified class name for the security adapter class. Use an entry
similar to this one:

<param-name>SECURITY ADAPTER CLASS</param-names
<param-value>SecurityCode</param-value>

Save and close web.xml.

Restart the application server running Information Console. For the default
installation, restart the Actuate 11 Apache Tomcat for Information Console
Service.

Understanding the security adapter class

To implement a custom security adapter, create a class that extends
com.actuate.iportal.security.iPortalSecurity Adapter. This class contains the
following methods.

authenticate()
boolean authenticate(javax.servlet.http.HttpServietRequest request)

request
The request parameter sent from the Information Console web application.

Required method that evaluates the current user’s security credentials. The Login
module calls authenticate() to validate the current user’s security credentials. If
authenticate() returns False, the user is redirected to the login page.

Chapter 9, Using Actuate Information Console security 175

Returns

Throws

Syntax
Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

176

True for successful credential evaluation and False otherwise.

An AuthenticationException indicating the reason for the failure, if credential
evaluation is not successful.

getExtendedCredentials()
byte[] getExtendedCredentials()
Retrieves the current user’s extended security credentials.

A byte array representing any extended credentials for the iHub to use to
authenticate the user, or null if there are no extended credentials to evaluate.

getPassword()
String getPassword()

Required method that retrieves the current user’s password. The Login module
calls getPassword() and uses the password to establish a connection to the iHub
and to access the Encyclopedia volume.

A string that is the password to use to establish the connection.

getRepositoryType()
String getServerUrl()

Retrieves the repository type. The Login module calls this method to check the
repository type. Alternatively, provide isEnterprise().

A string that indicates the repository type. The repository type for iHub is
enterprise.

getRunAsUser()
String getRunAsUser()

Retrieves the runAs setting if the runAs is enabled. The Login module calls this
method to retrieve the user name used for a run as operation.

A string containing the user name that corresponds to the runAs user setting.

getServerUrl()
String getServerUrl()

Retrieves the URL of the server to which the current user connects. The Login
module calls getServerURL().

A string containing the URL for the iHub currently connected.

Information Console Developer Guide

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

Syntax

Description

Returns

getUserHomeFolder()
String getUserHomeFolder()

Retrieves the current user’s home folder. The Login module calls
getUserHomeFolder() to access the user’s files.

A string that is the user’s home folder. It is null if there is no home folder for the
user.

getUserName()
String getUserName()

Required method that retrieves the current user’s login name. The Login module
calls getUserName() to establish a connection to the iHub and to access the
Encyclopedia volume.

A string containing the user name that the iHub recognizes.

getVolume()
String getVolume()

Retrieves the volume to which the current user connects. The Login module calls
getVolume() to retrieve the name of the Encyclopedia volume to which the user
wishes to connect.

A string containing the domain and volume name for the Encyclopedia volume to
which the user connects to through the iHub. If null, the iHub connects to the
default volume, read from the DEFAULT_VOLUME parameter in the Information
Console web.xml file.

getVolumeProfile()
String getVolumeProfile()

Required method that retrieves the volume profile to which the current user
connects. The Login module calls getVolumeProfile() to retrieve the name of the
volume profile to which the user wishes to connect.

A string containing the server profile name for the Encyclopedia volume to which
the user connects through the iHub.

isEnterprise()
boolean isEnterprise()

Evaluates whether the user connects to an Encyclopedia volume. The Login
module calls isEnterprise() to determine whether to use an Encyclopedia volume
repository.

True.

Chapter 9, Using Actuate Information Console security 177

Creating an upload security adapter

The default security for Information Console upload functionality checks a file’s
type against the value of the UPLOAD_FILE_TYPE_LIST parameter in web.xml.
The Information Console upload security adapter provides additional external
verification features for the file upload feature using a Java interface,
com.actuate.iportal.security.lUploadSecurity Adapter.

Information Console upload security adapter establishes an additional layer of
logic to the existing Information Console authentication, as shown in Figure 9-2.

Is upload
security
configured?

Upload
requested

Is file type in
UPLOAD_FILE_

No o s
isFileTypeAllowed() TYPE_LIST~

l Yes
J] Yes

No - Yes Execute
getErrorMessage() |<=— verifyFile() = upload
Figure 9-2 Information Console upload security system

If an upload security adapter is configured, Information Console calls
isFileTypeAllowed to check whether the file’s file type is allowed. If so, then it
calls verifyFile to perform any additional verification steps. If either
isFileTypeAllowed or verifyFile returns false, Information Console displays an
error message supplied by getErrorMessage, or a generic message if
getErrorMessage returns null.

To create an upload security adapter, perform the following steps:
m Ensure that your application can access the necessary Java classes.
m Create a Java class that implements the upload security adapter interface.

m Deploy the upload security adapter class to Information Console.

178 Information Console Developer Guide

Accessing the necessary Java classes

The Information Console library, com.actuate.iportal jar, contains the security
extension Java classes. This library is located in the lib subdirectory of the
Information Console installation. The upload security adapter interface,
com.actuate.iportal.security.lUploadSecurity Adapter, in this library provides the
framework for additional upload security. A valid upload security adapter
implements this interface.

Specifically, the JRE needs to access the following jars:

= <context root>\WEB-INF\lib\com.actuate.iportal jar

m <context root>\WEB-INF\lib\org.apache.xerces_2.9.0.v201005080400.jar
m <iPortal installation directory>\lib\servlet-api.jar

m <iPortal installation directory>\lib\jsp-api.jar

Creating a custom security adapter class

Implement the upload security adapter interface to customize file verification.
The upload security adapter requires access to the following libraries:

m javax.servlet.http.HttpServletRequest
m javax.servlet.ServletContext
m com.actuate.iportal.security

To process a secure upload request from Information Console using an upload
security adapter, the following methods are required:

m getErrorMessage()
m isFileTypeAllowed()
m verifyFile()

For example, to prevent any file type except plain text (.txt) from being uploaded,
implement txt as the only valid file type for isFileTypeAllowed, as in the
following class:

package com.actuate.iportal.security;
import javax.servlet.ServletContext;
import javax.servlet.http.HttpServletRequest;

public class SecureUpload implements IUploadSecurityAdapter {

public boolean isFileTypeAllowed(HttpServletRequest request,
String fileType) {
if (fileType == null) return false;
if (fileType.toLowerCase() .trim() .equals("txt")) return true;

Chapter 9, Using Actuate Information Console security 179

else return false;

}

public boolean verifyFile (HttpServletRequest request, String
fileName, String dstFolder) {
return true;

}

public String getErrorMessage (HttpServletRequest request) {
String message = "Only plain text (.txt) files are permitted.";
return message;

}
}

When the upload security adapter requires file validation, Information Console
copies the file temporarily into the directory specified by
TEMP_FOLDER_LOCATION parameter in web.xml.

Deploying an upload security adapter

To deploy an upload security adapter, the Information Console application must
have access to the class compressed into a JAR file. To meet this requirement,
compile the class, compress it into a JAR, and move it into the <context root>
\WEB-INF\Iib directory for your Information Console application. Then, add the
class’s name as the value for the UPLOAD_SECURITY_ADAPTER parameter in
<context root>\WEB-INF\web.xml. Finally, restart the application service
running Information Console to activate this change.

How to deploy an upload security adapter to Information Console

1 Compile the Upload security application. Use a command similar to this one
in a console window:

javac SecureUpload.java

2 Create a JAR file to contain the upload security application. Use a command
similar to this one in a console window:

jar cvf SecureUpload.jar SecureUpload.class

3 Using Windows Explorer, copy SecureUpload jar to this directory:
<your application context root>\WEB-INF\lib

4 Using a UTF-8 compliant code editor, open the following file:
<your application context root>\WEB-INF\web.xml

5 Navigate to the parameter name UPLOAD_SECURITY_ADAPTER.

180 Information Console Developer Guide

Syntax

Parameters

Description

Returns

Syntax

Parameters

Description

Returns

Syntax

6 Change the param-value parameter of the UPLOAD_SECURITY_ADAPTER
to the fully-qualified class name for the upload security adapter class. Use an
entry similar to this one:

<param-name>UPLOAD SECURITY ADAPTER</param-name>
<param-value>SecureUpload</param-value>

Save and close web.xml.

Restart the application server running Information Console. For the default
installation, restart the Actuate 11 Apache Tomcat for Information Console
Service.

Understanding the upload security adapter interface

To implement a custom upload security adapter, create a class that implements
the com.actuate.iportal.security.IlUploadSecurity Adapter interface. This interface
defines the following methods.

getErrorMessage()
String getErrorMessage(javax.servlet.http.HttpServiletRequest request)

request
The request parameter sent from the Information Console web application.

A method that returns a custom error string when either isFileTypeAllowed or
verifyFile returns False.

String. An error message. If null, Information Console displays a generic default
error message.

isFileTypeAllowed()

boolean isFileTypeAllowed(javax.servlet.http.HttpServletRequest request, string
fileType)

request
The request parameter sent from the Information Console web application.

fileType
String. The type of the upload file, as determined by file extension.

A required method used to do additional validation of the upload file.

Boolean. True for an allowed file type and False otherwise.
verifyFile()

boolean verifyFile(javax.servlet.http.HttpServletRequest request, string filePath,
string dstPath)

Chapter 9, Using Actuate Information Console security 181

Parameters request
The request parameter sent from the Information Console web application.

filePath
String. The path of the file stored on Information Console. The default location is
the directory specified by TEMP_FOLDER_LOCATION parameter in web.xml.

dstPath
String. The repository path to which the upload sends the file.

Description A required method used to do additional validation of the upload file.

Returns Boolean. True for successful file validation and False otherwise.

182 Information Console Developer Guide

Customizing Information
Console online help

This chapter contains the following topics:

m About Actuate Information Console online help files
m Using a custom help location

m Creating a localized help collection

m Customizing icons, links, and the company logo

m Changing help content

Chapter 10, Customizing Information Console online help 183

About Actuate Information Console online help files

184

Actuate provides Information Console online help using the internet by default.
To customize online help for Information Console, install the documentation on
the local server and switch the help location for Information Console to the local
server. Then, customize the online help as needed.

How to switch the help location for Information Console for Windows
Switching the help location is required for any customization task.

1 Extract the contents of the win-lI10nandonlinedocumentation_iHub2.zip file
and run ActuateLocalizationandOnlineDocumentation.exe. Use the default
settings for documentation installation to install the help and PDF files for all
installed Actuate products.

From the Start menu, choose Programs>Actuate>Switch Help Location.

In Switch Help Location, select Use local help, as shown in Figure 10-1.

Froduct help can be accessed locally or from wws. actuate. com.

Pleaze select your preference.

i Help Location

= Use online help

Recommended. Access the help from wisw.actuate.com. It ensures you always have
the latest information.
% |lse local help

Uze a locally installed copy of the help content [may require a separate installation of
the help content]. Only needed if you do naot have an internet connection.

oK I Cancel |

Figure 10-1 Switching the help location for Information Console
Choose OK.

4 Restart the service for Information Console. For a stand-alone application, this
service is Actuate Apache Tomcat for BIRT iHub 2 Information Console
service.

Understanding the help directory structure

The local Information Console help files are grouped into directories under the
context root for Information Console, which is the home directory in which the
Actuate product resides. For example, the default context root for Information
Console installed as a component of iHub on Windows systems is

Information Console Developer Guide

<Actuate home>\iHub2\servletcontainer\iportal and on Linux systems is
<Actuate home>/iHub2 /servletcontainer/iportal. The localized help directory
under the context root is the container for the help implementation:

<context root>\help

Figure 10-2 illustrates the Information Console help directory structure.

‘ <context root>\ ‘

help\ <locale-specific
directories>

L analyzer\ 4‘ subsidiary document roots ‘

—1 api\
4{ birt\ H subsidiary document roots ‘
4{ brs\ H subsidiary document roots l

customizing-ip\

dashboards\

glossary\

images\
javascriptapi\

jsapi\

- wwhdata is ‘
wwhelp\ scripts ‘ java ‘
default.htm images ‘ common ‘

index.htm

c
@,
=
Q
<
S

wwhelp.htm
Figure 10-2 Information Console help directory structure

Actuate uses JavaScript (.js) and HTML (.html) files to implement Information
Console help. The files that support top-level help styles and images reside in the
wwhelp directory. Files that support help content pages and help navigation
reside in a document root directory. A document root contains the help files for a
specific top-level help topic, such as dashboards or glossary.

Understanding a help collection

The wwhelp directory contains files that support grouping multiple document
roots into a collection. If you open the help using index.htm, the table of contents
frame displays the top-level help topics, as shown in Figure 10-3.

Chapter 10, Customizing Information Console online help 185

186

Top-level help topic

Contents Index || Search .||Fa'u0r|tes.| .‘r-". (= .E.

Q Using Information Console . -
@ Euilding BIRT Dashboards US.fng Information Console

@ Information Console Developer Guide
e Using Actuate JavaScript API
eActuate Glossary

Using Information Consofe provides information about using
Actuate Information Console to access, create, and run files
in an Encyclopedia volume.

Figure 10-3 Appearance of top-level help topics

A collection has a one-to-one correlation between each top-level help topic and a
document root. Each top-level help topic represents a complete book. Table 10-1
lists these applications and the directory containing the corresponding help

collection.

Table 10-1 Applications and help collection directories
Application Directory
Using Information Console using-ip
Building BIRT Dashboards dashboards
Information Console Developer Guide customizing-ip
Using Actuate JavaScript API javascriptapi
Actuate Glossary glossary

The help directory contains subdirectories that provide the help collections for
applications launched by Information Console. Table 10-2 lists each document
root and its corresponding top-level help topic.

Table 10-2 Top-level help topics

Help topic Document root
Actuate BIRT Viewer and Interactive Viewer birt

BIRT Data Analyzer analyzer

BIRT Studio brs

Understanding a document root

The content files for a top-level help topic reside in a corresponding document
root. For example, the using-ip document root contains iPusing-intro.2.1.html,
iPusing-intro.2.2.html, and so on. These files are the content files for the help.
Each document root also contains an index.html file. Opening this file displays
the topic and content files for the book.

Within each document root is a wwhdata\common directory that contains the
JavaScript files that organize help content and that link the help files to the

Information Console Developer Guide

application. Table 10-3 lists and describes the customizable <document root>
\wwhdata\common contents.

Table 10-3 Help content management files
File Purpose
files js Lists the content files to be used and in what order
title js Specifies the title for the browser window and the top-level
table of contents text
topics.js Designates the targets for context-sensitive help keys the

Information Console emits

Within each document root, a wwhdata\js directory contains JavaScript files that
organize the navigation frame. This frame includes the table of contents (TOC),
index, and search frames. Table 10-4 lists and describes the customizable
<document root>\wwhdata\js contents.

Table 10-4 Help navigation files
File Purpose
index.js Organizes the index links and hierarchy
search.js Designates specific search values and priority
toc.js Specifies the table of contents frame hierarchy, linking

behavior, and text

Understanding context-sensitive help

The Information Console application links to help files using wwhelp.html
located in <context root>\help. Typically, links that activate this context-sensitive
help are in the Information Console application, as shown in Figure 10-4.

¥ ACTUATE. | Information Console @ —— Context-sensitive
help link

wolume profile: | urup j
User name:
Passward:
Language: |English (United States) j
Time zone: | America/Los_Angeles j

Figure 10-4 Information Console help link for login page

Chapter 10, Customizing Information Console online help 187

188

These links in the Information Console emit a URL for the wwhelp.html file and
append two parameters to that URL, context and topic. The URL looks like
following example:

http://host:8700/iportal/help/wwhelp.htm#context=UserConsole
&topic=Dashboard

m host is the name of the web server serving online help.
m 8700 is the port number for the web and http service.
m iportal/help/wwhelp.htm is the path to the help control file.

m context=UserConsole is the context parameter that specifies the document
root for the required help collection. This parameter’s value is the context
for Information Console help, UserConsole, and directs the request to the
Information Console help collection. The context value is determined by the
Information Console application.

m topic=Dashboard is the topic parameter that locates the required help page.
This parameter’s value is the topic for viewing and navigating the dashboard,
Dashboard, which is mapped to an anchor in the about-ipreports.html file.
The topic value is determined by the Information Console application.

Understanding locale support

Actuate provides help in US English. The documentation installer places this help
in <context root>\help. The installer creates directories for all available locales
within <context root>\help. The locale directory names are the locale code of the
form <ll_cc> where 1l is a language code and cc is a country code. The directory
names are all in lowercase letters. Each locale directory contains a wwhelp.htm
file and directories for each help collection listed in Table 10-2, as shown in
Figure 10-5 for the ac_is locale.

‘ <context root>\help\ ‘

analyzer\

wwhelp.htm

Figure 10-5 ac_is locale directory structure

The wwhelp.htm files in each locale directory and its collection directories
redirect to the files directly in <context_root>\help. To support localized online
help, place localized files in the appropriate locale directory and modify the
wwhelp.htm files to not redirect to <context_root>\help.

Information Console Developer Guide

Using a custom help location

Any help system hosted by a web server can provide online help for an
Information Console system. To make an external help system available to the
Information Console application, the wwhelp.html file redirects help requests to
that external system. Any specific help target can link to any specific page.

To redirect help requests from Information Console to an alternate URL, edit or
replace the wwhelp.html file in <context root>\help. You can further specify
different targets using the context and topic parameters in the URLs emitted by
Information Console in help requests.

Customizing the help location with wwhelp.htm

Use the following procedure to create a wwhelp.htm file that redirects
Information Console context-sensitive help requests to another URL.

1 In a text editor, open a new document.
2 Write the required pieces of an HTML file, as shown in the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<html>

<head>

<script type="text/javascript" language="JavaScriptl.2">
<!l--

/]o-->
</script>
</head>
<body>
</body>
</html>

3 Within the script block, write the JavaScript method GetParameter to capture
URL parameters, as shown in the following code:

// get parameters from the URL
//

method GetParameter (name)

{

var regexS = "[\\?&] "+name+"=([T&#]*)";
var regex = new RegExp(regexS) ;
var results = regex.exec(window.location.href);
if (results == null)
return "";
else

return results[1];

Chapter 10, Customizing Information Console online help 189

4 As shown in the following code, create a method to do the following tasks:
m Operate the page.
m Use GetParameter to obtain the topic and context from the URL.
m Open a URL based upon the topic and context.

method LaunchHelp ()

// Get URL parameters
var context = GetParameter('context');
var topic = GetParameter('topic');

var baseURL = "http://myhelpserver/viewer/wwhelp.htm";

// Begin flow control using context

switch (context)

// map the "BIRTIV" context to an outside URL
case "BIRTIV"

self.location = baseURL + "?single=true&context=" +
context + "&topic=" + topic ;
break;

// map the "UserConsole" context to an outside URL
case "userconsole"

baseURL = "http://myhelpserver/iPortal/wwhelp.htm";
self.location = baseURL + "?single=true&context=" +
context + "&topic=" + topic ;
break;

//the default behavior
default
self.location = baseURL ;

}
}

The LaunchHelp() method gets the context and topic information from the
URL with two calls to GetParameter. The baseURL is set to the myhelpserver
application’s online help. The flow control switch statements activate specific
URLSs depending upon the context. Because the myhelpserver application uses
the same context and topic variables as standard Information Console help,
they are used directly in constructing the URL when activating the
self.location methods.

5 Replace the <body> tag with the body tag in the following line:
<body onLoad="LaunchHelp () ;">
The onLoad parameter activates LaunchHelp() when the page loads.

6 Save the file as wwhelp.htm in the <context root>\help directory.

190 Information Console Developer Guide

7 Test the results by opening Information Console and selecting a help link. The
resulting page is from the custom application. For example, the help link on
the login page pictured in Figure 10-4 would link to http://myhelpserver
/iportal/help /wwhelp.htm?single=true&context=UserConsole&topic=
Login_MyDoc_Enterprise.

Creating a localized help collection

Actuate Information Console supports localizing help collections by placing
localized help files into the help directory for the appropriate locale. The
<context_root>\help directory contains several locale-specific help directories.
For example, the United States English help subdirectory is <context_root>
\help\en_us. Other help locale directories can be populated with localized help
to provide help for customers in other locales and in other languages. In order to
maintain proper help navigation and context-sensitive help links, localized help
pages must have the same name as the help pages provided by Actuate.

How to create a localized help collection

Use the following steps to create a localized online help collection for Information
Console that maintains context-sensitive help requests and help navigation.

1 Copy the all of the non-locale-specific directories from <context_root>\help
into the appropriate locale-specific directory. For example, for the Italian
locale, copy the files into <context_root>\help\it_it.

Create localized versions of existing help files in a separate directory.

In the locale-specific directory, copy the localized versions of the help files
over the English files of the same name. The localized help can be accessed
using the following URL:

http://localhost:8700/iportal/help/<locale-specific directorys>
/wwhelp.htm

For example, for the Italian locale-specific help, use the following URL:
http://localhost:8700/iportal/help/it_it/wwhelp.htm

4 Test the results by opening Information Console, selecting the new locale on
the login page, and selecting a help link. The resulting page is from the custom
application. For example, the help link on the login page shown in Figure 10-4
would link to http:/ /localhost:8700/iportal /help /it_it/wwhelp/wwhimpl
/common/html/wwhelp.htm#href=using-ip /iPusing-intro.2.06.html1#214106
&single=true.

How to make locale-specific online help the default help

Use the following procedure to make a locale-specific help collection the default
help for Information Console.

Chapter 10, Customizing Information Console online help 191

192

Open wwhelp.htm in the <context root>\help directory in a text editor. Find
the following line:

setTimeout ("location.replace (\"/wwhelp/wwhimpl/common/html
/switch.htm" + Parameters + "\");", 1);

Add the locale-specific directory to the URL string, as shown in the following
code:

setTimeout ("location.replace (\"/<locale-specific directory>
/wwhelp/wwhimpl/common/html/switch.htm" + Parameters +
N, 1)

For example, to set the Italian locale as the default locale for context-sensitive
help, change the line to the following one:

setTimeout ("location.replace (\"/it_it/wwhelp/wwhimpl/common
/html/switch.htm" + Parameters + "\");", 1);

Save and close wwhelp.htm.

Copy the all of the non-locale-specific directories from <context_root>\help
into each English locale-specific directory - en_au, en_bz, en_ca, en_gb, en_ie,
en_nz, en_us, and en_za. For example, for US English, copy the files into
<context_root>\help\en_us.

In each English locale-specific directory, open wwhelp.htm in a text editor.
Find the following line:

setTimeout ("location.replace (\"../wwhelp/wwhimpl/common/html
/switch.htm" + Parameters + "\")

Add the locale-specific directory to the URL string, as shown in the following
code:

setTimeout ("location.replace(\"/<locale-specific directory>
/wwhelp/wwhimpl/common/html/switch.htm" + Parameters +
"\t 1)

For example, to set US English help to the en_us locale for context-sensitive
help, change the line to the following one:

setTimeout ("location.replace (\"/en us/wwhelp/wwhimpl/common
/html/switch.htm" + Parameters + "\");", 1);

Test the results by opening Information Console and selecting a help link. The
resulting page is from the custom application. For example, the help link on
the login page shown in Figure 10-4 would link to http:/ /localhost:8700
/iportal/help/it_it/wwhelp/wwhimpl/common/html/wwhelp.htm
#href=using-ip /iPusing-intro.2.06.htm1#214106&single=true.

Then, test an English locale by selecting an English locale on the login page
and then selecting a help link. The resulting page is from the English locale
help. For example, the help link on the login page shown in Figure 10-4 would
link to http:/ /localhost:8700/iportal /help /en_us/wwhelp /wwhimpl

Information Console Developer Guide

/common/html/wwhelp.htm#href=using-ip /iPusing-intro.2.06.html1#214106
&single=true for the US English locale.

Customizing icons, links, and the company logo

The online help pages organize navigation and content into frames. To change the
fonts, colors, and icons of customized help, change each frame’s content or style

file individually.

Changing the corporate logo

Each content page contains a small logo in the footer, as shown in Figure 10-6.
The image tag in the content page displays the corporate logo in the content
frame. To change this logo, change the image tag on every content page.

—— Navigation frame Control bar frame Content frame

= 1ncex | Search||?a\rurites|

eUsing Information Console

@ Building BIRT Dashboards
elnformation Console Developer Guide
eUsmg Actuate JavaScript APT
enctuate Glossary

o) <> =

ISe\ect Language hd

Powered by Google Translate
Using Information Console

Using Informaition Consola provides information about using Actuate Information
Console to access, create, and run files stared in an Encyclopediawvolume.

This document is a guide for general users of a default Information Console
installation. Technical concepts and explanations sbout how to accomplish
common activities are included in the following chapters. For more detailed
inforrmation aboutany ofthe subjects discussed, see the complete set of Actuate
docurnentation included with Actuate software or contact your volume
adrministratar.

The following sections are included:

= Infroducing Actuate [nformation Console. This section explains how
Information Console supports delivering BIRT content using a web browser.

m Working with iterns in & volume. This section explaing how Infarmation
Console supports specificfile and folder operations on an Actuate serser
systam.

m sing BIRT dashboards. This section describes how an Information Console
ugerworks with shared dashboards.

m Bunning file jobs. This section explains how to schedule and run fils jobs
uging Information Console.

m sing BIET Yiewsr on mobile devices. This section provides information
about using BIRT Mahbile with Information Consale.

Additional Links: Forums | Blogs | Suppor | Give Us Feedback | More... Shﬂfe

Copwright Actuate Corporation 2013 BIRT iHub 2 @ ACTUATE.

Figure 10-6 Help frames

The footers in the content pages display the Actuate corporate logo by default. To
change the corporate logo displayed on a content page, alter the HTML markup

Chapter 10, Customizing Information Console online help 193

to use a different logo. Actuate uses the corporate logo as a link to the Actuate
corporate web site. Change this link so that the image is a link to your corporate
web site.

How to change the corporate logo on a help content page

Use the following procedure to alter the corporate logo and corporate web
application link in a content page.

1 Copy your corporate logo image file into the <document root>\images
directory for the help topic content you wish to change. For example, to
change the logo in the “Using Information Console” help topic, the document
root is the <context root>\help\using-ip directory.

2 In a text editor, open the first content page file in the document root. For
example, the first content page in the “Using Information Console”
documentation is iPusing-intro.2.01.html.

3 Locate the following block of code:

<table cols="3" summary="" width="100%">

<tr>

<td class="WebWorks Company Name Bottom" align="left"
width="30%">

Copyright Actuate Corporation 2013

</td>

<td style="color: #3165CE;font-family:sans-serif;font-
weight:bold;font-size:small;" align="center" width="40%">

BIRT iHub 2

</td>

<td class="WebWorks Company Logo Bottom" align="right"
width="30%"> B B Bl

<a href="http://www.actuate.com" target="_blank"
align="right"><img src="logo-small-blue.png" border="0"
align="right" />

</td>

</tr>

</table>

Change http:/ /www.actuate.com to the address of your corporate web site.
Change logo-small-blue.png to the name of your corporate logo image file.

Save and close the content file.

N o o1 b~

Repeat steps 2 through 6 for each content file you need to change.

Changing the additional links footer in help content pages

The footers in the content pages also display a series of additional links by
default. Actuate uses these additional links to jump to locations in its corporate

194 Information Console Developer Guide

web site. To change the links displayed on a content page, alter the HTML
markup to use different links.

How to change the additional links footer on a help content page

Use the following procedure to alter the additional links footer in a content page.

1

In a text editor, open the first content page file in the document root. For
example, the first content page in the “Using Information Console”
documentation is iPusing-intro.2.01.html.

Locate the following block of code:

<table cols="2" summary="" width="100%">
<td width="80%" align="left"s>
<table cols="1" summary="" align="left">

<td align="right">

<td style="color: #003366;font-family:sans-serif;font-
weight:bold; font-size:small;" align="right">Additional
Links:</td>

<td class="td-1link" align="right">

<A HREF="http://www.actuate.com/actuatell/forums"
target="_blank">Forums |

</td>

<td class="td-1link" align="right">

<A HREF="http://www.actuate.com/actuatell/blog"
target="_blank">Blogs |

</td>

<td class="td-1link" align="right">

<A HREF="http://www.actuate.com/actuatell/esupport™"
target="_blank">Support |

</td>

<td class="td-1link" align="right">

 Give Us Feedback |
</td>

<td class="td-1link" align="right">

<A HREF="http://www.actuate.com/actuatell/resources"
target="_blank"> More...

</td>

</td>

</table>

Change all the links to http:/ /www.actuate.com/ to addresses for your
corporate web site.

Save and close the content file.

Repeat steps 2 through 4 for each content file you need to change.

Chapter 10, Customizing Information Console online help 195

Changing the Google translate element in help content pages

A Google translate element appears in the content pages by default. To change
the element displayed on a content page, alter the HTML markup to use different
content.

How to change the Google translate element on a help content page

Use the following procedure to alter the additional links footer in a content page.

1 In a text editor, open the first content page file in the document root. For
example, the first content page in the “Using Information Console”
documentation is iPusing-intro.2.01.html.

2 Locate the following blocks of code:

<div id="google translate element" style="text-align:
right;"></div>

and:

<scripts>

function googleTranslateElementInit ()
new google.translate.TranslateElement ({

pagelLanguage: 'en'

}, 'google translate element') ;

}

</script>

<script src="//translate.google.com/translate a/
element.js?cb:googleTranslateElementInit">£75cript>

Delete or replace this code with custom content.
Save and close the content file.

Repeat steps 2 through 4 for each content file you need to change.

Changing icons

To change the icons for the controls in the navigation frame and the control bar
frame, replace the current image files with different ones. The icon images are
located in the <context root>\help\wwhelp\wwhimpl\common\images
directory. Replacing these image files changes the icons used for the control bar
and navigation frames. Table 10-5 lists and the describes the image files for the
icons.

Table 10-5 Help icon image files

Image File name Purpose Location
i bkmark.gif Bookmark the current ~ The control bar frame
— page.

196 Information Console Developer Guide

Table 10-5

Help icon image files

Image File name Purpose Location
bkmarkx.gif =~ The bookmark method The control bar frame
is not available.
- doc.gif Open asingle file in the The navigation frame
= table of contents.
= email.gif E-mail a link to the The control bar frame
— current page.
emailx.gif E-mailing a linkisnot ~ The control bar frame
available.
@ fe.gif Expand a help topicor = The navigation frame
sub-topic in the table of
contents.
0 fo.gif Collapse a help topicin The navigation frame
the table of contents.
B shownav.gif =~ Open the control frame. The control bar frame
2z next.gif Go to the next page. The control bar frame
nextx.gif There is no next page The control bar frame
available.
- prev.gif Go to the previous The control bar frame
— page.
prevx.gif There is no previous The control bar frame
page available.
I print.gif Print the current page. The control bar frame
printx.gif Printing is not available The control bar frame
for this page.
= related.gif View related topics. The control bar frame
relatedx.gif The related topics The control bar frame
method is not available.
pry sync.gif Synchronize the frames The control bar frame
o so that the control
frame matches the
content frame.
syncx.gif Synchronizing framesis The control bar frame

not available.

Chapter 10, Customizing Information Console online help

197

Changing the browser window title

To change the title displayed in the browser’s title bar when viewing online help,
alter the title js file for each document root. The browser’s title bar appears as
shown in Figure 10-7.

| Using Information Console x ‘

Figure 10-7 The browser’s title bar

How to change the text displayed in the browser’s title bar

Use the following procedure to change the text displayed in the browser’s title
bar when you access help.

1 Navigate to the <document root>\wwhdata\common directory for the help
topic you want to customize. For example, to change the text displayed in the
browser title bar when you open the “Using Information Console” help topic,
the <document root> is the <context root>\using-ip directory.

In a text editor, open title.js.

Locate the line in the code that uses the return method. For the “Using
Information Console” help topig, it is the following line:

return "Using Information Console";

4 Change the quoted text value to the text you need to display in the browser’s
title bar.

5 Save and close title js.

Changing help content

198

Every piece of content in the Actuate Information Console help system is
customizable. The possible content changes fall into the following general
categories:

m Changing existing help content

= Adding or removing help topics

m Adding and removing content files
m Changing the table of contents

m Changing the index

Changing existing help content

You can modify any of the existing HTML pages of the Information Console help
for any help topic to change the information they contain. These HTML files

Information Console Developer Guide

contain specific <a> tags used for internal navigation and context-sensitive help.
In general these tags must remain unchanged to maintain context-sensitive
help and internal navigation functionality. Table 10-6 lists the tags and their use.

Table 10-6 Help content reserved tags

Tag examples Purpose

<aname="147349"> An anchor for a specific place in a file. This tag is used
by internal links and context-sensitive links.

<a href="javascript: Internal link. This tag is an internal link to an anchor. In
WWHClickedPopup this example:

(‘UserConsole, m UserConsole is the context, a reserved help topic
'iPusing-intro.2.02 label.

html#150156', *); 'iPusing-intro.2.02.html is the file that the link

opens.
m #150156 is the text of the anchor tag that the link
accesses.

How to modify the content of existing pages

Use the following procedure to change the help content.

1 Navigate to the document root directory for the help topic you want to
change. For example, to change the content of a page in the “Using
Information Console” help topic, the document root is the <context root>
\using-ip directory.

2 In a text editor, open the content page you need to change. For example, to
change the content of the “Working with items in a volume” page, open the
iPusing-reports.3.01.html file.

3 Modify the text, being careful not remove any <a> tags that provide internal
links and context-sensitive links.

4 Save and close the content file.

Adding or removing help topics

To add or remove help topics from the application help, you delete or create the
document root for that help topic. To prevent the navigation pane controls from
generating erroneous links to that help topic, you must also alter the help book
list, books.js, located in the <context root>\help\wwhelp\wwhimpl\common
\private directory. The books js file also controls the order in which the help
topics appear in the table of contents.

How to remove a help topic from the Information Console help system

The following steps remove a topic from the Information Console help system.

Chapter 10, Customizing Information Console online help 199

200

1 Navigate to the <context root>\help \wwhelp\wwhimpl\common\private\
directory.

In a text editor, open the books js file.
Find the following code:

function WWHBookGroups Books (ParamTop)

{
ParamTop.fAddDirectory ("using-ip", null, null, null, null);
ParamTop.fAddDirectory ("dashboards", null, null, null, null);
ParamTop.fAddDirectory ("customizing-ip", null, null, null,
null) ;
ParamTop.fAddDirectory ("javascriptapi", null, null, null,
null) ;
ParamTop.fAddDirectory("glossary", null, null, null, null);

}
Delete the line that adds the directory for the topic that you need to remove.

Save and close the books.js file.

In the file system, delete the document root for the topic that you removed in
step 4.

Adding and removing content files

Individual content files are added or removed from the document root for each
top-level help topic. To make the content file available for linking and viewing
from the help system, you must also alter the file list, files.js, located at
<document root>\wwhdata\common. The files.js file also controls the order of
the files in the array for reference by other files. For example, the content of files.js
for the using-ip document root looks like the following code:

function WWHBookData Files (P)

{
P.fA("Using Information Console", "about-ipreports.html") ;
P.fA("Introducing Actuate Information Console", "iPusing-
intro.2.01.html") ;
P.fA("Delivering BIRT content","iPusing-intro.2.02.html");
P.fA("About Information Console","iPusing-intro.2.03.html");

)

This code establishes the following structure:

m Each file, about-ipreports.html, iPusing-intro.2.01.html,
iPusing-intro.2.02.html, and iPusing-intro.2.03.html, is available for linking
and display by Information Console help.

m The first file in the array is about-ipreports.html, which is referenced by the
array number 0. The second file in the array is iPusing-intro.2.01.html and is
referenced by the array number 1 and so on.

Information Console Developer Guide

The order of the files in the array always begins with and proceeds from 0. The
file array is an internal mechanism that supports referencing these files by
number within the help topic.

How to add a content file to the Information Console help system

Use the following procedure to add a content file to the Information Console help
system.

1 Copy your content file into the document root directory for the help topic you
need to enhance. For example, to add a new file to the “Using Information
Console” help topic, the document root directory is <context root>\using-ip.

Navigate to the <document root>\wwhdata\common directory.
In a text editor, open the filesjs file.
Find the following code:

function WWHBookData Files(P)

{

P.fA("Using Information Console", "about-ipreports.html") ;

P.fA("Introducing Actuate Information Console", "iPusing-
intro.2.01.html") ;

P.fA("Delivering BIRT content","iPusing-intro.2.02.html");

5 Add aPfA(...); entry for the file to add, placing it where you need it to appear
in the file array relative to the other entries.

PfA(...); requires two parameters. The first is a string that describes the file.
The second is the name of the file. Both parameter values must individually be
within quotation marks and separated by a comma.

6 Change the parameter values for the other PfA(...) calls as needed.

Save and close files.js.

Changing the table of contents

Help topics are established in the table of contents by the title.js file in the
<document root>\wwhdata\js\ directory for each help topic. For example, the
title s file for the using-ip document root looks like the following code:

method WWHBookData Title()

{
}

This code sets the table of contents text for this help topic to “Using Information
Console.” Figure 10-8 shows the hierarchy produced by the code above.

return "Using Information Console";

Chapter 10, Customizing Information Console online help 201

202

u:Z:u:untEﬂtz Index || Search .||.Fa\r0rites |

[Using Infarmation Console ———————————————— return “Using...
L[] Introducing Actuate Information Console
|=] Delivering BIRT content
L) about Information Consale
|=] Browsing content in & volume
|Z] Understanding content life cycle
eGetting started
e Accessing Information Consale features
e Reviewing BIRT iHub license options
eSetting options
|=] About optional browser-based tools
@ £bout Infarmation Cansole documentation
@Wnrklng with items in a volume
Q Using BIRT dashboards

Figure 10-8 The help topic entry in the table of contents

The table of contents displays nested help topics as listed in the toc.js file located
in the <document root>\wwhdata\js directory. The toc.js file also controls the
following items:

m The table of contents hierarchy
m The text that appears in the table of contents
m The file that opens when a user selects a table of contents entry

For example, the following code is part of the table of contents for the “Using
Information Console” chapter in the toc.js file for the using-ip document root:

var A=P.fN("Introducing Actuate Information Console","1");

var B=A.fN("Delivering BIRT content","2");

B=A.fN("About Information Console","3");

var C=B.fN("Browsing content in a volume", "4");

C=B.fN("Understanding content life cycle","5");

B=A.fN("Getting started","6");

C=B.fN("How to log in to a volume using Information Console",
"6#214106") ;

This code establishes the following structure:

m The top-level entry, A, is file "1". File 1 is in position 1 of the internal file array
established by files.js. For example, in the using-ip document root, this file is
iPusing-intro.2.01.html.

m Entries are created to reside in the next level under the top-level entry using
the variable B. Entries in the third level of the table of contents are created
using the variable C, and in the fourth level using the variable D. An entry
links to a file or an anchor within a file referenced by the internal file array
number. For example, "6#214106" links to the anchor in
file "6" of the file array, iPusing-intro.2.06.html.

Information Console Developer Guide

The text that appears in the table of contents for each entry is explicitly
defined. For example, the text for the top-level entry is “Using Information
Console”.

Figure 10-9 shows the hierarchy produced by this code.

u:Z:.:untEﬂtz Index || Search .||.Fav0rites |

g Using BIRT dashboards

[Using Information Consaole /—_ A=P.fN("Intr0ducing .

[Intraducing Actuate Information Consale
|=] Delivering BIRT content ————— B:A.fN("De“Vering BIRT...
[About Information Consale

|=] Browsing content in & volume —C:B_fN("BrOWSing .
|=] Understanding content life cycle
@ Getting started
@ Accessing Information Console features
@ Reviewing BIRT iHub license options
eSetting options
|=] About optional browser-based toals
e About Information Console documentation
QWDrking with iterns in a volume

Figure 10-9 The table of contents hierarchy for using-ip

How to add a content file link to the table of contents hierarchy

Use the following procedure to add a content file link to the table of contents
hierarchy for the Information Console help system.

1

If you are linking to an anchor, navigate to the document root directory. Open
the content file that contains the anchor to which the table of contents will link.
Determine the value of the name attribute for the anchor. Then, close the
content file without saving it.

Navigate to the <document root>\wwhdata\common directory.

In a text editor, open the files js file and determine the internal file array
number for the content file, either that you opened in step 1 or that you are
linking to directly. Close files.js without saving it.

Navigate to the <document root>\wwhdata\js directory.
In a text editor, open the toc.js file.

Add an entry to toc,js for the table of contents entry using the following
format:

var D=C.fN("Setting an e-mail address",6 "15#228413");

m var is a keyword that must precede the entry if D has not been defined as a
variable in this file prior to this line. Do not use var if D has already been
defined.

m D is the table of contents hierarchy level of the new table of contents entry.

m Cis the table of contents hierarchy level above the level of the new table of
contents entry.

Chapter 10, Customizing Information Console online help 203

m "Setting an e-mail address" is the string to display in the table of contents
for this entry.

m 15is the array number of the target file established in step 3.

m #228413 is a number sign (#) followed by the value of the name attribute for
the anchor established in step 1, if it is applicable. To link to the head of a
file, do not append an anchor string to the array number of the target file.

7 Save and close toc.js.

Changing the index

The index displays keywords for help topics from individual content files. The
index js file located in the <document root>\wwhdata\js directory contains the
index entries. The help system merges the index js files for every book in a
collection. The index.js file controls the following items:

m The index hierarchy
m The text that makes up the index entries
m The content to which the index entries link

For example, in the using-ip document root, the index entry for "changing",
starting at the letter C, looks like the following code:

A=P.fA("C",null,null,"002") ;
B=A.fA("calendar gadgets",new Array("91#758834")) ;
B=A.fA("calendars",new Array ("87#808008")) ;
B=A.fA("cancelling scheduled jobs",new Array("130")) ;
B=A.fA("Categories view",6 new

Array ("8#249139","8#214378","42#405845")) ;
B=A.fA("changing") ;
C=B.fA ("dashboards",6 new

Array ("71#783190","72#786017", "83#774197","88#775563")) ;
C=B.fA("data",new Array ("94#752260")) ;
C=B.fA("data sources",new Array ("5#191220")) ;

This code establishes the following structure:

m The top-level entry, A=P.fA, is the label "C". This entry links to the "002" frame,
which is the navigation frame.

m The first entry below "C" is the "calendar gadgets" entry. This entry is one level
down in the hierarchy, B=A.fA, of the index for "C". This entry has one link to
an anchor in file "91".

m The entry for "changing" is merely a label and does not link to anything.

= On the next level down in the hierarchy, C=B.fA, has many entries, one for
each of the sub-topics of changing. Each entry has a label and an array of links
to topics that the user can choose.

204 Information Console Developer Guide

Figure 10-10 shows the hierarchy produced by this code.

Default-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O —A:P_fA(“Q”_“

P- QRS T-U-¥ W-X-Y-2- Symbols

changing al — “
action paths — B—AfA(QBE expre...
actions — “ : ”
aggregation functions C=B.fA(“creating”...

background images
channel names
chart legends

chart titles

chart types
configurations

cross tabs
dashboard layaouts
dashboard templates
dashboards

Figure 10-10 The index hierarchy for using-ip

How to add a marker link to the index hierarchy

Use the following procedure to add a marker link to the index hierarchy of the
Information Console help system.

1 Navigate to the document root directory. Open the content file that contains
the anchor to which the index entry will link. Determine the value of the name
attribute for the anchor. Then, close the content file without saving it.

Navigate to the <document root>\wwhdata\common directory.

3 In a text editor, open the files.js file and determine the internal file array
number for the content file that you opened in step 1. Close files.js without
saving it.

Navigate to the <document root>\wwhdata\js directory.
In a text editor, open the index js file.

Add an entry to index js for the index entry and anchor link using the
following format:

var B=A.fA("access restrictions",new Array("43#407680")) ;

= varis a keyword that must precede the entry if B has not been defined as a
variable in this file prior to this line. Do not use var if B has already been
defined.

m Bis the index hierarchy level of the new index entry.

m A s the index hierarchy level above the level of the new index entry.
m "access restrictions" is the string to display in the index for this entry.
m 43 is the array number of the target file established in step 3.

m #407680 is a number sign (#) followed by the value of the name attribute for
the anchor established in step 1.

Chapter 10, Customizing Information Console online help 205

To link the index entry to more than one marker, add each marker link to the
list within the new Array parameters. Enclose each anchor reference in
quotation marks. Delimit the anchor references with commas, shown in the
following example:

var B=A.fA("access restrictiong",new
Array ("43#407680","46#408024")) ;

7 Save and close indexjs.

206 Information Console Developer Guide

Index

Sy mbols session-specific information 43
skin manager 51
tag libraries 44
templates 45
web applications 27, 108
accessToGrant parameter 127

_ (underscore) character 13

; (semicolon) character 13

: (colon) character 12

! (exclamation point) character 13

? (question mark) character 13 AcChannelFilter variable 97

- (period) character 13 AcFilesFoldersFilter variable 113

, (comma) character 13 AcFilesFoldersTypeFilter variable 113
(double quotation mark) character 13 AcGetFileDetailsAction class 159

{} (curly brace) characters 129 AcGetFolderltemsAction bean 42

*@ (at-Sl.gflz) cﬁarac‘ier i% 13 AcGetJobDetailsAction class 160

/((afStrenSrc)iclar}?)C ehr radtor 13 AcServlet class 136

{ (bc;cvll];llasﬁ)acshar;ciefclg actabpanel tag library 142, 143

Action class 42,158
& (ampersand) character 12 action forms 158, 160

(number sign) character 13

% (percept) character 13 action parameter 121
+ (plus sign) character 13 action path names 48

< (less than) character 13 action paths 22,42, 43,48
= (equals sign) character 13 See also URISs

> (greater than) character 13
$ (dollar sign) character 13

action forms classes. See forms package

action tag 42
ActionForm class 158

A actions 17,22,74, 82, 85
actionServlet component 22
about page 82,92, 95 activePortal directory 25
accessing activity logs 67, 68
application servers 44 acweb.war 6
cascading style sheets 44, 46 AddFile subfeature 17,75
channels 10, 74 adding
dashboards 10 action paths 42, 43, 48
Encyclopedia volumes 79, 168 background images 59
help content pages 185, 186 context roots 27-29
home page 107 custom JSPs 24, 45
Information Console functionality 11,42, custom security adapters 172, 173-174,
64, 72,136, 158 175
Interactive Viewer 17 features 18, 20
JavaScript files 44, 46 folders 17,98, 159
JSPs 24 functionality levels 14, 15, 16, 20
report files 159 help content files 200, 201
repository items 10, 74, 112 help topics 199
resource bundles 144, 149 hyperlinks 160
resources 18, 46,70 locales 75

Index 207

adding (continued)
server profiles 32
skins 51, 52, 53, 167
time zones 76
upload security adapters 178,179, 179-181
URI parameters 12,13
volume profiles 70-72
web pages 10, 43, 44, 48
addressing e-mail 117
Administrator functionality level 14, 15,73
Advanced functionality level 14, 15, 73
AdvancedData subfeature 17,75
ageDays parameter
execute report page 104
submit job page 127
ageHours parameter
execute report page 104
submit job page 127
aging intervals 104, 127
See also archive policies
allscripts.js 132
analytics gadgets 65
Apache Jakarta Struts. See Jakarta Struts
Apache Tomcat engine 27
Apache Tomcat service 29
application context roots 11, 23, 43
application servers 5,7, 27
See also servers
applications
accessing 27,108
building user interface for 4, 45, 49, 142
changing 6, 29, 41, 49
configuring 39, 64
creating context root for 27-29
creating page-specific content for 48
customizing pages for. See web pages
deploying 170
designing custom reporting 8, 22,29, 39,
49

determining state of 44

getting session information for 43
grouping 26

linking help files to 186, 187, 194, 199, 200
previewing skins for 51, 52

setting default locale for 66, 76

setting default time zone for 66

setting global styles for 49-59

208 Information Console Developer Guide

testing 27
translating. See locales
applyFilter parameter 110, 113
archive policies 104, 127
archiveBeforeDelete parameter
execute report page 104
submit job page 127
archivePolicy parameter
execute report page 104
submit job page 127
archiving report objects 104, 127
array elements 132
array.js 132
arrays 132
ASCII formats 77
attachments 17
authenticate method 171, 173, 175
authentication
accessing applications and 170
accessing corporate networks and 170
customizing 170, 173
issuing URIs and 84
logging in to Information Console
and 171,172
authentication IDs 44, 84, 147, 163, 166
authentication information 7
authexpired action 86
authlID variable 148
AUTO_SAVE_DASHBOARD_DELAY
parameter 79
autoarchive policies 104, 127
autoarchiving. See archiving

B

background images 59
backward compatibility 24
banner
adding links to 72
changing welcome text in 41
displaying 95, 114
hiding features in 16
replacing images in 59
specifying functionality levels and 15
banner elements 109, 114
banner labels 58
banner page 82,92, 95

banner styles 58
BaseActionForm class 160
Basic functionality level 14, 15,73
beans 43, 45, 57, 158, 165
beans package 158, 162
binary files 136
BIRT 360 web resources 65
BIRT Data Analyzer 80, 186
BIRT iHub 28
BIRT iHub System. See iHub System
BIRT Interactive Viewer. See Interactive
Viewer

BIRT report documents 137

See also BIRT reports
BIRT reports 80, 130

See also reports
BIRT Studio 49, 64, 80, 186
BIRT Studio link 107
BIRT Studio pages 58
BIRT Viewer 64, 80, 130
BIRT Viewer help collections 186
BIRT Viewer servlet 130
BIRT_RENDER_FORMAT _

EMITTER_ID_MAPPING parameter 65

BIRT360PLUS_URL parameter 65
body element 41
Bookmark icon 196
bookmark parameter 138
branding 41, 59
breadcrumbs 47, 107
browse file page 82,92, 96
browse page. See browse file page
browsefile action 86, 87, 159
BrowseFileActionForm class 159
browseportletfile action 87
browsers. See web browsers
browsertype.js 132
browsing 96, 159
bundle tag 143, 144
BundleTag class 144
bundling resource files 144, 149
buttons 49

C

CACHE_CONTROL parameter 65
caching web pages 41, 65, 79

calendar 132
calendar page 82,92, 96
calendarlayer.js 132
canceljob action 86, 87
canceljob page. See request drop page
cancelreport action 87
cascading style sheets
accessing 44, 46
changing styles in 57
customizing web pages and 40, 59
linking to JSPs 56, 57
specifying color settings in 57
updating changes to 42
viewing changes to 58
case sensitivity 22, 82,127,136, 142
cbFail parameter 110
cbSuccess parameter 110
ChangeResponseLocale message 144
changing
action paths 43
actions 74
background images 60
company logos 193-196
configurations 29, 30
default servers 32
Encyclopedia volumes 32
error messages 34
file names 48
font styles 57
functionality levels 20
help content 198, 199
help indexes 204
icons 74, 196
images 41, 52, 59-60
label key values 18
landing pages 40-41
link icons 19
link targets 18
locales 30, 118
passwords 118
reporting applications 6, 29, 41, 49
servlets 136
side menu 74
style definitions 56, 57
templates 45, 46
time zones 30
user interface elements 60

Index

209

changing (continued) completed request page 82,93, 97

web browser titles 198 completion notices 117
web pages 46, 48 configuration files 30, 64
channel classes 158 configuration parameters
channel contents list page 94, 112 BIRT Data Analyzer 80
channel icons 117 changing 30
channel parameter 112 iHub connections 79
channellcons parameter 117 Information Console 30, 64
channellD parameter 99 configurations
ChannelListActionForm class 158 accessing Information Console
channelName parameter 99,102, 110 functionality and 42, 64, 72
channels adding web pages and 43
accessing 10, 74 changing messages and 34, 76
displaying 111, 117, 158 connecting to iHub and 70, 79
filtering 97 creating custom applications and 29-39,
removing notifications from 99 64
sending notifications to 110 customizing context root and 27
setting properties for 96 defining features and 16, 18, 74
subscribing to 17, 111, 159 defining functionality levels and 14, 16,
unsubscribing from 111 18, 20, 72-75
viewing contents 10, 112 defining subfeatures and 17, 75
Channels attribute (features) 16, 19, 74 deploying an upload security adapter
Channels link 19 and 180
channels list page 94, 111 deploying IPSE applications and 175
channels page 82,92, 96 disabling load balancing and 7
channels parameter 117 generating locale-specific sites and 75, 76
character encoding 12, 14, 77, 132 initiating actions and 85
character sets 14 invoking servlets and 136
character substitution 12 redirecting web pages and 9
check boxes 113 renaming files and 48
class reference (JavaBeans) 158, 162 running BIRT reports and 80
classes 40,173,179 running multiple applications and 7
Classic skins 49 setting default volume and server 32
clearFilter parameter 110 setting up firewalls and 8,9, 171
cloning skins 51, 52, 53 specifying time zones and 76
cluster nodes 79 updating changes to 29
clusters 4,5,6,7 confirmation messages 45
code 44 confirmKey parameter 117
color names 52, 57 connection information 64
color palettes 52 connection parameters 22
colors 49, 55, 57 connection pools 79
comments 41 CONNECTION_TIMEOUT parameter 66
common tag library 142, 143 connections
company logos 59, 193-196 accessing Encyclopedia and 22, 85, 122,
compiling JSPs 22 177
completed jobs page 110 accessing private networks and 171
See also completed request page dropping 66

210 Information Console Developer Guide

establishing iHub 79, 147, 171

protecting data and 170-171

setting maximum number of 79

timing out 68
Content class 145
content element 48
content tag 143, 145
context menus 59
context roots 11,23,27,43
context-sensitive help 132,187, 190
converter.js 132
COOKIE_DOMAIN parameter 66
COOKIE_ENABLED parameter 66
COOKIE_SECURE parameter 66
cookiejs 132
cookies 66, 84,113,132
copyFileFolder tag 143, 146
CopyFileFolderTag class 146
copying

folders 146

image files 60

report files 146

skins 51, 52, 53
corporate logos. See company logos
country codes 76, 77
create folder page 83, 93, 98
createfolder action 87, 159
CreateFolder subfeature 17, 75
CreateFolderActionForm class 159
creating

action paths 42, 43, 48

context roots 27-29

custom JSPs 24, 45

custom security adapters 172, 173-174,

175

features 18, 20

folders 17,98, 159

functionality levels 14, 15, 16, 20

help files 189, 191

help indexes 205

hyperlinks 160

skins 51, 52, 53, 167

upload security adapters 178,179, 179-181

URIs 11, 12

user interfaces 4, 45, 49, 142

WAR files 5, 6

web applications §, 22, 27, 3948

web pages 10, 44, 48
credentials. See login credentials
cross tabs 80
CSS files 40, 44, 56, 58
See also cascading style sheets
custom security adapters 173
custom tags. See JSP custom tag reference
Customization attribute (features) 16, 74
Customization link 15, 19
customize action 87
customizing
background images 60
features 18-19
file verification 179
functionality levels 16-18
Information Console 5, 6, 30, 49
JSPs 24,44, 45, 46
landing page 40-41
messages 34-39, 76
online help 184-193, 198
reporting applications 8, 22, 27, 39-48
security adapters 172-174, 175
skins 49, 51, 52, 53, 74, 161
upload security adapters 178-180
user authentication 170, 173
user logins 170
web pages 39, 46, 48

D

da action 86
daemonURL parameter 115
dashboard action 86
dashboard files 45
dashboard page 83, 93
dashboard templates 44, 45, 46
DASHBOARD_SHARED_RESOURCES
parameter 79

DashboardBusinessUser subfeature 17, 75
DashboardDeveloper subfeature 17, 75
dashboards 5, 10,17, 75,79, 115
dashboards servlet 10
data

displaying 22,48

filtering 159, 160, 167

protecting corporate 170

protecting system. See security

Index 211

data (continued)
restricting access to 170
synchronizing 17
Data Analyzer 80, 186
data filters. See filters
data models 22
data repositories. See Encyclopedia volumes
database servers 8
date formats 146
date patterns 146
date stamps 106
dateToDelete parameter
execute report page 104
submit job page 127
debug pages 144
debugging messages 66
decimal values 57
default authentication 170
default banner 95
default context root 23
default encoding 14
default Encyclopedia volume 32, 166
default error codes 76
default file names 48
default functionality levels 72
default images 59
default locale 18, 30, 31, 66, 76, 165
default settings 30, 31, 32
default skins 49, 51, 52
default time zone 66
DEFAULT_LOCALE parameter 30, 66
DEFAULT_PAGE_BREAK_INTERVAL
parameter 66
DEFAULT_TIMEZONE parameter 30, 66
delete file status page 83, 93, 98
delete job page 83, 93,99
delete status page 83, 93,99
deletefile action 86, 88
deletefile page. See file drop page
DeleteFile subfeature 17,75
deletefilestatuspage. See delete file status
page
deletefolder page. See folder drop page
DeleteFolder subfeature 17,75
deletejob action 86, 88
deletejob page. See delete job page
deletejobnotice action 86, 88

212 Information Console Developer Guide

deletejobnotice page. See delete status page
deletejobschedule action 86, 88
deleting
archived reports 105, 129
folders 17,102
help content files 200
help topics 199
jobs 99,103
notifications 99
report files 17, 98, 102
skins 51
deploying
Information Console 4, 5, 6, 78
reporting applications 170
reports 5
security adapters 174, 175, 180
designing custom web applications 8§, 22, 29,
39, 49
destination parameter 122
detail pages 83, 93, 100
details icon 60
developers 4
diagnostic information 120, 122
dialog boxes 58
dialogs
defining tabs for 150, 153, 155
setting orientation of 154
setting tab sequence for 151, 152
specifying content for 145, 153
directories 23, 24,28, 184
directory names 22
directory paths. See paths
disk space 69, 122
display names 76
displaying
banners 95, 114
color settings 55
completed jobs 97
current jobs 123
data 22,48
error messages 103, 119
failed jobs 110
files and folders list 67
folders 114, 167
help topics 201, 203
locales 75
login page 12,114

pending jobs 125
report executables 114, 167
report parameters 120, 128
reports 10, 11, 24, 69, 80, 132, 137
repository information 47
search results 49
subscribed channels 96, 111, 117, 158
web pages 42
DisplayName tag 76
distributed iHub System. See clusters
do directive 82
.do file name extensions 22
do_executereport.jsp 137
do_update page. See options page
doc format value 138
docChankFilters parameter 117
document classes 159
document files 100, 114, 167
document root 186
documentation vii
documents. See reports
Documents attribute (features) 16, 74
Documents link 19
Documents page 47, 159
doEndTag method 144
domains 66
downloadfile action 86
DownloadFile servlet 137
DownloadFile subfeature 17,75
downloading
binary files 136
reports 137
drift.js 132
drop pages 83, 93,102
dynamic data 132

E

EAR deployments 78

editTableRow action 88

E-mail icon 197

email parameter 117

e-mail. See notifications

emitters 65

ENABLE_CLIENT_SIDE_REDIRECT
parameter 9, 66

ENABLE_DEBUG_LOGGING parameter 66

ENABLE_ERROR_LOGGING parameter 67
ENABLE_JUL_LOG parameter 67
encode method 13, 132
encoderjs 132
encoding 12, 14, 77,132
Encyclopedia volume icons 59
Encyclopedia volumes
See also repositories
accessing 79, 168
adding objects to 17
connecting to 22, 85
creating folders for 98, 159
deleting objects in 17, 98, 102
downloading from 17,137
getting current 177
getting information about 100, 122
running Information Console and 4
specifying default 32, 166
testing connections to 122,177
writing reports to 106, 129
engines 68
environment settings 107
erroportlet action 86
error action 86
error codes 37,76
error detail page 93, 100
error levels 37
error log files 67, 68
error messages
customizing 34, 36-39
displaying 103, 119
localizing 76-77
error page 83,93, 103
ERROR_LOG_FILE_ROLLOVER
parameter 67
errors 42,45, 67
See also error messages
executable files
displaying 114, 167
generating output for 118,124, 126
selecting 113
viewing parameters for 120
executableName parameter
execute report page 104
submit job page 127
execute report page 83, 93, 103

Index 213

EXECUTE_DASHBOARD_GADGET _ FileFoldersPrivilegeActionForm class 159
GENERATION_ WAIT_TIME parameter 67 fileld parameter 137

EXECUTE_REPORT WAIT_TIME FileListActionForm class 159
parameter 67,103 filename parameter 122

executedocument action 86, 88 files
executereport action 86, 88 See also specific type
executereport page. See execute report page accessing 10,74, 112, 159
executing archiving 104, 127

Java servlets 136 assigning privileges to 123

jobs 10 assigning to template elements 45

reports 103, 125 changing images and 59, 60
execution requests. See jobs; requests converting to ASCII 77
expiration intervals 104, 127 copying 146

See also archive policies deleting 17,98, 102
extended character sets 14 displaying 114
extensible markup language. See XML downloading 137
external help systems 189 filtering 112

generating locale-specific sites and 33

F generating online help and 185

getting information about 100, 159
linking to 48

locating JSP 42

naming 105, 119, 128

Factory service 123
failComp parameter 117
failed jobs 110
failEmail parameter 117

failover 7 overwriting 105, 118, 128
failure notices 117 renaming 48, 60

feature definitions 16, 18, 74 saving 105, 118,133
feature IDs 18,74 searching 125

feature lists 163, 166, 167 sharing 17

updating changes to 41

feat 1
cature names 18 FILES_DEFAULT_VIEW parameter 67

Feature tag 74

filesfolders JSPs 10
FeaturelD tag 16, 18, 74 . .
FeatureOptionsBean class 162 f1-1esfolders tag_hbrary 143
features 16, 18-20, 73,162, 167 FileUpload ActionForm class 161
file detail page 93 100 filter action forms 159, 160

file drop page 93,102 filter parameter 110, 113
file IDs 137 fﬂtg;l;fnels o

file index page 93, 108

file list page 94, 112 fiata 159,160, 167

file lists 67, 113,159, 166 jobs 113 © 112
fil 19, 22,48,74,120 report documents

fle mmbers 68 filters 110, 113, 114, 166

. firewalls 8,9, 170
fil ths. S th r 7
filg lsgtiucsturzes p6a S flashchartsxml format value 138

. e . floatingfooter parameter 138
file t fication 179, 181 & P
filg tiffg gsvellgslca on folder detail page 93, 100

. o . folder drop page 93, 102
filefol 1 t 1 p page 75,
ilefoldersprivilege action 88, 159 folder icons 59

214 Information Console Developer Guide

folder IDs 98
folder index page 93, 108
folder list page 94, 112
folder lists 67,113,159, 165, 166
folder names 82, 98, 166
folder parameter 114, 126
folders
accessing 10, 74, 112
archiving contents 104
assigning privileges to 123
copying 146
creating 17, 98, 159
deleting 17,102
displaying 114, 167
getting home 147,163, 177
linking to 107
navigating through 24, 96
searching 74,125
specifying type 119, 166
viewing information about 100, 114, 159
folderType parameter 127
fonts 49, 55,57
footers 138
FORCED_GC_INTERVAL parameter 67
forceLogin parameter 84,171
format parameter (Interactive Viewer) 138
formatDate tag 143, 146
FormatDateTag class 147
formats
displaying reports and 138
localizing reports and 146
formatting
date values 146
web pages 48
FormFile class 161
forms. See action forms
forms classes. See forms package
forms package 158
forward definitions 43, 85
forward tag 42
free disk space 122
from_page_range parameter 139
from_page_style parameter 139
functionality levels
adding 14,15, 16, 20
associating with users 14, 16

changing 20

configuring 72-75

customizing 16-18

naming 16,73

preserving 20

specifying features for 16,18,19,73

specifying subfeatures for 17, 75
functionality-level.config 74

G

gadget gallery 79
GADGET_GENERATION_ WAITING_TIME
parameter 67

gadgets 5, 67,75
gadgets interface 10
garbage collection 67
general options page 83, 93, 106
GeneralFilterActionForm class 159, 160
Generate Web Archive option 6
generating

locale-specific sites 33

notifications 117

output 118

WAR files 5, 6

web pages 10-11, 22, 48
getAcLocale method 163
getAdminRights method 163
getAuthid method 163
getContextPath method 43
getCurrentfolder method 163
getDefaultServerURL method 163
getDefaultVolume method 163
getErrorMessage method 179, 181
getExtendedCredentials method 176
getFeatureBean method 162
getFeatureOptionsBean method 163
getFeatures method 163
getfiledetails action 88, 159
getfiledetails page. See file detail page
GetFileDetailsActionForm class 159
getFilter method 163
getfolderitems action 89
getfolderitems page. See folder index page
getHomefolder method 163
getlmage method 161
getlportalid method 44, 163

Index 215

getjobdetails action 86, 89, 160 H
getjobdetails page. See request detail page

getjobdetails.jsp 102 headline parameter
GetJobDetailsActionForm class 160 execute report page 104
getLocale method 163 output page 118
getMaxJobPriority method 163 N Sg}?mlt J<S>b page 1128
getnoticejobdetails action 89 eadlines. See headline parameter
getOnlylatest method 163 help 132

getParameter method 43 help book list 199

help collection directories 186
getPassword method 163,173,176 .

getportletfolderitems action 89 help co%lec}t:olns 185,188, 191,199
getProfile method 162, 164 See also help systems

getProperty method 164 help content management files 187
getRepositoryType method 164, 176 ﬁeip content page title bars 198
getrequesterjobdetails action 86, 89 elp content pages

getRoleNames method 164 azif,ssmg 185,186

getRunAsUser method 176 adding 201 .

getsavedsearch action 86,92 changing additional links footer on 194—

195
etServerUrl method 176 .
getServerurl method 164 changing company logos on 193-196

getShowdocuments method 164 chang%ng content in 198,199 .
getShowexecutables method 164 changing Google translate element in 196

getShowfolders method 164 changing icons on 196
getSideBarFeatures method 164 creating index entries for 204, 205
getSidebarSelected method 164 removing 200

getSkin method 161 help directory 185, 186
getSkinConfig method 164 Eeip fllgs 184,185, 189, 191
getSkinName method 164 elp indexes 204, 205

getStyle method 161 help keywords 204, 205
getSubfeatures method 164 help links 191, 192, 203

help navigation frame 187

thod 164
getsystemname method 16 help navigation pages 185, 196

getTimezone method 165

help system locations 184
getUserAgent method 165

getUserHomeFolder method 177 help systems 189, 198

getUserid method 165 help topics 186, 188,197, 199, 201
getUserName method 173, 177 help js 132

getView method 165 hexadeqmal color Yalues 57
getVolume method 165, 177 hexadeqlmal encoding 12

global style elements 49-59 home directory 23

: home folders 107, 147, 163, 166, 177
global variables 132 home page 83,93, 107
homeFolder parameter 109
homeFolder variable 148
hosts 66
HTML code 40, 46, 49
HTML files 185
html format value 138

Google translate elements 196

goto action 86

graphical user interfaces. See user interfaces
graphics files. See image files

graphics. See images

GroupBean class 161

GUIs. See user interfaces

216 Information Console Developer Guide

HTML tables 47, 48
htmlselect.js 132
HTTP requests 4, 8, 69, 162
HTTPS requests 4
hyperlinks
See also URLs
changing targets for 18
creating 160
defining action paths and 43
displaying for specific locales 18
referencing files and 48
setting targets for 18

hypertext markup language. See HTML code

i18n tag library 143

icon files 19, 59, 60, 74, 196

icons
channels 117
features 19
help systems 196
replacing 52, 59
side menu 74

IContentList interface 158

ID parameter 102

ID tag 74

id variable 144, 149

IDAPI_TIMEOUT parameter 68

IDAPL. See Information Delivery API

ifExists parameter 118, 128

iHub
balancing workload on 6,7, 31
connecting to 70, 79, 147, 167,171
deploying Information Console and 4
getting security credentials for 176, 177
installing Information Console with 5, 68
logging in to 171
running Information Console and 14
sending requests over 8, 11, 24

iHub releases 28

iHub services 120, 122, 123

iHub System 5, 22

iHub system names 167

image files 59, 161, 196

Image tag 161

imageid parameter 139

images
adding background 59
changing 41, 52, 59-60
customizing 59
referencing 60
selecting skins and 49
uploading 161

images directory 60

immediate jobs 104, 128

index pages 93, 108

information 165
See also data

Information Console
accessing functionality 11, 42, 64, 72, 136,

158
adding web pages to 10, 43, 44, 48
adjusting layers for 132
building user interface for 4, 45, 49, 142
changing default settings for 30, 31, 32
changing deployed versions of 6
changing messages for 33, 34, 36
changing side menu for 74
changing web pages for 39, 48
configuring as web applications 29-39, 64
configuring proxy servers for 8,9
creating context root for 27-29
creating custom applications for §, 22, 27,
3948

creating online help for 184-193, 198
customizing 5, 6, 49
deploying 4,5, 6,78
displaying information about 95, 110
displaying pages for 18, 82
grouping applications for 26
installing 5, 6, 68
localizing messages for 76-77
logging in to 12, 114, 172
logging out of 115
overview 4,8
renaming default files for 48
resizing pages for 133
retrieving session information for 43
running multiple instances of 7, 27
selecting skin for 49, 51, 55
setting options for 109, 117
starting 8
viewing available locales for 75

Index 217

Information Console (continued)
viewing changes to 41

Information Console custom pages. See web

pages
Information Console library 173, 179

Information Console Security Extension 170

Information Console technology 4

Information Delivery API 4, 8

init method 165

input 34, 42

INSTALL_MODE parameter 68

installing Information Console 5, 6, 68

instanceid parameter 139

Interactive Viewer 17,49, 80, 138

Interactive Viewer help collections 186

Interactive Viewer servlet 137

InteractiveViewing subfeature 17,75

Intermediate functionality level 14, 15,73

internationalization. See locales

internationalization tag library 142, 143

internet applications. See web applications

invokeSubmit parameter 104, 128

IP addresses 171

iportal context root 23

iportal directory 24, 25

iPortal Security Extension. See IPSE
applications

iPortallD parameter 84

iPortalLogin action 89

iPortalRepository class 44

iPortalSecurity Adapter class 173, 174, 175

IPSE applications 170, 173

IPSE Java classes 173

isAlwaysGetFolderList method 165

isEnterprise method 44, 177

isFileTypeAllowed method 178, 179, 181

isHomeFolderSet method 165

isIE method 162

isNS4 method 162

isNS6 method 162

isnull parameter 104

isShowFilters method 165

isViewInNewBrowserWindow method 165

IUploadSecurityAdapter interface 179, 181

iv action 86, 89

IVServlet. See Interactive Viewer servlet

218 Information Console Developer Guide

J

Jakarta Struts action mapping 82, 85
Jakarta Struts code 46
Jakarta Struts Framework 40, 43, 133
Jakarta Struts templates 44, 45, 46
Java classes 40,173,179
Java Servlet API 40
See also servlets
JavaBean methods 158
JavaBeans 43, 45, 57, 158, 165
JavaBeans class reference 158
JavaBeans package reference 158
Javadoc 158
JavaScript code 22, 40
JavaScript components 132
JavaScript files
accessing 44, 46
changing 42
creating online help and 185, 187
developing web applications and 132
referencing images and 60
JavaScript reference 132
JavaServer Pages. See JSPs
job action forms 160
job classes 160
JobActionForm class 160
jobID parameter
delete job page 99
delete status page 99
request detail page 102
request drop page 103
requests index page 110
jobName parameter
delete job page 99
delete status page 100
execute report page 104
request drop page 103
schedule page 125
submit job page 128
JobPriority subfeature 17, 75
jobs
See also requests
canceling 103
deleting 99, 103
displaying 97, 110, 123

executing 10
filtering 110
getting information about 101, 160
listing pending 120, 125
removing notifications for 99
running immediately 104, 128
scheduling 84, 96, 124, 128
sending notifications for 17, 110, 128
setting priorities for 17, 105, 129, 166
setting properties for 161
submitting 10, 74, 108, 126, 161
viewing parameters for 120
Jobs attribute (features) 16,74
Jobs link 19
jobs pages 110
jobState parameter 99,100, 103
JSP code 46, 142
JSP custom tag reference 142, 143, 144
JSP engine 5, 8, 26
JSP extensions 40
JSP file names 48
JSPs
accessing 24
changing templates and 46
compiling 22
customizing 24, 44, 45, 46
displaying 42
generating web pages and 10-11, 22, 48
getting input from 42
getting session information and 43
implementing URIs and 23
implementing URLs and 22
linking styles in 56, 57
locating specific 42
mapping actions to 82, 87
naming 82
referencing images in 60
selecting templates for 24, 45
updating changes to 41
JUL_LOG_CONSOLE_LEVEL parameter 68
JUL_LOG_FILE_COUNT parameter 68
JUL_LOG_FILE_LEVEL parameter 68
JUL_LOG_FILE_SIZE_KB parameter 68

K

key attribute 149

L

label keys 18, 74
Labelkey tag 74
labels 34,74,76
landing page 24, 4041, 44
language codes 76,77
languages 64
language-specific applications. See locales
large icons 19, 74
Largelcon tag 19
LaunchHelp method 190
launchiv parameter 139
layer functionality 132
layerjs 132
Level tag 18,73
libraries 44,142,173
license page 110
limit parameter 105
limitNumber parameter 105
Link tag 18, 57, 74, 160
LinkBean class 160
linking style definitions 56, 57
linking to files 48
linking to folders 107
linking to web pages 47, 48
links 8, 41,72,107, 188
See also hyperlinks
Linux systems 5, 23, 36, 38
list package 158
list pages 83, 94, 111
lists 67, 68, 111, 113, 158
load balancing 6, 7, 31
locale codes 76,77
locale IDs 76
locale names 76
locale parameter 84,139
Locale tag 76
locales
accessing repository for 22
accessing resources for 18, 144, 149
adding 75
changing 118
configuring 75,76
creating error messages for 76-77
formatting data for 146
providing help topics for 188, 191

Index

219

locales (continued)
setting default 30, 31, 66, 76, 165
setting global styles for 49
specifying current 84, 144
specifying preferred 144
translating reporting applications for 33
localhost value 11
localizing messages 33, 76-77
log file numbers 68
log files 67, 68
LOG_FILE_LOCATION parameter 68
logging in to
iHub 171
Information Console 12,114, 172
logging levels 68
login action 9, 86, 89
login banner page 83,94, 114
login credentials 147, 175, 176
login forms 162
login information 66, 162, 172
See also login credentials
login page 12, 44, 83, 94, 114
login requests 171
login tag 143, 147
login tag library 143
LOGIN_TIMEOUT parameter 68
LoginForm class 162
loginPostback parameter 115
logins
customizing 170
forcing 84
getting user information for 162, 176, 177
redirecting 9, 115
LoginTag class 147
logos 59, 193-196
logout action 86, 90
logout page 83,94, 115

M

machine names 11

magnifying glass icon 60

Management Console 5, 16, 136

MAX_BACKUP_ERROR_LOGS
parameter 68

MAX_CONNECTIONS_PER_SERVER
parameter 79

220 Information Console Developer Guide

MAX_LIST_SIZE parameter 68
MDS_ENABLED parameter 7, 31, 79
MDS_REFRESH_FREQUENCY_SECONDS

parameter 31,79
MDS. See Message Distribution service
memory 67,79
menus 16, 60, 74, 109, 132
Message Distribution Service 6, 31, 79, 121
message keys 34
message tag 143, 149
messages 33, 34, 36, 108

See also error messages

MessageTag class 149
method calls 165
methods 132, 158
Microsoft Windows. See Windows systems
Mobile attribute (features) 16, 74
mobile viewing 74
MOBILE_APP_DOWNLOAD parameter 66
mode parameter 122
Model-View-Controller architecture 22
multi-byte characters 14
multilingual reporting. See locales
My dashboard page 115
My Documents folder 109
My Documents link 109
My Documents page 49
My Folder icon 59
My Folder link 107

N

name parameter
DownloadFile servlet 137
file or folder detail page 101
file or folder drop page 102
privileges page 123
names (action paths) 48
See also file names; user names
naming
functionality levels 16,73
JSPs 82
output files 105, 119, 128
skins 53
naming restrictions 22, 82, 127, 136, 142
NAT routers 171
native2ascii utility 77

Network Address Translation (NAT) 171
networks 4, 6,69, 170,171
new request index page 93, 108
newKey parameter 118
newLocale parameter 118
newTimeZone parameter 118
notification page 83, 94, 116
notifications

deleting 99

generating 117

sending 17,110, 128

setting options for 116

specifying user names for 105, 110

storing 160
notificationSupported parameter 128
notify parameter 128
null values 104

O
object aging. See archiving
objectID parameter 101
objects 142
oldKey parameter 118
onceDate parameter 125, 128
onceTime parameter 125,128
on-demand paging. See immediate jobs;
progressive viewing
online documentation vii
online help 184-193, 198
See also help; online documentation
onlyLatest parameter 114
open source frameworks 40
opening
help files 185
Interactive Viewer 17
login page 84
skin manager 51
web applications 27, 108
web browser windows 118, 168
operating systems. See UNIX systems;
Windows systems
option controls 132
options action 90
Options functionality 109
options index page 94, 109
options JSPs 11

options page 83,94, 117, 162
options save action 90
output 105, 118, 128
output file names 120
output files
See also report files
deleting 104, 127
limiting number of 105
naming 105, 119, 128
saving 105, 118
output page 83,94, 118
outputFolderType parameter 105, 119
outputFormat parameter 128
_ _outputName parameter 128
outputName parameter
execute report page 105
output page 119
submit job page 128
overwrite parameter 105

P

packages 158
page breaks 66
page engine 8
page icons 197
page names 82
page not found messages 108, 119
page not found page 83, 94, 119
page parameter 139
page ranges 139
page styles 139
parameter components 57
parameter definitions 30
parameters
adding to URIs 12,13, 84
changing 30

configuring Information Console and 64

connecting to Encyclopedia and 22, 79

customizing reporting applications and 30

displaying 120, 128

loading JSPs and 22

loading web pages and 10, 12
referencing report 127

returning session information and 43
running reports and 80, 104, 106
setting up report viewers and 80

Index

221

parameters list 120
parameters page 57, 83,94, 120
partitionName parameter 122
partitions 122
password parameter 85
passwords

adding to URIs 85

getting 163,176

setting 166

updating 117,172
paths

context roots 43

dashboard resources 79

home folders 107

icons 19

image files 60

log files 68

temporary files 69, 80
payloadSize parameter 122
pdf format value 138
pending jobs 120, 125
pending page 83, 94, 120
performance 67
performance analytics gadgets 65
ping action 90, 160
ping modes 122
ping page 84, 94,120
PingActionForm class 160
PMD. See Process Management Daemon
pool. See connection pools
pop-up menus 132
popupmenu.js 132
ports 8,11
postback parameter 128
ppt format value 138
preferences 84
prefix attribute 142
PRELOAD_ENGINE_LIST parameter 68
presentation models 22
previewing application pages 41
Print icon 197
print page 84
prioritizing jobs 17, 105, 166

See also priority parameter
priority parameter

execute report page 105

submit job page 129

222 Information Console Developer Guide

priority settings. See priority Value parameter

priorityValue parameter

execute report page 105

submit job page 129
private cache 65
private networks 171
privileges 5, 123,127, 147, 159
privileges page 84, 94,123
Process Management Daemon 115
process redirect page 9
processed action status page 103
processID parameter 122
ProfileBean class 162
ProfileName parameter 70
profiles 32,70, 80, 162, 166
programmers 4
progressive parameter 105, 129
progressive viewing 69, 105, 129
PROGRESSIVE_REFRESH parameter 69
PROGRESSIVE_VIEWING_ENABLED

parameter 69

prompts 34
properties 166
properties files 34
protecting data 170

See also security
proxy servers 7,8,9,69, 171
PROXY_BASEURL parameter 69
ps format value 138
public skins 51

R

recurringDay parameter
execute report page 105
schedule page 125
submit job page 129
recurringTime parameter 125,129
redirect attribute 9
redirect parameter
delete job page 99
delete status page 100
file or folder drop page 102
options page 118
request drop page 103
submit job page 129
redirection 9, 66, 115, 128, 189

referencing
files 48
images 60
report parameters 127
refresh intervals 32, 79
related topics icon 197
relative hyperlinks 48
removing. See deleting
renaming files 48, 60
report design area 58
report document files 100, 114, 167
report emitters 65
Report Encyclopedia. See Encyclopedia
volumes
report executable files 114, 120, 167
See also executable files
report execution requests. See jobs; requests
report files
See also specific type
accessing 10, 74,112, 159
archiving 104, 127
assigning privileges to 123
copying 146
deleting 17, 98, 102
displaying 114
downloading 137
filtering 112
getting information about 100, 159
linking to 48
overwriting 105, 118, 128
saving 105, 118, 133
searching 125
sharing 17
report libraries 142, 173
__report parameter 139
report parameters 120, 127, 128
report server. See iHub
report viewers 80, 82,130, 137
See also specific viewer
report.js 132
reporting applications. See applications
reporting services. See iHub services
reporting system. See iHub System
reportlet format value 138
reports
deploying 5
displaying 10, 11, 24, 69, 80, 132, 137

downloading 137
filtering 112
refreshing 69
running 67, 103, 125
saving 105, 118
searching 74
submitting requests for 8, 103
repositories
See also Encyclopedia volumes
accessing items in 10, 74, 112
displaying information about 47
downloading from 139
getting type 176
returning type 44
REPOSITORY_CACHE_TIMEOUT_SEC
parameter 79
repositoryType parameter 139
request detail page 93,101
request drop page 93, 103
Request page 118
request variable 43
requestercanceljob action 86, 90
requesterdeletejob action 86, 90
requesterdeletejobschedule action 86, 90
requestFilters parameter 118
requests
See also jobs
dropping 103
failing 117
limiting number of items returned 68
loading web pages and 10, 12
running multiple applications and 7
sending 6, 11,22, 24,27
specifying action paths for 48
submitting 8, 96, 103,125, 171
testing Encyclopedia and 122
timing out 66
requests index page 94, 109
resetFilter parameter 110, 114
resize.js 133
resource bundles 144, 149
resource files 18, 33, 76
resources 10, 18, 22,46, 70, 132
restarting Apache Tomcat service 29
reverse proxies 9
RGB color values 52, 57
rgb method 57

Index 223

Role tag 16,73
roles

creating 14, 167

defining functionality levels and 14, 16

setting privileges for 127
rtl parameter 139
run requests. See jobs; requests
running

Java servlets 136

jobs 10

reports 67,103, 125
running page 84, 94, 123

S

saveas.js 133
saveOutput parameter 105
savesearch action 92
saving

dashboards 79

image files 161

output files 105, 118

report files 133
schedule page 84,94, 124
schedule properties 124
scheduled job page 84, 94, 125
schedulePeriod parameter 129
scheduleType parameter 125, 129
scheduling jobs 84, 96, 124, 128
Search attribute (features) 16, 74
search expressions 126
search file page. See file list page
search folders page 84, 95, 125
Search link 15,19
Search page 159
search results 49
searchfiles action 90, 91, 159
searchfiles page. See file list page
SearchFilesActionForm class 159
searchFilter parameter 126
searching

folders 74, 125

reports 74
security 4, 65,170,179
security adapter class 171, 173, 174, 175
security adapters 171, 172-182
security extension Java classes 179

224 Information Console Developer Guide

security manager 175
security roles. See roles
SECURITY_ADAPTER_CLASS

parameter 69, 175

selectchannels action 90

selectchannels page. See channels list page
selectjobnotices action 90, 160
selectjobnotices page. See channel contents

list page

SelectJobNoticesActionForm class 160
selectjobs action 90, 161

selectjobs page. See requests index page
SelectJobsActionForm class 161
SelfNotificationWithAttachment

subfeature 17,75

sending notifications 17, 110, 128
sending requests 11, 22, 24, 27
server clusters. See clusters
server parameter 123

server profiles 32

server URLs 167

servers

See also iHub

accessing 44, 170

balancing workload among 7, 31

configuring context root for 27

deploying Information Console over 4, 5,
6,170

dropping connections to 66

extending functionality of 136

installing Information Console on 5

maintaining session states for 7

optimizing performance for 67

restarting 28, 29

retrieving session information for 43

running multiple applications and 7, 27

sending requests over §, 10

setting default 32

setting up firewalls and 8, 9,170

updating user settings for 117

serverURL parameter

execute report page 105
Interactive Viewer servlet 139
submit job page 129

URIs 85

services 120, 122, 123
servlet engine 5, 8, 27, 41

servlet names 136
servlets 10, 22, 136
servlets reference 137
session attributes 113
session information 43, 115
session state 7
session variables 113
SESSION_DEFAULT_PARAMETER_
VALUE_ID parameter 69
sessions 7, 66, 68, 69
sessionTimeout parameter 69
setAcLocale method 165
setAlwaysGetFolderList method 165
setAuthid method 166
setCurrentfolder method 166
setDefaultServerURL method 166
setDefaultVolume method 166
setFeatureOptions method 166
setFilter method 166
setHomefolder method 166
setMaxJobPriority method 166
setOnlylatest method 166
setPassword method 166
setProfile method 166
setProperty method 166
setRequest method 162
setRoleNames method 167
setServerurl method 167
setShowdocuments method 167
setShowexecutables method 167
setShowFilters method 167
setShowfolders method 167
setSideBarFeatures method 167
setSidebarSelected method 167
setSkinConfig method 167
setSkinName method 167
setSystemname method 167
setTimezone method 168
setUserAgent method 168
setUserid method 168
setView method 168
setViewInNewBrowserWindow method 168
setVolume method 168
ShareFile subfeature 17,75
showDocument parameter 114
showExecutables parameter 114
showFolders parameter 114

side bars. See side menu
side menu 16, 60, 74, 109

simple object access protocol. See SOAP

messages
skin classes 161

skin descriptions 54

skin editor 161

skin manager 39, 40, 51, 54, 161
skin names 167

SkinBean class 161
skincustomization.js 133
skinedit action 91
SkinEditorActionForm class 161
skinerror action 86

SkinManagerActionForm class 161

SkinManagerInfoBean class 161
skins
accessing templates for 45

adding background images to 59
applying style definitions to 56, 57

changing application pages and 40, 49

changing images and 59
changing side menu for 74
cloning 51, 52, 53

creating 51, 52, 53, 167

customizing 49, 51, 52, 53, 74, 161

deleting 51
editing 161
maintaining 133
naming 53
previewing 51, 52
selecting 49, 51, 55
specifying default 51, 55
small icons 19, 74
Smalllcon tag 19
SOAP messages 36
See also requests
source code 44
space character 13
special characters 12
Standard Viewer 137
start folders 147
startFolder variable 148
starting Information Console 8
startup messages 108
startUpMessage parameter 108
string substitution 18

Index

225

string tag 143 specifying content for 145, 153

stringList tag 143 tabbed property sheets 109
strings 37, 84, 106 See also tabbed dialogs
Struts action mapping 82, 85 Tabbed skins 50

See also Jakarta Struts Framework TabBegin class 151
strutscommon.js 133 tabBegin tag 143, 151
style definition files 56 TabEnd class 151
style definitions 56, 57 tabEnd tag 143, 151
style sheets table of contents (help topics) 199, 201, 203

accessing 44, 46 TABLE tag 47,48

changing styles in 57 tableList action 91

customizing web pages and 40, 59 tables. See HTML tables

linking to JSPs 56, 57 TabMiddle class 152

specifying color settings in 57 tabMiddle tag 143, 152

updating changes to 42 TabMiddleSelected class 153

viewing changes to 58 tabMiddleSelected tag 143, 153
STYLE tag 56,57, 161 tabPanel tag 143, 153
styles 56-59 TabPanelTag class 153

See also style sheets tabs
subdirectories 24 See also tabbed dialogs
SubfeaturelD tag 17,75 associating pages with 153
subfeatures 17,75 choosing skins and 50
subfolders 126 defining adjacent pairs 155
submit job page 84, 95,126 defining labels and keys for 150
submitjob action 91, 161 moving focus to 154
submitjob page. See submit job page selecting 109
SubmitJobActionForm class 160, 161 setting attributes of 153
submitting jobs 10, 108, 126, 161 setting order of 151, 152
subpage parameter 108, 110 specifying as default 154
subscribeChannel action 91 TabSeparator class 155
SubscribeChannel subfeature 17, 75 tabSeparator tag 143, 155
SubscribeChannelActionForm class 159 tag libraries 44, 142
succComp parameter 118 tag library descriptor 142
succEmail parameter 118 tag lines. See headline parameter
synchronizing data 17 tag names 142
system. See iHub System taglib directive 142
system names 167 tags
system resources. See resources adding locales and 75

adding time zones and 76
T changing help topics and 198
defining features and 18, 74

;1:}},) tggsi 452 50 defining functionality levels and 16,73
tabbed dialogs defining subfeatures and 17, 75

See also tabs encapsulating frequent tasks and 142, 143

defining tabs for 150, 153, 155 targetPage parameter 12, 115

temp directory 80

ning tabs for 150, 153
setting orientation of 15 TEMP_FOLDER_LOCATION parameter 80

226 Information Console Developer Guide

template element 45
template files 45
template tags 45
templates
accessing 45
building JSPs and 24, 45, 46
changing landing page and 41
creating web pages and 48
customizing applications and 4448
selecting 45
temporary files 69, 80, 122
temporary server profiles 72
testing
applications 27
help links 191, 192
reporting services 123
text 33, 34,37, 45, 76,198, 204
text files 77
text messages 34, 36, 108
third-party applications 7
time stamps 106, 122
time zone IDs 76
time zones 30, 31, 64, 66, 76, 85, 118, 168
time-out values 66, 68, 69
timeToDelete parameter
execute report page 105
submit job page 129
timezone parameter 85
TimeZone tag 76
title bars 59
TITLE_LANDING_PAGE parameter 34
titles 34, 198
TLD files 142
toolbars 59, 133
toString method 160, 165
transient files 69, 80, 122
TRANSIENT_STORE_MAX_SIZE_KB
parameter 69
TRANSIENT_STORE_PATH parameter 69
TRANSIENT_STORE_TIMEOUT_SEC
parameter 69
translating reporting applications 33
treebrowser action 91
Treeview skins 50
truncated strings 84
trusted names 11

U

unauthorized users 170
unencode method 132
Uniform Resource Identifiers. See URIs
Uniform Resource Locators. See URLs
UNIX systems 5, 23, 36, 38
updatechannel action 91
updating
data 17
passwords 117,172
user options 117
web pages 41
upgrades 20, 52
upload security adapter class 179, 180
upload security adapter interface 179, 181
upload security adapters 178-181
UPLOAD_FILE_TYPE_LIST parameter 69,
178
UPLOAD_SECURITY_ADAPTER
parameter 180
UPLOAD_SECURITY_MANAGER
parameter 69
uploadimage action 91
uploading binary files 136
uploading image files 161
uploadlicense action 91
uri attribute 142
URIs
accessing reporting applications and 27
adding parameters to 12,13, 84
creating 11,12
displaying feature-specific pages and 18
encoding characters and 12, 14
implementing 23
loading servlets and 136
locating specific JSPs and 42
obtaining list values and 113
overview 11, 82
Process Management Daemon and 115
redirecting logins and 115
redirecting web pages and 9
referencing in tag libraries 142
returning diagnostic information and 121
running reports and 104, 106
submitting requests and 8, 11, 24
viewing reports and 130

Index 227

URISs reference 92, 130

URLs
activating security manager and 172
connecting to iHub System and 22,70, 167
opening help files and 188, 189, 190
redirecting web pages and 9, 66
setting up firewalls and 8
specifying default 166
transmitting actions and 22, 43

user authentication. See authentication

user classes 162

user IDs 85, 139, 168

user interfaces
building 4, 45, 49, 142
changing elements in 59-60
enabling features for 14, 16,72
enabling subfeatures for 17,75
submitting requests and 8

user names 177
See also userName parameter

user option settings 11

user parameter 115

user profiles 162, 166

user-agent header 162

UserAgentBean class 162

UserAgentBean objects 168

userID parameter 85

userid parameter 139

UserInfoBean class 43, 162, 162-168

userName parameter
delete status page 100
options page 118
request detail page 102
requests index page 110

UserOptionsActionForm class 162

users
accessing home page 107
displaying current settings for 107
displaying preferences for 84
getting authentication IDs for 44
getting home folders for 177
getting passwords for 163, 176
getting security credentials for 176
returning information about 162
selecting functionality levels 162
sending notifications to 105, 110, 116, 128
setting default skins for 51, 55

228 Information Console Developer Guide

setting features for 74, 167
setting functionality levels for 14, 15, 16,
72,73
setting passwords for 166
updating passwords for 117, 172
updating settings for 117
validating credentials for 175
viewing subscribed channels for 111, 117,
158
users parameter 105
users tag library 142
UTE-8 encoding 14

Vv

values. See data
variables 34, 37,113
verifyFile method 178, 179, 181
version names. See versionName parameter
version parameter
DownloadFile servlet 137
file or folder detail page 101
versionName parameter
execute report page 106
output page 119
submit job page 129
view constants 168
View service 123
viewer getsavedsearch action 92
viewer page 84,95
viewer savesearch action 92
viewer servlet 137
viewers 80, 82, 130, 137
See also specific Actuate viewer
viewframeset action 86
viewing
banners 95, 114
color settings 55
completed jobs 97
current jobs 123
data 22,48
error messages 103, 119
failed jobs 110
files and folders list 67
folders 114, 167
help topics 201, 203
locales 75

login page 12, 114
pending jobs 125
report executables 114, 167
report parameters 120, 128
reports 10, 11, 24, 69, 80, 132, 137
repository information 47
search results 49
subscribed channels 96, 111, 117, 158
web pages 42
viewnav.js 133
viewNewBrowser parameter 118
viewpage action 86
views 168
volume icons 59
volume parameter
execute report page 106
Interactive Viewer servlet 139
submit job page 129
URIs 85
volume profile name 32
volume profiles 70-72, 80, 177
VOLUME_PROFILE_LOCATION
parameter 80
VolumeProfile parameter 85
VolumeProfiles tag 70
volumes. See Encyclopedia volumes

W

wait parameter 106
wait values 66, 67, 106
waitforreportexecution action 92
WAR deployments 78
WAR files 5,6
web applications 8, 40, 170
See also applications
web archive files. See WAR files
web browsers
changing style definitions for 57
changing title bar text for 198
changing web pages and 48
deploying Information Console and 5
detecting 132, 162

displaying environment settings for 107

encoding and 12, 14

issuing URIs and 84

loading web pages for 10, 12
maintaining session state for 7

opening new windows for 118, 168
preserving login information for 66
redirecting 9, 66, 115, 128
setting cache for 65
specifying 168
web pages
adding 10, 43, 44, 48
associating with tag libraries 142
caching 41, 65, 79
creating banners for 95
customizing 39, 46, 48
displaying 42
formatting 48
generating 10-11, 22, 48
linking to 47, 48
loading 10, 12
localizing 144, 149
navigating through 47
resizing 133
submitting requests and 8
updating 41
viewing changes to 41
web resources 10, 22, 46
web servers 5
See also servers
web sites 5
web.xml 64
WEB-INF directory 64, 142
welcome text 41
wildcards 126
window displays 132
Windows language pack 77
Windows systems 5, 23, 35, 37
working folders 96, 113
workingFolder parameter 96
workingFolderID parameter 98
workingFolderName parameter 98
wr action 86
write tag 57
wwhelp directory 185

X

xls format value 138

XML files 41

XML tag reference 142, 144
XML tags 142

Index

229

230 Information Console Developer Guide

	Contents
	About Information Console Developer Guide
	Customizing Actuate Information Console
	Introducing Actuate Information Console
	About Actuate Information Console
	Setting up Actuate Information Console
	Generating a web archive (WAR) for installation
	Understanding Actuate Information Console load balancing
	Deploying a load balancer for an Actuate BIRT iHub cluster
	About using a cluster of application servers

	About Actuate Information Console architecture
	Using proxy servers with Actuate Information Console
	About Actuate Information Console pages
	Working with Actuate Information Console URIs
	About Actuate Information Console URIs
	Using a special character in a URI
	About UTF-8 encoding

	About Actuate Information Console functionality levels
	Customizing functionality levels
	Customizing functionality level features
	Preserving functionality levels and features

	Creating a custom Information Console web application
	Information Console web application structure and contents
	Understanding Information Console directory structure
	Building a custom Information Console context root
	Activating a new or custom web application

	Configuring a custom Information Console web application
	Customizing Information Console configuration
	Setting the default locale
	Controlling the Message Distribution service load balancing
	Specifying the default Encyclopedia volume and server

	Modifying text and messages
	Customizing Information Console text and messages
	Customizing Actuate BIRT iHub error messages

	Customizing an Information Console web application
	Modifying the landing page
	Viewing modifications to a custom web application
	Locating existing pages and linking in new pages
	Obtaining information about the user and the session
	Customizing accessible files and page structure using templates
	Specifying a template and template elements
	About the dashboard template
	Changing a template

	Modifying existing content or creating new content

	Modifying global style elements
	Customizing Actuate Information Console using skins
	Using skins
	Managing skins using the skin manager
	Customizing and cloning skins

	Understanding style definition files
	Specifying colors and fonts
	Customizing page styles for BIRT Studio

	Modifying graphic images

	Actuate Information Console reference
	Actuate Information Console configuration
	About Information Console configuration
	Configuring the Information Console web application
	Configuring Information Console using web.xml
	Configuring Information Console using volumeProfile.xml
	Using a volume profile defined in volumeProfile.xml
	Overriding the volume specified in a volume profile
	Understanding temporary volume profiles

	Configuring Information Console functionality levels with functionality-level.config
	Configuring Information Console locales
	Configuring Information Console time zones
	Customizing messages and text according to locale
	Configuring Shindig 2.0 for a WAR or EAR deployment

	Configuring the connection to iHub
	Configuring the BIRT Viewer and Interactive Viewer
	Configuring BIRT Studio
	Configuring BIRT Data Analyzer

	Actuate Information Console URIs
	Actuate Information Console URIs overview
	Actuate Information Console URIs quick reference
	Common URI parameters
	Information Console Struts actions
	Actuate Information Console URIs reference
	about page
	banner page
	browse file page
	calendar page
	channels page
	completed request page
	create folder page
	dashboard page
	delete file status page
	delete job page
	delete status page
	detail page
	drop page
	error page
	execute report page
	general options page
	home page
	index page
	license page
	list page
	login banner page
	login page
	logout page
	My dashboard page
	notification page
	options page
	output page
	page not found page
	parameters page
	pending page
	ping page
	privileges page
	running page
	schedule page
	scheduled job page
	search folders page
	submit job page
	Actuate BIRT Viewer URIs reference

	Actuate Information Console JavaScript
	Actuate Information Console JavaScript overview
	Actuate Information Console JavaScript reference

	Actuate Information Console servlets
	Information Console Java servlets overview
	About the base servlet
	Invoking a servlet

	Information Console Java servlets reference
	DownloadFile servlet
	Interactive Viewer servlet

	Actuate Information Console custom tags
	Information Console custom tag overview
	Information Console custom tags quick reference
	Information Console custom tag libraries
	Information Console custom tags

	Information Console custom tags reference
	bundle
	content
	copyFileFolder
	formatDate
	login
	message
	tab
	tabBegin
	tabEnd
	tabMiddle
	tabMiddleSelected
	tabPanel
	tabSeparator

	Actuate Information Console JavaBeans
	Information Console JavaBeans overview
	Information Console JavaBeans package reference
	Information Console JavaBeans class reference
	Channels
	Documents
	General
	Jobs
	Skins
	Users

	Information Console UserInfoBean class reference

	Using Actuate Information Console security
	About Actuate Information Console security
	Protecting corporate data
	Protecting corporate data using firewalls
	Protecting corporate data using Network Address Translation
	Protecting corporate data using proxy servers

	Understanding the authentication process
	Creating a custom security adapter
	Accessing the IPSE Java classes
	Creating a custom security adapter class
	Deploying a custom security adapter
	Understanding the security adapter class

	Creating an upload security adapter
	Accessing the necessary Java classes
	Creating a custom security adapter class
	Deploying an upload security adapter
	Understanding the upload security adapter interface

	Customizing Information Console online help
	About Actuate Information Console online help files
	Understanding the help directory structure
	Understanding a help collection
	Understanding a document root
	Understanding context-sensitive help
	Understanding locale support

	Using a custom help location
	Creating a localized help collection
	Customizing icons, links, and the company logo
	Changing the corporate logo
	Changing the additional links footer in help content pages
	Changing the Google translate element in help content pages

	Changing icons
	Changing the browser window title

	Changing help content
	Changing existing help content
	Adding or removing help topics
	Adding and removing content files
	Changing the table of contents
	Changing the index

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

